
WebSphere MQ

Using C++

SC34-6067-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices”, on page 155.

Third edition (December 2002)

This is the third edition of this book that applies to WebSphere MQ. It applies to the following WebSphere MQ V5.3
products:
v WebSphere MQ for AIX

v WebSphere MQ for HP-UX

v WebSphere MQ for iSeries

v WebSphere MQ for Linux for Intel

v WebSphere MQ for Linux for zSeries

v WebSphere MQ for Solaris

v WebSphere MQ for Windows

v WebSphere MQ for z/OS

and to any subsequent releases and modifications until otherwise indicated in new editions.

Unless otherwise stated, the information also applies to these products:
v MQSeries for Compaq NonStop Kernel, V5.1

v MQSeries for Compaq OpenVMS Alpha, V5.1

v MQSeries for Compaq Tru64 UNIX, V5.1

v MQSeries for OS/2 Warp, V5.1

v MQSeries for Sun Solaris, Intel Platform Edition, V5.1

© Copyright International Business Machines Corporation 1997, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|

Contents

Figures vii

Tables ix

About this book xi
What you need to know to understand this book . . xi

The base directory xi
How to use this book xi
Terms used in this book xii

Summary of changes xiii
Changes for this edition (SC34-6067-02) xiii
Changes for the previous editions (SC34-6067-00
and -01) xiii

Chapter 1. Introduction to WebSphere
MQ C++ 1
Features of WebSphere MQ C++ 2
Preparing message data. 4
Reading messages 5
Writing a message to the dead-letter queue 9
Writing a message to the IMS bridge 9
Writing a message to the CICS bridge 10
Writing a message to the work header 11
Sample programs 12

Sample program HELLO WORLD (imqwrld.cpp) 13
Sample programs SPUT (imqsput.cpp) and SGET
(imqsget.cpp) 15
Sample program DPUT (imqdput.cpp) 16

Implicit operations 16
Connect 16
Open 16
Reopen 16
Close 17
Disconnect. 17

Binary and character strings 17
Unsupported functions 17

Chapter 2. C++ language
considerations 19
Header files 19
Methods 19
Attributes 19
Data types. 20

Elementary data types 20
Manipulating binary strings 20
Manipulating character strings 20
Initial state of objects 20
Using C from C++ 21
Notational conventions 21

Chapter 3. WebSphere MQ C++ classes 23
ImqAuthenticationRecord. 25

Other relevant classes 25

Object attributes 25
Constructors 26
Object methods (public) 26
Object methods (protected) 27

ImqBinary 28
Other relevant classes 28
Object attributes 28
Constructors 28
Overloaded ImqItem methods 29
Object methods (public) 29
Object methods (protected) 29
Reason codes 29

ImqCache 30
Other relevant classes 30
Object attributes 30
Constructors 31
Object methods (public) 31
Reason codes 32

ImqChannel 33
Other relevant classes 33
Object attributes 33
Constructors 34
Object methods (public) 35
Reason codes 38

ImqCICSBridgeHeader 39
Other relevant classes 39
Object attributes 39
Constructors 42
Overloaded ImqItem methods 42
Object methods (public) 42
Object data (protected) 45
Reason codes 45
Return codes 46

ImqDeadLetterHeader 47
Other relevant classes 47
Object attributes 47
Constructors 48
Overloaded ImqItem methods 48
Object methods (public) 48
Object data (protected) 49
Reason codes 49

ImqDistributionList. 50
Other relevant classes 50
Object attributes 50
Constructors 50
Object methods (public) 50
Object methods (protected) 51

ImqError 52
Other relevant classes 52
Object attributes 52
Constructors 52
Object methods (public) 52
Object methods (protected) 53
Reason codes 53

ImqGetMessageOptions 54
Other relevant classes 54

© Copyright IBM Corp. 1997, 2002 iii

||

||
|
||

||
||

||
||
||
||

Object attributes 54
Constructors 55
Object methods (public) 56
Object data (protected) 57
Reason codes 57

ImqHeader 58
Other relevant classes 58
Object attributes 58
Constructors 59
Object methods (public) 59

