
IBM Business Process Manager
Version 7.5.0

Overview of IBM Business Process
Manager

���



ii Overview



PDF books and the information center

PDF books are provided as a convenience for printing and offline reading. For the latest information, see
the online information center.

As a set, the PDF books contain the same content as the information center. Some links within the PDF
books have been tailored for use in the information centers and may not work properly.

The PDF documentation is available within a quarter after a major release of the information center, such
as Version 7.0 or Version 7.5.

The PDF documentation is updated less frequently than the information center, but more frequently than
the Redbooks®. In general, PDF books are updated when enough changes are accumulated for the book.

© Copyright IBM Corp. 2005, 2011 iii



iv Overview



Contents

PDF books and the information center iii

Chapter 1. Getting started with IBM
Business Process Manager V7.5 . . . . 1
Product overview. . . . . . . . . . . . . 1

IBM Business Process Manager V7.5
configurations . . . . . . . . . . . . . 3
IBM Business Process Manager V7.5 configuration
capabilities . . . . . . . . . . . . . . 3
The Process Center repository . . . . . . . 4
Process Server and runtime environments . . . 5
Authoring environments . . . . . . . . . 6
What's new in IBM Business Process Manager
V7.5 . . . . . . . . . . . . . . . . 7
What's new in Version 7.5 business process
management product information . . . . . . 10
Accessibility in IBM Business Process Manager 10
National languages supported in IBM Business
Process Manager. . . . . . . . . . . . 11

Business process management overview . . . . . 11
Overview of process modeling . . . . . . . 12
Process development with the Process Center . . 13
Process applications: Overview . . . . . . . 14
Running and debugging processes. . . . . . 14
Deploying and managing process applications. . 15
Creating, accessing, and incorporating services 16

Accessing services external to an application 16
Creating or calling a Web service . . . . . 21

Chapter 2. Learn more about IBM
Business Process Manager . . . . . . 23
Versioning . . . . . . . . . . . . . . . 23

Versioning process applications . . . . . . . 23
Versioning modules and libraries . . . . . . 24
Naming conventions . . . . . . . . . . 25

Naming conventions for Process Center server
deployments . . . . . . . . . . . . 26
Naming conventions for Process Server
deployments . . . . . . . . . . . . 28

Version-aware bindings . . . . . . . . . 29
Version-aware dynamic invocation. . . . . . 31
Deploying process applications with Java
modules and projects . . . . . . . . . . 32
Deploying process applications with business
rules and selectors . . . . . . . . . . . 32

Deployment architecture . . . . . . . . . . 32
Cells. . . . . . . . . . . . . . . . 32
Servers . . . . . . . . . . . . . . . 33

Stand-alone servers . . . . . . . . . . 33
Clusters . . . . . . . . . . . . . 33

Profiles . . . . . . . . . . . . . . . 34
Deployment managers. . . . . . . . . . 35
Nodes . . . . . . . . . . . . . . . 35

Managed nodes . . . . . . . . . . . 35
Unmanaged nodes . . . . . . . . . . 36

Node agents . . . . . . . . . . . . . 36
Naming considerations for profiles, nodes,
servers, hosts, and cells . . . . . . . . . 36

Bindings . . . . . . . . . . . . . . . 40
Export and import binding overview . . . . . 42
Export and import binding configuration . . . 46

Data format transformation in imports and
exports . . . . . . . . . . . . . . 46

Data handlers . . . . . . . . . . 47
Data bindings . . . . . . . . . . 48

Function selectors in export bindings . . . . 50
Fault handling . . . . . . . . . . . 52

How faults are handled in export bindings 53
How faults are handled in import bindings 54

Interoperability between SCA modules and Open
SCA services . . . . . . . . . . . . . 56
Binding types. . . . . . . . . . . . . 59

Selecting appropriate bindings . . . . . . 59
SCA bindings. . . . . . . . . . . . 60
Web service bindings . . . . . . . . . 60

Web service bindings overview . . . . . 61
SOAP header propagation . . . . . . 62
Transport header propagation . . . . . 65
Working with Web service (JAX-WS)
bindings . . . . . . . . . . . . 66
Attachments in SOAP messages . . . . 69
Use of WSDL document style binding with
multipart messages . . . . . . . . . 82

HTTP bindings . . . . . . . . . . . 83
HTTP bindings overview . . . . . . . 84
HTTP headers . . . . . . . . . . 85
HTTP data bindings . . . . . . . . 88

EJB bindings . . . . . . . . . . . . 90
EJB import bindings . . . . . . . . 90
EJB export bindings . . . . . . . . 92
EJB binding properties. . . . . . . . 93

EIS bindings . . . . . . . . . . . . 97
EIS bindings overview. . . . . . . . 97
Key features of EIS bindings. . . . . . 98
JCA Interaction Spec and Connection Spec
dynamic properties . . . . . . . . 100
External clients with EIS bindings . . . 101

JMS bindings . . . . . . . . . . . 102
JMS bindings overview . . . . . . . 102
JMS integration and resource adapters . . 105
Key features of JMS bindings . . . . . 105
JMS headers . . . . . . . . . . . 106
JMS temporary dynamic response
destination correlation scheme. . . . . 107
External clients . . . . . . . . . . 108
Troubleshooting JMS bindings . . . . . 109
Handling exceptions . . . . . . . . 110

Generic JMS bindings. . . . . . . . . 110
Generic JMS bindings overview . . . . 111
Key features of Generic JMS bindings . . 113
Generic JMS headers . . . . . . . . 114

© Copyright IBM Corp. 2005, 2011 v



Troubleshooting Generic JMS bindings . . 115
Handling exceptions . . . . . . . . 116

WebSphere MQ JMS bindings . . . . . . 117
WebSphere MQ JMS bindings overview 117
Key features of WebSphere MQ JMS
bindings . . . . . . . . . . . . 119
JMS headers . . . . . . . . . . . 120
External clients . . . . . . . . . . 121
Troubleshooting WebSphere MQ JMS
bindings . . . . . . . . . . . . 122
Handling exceptions . . . . . . . . 123

WebSphere MQ bindings . . . . . . . 123
WebSphere MQ bindings overview . . . 123
Key features of a WebSphere MQ binding 126
WebSphere MQ headers . . . . . . . 128
Adding MQCIH statically in a WebSphere
MQ binding . . . . . . . . . . . 130
External clients . . . . . . . . . . 130
Troubleshooting WebSphere MQ bindings 131
Handling exceptions . . . . . . . . 132

Limitations of bindings . . . . . . . . 132
Limitations of the MQ binding . . . . 132
Limitations of the JMS, MQ JMS, and
generic JMS bindings . . . . . . . . 133

Business objects . . . . . . . . . . . . 134
Defining business objects . . . . . . . . 134
Working with business objects . . . . . . . 135
Special business objects . . . . . . . . . 137
Business object parsing mode . . . . . . . 137

Considerations when choosing the business
object parsing mode . . . . . . . . . 138
Benefits of using lazy versus eager parsing
mode . . . . . . . . . . . . . . 138

Application migration and development
considerations . . . . . . . . . . . 139

Relationships . . . . . . . . . . . . . 140
Relationship service . . . . . . . . . . 142
Relationship manager . . . . . . . . . 143
Relationships in Network Deployment
environments . . . . . . . . . . . . 143
Relationship service APIs . . . . . . . . 144

The enterprise service bus in IBM Business Process
Manager . . . . . . . . . . . . . . . 144

Connecting services through an enterprise
service bus . . . . . . . . . . . . . 144
Enterprise service bus messaging infrastructure 145

Messaging or queue destination hosts . . . 146
Data stores . . . . . . . . . . . 146

Data sources for IBM Business Process
Manager . . . . . . . . . . . . . 146

JDBC providers. . . . . . . . . . 148
Service integration buses for IBM Business
Process Manager . . . . . . . . . . 148

SCA system bus . . . . . . . . . 149
SCA application bus . . . . . . . . 149
The Common Event Infrastructure bus 149
The Business Process Choreographer bus 149

Service applications and service modules . . . 149
Imports and import bindings . . . . . . 150
Exports and export bindings . . . . . . 151
Mediation modules . . . . . . . . . 152
Mediation primitives . . . . . . . . . 154
Dynamic routing . . . . . . . . . . 158
Mediation policy control of service requests 159
WebSphere Service Registry and Repository 159

Message Service clients . . . . . . . . . 160

vi Overview



Chapter 1. Getting started with IBM Business Process
Manager V7.5

Understand what capabilities IBM® Business Process Manager provides for business process management,
and how the various phases of business process management, such as creating and deploying process
applications, relate to one another.

The process application is the fundamental container for processes and their components in IBM Business
Process Manager. Process designers create process applications in the authoring environments, and may
include services, tasks, and artifacts needed to support execution.

Advanced Integration Services are implemented in Integration Designer and associated with process
applications. From the Process Center, process applications are deployed to the Process Server, which is
the process runtime environment for IBM Business Process Manager.

Similarly, automated processes created in Integration Designer can use human activity flows that have
been developed in IBM Process Designer.

Product overview
The components of IBM Business Process Manager provide a unified BPM repository, tooling for authors,
administrators, and users, and a runtime platform. Different configurations of the product support
different levels of complexity and involvement with business process management.

The following diagram illustrates a typical IBM Business Process Manager configuration:

© Copyright IBM Corp. 2005, 2011 1



v From the IBM Process Designer and IBM Integration Designer authoring environments, multiple users
connect to the Process Center.

v In the Process Designer and Integration Designer authoring environments, process and service
designers create deployable process applications and re-usable toolkits. Process applications contain
process models and service implementations, including any required supporting files. They are stored
in the Process Center repository, where they can be shared.

v The Process Center includes a Process Center server and Business Performance Data Warehouse,
allowing users working in IBM Process Designer to run their process applications and store
performance data for testing and playback purposes during development efforts.

v From the Process Center Console, administrators install process applications that are ready for staging,
testing, or production on the Process Servers in those environments.

v From the Process Center Console, administrators manage running instances of process applications in
all configured environments.

2 Overview



v From the IBM Process Portal, end users perform assigned tasks. The Process Center server and Process
Server in configured runtime environments can run the process applications that create the assigned
tasks.

v Using the Process Portal, process participants can connect to the Process Center server or a Process
Server in any configured runtime environment, depending on whether a process is being developed,
tested, or has been released to a production environment.

v Performance Data Warehouse retrieves tracked data from the Process Server or Process Center server at
regular intervals. Users can create and view reports that leverage this data in the authoring
environments and IBM Process Portal.

v From the Process Admin Console and Performance Admin Console, administrators can manage and
maintain all runtime servers.

IBM Business Process Manager V7.5 configurations
Different configurations of IBM Business Process Manager correlate with typical entry points or stages in
a company's business process management program.

Table 1. IBM Business Process Manager configurations

Configuration Phase

Advanced Transformation

Complete set of business process management capabilities

v Extended support for high-volume process automation

v Built-in SOA components for extensive enterprise-wide service integration,
orchestration

Standard Program

Configured for typical business process management projects

v For multi-project improvement programs, with high business involvement

v Basic system integration support

v Rapid time-to-value and improved user productivity

Express Project

Configured for first business process management project

v Rapid time-to-value: improved user productivity

v Low entry price

v Easy installation and configuration

IBM Business Process Manager V7.5 configuration capabilities
Understand what products and capabilities IBM offers for business process management, and choose the
right one for your enterprise.

IBM Business Process Manager is a single BPM platform that combines human-centric and
integration-centric capabilities into a unified product. Different configurations of the product are available
for different users, and satisfy different needs in the enterprise. Product configurations can be combined
for collaborative authoring and network-deployed runtime environments.

Table 2. IBM Business Process Manager configuration capabilities

Capability AdvancedStandardExpress

WebSphere Lombardi Edition compatible execution X X X

Process Designer (BPMN) X X X

Collaborative editing / immediate playback X X X

Chapter 1. Getting started with IBM Business Process Manager V7.5 3



Table 2. IBM Business Process Manager configuration capabilities (continued)

Capability AdvancedStandardExpress

Interactive "process coach" user interfaces X X X

ILOG-based process rules X X X

Real-time monitoring and reporting X X X

Performance analytics & optimizer X X X

Performance Data Warehouse X X X

Process Center / shared asset repository X X X

Unlimited process authors and end-users X X 200 users / 3
authors

High availability: clustering and unlimited cores X X v 4 cores product

v 2 cores
development

v No cluster

WebSphere Process Server compatible execution X

Integration Designer (BPEL / SOA) X

Built-in enterprise service bus (ESB) X

Transaction support X

Integration adapters X

Flexible Business Space user interface X

The Process Center repository
The Process Center includes a repository for all processes, services, and other assets created in the IBM
Business Process Manager authoring environments, Process Designer and Integration Designer.

The Process Center is a run time where Process Designer and Integration Designer share assets, in effect
letting them develop business processes cooperatively in a highly interactive manner. These business
processes can use monitoring points created with the Business Monitor development toolkit. The result is
a business process that can be examined at runtime for effectiveness under real working conditions.
Business Monitor provides a dashboard view with gauges and scorecards. You can add alerts and
notifications that let you know from moment to moment how the business process is doing. Bottlenecks,
inefficiencies, and errors in resource allocation in a running business process can be spotted and corrected
resulting in improving the performance of your business processes.

In the diagram that follows, you see several related components that together let you build complex
business processes.

4 Overview



Built-in Playback Runtimes

Process Center

Integration
Designer

- Shared assets
- Snapshots

Process
Designer

Process Designer

Business Monitor

The Process Center console provides the tools that you need to maintain the repository.
v From the Process Center console, you can create process applications and toolkits and grant other users

access to those process applications and toolkits.
v In the authoring environments, you can create process models, services, and other assets within process

applications.
v The Process Center includes a Process Center server and performance data warehouse, allowing users

working in the authoring environments to run processes and store performance data for testing and
playback purposes.

v From the Process Center console, administrators install process applications that are ready for testing
or production on the process servers in those environments.

v From the Process Center console, administrators manage running instances of process applications in
configured environments.

The Process Center console provides a convenient location in which to create and maintain high-level
containers such as process applications and toolkits. Administrators who do not actively work in the
Designer view can use the Process Center console to provide a framework in which BPM analysts and
developers can build their processes and underlying implementations. Another primary task for
administrators is managing access to the Process Center repository by setting up the appropriate
authorization for users and groups.

Those users with appropriate authorization can perform some administrative tasks directly in Process
Designer and Integration Designer. For example, a developer with write access to the process application
who wants to capture the state of all project assets at a particular milestone can create a snapshot while
working in the Designer view.

Process Server and runtime environments
Process Server provides a single BPM runtime environment that can support a range of business
processes, service orchestration, and integration capabilities.

Chapter 1. Getting started with IBM Business Process Manager V7.5 5



In your authoring environments, the integrated process server within Process Center enables you to run
processes as you build them. When you are ready, you can install and run those same processes on the
process servers in your runtime environments. The Business Performance Data Warehouse component
collects and aggregates process data from processes running on the process servers. You can use this data
to improve your business processes.

The Process Admin Console enables you to manage the process servers in your runtime environments,
for example, staging, test, production, as well as the process server that is part of the Process Center.

Authoring environments
IBM Business Process Manager Advanced offers two authoring environments. Use IBM Process Designer
to efficiently model business processes that involve human tasks. Use IBM Integration Designer to build
services that are self-contained or that invoke other existing services such as web services, enterprise
resource applications, or applications running in CICS and IMS.

Process Designer is available in all editions of the product. IBM Business Process Manager Advanced also
offers Integration Designer with its associated editors and adapters.

Process Designer

A process is the major unit of logic in IBM Business Process Manager. It is the container for all
components of a process definition, including services, activities and gateways; timer, message, and
exception events; sequence lines, rules, and variables. When you model a process, you are creating a
reusable business process definition (BPD). Use IBM Process Designer to create process models that can
contain human tasks.

Process Designer helps you develop business processes. With an easy-to-use graphics-oriented tool, you
can create a sequence of actions that compose a business process, and you can redraw that process over
time as circumstances change. If one or more activities require access to large backend systems or services
that provide data for the business process, for example to get information on customers, you can meet
that need using Integration Designer. Using a simple interface, an activity in Process Designer can call a
service created in Integration Designer. That service can use mediation flows to transform, route, and
enhance data and adapters to get to many backend systems in standard way. In short, Process Designer
focuses on the business process and Integration Designer focuses on automated services to complement
the business process.

All Process Designer projects are contained in process applications. You store those process applications
and associated artifacts in the Process Center repository. Process applications can share assets that have
been placed in toolkits.

IBM Business Process Manager provides several user interfaces to enable you to model, implement,
simulate, and inspect business processes. You create and manage process applications, toolkits, tracks,
and snapshots in the Process Center Console. You can create process models, reports, and simple services
in Process Designer. You can run and debug processes in the Inspector. And you can run simulations in
the Optimizer.

Processes applications developed in Process Designer can at any time be run on the Process Center server
or saved to a snapshot and deployed on the Process Server. The same is true of services developed in
Integration Designer and associated with process applications.

Integration Designer

Integration Designer provides editors and aids to help developers create complex automated processes
and services. It is available as a component in IBM Business Process Manager Advanced or as a
stand-alone toolset for other uses.

6 Overview



IBM Integration Designer has been designed as a complete integration development environment for
those building integrated applications. Integrated applications are not simple. They can call applications
on Enterprise Information Systems (EIS), involve business processes across departments or enterprises,
and invoke applications locally or remotely written in a variety of languages and running on a variety of
operating systems. The components are created and assembled into other integrated applications (that is,
applications created from a set of components) through visual editors. The visual editors present a layer
of abstraction between the components and their implementations. A developer using the tools can
assemble an integrated application without detailed knowledge of the underlying implementation of each
component.

Integration Designer tools are based on a service-oriented architecture. Components are services and an
integrated application involving many components is also a service. The services created comply to the
leading, industry-wide standards. BPEL processes, which also become components, are similarly created
with easy-to-use visual tools that comply to the industry-standard Business Process Execution Language.

In the Integration Designer paradigm, components are assembled in modules. Imports and exports are
used to share data between modules. Artifacts placed in a library can be shared among modules.

Modules and libraries can be associated with a process application for use with the Process Center and
can be used as services by processes created in Process Designer. In such cases, they can also be deployed
with the process application.

Alternatively, modules and libraries can be deployed directly to the test environment or to the Process
Server. You can use mediation modules to create mediation flows, which you can deploy to WebSphere
Enterprise Service Bus or to the Process Server.

IBM Integration Designer also provides the capability for creating data types and xml maps that can be
deployed on the WebSphere DataPower appliance. You can also transfer files to and from WebSphere
DataPower.

What's new in IBM Business Process Manager V7.5
IBM Business Process Manager incorporates key functionality from WebSphere Process Server, WebSphere
Lombardi Edition, and IBM Integration Designer (formerly WebSphere Integration Developer) into a
unified user environment. It integrates the most current functionality from those three products and
enhances the features from the previous product versions.

IBM Business Process Manager is a comprehensive and consumable business process management
platform that provides visibility and management of your business processes. It includes tooling and run
time for process design, execution, monitoring, and optimization. It is also designed to help process
owners and business users to engage directly in the improvement of their business processes.

Some of the new and enhanced features in the following list existed in previous versions of one of the
products (WebSphere Process Server, WebSphere Lombardi Edition, or WebSphere Integration Developer).
However, the features are new to users who previously had only one or two of the products but did not
have all three.

Some features that previously existed in earlier versions of the integrated products have been replaced by
new features in IBM Business Process Manager. For a list of deprecated features, see Deprecated features.

New and enhanced features in IBM Business Process Manager V7.5

IBM Business Process Manager V7.5 provides the following new or enhanced features:
v A unified authoring environment for creating human-centric, standards-based Business Process

Modeling Notation (BPMN) processes (using Process Designer) and integrating them with
system-centric Business Process Execution Language (BPEL) processes (using Integration Designer).

Chapter 1. Getting started with IBM Business Process Manager V7.5 7



v A shared repository and a common execution environment for both BPMN processes and BPEL
processes. Together, the unified authoring environment, the shared repository, and the common
execution environment provide these enhancements:
– Graphical implementation and testing of process applications, services, user interfaces, and rules.
– Standards-based process design, using BPMN.
– IBM Integration Designer tooling for constructing services, data transformations, BPEL

orchestrations, and integration to applications and back-end systems.
– Business rule authoring that expresses business logic in an accessible manner, providing the same

rule-authoring experience as WebSphere ILOG JRules. Rules content can be easily exported to
WebSphere ILOG JRules, providing a starting point for business decisions.

– The IBM ILOG JViews Chart charting engine, which has been added to IBM Business Process
Manager V7.5. For existing customized charts, tooling is provided for converting from CDL format
to Cascading Style Sheet (CSS) format.

– Property sheets that make it possible to configure implementation details rather than code them, so
that less technical users can participate in design.

– Complete life-cycle integration, keeping the solution synchronized from model design through
deployment.

– Interactive playback that makes it possible to validate process requirements at any time.
– Shared library of all process assets, for drag-and-drop reuse and collaborative implementation.

v Real-time control for inflight processes with these features:
– The inbox in IBM Process Portal provides a consolidated view of all outstanding tasks.
– A graphical view of process status helps process participants understand the remaining steps in the

process.
– Explicit event modeling defines workflow and exception handling.
– Exposed process parameters and thresholds provide real-time control during inflight processing.
– Ad hoc actions are supported; designated users can perform spontaneous tasks and alter workflow.
– Users can communicate and collaborate on specific tasks during process execution.
– Real-time scoreboards provide visibility into work in progress, along with the ability to take

corrective action if necessary.
– The framework for the Business Space user interface is included within Business Process Manager.
– A federated task view makes it possible to perform tasks, manage work items, track performance,

and respond to events, all in real time.
– Optionally, users can perform process tasks directly from Microsoft Office and Microsoft SharePoint.

The Microsoft integrations are offered as optional add-on components.
v Enhanced monitoring capabilities, with process visibility into both human and system interactions. IBM

Business Process Manager supports insightful dynamic process visibility with these features:
– Performance measurements are expressed in terms of key performance indicators (KPIs) and service

level agreements (SLAs).
– Business Performance Data Warehouse automatically gathers and correlates performance events and

business data to modeled process metrics, for process visibility that is always up to date.
– The process Optimizer allows visualization of performance bottlenecks and other problems directly

on the process model diagram.
v Features from WebSphere Process Server, incorporated now into IBM Process Server, provide

transaction integrity and enhanced scalability from first projects to enterprise-wide solutions:
– High scalability and availability are provided by the embedded WebSphere Application Server.
– A single BPM runtime server (Process Server) supports the full range of business processes, service

orchestration, and integration.
– Built-in Service Oriented Architecture (SOA) components include a flexible enterprise service bus

(ESB) connectivity infrastructure for integrating applications and services.

8 Overview



– Supported standards include BPMN and BPEL execution and many data and service standards.
– Integration adapters connect application and information assets to the ESB to accelerate business

integration projects with rapidly deployable, enterprise-ready connections based on best practices. A
comprehensive set of capabilities is included to service-enable your assets, including packaged,
custom, and legacy applications, technology protocols, and databases.

– Rich repair and recoverability capabilities are provided, including automatic retries, manual repair,
compensation, and store-and-forward.

v Support for high levels of program manageability and governance with these features:
– Process Center provides a scalable central repository and control center for organizing and

managing all process artifacts, applications, and services that are created as part of a BPM program.
– Toolkits manage process artifacts for reuse across multiple process applications.
– Snapshots capture the state of all artifacts in a process application or toolkit (including business

process diagrams, rules, data, forms, services, and simulation scenarios) at a specific point in time
with just one mouse-click.

– Versioning restores any historical snapshot of a process application or toolkit.
– A Process Server registry provides centralized tools to install and track deployed versions of

multiple processes across various runtime server environments.
– Life-cycle governance provides centralized control for governing deployment of processes and

services to production run time.
v IBM Business Process Manager offers three product configurations (Advanced, Standard, and Express)

to match the entry point of a company into business process management. For details, see "IBM
Business Process Manager 7.5 configurations" in this information center.

v IBM Business Process Manager provides enhanced authoring tools and optional add-ons for integration
with popular end-user productivity tools:
– IBM Process Designer Standards-based process design tool that is part of the basic authoring

environment for all three configurations of IBM Business Process Manager (Advanced, Standard,
and Express). The process design tool enables rapid composition and continuous process change.

– IBM Integration Designer Advanced configuration authoring environment for visually constructing
services, data transformations, BPEL processes, and integration to applications and back-end
systems. The authoring environment is used in collaboration with the process design tool to create
robust and scalable process solutions. It includes a comprehensive set of adapters to service-enable
assets, including packaged, custom, and legacy applications, technology protocols, and databases.
The authoring environment is fully compatible with the latest versions of WebSphere Integration
Developer.

– IBM Business Process Manager for Microsoft Office add-on is an optional add-on to all three
configurations (Advanced, Standard, and Express). Microsoft Office users can use IBM Business
Process Manager to view and run IBM BPM tasks directly from their Office desktop. The Office
add-on installs an IBM plug-in onto the end-user Office desktop client.

– IBM Business Process Manager for Microsoft SharePoint add-on is an optional add-on to all three
configurations (Advanced, Standard, and Express). Microsoft SharePoint users can use IBM Business
Process Manager to view and run IBM BPM tasks directly from web parts that are dropped into
SharePoint portal pages. The SharePoint add-on is installed on any SharePoint server that will be
used to host interactions with processes through the IBM BPM web parts.

v IBM Business Process Manager V7.5 supports the following migrations and data imports:
– Migration of process applications from WebSphere Process Server V6.1, V6.1.2, V6.2 and and V7.0,

including design-time process definition assets and inflight process instances.
– Migration of process applications from Lombardi Teamworks 6.1, Teamworks 6.2, Teamworks 7.0

and WebSphere Lombardi Edition V7.1 and V7.2, including design-time process definition assets and
inflight process instances.

– Import of design-time process models in BPMN 2.0 format from WebSphere Business Modeler V7.0,
WebSphere Business Compass V7.0, and other popular modeling tools.

Chapter 1. Getting started with IBM Business Process Manager V7.5 9



– IBM BPM Advanced widgets for Business Space can be used with IBM WebSphere Portal.

What's new in Business Space powered by WebSphere

Business Space, a component that is common to Business Process Manager and other IBM products, has
been enhanced:
v New features in Business Space powered by WebSphere Version 7.5
v What's new in Business Space Version 7.5 for WebSphere Portal Version 7.0

What's new in Version 7.5 business process management product
information
Read what's new in the IBM business process manager V7.5 information center.

What's new in the IBM business process management 7.5.0.1 information center
v Integrated information for IBM Business Process Manager V7.5 for z/OS

Product information for IBM Business Process Manager V7.5 for z/OS has been integrated into a single
information set with the product information for the distributed versions of the product. A single
"bookshelf" in the information center provides an integrated view of the IBM Business Process Manager
product documentation on all platforms. In this view differences between z/OS and the distributed
platforms are flagged or clearly labeled, as in the following example:
– This topic applies only to the Distributed platforms
Places where the platforms have not been adequately distinguished from one another or are in some
other way confusing will be improved in subsequent releases.
See IBM Business Process Manager Advanced for z/OS: Process Server for information about installing
and configuring the product on z/OS.

v Information about IBM Business Process Manager Advanced: Process Server
In this release, installation and configuration of IBM Business Process Manager Advanced: Process
Server have been described in separate sections of the product installation set. In places where this
configuration is not distinguished from the Advanced configuration, as in the Administering section,
the information for Advanced should be considered applicable to both configurations.
See IBM Business Process Manager Advanced: Process Server for information about installing this
configuration of the product.

Additionally, see the following pages for new features of IBM Business Process Manager V7.5 and other
business process management products and components.
v What's new in IBM Business Process Manager V7.5
v What's new in IBM Integration Designer Version 7.5
v What's new in Business Space powered by WebSphere Version 7.5
v What's new in IBM Business Monitor Version 7.5

Accessibility in IBM Business Process Manager
Accessibility features help users with physical disabilities, such as restricted mobility or limited vision, to
use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age or ability. Use assistive
technologies, such as screen-reader software and digital speech synthesizer, to use what is displayed on
the screen. Consult the product documentation of the assistive technology for details on using those
technologies with this product.

You can operate features using the keyboard instead of the mouse.

10 Overview



you can customize display attributes such as color, contrast, and font size.

You can magnify information presented in the graphical views for more detail.

A U.S. Section 508 Voluntary Product Accessibility Template (VPAT) can be requested on the IBM web
site at http://www.ibm.com/able/product_accessibility/index.html.

The information center documentation includes the following additional features to aid accessibility:
v The documentation is available in HTML formats to help users apply screen-reader software

technology.
v Images in the documentation are provided with alternative text so that users with vision impairments

can use the contents of the images.

National languages supported in IBM Business Process Manager
IBM Business Process Manager supports the following languages. Documentation may not be fully
translated.
v Chinese-Simplified
v Chinese-Traditional
v Czech
v English U.S.
v French
v German
v Hungarian
v Italian
v Japanese
v Korean
v Polish
v Portuguese-Brazilian
v Romanian
v Russian
v Spanish

IBM Business Process Manager provides partial support for the following languages. Documentation may
not be fully translated.
v Arabic (translated for BPEL human task widgets, Business Process Choreographer Explorer widgets,

monitor widgets, and Business Space framework)
v Dutch (translated for Process Designer, Process Center, and Business Space framework)
v Greek (translated for Process Designer, Process Center, and Business Space)
v Hebrew (translated for BPEL human tasks, Business Process Choreographer Explorer, and Business

Space framework)
v Romanian (translated for runtime operations)
v Turkish (translated for Business Space)

Business process management overview
When developing processes in Process Designer, you need to plan for the eventual installation of your
process applications on servers in your test and production environments.

Chapter 1. Getting started with IBM Business Process Manager V7.5 11

http://www.ibm.com/able/product_accessibility/index.html


The following diagram shows the life cycle of a typical process development effort. It includes steps for
building and refining an installation service so that you can install your process applications in the
production environment.

As this diagram shows, you can work exclusively in your development environment. But you need to
configure Process Servers for both your test and production environments.

Overview of process modeling
A process is the major unit of logic in IBM Business Process Manager. It is the container for all
components of a process definition, including services, activities and gateways; timer, message, and
exception events; sequence lines, rules, and variables. When you model a process, you are creating a
reusable Business Process Definition (BPD).

Process components enable you to define the process workflow for end users, creating logic inside a
process and integrating with other applications and data sources. To understand what occurs inside a
process at run time, it is important to understand the components that make up a process at design time.

Building processes in IBM BPM

Many different individuals from various organizations are usually involved in developing processes using
IBM BPM. The overriding concern is to ensure that you are building the best possible solution for
meeting the stated goals of your project. To ensure successful results, team members should work
together to capture process requirements and iteratively develop the model and its implementations.

12 Overview



Reusing items in Process Designer

Process Designer enables process developers to reuse existing items both within and across process
applications. For example, if you know several services already exist that include Coaches and other
shared items that you and other developers need, you can access and reuse those items by including
them in a toolkit. Then, from your process application, you can add a dependency to the toolkit in which
the shared items reside. This enables you to pick one of the existing services when choosing the
implementation for an activity. The items in the toolkit can also be used by other developers working in
different process applications.

Using the Designer in IBM Process Designer

The Designer interface provides the tools that you need to model your processes in IBM BPM.

Process development with the Process Center
IBM Process Center serves as a central repository for all project assets created in Process Designer. When
multiple Process Designer clients connect to the Process Center, users can share items, such as processes
and services, and can also see changes made by other users as they happen. The Process Center can also
be used as a repository for assets created in IBM Integration Designer.

When you are developing processes in Process Designer, there is a hierarchy available in the Process
Center repository which is designed to help you manage your projects. The following figure provides a
conceptual overview of the repository hierarchy:

As you can see from the preceding diagram, the Process Center repository includes the following
artifacts:

Chapter 1. Getting started with IBM Business Process Manager V7.5 13



Process
Applications

Containers for the process models and supporting implementations that BPM analysts and
developers create in the Designer in IBM Process Designer.

Tracks Optional subdivisions in a process application based on team tasks or process application
versions. When enabled, tracks allow parallel development to occur. Administrators determine
if additional tracks are necessary and, thus, enabled for each process application.

Snapshots Record the state of the items within a process application or track at a specific point in time.
Usually snapshots represent a milestone or are used for playbacks or installations. You can
compare snapshots and revert to previous snapshots. If an administrator enables tracks for a
process application, a snapshot is used as the basis for a new track.

Process applications: Overview
A process application is a container for process models and their supporting implementations; it is stored
in the repository. After the artifacts have been authored or otherwise created, they are assembled into a
process application and a snapshot is taken. You can test, install, and administer the process application
snapshot.

Process applications contain some or all of the following artifacts:
v One or more process models, also called Business Process Definitions (BPDs)
v The services required to implement activities or integrate with other systems
v Service Component Architecture (SCA) modules
v Toolkits
v IBM Integration Designer libraries
v One or more workspaces
v An IBM Business Monitor model for monitoring business performance
v Any other items required to run the process

Process applications and business level applications

Each process application has a business level application (BLA), which acts as a container for the process
application and its assets (assets include things like monitor models, SCA modules, toolkits, and
libraries). In addition, each snapshot of a process application has its own BLA. Many of the
administration tasks for a snapshot (for example, stopping or starting it on a production server) are done
at the level of the BLA, allowing for quicker and simpler administration of the snapshot and all of its
assets.

Running and debugging processes
Using the Inspector, individual developers can run processes and services on the Process Center Server or
remote runtime Process Server.

The Inspector in IBM Process Designer is key to an iterative approach to process development. An entire
development team can use the Inspector to demonstrate current process design and implementation in
playback sessions. Playback sessions help capture important information from different stakeholders in a
process, such as management, end users, and business analysts. Taking an iterative approach to process
development ensures that your process applications meet the goals and needs of everyone involved.

The Inspector in IBM Process Designer includes several tools that enable you to complete tasks like the
following in each of your configured environments:

14 Overview



Task Description

Manage instances of processes When you run a process, you can view all previously executed and currently
running instances on the IBM Business Process Manager servers in your
environment. You can manage running instances by halting and then
resuming them, for example. You can also manage previously executed
instances by filtering or deleting specific records.

Step through and debug a process For a selected instance, see the currently executing step and then move
forward through the process, evaluating process execution step by step. A tree
display of the process combined with indicators called tokens in the process
diagram make it easy to understand where you are in the process. You also
have the advantage of seeing the variables used in each step and their
corresponding values (where applicable).

If you are working in IBM Integration Designer, you can use the Inspector if your project is associated
with a process application. You also have other debug and test tools available to you. For more
information about these Integration Designer tools, see "Testing modules" and "Using the integration
debugger for problem determination" in the related links.

Deploying and managing process applications
The process application life cycle includes deploying and undeploying snapshots and managing snapshot
states. Versioning considerations are also part of the lifecycle.

When developing processes you can take full advantage of the iterative approach supported by the tools
within the Process Designer. Processes evolve over time, initially from a development state, to testing,
and then on to production. Even in production, your processes might continue to evolve due to changing
needs. Being prepared for the ongoing life cycle of your processes is important and will help you design
effectively from the outset.

A typical Business Process Manager configuration includes three environments to support the
development and eventual deployment of your processes.

Environment Description

Development Build and refine your process applications in IBM Process Designer. Create your
process models and implement the steps in those models using the Designer. Using the
Inspector, demonstrate your development progress in playback sessions so that you can
quickly evaluate and refine your prototype. Using the Process Center Console, deploy
your process applications in test and production environments.

Test Using the Process Center Console, deploy your process applications on the Process
Server in your test environment to implement formal quality assurance tests. You can
use the Inspector to help verify and resolve issues.

Production When all issues reported from formal testing are resolved, use the Process Center
Console to deploy your process applications on the Process Server in your production
environment. You can use the Inspector to investigate and resolve any issues reported
in your production environment.

Release and installment strategies

To ensure the process applications that you implement and deploy meet the quality standards of your
organization, consider defining a release and installment strategy. When you have identified the goals
and requirements for release and installment of new and updated process applications, you can automate
the processes required to approve and launch the programs.

Chapter 1. Getting started with IBM Business Process Manager V7.5 15



For example, you might want to route a process to several different managers across different reporting
structures in your organization. Only after each manager signs off on the new or updated process can it
be deployed in your production environment and rolled out to end users. You can create and implement
the steps involved in such a review in Business Process Manager to ensure that all corporate guidelines
have been satisfied and that you have the required signatures. The final step in the review might be
notification to the IT team that the approved process application is ready for deployment.

Creating, accessing, and incorporating services

Accessing services external to an application
This scenario discusses different ways to access services that are external to the application, and provides
high level tasks for accessing these external services.

Note: This scenario is applicable for WebSphere® Enterprise Service Bus and IBM Business Process
Manager. Mediation modules can be deployed to WebSphere Enterprise Service Bus and IBM Business
Process Manager. Modules can be deployed to IBM Business Process Manager.

In an integrated business application, business services interact with each other to provide a required
function. A business service performs a repeatable function or task that contributes towards achieving a
business goal. But the work of locating a service and connecting to it is not related to the business
function. Separating the business function from the task of managing service connections provides
flexibility to a solution.

Service interaction begins when a service requester sends a request to a service provider to perform a
business function. This request is sent in the form of a message, which defines the function to be
performed. The service provider performs the requested function and sends the result in a message to the
service requester. Typically, messages need to be processed in order to allow the services to exchange
data, and to implement other low level IT functions that are independent of the business functions and
data. For example, routing, protocol conversion, transformation, retry of a failed invocation, and dynamic
service invocation. This processing is known as mediation.

There are two types of modules in IBM Integration Designer; modules (or business integration modules),
which are primarily designed to contain business logic (such as business processes, business rules and
business state machines), and mediation modules, which implement mediation flows. Although there is
some overlap of function between the two types of modules, in general, we recommend that business
logic be isolated in business modules and mediation logic be performed by mediation modules.

But there is not always a clear separation between business and mediation logic. In these cases, consider
the amount of state, or data in variables that will need to be processed between service invocations. In
general, if there is little or no state processing required, consider using a mediation flow component. If
you need to store state between service invocations, or if you have data that will need to be stored in
variables and processed, consider using a business process component. For example, if you are calling
multiple services and recording the information that is returned from each, so that after invoking all the
services, you want to do some further processing with the returned data, use a business process where
you can easily assign the returned information to variables. In other words, when you have too much
state you have crossed the line into business logic.

16 Overview



There is no one integration scenario, and there is no technically wrong answer. The guidelines that we
discuss here are good practice to enable flexibility and reuse, and are presented for your consideration.
As usual, you should carefully consider the benefits and drawbacks of implementing these patterns for
your business integration application. Let's consider some situations.

Accessing an SCA component

A basic example of accessing a service is when an import calls another SCA component, without
requiring any data transformation. Even in this situation, you could access the external service from a
mediation module, rather than accessing it directly from a business module. This would allow flexibility
in the future, for changing the service endpoint or qualities of service or governance (for example, adding
logging) without impacting the business components that consume the service. This architectural pattern
is known as "separation of concerns".

Before you decide to implement this pattern, weigh the benefits of the pattern against the potential effects
of overhead introduced by another module. If your main requirement is flexibility, and you are going to
make frequent changes to the services accessed, consider using a separate module as shown here. If
performance is most important, and you are willing to update and redeploy the business logic, consider
using a single module.

Here are the high level tasks to achieve this example.
1. Create a mediation module. For step-by-step instructions, see Creating mediation modules .

Chapter 1. Getting started with IBM Business Process Manager V7.5 17



2. In the mediation module, create an import with the appropriate binding for the external service that
you want to access. For step-by-step instructions, see Creating imports. For more information on
bindings, see Bindings

3. Create an export, and give it the same interface as the import. For step-by-step instructions, see
Creating exports.

4. Generate an SCA binding for the export. For step-by-step instructions, see Generating SCA bindings
5. In the mediation module's assembly, wire the export to the import. Save the mediation module.
6. Create a module. For step-by-step instructions, see Creating a module for business services
7. Add an export, and a component.
8. In the Business integration view, drag the export that you created in the mediation module (in step

4) into the module assembly. An import with the same binding as the export will be created.
9. Wire the export to the component, and the component to the import.

10. Add the component's implementation. For information on implementation types, see
Implementations

Later, you can add mediation logic such as logging or routing to the mediation module without affecting
the business module.

Adding mediation

Sometimes it is not sufficient to simply invoke an external service. Sometimes you need to do processing
first, by adding a mediation module as an intermediary between the service requester and provider.

18 Overview



These are some of the functions that the intermediary mediation flow would perform:
v Setting protocol headers. For more information, see topic Protocol conversion in the WebSphere

Enterprise Service Bus information center.
v Interface or parameter transformation by using a Business Object Map or XSL Transformation

primitive.Transforming messages
v Selecting a particular service from a static list, by using a Message Filter primitive.Message filter
v Invoking multiple services to aggregate the results, by using the Fan out and Fan In

primitives.Aggregating and broadcasting messages
v Dealing with service invocation failures by retrying the same service or invoking a different service, by

using a Service Invoke primitive. Retrying a failed service invocation
v Dynamic routing by choosing which service to use at run time, rather than integration time, which

enables services to be more loosely coupled and businesses to react faster to change. New services can
be added without touching the modules that have been deployed to the runtime environment.
Dynamic routing is most powerful when used with a registry, which requires the Endpoint Lookup
mediation primitive to be used.Selecting endpoints dynamically

Chapter 1. Getting started with IBM Business Process Manager V7.5 19

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wbpm.scenarios.esb1.610.doc/tasks/twesb_usecaseprotocolconversion1.html


Accessing Enterprise Information Systems

Services and artifacts on external systems can be imported into Integration Designer. A wizard discovers
applications and data on an Enterprise Information Systems (EIS) and lets you generate services from the
discovered applications and data. The generated artifacts are interfaces and business objects, which can
be used by components in a module.

Using an intermediary mediation module between a module and a host system makes it more reusable.
In the example below, a mediation flow is used to route to the correct host system, and to transform the
data to the format required by the host system.

Here are the high level tasks for this example:
1. Use the external service wizard to connect to the host system. Using the external service wizard to

access external services follows a similar pattern regardless of the adapter you are using. For
information on how to use the external service wizard, see Pattern of accessing external services with
adapters

2. Create a module. For step-by-step instructions, see Creating a module for business services
3. Add an export, a component, and an import with SCA binding. For more information, see Calling

services
4. Add an interface to the export, and wire the export to the component.
5. Add the component's implementation. In the implementation, set a property that indicates which

host service will be accessed. For information on implementation types, see Implementations

20 Overview



6. Create a mediation module with an export that has an SCA binding, and the same interface as the
import of the module that you created in step 2.

7. Wire the export to a mediation flow component.
8. Create an import for each host system that you want to access, using the appropriate outbound

adapter from the assembly editor palette.
9. Wire the mediation flow component to the imports.

10. Implement the mediation flow component. Use a Message Filter primitive to choose the import
based on a property set in the business logic, and use an XSL transformation primitive for each
adapter import. Message filter.

11. In the module, select the mediation module's export as the service to be imported into the module.
For step-by-step information, see Invoking a service from another module.

Later, you can make a change such as adding an adapter, or changing an adapter to point to a different
host system, with minimal impact to the business logic.

Accessing messaging systems

In order for your service component architecture (SCA) module to communicate to an existing JMS, MQ
or MQ JMS messaging client, you need to create interfaces, business objects and bindings for imports and
exports. See Mapping a message to an SCA interface.

Mediation flows use messages, which provide access to context and header information in addition to
business objects. If you want access to JMS header information or a custom JMS property, use a
mediation flow. If you are integrating with an MQ system, and you want to access MQ header
information, use a mediation flow.

Creating or calling a Web service
Web services are self-contained applications that perform business functions, ranging from a simple query
to complex business process interactions. You can call an existing Web service or you can develop a new
Web service to fit your needs. This scenario will describe the steps and point you to additional
information.

Although you may not create all of your services from the ground up using IBM Integration Designer,
some of your services will indeed be created this way. When working with the assembly editor and the
business process editor to assemble services into a business process, you are likely to find that some
services are missing. It may therefore be helpful to create those missing services using IBM Integration
Designer tools. The reverse is also true - after you have created a new process, you may decide that it
would be useful to expose all, or some subset of the process operations as a service for others to
consume.

Note: This scenario applies to users of IBM Integration Designer for IBM Process Server and WebSphere
Enterprise Service Bus.

There are several reasons for developing Web services using IBM Integration Designer:
v Creating services in IBM Integration Designer allows you to implement the service using business

rules.
v Developing in IBM Integration Designer allows you to develop a Java™ service and expose it as both a

Web service and through SCA.
v Interface mapping without having to code is an advantage. You can take all of the data mappings out

of the Java code leaving a simple black box Java program for the Java developer.
v IBM Integration Designer shows all of the services and relationships in one place.
v The ability to refactor will also aid in the development of Web services using IBM Integration Designer.

Chapter 1. Getting started with IBM Business Process Manager V7.5 21



Keep in mind that Web services should not be regarded as the solution to all of your integration
problems. However, just as with any other technology or architectural approach, there are inherent
advantages of using Web services in the right place and at the right time.

Exports, imports and bindings

IBM Integration Designer allows you to import standard Web services and make use of these services in
your composite applications.

In IBM Integration Designer, use the assembly editor to develop services. Follow the standard process to
create modules, mediation modules, libraries, and components. Then, you can use exports, imports, and
bindings to share and access those services. The steps for those basic tasks are listed below and the links
lead to more detailed information for each task.

You can use either of two bindings for Web services - a Web service binding or an HTTP binding. A Web
service binding provides a specification for transmitting messages to and from a Web service. The tools
help you to generate a Web service binding automatically. An HTTP binding is a standard
request-and-response protocol between clients and server as defined by the HTTP protocol published by
the World Wide Web consortium (W3C). You will need to provide some initial binding configuration
information if you use an HTTP binding.
1. Create an export to publish the module's service for use by other modules.
2. Generate a binding for the export.

v Generate a Web service binding for the export.
v Generate an HTTP export binding.

3. Create an import to call an existing service that is not part of the module that you are assembling.
v Generate a Web service binding for the import.
v Generating an HTTP import binding.

Read the linked topic if you want to invoke a Web service from JavaServer Pages.

Web services development capabilities

When opening an editor associated with the Web services creation process, you might encounter the
following error:

IBM Integration Designer provides a filtering function known as capabilities. In the Preferences settings,
functions and tools are categorized into capabilities and you can enable and disable categories of
capabilities or the subset functions of any category. See Capabilities for more information.

22 Overview



Chapter 2. Learn more about IBM Business Process Manager

Use this section as a starting point to investigate the technologies used in and by IBM Business Process
Manager

Versioning
The life cycle of a process application begins with the creation of the process application and continues
through a cycle of updating, deploying, co-deploying, undeploying, and archiving the process
application. Versioning is a mechanism used to manage the life cycle of the process application by
uniquely identifying the individual versions of the process application.

The way that versioning works in IBM Business Process Manager depends on what you are deploying–a
process application, deployed from the repository in IBM Process Center, or an enterprise application
deployed directly from IBM Integration Designer.

The process applications and toolkits that you deploy to a runtime environment from the Process Center
are, by default, versioned. For enterprise applications, you can choose to version modules and libraries in
IBM Integration Designer.

In addition, you can create versions of a human task or state machine, so that multiple versions of the
task or state machine can coexist in the runtime environment.

Versioning process applications
Versioning provides the ability for the runtime environment to identify snapshots in the lifecycle of a
process application and to be able to concurrently run multiple snapshots at the same time.

Think of the process application as a container. All snapshots, deployment, and versioning are handled at
that container level, not at the level of the artifacts within the container. Snapshots are managed from the
Process Center console.

Changes are dynamically saved to the Process Center repository at the tip of the working track. The
process application remains at that tip level until you decide to create a snapshot (sn1). A process
application snapshot can be deployed to a process center server or a process server for testing, staging, or
production.

If you make changes and want to deploy a new version, you need to create a new snapshot (sn2). You
can either remove sn1 or leave it running on the server when you deploy sn2.

Version context

Version context is the metadata that identifies a version. You assign that identifier, but IBM recommends
using a three-digit numerical version system in the format <major>.<minor>.<service>. See the topics
about naming conventions for a more detailed description of this versioning scheme.

IBM Business Process Manager assigns a global namespace for each process application. The global
namespace is specifically either the process application's tip or a specific process application snapshot.
The version name used by the server cannot be longer than seven characters, so the assigned name will
be an acronym that uses characters from the snapshot name that you assigned. Snapshot acronyms will
be identical to their snapshot names if the snapshot names conform to the recommended IBM VRM style
and are not more that seven characters. For example, a snapshot name of 1.0.0 will have an acronym of
1.0.0, and a snapshot name of 10.3.0 will have the acronym of 10.3.0. The snapshot acronym will be

© Copyright IBM Corp. 2005, 2011 23



guaranteed to be unique within the context of the process application within the scope of the Process
Center server. For that reason, you cannot edit the snapshot acronym.

Versioning Process Designer process applications and toolkits

To version process applications and toolkits that are stored in the Process Center repository, you can save
and name snapshots. Doing so enables you to compare one snapshot to another to find differences. For
example, if a developer fixed a problem with a service and took a snapshot of its containing process
application or toolkit at that point, and then a different developer made several additional changes to the
same service and took a new snapshot, the project manager could compare the two snapshots to
determine which changes were made when and by whom. If the project manager decided that the
additional changes to the service were not worthwhile, the project manager could revert back to the
snapshot of the original fix.

Typically, you take a process application snapshot every time that you are ready or potentially ready to
deploy to production or to test integration. To deploy to a stand-alone process server, you must take a
snapshot of the process application. It is a slightly different story for toolkits; you take a snapshot of a
toolkit when you are ready for that toolkit to be used by process applications. Afterward, if you want to
update the toolkit, you must take another snapshot of "tip" when you are ready, and then the owners of
process applications and toolkits can decide whether they want to move up to the new snapshot. The tip
is a special snapshot, and the only kind of snapshot in which you can change contents, but you can run it
only on the Process Center server. You cannot deploy a tip to the Process Server.

Process applications in multiple clusters

You can deploy the same version of a process application to multiple clusters within the same cell. To
differentiate among these multiple deployments of the same version of the process application, create a
snapshot for each deployment and include a cell-unique ID in the snapshot name (for example,
v1.0_cell1_1 and v1.0_cell1_2). Strictly speaking, each snapshot is a new version of the process application
(from a pure life cycle management perspective), but the content and function are the same.

When you deploy a process application to a cluster, an automatic synchronization of the nodes is
performed.

Versioning modules and libraries
If a module or library is in a process application or toolkit, it takes on the life cycle of the process
application or toolkit (versions, snapshots, tracks, and so on). Module and library names must be unique
within the scope of a process application or toolkit.

This topic describes the versioning of modules and libraries that are used with process applications. Note,
however, that if you deploy modules directly from IBM Integration Designer to Process Server, you can
continue to follow the procedure of assigning version numbers to modules during deployment, as
described in “Creating versioned modules and libraries”.

A module or library that is associated with the IBM Process Center must have its dependent libraries in
the same process application or in a dependent toolkit.

The following table lists the selections you can make in the dependency editor in IBM Integration
Designer when a library is associated with a process application or toolkit:

Table 3. Dependencies for Module, Process App or Toolkit, and Global libraries

Library scope Description Can depend on . . .

Module A copy of this library exists on the server for
each module that uses it.

A module-scoped library can depend on all
types of libraries.

24 Overview



Table 3. Dependencies for Module, Process App or Toolkit, and Global libraries (continued)

Library scope Description Can depend on . . .

Process App or
Toolkit

The library is shared among all modules in
the scope of the process application or
toolkit. This setting takes effect if
deployment is done through the IBM Process
Center. If deployment occurs outside of the
IBM Process Center, the library is copied into
each module.
Note: Libraries created in IBM Integration
Designer version 7.5 have a sharing level of
Process App or Toolkit by default.

A library of this type can depend only on
global libraries.

Global The library is shared among all modules that
are running.

A global library can depend only on other
global libraries.
Note: You must configure a WebSphere
shared library in order to deploy the global
library. See “Module and library
dependencies” for more information.

Naming conventions
A naming convention is used to differentiate the various versions of a process application as it moves
through the life cycle of updating, deploying, co-deploying, undeploying, and archiving.

This section provides you with the conventions that are used to uniquely identify versions of a process
application.

A version context is a combination of acronyms that uniquely describes a process application or toolkit.
Each type of acronym has a naming convention. The acronym is limited to a maximum length of seven
characters from the [A-Z0-9_] character set, except for the snapshot acronym, which can also include a
period.
v The process application acronym is created when the process application is created. It can be a

maximum of seven characters in length.
v The snapshot acronym is created automatically when the snapshot is created. It can be a maximum of

seven characters in length.
If the snapshot name meets the criteria for a valid snapshot acronym, the snapshot name and acronym
will be the same.

Note: When using the mediation flow component version-aware routing function, name your snapshot
so that it conforms to the <version>.<release>.<modification> scheme (for example, 1.0.0). Because the
snapshot acronym is limited to seven characters, the digit values are limited to a maximum of five total
digits (five digits plus two periods). Therefore, care should be taken when the digit fields are
incremented, because anything beyond the first seven characters is truncated.

For example, a snapshot name 11.22.33 results in a 11.22.3 snapshot acronym.
v The track acronym is automatically generated from the first character of each word of the track name.

For example, a new track created with the name My New Track would result in an acronym value of
MNT.
The default track name and acronym are Main. Deployment to a IBM Process Center server includes
the track acronym in the versioning context if the track acronym is not Main.

Chapter 2. Learn more about IBM Business Process Manager 25



A business process definition in a process application is typically identified by the process application
name acronym, the snapshot acronym, and the name of the business process definition. Choose unique
names for your business process definitions whenever possible. When duplicate names exist, you might
encounter the following problems:
v You might be unable to expose the business process definitions as web services without some form of

mediation.
v You might be unable to invoke a business process definition created in IBM Process Designer from a

BPEL process created in IBM Integration Designer.

The version context varies, depending on how the process application is deployed.

Naming conventions for Process Center server deployments
On the IBM Process Center server, you can deploy a snapshot of a process application as well as a
snapshot of a toolkit. In addition, you can deploy the tip of a process application or the tip of a toolkit.
(A tip is the current working version of your process application or toolkit.) The version context varies,
depending on the type of deployment.

For process applications, the process application tip or the specific process application snapshot is used to
uniquely identify the version.

Toolkits can be deployed with one or more process applications, but the lifecycle of each toolkit is bound
to the lifecycle of the process application. Each process application has its own copy of the dependent
toolkit or toolkits deployed to the server. A deployed toolkit is not shared between process applications.

If the track associated with the process application is named something other than the default of Main,
the track acronym is also part of the version context.

For more information, see the “Examples” on page 27 section, later in this topic.

Process application snapshots

For process application snapshot deployments, the version context is a combination of the following
items:
v Process application name acronym
v Process application track acronym (if a track other than Main is used)
v Process application snapshot acronym

Stand-alone toolkits

For toolkit snapshot deployments, the version context is a combination of the following items:
v Toolkit name acronym
v Toolkit track acronym (if a track other than Main is used)
v Toolkit snapshot acronym

Tips

Process application tips are used during iterative testing in Process Designer. They can be deployed to
Process Center servers only.

For process application tip deployments, the version context is a combination of the following items:
v Process application name acronym
v Process application track acronym (if a track other than Main is used)
v "Tip"

26 Overview



Toolkit tips are also used during iterative testing in Process Designer. They are not deployed to a
production server.

For toolkit tip deployments, the version context is a combination of the following items:
v Toolkit name acronym
v Toolkit track acronym (if a track other than Main is used)
v "Tip"

Examples

Resources should be uniquely named and identified externally using the version context.
v The following table shows an example of names that are uniquely identified. In this example, a process

application tip uses the default track name (Main):

Table 4. Process application tip with default track name

Type of name Example

Process application name Process Application 1

Process application name acronym PA1

Process application track Main

Process application track acronym “” (when the track is Main)

Process application snapshot

Process application snapshot acronym Tip

Any SCA modules associated with this process application tip include the version context, as shown in
the following table:

Table 5. SCA modules and version-aware EAR files

SCA module name Version-aware name Version-aware EAR/application name

M1 PA1-Tip-M1 PA1-Tip-M1.ear

M2 PA1-Tip-M2 PA1-Tip-M2.ear

v The following table shows an example of a process application tip that uses a non-default track name:

Table 6. Process application tip with non-default track name

Type of name Example

Process application name Process Application 1

Process application name acronym PA1

Process application track Track1

Process application track acronym T1

Process application snapshot

Process application snapshot acronym Tip

Any SCA modules associated with this process application tip include the version context, as shown in
the following table:

Table 7. SCA modules and version-aware EAR files

SCA module name Version-aware name Version-aware EAR/application name

M1 PA1-T1-Tip-M1 PA1-T1-Tip-M1.ear

M2 PA1-T1-Tip-M2 PA1-T1-Tip-M2.ear

Chapter 2. Learn more about IBM Business Process Manager 27



Similar naming conventions apply to advanced Toolkit tip and snapshot deployments. They also apply to
advanced snapshots installed to Process Server.
v The following table shows an example of names that are uniquely identified. In this example, a process

application snapshot uses the default track name (Main):

Table 8. Process application snapshot with default track name

Type of name Example

Process application name Process Application 1

Process application name acronym PA1

Process application track Main

Process application track acronym “” (when the track is Main)

Process application snapshot Process Shapshot V1

Process application snapshot acronym PSV1

Any SCA modules associated with this process application snapshot include the version context, as
shown in the following table:

Table 9. SCA modules and version-aware EAR files

SCA module name Version-aware name Version-aware EAR/application name

M1 PA1-PSV1-M1 PA1-PSV1-M1.ear

M2 PA1-PSV1-M2 PA1-PSV1-M2.ear

v The following table shows an example of a process application snapshot that uses a non-default track
name:

Table 10. Process application snapshot with non-default track name

Type of name Example

Process application name Process Application 1

Process application name acronym PA1

Process application track Track1

Process application track acronym T1

Process application snapshot Process Snapshot V1

Process application snapshot acronym PSV1

Any SCA modules associated with this process application snapshot include the version context, as
shown in the following table:

Table 11. SCA modules and version-aware EAR files

SCA module name Version-aware name Version-aware EAR/application name

M1 PA1-T1-PSV1-M1 PA1-T1-PSV1-M1.ear

M2 PA1-T1-PSV1-M2 PA1-T1-PSV1-M2.ear

Naming conventions for Process Server deployments
On the Process Server, you can deploy the snapshot of a process application. The process application
snapshot acronym is used to uniquely identify the version.

For process application snapshot deployments, the version context is a combination of the following
items:
v Process application name acronym

28 Overview



v Process application snapshot acronym

Resources should be uniquely named and identified externally using the version context. The following
table shows an example of names that are uniquely identified:

Table 12. Example of names and acronyms

Process application name Process Application 1

Process application name acronym PA1

Process application snapshot 1.0.0

Process application snapshot acronym 1.0.0

A resource, such as a module or library, has the version context as part of its identify.

The following table shows an example of two modules and how the associated EAR files include the
version context:

Table 13. SCA modules and version-aware EAR files

SCA module name Version-aware name Version-aware EAR/application name

M1 PA1-1.0.0-M1 PA1-1.0.0-M1.ear

M2 PA1-1.0.0-M2 PA1-1.0.0-M2.ear

The following table shows an example of two process-application-scoped libraries and how the associated
JAR files include the version context:

Table 14. Process-application-scoped libraries and version-aware JAR files

SCA process-application-scoped
library name Version-aware name Version-aware JAR name

Lib1 PA1-1.0.0-Lib1 PA1-1.0.0-Lib1.jar

Lib2 PA1-1.0.0-Lib2 PA1-1.0.0-Lib2.jar

Version-aware bindings
Process applications can contain SCA modules that include import and export bindings. When you
co-deploy applications, the binding for each version of the application must be unique. Some bindings
are automatically updated during deployment to ensure the uniqueness between versions. In other cases,
you have to update the binding after deployment to ensure its uniqueness.

A version-aware binding is scoped to a particular version of a process application, which guarantees its
uniqueness between process applications. The following sections describe the bindings that are
automatically updated to be version-aware as well as any actions you need to take at run time when a
binding is not version-aware. For information about things to consider when you create modules, see
“Considerations when using bindings”.

SCA

The target of an SCA binding is automatically renamed to be version-aware during deployment if the
import and export bindings of the module are defined in the same process application scope.

If the bindings are not defined in the same process application scope, an information message is logged.
You must modify the import binding after deployment to change the endpoint target address. You can
use the administrative console to change the endpoint target address.

Chapter 2. Learn more about IBM Business Process Manager 29



Web service (JAX-WS or JAX-RPC)

The endpoint target address of a web service binding is automatically renamed to be version-aware
during deployment if all the following conditions are true:
v You followed the default naming convention for the address:

http://ip:port/ModuleNameWeb/sca/ExportName

v The endpoint address is SOAP/HTTP.
v The import and export bindings of the module are defined in the same process application scope.

If these conditions are not true, an information message is logged. The action you then take depends on
how you are deploying your process application:
v If you are co-deploying your process application, you must manually rename the SOAP/HTTP

endpoint URL or the SOAP/JMS destination queue to be unique between versions of the process
application. You can use the administrative console after deployment to change the endpoint target
address.

v If you are deploying only a single version of the process application, you can ignore this message

For SOAP/ JMS web service binding snapshot co-deployment, the action you take depends on how you
are deploying your process application:
v If the import and target export are in the same process application, perform the following steps before

you publish the process application to the Process Center and create the snapshot:
1. Change the endpoint URL of the export. Make sure the destination and connection factory are

unique.
2. Change the endpoint URL of the import so that it is the same as the one you specified for the

export in the previous step.
v If the import and target export are in different process applications, perform the following steps:

1. Change the endpoint URL of the export. Make sure the destination and connection factory are
unique.

2. Publish the process application to the Process Center.
3. Create the snapshot.
4. Deploy the process application to the Process Server.
5. Use the WebSphere administrative console to change the endpoint URL of the corresponding import

so that it is the same as the one you specified for the export.

HTTP

The endpoint URL address of an HTTP binding is automatically renamed to be version-aware during
deployment if all the following conditions are true:
v You followed the default naming convention for the address:

http(s)://ip:port/ModuleNameWeb/contextPathinExport

v The import and export bindings of the module are defined in the same process application scope.

If these conditions are not true, an information message is logged. The action you then take depends on
how you are deploying your process application:
v If you are co-deploying your process application, you must manually rename the endpoint URL to be

unique between versions of the process application. You can use the administrative console after
deployment to change the endpoint target address.

v If you are deploying only a single version of the process application, you can ignore this message

30 Overview



JMS and generic JMS

System-generated JMS and generic JMS bindings are automatically version-aware.

Note: For user-defined JMS and generic JMS bindings, no automatic renaming occurs during deployment
to enable the bindings to be version-aware. If the binding is user-defined, you must rename the following
attributes to be unique between versions of the process application:
v Endpoint configuration
v Receive destination queue
v Listener port name (if defined)

Set the matching Send destination if you change the target module endpoint.

MQ/JMS and MQ

No automatic renaming occurs during deployment to enable bindings of type MQ/JMS or MQ to be
version-aware.

You must rename the following attributes to be unique between versions of the process application:
v Endpoint configuration
v Receive destination queue

Set the matching Send destination if you change the target module endpoint.

EJB

No automatic renaming occurs during deployment to enable bindings of type EJB to be version-aware.

You must rename the JNDI names attribute to be unique between versions of the process application.

Note that client applications also need to be updated to use the new JNDI names.

EIS

A resource adapter is automatically renamed to be version-aware during deployment as long as the
default resource name (ModuleNameApp:Adapter Description) was not modified.

If the default resource name was modified, the resource adapter names must be unique between versions
of the process application.

If the resource adapter names are not unique, an informational message is logged during deployment to
alert you. You can manually rename the resource adapters after deployment using the administrative
console.

Version-aware dynamic invocation
You can configure mediation flow components to route messages to endpoints that are determined
dynamically at run time. When you create the mediation module, you configure the endpoint lookup to
use version-aware routing.

If you use the IBM_VRM style (<version>.<release>.<modification) for the snapshot, you can export the
process application EAR file to WebSphere Service Registry and Repository (WSRR). When you create the
mediation module, you then configure the endpoint lookup to use version-aware routing. For example,
you select Return endpoint matching latest compatible version of SCA module-based services from the
Match Policy field, and you select SCA for Binding Type.

Chapter 2. Learn more about IBM Business Process Manager 31



Future versions of the process application are deployed to the server and published to WSRR, and the
mediation module endpoint lookup dynamically invokes the latest compatible version of the service
endpoint.

Note that, as an alternative, you can set the target in the SMOHeader, and the value can be carried by the
request message.

Deploying process applications with Java modules and projects
Process applications can contain custom Java EE modules and Java projects. When you co-deploy
applications, the custom Java EE module for each version of the application must be unique.

Note that custom Java EE modules and Java projects are deployed to a server if they are deployed with
an SCA module that has a dependency declared on them. If you do not select Deploy with module
(which is the default) when you declare the dependency, you need to deploy the module or project
manually.

Deploying process applications with business rules and selectors
If you are deploying multiple versions of a process application that includes a business rule or selector
component, be aware of the way that the associated metadata is used by the versions.

The dynamic metadata for a business rule or selector component is defined at run time by the component
name, component target namespace, and component type. If two or more versions of a process
application containing a business rule or selector are deployed to the same runtime environment, they
will share the same rule logic (business rule) or routing (selector) metadata.

To enable each version of the business rule or selector component of the process application to use its
own dynamic metadata (rule logic or routing), refactor the target namespace so that it is unique for each
version of the process application.

Deployment architecture
The IBM Business Process Manager deployment architecture consists of software processes called servers,
topological units referenced as nodes and cells, and the configuration repository used for storing
configuration information.

Cells
In IBM Business Process Manager, cells are logical groupings of one or more nodes in a distributed
network.

A cell is a configuration concept, a way for administrators to logically associate nodes with one another.
Administrators define the nodes that make up a cell, according to the specific criteria that make sense in
their organizational environments.

Administrative configuration data is stored in XML files. A cell retains master configuration files for each
server in every node in the cell. Each node and server also have their own local configuration files.
Changes to a local node or to a server configuration file are temporary, if the server belongs to the cell.
While in effect, local changes override cell configurations. Changes to the master server and master node
configuration files made at the cell level replace any temporary changes made at the node when the cell
configuration documents are synchronized to the nodes. Synchronization occurs at designated events,
such as when a server starts.

32 Overview



Servers
Servers provide the core functionality of IBM Business Process Manager. Process servers extend, or
augment, the ability of an application server to handle Service Component Architecture (SCA) modules.
Other servers (deployment managers and node agents) are used for managing process servers.

A process server can be either a stand-alone server or a managed server. A managed server can optionally be
a member of a cluster. A collection of managed servers, clusters of servers, and other middleware is called
a deployment environment. In a deployment environment, each of the managed servers or clusters is
configured for a specific function within the deployment environment (for example, destination host,
application module host, or Common Event Infrastructure server). A stand-alone server is configured to
provide all of the required functions.

Servers provide the runtime environment for SCA modules, for the resources that are used by those
modules (data sources, activation specifications, and JMS destinations), and for IBM-supplied resources
(message destinations, Business Process Choreographer containers, and Common Event Infrastructure
servers).

A node agent is an administrative agent that represents a node to your system and manages the servers on
that node. Node agents monitor servers on a host system and route administrative requests to servers.
The node agent is created when a node is federated to a deployment manager.

A deployment manager is an administrative agent that provides a centralized management view for
multiple servers and clusters.

A stand-alone server is defined by a stand-alone profile; a deployment manager is defined by a
deployment manager profile; managed servers are created within a managed node, which is defined by a
custom profile.

Stand-alone servers
A stand-alone server provides an environment for deploying SCA modules in one server process. This
server process includes, but is not limited to, an administrative console, a deployment target, the
messaging support, the business rules manager, and a Common Event Infrastructure server.

A stand-alone server is simple to set up, and has a First steps console from which you can start and stop
the server and open the samples gallery and the administrative console. If you install the IBM Business
Process Manager samples, and then open the samples gallery, a sample solution is deployed to the
stand-alone server. You can explore the resources used for this sample in the administrative console.

You can deploy your own solutions to a stand-alone server, but a stand-alone server cannot provide the
capacity, scalability, or robustness that is required of a production environment. For your production
environment, it is better to use a network deployment environment.

It is possible to start off with a stand-alone server and later include it in a network deployment
environment, by federating it to a deployment manager cell, provided that no other nodes have been federated
to that cell. It is not possible to federate multiple stand-alone servers into one cell. To federate the
stand-alone server, use the administrative console of the deployment manager or the addNode command.
The stand-alone server must not be running when you federate it using the addNode command.

A stand-alone server is defined by a stand-alone server profile.

Clusters
Clusters are groups of servers that are managed together and participate in workload management.

A cluster can contain nodes or individual application servers. A node is usually a physical computer
system with a distinct host IP address that is running one or more application servers. Clusters can be
grouped under the configuration of a cell, which logically associates many servers and clusters with

Chapter 2. Learn more about IBM Business Process Manager 33



different configurations and applications with one another depending on the discretion of the
administrator and what makes sense in their organizational environments.

Clusters are responsible for balancing workload among servers. Servers that are a part of a cluster are
called cluster members. When you install an application on a cluster, the application is automatically
installed on each cluster member.

Because each cluster member contains the same applications, you can distribute client tasks according to
the capacities of the different machines by assigning weights to each server.

Assigning weights to the servers in a cluster improves performance and failover. Tasks are assigned to
servers that have the capacity to perform the task operations. If one server is unavailable to perform the
task, it is assigned to another cluster member. This reassignment capability has obvious advantages over
running a single application server that can become overloaded if too many requests are made.

Profiles
A profile defines a unique runtime environment, with separate command files, configuration files, and
log files. Profiles define three different types of environments on IBM Business Process Manager systems:
stand-alone server, deployment manager, and managed node.

Using profiles, you can have more than one runtime environment on a system, without having to install
multiple copies of the IBM Business Process Manager binary files.

Use the Profile Management Tool or the manageprofiles command-line utility to create profiles.

Note: On distributed platforms, each profile has a unique name. On the z/OS® platform, all profiles are
named “default”.

The profile directory

Every profile in the system has its own directory containing all of its files. You specify the location of the
profile directory when you create the profile. By default, it is in the profiles directory in the directory
where IBM Business Process Manager is installed. For example, the Dmgr01 profile is in C:\Program
Files\IBM\WebSphere\ProcServer\profiles\Dmgr01.

The First steps console

Every profile in the system has a First steps console. You can use this interface to familiarize yourself
with the stand-alone server, deployment manager, or managed node.

The default profile

The first profile that you create within one installation of IBM Business Process Manager is the default
profile. The default profile is the default target for commands issued from the bin directory in the
directory where IBM Business Process Manager was installed. If only one profile exists on a system, every
command operates on that profile. If you create another profile, you can make it the default.

Note: The default profile is not necessarily a profile whose name is “default”.

Augmenting profiles

If you already have a deployment manager profile, a custom profile, or a stand-alone server profile
created for WebSphere Application Server Network Deployment or WebSphere ESB, you can augment it to

34 Overview



support IBM Business Process Manager in addition to existing function. To augment a profile, first install
IBM Business Process Manager. Then use the Profile Management Tool or the manageprofiles
command-line utility.

Restriction: You cannot augment a profile if it defines a managed node that is already federated to a
deployment manager.

Deployment managers
A deployment manager is a server that manages operations for a logical group, or cell, of other servers.
The deployment manager is the central location for administering the servers and clusters.

When creating a deployment environment, the deployment manager profile is the first profile that you
create. The deployment manager has a First steps console, from which you can start and stop the
deployment manager and start its administrative console. You use the administrative console of the
deployment manager to manage the servers and clusters in the cell. This includes configuring servers and
clusters, adding servers to clusters, starting and stopping servers and clusters, and deploying SCA
modules.

Although the deployment manager is a type of server, you cannot deploy modules to the deployment
manager itself.

Nodes
A node is a logical grouping of managed servers.

A node usually corresponds to a logical or physical computer system with a distinct IP host address.
Nodes cannot span multiple computers. Node names usually are identical to the host name for the
computer.

Nodes in the network deployment topology can be managed or unmanaged. A managed node has a node
agent process that manages its configuration and servers. Unmanaged nodes do not have a node agent.

Managed nodes
A managed node is a node that is federated to a deployment manager and contains a node agent and can
contain managed servers. In a managed node, you can configure and run managed servers.

The servers that are configured on a managed node make up the resources of your deployment
environment. These servers are created, configured, started, stopped, managed and deleted using the
administrative console of the deployment manager.

A managed node has a node agent that manages all servers on a node.

When a node is federated, a node agent process is created automatically. This node agent must be
running to be able to manage the configuration of the profile. For example, when you do the following
tasks:
v Start and stop server processes.
v Synchronize configuration data on the deployment manager with the copy on the node.

However, the node agent does not need to be running in order for the applications to run or to configure
resources in the node.

A managed node can contain one or more servers, which are managed by a deployment manager. You
can deploy solutions to the servers in a managed node, but the managed node does not contain a sample
applications gallery. The managed node is defined by a custom profile and has a First steps console.

Chapter 2. Learn more about IBM Business Process Manager 35



Unmanaged nodes
An unmanaged node does not have a node agent to manage its servers.

Unmanaged nodes in the Network Deployment topology can have server definitions such as Web servers
, but not Application Server definitions. Unmanaged nodes can never be federated. That is, a node agent
can never be added to an unmanaged node. Another type of unmanaged node is a stand-alone server.
The deployment manager cannot manage this stand-alone server because it is not known to the cell. A
stand-alone server can be federated. When it is federated, a node agent is automatically created. The node
becomes a managed node in the cell.

Node agents
Node agents are administrative agents that route administrative requests to servers.

A node agent is a server that runs on every host computer system that participates in the Network
Deployment configuration. It is purely an administrative agent and is not involved in application serving
functions. A node agent also hosts other important administrative functions such as file transfer services,
configuration synchronization, and performance monitoring.

Naming considerations for profiles, nodes, servers, hosts, and cells
This topic discusses reserved terms and issues you must consider when naming your profile, node,
server, host, and cell (if applicable). This topic applies to distributed platforms.

Profile naming considerations

The profile name can be any unique name with the following restrictions. Do not use any of the
following characters when naming your profile:
v Spaces
v Special characters that are not allowed within the name of a directory on your operating system, such

as *, &, or ?.
v Slashes (/) or back slashes (\)

Double-byte characters are allowed.

Windows Directory path considerations: The installation directory path must be less than or equal to 60
characters. The number of characters in the profiles_directory_path\profile_name directory must be less than
or equal to 80 characters.

Node, server, host, and cell naming considerations

Reserved names: Avoid using reserved names as field values. The use of reserved names can cause
unpredictable results. The following words are reserved:
v cells
v nodes
v servers
v clusters
v applications
v deployments

Descriptions of fields on the Node and Hosts Names and Node, Host, and Cell Names pages: Table 15
on page 37 describes the fields found on the Node and Host Names and Node, Host, and Cell Names
pages of the Profile Management Tool, including the field names, default values, and constraints. Use this
information as a guide when you are creating profiles.

36 Overview



Table 15. Naming guidelines for nodes, servers, hosts, and cells

Field name Default value Constraints Description

Stand-alone server profiles

Node name Linux

UNIX

Windows

shortHostName
Node NodeNumber
where:

v shortHost Name
is the short host
name.

v NodeNumber is a
sequential
number starting
at 01.

Avoid using the reserved
names.

Select any name you want. To help organize
your installation, use a unique name if you
plan to create more than one server on the
system.

Server name Linux

UNIX

Windows server1

Use a unique name for
the server.

The logical name for the server.

Host name Linux

UNIX

Windows The
long form of the
domain name
server (DNS)
name.

The host name must be
addressable through your
network.

If you are planning to use
Business Space, use a
fully qualified host name.

Use the actual DNS name or IP address of
your workstation to enable communication
with it. See additional information about the
host name following this table.

Cell name Linux

UNIX

Windows

shortHostName
Node NodeNumber
Cell where:

v shortHost Name
is the short host
name.

v NodeNumber is a
sequential
number starting
at 01.

Use a unique name for
the cell. A cell name must
be unique in any
circumstance in which the
product is running on the
same physical
workstation or cluster of
workstations, such as a
Sysplex. Additionally, a
cell name must be unique
in any circumstance in
which network
connectivity between
entities is required either
between the cells or from
a client that must
communicate with each
of the cells. Cell names
also must be unique if
their name spaces are
going to be federated.
Otherwise, you might
encounter symptoms such
as a javax.naming.Name
NotFoundException
exception, in which case,
you need to create
uniquely named cells.

All federated nodes become members of a
deployment manager cell.

Chapter 2. Learn more about IBM Business Process Manager 37



Table 15. Naming guidelines for nodes, servers, hosts, and cells (continued)

Field name Default value Constraints Description

Deployment manager profiles

Node name Linux

UNIX

Windows

shortHostName Cell
ManagerNode
Number where:

v shortHost Name
is the short host
name.

v NodeNumber is a
sequential
number starting
at 01.

Use a unique name for
the deployment manager.
Avoid using the reserved
names.

The name is used for administration within the
deployment manager cell.

Host name Linux

UNIX

Windows The
long form of the
domain name
server (DNS)
name.

The host name must be
addressable through your
network. Avoid using the
reserved names.

If you are planning to use
Business Space, use a
fully qualified host name.

Use the actual DNS name or IP address of
your workstation to enable communication
with it. See additional information about the
host name following this table.

Cell name Linux

UNIX

Windows

shortHostName Cell
CellNumber where:

v shortHost Name
is the short host
name.

v CellNumber is a
sequential
number starting
at 01.

Use a unique name for
the deployment manager
cell. A cell name must be
unique in any
circumstance in which the
product is running on the
same physical
workstation or cluster of
workstations, such as a
Sysplex. Additionally, a
cell name must be unique
in any circumstance in
which network
connectivity between
entities is required either
between the cells or from
a client that must
communicate with each
of the cells. Cell names
also must be unique if
their name spaces are
going to be federated.
Otherwise, you might
encounter symptoms such
as a javax.naming.Name
NotFoundException
exception, in which case,
you need to create
uniquely named cells.

All federated nodes become members of the
deployment manager cell , which you name in
the Node, Host, and Cell Names page of the
Profile Management Tool.

Custom profiles

38 Overview



Table 15. Naming guidelines for nodes, servers, hosts, and cells (continued)

Field name Default value Constraints Description

Node name Linux

UNIX

Windows

shortHostName
Node NodeNumber
where:

v shortHost Name
is the short host
name.

v NodeNumber is a
sequential
number starting
at 01.

Avoid using the reserved
names.

Use a unique name
within the deployment
manager cell.

The name is used for administration within the
deployment manager cell to which the custom
profile is added. Use a unique name within the
deployment manager cell.

Host name Linux

UNIX

Windows The
long form of the
domain name
server (DNS)
name.

The host name must be
addressable through your
network.

If you are planning to use
Business Space, use a
fully qualified host name.

Use the actual DNS name or IP address of
your workstation to enable communication
with it. See additional information about the
host name following this table.

Host name considerations:

The host name is the network name for the physical workstation on which the node is installed. The host
name must resolve to a physical network node on the server. When multiple network cards exist in the
server, the host name or IP address must resolve to one of the network cards. Remote nodes use the host
name to connect to and to communicate with this node.

IBM Business Process Manager is compliant to both Internet Protocol version 4 (IPv4) and version 6
(IPv6). Wherever you can enter IP addresses in the administrative console, or elsewhere, you can do so in
either format. Note that if IPv6 is implemented on your system you must enter the IP address in IPv6
format, and conversely, if IPv6 is not yet available to you, enter IP addresses in IPv4 format. For more
information on IPv6 see the Official IPv6 Web site.

The following guidelines can help in determining the appropriate host name for your workstation:
v Select a host name that other workstations can reach within your network.
v Do not use the generic identifier, localhost, for this value.
v Do not attempt to install IBM Business Process Manager products on a server with a host name that

uses characters from the double-byte character set (DBCS). DBCS characters are not supported when
used in the host name.

v Avoid using the underscore ( _ ) character in server names. Internet standards dictate that domain
names conform to the host name requirements described in Internet Official Protocol Standards RFC
952 and RFC 1123. Domain names must contain only letters (upper or lower case) and digits. Domain
names can also contain dash characters ( - ) as long as the dashes are not on the ends of the name.
Underscore characters ( _ ) are not supported in the host name. If you have installed IBM Business
Process Manager on a server with an underscore character in the server name, access the server with
its IP address until you rename it.

Chapter 2. Learn more about IBM Business Process Manager 39

http://www.ipv6.org


If you define coexisting nodes on the same computer with unique IP addresses, define each IP address in
a domain name server (DNS) look-up table. Configuration files for servers do not provide domain name
resolution for multiple IP addresses on a workstation with a single network address.

The value that you specify for the host name is used as the value of the hostName property in
configuration documents. Specify the host name value in one of the following formats:
v Fully qualified domain name servers (DNS) host name string, such as xmachine.manhattan.ibm.com
v The default short DNS host name string, such as xmachine
v Numeric IP address, such as 127.1.255.3

The fully qualified DNS host name has the advantages of being totally unambiguous and flexible. You
have the flexibility of changing the actual IP address for the host system without having to change the
server configuration. This value for host name is particularly useful if you plan to change the IP address
frequently when using Dynamic Host Configuration Protocol (DHCP) to assign IP addresses. A
disadvantage of this format is being dependent on DNS. If DNS is not available, then connectivity is
compromised.

The short host name is also dynamically resolvable. A short name format has the added ability of being
redefined in the local hosts file so that the system can run the server even when disconnected from the
network. Define the short name to 127.0.0.1 (local loopback) in the hosts file to run disconnected. A
disadvantage of the short name format is being dependent on DNS for remote access. If DNS is not
available, then connectivity is compromised.

A numeric IP address has the advantage of not requiring name resolution through DNS. A remote node
can connect to the node you name with a numeric IP address without DNS being available. A
disadvantage of this format is that the numeric IP address is fixed. You must change the setting of the
hostName property in configuration documents whenever you change the workstation IP address.
Therefore, do not use a numeric IP address if you use DHCP, or if you change IP addresses regularly.
Another disadvantage of this format is that you cannot use the node if the host is disconnected from the
network.