ImqIMSBridgeHeader 60
Other relevant classes 60
Object attributes 60
Constructors 61
Overloaded ImqItem methods 61
Object methods (public) 61
Object data (protected) 62
Reason codes 62

ImqItem 63
Other relevant classes 63
Object attributes 63
Constructors 63
Class methods (public) 64
Object methods (public) 64
Reason codes 64

ImqMessage 65
Other relevant classes 65
Object attributes 65
Constructors 69
Object methods (public) 69
Object data (protected) 71

ImqMessageTracker. 72
Other relevant classes 72
Object attributes 72
Constructors 73
Object methods (public) 74
Reason codes 75

ImqNamelist 76
Other relevant classes 76
Object attributes 76
Constructors 76
Object methods (public) 76
Reason codes 77

ImqObject 78
Other relevant classes 78
Class attributes 78
Object attributes 78
Constructors 80
Class methods (public) 80
Object methods (public) 80
Object methods (protected) 82
Object data (protected) 83
Reason codes 84

ImqProcess 85
Other relevant classes 85
Object attributes 85
Constructors 85
Object methods (public) 85

ImqPutMessageOptions 87
Other relevant classes 87
Object attributes 87

Constructors 88
Object methods (public) 88
Object data (protected) 89
Reason codes 89

ImqQueue 90
Other relevant classes 90
Object attributes 90
Constructors 93
Object methods (public) 93
Object methods (protected) 100
Reason codes 101

ImqQueueManager 102
Other relevant classes 102
Class attributes 102
Object attributes 103
Constructors. 105
Destructors 105
Class methods (public) 105
Object methods (public) 105
Object methods (protected) 110
Object data (protected) 110
Reason codes 111

ImqReferenceHeader 112
Other relevant classes 112
Object attributes 112
Constructors. 113
Overloaded ImqItem methods 113
Object methods (public) 113
Object data (protected) 114
Reason codes 114

ImqString. 115
Other relevant classes 115
Object attributes 115
Constructors. 115
Class methods (public) 116
Overloaded ImqItem methods 116
Object methods (public) 116
Object methods (protected) 120
Reason codes 120

ImqTrigger 121
Other relevant classes 121
Object attributes 121
Constructors. 122
Overloaded ImqItem methods 122
Object methods (public) 122
Object data (protected) 123
Reason codes 123

ImqWorkHeader 124
Other relevant classes 124
Object attributes 124
Constructors. 124
Overloaded ImqItem methods 125
Object methods (public) 125
Object data (protected) 125
Reason codes 125

Appendix A. Compiling and linking 127
Compilers for WebSphere MQ and MQSeries
platforms 127

AIX 127
Compaq Tru64 UNIX 127

iv Using C++

HP-UX 128
iSeries 128
Linux for Intel 128
Linux for zSeries 129
OS/2 Warp 129
Compaq NonStop Kernel 129
Solaris (SPARC and Intel platforms) 129
Windows 3.1 (16–bit client only) 130
Windows 95, Windows NT, Windows 2000, and
Windows XP 130
z/OS 130

Compiling C++ sample programs for iSeries . . . 131
Compiling VisualAge C++ sample programs for
Windows 131
Building C++ sample programs on Compaq
OpenVMS Alpha 132
Building C++ sample programs on Compaq
NonStop Kernel 132

Native (using native static library MQMLIBN) 132
Native (using SRL MQSRLLIB) 133

Building an application on z/OS 134
Running sample programs on z/OS 135
Building and running applications under z/OS
UNIX System Services 135

Appendix B. MQI cross reference . . . 137
Data structure, class, and include-file cross
reference 137
Class attribute cross reference 138

ImqAuthenticationRecord 138

ImqCache 138
ImqChannel 138
ImqCICSBridgeHeader 139
ImqDeadLetterHeader 140
ImqError 140
ImqGetMessageOptions 140
ImqHeader 141
ImqIMSBridgeHeader 141
ImqItem 141
ImqMessage 141
ImqMessageTracker 142
ImqNamelist 142
ImqObject 143
ImqProcess 143
ImqPutMessageOptions 143
ImqQueue 144
ImqQueueManager 145
ImqReferenceHeader 147
ImqTrigger 147
ImqWorkHeader 147