Bindings
At the core of a service-oriented architecture is the concept of a service, a unit of functionality
accomplished by an interaction between computing devices. An export defines the external interface (or
access point) of a module, so that Service Component Architecture (SCA) components within the module
can provide their services to external clients. An import defines an interface to services outside a module,
so the services can be called from within the module. You use protocol-specific bindings with imports and
exports to specify the means of transporting the data into or out of the module.

Exports

External clients can invoke SCA components in an integration module over a variety of protocols (such as
HTTP, JMS, MQ, and RMI/IIOP) with data in a variety of formats (such as XML, CSV, COBOL, and
JavaBean). Exports are components that receive these requests from external sources and then invoke IBM
Business Process Manager components using the SCA programming model.

For example, in the following figure, an export receives a request over the HTTP protocol from a client
application. The data is transformed into a business object, the format used by the SCA component. The
component is then invoked with that data object.

40 Overview



Imports

An SCA component might want to invoke a non-SCA external service that expects data in a different
format. An import is used by the SCA component to invoke the external service using the SCA
programming model. The import then invokes the target service in the way that the service expects.

For example, in the following figure, a request from an SCA component is sent, by the import, to an
external service. The business object, which is the format used by the SCA component, is transformed to
the format expect by the service, and the service is invoked.

List of bindings

You use WebSphere Integration Developer to generate a binding for an import or export and to configure
the binding. The types of bindings that are available are described in the following list.
v SCA

The SCA binding, which is the default, lets your service communicate with services in other SCA
modules. You use an import with an SCA binding to access a service in another SCA module. You use
an export with an SCA binding to offer a service to other SCA modules.

v Web service
A Web service binding lets you access an external service using interoperable SOAP messages and
qualities of service. You can also use Web service bindings to include attachments as part of the SOAP
message.
The Web service binding can use a transport protocol of either SOAP/HTTP (SOAP over HTTP) or
SOAP/JMS (SOAP over JMS). Regardless of the transport (HTTP or JMS) used to convey the SOAP
messages, Web service bindings always handle request/response interactions synchronously.

v HTTP
The HTTP binding lets you access an external service using the HTTP protocol, where non-SOAP
messages are used, or where direct HTTP access is required. This binding is used when you are
working with Web services that are based on the HTTP model (that is, services that use well-known
HTTP interface operations such as GET, PUT, DELETE, and so on).

Module

Component
with HTTP

binding

Header

Body

Business
object

Export

Figure 1. An export with HTTP binding

Module

Component with HTTP
binding

Header

Body

Business
object

Import

Figure 2. An import with HTTP binding

Chapter 2. Learn more about IBM Business Process Manager 41



v Enterprise JavaBeans (EJB)
The EJB bindings let SCA components interact with services provided by Java EE business logic
running on a Java EE server.

v EIS
The EIS (enterprise information system) binding, when used with a JCA resource adapter, lets you
access services on an enterprise information system or make your services available to the EIS.

v JMS bindings
Java Message Service (JMS), generic JMS, and WebSphere MQ JMS (MQ JMS) bindings are used for
interactions with messaging systems, where asynchronous communication through message queues is
critical for reliability.
An export with one of the JMS bindings watches a queue for the arrival of a message and
asynchronously sends the response, if any, to the reply queue. An import with one of the JMS bindings
builds and sends a message to a JMS queue and watches a queue for the arrival of the response, if any.
– JMS

The JMS binding lets you access the WebSphere-embedded JMS provider.
– Generic JMS

The generic JMS binding lets you access a non-IBM vendor messaging system.
– MQ JMS

The MQ JMS binding lets you access the JMS subset of a WebSphere MQ messaging system. You
would use this binding when the JMS subset of functions is sufficient for your application.

v MQ
The WebSphere MQ binding lets you communicate with MQ native applications, bringing them into
the service oriented architecture framework and providing access to MQ-specific header information.
You would use this binding when you need to use MQ native functions.

Export and import binding overview
An export lets you make services in an integration module available to external clients, and an import
makes it possible for your SCA components in an integration module to call external services. The
binding associated with the export or import specifies the relationship between protocol messages and
business objects. It also specifies the way that operations and faults are selected.

Flow of information through an export

An export receives a request, which is intended for the component to which the export is wired, over a
specific transport determined by the associated binding (for example, HTTP).

42 Overview



When the export receives the request, the following sequence of events occurs:
1. For WebSphere MQ bindings only, the header data binding transforms the protocol header into a

header data object.
2. The function selector determines the native method name from the protocol message. The native

method name is mapped by the export configuration to the name of an operation on the interface of
the export.

3. The request data handler or data binding on the method transforms the request to a request business
object.

4. The export invokes the component method with the request business object.
v The HTTP export binding, the Web service export binding, and the EJB export binding invoke the

SCA component synchronously.
v The JMS, Generic JMS, MQ JMS, and WebSphere MQ export bindings invoke the SCA component

asynchronously.

Note that an export can propagate the headers and user properties it receives over the protocol, if context
propagation is enabled. Components that are wired to the export can then access these headers and user
properties. See the “Propagation” topic in the WebSphere Integration Developer information center for
more information.

If this is a two-way operation, the component returns a response.

Figure 3. Flow of a request through the export to a component

Chapter 2. Learn more about IBM Business Process Manager 43



The following sequence of steps occurs:
1. If a normal response message is received by the export binding, the response data handler or data

binding on the method transforms the business object to a response.
If the response is a fault, the fault data handler or data binding on the method transforms the fault to
a fault response.
For HTTP export bindings only, if the response is a runtime exception, the runtime exception data
handler, if configured, is called.

2. For WebSphere MQ bindings only, the header data binding transforms the header data objects into
protocol headers.

3. The export sends the service response over the transport.

Flow of information through an import

Components send requests to services outside the module using an import. The request is sent, over a
specific transport determined by the associated binding.

Figure 4. Flow of a response back through the export

44 Overview



The component invokes the import with a request business object.

Note:

v The HTTP import binding, the Web service import binding, and the EJB import binding should be
invoked synchronously by the calling component.

v The JMS, Generic JMS, MQ JMS, and WebSphere MQ import binding should be invoked
asynchronously.

After the component invokes the import, the following sequence of events occurs:
1. The request data handler or data binding on the method transforms the request business object into a

protocol request message.
2. For WebSphere MQ bindings only, the header data binding on the method sets the header business

object in the protocol header.
3. The import invokes the service with the service request over the transport.

If this is a two-way operation, the service returns a response, and the following sequence of steps occurs:

Figure 5. Flow from a component through the import to a service

Chapter 2. Learn more about IBM Business Process Manager 45



1. For WebSphere MQ bindings only, the header data binding transforms the protocol header into a
header data object.

2. A determination is made about whether the response is a fault.
v If the response is a fault, the fault selector inspects the fault to determine which WSDL fault it

maps to. The fault data handler on the method then transforms the fault to a fault response.
v If the response is a runtime exception, the runtime exception data handler, if configured, is called.

3. The response data handler or binding on the method transforms the response to a response business
object.

4. The import returns the response business object to the component.

Export and import binding configuration
One of the key aspects of export and import bindings is data format transformation, which indicates how
data is mapped (deserialized) from a native wire format to a business object or how it is mapped
(serialized) from a business object to a native wire format. For bindings associated with exports, you can
also specify a function selector to indicate which operation should be performed on the data. For
bindings associated with exports or imports, you can indicate how faults that occur during processing
should be handled.

In addition, you specify transport-specific information on bindings. For example, for an HTTP binding,
you specify the endpoint URL. For the HTTP binding, the transport-specific information is described in
the “Generating an HTTP import binding” and “Generating an HTTP export binding” topics. You can
also find information about other bindings in the information center.

Data format transformation in imports and exports
When an export or import binding is configured in WebSphere Integration Developer, one of the
configuration properties that you specify is the data format used by the binding.

Import

Request
data handler

Protocol
Request
Message

Component Business
object

1.

Header

Body

Header
data binding

Creates:
Header

Data
Object

2.

4.

OR

Fault
data handler

Runtime exception
data handler

Creates:

Creates:

Creates:

3.

Fault
Data

Object

Exception
Data

Object

Figure 6. Flow of a response back through the import

46 Overview



v For export bindings, in which a client application sends requests to and receives responses from an
SCA component, you indicate the format of the native data. Depending on the format, the system
selects the appropriate data handler or data binding to transform the native data to a business object
(which is used by the SCA component) and conversely to transform the business object to native data
(which is the response to the client application).

v For import bindings, in which an SCA component sends requests to and receives responses from a
service outside the module, you indicate the data format of the native data. Depending on the format,
the system selects the appropriate data handler or data binding to transform the business object to
native data and vice versa.

IBM Business Process Manager provides a set of predefined data formats and corresponding data
handlers or data bindings that support the formats. You can also create your own custom data handlers
and register the data format for those data handlers. For more information, see the “Developing data
handlers” topic in the WebSphere Integration Developer information center.
v Data handlers are protocol-neutral and transform data from one format to another. In IBM Business

Process Manager, data handlers typically transform native data (such as XML, CSV, and COBOL) to a
business object and a business object to native data. Because they are protocol-neutral, you can reuse
the same data handler with a variety of export and import bindings. For example, you can use the
same XML data handler with an HTTP export or import binding or with a JMS export or import
binding.

v Data bindings also transform native data to a business object (and vice versa), but they are
protocol-specific. For example, an HTTP data binding can be used with an HTTP export or import
binding only. Unlike data handlers, an HTTP data binding cannot be reused with an MQ export or
import binding.

Note: Three HTTP data bindings (HTTPStreamDataBindingSOAP, HTTPStreamDataBindingXML, and
HTTPServiceGatewayDataBinding) are deprecated as of IBM Business Process Manager Version 7.0.
Use data handlers whenever possible.

As noted earlier, you can create custom data handlers, if necessary. You can also create custom data
bindings; however, it is recommended that you create custom data handlers because they can be used
across multiple bindings.

Data handlers:

Data handlers are configured against export and import bindings to transform data from one format to
another in a protocol-neutral fashion. Several data handlers are provided as part of the product, but you
can also create your own data handler, if necessary. You can associate a data handler with an export or
import binding at one of two levels: you can associate it with all operations in the interface of the export
or import, or you can associate it with a specific operation for the request or response.

Predefined data handlers

You use IBM Integration Designer to specify the data handler that you want to use.

The data handlers that are predefined for your use are listed in the following table, which also describes
how each data handler transforms inbound and outbound data.

Note: Except where noted, these data handlers can be used with JMS, Generic JMS, MQ JMS, WebSphere
MQ, and HTTP bindings.
See the “Data handlers” topic in the Integration Designer information center for more detailed
information.

Chapter 2. Learn more about IBM Business Process Manager 47



Table 16. Predefined data handlers

Data handler Native data to business object Business object to native data

ATOM Parses ATOM feeds into an ATOM
feed business object.

Serializes an ATOM feed business
object to ATOM feeds.

Delimited Parses delimited data into a business
object.

Serializes a business object to
delimited data, including CSV.

Fixed Width Parses fixed-width data into a
business object.

Serializes a business object to
fixed-width data.

Handled by WTX Delegates data format transformation
to the WebSphere Transformation
Extender (WTX). The WTX map
name is derived by the data handler.

Delegates data format transformation
to the WebSphere Transformation
Extender (WTX). The WTX map
name is derived by the data handler.

Handled by WTX Invoker Delegates the data format
transformation to the WebSphere
Transformation Extender (WTX). The
WTX map name is supplied by the
user.

Delegates the data format
transformation to the WebSphere
Transformation Extender (WTX). The
WTX map name is supplied by the
user.

JAXB Serializes Java beans to a business
object using the mapping rules
defined by the Java Architecture for
XML Binding (JAXB) specification.

Deserializes a business object to Java
beans using the mapping rules
defined by the JAXB specification.

JAXWS
Note: The JAXWS data handler can
be used only with the EJB binding.

Used by an EJB binding to transform
a response Java object or exception
Java object to a response business
object using the mapping rules
defined by the Java API for XML
Web Services (JAX-WS) specification.

Used by an EJB binding to transform
a business object to the outgoing Java
method parameters using the
mapping rules defined by the
JAX-WS specification.

JSON Parses JSON data into a business
object.

Serializes a business object to JSON
data.

Native body Parses the native bytes, text, map,
stream, or object into one of five base
business objects (text, bytes, map,
stream, or object).

Transforms the five base business
objects into byte, text, map, stream,
or object.

SOAP Parses the SOAP message (and the
header) into a business object.

Serializes a business object to a SOAP
message.

XML Parses XML data into a business
object.

Serializes a business object to XML
data.

UTF8XMLDataHandler Parses UTF-8 encoded XML data into
a business object.

Serializes a business object into
UTF-8 encoded XML data when
sending a message.

Creating a data handler

Detailed information about creating a data handler can be found in the “Developing data handlers” topic
in the Integration Designer information center.

Data bindings:

Data bindings are configured against export and import bindings to transform data from one format to
another. Data bindings are specific to a protocol. Several data bindings are provided as part of the
product, but you can also create your own data binding, if necessary. You can associate a data binding

48 Overview



with an export or import binding at one of two levels–you can associate it with all operations in the
interface of the export or import, or you can associate it with a specific operation for the request or
response.

You use WebSphere Integration Developer to specify which data binding you want to use or to create
your own data binding. A discussion of creating data bindings can be found in the “Overview of JMS,
MQ JMS and generic JMS bindings” section of the WebSphere Integration Developer information center.

JMS bindings

The following table lists the data bindings that can be used with:
v JMS bindings
v Generic JMS bindings
v WebSphere MQ JMS bindings

The table also includes a description of the tasks that the data bindings perform.

Table 17. Predefined data bindings for JMS bindings

Data binding Native data to business object Business object to native data

Serialized Java object Transforms the Java serialized object
into a business object (which is
mapped as the input or output type
in the WSDL).

Serializes a business object to the
Java serialized object in the JMS
object message.

Wrapped bytes Extracts the bytes from the incoming
JMS bytes message and wraps them
into the JMSBytesBody business
object.

Extracts the bytes from the
JMSBytesBody business object and
wraps them into the outgoing JMS
bytes message

Wrapped map entry Extracts the name, value, and type
information for every entry in the
incoming JMS map message and
creates a list of MapEntry business
objects. It then wraps the list into the
JMSMapBody business object

Extracts the name, value, and type
information from the MapEntry list
in the JMSMapBody business object
and creates the corresponding entries
in the outgoing JMS map message.

Wrapped object Extracts the object from the incoming
JMS object message and wraps it into
the JMSObjectBody business object.

Extracts the object from the
JMSObjectBody business object and
wraps it into the outgoing JMS object
message.

Wrapped text Extracts the text from the incoming
JMS text message and wraps it into
the JMSTextBody business object.

Extracts the text from the
JMSTextBody business object and
wraps it into the outgoing JMS text
message.

WebSphere MQ bindings

The following table lists the data bindings that can be used with WebSphere MQ and describes the tasks
that the data bindings perform.

Table 18. Predefined data bindings for WebSphere MQ bindings

Data binding Native data to business object Business object to native data

Serialized Java object Transforms the Java serialized object
from the incoming message into a
business object (which is mapped as
the input or output type in the
WSDL).

Transforms a business object to the
Java serialized object in the outgoing
message

Chapter 2. Learn more about IBM Business Process Manager 49



Table 18. Predefined data bindings for WebSphere MQ bindings (continued)

Data binding Native data to business object Business object to native data

Wrapped bytes Extracts the bytes from the
unstructured MQ bytes message and
wraps them into the JMSBytesBody
business object.

Extracts the bytes from a
JMSBytesBody business object and
wraps the bytes into the outgoing
unstructured MQ bytes message.

Wrapped text Extracts the text from an
unstructured MQ text message and
wraps it into a JMSTextBody business
object.

Extracts text from a JMSTextBody
business object and wraps it in an
unstructured MQ text message.

Wrapped stream entry Extracts the name and type
information for every entry in the
incoming JMS stream message and
creates a list of the StreamEntry
business objects. It then wraps the list
into the JMSStreamBody business
object.

Extracts the name and type
information from the StreamEntry list
in the JMSStreamBody business
object and creates corresponding
entries in the outgoing
JMSStreamMessage.

In addition to the data bindings listed in Table 18 on page 49, WebSphere MQ also uses header data
bindings. See the WebSphere Integration Developer information center for details.

HTTP bindings

The following table lists the data bindings that can be used with HTTP and describes the tasks that the
data bindings perform.

Table 19. Predefined data bindings for HTTP bindings

Data binding Native data to business object Business object to native data

Wrapped bytes Extracts the bytes from the body of
the incoming HTTP message and
wraps them into the HTTPBytes
business object.

Extracts the bytes from the
HTTPBytes business object and adds
them to the body of the outgoing
HTTP message.

Wrapped text Extracts the text from the body of the
incoming HTTP message and wraps
it into the HTTPText business object.

Extracts the text from the HTTPText
business object and adds it to the
body of the outgoing HTTP message.

Function selectors in export bindings
A function selector is used to indicate which operation should be performed on the data for a request
message. Function selectors are configured as part of an export binding.

Consider an SCA export that exposes an interface. The interface contains two operations–Create and
Update. The export has a JMS binding that reads from a queue.

When a message arrives on the queue, the export is passed the associated data, but which operation from
the export's interface should be invoked on the wired component? The operation is determined by the
function selector and the export binding configuration.

The function selector returns the native function name (the function name in the client system that sent
the message). The native function name is then mapped to the operation or function name on the
interface associated with the export. For example, in the following figure, the function selector returns the
native function name (CRT) from the incoming message, the native function name is mapped to the
Create operation, and the business object is sent to the SCA component with the Create operation.

50 Overview



If the interface has only one operation, there is no need to specify a function selector.

Several prepackaged function selectors are available and are listed in the sections that follow.

JMS bindings

The following table lists the function selectors that can be used with:
v JMS bindings
v Generic JMS bindings
v WebSphere MQ JMS bindings

Table 20. Predefined function selectors for JMS bindings

Function selector Description

JMS function selector for simple JMS data bindings Uses the JMSType property of the message to select the
operation name.

JMS header property function selector Returns the value of the JMS String Property,
TargetFunctionName, from the header.

JMS service gateway function selector Determines if the request is a one-way or two-way
operation by examining the JMSReplyTo property set by
the client.

WebSphere MQ bindings

The following table lists the function selectors that can be used with WebSphere MQ bindings.

Table 21. Predefined function selectors for WebSphere MQ bindings

Function selector Description

MQ handleMessage function selector Returns handleMessage as a value, which is mapped
using the export method bindings to the name of an
operation on the interface.

MQ uses JMS default function selector Reads the native operation from the TargetFunctionName
property of the folder of an MQRFH2 header.

MQ uses message body format as native function Finds the Format field of the last header and returns that
field as a String.

Export

Function
selector

Create

JMS queue
Native function name

(CRT)

ComponentBusiness
object

Figure 7. The function selector

Chapter 2. Learn more about IBM Business Process Manager 51



Table 21. Predefined function selectors for WebSphere MQ bindings (continued)

Function selector Description

MQ type function selector Creates a method in your export binding by retrieving a
URL containing the Msd, Set, Type and Format
properties found in the MQRFH2 header.

MQ service gateway function selector Uses the MsgType property in the MQMD header to
determine the operation name.

HTTP bindings

The following table lists the function selectors that can be used with HTTP bindings.

Table 22. Predefined function selectors for HTTP bindings

Function selector Description

HTTP function selector based on the
TargetFunctionName header

Uses the TargetFunctionName HTTP header property
from the client to determine which operation to invoke at
runtime from the export.

HTTP function selector based on the URL and HTTP
method

Uses the relative path from the URL appended with the
HTTP method from the client to determine the native
operation defined on the export.

HTTP service gateway function selector based on URL
with an operation name

Determines the method to invoke based on the URL if
"operationMode = oneway" has been appended to the
request URL.

Note: You can also create your own function selector, using IBM Integration Designer. Information about
creating a function selector is provided in the IBM Integration Designer information center. For example,
a description of creating a function selector for WebSphere MQ bindings can be found in “Overview of
the MQ function selectors”.

Fault handling
You can configure your import and export bindings to handle faults (for example, business exceptions)
that occur during processing by specifying fault data handlers. You can set up a fault data handler at
three levels–you can associate a fault data handler with a fault, with an operation, or for all operations
with a binding.

A fault data handler processes fault data and transforms it into the correct format to be sent by the export
or import binding.
v For an export binding, the fault data handler transforms the exception business object sent from the

component to a response message that can be used by the client application.
v For an import binding, the fault data handler transforms the fault data or response message sent from

a service into an exception business object that can be used by the SCA component.

For import bindings, the binding calls the fault selector, which determines whether the response message
is a normal response, a business fault, or a runtime exception.

You can specify a fault data handler for a particular fault, for an operation, and for all operations with a
binding.
v If the fault data handler is set at all three levels, the data handler associated with a particular fault is

called.
v If fault data handlers are set at the operation and binding levels, the data handler associated with the

operation is called.

52 Overview



Two editors are used in IBM Integration Designer to specify fault handling. The interface editor is used to
indicate whether there will be a fault on an operation. After a binding is generated with this interface, the
editor in the properties view lets you configure how the fault will be handled. For more information, see
the “Fault selectors” topic in the IBM Integration Designer information center.

How faults are handled in export bindings:

When a fault occurs during the processing of the request from a client application, the export binding can
return the fault information to the client. You configure the export binding to specify how the fault
should be processed and returned to the client.

You configure the export binding using IBM Integration Designer.

During request processing, a client invokes an export with a request, and the export invokes the SCA
component. During the processing of the request, the SCA component can either return a business
response or can throw a service business exception or a service runtime exception. When this occurs, the
export binding transforms the exception into a fault message and sends it to the client, as shown in the
following figure and described in the sections that follow.

You can create a custom data handler or data binding to handle faults.

Business faults

Business faults are business errors or exceptions that occur during processing.

Consider the following interface, which has a createCustomer operation on it. This operation has two
business faults defined: CustomerAlreadyExists and MissingCustomerId.

In this example, if a client sends a request to create a customer (to this SCA component) and that
customer already exists, the component throws a CustomerAlreadyExists fault to the export. The export
needs to propagate this business fault back to the calling client. To do so, it uses the fault data handler
that is set up on the export binding.

Export ComponentClient

Service business
exception

OR
Service runtime

exception

Response
message

Figure 8. How fault information is sent from the component through the export binding to the client

Figure 9. Interface with two faults

Chapter 2. Learn more about IBM Business Process Manager 53



When a business fault is received by the export binding, the following processing occurs:
1. The binding determines which fault data handler to invoke for handling the fault. If the service

business exception contains the fault name, the data handler that is set up on the fault is called. If the
service business exception does not contain the name of the fault, the fault name is derived by
matching the fault types.

2. The binding calls the fault data handler with the data object from the service business exception.
3. The fault data handler transforms the fault data object to a response message and returns it to the

export binding.
4. The export returns the response message to the client.

If the service business exception contains the fault name, the data handler that is set up on the fault is
called. If the service business exception does not contain the name of the fault, the fault name is derived
by matching the fault types.

Runtime exceptions

A runtime exception is an exception that occurs in the SCA application during the processing of a request
that does not correspond to a business fault. Unlike business faults, runtime exceptions are not defined
on the interface.

In certain scenarios, you might want to propagate these runtime exceptions to the client application so
that the client application can take the appropriate action.

For example, if a client sends a request (to the SCA component) to create a customer and an authorization
error occurs during processing of the request, the component throws a runtime exception. This runtime
exception has to be propagated back to the calling client so it can take the appropriate action regarding
the authorization. This is achieved by the runtime exception data handler configured on the export
binding.

Note: You can configure a runtime exception data handler only on HTTP bindings.

The processing of a runtime exception is similar to the processing of a business fault. If a runtime
exception data handler was set up, the following processing occurs:
1. The export binding calls the appropriate data handler with the service runtime exception.
2. The data handler transforms the fault data object to a response message and returns it to the export

binding.
3. The export returns the response message to the client.

Fault handling and runtime exception handling are optional. If you do not want to propagate faults or
runtime exceptions to the calling client, do not configure the fault data handler or runtime exception data
handler.

How faults are handled in import bindings:

A component uses an import to send a request to a service outside the module. When a fault occurs
during the processing of the request, the service returns the fault to the import binding. You can
configure the import binding to specify how the fault should be processed and returned to the
component.

You configure the import binding using IBM Integration Designer. You can specify a fault data handler
(or data binding), and you also specify a fault selector.

54 Overview



Fault data handlers

The service that processes the request sends, to the import binding, fault information in the form of an
exception or a response message that contains the fault data.

The import binding transforms the service exception or response message into a service business
exception or service runtime exception, as shown in the following figure and described in the sections
that follow.

You can create a custom data handler or data binding to handle faults.

Fault selectors

When you configure an import binding, you can specify a fault selector. The fault selector determines
whether the import response is an actual response, a business exception, or a runtime fault. It also
determines, from the response body or header, the native fault name, which is mapped by the binding
configuration to the name of a fault in the associated interface.

Two types of prepackaged fault selectors are available for use with JMS, MQ JMS, Generic JMS,
WebSphere MQ, and HTTP imports:

Table 23. Prepackaged fault selectors

Fault selector type Description

Header-based Determines whether a response message is a business
fault, a runtime exception, or a normal message based on
the headers in the incoming response message.

SOAP Determines whether the response SOAP message is a
normal response, business fault, or runtime exception.

The following shows examples of header-based fault selectors and the SOAP fault selector.
v Header-based fault selector

If an application wants to indicate that the incoming message is a business fault, there must be two
headers in the incoming message for business faults, which is shown as follows:
Header name = FaultType, Header value = Business
Header name = FaultName, Header value = <user defined native fault name>

If an application wants to indicate that the incoming response message is a runtime exception, then
there must be one header in the incoming message, which is shown as follows:
Header name = FaultType, Header value = Runtime

v SOAP fault selector
A business fault can be sent as part of the SOAP message with the following custom SOAP header.
"CustomerAlreadyExists" is the name of the fault in this case.

Import Service

Service business
exception

OR
Service runtime

exception

Business
response

OR
Business fault

OR
Runtime fault

Component

Figure 10. How fault information is sent from the service through the import to the component

Chapter 2. Learn more about IBM Business Process Manager 55



<ibmSoap:BusinessFaultName
xmlns:ibmSoap="http://www.ibm.com/soap">CustomerAlreadyExists
<ibmSoap:BusinessFaultName>

The fault selector is optional. If you do not specify a fault selector, the import binding cannot determine
the type of response. The binding therefore treats it as a business response and calls the response data
handler or data binding.

You can create a custom fault selector. The steps for creating a custom fault selector are provided in the
“Developing a custom fault selector” topic of the IBM Integration Designer information center.

Business faults

A business fault can occur when there is an error in the processing of a request. For example, if you send
a request to create a customer and that customer already exists, the service sends a business exception to
the import binding.

When a business exception is received by the binding, the processing steps depend on whether a fault
selector has been set up for the binding.
v If no fault selector was set up, the binding calls the response data handler or data binding.
v If a fault selector was set up, the following processing occurs:

1. The import binding calls the fault selector to determine whether the response is business fault,
business response, or runtime fault.

2. If the response is a business fault, the import binding calls the fault selector to provide the native
fault name.

3. The import binding determines the WSDL fault corresponding to the native fault name returned by
the fault selector.

4. The import binding determines the fault data handler that is configured for this WSDL fault.
5. The import binding calls this fault data handler with the fault data.
6. The fault data handler transforms the fault data to a data object and returns it to the import

binding.
7. The import binding constructs a service business exception object with the data object and the fault

name.
8. The import returns the service business exception object to the component.

Runtime exceptions

A runtime exception can occur when there is a problem in communicating with the service. The
processing of a runtime exception is similar to the processing of a business exception. If a fault selector
was set up, the following processing occurs:
1. The import binding calls the appropriate runtime exception data handler with the exception data.
2. The runtime exception data handler transforms the exception data to a service runtime exception

object and returns it to the import binding.
3. The import returns the service runtime exception object to the component.

Interoperability between SCA modules and Open SCA services
The IBM WebSphere Application Server V7.0 Feature Pack for Service Component Architecture (SCA)
provides a simple, yet powerful programming model for constructing applications based on the Open
SCA specifications. The SCA modules of IBM Business Process Manager use import and export bindings
to interoperate with Open SCA services developed in a Rational® Application Developer environment and
hosted by the WebSphere Application Server Feature Pack for Service Component Architecture.

56 Overview



An SCA application invokes an Open SCA application by way of an import binding. An SCA application
receives a call from an Open SCA application by way of an export binding. A list of supported bindings
is shown in “Invoking services over interoperable bindings” on page 58.

Invoking Open SCA services from SCA modules

SCA applications developed with IBM Integration Designer can invoke Open SCA applications developed
in a Rational Application Developer environment. This section provides an example of invoking an Open
SCA service from an SCA module using an SCA import binding.

No special configuration is required to invoke an Open SCA service.

To connect to an Open SCA service by way of an SCA import binding, you provide the component name
and service name of the Open SCA service in the import binding.
1. To obtain the name of the target component and service from the Open SCA composite, perform the

following steps:
a. Ensure that the Properties tab is open by clicking Window > Show View > Properties.
b. Open the composite editor by double-clicking the composite diagram that contains the component

and service. For example, for a component named customer, the composite diagram is
customer.composite_diagram.

c. Click the target component.
d. In the Name field of the Properties tab, note the name of the target component.
e. Click the service icon associated with the component.
f. In the Name field of the Properties tab, note the name of the service.

2. To configure the IBM Business Process Manager import to connect it to the Open SCA service,
perform the following steps:
a. In IBM Integration Designer, navigate to the Properties tab of the SCA import that you want to

connect to the Open SCA service.
b. In the Module name field, enter the component name from step 1d.
c. In the Export name field, enter the service name from step 1f.
d. Save your work by pressing Ctrl+S.

Invoking SCA modules from Open SCA services

Open SCA applications developed in a Rational Application Developer environment can invoke SCA
applications developed with IBM Integration Designer. This section provides an example of invoking an
SCA module (by way of an SCA export binding) from an Open SCA service.

Component Import ComponentService

Open SCA Service
Created in Rational

Application Developer

SCA Module
Created in

IBM Integration Designer

Figure 11. Component in SCA module invoking Open SCA service

Chapter 2. Learn more about IBM Business Process Manager 57



To connect to an SCA component by way of an Open SCA reference binding, you provide the module
name and export name.
1. To obtain the name of the target module and export, perform the following steps:

a. In IBM Integration Designer, open the module in the assembly editor by double-clicking the
module.

b. Click the export.
c. In the Name field of the Properties tab, note the name of the export.

2. Configure the Open SCA reference that you want to connect to the IBM Business Process Manager
module and export:
a. In Rational Application Developer, open the composite editor by double-clicking the composite

diagram that contains the component and service.
b. Click the reference icon of the component reference to display the reference properties in the

Properties tab.
c. Click the Binding tab on the left side of the page.
d. Click Bindings and then click Add.
e. Select the SCA binding.
f. In the Uri field, enter the IBM Business Process Manager module name, followed by a slash (“/”),

followed by the export name (which you determined in step 1c).
g. Click OK.
h. Save your work by pressing Ctrl+S.

Invoking services over interoperable bindings

The following bindings are supported for interoperability with an Open SCA service.
v SCA binding

In IBM Business Process Manager, when an SCA module invokes an Open SCA service by way of an
SCA import binding, the following invocation styles are supported:
– Asynchronous (one-way)
– Synchronous (request/response)
The SCA import interface and the Open SCA service interface must use a Web services interoperability
(WS-I) compliant WSDL interface.
Note that the SCA binding supports transaction and security context propagation.

v Web service (JAX-WS) binding with either the SOAP1.1/HTTP or SOAP1.2/HTTP protocol
The SCA import interface and the Open SCA service interface must use a Web services interoperability
(WS-I) compliant WSDL interface.
In addition, the following qualities of service are supported:
– Web Services Atomic Transaction
– Web Services Security

Open SCA Service
Created in Rational

Application Developer

Component Reference ComponentExport

SCA Module
Created in IBM

Integration Designer

Figure 12. Open SCA service invoking component in SCA module

58 Overview



v EJB binding
A Java interface is used to define the interaction between an SCA module and an Open SCA service
when the EJB binding is used.
Note that the EJB binding supports transaction and security context propagation.

v JMS bindings
The SCA import interface and the Open SCA service interface must use a Web services interoperability
(WS-I) compliant WSDL interface.
The following JMS providers are supported:
– WebSphere Platform Messaging (JMS Binding)
– WebSphere MQ (MQ JMS Binding)

Note: Business Graphs are not interoperable across any SCA bindings and, therefore, are not supported
in interfaces used to interoperate with the WebSphere Application Server Feature Pack for Service
Component Architecture.

Binding types
You use protocol-specific bindings with imports and exports to specify the means of transporting data into
or out of a module.

Selecting appropriate bindings
There are various bindings that are available to suit the needs of your application.

The bindings available in WebSphere Integration Developer provide a range of choices. This list helps
you identify when one type of binding could be more suitable for the needs of your application.

Consider an SCA binding when these factors are applicable:
v All services are contained in WebSphere Integration Developer modules; that is, there are no external

services.
v You want to separate function into different SCA modules that interact directly with each other.
v The modules are tightly coupled.

Consider a Web Service binding when these factors are applicable:
v You need to access an external service over the Internet or provide a service over the Internet.
v The services are loosely coupled.
v Synchronous communication is preferred; that is, a request from one service can wait for a response

from another.
v The protocol of the external service you are accessing or the service you want to provide is

SOAP/HTTP or SOAP/JMS.

Consider an HTTP binding when these factors are applicable:
v You need to access an external service over the Internet or provide a service over the Internet and you

are working with other Web services based on the HTTP model (that is, using well-known HTTP
interface operations such as GET, PUT, DELETE, and so on).

v The services are loosely coupled.
v Synchronous communication is preferred; that is, a request from one service can wait for a response

from another.

Consider an EJB binding when these factors are applicable:
v The binding is for an imported service that is itself an EJB or that needs to be accessed by EJB clients.
v The imported service is loosely coupled.
v Stateful EJB interactions are not required.

Chapter 2. Learn more about IBM Business Process Manager 59



v Synchronous communication is preferred; that is, a request from one service can wait for a response
from another.

Consider an EIS binding when these factors are applicable:
v You need to access a service on an EIS system using a resource adapter.
v Synchronous data transmission is preferred over asynchronous.

Consider a JMS binding when these factors are applicable:

Note: There are several types of JMS bindings. If you expect to exchange SOAP messages using JMS,
consider the Web service binding with the SOAP/JMS protocol. See “Web service bindings.”
v You need to access a messaging system.
v The services are loosely coupled.
v Asynchronous data transmission is preferred over synchronous.

Consider a Generic JMS binding when these factors are applicable:
v You need to access a non-IBM vendor messaging system.
v The services are loosely coupled.
v Reliability is more important than performance; that is, asynchronous data transmission is preferred

over synchronous.

Consider an MQ binding when these factors are applicable:
v You need to access a WebSphere MQ messaging system and need to use the MQ native functions.
v The services are loosely coupled.
v Reliability is more important than performance; that is, asynchronous data transmission is preferred

over synchronous.

Consider an MQ JMS binding when these factors are applicable:
v You need to access a WebSphere MQ messaging system but can do so within a JMS context; that is, the

JMS subset of functions is sufficient for your application.
v The services are loosely coupled.
v Reliability is more important than performance; that is, asynchronous data transmission is preferred

over synchronous.

SCA bindings
A Service Component Architecture (SCA) binding lets a service communicate with other services in other
modules. An import with an SCA binding lets you access a service in another SCA module. An export
with an SCA binding lets you offer a service to other modules.

You use WebSphere Integration Developer to generate and configure SCA bindings on imports and
exports in SCA modules.

If modules are running on the same server or are deployed in the same cluster, an SCA binding is the
easiest and fastest binding to use.

After the module that contains the SCA binding is deployed to the server, you can use the administrative
console to view information about the binding or, in the case of an import binding, to change selected
properties of the binding.

Web service bindings
A Web service binding is the means of transmitting messages from a Service Component Architecture
(SCA) component to a Web service (and vice versa).

60 Overview



Web service bindings overview:

A Web service import binding allows you to call an external Web service from your Service Component
Architecture (SCA) components. A Web service export binding allows you to expose your SCA
components to clients as Web services.

With a Web service binding, you access external services using interoperable SOAP messages and
qualities of service (QoS).

You use Integration Designer to generate and configure Web service bindings on imports and exports in
SCA modules. The following types of Web service bindings are available:
v SOAP1.2/HTTP and SOAP1.1/HTTP

These bindings are based on Java API for XML Web Services (JAX-WS), a Java programming API for
creating Web services.
– Use SOAP1.2/HTTP if your Web service conforms to the SOAP 1.2 specification.
– Use SOAP1.1/HTTP if your Web service conforms to the SOAP 1.1 specification.

Important: When you deploy an application with a Web service (JAX-WS) binding, the target server
must not have the Start components as needed option selected. See “Checking the server
configuration” on page 69 for details.
When you select one of these bindings, you can send attachments with your SOAP messages.
The Web service bindings work with standard SOAP messages. Using one of the Web service JAX-WS
bindings, however, you can customize the way that SOAP messages are parsed or written. For
example, you can handle nonstandard elements in SOAP messages or apply additional processing to
the SOAP message. When you configure the binding, you specify a custom data handler that performs
this processing on the SOAP message.
You can use policy sets with a Web service (JAX-WS) binding. A policy set is a collection of policy
types, each of which provides a quality of service (QoS). For example, the WSAddressing policy set
provides a transport-neutral way to uniformly address Web services and messages. You use Integration
Designer to select the policy set for the binding.

Note: If you want to use a Security Assertion Markup Language (SAML) policy set, you must perform
some additional configuration, as described in “Importing SAML policy sets” on page 67.

v SOAP1.1/HTTP
Use this binding if you want to create Web services that use a SOAP-encoded message based on Java
API for XML-based RPC (JAX-RPC).

v SOAP1.1/JMS
Use this binding to send or receive SOAP messages using a Java Message Service (JMS) destination.

Regardless of the transport (HTTP or JMS) that is used to convey the SOAP message, Web service
bindings always handle request/response interactions synchronously. The thread making the invocation
on the service provider is blocked until a response is received from the provider. See “Synchronous
invocation” for more information about this invocation style.

Important: The following combinations of Web service bindings cannot be used on exports in the same
module. If you need to expose components using more than one of these export bindings, you need to
have each in a separate module and then connect those modules to your components using the SCA
binding:
v SOAP 1.1/JMS and SOAP 1.1/HTTP using JAX-RPC
v SOAP 1.1/HTTP using JAX-RPC and SOAP 1.1/HTTP using JAX-WS
v SOAP 1.1/HTTP using JAX-RPC and SOAP 1.2/HTTP using JAX-WS

Chapter 2. Learn more about IBM Business Process Manager 61



After the SCA module that contains the Web service binding is deployed to the server, you can use the
administrative console to view information about the binding or to change selected properties of the
binding.

Note: Web services allow applications to interoperate by using standard descriptions of services and
standard formats for the messages they exchange. For example, the Web service import and export
bindings can interoperate with services that are implemented using Web Services Enhancements (WSE)
Version 3.5 and Windows Communication Foundation (WCF) Version 3.5 for Microsoft .NET. When
interoperating with such services, you must ensure that:
v The Web Services Description Language (WSDL) file that is used to access a Web service export

includes a non-empty SOAP action value for each operation in the interface.
v The Web service client sets either the SOAPAction header or the wsa:Action header when sending

messages to a Web service export.

SOAP header propagation:

When handling SOAP messages, you might need to access information from certain SOAP headers in
messages that are received, ensure that messages with SOAP headers are sent with specific values, or
allow SOAP headers to pass across a module.

When you configure a Web service binding in Integration Designer, you can indicate that you want SOAP
headers to be propagated.
v When requests are received at an export or responses received at an import, the SOAP header

information can be accessed, allowing logic in the module to be based on header values and allowing
those headers to be modified.

v When requests are sent from an export or responses sent from an import, SOAP headers can be
included in those messages.

The form and presence of the propagated SOAP headers might be affected by policy sets configured on
the import or export, as explained in Table 24 on page 63.

To configure the propagation of SOAP headers for an import or export, you select (from the Properties
view of Integration Designer) the Propagate Protocol Header tab and select the options you require.

WS-Addressing header

The WS-Addressing header can be propagated by the Web service (JAX-WS) binding.

When you propagate the WS-Addressing header, be aware of the following information:
v If you enable propagation for the WS-Addressing header, the header will be propagated into the

module in the following circumstances:
– When requests are received at an export
– When responses are received at an import

v The WS-Addressing header is not propagated into outbound messages from IBM Business Process
Manager (that is, the header is not propagated when requests are sent from an import or when
responses are sent from the export).

WS-Security header

The WS-Security header can be propagated by both the Web service (JAX-WS) binding and the Web
service (JAX-RPC) binding.

62 Overview



The Web services WS-Security specification describes enhancements to SOAP messaging to provide
quality of protection through message integrity, message confidentiality, and single message
authentication. These mechanisms can be used to accommodate a wide variety of security models and
encryption technologies.

When you propagate the WS-Security header, be aware of the following information:
v If you enable propagation for the WS-Security header, the header will be propagated across the module

in the following circumstances:
– When requests are received at an export
– When requests are sent from an import
– When responses are received at an import

v The header will not, by default, be propagated when responses are sent from the export. However, if
you set the JVM property WSSECURITY.ECHO.ENABLED to true, the header will be propagated
when responses are sent from the export. In this case, if the WS-Security header on the request path is
not modified, WS-Security headers might be automatically echoed from requests into responses.

v The exact form of the SOAP message sent from an import for a request or from an export for a
response might not exactly match the SOAP message that was originally received. For this reason, any
digital signature should be assumed to become invalid. If a digital signature is required in messages
that are sent, it must be established using the appropriate security policy set, and WS-Security headers
relating to digital signature in received messages should be removed within the module.

To propagate the WS-Security header, you must include the WS-Security schema with the application
module. See “Including the WS-Security schema in an application module” on page 64 for the procedure
to include the schema.

How headers are propagated

The way that headers are propagated depends on the security policy setting on the import or export
binding, as shown in the Table 24:

Table 24. How security headers are passed

Export binding with no security
policy Export binding with security policy

Import binding with no security
policy

Security headers are passed as-is
through the module. They are not
decrypted.

The headers are sent outbound in the
same form in which they were
received.

The digital signature might become
invalid.

Security headers are decrypted and
passed though the module with
signature verification and
authentication.

The decrypted headers are sent
outbound.

The digital signature might become
invalid.

Import binding with security policy Security headers are passed as-is
through the module. They are not
decrypted.

The headers should not be
propagated to the import. Otherwise,
an error occurs because of
duplication.

Security headers are decrypted and
passed though the module with
signature verification and
authentication.

The headers should not be
propagated to the import. Otherwise,
an error occurs because of
duplication.

Configure appropriate policy sets on the export and import bindings, because this isolates the service
requester from changes to the configuration or QoS requirements of the service provider. Having

Chapter 2. Learn more about IBM Business Process Manager 63



standard SOAP headers visible in a module can then be used to influence the processing (for example,
logging and tracing) in the module. Propagating SOAP headers across a module from a received message
to a sent message does mean that the isolation benefits of the module are reduced.

Standard headers, such as WS-Security headers, should not be propagated on a request to an import or
response to an export when the import or export has an associated policy set that would normally result
in the generation of those headers. Otherwise, an error will occur because of a duplication of the headers.
Instead, the headers should be explicitly removed or the import or export binding should be configured
to prevent propagation of protocol headers.

Accessing SOAP headers

When a message that contains SOAP headers is received from a Web service import or export, the
headers are placed in the headers section of the service message object (SMO). You can access the header
information, as described in “Accessing SOAP header information in the SMO”.

Including the WS-Security schema in an application module

The following procedure outlines the steps for including the schema in the application module:
v If the computer on which Integration Designer is running has access to the Internet, perform the

following steps:
1. In the Business Integration perspective, select Dependencies for your project.
2. Expand Predefined Resources and select either WS-Security 1.0 schema files or WS-Security 1.1

schema files to import the schema into your module.
3. Clean and rebuild the project.

v If a computer on which Integration Designer is running does not have Internet access, you can
download the schema to a second computer that does have Internet access. You can then copy it to the
computer on which Integration Designer is running.
1. From the computer that has Internet access, download the remote schema:

a. Click File > Import > Business Integration > WSDL and XSD.
b. Select Remote WSDL or XSD file.
c. Import the following schemas:

http://www.w3.org/2003/05/soap-envelope/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd
http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd

2. Copy the schemas to the computer that does not have Internet access.
3. From the computer that has no Internet access, import the schema:

a. Click File > Import > Business Integration > WSDL and XSD.
b. Select Local WSDL or XSD file.

4. Change the schema locations for oasis-wss-wssecurity_secext-1.1.xsd:
a. Open the schema at workplace_location/module_name/StandardImportFilesGen/oasis-wss-

wssecurity-secext-1.1.xsd.
b. Change:

<xs:import namespace=’http://www.w3.org/2003/05/soap-envelope’
schemaLocation=’http://www.w3.org/2003/05/soap-envelope/’/>

to:
<xs:import namespace=’http://www.w3.org/2003/05/soap-envelope’
schemaLocation=’../w3/_2003/_05/soap_envelope.xsd’/>

c. Change:
<xs:import namespace=’http://www.w3.org/2001/04/xmlenc#’
schemaLocation=’http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd’/>

64 Overview



to:
<xs:import namespace=’http://www.w3.org/2001/04/xmlenc#’
schemaLocation=’../w3/tr/_2002/rec_xmlenc_core_20021210/xenc-schema.xsd’/>

5. Change the schema location for oasis-200401-wss-wssecurity-secext-1.0.xsd:
a. Open the schema at workplace_location/module_name/StandardImportFilesGen/oasis-200401-

wss-wssecurity-secext-1.0.xsd.
b. Change:

<xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>

to:
<xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="../w3/tr/_2002/rec_xmldsig_core_20020212/xmldsig-core-schema.xsd"/>

6. Clean and rebuild the project.

Transport header propagation:

When handling SOAP messages, you might need to access information from certain transport headers in
messages that are received, ensure that messages with transport headers are sent with specific values, or
allow transport headers to pass across a module.

When you configure a Web service binding in Integration Designer, you can indicate that you want
transport headers to be propagated.
v When requests are received at an export or responses are received at an import, the transport header

information can be accessed, allowing logic in the module to be based on header values and allowing
those headers to be modified.

v When responses are sent from an export or requests are sent from an import, transport headers can be
included in those messages.

Specifying propagation of headers

To configure the propagation of transport headers for an import or export, perform the following steps:
1. From the Properties view of Integration Designer, select Binding > Propagation.
2. Set the transport header propagation option that you require.

Note: Transport header propagation is disabled by default and can be deployed only to a Version 7.0.0.3
(or later) runtime environment. Also note that, for Version 7.0.0.3, transport header propagation is limited
to HTTP transport headers only.

If you enable propagation of transport headers, the headers will be propagated across a module from
received messages and, if you do not explicitly remove the headers, the headers will be used in
subsequent invocations in the same thread.

Note: Transport headers cannot be propagated when you are using the Web service (JAX-RPC) binding.

Accessing the header information

When transport header propagation is enabled for received messages, all transport headers (including
customer-defined headers) are visible in the service message object (SMO). You can set the headers to
different values or create new ones. Note, however, that there is no checking or validation of the values
you set, and any improper or incorrect headers might cause Web service runtime problems.

Consider the following information about the setting of HTTP headers:

Chapter 2. Learn more about IBM Business Process Manager 65



v Any changes to the headers that are reserved for the Web service engine will not be honored in the
outbound message. For example, the HTTP version or method, Content-Type, Content-Length and
SOAPAction headers are reserved for the Web service engine.

v If the header value is a number, the number (rather than the string) should be set directly. For example,
use Max-Forwards = 5 (rather than Max-Forwards = Max-Forwards: 5) and Age = 300 (rather than
Age = Age: 300).

v If the request message is less than 32 KB in size, the Web service engine removes the Transfer-Encoding
header and instead sets the Content-Length header to the fixed size of the message.

v The Content-language is reset by WAS.channel.http on the response path.
v An invalid setting for Upgrade results in a 500 error.
v The following headers append the value reserved by the Web service engine to the customer settings:

– User-Agent
– Cache-Control
– Pragma
– Accept
– Connection

You can access the header information in one of the following ways:
v Using a mediation primitive to access the SMO structures

See the “Related Information” links to find information about using mediation primitives.
v Using the context service SPI

The following sample code reads the HTTP transport headers from the context service:
HeadersType headerType = ContextService.INSTANCE.getHeaders();
HTTPHeaderType httpHeaderType = headerType.getHTTPHeader();
List HTTPHeader httpHeaders = httpHeaderType.getHeader();
if(httpHeaders!=null){
for(HTTPHeader httpHeader: httpHeaders){

String httpHeadername = httpHeader.getName();
String httpHeaderValue = httpHeader.getValue();

}
}
List PropertyType properties = headerType.getProperties();
if(properties!=null){

for(PropertyType property: properties){
String propertyName = property.getName();
String propertyValue = property.getValue().toString();

}
}

Troubleshooting

If you encounter problems when sending the revised headers, you can intercept the TCP/IP message by
using tools such as the TCP/IP Monitor in Integration Designer. You access the TCP/IP Monitor by
selecting Run/Debug > TCP/IP Monitor from the Preferences page.

You can also view the header values using the JAX-WS engine trace: org.apache.axis2.*=all:
com.ibm.ws.websvcs.*=all:

Working with Web service (JAX-WS) bindings:

When you use Web service (JAX-WS) bindings with your applications, you can add a Security Assertion
Markup Language (SAML) quality of service (QOS) to the binding. You must first use the administrative
console to import the policy set. You can also use the administrative console to make sure that the server
is properly configured for use with the Web service (JAX-WS) binding.

66 Overview



Importing SAML policy sets:

Security Assertion Markup Language (SAML) is an XML-based OASIS standard for exchanging user
identity and security attributes information. When you configure a Web service (JAX-WS) binding in
Integration Designer, you can specify an SAML policy set. You first use the administrative console of IBM
Business Process Manager to make the SAML policy sets available so that they can be imported into
Integration Designer.

The SAML policy sets are typically located in the profile configuration directory:

profile_root/config/templates/PolicySets

Before you begin this procedure, verify that the following directories (which contain the policy sets) are
located in the profile configuration directory:
v SAML11 Bearer WSHTTPS default

v SAML20 Bearer WSHTTPS default

v SAML11 Bearer WSSecurity default

v SAML20 Bearer WSSecurity default

v SAML11 HoK Public WSSecurity default

v SAML20 HoK Public WSSecurity default

v SAML11 HoK Symmetric WSSecurity default

v SAML20 HoK Symmetric WSSecurity default

v Username WSHTTPS default

If the directories are not in the profile configuration directory, copy them to that directory from the
following location:

app_server_root/profileTemplates/default/documents/config/templates/PolicySets

You import the policy sets into the administrative console, select the ones you want to make available to
Integration Designer, and then save a zip file for each of those policy sets to a location that is accessible
by Integration Designer.
1. Import the policy sets by following these steps:

a. From the administrative console, click Services > Policy Sets > Application policy sets.
b. Click Import > From Default Repository.
c. Select the SAML default policy sets, and click OK.

2. Export the policy sets so that they can be used by Integration Designer:
a. From the Application policy sets page, select the SAML policy set you want to export, and click

Export.

Note: If the Application policy sets page is not currently displayed, click Services > Policy Sets >
Application Policy Sets from the administrative console.

b. On the next page, click the .zip file link for the policy set.
c. In the File Download window, click Save and indicate a location that is accessible by Integration

Designer.
d. Click Back.
e. Complete steps 2a through 2d for each policy set you want to export.

The SAML policy sets are saved in .zip files and are ready to be imported into Integration Designer.

Import the policy sets into Integration Designer, as described in the topic “Policy sets”.

Chapter 2. Learn more about IBM Business Process Manager 67



Invoking web services that require HTTP basic authentication:

HTTP basic authentication employs a user name and password to authenticate a service client to a secure
endpoint. You can set up HTTP basic authentication when sending or receiving web service requests.

You set up HTTP basic authentication for receiving web service requests by configuring the Java API for
XML Web Services (JAX-WS) export binding, as described in the “Creating and assigning security roles to
web service exports” topic.

HTTP basic authentication can be enabled for web service requests that are sent by a JAX-WS import
binding in one of two ways:
v When configuring the import binding in an SCA module, you can select the supplied HTTP

authentication policy set named BPMHTTPBasicAuthentication (which is provided with the web
service (JAX-WS) import binding) or any other policy set that includes the HTTPTransport policy.

v When constructing the SCA module, you can use mediation flow capabilities to dynamically create a
new HTTP authentication header and specify the user name and password information in the header.

Note: The policy set has precedence over the value specified in the header. If you want to use the value
set in the HTTP authentication header at run time, do not attach a policy set that includes the
HTTPTransport policy. Specifically, do not use the default BPMHTTPBasicAuthentication policy set, and,
if you have defined a policy set, make sure it excludes the HTTPTransport policy.

You can find more information about web service policy sets and policy bindings and how they are used
in the “Web services policy sets” topic of the WebSphere Application Server Information Center. The link
to the topic is listed under “Related information”.
v To use the supplied policy set, perform the following steps:

1. Optional: In the administrative console, create a client general policy binding or edit an existing one
that includes the HTTPTransport policy with the desired user ID and password values.

2. In IBM Integration Designer, generate a web service (JAX-WS) import binding and attach the
BPMHTTPBasicAuthentication policy set.

3. Perform one of the following steps:
– In IBM Integration Designer, in the web service (JAX-WS) import binding properties, specify the

name of an existing client general policy binding that includes the HTTPTransport policy.
– After deploying the SCA module, from the administrative console of the process server, select an

existing client policy binding or create a new one and associate it with the import binding.
4. Optional: In the administrative console of the process server, edit the selected policy set binding to

specify the required ID and password.
v To specify the user name and password in the HTTP authentication header, perform one of the

following sets of steps:
– Use the HTTP Header Setter mediation primitive in IBM Integration Designer to create the HTTP

authentication header, and specify the user name and password.
– If additional logic is required, use Java code in a custom mediation primitive (as shown in the

following example) to:
1. Create an HTTP authentication header.
2. Specify the user name and password information.
3. Add the new HTTP authentication header to HTTPControl.
4. Set the updated HTTPControl back in the Context service.

//Get the HeaderInfoType from contextService
ContextService contextService = (ContextService) ServiceManager.INSTANCE
.locateService("com/ibm/bpm/context/ContextService");
HeaderInfoType headers = contextService.getHeaderInfo();
if(headers == null){

headers = ContextObjectFactory.eINSTANCE.createHeaderInfoType();

68 Overview



}
//Get the HTTP header and HTTP Control from HeaderInfoType
HTTPHeaderType httpHeaderType = headers.getHTTPHeader();
HTTPControl cp = httpHeaderType.getControl();
HeadersFactory factory = HeadersFactory.eINSTANCE;
if(cp == null){

cp = factory.createHTTPControl();
}
//Create new HTTPAuthentication and set the HTTPCredentials
HTTPAuthentication authorization = factory.createHTTPAuthentication();
HTTPCredentials credentials = factory.createHTTPCredentials();
authorization.setAuthenticationType(HTTPAuthenticationType.BASIC_LITERAL);
credentials.setUserId("USERNAME");
credentials.setPassword("PASSWORD");
authorization.setCredentials(credentials);
cp.setAuthentication(authorization);
httpHeaderType.setControl(cp);
// Set header info back to the current execution context.
contextService.setHeaderInfo(headers);

Checking the server configuration:

When you deploy an application with a Web service (JAX-WS) binding, you must make sure that the
server on which the application is deployed does not have the Start components as needed option
selected.

You can check to see whether this option is selected by performing the following steps from the
administrative console:
1. Click Servers > Server types > WebSphere application servers.
2. Click the server name.
3. From the Configuration tab, determine whether Start components as needed is selected.
4. Perform one of the following steps:

v If Start components as needed is selected, remove the check, and then click Apply.
v If Start components as needed is not selected, click Cancel.

Attachments in SOAP messages:

You can send and receive SOAP messages that include binary data (such as PDF files or JPEG images) as
attachments. Attachments can be referenced (that is, represented explicitly as message parts in the service
interface) or unreferenced (in which arbitrary numbers and types of attachments can be included).

A referenced attachment can be represented in one of the following ways:
v As a wsi:swaRef-typed element in the message schema

Attachments defined using the wsi:swaRef type conform to the Web Services Interoperability
Organization (WS-I) Attachments Profile Version 1.0 (http://www.ws-i.org/Profiles/AttachmentsProfile-
1.0.html), which defines how message elements are related to MIME parts.

v As a top-level message part, using a binary schema type
Attachments represented as top-level message parts conform to the SOAP Messages with Attachments
(http://www.w3.org/TR/SOAP-attachments ) specification.
Attachments represented as top-level message parts can also be configured to ensure that the WSDL
document and messages produced by the binding conform to the WS-I Attachments Profile Version 1.0
and the WS-I Basic Profile Version 1.1 (http://www.ws-i.org/Profiles/BasicProfile-1.1.html).

An unreferenced attachment is carried in a SOAP message without any representation in the message
schema.

Chapter 2. Learn more about IBM Business Process Manager 69

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.w3.org/TR/SOAP-attachments
http://www.ws-i.org/Profiles/BasicProfile-1.1.html


In all cases, the WSDL SOAP binding should include a MIME binding for attachments to be used, and
the maximum size of the attachments should not exceed 20 MB.

Note: To send or receive SOAP messages with attachments, you must use one of the Web service
bindings based on the Java API for XML Web Services (JAX-WS).

How to choose the appropriate attachment style:

When designing a new service interface that includes binary data, consider how that binary data is
carried in the SOAP messages that are sent and received by the service.

Use the following set of questions to determine the appropriate attachment style:

Referenced attachments: swaRef-typed elements:

You can send and receive SOAP messages that include attachments represented in the service interface as
swaRef-typed elements.

An swaRef-typed element is defined in the Web Services Interoperability Organization (WS-I) Attachments
Profile Version 1.0 (http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html), which defines how
message elements are related to MIME parts.

Yes

No

No

Yes Yes

Yes

No

No

Do you require
document/literal
wrapped binding

style?

Are the attachment
elements within

nested structures?

Use referenced
attachments.

Do you want binary data
to be passed inline as

part of the
XML SOAP body?

Do not use attachments.
For top-level message
parts, bind the data to the
SOAP body (the default)
or header.

Do you want to define
specific elements in
your interface that

represent the
attachment?

Use unreferenced
attachments.

Use wsi:swaRef
typed attachments.

Use wsi:swaRef
typed attachments.

70 Overview

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html


In the SOAP message, the SOAP body contains an swaRef-typed element that identifies the content ID of
the attachment.

The WSDL for this SOAP message contains an swaRef-typed element within a message part that
identifies the attachment.

<element name="sendPhoto">
<complexType>

<sequence>
<element name="Photo" type="wsi:swaRef"/>

</sequence>
</complexType>
</element>

The WSDL should also contain a MIME binding that indicates MIME multipart messages are to be used.

Note: The WSDL does not include a MIME binding for the specific swaRef-typed message element,
because MIME bindings apply only to top-level message parts.

Attachments represented as swaRef-typed elements can be propagated only across mediation flow
components. If an attachment must be accessed by or propagated to another component type, use a
mediation flow component to move the attachment to a location that is accessible by that component.

Inbound processing of attachments

You use Integration Designer to configure an export binding to receive the attachment. You create a
module and its associated interface and operations, including an element of type swaRef. You then create
a Web service (JAX-WS) binding.

Note: See the “Working with attachments” topic in the Integration Designer information center for more
detailed information.

When a client passes a SOAP message with an swaRef attachment to a Service Component Architecture
(SCA) component, the Web service (JAX-WS) export binding first removes the attachment. It then parses
the SOAP part of the message and creates a business object. Finally, the binding sets the content ID of the
attachment in the business object.

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: Photo

... binary data ...

<Photo>cid:Photo</Photo>

Attachment

swaRef element

Figure 13. A SOAP message with an swaRef element

Chapter 2. Learn more about IBM Business Process Manager 71



Accessing attachment metadata in a mediation flow component

As shown in Figure 15, when swaRef attachments are accessed by components, the attachment content
identifier appears as an element of type swaRef.

Each attachment of a SOAP message also has a corresponding attachments element in the SMO. When
using the WS-I swaRef type, the attachments element includes the attachment content type and content
ID as well as the actual binary data of the attachment.

To obtain the value of an swaRef attachment, it is therefore necessary to obtain the value of the
swaRef-typed element, and then locate the attachments element with the corresponding contentID value.
Note that the contentID value typically has the cid: prefix removed from the swaRef value.

Business object

Component
Web service
(JAX-WS)

export

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID:

... binary data ...

<Photo >>cid:Photo</Photo

Photo

Photo
type wsi:swaRef
value cid:Photo

Figure 14. How the Web service (JAX-WS) export binding processes a SOAP message with an swaRef attachment

Business object

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...

</body>

</smo:smo>

...
<Photo>cid:Photo</Photo>

<attachments>
<contentID>Photo</contentID>
<contentType>image/jpeg</contentType>

</attachments>
< binary data >data> </data

Component

Photo
type wsi:swaRef
value cid:Photo

Figure 15. How swaRef attachments appear in the SMO

72 Overview



Outbound processing

You use Integration Designer to configure a Web service (JAX-WS) import binding to invoke an external
Web service. The import binding is configured with a WSDL document that describes the Web service to
be invoked and defines the attachment that will be passed to the Web service.

When an SCA message is received by a Web service (JAX-WS) import binding, swaRef-typed elements are
sent as attachments if the import is wired to a mediation flow component and the swaRef-typed element
has a corresponding attachments element.

For outbound processing, swaRef-typed elements are always sent with their content ID values; however
the mediation module must ensure that there is a corresponding attachments element with a matching
contentID value.

Note: To conform to the WS-I Attachments Profile, the content ID value should follow the "content-id
part encoding," as described in section 3.8 of the WS-I Attachments Profile 1.0.

Setting attachment metadata in a mediation flow component

If, in the SMO, there is an swaRef-typed element value and an attachments element, the binding prepares
the SOAP message (with the attachment) and sends it to a recipient.

Component

Web service
(JAX-WS)

import

Business object

Photo
type wsi:swaRef
value cid:Photo

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID:

... binary data ...

<Photo >>cid:Photo</Photo

Photo

Figure 16. How the Web service (JAX-WS) import binding generates a SOAP message with an swaRef attachment

Chapter 2. Learn more about IBM Business Process Manager 73



The attachments element is present in the SMO only if a mediation flow component is connected directly
to the import or export; it does not get passed across other component types. If the values are needed in
a module that contains other component types, a mediation flow component should be used to copy the
values into a location where they can then be accessed in the module, and another mediation flow
component used to set the correct values before an outbound invocation by way of a Web service import.

Important: As described in “XML representation of SMO,” the XSL Transformation mediation primitive
transforms messages using an XSLT 1.0 transformation. The transformation operates on an XML
serialization of the SMO. The XSL Transformation mediation primitive allows the root of the serialization
to be specified, and the root element of the XML document reflects this root.

When you are sending SOAP messages with attachments, the root element you choose determines how
attachments are propagated.
v If you use “/body” as the root of the XML map, all attachments are propagated across the map by

default.
v If you use “/” as the root of the map, you can control the propagation of attachments.

Referenced attachments: top-level message parts:

You can send and receive SOAP messages that include binary attachments that are declared as parts in
your service interface.

In a MIME multipart SOAP message, the SOAP body is the first part of the message, and the attachment
or attachments are in subsequent parts.

Web service
(JAX-WS)

import

SMO

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID:

... binary data ...

<Photo >>cid:Photo</Photo

Photo

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...

</body>

</smo:smo>

...
<Photo>cid:Photo</Photo>

<attachments>
<contentID>Photo</contentID>
<contentType>image/jpeg</contentType>
<data>

</attachments>
binary data ></data

Figure 17. How an swaRef attachment in the SMO is accessed to create the SOAP message

74 Overview



What is the advantage of sending or receiving a referenced attachment in a SOAP message? The binary
data that makes up the attachment (which is often quite large) is held separately from the SOAP message
body so that it does not need to be parsed as XML. This results in more efficient processing than if the
binary data were held within an XML element.

Types of SOAP messages with referenced attachments

Beginning with Version 7.0.0.3 of IBM Business Process Manager, you have a choice about how the SOAP
message is generated:
v WS-I-compliant messages

The runtime can generate SOAP messages that comply with the WS-I Attachments Profile Version 1.0 and
the WS-I Basic Profile Version 1.1. In a SOAP message that is compliant with these profiles, only one
message part is bound to the SOAP body; for those that are bound as attachments, the content-id part
encoding (as described in the WS-I Attachments Profile Version 1.0) is used to relate the attachment to
the message part.

v Non-WS-I-compliant messages

The runtime can generate SOAP messages that do not comply with the WS-I profiles but that are
compatible with the messages generated in Version 7.0 or 7.0.0.2 of IBM Business Process Manager. The
SOAP messages use top-level elements named after the message part with an href attribute that holds
the attachment content-id, but the content-id part encoding (as described in the WS-I Attachments
Profile Version 1.0) is not used.

Selecting WS-I compliance for Web service exports

You use Integration Designer to configure an export binding. You create a module and its associated
interface and operations. You then create a Web service (JAX-WS) binding. The Referenced attachments
page displays all the binary parts from the created operation, and you select which parts will be
attachments. You then specify, on the Specify the WS-I AP 1.0 compliance page of Integration Designer,
one of the following choices:
v Use WS-I AP 1.0 compliant SOAP message

If you select this option, you also specify which message part should be bound to the SOAP body.

Note: This option can be used only when the corresponding WSDL file is also WS-I compliant.

A WSDL file that is generated by Integration Designer Version 7.0.0.3 is compliant with WS-I. However,
if you import a WSDL file that is not compliant with WS-I, you cannot select this option.

v Use non WS-I AP 1.0 compliant SOAP message

If you select this option, which is the default, the first message part is bound to the SOAP body.

Note: Only top-level message parts (that is, elements defined in the WSDL portType as parts within the
input or output message) that have a binary type (either base64Binary or hexBinary) can be sent or
received as referenced attachments.
See the “Working with attachments” topic in the Integration Designer information center for more
detailed information.

For WS-I-compliant messages, the content-ID that is generated in the SOAP message is a concatenation of
the following elements:
v The value of the name attribute of the wsdl:part element referenced by the mime:content

v The character =

v A globally unique value, such as a UUID
v The character @

v A valid domain name

Chapter 2. Learn more about IBM Business Process Manager 75



Inbound processing of referenced attachments

When a client passes a SOAP message with an attachment to a Service Component Architecture (SCA)
component, the Web service (JAX-WS) export binding first removes the attachment. It then parses the
SOAP part of the message and creates a business object. Finally, the binding sets the attachment binary in
the business object.

Accessing attachment metadata in a mediation flow component

As shown in Figure 18, when referenced attachments are accessed by components, the attachment data
appears as a byte array.

Each referenced attachment of a SOAP message also has a corresponding attachments element in the
SMO. The attachments element includes the attachment content type and the path to the message body
element where the attachment is held.

Business object

Component
Web service
(JAX-WS)

export

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID:

.

Photo=abcd123@
mycompany.com

.

.

.
Photo byte [ ]

Figure 18. How the Web service (JAX-WS) export binding processes a WS-I compliant SOAP message with a
referenced attachment

Business object

Component

.

.

.
Photo byte [ ]

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...
</body>

</smo:smo>

<attachments>
<contentID> </contentID>
<bodyPath>Photo</bodyPath>
<contentType>image/jpeg</contentType>

</attachments>

Photo=abcd123@mycompany.com

Figure 19. How referenced attachments appear in the SMO

76 Overview



Important: The path to the message body element is not automatically updated if the message is
transformed and the attachment moved. You can use a mediation flow to update the attachments element
with the new path (for example, as part of the transform or using a separate message element setter).

How outbound SOAP messages are constructed

You use Integration Designer to configure a Web service (JAX-WS) import binding to invoke an external
Web service. The import binding is configured with a WSDL document that describes the Web service to
be invoked and defines which message parts should be passed as attachments. You can also indicate, on
the Specify the WS-I AP 1.0 compliance page of Integration Designer, one of the following choices:
v Use WS-I AP 1.0 compliant SOAP message

If you select this option, you also specify which message part should be bound to the SOAP body; all
others are bound to attachments or headers. Messages sent by the binding do not include elements in
the SOAP body that refer to the attachments; the relationship is expressed by way of the attachment
content ID including the message part name.

v Use non WS-I AP 1.0 compliant SOAP message

If you select this option, which is the default, the first message part is bound to the SOAP body; all
others are bound to attachments or headers. Messages sent by the binding include one or more
elements in the SOAP body that refer to the attachments by way of an href attribute.

Note: The part that represents an attachment, as defined in the WSDL, must be a simple type (either
base64Binary or hexBinary). If a part is defined by a complexType, that part cannot be bound as an
attachment.

Outbound processing of referenced attachments

The import binding uses information in the SMO to determine how the binary top-level message parts
are sent as attachments.

Chapter 2. Learn more about IBM Business Process Manager 77



The attachments element is present in the SMO only if a mediation flow component is connected directly
to the import or export; it does not get passed across other component types. If the values are needed in
a module that contains other component types, a mediation flow component should be used to copy the
values into a location where they can then be accessed in the module, and another mediation flow
component used to set the correct values before an outbound invocation by way of a Web service import.

The binding uses a combination of the following conditions to determine how (or whether) the message
is sent:
v Whether there is a WSDL MIME binding for the top-level binary message part and, if so, how the

content type is defined
v Whether there is an attachments element in the SMO whose bodyPath value references a top-level

binary part

How attachments are created when an attachment element exists in the SMO

The following table shows how an attachment is created and sent if the SMO contains an attachment
element with a bodyPath that matches a message name part:

Web service
(JAX-WS)

import

<soap:Envelope>
<soap:Body>

.

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID: Photo=abcd123@mycompany.com

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...
</body>

</smo:smo>

<attachments>
<contentID> </contentID>
<bodyPath>Photo</bodyPath>
<contentType>image/jpeg</contentType>

</attachments>

Photo=abcd123@mycompany.com

Figure 20. How the referenced attachment in the SMO is accessed to create the SOAP message

78 Overview



Table 25. How the attachment is generated

Status of WSDL MIME binding for top-level binary
message part How message is created and sent

Present with one of the following:

v No defined content type for the message part

v Multiple content types defined

v Wildcard content type defined

Message part is sent as an attachment.

Content-Id is set to the value in the attachments element
if present; otherwise, one is generated.

Content-Type is set to the value in the attachments
element if present; otherwise, it is set to
application/octet-stream.

Present with single, non-wildcard content for the
message part

Message part is sent as an attachment.

Content-Id is set to the value in the attachments element
if present; otherwise, one is generated.

Content-Type is set to the value in the attachments
element if present; otherwise, it is set to the type defined
in the WSDL MIME content element.

Not present Message part is sent as an attachment.

Content-Id is set to the value in the attachments element
if present; otherwise, one is generated.

Content-Type is set to the value in the attachments
element if present; otherwise, it is set to
application/octet-stream.
Note: Sending message parts as attachments when not
defined as such in the WSDL may break compliance with
the WS-I Attachments Profile 1.0 and so should be
avoided if possible.

How attachments are created when no attachment element exists in the SMO

The following table shows how an attachment is created and sent if the SMO does not contain an
attachment element with a bodyPath that matches a message name part:

Table 26. How the attachment is generated

Status of WSDL MIME binding for top-level binary
message part How message is created and sent

Present with one of the following:

v No defined content type for the message part

v Multiple content types defined

v Wildcard content type defined

Message part is sent as an attachment.

Content-Id is generated.

Content-Type is set to application/octet-stream.

Present with single, non-wildcard content for the
message part

Message part is sent as an attachment.

Content-Id is generated.

Content-Type is set to the type defined in the WSDL
MIME content element.

Not present Message part is not sent as an attachment.

Important: As described in “XML representation of SMO,” the XSL Transformation mediation primitive
transforms messages using an XSLT 1.0 transformation. The transformation operates on an XML

Chapter 2. Learn more about IBM Business Process Manager 79



serialization of the SMO. The XSL Transformation mediation primitive allows the root of the serialization
to be specified, and the root element of the XML document reflects this root.

When you are sending SOAP messages with attachments, the root element you choose determines how
attachments are propagated.
v If you use “/body” as the root of the XML map, all attachments are propagated across the map by

default.
v If you use “/” as the root of the map, you can control the propagation of attachments.

Unreferenced attachments:

You can send and receive unreferenced attachments that are not declared in the service interface.

In a MIME multipart SOAP message, the SOAP body is the first part of the message, and the attachments
are in subsequent parts. No reference to the attachment is included in the SOAP body.

You can send a SOAP message with an unreferenced attachment through a Web service export to a Web
service import. The output message, which is sent to the target Web service, contains the attachment.

In Figure 22, the SOAP message, with the attachment, passes through without modification.

You can also modify the SOAP message by using a mediation flow component. For example, you can use
the mediation flow component to extract data from the SOAP message (binary data in the body of the
message, in this case) and create a SOAP with attachments message. The data is processed as part of the
attachments element of a service message object (SMO).

<soap:Envelope>
<soap:Body>

.

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

No reference to the attachment

Attachment

Figure 21. A SOAP message with an unreferenced attachment

Module

Web
service
export

Web
service
import

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

Figure 22. An attachment passing through an SCA module

80 Overview



Conversely, the mediation flow component can transform the incoming message by extracting and
encoding the attachment and then transmitting the message with no attachments.

Instead of extracting data from an incoming SOAP message to form a SOAP with attachments message,
you can obtain the attachment data from an external source, such as a database.

Conversely, the mediation flow component can extract the attachment from an incoming SOAP message
and process the message (for example, store the attachment in a database).

Mediation
flow

component

<soap:Envelope>
<soap:Body>
<inline binary data>

...
</inline binary data>

</soap:Body>
</soap:Envelope>

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

Incoming SOAP message Outgoing SOAP message

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<context/>
<headers>

...
</headers>
<body>

...
</body>

</smo:smo>

<attachments>
... binary data ...

</attachments>

Figure 23. A message processed by a mediation flow component

Mediation
flow

component

Database

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<context/>
<headers>

...
</headers>
<body>

...
</body>

</smo:smo>

<attachments>
... binary data ...

</attachments>

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

Outgoing SOAP message

SMO

Figure 24. An attachment obtained from a database and added to the SOAP message

Chapter 2. Learn more about IBM Business Process Manager 81



Unreferenced attachments can be propagated only across mediation flow components. If an attachment
must be accessed by or propagated to another component type, use a mediation flow component to move
the attachment to a location that is accessible by that component.

Important: As described in “XML representation of SMO,” the XSL Transformation mediation primitive
transforms messages using an XSLT 1.0 transformation. The transformation operates on an XML
serialization of the SMO. The XSL Transformation mediation primitive allows the root of the serialization
to be specified, and the root element of the XML document reflects this root.

When you are sending SOAP messages with attachments, the root element you choose determines how
attachments are propagated.
v If you use “/body” as the root of the XML map, all attachments are propagated across the map by

default.
v If you use “/” as the root of the map, you can control the propagation of attachments.

Use of WSDL document style binding with multipart messages:

The Web Services Interoperability Organization (WS-I) organization has defined a set of rules regarding
how Web services should be described by way of a WSDL and how the corresponding SOAP messages
should be formed, in order to ensure interoperability.

These rules are specified in the WS-I Basic Profile Version 1.1 (http://www.ws-i.org/Profiles/BasicProfile-
1.1.html). In particular, the WS-I Basic Profile 1.1 R2712 states: “A document-literal binding MUST be
serialized as an ENVELOPE with a soap:Body whose child element is an instance of the global element
declaration referenced by the corresponding wsdl:message part.”

This means that, when using a document style SOAP binding for an operation with messages (input,
output, or fault) that are defined with multiple parts, only one of those parts should be bound to the
SOAP body in order to be compliant with the WS-I Basic Profile 1.1.

Further, the WS-I Attachments Profile 1.0 R2941 states: “A wsdl:binding in a DESCRIPTION SHOULD
bind every wsdl:part of a wsdl:message in the wsdl:portType to which it refers to one of soapbind:body,
soapbind:header, soapbind:fault , soapbind:headerfault, or mime:content.”.

This means that, when using a document style SOAP binding for an operation with messages (input,
output, or fault) that are defined with multiple parts, all parts other than the one selected to be bound to
the SOAP body must be bound as attachments or headers.

The following approach is used when WSDL descriptions are generated for exports with Web service
(JAX-WS and JAX-RPC) bindings in this case:
v You can choose which message part is bound to the SOAP body if there is more than one

non-binary-typed element. If there is a single non-binary typed element, that element is automatically
bound to the SOAP body.

v For the JAX-WS binding, all other message parts of type "hexBinary" or "base64Binary" are bound as
referenced attachments. See “Referenced attachments: top-level message parts” on page 74.

v All other message parts are bound as SOAP headers.

The JAX-RPC and JAX-WS import bindings honor the SOAP binding in an existing WSDL document with
multipart document style messages even if it does bind multiple parts to the SOAP body; however, you
are not able to generate Web service clients for such WSDL documents in Rational Application Developer.

Note: The JAX-RPC binding does not support attachments.

The recommended pattern when using multipart messages with an operation that has document style
SOAP binding is therefore:

82 Overview

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html


1. Use the document/literal wrapped style. In this case, messages always have a single part; however,
attachments have to be unreferenced (as described in “Unreferenced attachments” on page 80) or
swaRef-typed (as described in “Referenced attachments: swaRef-typed elements” on page 70) in this
case.

2. Use the RPC/literal style. In this case, there are no restrictions on the WSDL binding in terms of
number of parts bound to the SOAP body; the SOAP message that results always has a single child
that represents the operation being invoked, with the message parts being children of that element.

3. For the JAX-WS binding, have at most one message part that is not of type "hexBinary" or
"base64Binary", unless it is acceptable to bind the other non-binary parts to SOAP headers.

4. Any other cases are subject to the behavior described.

Note: Additional restrictions exist when you use are using SOAP messages that do not conform to the
WS-I Basic Profile Version 1.1.
v The first message part should be non-binary.
v When receiving multipart document-style SOAP messages with referenced attachments, the JAX-WS

binding expects each referenced attachment to be represented by a SOAP body child element with an
href attribute value that identifies the attachment by its content ID. The JAX-WS binding sends
referenced attachments for such messages in the same way. This behavior is not compliant with the
WS-I Basic Profile.
To ensure that your messages comply with the Basic Profile, follow approach 1 or 2 in the previous list
or avoid the use of referenced attachments for such messages and use unreferenced or swaRef-typed
attachments instead.

HTTP bindings
The HTTP binding is designed to provide Service Component Architecture (SCA) connectivity to HTTP.
Consequently, existing or newly-developed HTTP applications can participate in Service Oriented
Architecture (SOA) environments.

Hypertext Transfer Protocol (HTTP) is a widely-used protocol for transferring information on the Web.
When you are working with an external application that uses the HTTP protocol, an HTTP binding is
necessary. The HTTP binding handles the transformation of data passed in as a message in a native
format to a business object in an SCA application. The HTTP binding also can transform data passed out
as a business object to the native format expected by the external application. for an incoming messaging.

Note: If you want to interact with clients and services that use the Web services SOAP/HTTP protocol,
consider using one of the Web service bindings, which provide additional functionality with respect to
handling Web services standard qualities of service.

Some common scenarios for using the HTTP binding are described in the following list:
v SCA-hosted services can invoke HTTP applications using an HTTP import.
v SCA-hosted services can expose themselves as HTTP-enabled applications, so they can be used by

HTTP clients, using an HTTP export.
v IBM Business Process Manager and Process Server can communicate between themselves across an

HTTP infrastructure, consequently users can manage their communications according to corporate
standards.

v IBM Business Process Manager and Process Server can act as mediators of HTTP communications,
transforming and routing messages, which improves the integration of applications using a HTTP
network.

v IBM Business Process Manager and Process Server can be used to bridge between HTTP and other
protocols, such as SOAP/HTTP Web services, Java Connector Architecture (JCA)-based resource
adapters, JMS, and so on.

Chapter 2. Learn more about IBM Business Process Manager 83



Detailed information about creating HTTP import and export bindings can be found in the Integration
Designer information center. See the Developing integration applications > Accessing external services
with HTTP> topics.

HTTP bindings overview:

The HTTP binding provides connectivity to HTTP-hosted applications. It mediates communication
between HTTP applications and allows existing HTTP-based applications to be called from a module.

HTTP import bindings

The HTTP import binding provides outbound connectivity from Service Component Architecture (SCA)
applications to an HTTP server or applications.

The import invokes an HTTP endpoint URL. The URL can be specified in one of three ways:
v The URL can be set dynamically in the HTTP headers by way of the dynamic override URL.
v The URL can be set dynamically in the SMO target address element.
v The URL can be specified as a configuration property on the import.

This invocation is always synchronous in nature.

Although HTTP invocations are always request-reply, the HTTP import supports both one-way and
two-way operations and ignores the response in the case of a one-way operation.

HTTP export bindings

The HTTP export binding provides inbound connectivity from HTTP applications to an SCA application.

A URL is defined on the HTTP export. HTTP applications that want to send request messages to the
export use this URL to invoke the export.

The HTTP export also supports pings.

HTTP bindings at runtime

An import with an HTTP binding at runtime sends a request with or without data in the body of the
message from the SCA application to the external Web service. The request is made from the SCA
application to the external Web service, as shown in Figure 25.

Optionally, the import with the HTTP binding can receive data back from the Web application in a
response to the request.

With an export, the request is made by a client application to a Web service, as shown in Figure 26 on
page 85.

Figure 25. Flow of a request from the SCA application to the Web application

84 Overview



The Web service is a Web application running on the server. The export is implemented in that Web
application as a servlet so the client sends its request to a URL address. The servlet passes the request to
the SCA application in the runtime.