Appendix C. Reason codes 149

Appendix D. Notices 155
Trademarks 156

Index 159

Sending your comments to IBM . . . 163

Contents v

||
||

||

|
||
|
||
||
||

||

vi Using C++

Figures

1. WebSphere MQ C++ classes (item handling) 2
2. WebSphere MQ C++ classes (queue

management) 3
3. ImqAuthenticationRecord class 25
4. ImqBinary class 28
5. ImqCache class 30
6. ImqChannel class 33
7. ImqCICSBridgeHeader class 39
8. ImqDeadLetterHeader class 47
9. ImqDistributionList class 50

10. ImqError class 52
11. ImqGetMessageOptions class. 54
12. ImqHeader class 58
13. ImqIMSBridgeHeader class 60

14. ImqItem class 63
15. ImqMessage class 65
16. ImqMessageTracker class 72
17. ImqNamelist class 76
18. ImqObject class 78
19. ImqProcess class 85
20. ImqPutMessageOptions class. 87
21. ImqQueue class 90
22. ImqQueueManager class 102
23. ImqReferenceHeader class 112
24. ImqString class 115
25. ImqTrigger class 121
26. ImqWorkHeader class. 124

© Copyright IBM Corp. 1997, 2002 vii

||

viii Using C++

Tables

1. Location of sample programs 12
2. C/C++ header files 19
3. ImqCICSBridgeHeader class return codes 46
4. z/OS sample program files 135
5. Data structure, class, and include-file cross

reference 137
6. ImqAuthenticationRecord cross reference 138
7. ImqCache cross reference 138
8. ImqChannel cross reference 138
9. ImqCICSBridgeHeader cross reference 139

10. ImqDeadLetterHeader cross reference 140
11. ImqError cross reference 140
12. ImqGetMessageOptions cross reference 140
13. ImqHeader cross reference 141

14. ImqIMSBridgeHeader cross reference 141
15. ImqItem cross reference 141
16. ImqMessage cross reference 141
17. ImqMessageTracker cross reference 142
18. ImqNamelist cross reference 142
19. ImqObject cross reference 143
20. ImqProcess cross reference 143
21. ImqPutMessageOptions cross reference 143
22. ImqQueue cross reference 144
23. ImqQueueManager cross reference 145
24. ImqReferenceHeader 147
25. ImqTrigger cross reference 147
26. ImqWorkHeader cross reference 147

© Copyright IBM Corp. 1997, 2002 ix

||

x Using C++

About this book

This publication describes the C++ programming-language binding to the Message
Queue Interface (MQI). This part of the WebSphere® MQ product range is referred
to as WebSphere MQ C++.

The information is for application programmers who write C++ programs that use
the MQI.

What you need to know to understand this book
You need:
v Knowledge of the C programming language
v Knowledge of the C++ programming language
v Some understanding of the Booch methodology
v Understanding of the purpose of the Message Queue Interface (MQI) as

described in the WebSphere MQ Application Programming Guide and in the
WebSphere MQ Application Programming Reference

v Experience of WebSphere MQ programs in general, or familiarity with the
content of other WebSphere MQ publications

The base directory
Throughout this book, we use mqmtop to represent the name of the base directory
where WebSphere MQ is installed.
v On the AIX® operating system, mqmtop represents the directory /usr/mqm.
v On other UNIX® systems, mqmtop represents the directory /opt/mqm.
v On Microsoft® Windows® systems, the directory represented by mqmtop

depends on where WebSphere MQ is installed. For a new installation of
WebSphere MQ Version 5.3, the default is C:\Program Files\IBM\WebSphere MQ.

In the case of z/OS® systems, thlqual represents the high level qualifier of the
WebSphere MQ installation library.

How to use this book
First read Chapter 1, “Introduction to WebSphere MQ C++”, on page 1. This
chapter is a guide to programming in C++ for WebSphere MQ, as well as an
introduction.

There are some considerations specific to C++ that you might need to know in
Chapter 2, “C++ language considerations”, on page 19.