Optionally, the export may send data to the client application in response to the request.

HTTP headers:

HTTP import and export bindings allow configuration of HTTP headers and their values to be used for
outbound messages. The HTTP import uses these headers for requests, and the HTTP export uses them
for responses.

Statically configured headers and control information take precedence over values dynamically set at
runtime. However, the dynamic override URL, Version, and Method control values override the static
values, which are otherwise considered defaults.

The binding supports the dynamic nature of the HTTP import URL by determining the value of HTTP
target URL, Version, and Method at run time. These values are determined by extracting the value of
Endpoint Reference, Dynamic Override URL, Version, and Method.
v For Endpoint Reference, use com.ibm.websphere.sca.addressing.EndpointReference APIs or set the

/headers/SMOHeader/Target/address field in the SMO header.
v For Dynamic Override URL, Version, and Method, use the HTTP control parameters section of the

Service Component Architecture (SCA) message. Note that the Dynamic Override URL takes
precedence over the target Endpoint Reference; however, the Endpoint Reference applies across
bindings, so it is the preferred approach and should be used where possible.

The control and header information for outbound messages under HTTP export and import bindings is
processed in the following order:
1. Header and control information excluding HTTP dynamic override URL, Version, and Method from

the SCA Message (lowest priority)
2. Changes from the administrative console on the export/import level
3. Changes from the administrative console on the method level of the export or import
4. Target address specified by way of the Endpoint Reference or the SMO header
5. Dynamic Override URL, Version, and Method from the SCA message
6. Headers and control information from the data handler or data binding (highest priority)

The HTTP export and import will populate inbound direction headers and control parameters with data
from the incoming message (HTTPExportRequest and HTTPImportResponse) only if protocol header
propagation is set to True. Inversely, the HTTP export and import will read and process outbound
headers and control parameters (HTTPExportResponse and HTTPImportRequest) only if protocol header
propagation is set to True.

Note: Data handler or data binding changes to headers or control parameters in the import response or
export request will not alter the processing instructions of the message inside the import or export
binding and should be used only to propagate modified values to downstream SCA components.

The context service is responsible for propagating the context (including the protocol headers, such as the
HTTP header, and the user context, such as account ID) along an SCA invocation path. During

Figure 26. Flow of a request from the Web service to the client application.

Chapter 2. Learn more about IBM Business Process Manager 85



development in IBM Integration Designer, you can control the propagation of context by way of import
and export properties. For more details, see the import and export bindings information in the IBM
Integration Designer information center.

Supplied HTTP header structures and support

Table 27 itemizes the request/response parameters for HTTP Import and HTTP Export requests and
responses.

Table 27. Supplied HTTP header information

Control name HTTP Import request
HTTP Import
response HTTP Export request

HTTP Export
response

URL Ignored Not set Read from the
request message.
Note: Query string is
also part of the URL
control parameter.

Ignored

Version (possible
values: 1.0, 1.1;
default is 1.1)

Ignored Not set Read from the
request message

Ignored

Method Ignored Not set Read from the
request message

Ignored

Dynamic Override
URL

If set in the data
handler or data
binding, overrides the
HTTP Import URL.
Written to the
message in the
request line.
Note: Query string is
also part of the URL
control parameter.

Not set Not set Ignored

Dynamic Override
Version

If set, overrides the
HTTP Import Version.
Written to the
message in the
request line.

Not set Not set Ignored

Dynamic Override
Method

If set, overrides the
HTTP Import
Method. Written to
the message in the
request line.

Not set Not set Ignored

Media Type (This
control parameter
carries part of the
value of the
Content-Type HTTP
header.)

If present, written to
the message as part
of the Content-Type
header.
Note: This control
element value should
be provided by the
data handler or data
binding.

Read from the
response message,
Content-Type header

Read from the
request message,
Content-Type header

If present, written to
the message as part
of Content-Type
header.
Note: This control
element value should
be provided by the
data handler or data
binding.

86 Overview



Table 27. Supplied HTTP header information (continued)

Control name HTTP Import request
HTTP Import
response HTTP Export request

HTTP Export
response

Character set (default:
UTF-8)

If present, written to
the message as part
of the Content-Type
header.
Note: This control
element value should
be provided by the
data binding.

Read from the
response message,
Content-Type header

Read from the
request message,
Content-Type header

Supported; written to
the message as part
of the Content-Type
header.
Note: This control
element value should
be provided by the
data binding.

Transfer Encoding
(Possible values:
chunked, identity;
default is identity)

If present, written to
the message as a
header and controls
how the message
transformation is
encoded.

Read from the
response message

Read from the
request message

If present, written to
the message as a
header and controls
how the message
transformation is
encoded.

Content Encoding
(Possible values: gzip,
x-gzip, deflate,
identity; default is
identity)

If present, written to
the message as a
header and controls
how the payload is
encoded.

Read from the
response message

Read from the
request message

If present, written to
the message as a
header and controls
how the payload is
encoded.

Content-Length Ignored Read from the
response message

Read from the
request message

Ignored

StatusCode (default:
200)

Not supported Read from the
response message

Not supported If present, written to
the message in the
response line

ReasonPhrase
(default: OK)

Not supported Read from the
response message

Not supported Control value
ignored. The message
response line value is
generated from the
StatusCode.

Authentication
(contains multiple
properties)

If present, used to
construct the Basic
Authentication
header.
Note: The value for
this header will be
encoded only on the
HTTP protocol. In the
SCA, it will be
decoded and passed
as clear text.

Not applicable Read from the
request message Basic
Authentication
header. The presence
of this header does
not indicate the user
has been
authenticated.
Authentication
should be controlled
in the servlet
configuration.
Note: The value for
this header will be
encoded only on the
HTTP protocol. In the
SCA, it will be
decoded and passed
as clear text.

Not applicable

Proxy (contains
multiple properties:
Host, Port,
Authentication)

If present, used to
establish connection
through proxy.

Not applicable Not applicable Not applicable

Chapter 2. Learn more about IBM Business Process Manager 87



Table 27. Supplied HTTP header information (continued)

Control name HTTP Import request
HTTP Import
response HTTP Export request

HTTP Export
response

SSL (contains
multiple properties:
Keystore, Keystore
Password, Trustore,
Trustore Password,
ClientAuth)

If populated and the
destination url is
HTTPS, it is used to
establish a connection
through SSL.

Not applicable Not applicable Not applicable

HTTP data bindings:

For each different mapping of data between a Service Component Architecture (SCA) message and an
HTTP protocol message, a data handler or an HTTP data binding must be configured. Data handlers
provide a binding-neutral interface that allows reuse across transport bindings and represent the
recommended approach; data bindings are specific to a particular transport binding. HTTP-specific data
binding classes are supplied; you can also write custom data handlers or data bindings.

Note: The three HTTP data binding classes described in this topic (HTTPStreamDataBindingSOAP,
HTTPStreamDataBindingXML, and HTTPServiceGatewayDataBinding) are deprecated as of IBM Business
Process Manager Version 7.0. Instead of using the data bindings described in this topic, consider the
following data handlers:
v Use SOAPDataHandler instead of HTTPStreamDataBindingSOAP.
v Use UTF8XMLDataHandler instead of HTTPStreamDataBindingXML
v Use GatewayTextDataHandler instead of HTTPServiceGatewayDataBinding

Data bindings are provided for use with HTTP imports and HTTP exports: binary data binding, XML
data binding, and SOAP data binding. A response data binding is not required for one-way operations. A
data binding is represented by the name of a Java class whose instances can convert both from HTTP to
ServiceDataObject and vice-versa. A function selector must be used on an export which, in conjunction
with method bindings, can determine which data binding is used and which operation is invoked. The
supplied data bindings are:
v Binary data bindings, which treat the body as unstructured binary data. The implementation of the

binary data binding XSD schema is as follows:
<xsd:schema elementFormDefault="qualified"

targetNamespace="http://com.ibm.websphere.http.data.bindings/schema"
xmlns:tns="http://com.ibm.websphere.http.data.bindings/schema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="HTTPBaseBody">
<xsd:sequence/>

</xsd:complexType>

<xsd:complexType name="HTTPBytesBody">
<xsd:complexContent>

<xsd:extension base="tns:HTTPBaseBody">
<xsd:sequence>

<xsd:element name="value" type="xsd:hexBinary"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

v XML data bindings, which support the body as XML data. The implementation of the XML data
binding is similar to the JMS XML data binding and has no restrictions on the interface schema.

v SOAP data bindings, which support the body as SOAP data. The implementation of the SOAP data
binding has no restrictions on the interface schema.

88 Overview



Implementing custom HTTP data bindings

This section describes how to implement a custom HTTP data binding.

Note: The recommended approach is to implement a custom data handler because it can be reused
across transport bindings.

HTTPStreamDataBinding is the principal interface for handling custom HTTP messages. The interface is
designed to allow handling of large payloads. However, in order for such implementation to work, this
data binding must return the control information and headers before writing the message into the stream.

The methods and their order of execution, listed below, must be implemented by the custom data
binding.

To customize a data binding, write a class that implements HTTPStreamDataBinding. The data binding
should have four private properties:
v private DataObject pDataObject
v private HTTPControl pCtrl
v private HTTPHeaders pHeaders
v private yourNativeDataType nativeData

The HTTP binding will invoke the customized data binding in the following order:
v Outbound processing (DataObject to Native format):

1. setDataObject(...)
2. setHeaders(...)
3. setControlParameters(...)
4. setBusinessException(...)
5. convertToNativeData()
6. getControlParameters()
7. getHeaders()
8. write(...)

v Inbound processing (Native format to DataObject):
1. setControlParameters(...)
2. setHeaders(...)
3. convertFromNativeData(...)
4. isBusinessException()
5. getDataObject()
6. getControlParameters()
7. getHeaders()

You need to invoke setDataObject(...) in convertFromNativeData(...) to set the value of dataObject, which
is converted from native data to the private property "pDataObject".
public void setDataObject(DataObject dataObject)

throws DataBindingException {
pDataObject = dataObject;

}
public void setControlParameters(HTTPControl arg0) {

this.pCtrl = arg0;
}

public void setHeaders(HTTPHeaders arg0) {

Chapter 2. Learn more about IBM Business Process Manager 89



this.pHeaders = arg0;
}
/*
* Add http header "IsBusinessException" in pHeaders.
* Two steps:
* 1.Remove all the header with name IsBusinessException (case-insensitive) first.
* This is to make sure only one header is present.
* 2.Add the new header "IsBusinessException"
*/
public void setBusinessException(boolean isBusinessException) {

//remove all the header with name IsBusinessException (case-insensitive) first.
//This is to make sure only one header is present.
//add the new header "IsBusinessException", code example:
HTTPHeader header=HeadersFactory.eINSTANCE.createHTTPHeader();
header.setName("IsBusinessException");
header.setValue(Boolean.toString(isBusinessException));
this.pHeaders.getHeader().add(header);

}
public HTTPControl getControlParameters() {

return pCtrl;
}
public HTTPHeaders getHeaders() {

return pHeaders;
}
public DataObject getDataObject() throws DataBindingException {

return pDataObject;
}
/*
* Get header "IsBusinessException" from pHeaders, return its boolean value
*/
public boolean isBusinessException() {

String headerValue = getHeaderValue(pHeaders,"IsBusinessException");
boolean result=Boolean.parseBoolean(headerValue);
return result;

}
public void convertToNativeData() throws DataBindingException {

DataObject dataObject = getDataObject();
this.nativeData=realConvertWorkFromSDOToNativeData(dataObject);

}
public void convertFromNativeData(HTTPInputStream arg0){

//Customer-developed method to
//Read data from HTTPInputStream
//Convert it to DataObject
DataObject dataobject=realConvertWorkFromNativeDataToSDO(arg0);
setDataObject(dataobject);

}
public void write(HTTPOutputStream output) throws IOException {

if (nativeData != null)
output.write(nativeData);

}

EJB bindings
Enterprise JavaBeans (EJB) import bindings enable Service Component Architecture (SCA) components to
invoke services provided by Java EE business logic running on a Java EE server. EJB export bindings
allow SCA components to be exposed as Enterprise JavaBeans so that Java EE business logic can invoke
SCA components otherwise unavailable to them.

EJB import bindings:

EJB import bindings allow an SCA module to call EJB implementations by specifying the way that the
consuming module is bound to the external EJB. Importing services from an external EJB implementation
allows users to plug their business logic into the IBM Business Process Manager environment and
participate in a business process.

90 Overview



You use Integration Designer to create EJB import bindings. You can use either of the following
procedures to generate the bindings:
v Creating EJB import using the external service wizard

You can use the external service wizard in Integration Designer to build an EJB import based on an
existing implementation. The external service wizard creates services based on criteria that you
provide. It then generates business objects, interfaces, and import files based on the services
discovered.

v Creating EJB import using the assembly editor
You can create an EJB import within an assembly diagram using the Integration Designer assembly
editor. From the palette, you can use either an Import or use a Java class to create the EJB binding.

The generated import has data bindings that make the Java-WSDL connection instead of requiring a Java
bridge component. You can directly wire a component with a Web Services Description Language
(WSDL) reference to the EJB import that communicates to an EJB-based service using a Java interface.

The EJB import can interact with Java EE business logic using either the EJB 2.1 programming model or
the EJB 3.0 programming model.

The invocation to the Java EE business logic can be local (for EJB 3.0 only) or remote.
v Local invocation is used when you want to call Java EE business logic that resides on the same server

as the import.

v Remote invocation is used when you want to call Java EE business logic that does not reside on the
same server as the import.
For example, in the following figure, an EJB import uses the Remote Method Invocation over Internet
InterORB Protocol (RMI/IIOP) to invoke an EJB method on another server.

When it configures the EJB binding, Integration Designer uses the JNDI name to determine the EJB
programming model level and the type of invocation (local or remote).

EJB import bindings contain the following major components:
v JAX-WS data handler
v EJB fault selector

EJB
Import

Component EJB

Server A

Figure 27. Local invocation of an EJB (EJB 3.0 only)

EJB
Import

Component EJB
RMI/IIOP

Server A Server B

Figure 28. Remote invocation of an EJB

Chapter 2. Learn more about IBM Business Process Manager 91



v EJB import function selector

If your user scenario is not based on the JAX-WS mapping, you might need a custom data handler,
function selector, and fault selector to perform the tasks otherwise completed by the components that are
part of the EJB import bindings. This includes the mapping normally completed by the custom mapping
algorithm.

EJB export bindings:

External Java EE applications can invoke an SCA component by way of an EJB export binding. Using an
EJB export lets you expose SCA components so that external Java EE applications can invoke those
components using the EJB programming model.

Note: The EJB export is a stateless bean.

You use Integration Designer to create EJB bindings. You can use either of the following procedures to
generate the bindings:
v Creating EJB export bindings using the external service wizard

You can use the external service wizard in Integration Designer to build an EJB export service based on
an existing implementation. The external service wizard creates services based on criteria that you
provide. It then generates business objects, interfaces, and export files based on the services discovered.

v Creating EJB export bindings using the assembly editor
You can create an EJB export using the Integration Designer assembly editor.

Important: A Java 2 Platform, Standard Edition (J2SE) client cannot invoke the EJB export client that is
generated in Integration Designer.

You can generate the binding from an existing SCA component, or you can generate an export with an
EJB binding for a Java interface.
v When you generate an export for an existing SCA component that has an existing WSDL interface, the

export is assigned a Java interface.
v When you generate an export for a Java interface, you can select either a WSDL or a Java interface for

the export.

Note: A Java interface used to create an EJB export has the following limitations with regard to the
objects (input and output parameters and exceptions) passed as parameters on a remote call:
– They must be of concrete type (instead of an interface or abstract type).
– They must conform to the Enterprise JavaBean specification. They must be serializable and have the

default no-argument constructor, and all properties must be accessible through getter and setter
methods.
Refer to the Sun Microsystems, Inc., Web site at http://java.sun.com for information about the
Enterprise JavaBean specification.

In addition, the exception must be a checked exception, inherited from java.lang.Exception, and it must
be singular (that is, it does not support throwing multiple checked exception types).

Note also that the business interface of a Java EnterpriseBean is a plain Java interface and must not
extend javax.ejb.EJBObject or javax.ejb.EJBLocalObject. The methods of the business interface should
not throw java.rmi.Remote.Exception.

The EJB export bindings can interact with Java EE business logic using either the EJB 2.1 programming
model or the EJB 3.0 programming model.

The invocation can be local (for EJB 3.0 only) or remote.

92 Overview

http://java.sun.com


v Local invocation is used when the Java EE business logic calls an SCA component that resides on the
same server as the export.

v Remote invocation is used when the Java EE business logic does not reside on the same server as the
export.
For example, in the following figure, an EJB uses RMI/IIOP to call an SCA component on a different
server.

When it configures the EJB binding, Integration Designer uses the JNDI name to determine the EJB
programming model level and the type of invocation (local or remote).

EJB export bindings contain the following major components:
v JAX-WS data handler
v EJB export function selector

If your user scenario is not based on the JAX-WS mapping, you might need a custom data handler and
function selector to perform the tasks otherwise completed by the components that are part of the EJB
export bindings. This includes the mapping normally completed by the custom mapping algorithm.

EJB binding properties:

EJB import bindings use their configured JNDI names to determine the EJB programming model level
and type of invocation (local or remote). EJB import and export bindings use the JAX-WS data handler
for data transformation. The EJB import binding uses an EJB import function selector and an EJB fault
selector, and the EJB export binding uses an EJB export function selector.

JNDI names and EJB import bindings:

When it configures the EJB binding on an import, Integration Designer uses the JNDI name to determine
the EJB programming model level and type of invocation (local or remote).

If no JNDI name is specified, the default EJB interface binding is used. The default names that are created
depend on whether you are invoking an EJB 2.1 JavaBean or an EJB 3.0 JavaBean.

Note: Refer to the "EJB 3.0 application bindings overview" topic in theWebSphere Application Server
information center for more detailed information about naming conventions. .
v EJB 2.1 JavaBean

The default JNDI name preselected by Integration Designer is the default EJB 2.1 binding, which takes
the form ejb/ plus the home interface, separated by slashes.
For example, for the home interface of an EJB 2.1 JavaBean for
com.mycompany.myremotebusinesshome, the default binding is:
ejb/com/mycompany/myremotebusinesshome

For EJB 2.1, only remote EJB invocation is supported.
v EJB 3.0 JavaBean

EJB
Export

Component
J2EE

business
logic

RMI/IIOP

Server AServer B

Figure 29. Remote call from a client to an SCA component by way of an EJB export

Chapter 2. Learn more about IBM Business Process Manager 93



The default JNDI name preselected by Integration Designer for the local JNDI is the fully qualified
class name of the local interface preceded by ejblocal:. For example, for the fully qualified interface of
the local interface com.mycompany.mylocalbusiness, the preselected EJB 3.0 JNDI is:
ejblocal:com.mycompany.mylocalbusiness

For the remote interface com.mycompany.myremotebusiness, the preselected EJB 3.0 JNDI is the fully
qualified interface:
com.mycompany.myremotebusiness

The EJB 3.0 default application bindings are described at the following location: EJB 3.0 application
bindings overview.
Integration Designer will use the "short" name as the default JNDI location for EJBs using the version
3.0 programming model.

Note: If the deployed JNDI reference of the target EJB is different from the default JNDI binding
location because a custom mapping was used or configured, the target JNDI name must be properly
specified. You can specify the name in Integration Designer before deployment, or, for the import
binding, you can change the name in the administrative console (after deployment) to match the JNDI
name of the target EJB.

For more information on creating EJB bindings, see the section devoted to Working with EJB bindings in
the Integration Designer information center.

JAX-WS data handler:

The Enterprise JavaBeans (EJB) import binding uses the JAX-WS data handler to turn request business
objects into Java object parameters and to turn the Java object return value into the response business
object. The EJB export binding uses the JAX-WS data handler to turn request EJBs into request business
objects and to turn the response business object into a return value.

This data handler maps data from the SCA-specified WSDL interface to the target EJB Java interface (and
vice versa) using the Java API for XML Web Services (JAX-WS) specification and the Java Architecture for
XML Binding (JAXB) specification.

Note: Current support is restricted to the JAX-WS 2.1.1 and JAXB 2.1.3 specifications.

The data handler specified at the EJB binding level is used to perform request, response, fault, and
runtime exception processing.

Note: For faults, a specific data handler can be specified for each fault by specifying the faultBindingType
configuration property. This overrides the value specified at the EJB binding level.

The JAX-WS data handler is used by default when the EJB binding has a WSDL interface. This data
handler cannot be used to transform a SOAP message representing a JAX-WS invocation to a data object.

The EJB import binding uses a data handler to transform a data object into a Java Object array (Object[]).
During outbound communications, the following processing takes place:
1. The EJB binding sets the expected type, expected element, and targeted method name in the

BindingContext to match those specified in the WSDL.
2. The EJB binding invokes the transform method for the data object requiring data transformation.
3. The data handler returns an Object[] representing the parameters of the method (in the order of their

definition within the method).
4. The EJB binding uses the Object[] to invoke the method on the target EJB interface.

The binding also prepares an Object[] to process the response from the EJB invocation.
v The first element in the Object[] is the return value from the Java method invocation.

94 Overview

http://publib.boulder.ibm.com/infocenter/wasinfo/fep/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/cejb_bindingsejbfp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/fep/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/cejb_bindingsejbfp.html


v The subsequent values represent the input parameters for the method.

This is required to support the In/Out and Out types of parameters.

For parameters of type Out, the values must be returned in the response data object.

The data handler processes and transforms values found in the Object[] and then returns a response to
the data object.

The data handler supports xs:AnyType, xs:AnySimpleType, and xs:Any along with other XSD data types.
To enable support for xs:Any, use the @XmlAnyElement (lax=true) for the JavaBean property in the Java
code, as shown in the following example:
public class TestType {
private Object[] object;

@XmlAnyElement (lax=true)
public Object[] getObject() {
return object;
)

public void setObject (Object[] object) {
this.object=object;
)
)

This makes the property object in TestType an xs:any field. The Java class value used in the xs:any field
should have the @XmlAnyElement annotation. For example, if Address is the Java class being used to
populate the object array, the Address class should have the annotation @XmlRootElement.

Note: To customize the mapping from the XSD type to Java types defined by the JAX-WS specification,
change the JAXB annotations to fit your business need. The JAX-WS data handler supports xs:any,
xs:anyType, and xs:anySimpleType.

The following restrictions are applicable for the JAX-WS data handler:
v The data handler does not include support for the header attribute @WebParam annotation.
v The namespace for business object schema files (XSD files) does not include default mapping from the

Java package name. The annotation @XMLSchema in package-info.java also does not work. The only
way to create an XSD with a namespace is to use the @XmlType and @XmlRootElement annotations.
@XmlRootElement defines the target namespace for the global element in JavaBean types.

v The EJB import wizard does not create XSD files for unrelated classes. Version 2.0 does not support the
@XmlSeeAlso annotation, so if the child class is not referenced directly from the parent class, an XSD
is not created. The solution to this problem is to run SchemaGen for such child classes.
SchemaGen is a command line utility (located in the WPS_Install_Home/bin directory) provided to
create XSD files for a given JavaBean. These XSDs must be manually copied to the module for the
solution to work.

EJB fault selector:

The EJB fault selector determines if an EJB invocation has resulted in a fault, a runtime exception, or a
successful response.

If a fault is detected, the EJB fault selector returns the native fault name to the binding runtime so the
JAX-WS data handler can convert the exception object into a fault business object.

On a successful (non-fault) response, the EJB import binding assembles a Java object array (Object[]) to
return the values.

Chapter 2. Learn more about IBM Business Process Manager 95



v The first element in the Object[] is the return value from the Java method invocation.
v The subsequent values represent the input parameters for the method.

This is required to support the In/Out and Out types of parameters.

For exception scenarios, the binding assembles an Object[] and the first element represents the exception
thrown by the method.

The fault selector can return any of the following values:

Table 28. Return values

Type Return value Description

Fault ResponseType.FAULT Returned when the passed Object[] contains
an exception object.

Runtime exception ResponseType.RUNTIME Returned if the exception object does not
match any of the declared exception types on
the method.

Normal response ResponseType.RESPONSE Returned in all other cases.

If the fault selector returns a value of ResponseType.FAULT, the native fault name is returned. This
native fault name is used by the binding to determine the corresponding WSDL fault name from the
model and to invoke the correct fault data handler.

EJB function selector:

The EJB bindings use an import function selector (for outbound processing) or an export function selector
(for inbound processing) to determine the EJB method to call.

Import function selector

For outbound processing, the import function selector derives the EJB method type based on the name of
the operation invoked by the SCA component that is wired to the EJB import. The function selector looks
for the @WebMethod annotation on the Integration Designer-generated JAX-WS annotated Java class to
determine the associated target operation name.
v If the @WebMethod annotation is present, the function selector uses the @WebMethod annotation to

determine the correct Java method mapping for the WSDL method.
v If the @WebMethod annotation is missing, the function selector assumes that the Java method name is

the same as the invoked operation name.

Note: This function selector is valid only for a WSDL-typed interface on an EJB import, not for a
Java-typed interface on an EJB import.

The function selector returns a java.lang.reflect.Method object that represents the method of the EJB
interface.

The function selector uses a Java Object array (Object[]) to contain the response from the target method.
The first element in the Object[] is a Java method with the name of the WSDL, and the second element in
the Object[] is the input business object.

Export function selector

For inbound processing, the export function selector derives the target method to be invoked from the
Java method.

96 Overview



The export function selector maps the Java operation name invoked by the EJB client into the name of the
operation in the interface of the target component. The method name is returned as a String and is
resolved by the SCA runtime depending on the interface type of the target component.

EIS bindings
Enterprise information system (EIS) bindings provide connectivity between SCA components and an
external EIS. This communication is achieved using EIS exports and EIS imports that support JCA 1.5
resource adapters and Websphere Adapters.

Your SCA components might require that data be transferred to or from an external EIS. When you create
an SCA module requiring such connectivity, you will include (in addition to your SCA component) an
import or export with an EIS binding for communication with a specific external EIS.

Resource adapters in IBM Integration Designer are used within the context of an import or an export.
You develop an import or an export with the external service wizard and, in developing it, include the
resource adapter. An EIS import, which lets your application invoke a service on an EIS system, or an EIS
export, which lets an application on an EIS system invoke a service developed in IBM Integration
Designer, are created with a resource adapter. For example, you would create an import with the JD
Edwards adapter to invoke a service on the JD Edwards system.

When you use the external service wizard, the EIS binding information is created for you. You can also
use another tool, the assembly editor, to add or modify binding information. See the Accessing external
services with adapters for more information.

After the SCA module containing the EIS binding is deployed to the server, you can use the
administrative console to view information about the binding or to configure the binding.

EIS bindings overview:

The EIS (enterprise information system) binding, when used with a JCA resource adapter, lets you access
services on an enterprise information system or make your services available to the EIS.

The following example shows how an SCA module named ContactSyncModule synchronizes contact
information between a Siebel system and an SAP system.
1. The SCA component named ContactSync listens (by way of an EIS application export named Siebel

Contact) for changes to Siebel contacts.
2. The ContactSync SCA component itself makes use of an SAP application (through an EIS application

import) in order to update the SAP contact information accordingly.

Because the data structures used for storing contacts are different in Siebel and SAP systems, the
ContactSync SCA component must provide mapping.

The Siebel Contact export and the SAP Contact import have the appropriate resource adapters
configured.

Figure 30. Flow from a Siebel system to an SAP system

Chapter 2. Learn more about IBM Business Process Manager 97



Key features of EIS bindings:

An EIS import is a Service Component Architecture (SCA) import that allows components in the SCA
module to use EIS applications defined outside the SCA module. An EIS import is used to transfer data
from the SCA component to an external EIS; an EIS export is used to transfer data from an external EIS
into the SCA module.

Imports

The role of the EIS import is to bridge the gap between SCA components and external EIS systems.
External applications can be treated as an EIS import. In this case, the EIS import sends data to the
external EIS and optionally receives data in response.

The EIS import provides SCA components with a uniform view of the applications external to the
module. This allows components to communicate with an external EIS, such as SAP, Siebel, or PeopleSoft,
using a consistent SCA model.

On the client side of the import, there is an interface, exposed by the EIS import application, with one or
more methods, each taking data objects as arguments and return values. On the implementation side,
there is a Common Client Interface (CCI) implemented by a resource adapter.

The runtime implementation of an EIS import connects the client-side interface and the CCI. The import
maps the invocation of the method on the interface to the invocation on the CCI.

Bindings are created at three levels: the interface binding, which then uses the contained method
bindings, which in turn use data bindings.

The interface binding relates the interface of the import to the connection to the EIS system providing the
application. This reflects the fact that the set of applications, represented by the interface, is provided by
the specific instance of the EIS and the connection provides access to this instance. The binding element
contains properties with enough information to create the connection (these properties are part of the
javax.resource.spi.ManagedConnectionFactory instance).

The method binding associates the method with the specific interaction with the EIS system. For JCA, the
interaction is characterized by the set of properties of the javax.resource.cci.InteractionSpec interface
implementation. The interaction element of the method binding contains these properties, along with the
name of the class, thus providing enough information to perform the interaction. The method binding
uses data bindings describing the mapping of the argument and result of the interface method to EIS
representation.

The runtime scenario for an EIS import is as follows:
1. The method on the import interface is invoked using the SCA programming model.
2. The request, reaching the EIS import, contains the name of the method and its arguments.
3. The import first creates an interface binding implementation; then, using data from the import

binding, it creates a ConnectionFactory and associates the two. That is, the import calls
setConnectionFactory on the interface binding.

4. The method binding implementation matching the invoked method is created.
5. The javax.resource.cci.InteractionSpec instance is created and populated; then, data bindings are used

to bind the method arguments to a format understood by the resource adapter.
6. The CCI interface is used to perform the interaction.
7. When the call returns, the data binding is used to create the result of the invocation, and the result is

returned to the caller.

98 Overview



Exports

The role of the EIS export is to bridge the gap between an SCA component and an external EIS. External
applications can be treated as an EIS export. In this case, the external application sends its data in the
form of periodic notifications. An EIS export can be thought of as a subscription application listening to
an external request from an EIS. The SCA component that uses the EIS export views it as a local
application.

The EIS export provides SCA components with a uniform view of the applications external to the
module. This allows components to communicate with an EIS, such as SAP, Siebel, or PeopleSoft, using a
consistent SCA model.

The export features a listener implementation receiving requests from the EIS. The listener implements a
resource adapter-specific listener interface. The export also contains a component implementing interface,
exposed to the EIS through the export.

The runtime implementation of an EIS export connects the listener with the component implementing
interface. The export maps the EIS request to the invocation of the appropriate operation on the
component. Bindings are created at three levels: a listener binding, which then uses a contained native
method binding, which in turn uses a data binding .

The listener binding relates the listener receiving requests with the component exposed through the
export. The export definition contains the name of the component; the runtime locates it and forwards
requests to it.

The native method binding associates the native method or the event type received by the listener to the
operation implemented by the component exposed by way of the export. There is no relationship
between the method invoked on the listener and the event type; all the events arrive through one or
more methods of the listener. The native method binding uses the function selector defined in the export
to extract the native method name from the inbound data and data bindings to bind the data format of
the EIS to a format understood by the component.

The runtime scenario for an EIS export is as follows:
1. The EIS request triggers invocation of the method on the listener implementation.
2. The listener locates and invokes the export, passing to it all the invocation arguments.
3. The export creates the listener binding implementation.
4. The export instantiates the function selector and sets it on the listener binding.
5. The export initializes native method bindings and adds them to the listener binding. For each native

method binding, the data bindings are also initialized.
6. The export invokes the listener binding.
7. The listener binding locates exported components and uses the function selector to retrieve the native

method name.
8. This name is used to locate the native method binding, which then invokes the target component.

The adapter interaction style allows for the EIS export binding to invoke the target component either
asynchronously (the default) or synchronously.

Resource adapters

You develop an import or an export with the external service wizard and, in developing it, include a
resource adapter. The adapters that come with IBM Integration Designer used to access CICS, IMS, JD
Edwards, PeopleSoft, SAP and Siebel systems are intended for development and test purposes only. This
means you use them to develop and test your applications.

Chapter 2. Learn more about IBM Business Process Manager 99



Once you deploy your application, you will need licensed runtime adapters to run your application.
However, when you build your service you can embed the adapter with your service. Your adapter
licensing might allow you to use the embedded adapter as the licensed runtime adapter. These adapters
are compliant with the Java EE Connector Architecture (JCA 1.5). JCA, an open standard, is the Java EE
standard for EIS connectivity. JCA provides a managed framework; that is, Quality of Service (QoS) is
provided by the application server, which offers life-cycle management and security to transactions. They
are also compliant with the Enterprise Metadata Discovery specification with the exception of IBM CICS
ECI Resource Adapter and IBM IMS Connector for Java.

The WebSphere Business Integration Adapters, an older set of adapters, are also supported by the wizard.

Java EE resources

The EIS module, an SCA module that follows the EIS module pattern, can be deployed to the Java EE
platform.

The deployment of the EIS module to the Java EE platform results in an application that is ready to
execute, packaged as an EAR file and deployed to the server. All Java EE artifacts and resources are
created; the application is configured and ready to be run.

JCA Interaction Spec and Connection Spec dynamic properties:

The EIS binding can accept input for the InteractionSpec and ConnectionSpec specified by using a
well-defined child data object that accompanies the payload. This allows for dynamic request-response
interactions with a resource adapter through the InteractionSpec and component authentication through
the ConnectionSpec.

The javax.cci.InteractionSpec carries information on how the interaction request with the resource adapter
should be handled. It can also carry information on how the interaction was achieved after the request.
These two-way communications through the interactions are sometimes referred to as conversations.

The EIS binding expects the payload that will be the argument to the resource adapter to contain a child
data object called properties. This property data object will contain name/value pairs, with the name of
the Interaction Spec properties in a specific format. The formatting rules are:
v Names must begin with the prefix IS, followed by the property name. For example, an interaction spec

with a JavaBeans property called InteractionId would specify the property name as ISInteractionId.
v The name/value pair represents the name and the value of the simple type of the Interaction Spec

property.

In this example, an interface specifies that the input of an operation is an Account data object. This
interface invokes an EIS import binding application with the intention to send and receive a dynamic
InteractionSpec property called workingSet with the value xyz.

The business graph or business objects in the server contain an underlying properties business object that
permits the sending of protocol-specific data with the payload. This properties business object is built-in
and does not need to be specified in the XML schema when constructing a business object. It only needs
to be created and used. If you have your own data types defined based on an XML schema, you need to
specify a properties element that contains your expected name/value pairs.
BOFactory dataFactory = (BOFactory) \
serviceManager.locateService("com/ibm/websphere/bo/BOFactory");
//Wrapper for doc-lit wrapped style interfaces,
//skip to payload for non doc-lit
DataObject docLitWrapper = dataFactory.createByElement /
("http://mytest/eis/Account", "AccountWrapper");

Create the payload.

100 Overview



DataObject account = docLitWrapper.createDataObject(0);
DataObject accountInfo = account.createDataObject("AccountInfo");
//Perform your setting up of payload

//Construct properties data for dynamic interaction

DataObject properties = account.createDataObject("properties");

For name workingSet, set the value expected (xyz).
properties.setString("ISworkingSet", "xyz");

//Invoke the service with argument

Service accountImport = (Service) \
serviceManager.locateService("AccountOutbound");
DataObject result = accountImport.invoke("createAccount", docLitWrapper);

//Get returned property
DataObject retProperties = result.getDataObject("properties");

String workingset = retProperties.getString("ISworkingSet");

You can use ConnectionSpec properties for dynamic component authentication. The same rules apply as
above, except that the property name prefix needs to be CS (instead of IS). ConnectionSpec properties are
not two-way. The same properties data object can contain both IS and CS properties.

To use ConnectionSpec properties, set the resAuth specified on the import binding to Application. Also,
make sure the resource adapter supports component authorization. See chapter 8 of the J2EE Connector
Architecture Specification for more details.

External clients with EIS bindings:

The server can send messages to, or receive messages from, external clients using EIS bindings.

An external client, for example a Web portal or an EIS, needs to send a message to an SCA module in the
server or needs to be invoked by a component from within the server.

The client invokes the EIS import as with any other application, using either the Dynamic Invocation
Interface (DII) or Java interface.
1. The external client creates an instance of the ServiceManager and looks up the EIS import using its

reference name. The result of the lookup is a service interface implementation.
2. The client creates an input argument, a generic data object, created dynamically using the data object

schema. This step is done using the Service Data Object DataFactory interface implementation.
3. The external client invokes the EIS and obtains the required results.

Alternatively, the client can invoke the EIS import using the Java interface.
1. The client creates an instance of the ServiceManager and looks up the EIS import using its reference

name. The result of the lookup is a Java interface of the EIS import.
2. The client creates an input argument and a typed data object.
3. The client invokes EIS and obtains the required results.

The EIS export interface defines the interface of the exported SCA component that is available to the
external EIS applications. This interface can be thought of as the interface that an external application
(such as SAP or PeopleSoft) will invoke through the implementation of the EIS export application
runtime.

Chapter 2. Learn more about IBM Business Process Manager 101

http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/


The export uses EISExportBinding to bind exported services to the external EIS application. It allows you
to subscribe an application contained in your SCA module to listen for EIS service requests. The EIS
export binding specifies the mapping between the definition of inbound events as it is understood by the
resource adapter (using Java EE Connector Architecture interfaces) and the invocation of SCA operations.

The EISExportBinding requires external EIS services to be based on Java EE Connector Architecture 1.5
inbound contracts. The EISExportBinding requires that a data handler or data binding be specified either
at the binding level or the method level.

JMS bindings
A Java Message Service (JMS) provider enables messaging based on the Java Messaging Service API and
programming model. It provides Java EE connection factories to create connections for JMS destinations
and to send and receive messages.

Three JMS bindings are provided:
v Service integration bus (SIB) provider binding compliant with JMS JCA 1.5 (JMS binding)
v Generic, non-JCA JMS binding, compliant with JMS 1.1 (Generic JMS binding)
v WebSphere MQ JMS binding, providing JMS provider support for WebSphere MQ and allowing Java

EE application interoperability (WebSphere MQ JMS binding)

The JMS export and import bindings allow a Service Component Architecture (SCA) module to make
calls to, and receive messages from, external JMS systems.

Also supported are WebSphere MQ bindings (WebSphere MQ binding) which allow native MQ users to
handle arbitrary incoming and outgoing message formats (WebSphere MQ required).

The JMS import and export bindings provide integration with JMS applications using the JCA 1.5-based
SIB JMS provider that is part of WebSphere Application Server. Other JCA 1.5–based JMS resource
adapters are not supported

JMS bindings overview:

JMS bindings provide connectivity between the Service Component Architecture (SCA) environment and
JMS systems.

JMS bindings

The major components of both JMS import and JMS export bindings are:
v Resource adapter: enables managed, bidirectional connectivity between an SCA module and external

JMS systems
v Connections: encapsulate a virtual connection between a client and a provider application
v Destinations: used by a client to specify the target of messages it produces or the source of messages it

consumes
v Authentication data: used to secure access to the binding

JMS import bindings

You can make SCA modules interact with services provided by external JMS applications using JMS
import bindings.

Connections to the associated JMS provider of JMS destinations are created by using a JMS connection
factory. Use connection factory administrative objects to manage JMS connection factories for the default
messaging provider.

102 Overview



Interaction with external JMS systems includes the use of destinations for sending requests and receiving
replies.

Two types of usage scenarios for the JMS import binding are supported, depending on the type of
operation being invoked:
v One-way: The JMS import puts a message on the send destination configured in the import binding.

Nothing is set in the replyTo field of the JMS header.
v Two-way (request-response): The JMS import puts a message on the send destination and then persists

the reply it receives from the SCA component.
The import binding can be configured (using the Response correlation scheme field in Integration
Designer) to expect the response message correlation ID to have been copied from the request message
ID (the default), or from the request message correlation ID. The import binding can also be configured
to use a temporary dynamic response destination to correlate responses with requests. A temporary
destination is created for each request and the import uses this destination to receive the response.
The receive destination is set in the replyTo header property of the outbound message. A message
listener is deployed to listen on the receive destination, and when a reply is received, the message
listener passes the reply back to the component.

For both one-way and two-way usage scenarios, dynamic and static header properties can be specified.
Static properties can be set from the JMS import method binding. Some of these properties have special
meanings to the SCA JMS runtime.

It is important to note that JMS is an asynchronous binding. If a calling component invokes a JMS import
synchronously (for a two-way operation), the calling component is blocked until the response is returned
by the JMS service.

Figure 31 on page 104 illustrates how the import is linked to the external service.

Chapter 2. Learn more about IBM Business Process Manager 103



JMS export bindings

JMS export bindings provide the means for SCA modules to provide services to external JMS
applications.

The connection that is part of a JMS export is a configurable activation specification.

A JMS export has send and receive destinations.
v The receive destination is where the incoming message for the target component should be placed.
v The send destination is where the reply will be sent, unless the incoming message has overridden this

using the replyTo header property.

A message listener is deployed to listen to requests incoming to the receive destination specified in the
export binding. The destination specified in the send field is used to send the reply to the inbound
request if the invoked component provides a reply. The destination specified in the replyTo field of the
incoming message overrides the destination specified in the send.