Chapter 3, “WebSphere MQ C++ classes”, on page 23 is the reference part of the
book. Read it together with Appendix B, “MQI cross reference”, on page 137 and
the WebSphere MQ Application Programming Reference.

The appendixes contain information about compiling and linking your programs; a
cross reference to the WebSphere MQ data structures, object attributes, and calls;
and some additional reason codes.

© Copyright IBM Corp. 1997, 2002 xi

Terms used in this book
In this book, the term Version 5.3 products means:

WebSphere MQ for AIX, V5.3
WebSphere MQ for HP-UX, V5.3
WebSphere MQ for Linux for Intel and Linux for zSeries™, V5.3
WebSphere MQ for Solaris, V5.3
WebSphere MQ for Windows, V5.3
WebSphere MQ for iSeries™, V5.3
WebSphere MQ for z/OS, V5.3

The term WebSphere MQ for UNIX systems means:
WebSphere MQ for AIX, V5.3
WebSphere MQ for HP-UX, V5.3
WebSphere MQ for Linux for Intel and Linux for zSeries, V5.3
WebSphere MQ for Solaris, V5.3

We also use the term UNIX systems as a general terms for the UNIX platforms.

The term WebSphere MQ for Windows systems means WebSphere MQ running
on the Windows platforms:

Windows NT®

Windows 2000
Windows XP

We also use the term Windows systems or just Windows as general terms for
these Windows platforms.

About this book

xii Using C++

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

Summary of changes

This section describes changes in this edition of WebSphere MQ Using C++.
Changes since the previous edition of the book are marked by vertical lines to the
left of the changes.

Changes for this edition (SC34-6067-02)
This edition provides additions and clarifications for users of Version 5.1 of
MQSeries® for Compaq NonStop Kernel, MQSeries for Compaq OpenVMS Alpha,
and MQSeries for Compaq Tru64 UNIX.

Changes for the previous editions (SC34-6067-00 and -01)
The first two editions for WebSphere MQ included the following changes:
v Changes throughout the book to reflect the rebranding of MQSeries to

WebSphere MQ.
v Adding the platforms Windows XP, Linux for zSeries, and Linux for Intel.
v Adding information on the ImqAuthenticationRecord class, associated with

using the security features provided by the secure sockets layer (SSL).
v Removed both the Glossary and Bibliography. These are now provided in a new

book, common to all information in the WebSphere MQ family.

© Copyright IBM Corp. 1997, 2002 xiii

|

|
|
|

|

|

|
|

|

|
|

|
|

Changes

xiv Using C++

Chapter 1. Introduction to WebSphere MQ C++

WebSphere MQ C++ allows you to write WebSphere MQ application programs in
the C++ programming language.

WebSphere MQ C++ can be used with the following products when they have
been installed as a full queue manager:
v WebSphere MQ for AIX, Version 5.3
v WebSphere MQ for HP-UX, Version 5.3
v WebSphere MQ for iSeries, Version 5.3
v WebSphere MQ for Linux for Intel, Version 5.3
v WebSphere MQ for Linux for zSeries, Version 5.3
v WebSphere MQ for Solaris, Version 5.3
v WebSphere MQ for Windows, Version 5.3
v WebSphere MQ for z/OS, Version 5.3
v MQSeries for Compaq NonStop Kernel, V5.1
v MQSeries for Compaq OpenVMS Alpha, V5.1
v MQSeries for Compaq Tru64 UNIX, Version 5.1
v MQSeries for OS/2® Warp, Version 5.1
v MQSeries for Sun Solaris, Intel Platform Edition, Version 5.1

WebSphere MQ C++ can also be used with a WebSphere MQ client supplied with
the above products and installed on the following platforms:
v AIX
v Compaq OpenVMS Alpha
v Compaq Tru64 UNIX
v HP-UX
v Linux for Intel
v Linux for zSeries
v OS/2
v Solaris (SPARC and Intel Platform Editions)
v Windows 3.1
v Windows 95
v Windows NT
v Windows 2000
v Windows XP

This chapter describes the following:
v “Features of WebSphere MQ C++” on page 2
v “Preparing message data” on page 4
v “Reading messages” on page 5
v “Writing a message to the dead-letter queue” on page 9
v “Writing a message to the IMS bridge” on page 9
v “Writing a message to the CICS bridge” on page 10
v “Writing a message to the work header” on page 11
v “Sample programs” on page 12
v “Implicit operations” on page 16
v “Binary and character strings” on page 17
v “Unsupported functions” on page 17

© Copyright IBM Corp. 1997, 2002 1

|
|

|

|

Features of WebSphere MQ C++
WebSphere MQ C++ provides the following features:
v Automatic initialization of WebSphere MQ data structures
v Just-in-time queue manager connection and queue opening
v Implicit queue closure and queue manager disconnection
v Dead-letter header transmission and receipt
v IMS™ bridge header transmission and receipt
v Reference message header transmission and receipt
v Trigger message receipt
v CICS® bridge header transmission and receipt
v Work header transmission and receipt
v Client channel definition

The following Booch class diagrams show that all the classes are broadly parallel
to those WebSphere MQ entities in the procedural MQI (for example using C) that
have either handles or data structures. All classes inherit from the ImqError class
(see “ImqError” on page 52), which allows an error condition to be associated with
each object.

Trigger

Dead Letter
Header

CICS
Bridge
Header

IMS
Bridge
Header

Work
Header

A

Reference
Header

A

copyOut()
pasteIn()

format :String
formatIs()
readItem()
writeItem()

character set : Integer
encoding : Integer

format :String
header flags : Integer

Message

Header

Item

Figure 1. WebSphere MQ C++ classes (item handling)

Features

2 Using C++

|

To interpret Booch class diagrams correctly, be aware of the following:
v Methods and noteworthy attributes are listed below the class name.
v A small triangle within a cloud denotes an abstract class.
v Inheritance is denoted by an arrow to the parent class.
v An undecorated line between clouds denotes a cooperative relationship between

classes.
v A line decorated with a number denotes a referential relationship between two

classes. The number indicates the number of objects that can participate in a
given relationship at any one time.

The following classes and data types are used in the C++ method signatures of the
queue management classes (see Figure 2) and the item handling classes (see
Figure 1 on page 2):
v The ImqBinary class (see “ImqBinary” on page 28), which encapsulates byte

arrays such as MQBYTE24.
v The ImqBoolean data type, which is defined as typedef unsigned char

ImqBoolean.

priority : Integer

Distribution
List

wait interval : Integer

A

close()
name :String

open()

backout()
begin()

commit()
connect()

disconnect()

get()
put()

queue manager name :String

Queue Manager

Queue

Object

Put Message
Options

correlation id :Binary
group id :Binary

message id :Binary

MessageTracker

buffer length : Integer
data offset : Integer

message length : Integer
useEmptyBuffer()

useFullBuffer()

Cache

Message

Get Message
Options

n

1

1

1

referenced by

referenced by

n

managed by

1

Namelist

channel name
connection name

transport type

Channel

Figure 2. WebSphere MQ C++ classes (queue management)

Features

Chapter 1. Introduction to WebSphere MQ C++ 3

v The ImqString class (see “ImqString” on page 115), which encapsulates character
arrays such as MQCHAR64.

Entities with data structures are subsumed within appropriate object classes.
Individual data structure fields (see Appendix B, “MQI cross reference”, on
page 137) are accessed with methods.

Entities with handles come under the ImqObject class hierarchy (see “ImqObject”
on page 78) and provide encapsulated interfaces to the MQI. Objects of these

classes exhibit intelligent behavior that can reduce the number of method
invocations required relative to the procedural MQI. For example, you can
establish and discard queue manager connections as required, or you can open a
queue with appropriate options, then close it.

The ImqMessage class (see “ImqMessage” on page 65) encapsulates the MQMD
data structure and also acts as a holding point for user data and items (see
“Reading messages” on page 5) by providing cached buffer facilities. You can
provide fixed-length buffers for user data and use the buffer many times. The
amount of data present in the buffer can vary from one use to the next.
Alternatively, the system can provide and manage a buffer of flexible length. Both
the size of the buffer (the amount available for receipt of messages) and the
amount actually used (either the number of bytes for transmission or the number
of bytes actually received) become important considerations.