Figure 32 on page 105 illustrates how the external requestor is linked to the export.

JMS
Connection

Factory

<my_module>/<my_
import>_CF

SI
bus

JMS

Destination
Send

JMS

Destination
Receive

SIBus JMS

<my_module>/<my_import>_RECEIVE_D

<my_module>/<my_import>_SEND_D

JMS Import

Receive (Response) Resources

Send (Request) Resources

JMS
Connection

Factory
JMS activation spec

<my_module>/<my_import>_AS

Figure 31. JMS import binding resources

104 Overview



JMS integration and resource adapters:

The Java Message Service (JMS) provides integration through an available JMS JCA 1.5-based resource
adapter. Complete support for JMS integration is provided for the Service Integration Bus (SIB) JMS
resource adapter.

Use a JMS provider for JCA 1.5 resource adapter when you want to integrate with an external JCA
1.5-compliant JMS system. External services compliant with JCA 1.5 can receive messages and send
messages to integrate with your service component architecture (SCA) components using the SIB JMS
resource adapter.

The use of other provider-specific JCA 1.5 resource adapters is not supported.

Key features of JMS bindings:

Key features of JMS import and export bindings include headers and created Java EE resources.

Special headers

Special header properties are used in JMS imports and exports to tell the target how to handle the
message.

For example, TargetFunctionName maps from the native method to the operation method.

JMS
Response

Connection
Factory

<my_module>/<my_export>_CF

SI
bus

JMS

Destination
Send

JMS

Destination
Receive

SIBus JMS

<my_module>/<my_export>
_RECEIVE_D

<my_module>/<my_export>_SEND_D

JMS Export

Receive (Request) Resources

Send (Response) Resources

JMS
Connection

Factory

JMS activation spec

<my_module>/<my_export>_AS

Figure 32. JMS export binding resources

Chapter 2. Learn more about IBM Business Process Manager 105



Java EE resources

A number of Java EE resources are created when JMS imports and exports are deployed to a Java EE
environment.

ConnectionFactory
Used by clients to create a connection to the JMS provider.

ActivationSpec
Imports use this for receiving the response to a request; exports use it when configuring the message
endpoints that represent message listeners in their interactions with the messaging system.

Destinations

v Send destination: on an import, this is where the request or outgoing message is sent; on an export,
this is the destination where the response message will be sent, if not superseded by the
JMSReplyTo header field in the incoming message.

v Receive destination: where the incoming message should be placed; with imports, this is a
response; with exports, this is a request.

v Callback destination: SCA JMS system destination used to store correlation information. Do not
read or write to this destination.

The installation task creates the ConnectionFactory and three destinations. It also creates the
ActivationSpec to enable the runtime message listener to listen for replies on the receive destination. The
properties of these resources are specified in the import or export file.

JMS headers:

A JMS message contains two types of headers–the JMS system header and multiple JMS properties. Both
types of headers can be accessed either in a mediation module in the Service Message Object (SMO) or by
using the ContextService API.

JMS system header

The JMS system header is represented in the SMO by the JMSHeader element, which contains all the
fields typically found in a JMS header. Although these can be modified in the mediation (or
ContextService), some JMS system header fields set in the SMO will not be propagated in the outbound
JMS message as they are overridden by system or static values.

The key fields in the JMS system header that can be updated in a mediation (or ContextService) are:
v JMSType and JMSCorrelationID – values of the specific predefined message header properties
v JMSDeliveryMode – values for delivery mode (persistent or nonpersistent; default is persistent)
v JMSPriority – priority value (0 to 9; default is JMS_Default_Priority)

JMS properties

JMS properties are represented in the SMO as entries in the Properties list. The properties can be added,
updated, or deleted in a mediation or by using the ContextService API.

Properties can also be set statically in the JMS binding. Properties that are set statically override settings
(with the same name) that are set dynamically.

User properties propagated from other bindings (for example, an HTTP binding) will be output in the
JMS binding as JMS properties.

106 Overview



Header propagation settings

The propagation of the JMS system header and properties either from the inbound JMS message to
downstream components or from upstream components to the outbound JMS message can be controlled
by the Propagate Protocol Header flag on the binding.

When Propagate Protocol Header is set, header information is allowed to flow to the message or to the
target component, as described in the following list:
v JMS export request

The JMS header received in the message will be propagated to target components by way of the
context service. JMS properties received in the message will be propagated to target components by
way of the context service.

v JMS export response
Any JMS header fields set in the context service will be used in the outbound message, if not
overridden by static properties set on the JMS export binding. Any properties set in the context service
will be used in the outbound message if not overridden by static properties set on the JMS export
binding.

v JMS import request
Any JMS header fields set in the context service will be used in the outbound message, if not
overridden by static properties set on the JMS import binding. Any properties set in the context service
will be used in the outbound message if not overridden by static properties set on the JMS import
binding.

v JMS import response
The JMS header received in the message will be propagated to target components by way of the
context service. JMS properties received in the message will be propagated to target components by
way of the context service.

JMS temporary dynamic response destination correlation scheme:

The temporary dynamic response destination correlation scheme causes a unique dynamic queue or topic
to be created for each request sent.

The static response destination specified in the import is used to derive the nature of the temporary
dynamic destination queue or topic. This is set in the ReplyTo field of the request, and the JMS import
listens for responses on that destination. When the response is received it is requeued to the static
response destination for asynchronous processing. The CorrelationID field of the response is not used,
and does not need to be set.

Transactional issues

When a temporary dynamic destination is being used, the response must be consumed in the same
thread as the sent response. The request must be sent outside the global transaction, and must be
committed before it is received by the backend service, and a response returned.

Persistence

Temporary dynamic queues are short-lived entities and do not guarantee the same level of persistence
associated with a static queue or topic. A temporary dynamic queue or topic will not survive a server
restart and neither will messages. After the message has been requeued to the static response destination
it retains the persistence defined in the message.

Chapter 2. Learn more about IBM Business Process Manager 107



Timeout

The import waits to receive the response on the temporary dynamic response destination for a fixed
amount of time. This time interval will be taken from the SCA Response Expiration time qualifier, if it is
set, otherwise the time defaults to 60 seconds. If the wait time is exceeded the import throws a
ServiceTimeoutRuntimeException.

External clients:

The server can send messages to, or receive messages from, external clients using JMS bindings.

An external client (such as a Web portal or an enterprise information system) can send a message to an
SCA module in the server, or it can be invoked by a component from within the server.

The JMS export components deploy message listeners to listen to requests incoming to the receive
destination specified in the export binding. The destination specified in the send field is used to send the
reply to the inbound request if the invoked application provides a reply. Thus, an external client is able to
invoke applications with the export binding.

JMS imports interact with external clients by sending messages to, and receiving messages from, JMS
queues.

Working with external clients:

An external client (that is, outside the server) might need to interact with an application installed in the
server.

Consider a very simple scenario in which an external client wants to interact with an application on the
server. The figure depicts a typical simple scenario.

The SCA application includes an export with a JMS binding; this makes the application available to
external clients.

When you have an external client in a Java virtual machine (JVM) separate from your server, there are
several steps you must take in order to make a connection and interact with a JMS export. The client
obtains an InitialContext with the correct values and then looks up the resources through JNDI. The client
then uses the JMS 1.1 specification client to access the destinations and the send and receive messages on
the destinations.

Server JVMClient JVM

Service

invocation

Service Service

Figure 33. Simple use-case scenario: external client interacts with server application

108 Overview



The default JNDI names of the resources created automatically by the runtime are listed in the
configuration topic of this section. However, if you have pre-created resources, use those JNDI names.
1. Configure JMS destinations and the connection factory to send the message.
2. Make sure that the JNDI context, the port for the SIB resource adapter, and the messaging

bootstrapping port are correct.
The server uses some default ports, but if there are more servers installed on that system, alternate
ports are created at installation time to avoid conflicts with other server instances. You can use the
administrative console to determine which ports your server is employing . Go to Servers >
Application Servers > your_server_ name > Configuration and click Ports under Communication.
You can then edit the port being used.

3. The client obtains an initial context with the correct values and then looks up the resources through
JNDI.

4. Using JMS 1.1 specifications, the client accesses the destinations and the send and receive messages on
the destinations.

Troubleshooting JMS bindings:

You can diagnose and fix problems with JMS bindings.

Implementation exceptions

In response to various error conditions, the JMS import and export implementation can return one of two
types of exceptions:
v Service Business Exception: this exception is returned if the fault specified on the service business

interface (WSDL port type) occurred.
v Service Runtime Exception: raised in all other cases. In most cases, the cause exception will contain the

original exception (JMSException).
For example, an import expects only one response message for each request message. If more than one
response arrives, or if a late response (one for which the SCA response expiration has expired) arrives,
a Service Runtime Exception is thrown. The transaction is rolled back, and the response message is
backed out of the queue or handled by the failed event manager.

Primary failure conditions

The primary failure conditions of JMS bindings are determined by transactional semantics, by JMS
provider configuration, or by reference to existing behavior in other components. The primary failure
conditions include:
v Failure to connect to the JMS provider or destination.

A failure to connect to the JMS provider to receive messages will result in the message listener failing
to start. This condition will be logged in the WebSphere Application Server log. Persistent messages
will remain on the destination until they are successfully retrieved (or expired).
A failure to connect to the JMS provider to send outbound messages will cause rollback of the
transaction controlling the send.

v Failure to parse an inbound message or to construct an outbound message.
A failure in the data binding or data handler causes rollback of the transaction controlling the work.

v Failure to send the outbound message.
A failure to send a message causes rollback of the relevant transaction.

v Multiple or unexpected late response messages.
The import expects only one response message for each request message. Also the valid time period in
which a response can be received is determined by the SCA Response Expiration qualifier on the
request. When a response arrives or the expiration time is exceeded, the correlation record is deleted. If
response messages arrive unexpectedly or arrive late, a Service Runtime Exception is thrown.

Chapter 2. Learn more about IBM Business Process Manager 109



v Service timeout runtime exception caused by late response when using the temporary dynamic
response destination correlation scheme.
The JMS import will timeout after a period of time determined by the SCA response expiration
qualifier, or if this is not set it will default to 60 seconds.

JMS-based SCA messages not appearing in the failed event manager

If SCA messages originated through a JMS interaction fail, you would expect to find these messages in
the failed event manager. If such messages are not appearing in the failed event manager, ensure that the
underlying SIB destination of the JMS destination has a maximum failed deliveries value greater than 1.
Setting this value to 2 or more enables interaction with the failed event manager during SCA invocations
for the JMS bindings.

Handling exceptions:

The way in which the binding is configured determines how exceptions that are raised by data handlers
or data bindings are handled. Additionally, the nature of the mediation flow dictates the behavior of the
system when such an exception is thrown.

A variety of problems can occur when a data handler or data binding is called by your binding. For
example, a data handler might receive a message that has a corrupt payload, or it might try to read a
message that has an incorrect format.

The way your binding handles such an exception is determined by how you implement the data handler
or data binding. The recommended behavior is that you design your data binding to throw a
DataBindingException.

When any runtime exception, including a DataBindingException, is thrown:
v If the mediation flow is configured to be transactional, the JMS message , by default, is stored in the

Failed Event Manager for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is rolled back instead of
being stored in the Failed Event Manager.

v If the mediation flow is not transactional, the exception is logged and the message is lost.

The situation is similar for a data handler. Since the data handler is invoked by the data binding, any
data handler exception is wrapped into a data binding exception. Therefore a DataHandlerException is
reported to you as a DataBindingException.

Generic JMS bindings
The Generic JMS binding provides connectivity to third-party JMS 1.1 compliant providers. The operation
of the Generic JMS bindings is similar to that of JMS bindings.

The service provided through a JMS binding allows a Service Component Architecture (SCA) module to
make calls or receive messages from external systems. The system can be an external JMS system.

The Generic JMS binding provides integration with non-JCA 1.5-compliant JMS providers that support
JMS 1.1 and implement the optional JMS Application Server Facility. The Generic JMS binding supports
those JMS providers (including Oracle AQ, TIBCO, SonicMQ, WebMethods, and BEA WebLogic) that do
not support JCA 1.5 but do support the Application Server Facility of the JMS 1.1 specification. The
WebSphere embedded JMS provider (SIBJMS), which is a JCA 1.5 JMS provider, is not supported by this
binding; when using that provider, use the “JMS bindings” on page 102.

110 Overview



Use this Generic binding when integrating with a non-JCA 1.5-compliant JMS-based system within an
SCA environment. The target external applications can then receive messages and send messages to
integrate with an SCA component.

Generic JMS bindings overview:

Generic JMS bindings are non-JCA JMS bindings that provide connectivity between the Service
Component Architecture (SCA) environment and JMS systems that are compliant with JMS 1.1 and that
implement the optional JMS Application Server Facility.

Generic JMS bindings

The major aspects of Generic JMS import and export bindings are:
v Listener port: enables non-JCA-based JMS providers to receive messages and dispatch them to a

Message Driven Bean (MDB)
v Connections: encapsulate a virtual connection between a client and a provider application
v Destinations: used by a client to specify the target of messages it produces or the source of messages it

consumes
v Authentication data: used to secure access to the binding

Generic JMS import bindings

Generic JMS import bindings allow components within your SCA module to communicate with services
provided by external non-JCA 1.5-compliant JMS providers.

The connection part of a JMS import is a connection factory. A connection factory, the object a client uses
to create a connection to a provider, encapsulates a set of connection configuration parameters defined by
an administrator. Each connection factory is an instance of the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory interface.

Interaction with external JMS systems includes the use of destinations for sending requests and receiving
replies.

Two types of usage scenarios for the Generic JMS import binding are supported, depending on the type
of operation being invoked:
v One-way: The Generic JMS import puts a message on the send destination configured in the import

binding Nothing is sent to the replyTo field of the JMS header.
v Two-way (request-response): The Generic JMS import puts a message on the send destination and then

persists the reply it receives from the SCA component.
The receive destination is set in the replyTo header property of the outbound message. A message
driven bean (MDB) is deployed to listen on the receive destination, and when a reply is received, the
MDB passes the reply back to the component.
The import binding can be configured (using the Response correlation scheme field in Integration
Designer) to expect the response message correlation ID to have been copied from the request message
ID (the default) or from the request message correlation ID.

For both one-way and two-way usage scenarios, dynamic and static header properties can be specified.
Static properties can be set from the Generic JMS import method binding Some of these properties have
special meanings to the SCA JMS runtime.

It is important to note that Generic JMS is an asynchronous binding. If a calling component invokes a
Generic JMS import synchronously (for a two-way operation), the calling component is blocked until the
response is returned by the JMS service.

Chapter 2. Learn more about IBM Business Process Manager 111



Figure 34 illustrates how the import is linked to the external service.

Generic JMS export bindings

Generic JMS export bindings provide the means for SCA modules to provide services to external JMS
applications.

The connection part of a JMS export is composed of a ConnectionFactory and a ListenerPort.

A Generic JMS export has send and receive destinations.
v The receive destination is where the incoming message for the target component should be placed.
v The send destination is where the reply will be sent, unless the incoming message has overridden this

using the replyTo header property.

An MDB is deployed to listen to requests incoming to the receive destination specified in the export
binding.
v The destination specified in the send field is used to send the reply to the inbound request if the

invoked component provides a reply.
v The destination specified in the replyTo field of the incoming message overrides the destination

specified in the send field.
v For request/response scenarios, the import binding can be configured (using the Response correlation

scheme field in Integration Designer) to expect the response to copy the request message ID to the
correlation ID field of the response message (default), or the response can copy the request correlation
ID to the correlation ID field of the response message.

Generic

Connection
Factory

JMS

<my_module>/<my_import>_CF

Third Party
JMS

Provider

Generic
JMS

Destination
Send

Generic
JMS

Destination
Receive

JMS

<my_module>/<my_import>
_RECEIVE_D

<my_module>/<my_
import>_SEND_D

Listener
Port

(Generic) JMS Import

Send (Request)
Resources

Receive (Response)
Resources

Generic
JMS

Connection
Factory

Response

Generic JMS Provider
JNDI containing third-
party JMS resources

<my_module>/<my_import>
_RESP_LP

<my_module>/<my_import>
_RESP_CF

Figure 34. Generic JMS import binding resources

112 Overview



Figure 35 illustrates how the external requestor is linked to the export.

Key features of Generic JMS bindings:

The features of the Generic JMS import and export binding are consistent with those of the WebSphere
embedded JMS and MQ JMS import bindings. Key features include header definitions and access to
existing Java EE resources. However, because of its generic nature, there are no JMS provider-specific
connectivity options, and this binding has limited capability to generate resources at deployment and
installation.

Generic imports

Like the MQ JMS import application, the Generic JMS implementation is asynchronous and supports
three invocations: one-way, two-way (also known as request-response), and callback.

When the JMS import is deployed, a message driven bean (MDB) provided by the runtime environment
is deployed. The MDB listens for replies to the request message. The MDB is associated with (listens on)
the destination sent with the request in the replyTo header field of the JMS message.

Generic exports

Generic JMS export bindings differ from EIS export bindings in their handling of the return of the result.
A Generic JMS export explicitly sends the response to the replyTo destination specified on the incoming
message. If none is specified, the send destination is used.

When the Generic JMS export is deployed, a message driven bean (a different MDB than the one used for
Generic JMS imports) is deployed. It listens for the incoming requests on the receive destination and then
dispatches the requests to be processed by the SCA runtime.

Generic

Response
Connection

Factory

JMS

<my_module>/<my_export>_RESP_CF

Third Party
JMS

Provider

Generic
JMS

Destination
Send

Generic
JMS

Destination
Receive

JMS

<my_module>/<my_export>_RECEIVE_D

<my_module>/<my_export>
_SEND_D

Listener
Port

(Generic) JMS Export

Receive (Request) Resources

Send (Response) Resources

Generic
JMS

Connection
Factory

Listener

Generic JMS Provider
JNDI containing third-party
JMS resources

<my_module>/<my_export>_LP

<my_module>/<my_export>_LIST_CF

Figure 35. Generic JMS export binding resources

Chapter 2. Learn more about IBM Business Process Manager 113



Special headers

Special header properties are used in Generic JMS imports and exports to tell the target binding how to
handle the message.

For example, the TargetFunctionName property is used by the default function selector to identify the
name of the operation in the export interface that is being invoked.

Note: The import binding can be configured to set the TargetFunctionName header to the operation
name for each operation.

Java EE resources

A number of Java EE resources are created when a JMS binding is deployed to a Java EE environment.
v Listener port for listening on the receive (response) destination (two-way only) for imports and on the

receive (request) destination for exports
v Generic JMS connection factory for the outboundConnection (import) and inboundConnection (export)
v Generic JMS destination for the send (import) and receive (export; two-way only) destinations
v Generic JMS connection factory for the responseConnection (two-way only and optional; otherwise,

outboundConnection is used for imports, and inboundConnection is used for exports)
v Generic JMS destination for the receive (import) and send (export) destination (two-way only)
v Default messaging provider callback JMS destination used to access the SIB callback queue destination

(two-way only)
v Default messaging provider callback JMS connection factory used to access the callback JMS

destination (two-way only)
v SIB callback queue destination used to store information about the request message for use during

response processing (two-way only)

The installation task creates the ConnectionFactory, the three destinations, and the ActivationSpec from
the information in the import and export files.

Generic JMS headers:

Generic JMS headers are Service Data Objects (SDO) that contain all the properties of the Generic JMS
message properties. These properties can be from the inbound message or they can be the properties that
will be applied to the outbound message.

A JMS message contains two types of headers–the JMS system header and multiple JMS properties. Both
types of headers can be accessed either in a mediation module in the Service Message Object (SMO) or by
using the ContextService API.

The following properties are set statically on the methodBinding:
v JMSType
v JMSCorrelationID
v JMSDeliveryMode
v JMSPriority

The Generic JMS binding also supports dynamic modification of JMS headers and properties in the same
manner as the JMS and MQ JMS bindings.

Some Generic JMS providers place restrictions on which properties can be set by the application and in
what combinations. You must consult your third-party product documentation for more information.

114 Overview



However, an additional property has been added to the methodBinding,
ignoreInvalidOutboundJMSProperties, which allows any exceptions to be propagated.

The Generic JMS headers and message properties are used only when the base service component
architecture SCDL binding switch is turned on. When the switch is turned on, context information is
propagated. By default, this switch is on. To prevent context information propagation, change the value to
false.

When context propagation is enabled, header information is allowed to flow to the message or to the
target component. To turn on and off context propagation, specify true or false for the
contextPropagationEnabled attribute of the import and export bindings. For example:
<esbBinding xsi:type="eis:JMSImportBinding" contextProgagationEnabled="true">

The default is true.

Troubleshooting Generic JMS bindings:

You can diagnose and fix problems with Generic JMS binding.

Implementation exceptions

In response to various error conditions, the Generic JMS import and export implementation can return
one of two types of exceptions:
v Service Business Exception: this exception is returned if the fault specified on the service business

interface (WSDL port type) occurred.
v Service Runtime Exception: raised in all other cases. In most cases, the cause exception will contain the

original exception (JMSException).

Troubleshooting Generic JMS message expiry

A request message by the JMS provider is subject to expiration.

Request expiry refers to the expiration of a request message by the JMS provider when the JMSExpiration
time on the request message is reached. As with other JMS bindings, the Generic JMS binding handles the
request expiry by setting expiration on the callback message placed by the import to be the same as for
the outgoing request. Notification of the expiration of the callback message will indicate that the request
message has expired and the client should be notified by means of a business exception.

If the callback destination is moved to the third-party provider, however, this type of request expiry is
not supported.

Response expiry refers to the expiration of a response message by the JMS provider when the
JMSExpiration time on the response message is reached.

Response expiry for the generic JMS binding is not supported, because the exact expiry behavior of a
third-party JMS provider is not defined. You can, however, check that the response is not expired if and
when it is received.

For outbound request messages, the JMSExpiration value will be calculated from the time waited and
from the requestExpiration values carried in the asyncHeader, if set.

Chapter 2. Learn more about IBM Business Process Manager 115



Troubleshooting Generic JMS connection factory errors

When you define certain types of connection factories in your Generic JMS provider, you might receive
an error message when you try to start an application. You can modify the external connection factory to
avoid this problem.

When launching an application, you might receive the following error message:
MDB Listener Port JMSConnectionFactory type does not match
JMSDestination type

This problem can arise when you are defining external connection factories. Specifically, the exception can
be thrown when you create a JMS 1.0.2 Topic Connection Factory, instead of a JMS 1.1 (unified)
Connection Factory (that is, one that is able to support both point-to-point and publish/subscribe
communication).

To resolve this issue, take the following steps:
1. Access the Generic JMS provider that you are using.
2. Replace the JMS 1.0.2 Topic Connection Factory that you defined with a JMS 1.1 (unified) Connection

Factory.

When you launch the application with the newly defined JMS 1.1 Connection Factory, you should no
longer receive an error message.

Generic JMS-based SCA messages not appearing in the failed event manager

If SCA messages originated through a generic JMS interaction fail, you would expect to find these
messages in the failed event manager. If such messages are not appearing in the failed event manager,
ensure that the value of the maximum retries property on the underlying listener port is equal to or
greater than 1. Setting this value to 1 or more enables interaction with the failed event manager during
SCA invocations for the generic JMS bindings.

Handling exceptions:

The way in which the binding is configured determines how exceptions that are raised by data handlers
or data bindings are handled. Additionally, the nature of the mediation flow dictates the behavior of the
system when such an exception is thrown.

A variety of problems can occur when a data handler or data binding is called by your binding. For
example, a data handler might receive a message that has a corrupt payload, or it might try to read a
message that has an incorrect format.

The way your binding handles such an exception is determined by how you implement the data handler
or data binding. The recommended behavior is that you design your data binding to throw a
DataBindingException.

The situation is similar for a data handler. Since the data handler is invoked by the data binding, any
data handler exception is wrapped into a data binding exception. Therefore a DataHandlerException is
reported to you as a DataBindingException.

When any runtime exception, including a DataBindingException exception, is thrown:
v If the mediation flow is configured to be transactional, the JMS message is stored in the Failed Event

Manager by default for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is rolled back instead of
being stored in the failed event manager.

116 Overview



v If the mediation flow is not transactional, the exception is logged and the message is lost.

The situation is similar for a data handler. Because the data handler is called by the data binding, a data
handler exception is produced inside a data binding exception. Therefore, a DataHandlerException is
reported to you as a DataBindingException.

WebSphere MQ JMS bindings
The WebSphere MQ JMS binding provides integration with external applications that use a WebSphere
MQ JMS-based provider.

Use the WebSphere MQ JMS export and import bindings to integrate directly with external JMS or MQ
JMS systems from your server environment. This eliminates the need to use MQ Link or Client Link
features of the Service Integration Bus.

When a component interacts with a WebSphere MQ JMS-based service by way of an import, the
WebSphere MQ JMS import binding utilizes a destination to which data will be sent and a destination
where the reply can be received. Conversion of the data to and from a JMS message is accomplished
through the JMS data handler or data binding edge component.

When an SCA module provides a service to WebSphere MQ JMS clients, the WebSphere MQ JMS export
binding utilizes a destination where the request can be received and the response can be sent. The
conversion of the data to and from a JMS message is done through the JMS data handler or data binding.

The function selector provides a mapping to the operation on the target component to be invoked.

WebSphere MQ JMS bindings overview:

The WebSphere MQ JMS binding provides integration with external applications that use the WebSphere
MQ JMS provider.

WebSphere MQ administrative tasks

The WebSphere MQ system administrator is expected to create the underlying WebSphere MQ Queue
Manager, which the WebSphere MQ JMS bindings will use, before running an application containing
these bindings.

WebSphere MQ JMS import bindings

The WebSphere MQ JMS import allows components within your SCA module to communicate with
services provided by WebSphere MQ JMS-based providers. You must be using a supported version of
WebSphere MQ. Detailed hardware and software requirements can be found on the IBM support pages.

Two types of usage scenarios for WebSphere MQ JMS import bindings are supported, depending on the
type of operation being invoked:
v One-way: The WebSphere MQ JMS import puts a message on the send destination configured in the

import binding. Nothing is sent to the replyTo field of the JMS header.
v Two-way (request-response): The WebSphere MQ JMS import puts a message on the send destination.

The receive destination is set in the replyTo header field. A message-driven bean (MDB) is deployed to
listen on the receive destination, and when a reply is received, the MDB passes the reply back to the
component.
The import binding can be configured (using the Response correlation scheme field in Integration
Designer) to expect the response message correlation ID to have been copied from the request message
ID (the default) or from the request message correlation ID.

Chapter 2. Learn more about IBM Business Process Manager 117

http://www.ibm.com/support/docview.wss?uid=swg27006205


For both one-way and two-way usage scenarios, dynamic and static header properties can be
specified.Static properties can be set from the JMS import method binding. Some of these properties have
special meanings to the SCA JMS runtime.

It is important to note that WebSphere MQ JMS is an asynchronous binding. If a calling component
invokes a WebSphere MQ JMS import synchronously (for a two-way operation), the calling component is
blocked until the response is returned by the JMS service.

Figure 36 illustrates how the import is linked to the external service.

WebSphere MQ JMS export bindings

The WebSphere MQ JMS export binding provides the means for SCA modules to provide services to
external JMS applications on the WebSphere MQ-based JMS provider.

An MDB is deployed to listen to requests incoming to the receive destination specified in the export
binding. The destination specified in the send field is used to send the reply to the inbound request if the
invoked component provides a reply. The destination specified in the replyTo field of the response
message overrides the destination specified in the send field.

Figure 37 on page 119 illustrates how the external requestor is linked to the export.

MQ JMS
Connection

Factory

MQ JMS
Response

Connection
Factory

<my_module>/<my_import>_MQ_CF

<my_module>/<my_import>_RESP_CF

WebSphere
MQ

MQ JMS

Destination
Receive

MQ JMS

Destination
Send

WebSphere MQ
JMS

Listener
Port

<my_module / my_import>_> < MQ_SEND_D

_MQ_RECEIVE_D
<my_module>/<my_import>

<my_module>/<my
_import>_RESP_LP

MQ JMS Import

Figure 36. WebSphere MQ JMS import binding resources

118 Overview



Note: Figure 36 on page 118 and Figure 37 illustrate how an application from a previous version of IBM
Business Process Manager is linked to an external service. For applications developed for IBM Business
Process Manager Version 7.0, the Activation specification is used instead of the Listener Port and
Connection Factory.

Key features of WebSphere MQ JMS bindings:

Key features of WebSphere MQ JMS bindings include headers, Java EE artifacts, and created Java EE
resources.

Headers

A JMS message header contains a number of predefined fields containing values used by both clients and
providers to identify and to route messages. You can use binding properties to configure these headers
with fixed values, or the headers can be specified dynamically at runtime.

JMSCorrelationID
Links to a related message. Typically, this field is set to the message identifier string of the message
that is being replied to.

TargetFunctionName
This header is used by one of the supplied function selectors to identify the operation being invoked.
Setting the TargetFunctionName JMS header property in messages sent to a JMS export allows this
function selector to be used. The property can be set directly in JMS client applications or when

MQ JMS
Listener

Connection
Factory

MQ JMS
Response

Connection
Factory

<my_module>/<my_export>_LIST_CF

<my_module>/<my_export>
_RESP_CF

WebSphere
MQ

MQ JMS

Destination
Send

MQ JMS

Destination
Receive

WebSphere MQ
JMS Export

Listener
Port

<my_module>/<my_export>
_MQ_RECEIVE_D

<my_module>/<my_export>
_MQ_SEND_D

<my_module>/<my_export>_LP

MQ JMS Export

Figure 37. WebSphere MQ JMS export binding resources

Chapter 2. Learn more about IBM Business Process Manager 119



connecting an import with a JMS binding to such an export. In this case, the JMS import binding
should be configured to set the TargetFunctionName header for each operation in the interface to the
name of the operation.

Correlation schemes

The WebSphere MQ JMS bindings provide various correlation schemes that are used to determine how to
correlate request messages with response messages.

RequestMsgIDToCorrelID
The JMSMessageID is copied to the JMSCorrelationID field. This is the default setting.

RequestCorrelIDToCorrelID
The JMSCorrelationID is copied to the JMSCorrelationID field.

Java EE resources

A number of Java EE resources are created when an MQ JMS import is deployed to a Java EE
environment.

Parameters

MQ Connection Factory
Used by clients to create a connection to the MQ JMS provider.

Response Connection Factory
Used by the SCA MQ JMS runtime when the send destination is on a different Queue Manager than
the receive destination.

Activation specification
An MQ JMS activation specification is associated with one or more message-driven beans and
provides the configuration necessary for them to receive messages.

Destinations

v Send destination:
– Imports: Where the request or outgoing message is sent.
– Exports: Where the response message will be sent if it is not superseded by the JMSReplyTo

header field of the incoming message.
v Receive destination:

– Imports: Where the response or incoming message should be placed.
– Exports: Where the incoming or request message should be placed.

JMS headers:

A JMS message contains two types of headers–the JMS system header and multiple JMS properties. Both
types of headers can be accessed either in a mediation module in the Service Message Object (SMO) or by
using the ContextService API.

JMS system header

The JMS system header is represented in the SMO by the JMSHeader element, which contains all the
fields typically found in a JMS header. Although these can be modified in the mediation (or
ContextService), some JMS system header fields set in the SMO will not be propagated in the outbound
JMS message as they are overridden by system or static values.

The key fields in the JMS system header that can be updated in a mediation (or ContextService) are:
v JMSType and JMSCorrelationID – values of the specific predefined message header properties

120 Overview



v JMSDeliveryMode – values for delivery mode (persistent or nonpersistent; default is persistent)
v JMSPriority – priority value (0 to 9; default is JMS_Default_Priority)

JMS properties

JMS properties are represented in the SMO as entries in the Properties list. The properties can be added,
updated, or deleted in a mediation or by using the ContextService API.

Properties can also be set statically in the JMS binding. Properties that are set statically override settings
(with the same name) that are set dynamically.

User properties propagated from other bindings (for example, an HTTP binding) will be output in the
JMS binding as JMS properties.

Header propagation settings

The propagation of the JMS system header and properties either from the inbound JMS message to
downstream components or from upstream components to the outbound JMS message can be controlled
by the Propagate Protocol Header flag on the binding.

When Propagate Protocol Header is set, header information is allowed to flow to the message or to the
target component, as described in the following list:
v JMS export request

The JMS header received in the message will be propagated to target components by way of the
context service. JMS properties received in the message will be propagated to target components by
way of the context service.

v JMS export response
Any JMS header fields set in the context service will be used in the outbound message, if not
overridden by static properties set on the JMS export binding. Any properties set in the context service
will be used in the outbound message if not overridden by static properties set on the JMS export
binding.

v JMS import request
Any JMS header fields set in the context service will be used in the outbound message, if not
overridden by static properties set on the JMS import binding. Any properties set in the context service
will be used in the outbound message if not overridden by static properties set on the JMS import
binding.

v JMS import response
The JMS header received in the message will be propagated to target components by way of the
context service. JMS properties received in the message will be propagated to target components by
way of the context service.

External clients:

The server can send messages to, or receive messages from, external clients using WebSphere MQ JMS
bindings.

An external client (such as a Web portal or an enterprise information system) can send a message to an
SCA component in the application by way of an export or it can be invoked by an SCA component in the
application by way of an import.

The WebSphere MQ JMS export binding deploys message driven beans (MDBs) to listen to requests
incoming to the receive destination specified in the export binding. The destination specified in the send
field is used to send the reply to the inbound request if the invoked application provides a reply. Thus,
an external client is able to invoke applications via the export binding.

Chapter 2. Learn more about IBM Business Process Manager 121



WebSphere MQ JMS imports bind to, and can deliver message to, external clients. This message might or
might not demand a response from the external client.

More information on how to interact with external clients using WebSphere MQ can be found at the
WebSphere MQ information center.

Troubleshooting WebSphere MQ JMS bindings:

You can diagnose and fix problems with WebSphere MQ JMS bindings.

Implementation exceptions

In response to various error conditions, the MQ JMS import and export implementation can return one of
two types of exceptions:
v Service Business Exception: this exception is returned if the fault specified on the service business

interface (WSDL port type) occurred.
v Service Runtime Exception: raised in all other cases. In most cases, the cause exception will contain the

original exception (JMSException).
For example, an import expects only one response message for each request message. If more than one
response arrives, or if a late response (one for which the SCA response expiration has expired) arrives,
a Service Runtime Exception is thrown. The transaction is rolled back, and the response message is
backed out of the queue or handled by the failed event manager.

WebSphere MQ JMS-based SCA messages not appearing in the failed event manager

If SCA messages originated through a WebSphere MQ JMS interaction fail, you would expect to find
these messages in the failed event manager. If such messages are not appearing in the failed event
manager, ensure that the value of the maximum retries property on the underlying listener port is equal
to or greater than 1. Setting this value to 1 or more enables interaction with the failed event manager
during SCA invocations for the MQ JMS bindings.

Misusage scenarios: comparison with WebSphere MQ bindings

The WebSphere MQ JMS binding is designed to interoperate with JMS applications deployed against
WebSphere MQ, which exposes messages according to the JMS message model. The WebSphere MQ
import and export, however, are principally designed to interoperate with native WebSphere MQ
applications and expose the full content of the WebSphere MQ message body to mediations.

The following scenarios should be built using the WebSphere MQ JMS binding, not the WebSphere MQ
binding:
v Invoking a JMS message-driven bean (MDB) from an SCA module, where the MDB is deployed against

the WebSphere MQ JMS provider. Use a WebSphere MQ JMS import.
v Allowing the SCA module to be called from a Java EE component servlet or EJB by way of JMS. Use a

WebSphere MQ JMS export.
v Mediating the contents of a JMS MapMessage, in transit across WebSphere MQ. Use a WebSphere MQ

JMS export and import in conjunction with the appropriate data handler or data binding.

There are situations in which the WebSphere MQ binding and WebSphere MQ JMS binding might be
expected to interoperate. In particular, when you are bridging between Java EE and non-Java EE
WebSphere MQ applications, use a WebSphere MQ export and WebSphere MQ JMS import (or vice versa)
in conjunction with appropriate data bindings or mediation modules (or both).

122 Overview

http://www-306.ibm.com/software/integration/wmq/library/


Handling exceptions:

The way in which the binding is configured determines how exceptions that are raised by data handlers
or data bindings are handled. Additionally, the nature of the mediation flow dictates the behavior of the
system when such an exception is thrown.

A variety of problems can occur when a data handler or data binding is called by your binding. For
example, a data handler might receive a message that has a corrupt payload, or it might try to read a
message that has an incorrect format.

The way your binding handles such an exception is determined by how you implement the data handler
or data binding. The recommended behavior is that you design your data binding to throw a
DataBindingException.

The situation is similar for a data handler. Since the data handler is invoked by the data binding, any
data handler exception is wrapped into a data binding exception. Therefore a DataHandlerException is
reported to you as a DataBindingException.

When any runtime exception, including a DataBindingException exception, is thrown:
v If the mediation flow is configured to be transactional, the JMS message is stored in the Failed Event

Manager by default for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is rolled back instead of
being stored in the failed event manager.

v If the mediation flow is not transactional, the exception is logged and the message is lost.

The situation is similar for a data handler. Because the data handler is called by the data binding, a data
handler exception is produced inside a data binding exception. Therefore, a DataHandlerException is
reported to you as a DataBindingException.

WebSphere MQ bindings
The WebSphere MQ binding provides Service Component Architecture (SCA) connectivity with
WebSphere MQ applications.

Use the WebSphere MQ export and import bindings to integrate directly with a WebSphere MQ-based
system from your server environment. This eliminates the need to use MQ Link or Client Link features of
the Service Integration Bus.

When a component interacts with a WebSphere MQ service by way of an import, the WebSphere MQ
import binding uses a queue to which data will be sent and a queue where the reply can be received.

When an SCA module provides a service to WebSphere MQ clients, the WebSphere MQ export binding
uses a queue where the request can be received and the response can be sent. The function selector
provides a mapping to the operation on the target component to be invoked.

Conversion of the payload data to and from an MQ message is done through the MQ body data handler
or data binding. Conversion of the header data to and from an MQ message is done through the MQ
header data binding.

For information about the WebSphere MQ versions supported, see the system requirements web page:
IBM Business Process Manager system requirements

WebSphere MQ bindings overview:

The WebSphere MQ binding provides integration with native MQ-based applications.

Chapter 2. Learn more about IBM Business Process Manager 123

http://www.ibm.com/support/docview.wss?uid=swg27006205


WebSphere MQ administrative tasks

The WebSphere MQ system administrator is expected to create the underlying WebSphere MQ Queue
Manager, which the WebSphere MQ bindings will use, before running an application containing these
bindings.

WebSphere administrative tasks

You must set the Native library path property of the MQ resource adapter in Websphere to the
WebSphere MQ version supported by the server, and restart the server. This ensures that the libraries of a
supported version of WebSphere MQ are being used. Detailed hardware and software requirements can
be found on the IBM support pages

WebSphere MQ import bindings

The WebSphere MQ import binding allows components within your SCA module to communicate with
services provided by external WebSphere MQ-based applications. You must be using a supported version
of WebSphere MQ. Detailed hardware and software requirements can be found on the IBM support
pages.

Interaction with external WebSphere MQ systems includes the use of queues for sending requests and
receiving replies.

Two types of usage scenarios for the WebSphere MQ import binding are supported, depending on the
type of operation being invoked:
v One-way: The WebSphere MQ import puts a message on the queue configured in the Send destination

queue field of the import binding. Nothing is sent to the replyTo field of the MQMD header.
v Two-way (request-response): The WebSphere MQ import puts a message on the queue configured in

the Send destination queue field
The receive queue is set in the replyTo MQMD header field. A message driven bean (MDB) is deployed
to listen on the receive queue, and when a reply is received, the MDB passes the reply back to the
component.
The import binding can be configured (using the Response correlation scheme field) to expect the
response message correlation ID to have been copied from the request message ID (the default) or from
the request message correlation ID.

It is important to note that WebSphere MQ is an asynchronous binding. If a calling component invokes a
WebSphere MQ import synchronously (for a two-way operation), the calling component is blocked until
the response is returned by the WebSphere MQ service.

Figure 38 on page 125 illustrates how the import is linked to the external service.

124 Overview

http://www.ibm.com/support/docview.wss?uid=swg27006205
http://www.ibm.com/support/docview.wss?uid=swg27006205
http://www.ibm.com/support/docview.wss?uid=swg27006205


WebSphere MQ export bindings

The WebSphere MQ export binding provides the means for SCA modules to provide services to external
WebSphere MQ-based applications.

An MDB is deployed to listen to requests incoming to the Receive destination queue specified in the
export binding. The queue specified in the Send destination queue field is used to send the reply to the
inbound request if the invoked component provides a reply. The queue specified in the replyTo field of
the response message overrides the queue specified in the Send destination queue field.

Figure 39 on page 126 illustrates how the external requestor is linked to the export.