Preparing message data
When you send a message, message data is first prepared in a buffer managed by
an ImqCache object (see “ImqCache” on page 30). A buffer is associated (by
inheritance) with each ImqMessage object (see “ImqMessage” on page 65): it can be
supplied by the application (using either the useEmptyBuffer or useFullBuffer
method) or automatically by the system. The advantage of the application
supplying the message buffer is that no data copying is necessary in many cases
because the application can use prepared data areas directly. The disadvantage is
that the supplied buffer is of a fixed length.

The buffer can be reused, and the number of bytes transmitted can be varied each
time, by using the setMessageLength method before transmission.

When supplied automatically by the system, the number of bytes available is
managed by the system, and data can be copied into the message buffer using, for
example, the ImqCache write method, or the ImqMessage writeItem method. The
message buffer grows according to need. As the buffer grows, there is no loss of
previously-written data. A large or multipart message can be written in sequential
pieces.

The following examples show simplified message sends.
1. Use prepared data in a user-supplied buffer

char pszBuffer[] = "Hello world" ;

msg.useFullBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);

2. Use prepared data in a user-supplied buffer, where the buffer size exceeds the
data size

Features

4 Using C++

char pszBuffer[24] = "Hello world" ;

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);
msg.setMessageLength(12);

3. Copy data to a user-supplied buffer
char pszBuffer[12];

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

4. Copy data to a system-supplied buffer
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

5. Copy data to a system-supplied buffer using objects (objects set the message
format as well as content)
ImqString strText("Hello world");

msg.writeItem(strText);

Reading messages
When receiving data, the application or the system can supply a suitable message
buffer. The same buffer can be used for both multiple transmission and multiple
receipt for a given ImqMessage object. If the message buffer is supplied
automatically, it grows to accommodate whatever length of data is received.
However, if the application supplies the message buffer, it might not be big
enough. Then either truncation or failure might occur, depending on the options
used for message receipt.

Incoming data can be accessed directly from the message buffer, in which case the
data length indicates the total amount of incoming data. Alternatively, incoming
data can be read sequentially from the message buffer. In this case, the data
pointer addresses the next byte of incoming data, and the data pointer and data
length are updated each time data is read.

Items are pieces of a message, all in the user area of the message buffer, that need
to be processed sequentially and separately. Apart from regular user data, an item
might be a dead-letter header or a trigger message. Items are always associated
with message formats; message formats are not always associated with items.

There is a class of object for each item that corresponds to a recognizable
WebSphere MQ message format. There is one for a dead-letter header and one for
a trigger message. There is no class of object for user data. That is, once the
recognizable formats have been exhausted, processing the remainder is left to the
application program. Classes for user data can be written by specializing the
ImqItem class.

The following example shows a message receipt that takes account of a number of
potential items that can precede the user data, in an imaginary situation. Non-item
user data is defined as anything that occurs after items that can be identified. An
automatic buffer (the default) is used to hold an arbitrary amount of message data.

Preparing message data

Chapter 1. Introduction to WebSphere MQ C++ 5

ImqQueue queue ;
ImqMessage msg ;

if (queue.get(msg)) {

/* Process all items of data in the message buffer. */
do while (msg.dataLength()) {

ImqBoolean bFormatKnown = FALSE ;
/* There remains unprocessed data in the message buffer. */

/* Determine what kind of item is next. */

if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {
ImqDeadLetterHeader header ;
/* The next item is a dead-letter header. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(header)) {
/* The dead-letter header has been extricated from the */
/* buffer and transformed into a dead-letter object. */
/* The encoding and character set of the dead-letter */
/* object itself are MQENC_NATIVE and MQCCSI_Q_MGR. */
/* The encoding and character set from the dead-letter */
/* header have been copied to the message attributes */
/* to reflect any remaining data in the buffer. */

/* Process the information in the dead-letter object. */
/* Note that the encoding and character set have */
/* already been processed. */
...