WebSphere
MQ

Generated
MQ

Destination

_JMS
Send

Generated
MQ JMS

Destination
Receive

to WebSphereMQ

<my_module>/<my_import>_MQ_RECEIVE_D

<my_module>/<my_import>
_MQ_SEND_D

Listener
Port

MQ Import

Receive (Response) Resources

Send (Request) Resources

Generated
MQ JMS

Connection
Factory

<my_module>/<my_import>_RESP_LP

<my_module>/<my_import>
_MQIMPORT_CF

Figure 38. WebSphere MQ import binding resources

Chapter 2. Learn more about IBM Business Process Manager 125



Note: Figure 38 on page 125 and Figure 39 illustrate how an application from a previous version of IBM
Business Process Manager is linked to an external service. For applications developed for IBM Business
Process Manager Version 7.0, the Activation specification is used instead of the Listener Port and
Connection Factory.

Key features of a WebSphere MQ binding:

Key features of a WebSphere MQ binding include headers, Java EE artifacts, and created Java EE
resources.

Correlation schemes

A WebSphere MQ request/reply application can use one of a number of techniques to correlate response
messages with requests, built around the MQMD MessageID and CorrelID fields. In the vast majority of
cases, the requestor lets the queue manager select a MessageID and expects the responding application to
copy this into the CorrelID of the response. In most cases, the requestor and responding application
implicitly know which correlation technique is in use. Occasionally the responding application will honor
various flags in the Report field of the request that describe how to handle these fields.

Export bindings for WebSphere MQ messages can be configured with the following options:

Response MsgId options:

New MsgID
Allows the queue manager to select a unique MsgId for the response (default).

WebSphere
MQ

Generated
MQ

Destination

_JMS
Send

Generated
MQ JMS

Destination
Receive

WMQ

<my_module>/<my_export>
_MQ_RECEIVE_D

<my_module>/<my_export>_MQ_SEND_D

Listener
Port

MQ Export

Receive (Request) Resources

Send (Response) Resources

Generated
MQ JMS

Connection
Factory

<my_module>/<my_export>_LP

<my_module>/<my_export>
_MQEXPORT_CF

Figure 39. WebSphere MQ export binding resources

126 Overview



Copy from Request MsgID
Copies the MsgId field from the MsgId field in the request.

Copy from SCA message
Sets the MsgId to be that carried in WebSphere MQ headers in the SCA response message, or lets the
queue manager define a new Id if the value does not exist.

As Report Options
Inspects the Report field of the MQMD in the request for a hint as to how to handle the MsgId. The
MQRO_NEW_MSG_ID and MQRO_PASS_MSG_ID options are supported and behave like New
MsgId and Copy from Request MsgID, respectively

Response CorrelId options:

Copy from Request MsgID
Copies the CorrelId field from the MsgId field in the request (default).

Copy from Request CorrelID
Copies the CorrelId field from the CorrelId field in the request.

Copy from SCA message
Sets the CorrelId to be carried in WebSphere MQ headers in the SCA response message or leaves it
blank if the value does not exist.

As Report Options
Inspects the Report field of the MQMD in the request for a hint as to how to handle the CorrelId. The
MQRO_COPY_MSG_ID_TO_CORREL_ID and MQRO_PASS_CORREL_ID options are supported and
behave like Copy from Request MsgID and Copy from Request CorrelID, respectively

Import bindings for WebSphere MQ messages can be configured with the following options:

Request MsgId options:

New MsgID
Allows the queue manager to select a unique MsgId for the request (default)

Copy from SCA message
Sets the MsgId to be carried in WebSphere MQ headers in the SCA request message or lets the queue
manager define a new Id if the value does not exist.

Response correlation options:

Response has CorrelID copied from MsgId
Expects the response message to have a CorrelId field set, per the MsgId of the request (default).

Response has MsgID copied from MsgId
Expects the response message to have a MsgId field set, per the MsgId of the request.

Response has CorrelID copied from CorrelId
Expects the response message to have a CorrelId field set, per the CorrelId of the request.

Java EE resources

A number of Java EE resources are created when a WebSphere MQ binding is deployed to a Java EE
environment.

Parameters

MQ Connection Factory
Used by clients to create a connection to the WebSphere MQ provider.

Chapter 2. Learn more about IBM Business Process Manager 127



Response Connection Factory
Used by the SCA MQ runtime when the send destination is on a different Queue Manager than the
receive destination.

Activation specification
An MQ JMS activation specification is associated with one or more message-driven beans and
provides the configuration necessary for them to receive messages.

Destinations

v Send destination: where the request or outgoing message is sent (import); where the response
message will be sent (export), if not superseded by the MQMD ReplyTo header field in the
incoming message.

v Receive destination: where the response/request or incoming message should be placed.

WebSphere MQ headers:

WebSphere MQ headers incorporate certain conventions for conversion to the service component
architecture (SCA) messages.

WebSphere MQ messages consist of a system header (the MQMD), zero or more other MQ headers
(system or custom), and a message body. If multiple message headers exist in the message, the order of
the headers is significant.

Each header contains information describing the structure of the following header. The MQMD describes
the first header.

How MQ headers are parsed

An MQ Header data binding is used to parse MQ headers. The following headers are supported
automatically:
v MQRFH
v MQRFH2
v MQCIH
v MQIIH

Headers that start with MQH are handled differently. Specific fields of the header are not parsed; they
remain as unparsed bytes.

For other MQ headers, you can write custom MQ header data bindings to parse those headers.

How MQ headers are accessed

MQ headers can be accessed in the product in one of two ways:
v Through the service message object (SMO) in a mediation
v Through the ContextService API

MQ headers are represented internally with the SMO MQHeader element. MQHeader is a container of
header data that extends MQControl but contains a value element of anyType. It contains the MQMD,
MQControl (MQ message body control information), and a list of other MQ headers.
v MQMD represents the contents of the WebSphere MQ message description, except for information

determining the structure and encoding of the body.
v MQControl contains information determining the structure and encoding of a message body.
v MQHeaders contain a list of MQHeader objects.

128 Overview



The MQ header chain is unwound so that, inside the SMO, each MQ header carries its own control
information (CCSID, Encoding, and Format). Headers can be added or deleted easily, without altering
other header data.

Setting fields in the MQMD

You can update the MQMD using the Context API or through the service message object (SMO) in a
mediation. The following fields are automatically propagated to the outbound MQ message:
v Encoding
v CodedCharacterSet
v Format
v Report
v Expiry
v Feedback
v Priority
v Persistence
v CorrelId
v MsgFlags

Configure the MQ binding on an Import or Export to propagate the following properties to the outbound
MQ message:

MsgID
Set Request Message ID to copy from SCA message.

MsgType
Clear the Set message type to MQMT_DATAGRAM or MQMT_REQUEST for request-response
operation check box.

ReplyToQ
Clear the Override reply to queue of request message check box.

ReplyToQMgr
Clear the Override reply to queue of request message check box.

From version 7.0 onwards, context fields can be overridden using a custom property on the JNDI
destination definition. Set the custom property MDCTX with value SET_IDENTITY_CONTEXT on the send
destination to propagate the following fields to the outbound MQ message:
v UserIdentifier
v AppIdentityData

Set the custom property MDCTX with value SET_ALL_CONTEXT on the send destination to propagate the
following properties to the outbound MQ message:
v UserIdentifier
v AppIdentityData
v PutApplType
v PutApplName
v ApplOriginData

Some fields are not propagated to the outbound MQ message. The following fields are overridden during
the send of the message:
v BackoutCount
v AccountingToken

Chapter 2. Learn more about IBM Business Process Manager 129



v PutDate
v PutTime
v Offset
v OriginalLength

Adding MQCIH statically in a WebSphere MQ binding:

IBM Business Process Manager supports adding MQCIH header information statically without using a
mediation module.

There are various ways to add MQCIH header information to a message (for example, by using the
Header Setter mediation primitive). It might be useful to add this header information statically, without
the use of an additional mediation module. Static header information, including the CICS® program
name, the transaction ID, and other data format header details, can be defined and added as part of the
WebSphere MQ binding.

WebSphere MQ, the MQ CICS Bridge, and CICS must be configured for MQCIH header information to
be added statically.

You can use Integration Designer to configure the WebSphere MQ import with the static values that are
required for the MQCIH header information.

When a message arrives and is processed by the WebSphere MQ import, a check is made to see if
MQCIH header information is already present in the message. If the MQCIH is present, the static values
defined in the WebSphere MQ import are used to override the corresponding dynamic values in the
message. If the MQCIH is not present, one is created in the message and the static values defined in the
WebSphere MQ import are added.

The static values defined in the WebSphere MQ import are specific to a method. You can specify different
static MQCIH values for different methods within the same WebSphere MQ import.

This facility is not used to provide default values if the MQCIH does not contain specific header
information because a static value defined in the WebSphere MQ import will override a corresponding
value provided in the incoming message.

External clients:

IBM Business Process Manager can send messages to, or receive messages from, external clients using
WebSphere MQ bindings.

An external client (for example, a Web portal or an enterprise information system) can send a message to
an SCA component in the application by way of an export or it can be invoked by an SCA component in
the application by way of an import.

The WebSphere MQ export binding deploys message driven beans (MDBs) to listen to requests incoming
to the receive destination specified in the export binding. The destination specified in the send field is
used to send the reply to the inbound request if the invoked application provides a reply. Thus, an
external client is able to invoke applications by way of the export binding.

WebSphere MQ imports bind to, and can deliver message to, external clients. This message might or
might not demand a response from the external client.

More information on how to interact with external clients using WebSphere MQ can be found at the
WebSphere MQ information center.

130 Overview

http://www-306.ibm.com/software/integration/wmq/library/


Troubleshooting WebSphere MQ bindings:

You can diagnose and fix faults and failure conditions that occur with WebSphere MQ bindings.

Primary failure conditions

The primary failure conditions of WebSphere MQ bindings are determined by transactional semantics, by
WebSphere MQ configuration, or by reference to existing behavior in other components. The primary
failure conditions include:
v Failure to connect to the WebSphere MQ queue manager or queue.

A failure to connect to WebSphere MQ to receive messages will result in the MDB Listener Port failing
to start. This condition will be logged in the WebSphere Application Server log. Persistent messages
will remain on the WebSphere MQ queue until they are successfully retrieved (or expired by
WebSphere MQ).
A failure to connect to WebSphere MQ to send outbound messages will cause rollback of the
transaction controlling the send.

v Failure to parse an inbound message or to construct an outbound message.
A failure in the data binding causes rollback of the transaction controlling the work.

v Failure to send the outbound message.
A failure to send a message causes rollback of the relevant transaction.

v Multiple or unexpected response messages.
The import expects only one response message for each request message. If more than one response
arrives, or if a late response (one for which the SCA response expiration has expired) arrives, a Service
Runtime Exception is thrown. The transaction is rolled back, and the response message is backed out of
the queue or handled by the failed event manager.

Misusage scenarios: comparison with WebSphere MQ JMS bindings

The WebSphere MQ import and export are principally designed to interoperate with native WebSphere
MQ applications and expose the full content of the WebSphere MQ message body to mediations. The
WebSphere MQ JMS binding, however, is designed to interoperate with JMS applications deployed
against WebSphere MQ, which exposes messages according to the JMS message model.

The following scenarios should be built using the WebSphere MQ JMS binding, not the WebSphere MQ
binding:
v Invoking a JMS message-driven bean (MDB) from an SCA module, where the MDB is deployed against

the WebSphere MQ JMS provider. Use a WebSphere MQ JMS import.
v Allowing the SCA module to be called from a Java EE component servlet or EJB by way of JMS. Use a

WebSphere MQ JMS export.
v Mediating the contents of a JMS MapMessage, in transit across WebSphere MQ. Use a WebSphere MQ

JMS export and import in conjunction with the appropriate data binding.

There are situations in which the WebSphere MQ binding and WebSphere MQ JMS binding might be
expected to interoperate. In particular, when you are bridging between Java EE and non-Java EE
WebSphere MQ applications, use a WebSphere MQ export and WebSphere MQ JMS import (or vice versa)
in conjunction with appropriate data bindings or mediation modules (or both).

Undelivered messages

If WebSphere MQ cannot deliver a message to its intended destination (because of configuration errors,
for example), it sends the messages instead to a nominated dead-letter queue.

Chapter 2. Learn more about IBM Business Process Manager 131



In doing so, it adds a dead-letter header to the start of the message body. This header contains the failure
reasons, the original destination, and other information.

MQ-based SCA messages not appearing in the failed event manager

If SCA messages originated because of a WebSphere MQ interaction failure, you would expect to find
these messages in the failed event manager. If these messages are not showing in the failed event
manager, check that the underlying WebSphere MQ destination has a maximum failed deliveries value
greater than 1. Setting this value to 2 or more allows interaction with the failed event manager during
SCA invocations for the WebSphere MQ bindings.

MQ failed events are replayed to the wrong queue manager

When a predefined connection factory is to be used for outbound connections, the connection properties
must match those defined in the activation specification used for inbound connections.

The predefined connection factory is used to create a connection when replaying a failed event and must
therefore be configured to use the same queue manager from which the message was originally received.

Handling exceptions:

The way in which the binding is configured determines how exceptions that are raised by data handlers
or data bindings are handled. Additionally, the nature of the mediation flow dictates the behavior of the
system when such an exception is thrown.

A variety of problems can occur when a data handler or data binding is called by your binding. For
example, a data handler might receive a message that has a corrupt payload, or it might try to read a
message that has an incorrect format.

The way your binding handles such an exception is determined by how you implement the data handler
or data binding. The recommended behavior is that you design your data binding to throw a
DataBindingException.

The situation is similar for a data handler. Since the data handler is invoked by the data binding, any
data handler exception is wrapped into a data binding exception. Therefore a DataHandlerException is
reported to you as a DataBindingException.

When any runtime exception, including a DataBindingException exception, is thrown:
v If the mediation flow is configured to be transactional, the JMS message is stored in the Failed Event

Manager by default for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is rolled back instead of
being stored in the failed event manager.

v If the mediation flow is not transactional, the exception is logged and the message is lost.

The situation is similar for a data handler. Because the data handler is called by the data binding, a data
handler exception is produced inside a data binding exception. Therefore, a DataHandlerException is
reported to you as a DataBindingException.

Limitations of bindings
The bindings have some limitations in their use that are listed here.

Limitations of the MQ binding:

The MQ binding has some limitations in its use that are listed here.

132 Overview



No publish-subscribe message distribution

The publish-subscribe method of distributing messages is not currently supported by the MQ binding
though WMQ itself supports publish-subscribe. However, the MQ JMS binding does support this method
of distribution.

Shared receive queues

Multiple WebSphere MQ export and import bindings expect that any messages present on their
configured receive queue are intended for that export or import. Import and export bindings should be
configured with the following considerations:
v Each MQ import must have a different receive queue because the MQ import binding assumes all

messages on the receive queue are responses to requests that it sent. If the receive queue is shared by
more than one import, responses could be received by the wrong import and will fail to be correlated
with the original request message.

v Each MQ export should have a different receive queue, because otherwise you cannot predict which
export will get any particular request message.

v MQ imports and exports can point to the same send queue.

Limitations of the JMS, MQ JMS, and generic JMS bindings:

The JMS and MQ JMS bindings have some limitations.

Implications of generating default bindings

The limitations of using the JMS, MQ JMS, and generic JMS bindings are discussed in the following
sections:
v Implications of generating default bindings
v Response correlation scheme
v Bidirectional support

When you generate a binding, several fields will be filled in for you as defaults, if you do not choose to
enter the values yourself. For example, a connection factory name will be created for you. If you know
that you will be putting your application on a server and accessing it remotely with a client, you should
at binding creation time enter JNDI names rather than take the defaults since you will likely want to
control these values through the administrative console at run time.

However, if you did accept the defaults and then find later that you cannot access your application from
a remote client, you can use the administrative console to explicitly set the connection factory value.
Locate the provider endpoints field in the connection factory settings and add a value such as
<server_hostname>:7276 (if using the default port number).

Response correlation scheme

If you use the CorrelationId To CorrelationId response correlation scheme, used to correlate messages in a
request-response operation, you must have a dynamic correlation ID in the message.

To create a dynamic correlation ID in a mediation module using the mediation flow editor, add an XSLT
node before the import with the JMS binding. Open the XSLT mapping editor. The known service
component architecture headers will be available in the target message. Drag and drop a field containing
a unique ID in the source message onto the correlation ID in the JMS header in the target message.

Bidirectional support

Only ASCII characters are supported for Java Naming and Directory Interface (JNDI) names at runtime.

Chapter 2. Learn more about IBM Business Process Manager 133



Shared receive queues

Multiple export and import bindings expect that any messages present on their configured receive queue
are intended for that export or import. Import and export bindings should be configured with the
following considerations:
v Each import binding must have a different receive queue because the import binding assumes all

messages on the receive queue are responses to requests that it sent. If the receive queue is shared by
more than one import, responses could be received by the wrong import and will fail to be correlated
with the original request message.

v Each export should have a different receive queue, because otherwise you cannot predict which export
will get any particular request message.

v Imports and exports can point to the same send queue.

Business objects
The computer software industry has developed several programming models and frameworks in which
business objects provide a natural representation of the business data for application processing.

In general, these business objects:
v Are defined using industry standards
v Transparently map data to database tables or enterprise information systems
v Support remote invocation protocols
v Provide the data programming model foundation for application programming

From a tooling perspective, Integration Designer provides developers with one such common business
object model for representing different kinds of business entities from different domains. At development
time, this model enables developers to define business objects as XML schema definitions.

At run time, the business data defined by the XML schema definitions is represented as Java Business
Objects. In this model, business objects are loosely based on early drafts of the Service Data Object (SDO)
specification and provide the complete set of programming model application interfaces required to
manipulate business data.

Defining business objects
You define business objects using the business object editor in Integration Designer. The business object
editor stores the business objects as XML schema definitions.

Using XML schema to define business objects provides several advantages:
v XML schema provide a standards-based data definition model and a foundation for interoperability

between disparate heterogeneous systems and applications. XML schema are used in conjunction with
the Web Services Description Language (WSDL) to provide standards-based interface contracts among
components, applications, and systems.

v XML schema define a rich data definition model for representing business data. This model includes
complex types, simple types, user-defined types, type inheritance, and cardinality, among other
features.

v Business objects can be defined by business interfaces and data defined in the Web Services Description
Language, as well as by XML schema from industry standards organizations or from other systems and
applications. Integration Designer can import these business objects directly.

Integration Designer also provides support for discovering business data in databases and enterprise
information systems and then generating the standards-based XML schema business object definition of

134 Overview



that business data. Business objects generated in this fashion are often referred to as application specific
business objects because they mimic the structure of the business data defined in the enterprise
information system.

When a process is manipulating data from many different information systems, it can be valuable to
transform the disparate representation of business data (for example, CustomerEIS1 and CustomerEIS2 or
OrderEIS1 and OrderEIS2) into a single canonical representation (for example, Customer or Order). The
canonical representation is often referred to as the generic business object.

Business object definitions, particularly for generic business objects, are frequently used by more than one
application. To support this reuse, Integration Designer allows business objects to be created in libraries
that can then be associated with multiple application modules.

The contracts for the services provided and consumed by a Service Component Architecture (SCA)
application module as well as the contracts used to create the components within an application module
are defined using the Web Services Description Language. A WSDL can represent both the operations and
business objects, which are defined by XML schema to represent the business data, of a contract.

Working with business objects
Service Component Architecture (SCA) provides the framework for defining an application module, the
services it provides, the services it consumes, and the composition of components that provide the
business logic of the application module. Business objects play an important role in the application,
defining the business data that is used to describe the service and component contracts and the business
data that the components manipulate.

The following diagram depicts an SCA application module and illustrates many of the places in which
the developer works with business objects.

Note: This topic describes how business objects are used by SCA application modules. If you are using
Java interfaces, the SCA application modules can also process Java objects.

Figure 40. Business objects represent the data that flows between services in an application

Chapter 2. Learn more about IBM Business Process Manager 135



Business object programming model

The business object programming model consists of a set of Java interfaces that represent:
v The business object definition and instance data
v A set of services that support the operations on the business objects

Business object type definitions are represented by the commonj.sdo.Type and commonj.sdo.Property
interfaces. The business object programming model provides a set of rules for mapping the XML schema
complex type information to the Type interface and each of the elements in the complex type definition to
the Property interface.

Business object instances are represented by the commonj.sdo.DataObject interface. The business object
programming model is untyped, which means that the same commonj.sdo.DataObject interface can be
used to represent different business object definitions, such as Customer and Order. The definition of
which properties can be set and retrieved from each business object is determined by type information
defined in the XML schema associated with each business object.

The business object programming model behavior is based on the Service Data Object 2.1 specification.
For additional information, see the SDO 2.1 for Java specification, tutorials and javadocs on the Web:
http://osoa.org/display/Main/Service+Data+Objects+Specifications.

Business object services support various lifecycle operations (such as creation, equality, parsing, and
serialization) on business objects.

For specifics on the business object programming model, see Programming using business object services
and the Generated API and SPI documentation on business objects.

Bindings, data bindings, and data handlers

As shown in Figure 40 on page 135, business data that is used to invoke services provided by SCA
application modules is transformed into business objects so that the SCA components can manipulate the
business data. Similarly, the business objects manipulated by SCA components are converted into the data
format required by the external services.

In some cases, such as the web service binding, the binding used to export and import services
automatically transforms the data into the appropriate format. In other cases, such as the JMS binding,
developers can provide a data binding or data handler that converts non-native formats into business
objects represented by the DataObject interface.

For more information on developing data bindings and data handlers, refer to “Data handlers” on page
47 and “Data bindings” on page 48.

Components

SCA components define their provision and consumption service contracts using a combination of the
Web Services Description Language and XML schema. The business data that SCA passes between
components is represented as business objects using the DataObject interface. SCA verifies that these
business object types are compatible with the interface contract defined by the component to be invoked.

The programming model abstractions for manipulating business objects vary from component to
component. The POJO component and the mediation flow component Custom primitive provide direct
manipulating of the business objects by enabling Java programming directly using the business object
programming interfaces and services. Most components provide higher level abstractions for
manipulating business objects, but also provide snippets of Java code for defining custom behavior in the
business object interfaces and services.

136 Overview

http://osoa.org/display/Main/Service+Data+Objects+Specifications


Business objects can be transformed using either the combination of the Interface Flow Mediation and
Business Object Map component or the mediation flow component and its XML Map primitive. These
business object transformation capabilities are useful for converting application specific business objects
to and from generic business objects.

Special business objects
Service message objects and business graphs are two specialized types of business objects that are used
for specific application purposes.

Service message object

A service message object (SMO) is a specialized business object that is used by mediation flow
components to represent the collection of data associated with a service invocation.

A SMO has a fixed top-level structure consisting of headers, context, body, and attachments (if present).
v Headers carry information related to the service invocation over a particular protocol or binding.

Examples are SOAP headers and JMS headers.
v Context data carries additional logical information associated with the invocation while it is being

processed by the mediation flow component. This information is typically not part of the application
data sent or received by clients.

v The body of the SMO carries the payload business data, which represents the core application message
or invocation data in the form of a standard business object.

The SMO can also carry attachment data for Web service invocations using SOAP with attachments.

Mediation flows perform such tasks as request routing and data transformation, and the SMO provides
the combined view of header and payload contents in a single unified structure.

Business graph

A business graph is a special business object used to provide support for data synchronization in
integration scenarios.

Consider an example in which two enterprise information systems have a representation of a specific
order. When the order changes in one system, a message can be sent to the other system to synchronize
the order data. Business graphs support the notion of sending just the portion of the order that changed
to the other system and annotating it with change-summary information to define the type of change.

In this example, an Order business graph would convey to the other system that one of the line items in
the order was deleted and that the projected ship date property of the order was updated.

Business graphs can easily be added to existing business objects in Integration Designer. They are most
frequently found in scenarios in which WebSphere adapters are being used and to support the migration
of WebSphere InterChange Server applications.

Business object parsing mode
Integration Designer provides a property on modules and libraries you can use to configure XML parsing
mode for business objects to either eager or lazy.
v If the option is set to eager, XML byte streams are eagerly parsed to create the business object.
v If the option is set to lazy, the business object is created normally, but the actual parsing of the XML

byte stream is deferred and partially parsed only when the business object properties are accessed.

In either XML parsing mode, non-XML data is always eagerly parsed to create the business object.

Chapter 2. Learn more about IBM Business Process Manager 137



Considerations when choosing the business object parsing mode
The business object parsing mode determines how XML data is parsed at runtime. A business object
parsing mode is defined on a module or library when it is created. You can change the parsing mode of
the module or library, however you should be aware of the implications.

The business object parsing mode is set at the module and library level. Modules that were created in a
version of IBM Integration Designer prior to version 7 will run in the eager parsing mode without any
changes required. By default, modules and libraries that are created in IBM Integration Designer version
7 and later versions will be given the most suitable parsing mode depending on a number of factors such
as the parsing mode of existing projects in your workspace, or the parsing mode of dependent projects or
other projects in the same solution and so on. You can change the business object parsing mode of a
module or library to suit your implementation, however you should be aware of the following
considerations.

Considerations

v The lazy business object parsing mode processes XML data faster; however there are compatibility
differences between the eager mode and the lazy mode that you need to be aware of before changing
the configuration of a module or library. These differences will affect the runtime behavior of the
modules. For information on which parsing mode is optimal for your application, see Benefits of using
lazy versus eager parsing mode

v A module can only be configured to run in one parsing mode. Libraries can be configured to support
either parsing modes or both parsing modes. A library that is configured to support both parsing
modes may be referenced by both a module using the eager parsing mode and a module using the
lazy parsing mode. The parsing mode of a library an run time is determined by the modules that
reference the library. At runtime, a module declares its parsing mode, and that parsing mode is used
by the module and any libraries that the module uses.

v Modules and libraries that are configured for different parsing modes are compatible in the following
cases:
– Modules and libraries configured with the lazy parsing mode are compatible with libraries that use

either the lazy parsing mode, or both the eager and the lazy parsing modes.
– Modules and libraries configured with the eager parsing mode are compatible with libraries that

use either the eager parsing mode, or both the eager and the lazy parsing modes.
– Libraries configured with the lazy and eager parsing modes are compatible only with libraries that

use both lazy and eager parsing modes.
v Use the same parsing mode for interacting modules that communicate using the SCA binding. If

modules communicate using different parsing modes, performance problems may result.

Benefits of using lazy versus eager parsing mode
Some applications benefit from lazy XML parsing mode while others see improved performance with
eager parsing mode. It is recommended that you benchmark your application in both parsing modes to
determine which mode best suites the specific characteristics of your application.

The following section provides general guidance about the types of applications that benefit from each
type of parsing mode:
v Applications benefiting from lazy XML parsing mode

Applications that parse large XML data streams are likely to see performance improvements when the
lazy XML parsing mode is used. The performance benefits increase as the size of the XML byte stream
increases and the amount of data from the byte stream that is accessed by the application decreases.

Note: The business object lazy parsing mode is supported in WebSphere Process Server version 7.0.0.3
and later versions and in IBM Process Sewrver. Modules and mediation modules that include
mediation flow components are not supported.

v Applications benefiting from eager parsing mode

138 Overview

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/topic/com.ibm.websphere.wps.doc/doc/cbo_parsingmodebenefits.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/topic/com.ibm.websphere.wps.doc/doc/cbo_parsingmodebenefits.html


The following applications are likely to perform better in eager parsing mode:
– Applications that parse non-XML data streams
– Applications that are created using the BOFactory service
– Applications that parse very small XML messages

Application migration and development considerations
If you are configuring an application that was originally developed using eager parsing mode to now use
lazy parsing mode, or if you are planning to switch an application between lazy and eager parsing mode,
be aware of the differences between modes and the considerations when switching modes.

Error handling

If the XML byte stream being parsed is ill-formed, parsing exceptions occur.
v In eager XML parsing mode, those exceptions occur as soon as the business object is parsed from the

inbound XML stream.
v If lazy XML parsing mode is configured, the parsing exceptions occur latently when the business object

properties are accessed and the portion of the XML that is ill-formed is parsed.

To deal with ill-formed XML, select one of the following options:
v Deploy an enterprise service bus on the edges to validate inbound XML
v Author lazy error-detection logic at the point where business object properties are accessed

Exception stacks and messages

Because the eager and lazy XML parsing modes have different underlying implementations, stack traces
thrown by the business object programming interfaces and services have the same exception class name,
but they might not contain the same exception message or wrapped set of implementation-specific
exception classes.

XML serialization format

The lazy XML parsing mode provides a performance optimization that attempts to copy unmodified
XML from the inbound byte stream to the outbound byte stream upon serialization. The result is
increased performance, but the serialization format of the outbound XML byte stream might be different
if the entire business object was updated in lazy XML parsing mode or if it was running in eager XML
parsing mode.

Although the XML serialization format might not be precisely syntactically equivalent, the semantic value
provided by the business object is equivalent independent of the parsing modes, and XML can be safely
passed between applications running in different parsing modes with semantic equivalence.

Business object instance validator

The lazy XML parsing business object mode instance validator provides a higher fidelity validation of
business objects, particularly facet validation of property values. Because of these improvements, the lazy
parsing mode instance validator catches additional issues that are not caught in eager parsing mode and
provides more detailed error messages.

Version 602 XML Maps

Mediation flows originally developed before WebSphere Integration Developer Version 6.1 might contain
XSLT primitives that use a map or stylesheet that cannot execute directly in lazy XML parsing mode.
When an application is migrated for use in lazy XML parsing mode, map files associated with XSLT
primitives can be automatically updated by the migration wizard to run in the new mode. However, if an

Chapter 2. Learn more about IBM Business Process Manager 139



XSLT primitive refers directly to a stylesheet that has been edited manually, the stylesheet is not migrated
and cannot execute in lazy XML parsing mode.

Private unpublished APIs

If an application is taking advantage of unpublished, private, implementation-specific business object
programming interfaces, the application is likely to fail compilation when the parsing mode is switched.
In eager parsing mode, these private interfaces are typically business object implementation classes
defined by the Eclipse Modeling Framework (EMF).

In all cases, it is strongly recommend that private APIs be removed from the application.

Service Message Object EMF APIs

A mediation component in IBM Integration Designer provides the ability to manipulate message content
using the Java classes and interfaces provided in the com.ibm.websphere.sibx.smobo package. In lazy
XML parsing mode, the Java interfaces in the com.ibm.websphere.sibx.smobo package can still be used,
but methods that refer directly to Eclipse Modeling Framework (EMF) classes and interfaces or that are
inherited from EMF interfaces are likely to fail.

The ServiceMessageObject and its contents cannot be cast to EMF objects in lazy XML parsing mode.

BOMode service

The BOMode service is used to determine whether the currently executing XML parsing mode is eager or
lazy.

Migration

All applications before version 7.0.0.0 are running in eager XML parsing mode. When they are runtime
migrated using the BPM runtime migration tools, they continue to run in eager XML parsing mode.

To enable an application earlier than version 7.0.0.0 to be configured to use the lazy XML parsing mode,
you first use Integration Designer to migrate the artifacts of the application. After migration, you then
configure the application to use lazy XML parsing.

See Migrating source artifacts for information on migrating artifacts in Integration Designer, and see
Configuring the business object parsing mode of modules and libraries for information on setting the
parsing mode.

Relationships
A relationship is an association between two or more data entities, typically business objects.
Relationships can be used to transform data that is equivalent across business objects and other data but
that is represented differently, or they can be used to draw associations across different objects found in
different applications. They can be shared across applications, across solutions, and even across products.

The relationship service in IBM Business Process Manager Advanced provides the infrastructure and
operations for managing relationships. Because it enables you to deal with business objects regardless of
where they reside, it can provide a unified holistic view across all applications in an enterprise, and serve
as a building block for BPM solutions. Because relationships are extensible and manageable, they can be
used in complex integration solutions.

140 Overview

tmigsrcartwid.html
tconfigbo.html


What are relationships?

A relationship is an association between business objects. Each business object in a relationship is called a
participant in the relationship. Each participant in the relationship is distinguished from other participants
based on the function, or role, it serves in that relationship. A relationship contains a list of roles.

The relationship definition describes each role and specifies how the roles are related. It also describes the
overall "shape" of the relationship. For example, this role can have only one participant, but this other
role can have as many participants as necessary. You might define a car-owner relationship, for instance,
where one owner might own multiple cars. For example, one instance could have the following
participants for each of these roles:
v Car (Ferrari)
v Owner (John)

The relationship definition is a template for the relationship instance. The instance is the run-time
instantiation of the relationship. In the car-owner example above, an instance might describe any of the
following associations:
v John owns Ferrari
v Sara owns Mazda
v Bob owns Ferrari

Using relationships frees you from the need to custom build relationship tracking persistence within your
business logic. For certain scenarios, the relationship service does all the work for you. See the example
described in the section on Identity relationships.

Scenarios

Here is a typical example of a situation in which an integration solution might use relationships. A large
corporation buys multiple companies, or business units. Each business unit uses different software to
monitor personnel and laptops. The company needs a way to monitor its employees and their laptops. It
wants a solution that enables them to:
v View all the employees in the various business units as if they were in one database
v Have a single view of all their laptops
v Allow employees to log on to the system and buy a laptop
v Accommodate the different enterprise application systems in the various business units

To accomplish this, the company needs a way to ensure, for example, that John Smith and John A. Smith
in different applications are seen as the same employee. For Example, they need a way to consolidate a
single entity across multiple application spaces.

More complex relationship scenarios involve building BPEL processes that draw relationships across
different objects found in multiple applications. With complex relationship scenarios, the business objects
reside in the integration solution, and not in the applications. The relationship service provides a
platform for managing relationships persistently. Before the relationship service, you would have to build
your own object persistence service. Two examples of complex relationship scenarios are:
v You have a car business object with a VIN number in an SAP application, and you want to track the

fact that this car is owned by someone else. However, the ownership relationship is with someone in a
PeopleSoft application. In this pattern of relationships, you have two solutions and you need to build a
cross-bridge between them.

v A large retail company wants to be able to monitor merchandise returned for cash back or credit. There
are two different applications involved: an order management system (OMS) for purchases, and a
returns management system (RMS) for returns. The business objects reside in more than one
application, and you need a way to show the relationships that exist between them.

Chapter 2. Learn more about IBM Business Process Manager 141



Common usage patterns

The most common relationship patterns are equivalence patterns. These are based on cross-referencing, or
correlation. There are two types of relationships that fit this pattern: non-identity and identity.
v Non-identity relationships establish associations between business objects or other data on a

one-to-many or many-to-many basis. For each relationship instance, there can be one or more instances
of each participant. One type of non-identity relationship is a static lookup relationship. An example of
this is a relationship in which CA in an SAP application is related to California in a Siebel application.

v

Identity relationships establish associations between business objects or other data on a one-to-one
basis. For each relationship instance, there can be only one instance of each participant. Identity
relationships capture cross-references between business objects that are semantically equivalent, but
that are identified differently within different applications. Each participant in the relationship is
associated with a business object that has a value (or combination of values) that uniquely identifies
the object. Identity relationships typically transform the key attributes of business objects, such as ID
numbers and product codes.
For example, if you have car business objects in SAP, PeopleSoft, and Siebel applications, and you want
to build a solution that synchronizes them, you would normally need to introduce hand-built
relationship synchronization logic in six maps:

SAP -> generic
generic -> SAP
PeopleSoft-> generic
generic-> PeopleSoft
Siebel-> generic
generic-> Siebel

However, if you use relationships in your solution, the relationship service provides prebuilt pattern
implementations that maintains all these relationship instances for you.

Tools for working with relationships

The relationship editor in Integration Designer is the tool you use to model and design business integration
relationships and roles. For detailed background and task information about creating relationships and
using the relationship editor, see Creating relationships.

The relationship service is an infrastructure service in IBM Business Process Manager that maintains
relationships and roles in the system and provides operations for relationship and role management.

The relationship manager is the administrative interface for managing relationships. It is accessed through
the Relationship Manager pages of the administrative console.

Relationships can be invoked programmatically through the relationship service APIs.

Relationship service
The relationship service stores relationship data in relationship tables, where it keeps track of
application-specific values across applications and across solutions. The relationship service provides
operations for relationship and role management.

How relationships work

Relationships and roles are defined using the graphical interface of the relationship editor tool in
Integration Designer. The relationship service stores the correlation data in tables in the relationship
database in the default data source that you specify when you configure the relationship service. A
separate table (sometimes called a participant table) stores information for each participant in the

142 Overview



relationship. The relationship service uses these relationship tables to keep track of the related
application-specific values and propagate updated information across all the solutions.

Relationships, which are business artifacts, are deployed within a project or in a shared library. At the
first deployment, the relationship service populates the data.

At run time, when maps or other IBM Business Process Manager components need a relationship
instance, the instances of the relationship are either updated or retrieved, depending on the scenario.

Relationship and role instance data can be manipulated through three means:
v IBM Business Process Manager component Java snippet invocations of the relationship service APIs
v Relationship transformations in the IBM Business Process Manager business object mapping service
v The relationship manager tool

For detailed background and task information on creating relationships, identifying relationship types,
and using the relationship editor, see Creating relationships topic.

Relationship manager
The relationship manager is the administrative interface for managing relationships. It is accessed
through the Relationship Manager pages of the administrative console.

The relationship manager provides a graphical user interface for creating and manipulating relationship
and role data at run time. You can manage relationship entities at all levels: relationship instance, role
instance, and attribute data and property data levels. With the relationship manager, you can:
v View a list of the relationships in the system and detailed information for individual relationships
v Manage relationship instances:

– Query relationship data to view subsets of instance data
– Query relationship data to view subsets of instance data using database views
– View a list of relationship instances that match a relationship query and detailed information about

an instance
– Edit the property values for a relationship instance
– Create and delete relationship instances

v Manage roles and role instances:
– View details about a role or a role instance
– Edit role instance properties
– Create and delete role instances for a relationship
– Roll back relationship instance data to a point in time when you know the data is reliable

v Import data from an existing static relationship into your system, or export data from an existing static
relationship to an RI or CSV file

v Remove relationship schema and data from the repository when the application that uses it is
uninstalled

Relationships in Network Deployment environments
Relationships can be used in Network Deployment (ND) environments without any extra configuration.

In Network Deployment (ND) environments, relationships are installed in an application cluster.
Relationships are then visible within the cluster, and all servers in the cluster have access to the instance
data stored in the relationship database. The ability to run the relationship service in an ND environment
makes it scalable and highly available.

Chapter 2. Learn more about IBM Business Process Manager 143



The relationship manager allows relationships to be managed across different clusters through a
centralized administrative interface. You connect the relationship manager to a server in a cluster by
selecting its relationship MBean.

Relationship service APIs
Relationships can be invoked programmatically through the relationship service APIs, within or outside
of business object maps.

Three API types are available:
v Relationship instance manipulation APIs (including create, update, delete instance data directly)
v Relationship pattern support APIs (including correlate(), correlateforeignKeyLookup)
v Relationship lookup patterns (lookup APIs)

The enterprise service bus in IBM Business Process Manager
IBM Business Process Manager supports the integration of application services, including the same
capabilities as WebSphere Enterprise Service Bus.

Connecting services through an enterprise service bus
With an enterprise service bus (ESB), you can maximize the flexibility of an SOA. Participants in a service
interaction are connected to the ESB, rather than directly to one another.

When the service requester connects to the ESB, the ESB takes responsibility for delivering its requests,
using messages, to a service provider offering the required function and quality of service. The ESB
facilitates requester-provider interactions and addresses mismatched protocols, interaction patterns, or
service capabilities. An ESB can also enable or enhance monitoring and management. The ESB provides
virtualization and management features that implement and extend the core capabilities of SOA.

The ESB abstracts the following features:

Location and identity
Participants need not know the location or identity of other participants. For example, requesters
need not be aware that a request could be serviced by any of several providers; service providers
can be added or removed without disruption.

Interaction protocol
Participants need not share the same communication protocol or interaction style. For example, a
request expressed as SOAP over HTTP can be serviced by a provider that only understands
SOAP over Java Message Service (JMS).

Interface
Requesters and providers need not agree on a common interface. An ESB reconciles differences
by transforming request and response messages into a form expected by the provider.

Requesters and providers need not agree on a common interface
An ESB reconciles differences by transforming request messages into a form expected by the
provider.

Qualities of (interaction) service
Participants, or systems administrators, declare their quality-of-service requirements, including
authorization of requests, encryption and decryption of message contents, automatic auditing of
service interactions, and how their requests should be routed (for example, optimizing for speed
or cost).

Interposing the ESB between participants enables you to modulate their interaction through a logical
construct called a mediation. Mediations operate on messages in-flight between requesters and providers.

144 Overview



For example, mediations can be used to find services with specific characteristics that a requester is
asking for, or to resolve interface differences between requesters and providers. For complex interactions,
mediations can be chained sequentially.

An enterprise service bus, with mediations, performs the following actions between requester and service:
v Routing messages between services. An enterprise service bus offers a common communication

infrastructure that can be used to connect services, and thereby the business functions they represent,
without the need for programmers to write and maintain complex connectivity logic.

v Converting transport protocols between requester and service. An enterprise service bus provides a
consistent, standards-based way to integrate business functions that use different IT standards. This
enables integration of business functions that could not normally communicate, such as to connect
applications in departmental silos or to enable applications in different companies to participate in
service interactions.

v Transforming message formats between requester and service. An enterprise service bus enables
business functions to exchange information in different formats, with the bus ensuring that the
information delivered to a business function is in the format required by that application.

v Handling business events from disparate sources. An enterprise service bus supports event-based
interactions in addition to the message exchanges to handle service requests.