}
/* There might be another item after this, */
/* or just the user data. */

}
if (msg.formatIs(MQFMT_TRIGGER)) {

ImqTrigger trigger ;
/* The next item is a trigger message. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;
if (msg.readItem(trigger)) {

/* The trigger message has been extricated from the */
/* buffer and transformed into a trigger object. */
/* Process the information in the trigger object. */
...

}

/* There is usually nothing after a trigger message. */
}

if (msg.formatIs(FMT_USERCLASS)) {
UserClass object ;
/* The next item is an item of a user-defined class. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(object)) {
/* The user-defined data has been extricated from the */
/* buffer and transformed into a user-defined object. */

/* Process the information in the user-defined object. */
...

}

Reading messages

6 Using C++

/* Continue looking for further items. */
}
if (! bFormatKnown) {

/* There remains data that is not associated with a specific*/
/* item class. */
char * pszDataPointer = msg.dataPointer(); /* Address.*/
int iDataLength = msg.dataLength(); /* Length. */

/* The encoding and character set for the remaining data are */
/* reflected in the attributes of the message object, even */
/* if a dead-letter header was present. */
...

}

}
}

In this example, FMT_USERCLASS is a constant representing the 8-character format
name associated with an object of class UserClass, and is defined by the
application.

UserClass is derived from the ImqItem class (see “ImqItem” on page 63), and
implements the virtual copyOut and pasteIn methods from that class.

The next two examples show code from the ImqDeadLetterHeader class (see
“ImqDeadLetterHeader” on page 47). The first example shows custom-encapsulated
message-writing code.
// Insert a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: copyOut (ImqMessage & msg) {

ImqBoolean bSuccess ;
if (msg.moreBytes(sizeof(omqdlh))) {

ImqCache cacheData(msg); // Preserve original message content.
// Note original message attributes in the dead-letter header.
setEncoding(msg.encoding());
setCharacterSet(msg.characterSet());
setFormat(msg.format());

// Set the message attributes to reflect the dead-letter header.
msg.setEncoding(MQENC_NATIVE);
msg.setCharacterSet(MQCCSI_Q_MGR);
msg.setFormat(MQFMT_DEAD_LETTER_HEADER);
// Replace the existing data with the dead-letter header.
msg.clearMessage();
if (msg.write(sizeof(omqdlh), (char *) & omqdlh)) {

// Append the original message data.
bSuccess = msg.write(cacheData.messageLength(),

cacheData.bufferPointer());
} else {

bSuccess = FALSE ;
}

} else {
bSuccess = FALSE ;

}
// Reflect and cache error in this object.
if (! bSuccess) {

setReasonCode(msg.reasonCode());
setCompletionCode(msg.completionCode());

}

return bSuccess ;
}

Reading messages

Chapter 1. Introduction to WebSphere MQ C++ 7

The second example shows custom-encapsulated message-reading code.
// Read a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: pasteIn (ImqMessage & msg) {

ImqBoolean bSuccess = FALSE ;

// First check that the eye-catcher is correct.
// This is also our guarantee that the "character set" is correct.
if (ImqItem::structureIdIs(MQDLH_STRUC_ID, msg)) {

// Next check that the "encoding" is correct, as the MQDLH
// contains numeric data.
if (msg.encoding() == MQENC_NATIVE) {

// Finally check that the "format" is correct.
if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {

char * pszBuffer = (char *) & omqdlh ;
// Transfer the MQDLH from the message and move pointer on.
if (bSuccess = msg.read(sizeof(omdlh), pszBuffer)) {

// Update the encoding, character set and format of the
// message to reflect the remaining data.
msg.setEncoding(encoding());
msg.setCharacterSet(characterSet());
msg.setFormat(format());

} else {

// Reflect the cache error in this object.
setReasonCode(msg.reasonCode());
setCompletionCode(msg.completionCode());

}
} else {

setReasonCode(MQRC_INCONSISTENT_FORMAT);
setCompletionCode(MQCC_FAILED);

}
} else {

setReasonCode(MQRC_ENCODING_ERROR);
setCompletionCode(MQCC_FAILED);

{
} else {

setReasonCode(MQRC_STRUC_ID_ERROR);
setCompletionCode(MQCC_FAILED);

}

return bSuccess ;
}

With an automatic buffer, the buffer storage is volatile. That is, buffer data might be
held at a different physical location after each get method invocation. Therefore,
each time buffer data is referenced, use the bufferPointer or dataPointer methods
to access message data.