By using the enterprise service bus you can concentrate focus on your core business rather than your
computer systems. You can change or add to the services when you need to; for example, to respond to
changes in the business requirement, to add extra service capacity, or to add new capabilities. You can
make the required changes by reconfiguring the bus, with little or no impact to existing services and
applications that use the bus.

Enterprise service bus messaging infrastructure
IBM Business Process Manager includes enterprise service bus capabilities. IBM Business Process
Manager supports the integration of service-oriented, message-oriented, and event-driven technologies to
provide a standards-based, messaging infrastructure in an integrated enterprise service bus.

The enterprise service capabilities that you can use for your enterprise applications provide not only a
transport layer but mediation support to facilitate service interactions. The enterprise service bus is built
around open standards and service-oriented architecture (SOA). It is based on the robust Java EE
infrastructure and associated platform services provided by IBM WebSphere Application Server Network
Deployment.

IBM Business Process Manager is powered by the same technology available with IBM WebSphere
Enterprise Service Bus. This capability is part of the underlying functionality of IBM Business Process
Manager, and no additional license for WebSphere Enterprise Service Bus is required to take advantage of
these capabilities.

Enterprise Service Bus (ESB)

Service
ProviderService

request

Service
Requester

Service
Mediation

Figure 41. An enterprise service bus. The enterprise service bus is routing messages between applications, which are
requesters or providers of services. The bus is converting transport protocols and transforming message formats
between requesters and providers. In this figure, each application uses a different protocol (represented by the
different geometric shapes of their connectors) and uses different message formats.

Chapter 2. Learn more about IBM Business Process Manager 145



However, you can deploy additional stand-alone licenses of WebSphere Enterprise Service Bus around
your enterprise to extend the connectivity reach of the process integration solutions powered by IBM
Business Process Manager. For example, WebSphere Enterprise Service Bus can be installed closer to an
SAP application to host an IBM WebSphere Adapter for SAP and to transform SAP messages before
sending that information across the network to a business process choreographed by IBM Business
Process Manager.

You can deploy WebSphere Enterprise Service Bus around your enterprise to extend the connectivity
reach of the process integration solutions powered by separate installations of Process Server or other
integration solutions as part of a federated ESB. For example, WebSphere Enterprise Service Bus can be
installed closer to an SAP application to host an IBM WebSphere Adapter for SAP and to transform SAP
messages before sending that information across the network to a BPEL process choreographed by
Process Server.

Messaging or queue destination hosts
A messaging or queue destination host provides the messaging function within a server. A server
becomes the messaging destination host when you configure it as the messaging target.

A messaging engine runs within a server. The messaging engine provides messaging functions and a
connection point for applications to connect to the bus. Service Component Architecture (SCA)
asynchronous communication, JMS imports and exports, asynchronous internal processing use message
queues on the messaging engine.

The deployment environment connects the message source to the message target through the bus when
the application modules are deployed. Knowing the message source and message target helps you
determine what type of deployment environment you need.

Applications can store persistent data in a data store, which is a set of tables in a database or schema, or
in a file store. The messaging engine uses an instance of a JDBC data source to interact with that
database.

Configure the messaging destination host when you define your deployment environment by using
Server from the administrative console or designate the server as the destination host during software
installation.

Data stores:

Every messaging engine can use a data store, which is a set of tables in a database or schema that store
persistent data.

All of the tables in the data store are held in the same database schema. You can create each data store in
a separate database. Alternatively, you can create multiple data stores in the same database, with each
data store using a different schema.

A messaging engine uses an instance of a JDBC data source to interact with the database that contains the
data store for that messaging engine.

Data sources for IBM Business Process Manager
Data sources provide a link between applications and relational databases. The data sources that you use
are affected by whether you set up a stand-alone environment or a network deployment environment.

Applications use a data source to obtain connections to a relational database. A data source is analogous
to the Java EE Connector Architecture (JCA) connection factory, which provides connectivity to other
types of enterprise information systems (EIS).

146 Overview



A data source is associated with a Java Database Connectivity (JDBC) provider, which supplies the driver
implementation classes that connect with a specific type of database. Application components interact
directly with the data source to obtain connection instances to your database. The connection pool that
corresponds to each data source provides connection management.

You can create multiple data sources with different settings, and associate them with the same JDBC
provider. For example, you might use multiple data sources to access different databases within the same
database application. In IBM Business Process Manager, JDBC providers must implement one or both of
the following data source interfaces. Use these interfaces to run the application in a single-phase or
two-phase transaction protocol.

Note: Business Process Choreographer data sources are created using the Business Process
Choreographer configuration tools. Refer to Configuring Business Process Choreographer .

ConnectionPoolDataSource
A data source that supports application participation in local and global transactions, except
two-phase commit transactions. When a connection pool data source is involved in a global
transaction, the transaction manager does not provide transaction recovery. The application is
responsible for providing the backup recovery process if multiple resource managers are
involved.

XADataSource
A data source that supports application participation in any single-phase or two-phase transaction
environment. When this data source is involved in a global transaction, the WebSphere
Application Server transaction manager provides transaction recovery.

The following tables provide examples of typical stand-alone environment setups and typical deployment
environment setups:

Table 29. Typical stand-alone environment setup

Datasource Component Scope JNDI Name

WBI DataSource CommonDB Node jdbc/WPSDB

SCA Application
Bus ME data
source

SCA ME Server jdbc/com.ibm.ws.sib/nlNode01.server1-
SCA.APPLICATION.localhostNode01Cell.Bus

Business Process
Choreographer
data source

BPC Server jdbc/BPEDB

Business Process
Choreographer
ME data source

BPC ME Server jdbc/com.ibm.ws.sib/nlNode01.server1-BPC.localhostNode01Cell.Bus

event CEI Server jdbc/cei

CEI ME data
source

CEI ME Server jdbc/com.ibm.ws.sib/nlNode01.server1-CEI.cellName.BUS

Table 30. Typical deployment environment setup

Datasource Component Scope JNDI Name

WBI DataSource CommonDB Cell jdbc/WPSDB

SCA Application
Bus ME data
source

SCA ME Cluster jdbc/com.ibm.ws.sib/clusterone-
SCA.APPLICATION.enduranceTestCell01.Bus

Business Process
Choreographer
data source

BPC Cluster jdbc/BPEDB

Chapter 2. Learn more about IBM Business Process Manager 147



Table 30. Typical deployment environment setup (continued)

Datasource Component Scope JNDI Name

Business Process
Choreographer
ME data source

BPC ME Cluster jdbc/com.ibm.ws.sib/clusterone-BPC.enduranceTestCell01.Bus

event CEI Cluster jdbc/cei

CEI ME data
source

CEI ME Cluster jdbc/com.ibm.ws.sib/clusterone-CEI.cellName.BUS

JDBC providers:

You can use JDBC providers to interact applications with relational databases.

Applications use JDBC providers to interact with relational databases. The JDBC provider supplies the
specific JDBC driver implementation class for access to a specific type of database. To create a pool of
connections to that database, you associate a data source with the JDBC provider. Together, the JDBC
provider and the data source objects are functionally equivalent to the Java EE Connector Architecture
(JCA) connection factory, which provides connectivity with a non-relational database.

Refer to the examples of both Typical stand-alone environment setup and Typical deployment
environment setup in the previous topic.

For more information on JDBC providers, see “JDBC providers” in the WebSphere Application Server
information center.

Service integration buses for IBM Business Process Manager
A service integration bus is a managed communication mechanism that supports service integration
through synchronous and asynchronous messaging. A bus consists of interconnecting messaging engines
that manage bus resources. It is one of the WebSphere Application Server technologies on which IBM
Business Process Manager is based.

Some buses are automatically created for use by the system, the Service Component Architecture (SCA)
applications that you deploy, and by other components. You can also create buses to support service
integration logic or other applications, for example, to support applications that act as service requesters
and providers within IBM Business Process Manager, or to link to WebSphere MQ.

A bus destination is a logical address to which applications can attach as a producer, consumer, or both.
A queue destination is a bus destination that is used for point-to-point messaging.

Each bus can have one or more bus members, each of which is either a server or a cluster.

The bus topology is the physical arrangement of application servers, messaging engines, and WebSphere
MQ queue managers, and the pattern of bus connections and links between them, that makes up your
enterprise service bus.

Some service integration buses are created automatically to support IBM Business Process Manager. Up to
four buses are created when you create your deployment environment or configure a server or cluster to
support SCA applications. These buses each have three authentication aliases that you must configure.

148 Overview



SCA system bus:

The SCA system bus is a service integration bus that is used to host queue destinations for Service
Component Architecture (SCA) modules. The SCA run time, which supports mediation modules, uses
queue destinations on the system bus as an infrastructure to support asynchronous interactions between
components and modules.

The system bus is automatically created when you create a deployment environment or when you
configure a server or cluster to support SCA applications. The system bus provides a scope within which
resources, such as queue destinations, are configured for mediation modules and interaction endpoints.
The bus enables message routing between endpoints. You can specify the quality of service for the bus,
including priority and reliability.

The bus name is SCA.SYSTEM.busID.Bus. The authentication alias used for securing this bus is
SCA_Auth_Alias.

SCA application bus:

The application bus destinations support the asynchronous communication of WebSphere Business
Integration Adapters and other System Component Architecture components.

The application bus is automatically created when you create a deployment environment or when you
configure a server or cluster to support SCA applications. The application bus is similar to service
integration buses you might create to support service integration logic or other applications.

The bus name is SCA.APPLICATION.busID.Bus. The authentication alias used for securing this bus is
SCA_Auth_Alias.

The Common Event Infrastructure bus:

The Common Event Infrastructure bus is used for transmitting common base events, asynchronously, to
the configured Common Event Infrastructure server.

The bus name is CommonEventInfrastructure_Bus. The authentication alias used for securing this bus is
CommonEventInfrastructureJMSAuthAlias

The Business Process Choreographer bus:

Use the Business Process Choreographer bus name and authentication for internal message transmission.

The Business Process Choreographer bus is used for transmitting messages internally and for business
flow manager's Java Messaging Service (JMS) API.

The bus name is BPC.cellName.Bus. The authentication alias is BPC_Auth_Alias

Service applications and service modules
A service module is a Service Component Architecture (SCA) module that provides services in the run
time. When you deploy a service module toIBM Business Process Manager, you build an associated
service application that is packaged as an Enterprise ARchive (EAR) file.

Service modules are the basic units of deployment and can contain components, libraries, and staging
modules used by the associated service application. Service modules have exports and, optionally,
imports to define the relationships between modules and service requesters and providers. WebSphere
Process Server supports modules for business services and mediation modules. Both modules and
mediation modules are types of SCA modules. A mediation module allows communication between
applications by transforming the service invocation to a format understood by the target, passing the

Chapter 2. Learn more about IBM Business Process Manager 149



request to the target and returning the result to the originator. A module for a business service
implements the logic of a business process. However, a module can also include the same mediation logic
that can be packaged in a mediation module.

Deploying a service application

The process of deploying an EAR file containing a service application is the same as the process of
deploying any EAR file. You can modify values for mediation parameters at deployment time. After you
have deployed an EAR file containing an SCA module, you can view details about the service application
and its associated module. You can see how a service module is connected to service requesters (through
exports) and service providers (through imports).

Viewing SCA module details

The service module details that you can view depend upon the SCA module. They can include the
following attributes.
v SCA module name
v SCA module description
v Associated application name
v SCA module version information, if the module is versioned
v SCA module imports:

– Import interfaces are abstract definitions that describe how an SCA module accesses a service.
– Import bindings are concrete definitions that specify the physical mechanism by which an SCA

module accesses a service. For example, using SOAP/HTTP.
v SCA module exports:

– Export interfaces are abstract definitions that describe how service requesters access an SCA module.
– Export bindings are concrete definitions that specify the physical mechanism by which a service

requester accesses an SCA module, and indirectly, a service.
v SCA module properties

Imports and import bindings
Imports define interactions between SCA modules and service providers. SCA modules use imports to
permit components to access external services (services that are outside the SCA module) using a local
representation. Import bindings define the specific way that an external service is accessed.

If SCA modules do not need to access external services, they are not required to have imports. Mediation
modules usually have one or more imports that are used to pass messages or requests on to their
intended targets.

Interfaces and bindings

An SCA module import needs at least one interface, and an SCA module import has a single binding.
v Import interfaces are abstract definitions that define a set of operations using Web Services Description

Language (WSDL), an XML language for describing Web services. An SCA module can have many
import interfaces.

v Import bindings are concrete definitions that specify the physical mechanism that SCA modules use to
access an external service.

Supported import bindings

IBM Business Process Manager supports the following import bindings:
v SCA bindings connect SCA modules to other SCA modules. SCA bindings are also referred to as

default bindings.

150 Overview



v Web Service bindings permit components to invoke Web services. The supported protocols are
SOAP1.1/HTTP, SOAP1.2/HTTP, and SOAP1.1/JMS.
You can use a SOAP1.1/HTTP or SOAP1.2/HTTP binding based on the Java API for XML Web
Services (JAX-WS), which allows interaction with services using document or RPC literal bindings and
which uses JAX-WS handlers to customize invocations. A separate SOAP1.1/HTTP binding is provided
to allow interaction with services that use an RPC-encoded binding or where there is a requirement to
use JAX-RPC handlers to customize invocations.

v HTTP bindings permit you to access applications using the HTTP protocol.
v Enterprise JavaBeans (EJB) import bindings enable SCA components to invoke services provided by

Java EE business logic running on a Java EE server.
v Enterprise information system (EIS) bindings provide connectivity between SCA components and an

external EIS. This communication is achieved through the use of resource adapters.
v Java Message Service (JMS) 1.1 bindings permit interoperability with the WebSphere Application Server

default messaging provider. JMS can exploit various transport types, including TCP/IP and HTTP or
HTTPS. The JMS Message class and its five subtypes (Text, Bytes, Object, Stream, and Map) are
automatically supported.

v Generic JMS bindings permit interoperability with third-party JMS providers that integrate with the
WebSphere Application Server using the JMS Application Server Facility (ASF).

v WebSphere MQ JMS bindings permit interoperability with WebSphere MQ-based JMS providers. The
JMS Message class and its five subtypes (Text, Bytes, Object, Stream, and Map) are automatically
supported. If you want to use WebSphere MQ as a JMS provider, use WebSphere MQ JMS bindings.

v WebSphere MQ bindings permit interoperability with WebSphere MQ. You can use WebSphere MQ
bindings only with remote queue managers by way of a WebSphere MQ client connection; you cannot
use them with local queue managers. Use WebSphere MQ bindings if you want to communicate with
native WebSphere MQ applications.

Dynamic invocation of services

Services can be invoked through any supported import binding. A service is normally found at an
endpoint specified in the import. This endpoint is called a static endpoint. It is possible to invoke a
different service by overriding the static endpoint. Dynamic override of static endpoints lets you invoke a
service at another endpoint, through any supported import binding. Dynamic invocation of services also
permits you to invoke a service where the supported import binding does not have a static endpoint.

An import with an associated binding is used to specify the protocol and its configuration for dynamic
invocation. The import used for the dynamic invocation can be wired to the calling component, or it can
be dynamically selected at runtime.

For Web service and SCA invocations, it is also possible to make a dynamic invocation without an
import, with the protocol and configuration deduced from the endpoint URL. The invocation target type
is identified from the endpoint URL. If an import is used, the URL must be compatible with the protocol
of the import binding.
v An SCA URL indicates invocation of another SCA module.
v An HTTP or a JMS URL by default indicates invocation of a Web service; for these URLs, it is possible

to provide an additional binding type value that indicates that the URL represents an invocation by
way of an HTTP or JMS binding.

v For a Web service HTTP URL, the default is to use SOAP 1.1, and a binding type value can be
specified that indicates the use of SOAP 1.2.

Exports and export bindings
Exports define interactions between SCA modules and service requesters. SCA modules use exports to
offer services to others. Export bindings define the specific way that an SCA module is accessed by
service requesters.

Chapter 2. Learn more about IBM Business Process Manager 151



Interfaces and bindings

An SCA module export needs at least one interface.
v Export interfaces are abstract definitions that define a set of operations using Web Services Description

Language (WSDL), an XML language for describing Web services. An SCA module can have many
export interfaces.

v Export bindings are concrete definitions that specify the physical mechanism that service requesters use
to access a service. Usually, an SCA module export has one binding specified. An export with no
binding specified is interpreted by the run time as an export with an SCA binding.

Supported export bindings

IBM Business Process Manager supports the following export bindings:
v SCA bindings connect SCA modules to other SCA modules. SCA bindings are also referred to as

default bindings.
v Web Service bindings permit exports to be invoked as Web services. The supported protocols are

SOAP1.1/HTTP, SOAP1.2/HTTP, and SOAP1.1/JMS.
You can use a SOAP1.1/HTTP or SOAP1.2/HTTP binding based on the Java API for XML Web
Services (JAX-WS), which allows interaction with services using document or RPC literal bindings and
which uses JAX-WS handlers to customize invocations. A separate SOAP1.1/HTTP binding is provided
to allow interaction with services that use an RPC-encoded binding or where there is a requirement to
use JAX-RPC handlers to customize invocations.

v HTTP bindings permit exports to be accessed using the HTTP protocol.
v Enterprise JavaBeans (EJB) export bindings allow SCA components to be exposed as EJBs so that Java

EE business logic can invoke SCA components otherwise unavailable to them.
v Enterprise information system (EIS) bindings provide connectivity between SCA components and an

external EIS. This communication is achieved through the use of resource adapters.
v Java Message Service (JMS) 1.1 bindings permit interoperability with the WebSphere Application Server

default messaging provider. JMS can exploit various transport types, including TCP/IP and HTTP or
HTTPS. The JMS Message class and its five subtypes (Text, Bytes, Object, Stream, and Map) are
automatically supported.

v Generic JMS bindings permit interoperability with third-party JMS providers that integrate with the
WebSphere Application Server using the JMS Application Server Facility (ASF).

v WebSphere MQ JMS bindings permit interoperability with WebSphere MQ-based JMS providers. The
JMS Message class and its five subtypes (Text, Bytes, Object, Stream, and Map) are automatically
supported. If you want to use WebSphere MQ as a JMS provider, use WebSphere MQ JMS bindings.

v WebSphere MQ bindings permit interoperability with WebSphere MQ. You use a remote (or client)
connection to connect to an MQ queue manager on a remote machine. A local (or bindings) connection
is a direct connection to WebSphere MQ. This can be used only for a connection to an MQ queue
manager on the same machine. WebSphere MQ will permit both types of connection, but MQ bindings
only support the "remote" (or "client") connection.

Mediation modules
Mediation modules are Service Component Architecture (SCA) modules that can change the format,
content, or target of service requests.

Mediation modules operate on messages that are in-flight between service requesters and service
providers. You are able to route messages to different service providers and to amend message content or
form. mediation modules can provide functions such as message logging, and error processing that is
tailored to your requirements.

You can change certain aspects of mediation modules, from the administrative console, without having to
redeploy the module.

152 Overview



Components of mediation modules

Mediation modules contain the following items:
v Imports, which define interactions between SCA modules and service providers. They allow SCA

modules to call external services as if they were local. You can view mediation module imports and
modify the binding.

v Exports, which define interactions between SCA modules and service requesters. They allow an SCA
module to offer a service and define the external interfaces (access points) of an SCA module. You can
view mediation module exports.

v SCA components, which are building blocks for SCA modules such as mediation modules. You can
create and customize SCA modules and components graphically, using Integration Designer. After you
deploy a mediation module you can customize certain aspects of it from the administrative console,
without having to redeploy the module.
Usually, mediation modules contain a specific type of SCA component called a mediation flow
component. Mediation flow components define mediation flows.
A mediation flow component can contain none, one, or a number of mediation primitives. IBM
Business Process Manager supports a supplied set of mediation primitives that provide functionality
for message routing and transformation. If you need additional mediation primitive flexibility, you can
use the Custom Mediation primitive to call custom logic.
The purpose of a mediation module that does not contain a mediation flow component is to transform
service requests from one protocol to another. For example, a service request might be made using
SOAP/JMS but might need transforming to SOAP/HTTP before sending on.

Note: You can view and make certain changes to mediation modules from IBM Business Process
Manager. However, you cannot view or change the SCA components inside a module fromIBM
Business Process Manager. Use Integration Designer to customize SCA components.

v Properties
Mediation primitives have properties, some of which can be displayed in the administrative console as
additional properties of an SCA module.
For mediation primitive properties to be visible from the IBM Business Process Manager administrative
console, the integration developer must promote the properties. Certain properties lend themselves to

mediation
module
export

mediation
module
import

mediation flow component

mediation
primitive

mediation
primitive

stop mediation
primitive

Fail output terminalOutput terminalInput terminal

Interface Reference

Figure 42. Simplified example of a mediation module. The mediation module contains one mediation flow component,
which contains mediation primitives.

Chapter 2. Learn more about IBM Business Process Manager 153



being administratively configured and Integration Designer describes these as promotable properties,
because they can be promoted from the integration cycle to the administrative cycle. Other properties
are not suitable for administrative configuration, because modifying them can affect the mediation flow
in such a way that the mediation module needs to be redeployed. Integration Designer lists the
properties that you can choose to promote under the promoted properties of a mediation primitive.
You can use the IBM Business Process Manager administrative console to change the value of
promoted properties without having to redeploy a mediation module, or restart the server or module.
Generally, mediation flows use property changes immediately. However, if property changes occur in a
deployment manager cell, they take effect on each node as that node is synchronized. Also, mediation
flows that are in-flight continue to use previous values.

Note: From the administrative console, you can only change property values, not property groups,
names or types. If you want to change property groups, names or types, you must use Integration
Designer.

v A mediation module or dependent library may also define subflows. A subflow encapsulates a set of
mediation primitives wire together as a reusable piece of integration logic. A primitive can be added to
a mediation flow to invoke a subflow.

Deploying mediation modules

Mediation modules are created using Integration Designer, and are generally deployed to IBM Business
Process Manager inside an enterprise archive (EAR) file.

You can change the value of promoted properties at deployment time.

You can export a mediation module from Integration Designer, and cause Integration Designer to package
the mediation module inside a Java archive (JAR) file, and the JAR file inside an EAR file. You can then
deploy the EAR file, by installing a new application from the administrative console.

Mediation modules can be thought of as one entity. However, SCA modules are defined by a number of
XML files stored in a JAR file.

Mediation primitives
Mediation flow components operate on message flows between service components. The capabilities of a
mediation component are implemented by mediation primitives, which implement standard service
implementation types.

A mediation flow component has one or more flows. For example, one for request and one for reply.

Example of EAR file, containing a mediation module

Utility JAR file
containing a
mediation module

EJB JAR
file

Manifest
file

WAR
file

Figure 43. Simplified example of an EAR file containing a mediation module. The EAR file contains JARs. The utility
JAR file contains a mediation module.

154 Overview



IBM Business Process Manager supports a supplied set of mediation primitives, which implement
standard mediation capabilities for mediation modules or modules deployed into IBM Business Process
Manager. If you need special mediation capabilities, you can develop your own custom mediation
primitives.

A mediation primitive defines an “in” operation that processes or handles messages that are represented
by service message objects (SMOs). A mediation primitive can also define “out” operations that send
messages to another component or module.

You can use Integration Designer to configure mediation primitives and set their properties. Some of
these properties can be made visible to the runtime administrator by promoting them. Any mediation
primitive property that can be promoted can also be a dynamic property. A dynamic property can be
overridden, at run time, using a policy file.

Integration Designer also allows you to graphically model and assemble mediation flow components
from mediation primitives, and assemble mediation modules or modules from mediation flow
components. The administrative console refers to mediation modules and modules as SCA modules.

Integration Designer also allows the definition of subflows in modules or their dependent libraries. A
subflow can contain any mediation primitive except for the Policy Resolution mediation primitive. A
subflow is invoked from a request or response flow, or from another subflow using the Subflow
mediation primitive. Properties promoted from mediation primitives in a subflow are exposed as
properties on the Subflow mediation primitives. These may then be promoted again until they reach the
module level at which point they can then be modified by the runtime administrator.

Supported mediation primitives

The following set of mediation primitives are supported by IBM Business Process Manager:

Business Object Map
Transforms messages.
v Defines message transformations using a business object map, which can be reused.
v Allows you to define message transformations graphically, using the business object map

editor.
v Can alter the content of a message.
v Can transform an input message type to a different output message type.

Mediation
primitive
myMap

Mediation
primitive
myLogger

Service
message

object

XSLT MessageLogger

Export Import

Mediation module

Mediation
primitive
myFilter

MessageFilter

Figure 44. Mediation module containing three mediation primitives

Chapter 2. Learn more about IBM Business Process Manager 155



Custom Mediation
Allows you to implement your own mediation logic in Java code. The Custom Mediation
primitive combines the flexibility of a user-defined mediation primitive, with the simplicity of a
pre-defined mediation primitive. You can create complex transformations and routing patterns by:
v Creating Java code.
v Creating your own properties.
v Adding new terminals.

You can call a service from a Custom Mediation primitive, but the Service Invoke mediation
primitive is designed to call services and provides additional functionality, such as retry.

Data Handler
Allows you to transform a part of a message. It is used to convert an element of a message from
a physical format to a logical structure or a logical structure to a physical format. The primary
usage of the primitive is to convert a physical format, such as a Text string within a JMS Text
Message object, into a logical Business Object structure and back again. This mediation is
commonly used to:
v Transform a section of the input message from a defined structure to another - an example of

this would be were the SMO includes a string value that is comma delimited and you want to
parse this into a specific Business Object.

v Alter the message type – an example would be when a JMS export has been configured to use
a JMS basic typed data binding and within the mediation module the integration developer
decides that the content should be inflated to a specific BO structure.

Database Lookup
Modifies messages, using information from a user-supplied database.
v You must set up a database, data source, and any server authentication settings for the

Database Lookup mediation primitive to use. Use the administrative console to help you do
this.

v The Database Lookup mediation primitive can read from only one table.
v The specified key column must contain a unique value.
v The data in the value columns must be either a simple XML schema type, or an XML schema

type that extends a simple XML schema type.

Endpoint Lookup
Allows for the dynamic routing of requests, by searching for service endpoints in a repository.
v Service endpoint information is retrieved from a WebSphere Service Registry and Repository

(WSRR). The WSRR registry can be local or remote.
v You make registry changes from the WSRR administrative console.
v IBM Business Process Manager needs to know which registry to use, therefore, you must create

WSRR access definitions using the IBM Business Process Manager administrative console.

Event Emitter
Enhances monitoring by letting you send events from inside a mediation flow component.
v You can suspend the mediate action by deselecting the check box.
v You can view Event Emitter events using the Common Base Events (CBE) browser on IBM

Business Process Manager.
v You should only send events at a significant point in a mediation flow, for performance

reasons.
v You can define the parts of the message that the event contains.
v The events are sent in the form of Common Base Events and are sent to a Common Event

Infrastructure server.
v To fully use the Event Emitter information, event consumers need to understand the structure

of the Common Base Events. The Common Base Events has an overall schema, but this does

156 Overview



not model the application specific data, which is contained in the extended data elements. To
model the extended data elements, the Integration Designer tools generate a Common Event
Infrastructure event catalog definition file for each of the configured Event Emitter mediation
primitives. Event catalog definition files are export artifacts that are provided to help you; they
are not used by Integration Designer or by the IBM Business Process Manager runtime. You
should refer to the event catalog definition files when you create applications to consume
Event Emitter events.

v You can specify other monitoring from IBM Business Process Manager. For example, you can
monitor events to be emitted from imports and exports.

Fail Stops a particular path in the flow, and generates an exception.

Fan In Helps aggregate (combine) messages.
v Can only be used in combination with the Fan Out mediation primitive.
v Together, the Fan Out and Fan In mediation primitives allow aggregation of data into one

output message.
v The Fan In mediation primitive receives messages until a decision point is reached, then one

message is output.
v The shared context should be used to hold aggregation data.

Fan Out
Helps split and aggregate (combine) messages.
v Together, the Fan Out and Fan In mediation primitives allow aggregation of data into one

output message.
v In iterate mode, the Fan Out mediation primitive lets you iterate through a single input

message that contains a repeating element. For each occurrence of the repeating element, a
message is sent.

v The shared context should be used to hold aggregation data.

HTTP Header Setter
Provides a mechanism for managing headers in HTTP messages.
v Can create, set, copy, or delete HTTP message headers.
v Can set multiple actions to change multiple HTTP headers.

MQ Header Setter
Provides a mechanism for managing headers in MQ messages.
v Can create, set, copy, or delete MQ message headers.
v Can set multiple actions to change multiple MQ headers.

SOAP Header Setter
Provides a mechanism for managing headers in SOAP messages.
v Can create, set, copy, or delete SOAP message headers.
v Can set multiple actions to change multiple SOAP headers.

Message Element Setter
Provides a simple mechanism for setting the content of messages.
v Can change, add or delete message elements.
v Does not change the type of the message.
v The data in the value columns must be either a simple XML schema type, or an XML schema

type that extends a simple XML schema type.

Message Filter
Routes messages down different paths, based on the message content.
v You can suspend the mediate action by deselecting the check box.

Chapter 2. Learn more about IBM Business Process Manager 157



Message Logger
Logs messages in a relational database or through your own custom logger. The messages are
stored as XML, therefore, data can be post-processed by XML-aware applications.
v You can suspend the mediate action by deselecting the check box.
v The rational database schema (table structure) is defined by IBM.
v By default, the Message Logger mediation primitive uses the Common database. The runtime

maps the data source at jdbc/mediation/messageLog to the Common database.
v You can set Handler implementation classes to customize the behavior of the custom logger.

Optionally, you can provide Formatter implementation classes, Filter implementation classes, or
both to customize the behavior of the custom logger.

Policy Resolution
Allows for the dynamic configuration of requests, by searching for service endpoints, and
associated policy files, in a repository.
v You can use a policy file to dynamically override the promoted properties of other mediation

primitives.
v Service endpoint information and policy information is retrieved from a WebSphere Service

Registry and Repository (WSRR). The WSRR registry can be local or remote.
v You make registry changes from the WSRR administrative console.
v IBM Business Process Manager needs to know which registry to use, therefore, you must create

WSRR access definitions using the IBM Business Process Manager administrative console.

Service Invoke
Calls a service from inside a mediation flow, rather than waiting until the end of the mediation
flow and using the callout mechanism.
v If the service returns a fault, you can retry the same service or call another service.
v The Service Invoke mediation primitive is a powerful mediation primitive that can be used on

its own for simple service calls, or in combination with other mediation primitives for complex
mediations.

Set Message Type
During integration development, lets you treat weakly-typed message fields as though they are
strongly-typed. A field is weakly-typed if it can contain more than one type of data. A field is
strongly-typed if its type and internal structure are known.
v At runtime, the Set Message Type mediation primitive lets you check that the content of a

message matches the data types you expect.

Stop Stops a particular path in the flow, without generating an exception.

Type Filter
Allows you to direct messages down a different path of a flow, based on their type.

XSL Transformation
Transforms messages.
v Allows you to perform Extensible Stylesheet Language (XSL) transformations.
v You transform messages using an XSLT 1.0 transformation. The transformation operates on an

XML serialization of the message.

Dynamic routing
You can route messages in various ways using endpoints defined at integration time or endpoints
determined, dynamically, at run time.

Dynamic routing covers message routing where the flow is dynamic but all possible endpoints are
predefined in a Service Component Architecture (SCA) module, and message routing where the flow is
dynamic and the endpoint selection is also dynamic. In the latter case, the service endpoints are selected
from an external source, at run time.

158 Overview



Dynamic endpoint selection

The run time has the capability to route request and response messages to an endpoint address identified
by a message header element. This message header element can be updated by mediation primitives, in a
mediation flow. The endpoint address could be updated with information from a registry, a database, or
with information from the message itself. Routing of response messages applies only when the response
is being sent by a Web service JAX-WS export.

In order for the run time to implement dynamic routing on a request or response, the SCA module must
have the Use dynamic endpoint if set in the message header property set. Integration developers can
set the Use dynamic endpoint if set in the message header property or they can promote it (make it
visible at run time), so that the runtime administrator can set it. You can view module properties in the
Module Properties window. To see the window, click Applications > SCA Modules > Module
Properties. The integration developer gives promoted properties alias names, and these are the names
displayed on the administrative console.

Registry

You can use IBM WebSphere Service Registry and Repository (WSRR) to store service endpoint
information, and then create SCA modules to retrieve endpoints from the WSRR registry.

When you develop SCA modules, you use the Endpoint Lookup mediation primitive to allow a
mediation flow to query a WSRR registry for a service endpoint, or a set of service endpoints. If an SCA
module retrieves a set of endpoints then it must use another mediation primitive to select the preferred
one.

Mediation policy control of service requests
You can use mediation policies to control mediation flows between service requesters and service
providers.

You can control mediation flows using mediation policies stored in IBM WebSphere Service Registry and
Repository (WSRR). The implementation of service policy management in WSRR is based on the Web
Services Policy Framework (WS-Policy).

In order to control service requests using mediation policies, you must have suitable Service Component
Architecture (SCA) modules and mediation policy documents in your WSRR registry.

How to attach a mediation policy to a service request

When you develop an SCA module that needs to make use of a mediation policy, you must include a
Policy Resolution mediation primitive in the mediation flow. At run time, the Policy Resolution mediation
primitive obtains mediation policy information from the registry. Therefore, an SCA module must contain
a mediation flow component in order to support mediation policy control of service requests.

In the registry, you can attach one or more mediation policies to an SCA module, or to a target service
used by the SCA module. Attached mediation policies could be used (are in scope) for all service
messages processed by that SCA module. The mediation policies can have policy attachments that define
conditions. Mediation policy conditions allow different mediation policies to apply in different contexts.
In addition, mediation policies can have classifications, which can be used to specify a governance state.

WebSphere Service Registry and Repository
The WebSphere Service Registry and Repository (WSRR) product allows you to store, access, and manage
information about service endpoints and mediation policies. You can use WSRR to make your service
applications more dynamic, and more adaptable to changing business conditions.

Chapter 2. Learn more about IBM Business Process Manager 159



Introduction

Mediation flows can use WSRR as a dynamic lookup mechanism, providing information about service
endpoints or mediation policies.

To configure access to WSRR, you create WSRR definition documents using the administrative console.
Alternatively, you can use the WSRR administration commands from the wsadmin scripting client. WSRR
definitions and their connection properties are the mechanism used to connect to a registry instance, and
retrieve a service endpoint or mediation policy.

Service endpoints

You can use WSRR to store information about services that you already use, that you plan to use, or that
you want to be aware of. These services might be in your systems, or in other systems. For example, an
application could use WSRR to locate the most appropriate service to satisfy its functional and
performance needs.

When you develop an SCA module that needs to access service endpoints from WSRR, you must include
an Endpoint Lookup mediation primitive in the mediation flow. At run time, the Endpoint Lookup
mediation primitive obtains service endpoints from the registry.

Mediation policies

You can also use WSRR to store mediation policy information. Mediation policies can help you to control
service requests, by dynamically overriding module properties. If WSRR contains mediation policies that
are attached to an object representing either your SCA module or your target service, then the mediation
policies could override the module properties. If you want different mediation policies to apply in
different contexts, you can create mediation policy conditions.

Note: Mediation policies are concerned with the control of mediation flows, and not with security.

When you develop an SCA module that needs to make use of a mediation policy, you must include a
Policy Resolution mediation primitive in the mediation flow. At run time, the Policy Resolution mediation
primitive obtains mediation policy information from the registry.

Message Service clients
Message Service clients is available for C/C++ and .NET to enable non-Java applications to connect to the
enterprise service bus.

Message Service Clients for C/C++ and .NET provides an API called XMS that has the same set of
interfaces as the Java Message Service (JMS) API. Message Service Client for C/C++ contains two
implementations of XMS, one for use by C applications and another for use by C++ applications.
Message Service Client for .NET contains a fully-managed implementation of XMS, which can be used by
any .NET compliant language.

You can obtain Message Service Clients for .NET from http://www-01.ibm.com/support/
docview.wss?rs=0&q1=IA9H&uid=swg24011756&loc=en_US&cs=utf-8&cc=us&lang=en

You can obtain Message Service Clients for C/C++ from http://www-01.ibm.com/support/
docview.wss?rs=0&q1=ia94&uid=swg24007092&loc=en_US&cs=utf-8&cc=us&lang=en.

You can also install and use the Java EE client support from WebSphere Application Server Network
Deployment, including Web services Client, EJB Client, and JMS Client.

160 Overview

http://www-01.ibm.com/support/docview.wss?rs=0&q1=IA9H&uid=swg24011756&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=IA9H&uid=swg24011756&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=ia94&uid=swg24007092&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=ia94&uid=swg24007092&loc=en_US&cs=utf-8&cc=us&lang=en


Chapter 2. Learn more about IBM Business Process Manager 161


	PDF books and the information center
	Contents
	Chapter 1. Getting started with IBM Business Process Manager V7.5
	Product overview
	IBM Business Process Manager V7.5 configurations
	IBM Business Process Manager V7.5 configuration capabilities
	The Process Center repository
	Process Server and runtime environments
	Authoring environments
	What's new in IBM Business Process Manager V7.5
	What's new in Version 7.5 business process management product information
	Accessibility in IBM Business Process Manager
	National languages supported in IBM Business Process Manager

	Business process management overview
	Overview of process modeling
	Process development with the Process Center
	Process applications: Overview
	Running and debugging processes
	Deploying and managing process applications
	Creating, accessing, and incorporating services
	Accessing services external to an application
	Creating or calling a Web service



	Chapter 2. Learn more about IBM Business Process Manager
	Versioning
	Versioning process applications
	Versioning modules and libraries
	Naming conventions
	Naming conventions for Process Center server deployments
	Naming conventions for Process Server deployments

	Version-aware bindings
	Version-aware dynamic invocation
	Deploying process applications with Java modules and projects
	Deploying process applications with business rules and selectors

	Deployment architecture
	Cells
	Servers
	Stand-alone servers
	Clusters

	Profiles
	Deployment managers
	Nodes
	Managed nodes
	Unmanaged nodes

	Node agents
	Naming considerations for profiles, nodes, servers, hosts, and cells

	Bindings
	Export and import binding overview
	Export and import binding configuration
	Data format transformation in imports and exports
	Data handlers
	Data bindings

	Function selectors in export bindings
	Fault handling
	How faults are handled in export bindings
	How faults are handled in import bindings


	Interoperability between SCA modules and Open SCA services
	Binding types
	Selecting appropriate bindings
	SCA bindings
	Web service bindings
	Web service bindings overview
	SOAP header propagation
	Transport header propagation
	Working with Web service (JAX-WS) bindings
	Importing SAML policy sets
	Invoking web services that require HTTP basic authentication
	Checking the server configuration

	Attachments in SOAP messages
	How to choose the appropriate attachment style
	Referenced attachments: swaRef-typed elements
	Referenced attachments: top-level message parts
	Unreferenced attachments

	Use of WSDL document style binding with multipart messages

	HTTP bindings
	HTTP bindings overview
	HTTP headers
	HTTP data bindings

	EJB bindings
	EJB import bindings
	EJB export bindings
	EJB binding properties
	JNDI names and EJB import bindings
	JAX-WS data handler
	EJB fault selector
	EJB function selector


	EIS bindings
	EIS bindings overview
	Key features of EIS bindings
	JCA Interaction Spec and Connection Spec dynamic properties
	External clients with EIS bindings

	JMS bindings
	JMS bindings overview
	JMS integration and resource adapters
	Key features of JMS bindings
	JMS headers
	JMS temporary dynamic response destination correlation scheme
	External clients
	Working with external clients

	Troubleshooting JMS bindings
	Handling exceptions

	Generic JMS bindings
	Generic JMS bindings overview
	Key features of Generic JMS bindings
	Generic JMS headers
	Troubleshooting Generic JMS bindings
	Handling exceptions

	WebSphere MQ JMS bindings
	WebSphere MQ JMS bindings overview
	Key features of WebSphere MQ JMS bindings
	JMS headers
	External clients
	Troubleshooting WebSphere MQ JMS bindings
	Handling exceptions

	WebSphere MQ bindings
	WebSphere MQ bindings overview
	Key features of a WebSphere MQ binding
	WebSphere MQ headers
	Adding MQCIH statically in a WebSphere MQ binding
	External clients
	Troubleshooting WebSphere MQ bindings
	Handling exceptions

	Limitations of bindings
	Limitations of the MQ binding
	Limitations of the JMS, MQ JMS, and generic JMS bindings



	Business objects
	Defining business objects
	Working with business objects
	Special business objects
	Business object parsing mode
	Considerations when choosing the business object parsing mode
	Benefits of using lazy versus eager parsing mode
	Application migration and development considerations


	Relationships
	Relationship service
	Relationship manager
	Relationships in Network Deployment environments
	Relationship service APIs

	The enterprise service bus in IBM Business Process Manager
	Connecting services through an enterprise service bus
	Enterprise service bus messaging infrastructure
	Messaging or queue destination hosts
	Data stores

	Data sources for IBM Business Process Manager
	JDBC providers

	Service integration buses for IBM Business Process Manager
	SCA system bus
	SCA application bus
	The Common Event Infrastructure bus
	The Business Process Choreographer bus


	Service applications and service modules
	Imports and import bindings
	Exports and export bindings
	Mediation modules
	Mediation primitives
	Dynamic routing
	Mediation policy control of service requests
	WebSphere Service Registry and Repository

	Message Service clients