You might want a program to set aside a fixed area for receiving message data. In
this case, invoke the useEmptyBuffer method before using the get method.

Using a fixed, nonautomatic area limits messages to a maximum size, so it is
important to consider the MQGMO_ACCEPT_TRUNCATED_MSG option of the
ImqGetMessageOptions object. If this option is not specified (the default), the
MQRC_TRUNCATED_MSG_FAILED reason code can be expected. If this option is
specified, the MQRC_TRUNCATED_MSG_ACCEPTED reason code might be
expected depending on the design of the application.

The next example shows how a fixed area of storage can be used to receive
messages:

Reading messages

8 Using C++

char * pszBuffer = new char[100];

msg.useEmptyBuffer(pszBuffer, 100);
gmo.setOptions(MQGMO_ACCEPT_TRUNCATED_MSG);
queue.get(msg, gmo);

delete [] pszBuffer ;

In this code fragment, the buffer can always be addressed directly, with pszBuffer,
as opposed to using the bufferPointer method. However, it is better to use the
dataPointer method for general-purpose access. The application (not the ImqCache
class object) must discard a user-defined (nonautomatic) buffer.

Attention: Specifying a null pointer and zero length with useEmptyBuffer does
not nominate a fixed length buffer of length zero as might be expected. This
combination is actually interpreted as a request to ignore any previous
user-defined buffer, and instead revert to the use of an automatic buffer.

Writing a message to the dead-letter queue
A typical case of a multipart message is one containing a dead-letter header. The
data from a message that cannot be processed is appended to the dead-letter
header.
ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueDead ; // Dead-letter message queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqDeadLetterHeader header ; // Dead-letter header information.

// Retrieve the message to be rerouted.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the dead-letter header information.
header.setDestinationQueueManagerName(mgr.name());
header.setDestinationQueueName(queueIn.name());
header.setPutApplicationName(/* ? */);
header.setPutApplicationType(/* ? */);
header.setPutDate(/* TODAY */);
header.setPutTime(/* NOW */);
header.setDeadLetterReasonCode(FB_APPL_ERROR_1234);

// Insert the dead-letter header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the dead-letter queue.
queueDead.setConnectionReference(mgr);
queueDead.setName(mgr.deadLetterQueueName());
queueDead.put(msg);

Writing a message to the IMS bridge
Messages sent to the WebSphere MQ-IMS bridge might use a special header. The
IMS bridge header is prefixed to regular message data.
ImqQueueManager mgr; // The queue manager.
ImqQueue queueBridge; // IMS bridge message queue.
ImqMessage msg; // Outgoing message.
ImqIMSBridgeHeader header; // IMS bridge header.

Reading messages

Chapter 1. Introduction to WebSphere MQ C++ 9

// Set up the message.
//
// Here we are constructing a message with format
// MQFMT_IMS_VAR_STRING, and appropriate data.
//
msg.write(2, /* ? */); // Total message length.
msg.write(2, /* ? */); // IMS flags.
msg.write(7, /* ? */); // Transaction code.
msg.write(/* ? */, /* ? */); // String data.
msg.setFormat(MQFMT_IMS_VAR_STRING); // The format attribute.

// Set up the IMS bridge header information.
//
// The reply-to-format is often specified.
// Other attributes can be specified, but all have default values.
//
header.setReplyToFormat(/* ? */);

// Insert the IMS bridge header into the message.
//
// This will:
// 1) Insert the header into the message buffer, before the existing
// data.
// 2) Copy attributes out of the message descriptor into the header,
// for example the IMS bridge header format attribute will now
// be set to MQFMT_IMS_VAR_STRING.
// 3) Set up the message attributes to describe the header, in
// particular setting the message format to MQFMT_IMS.
//
msg.writeItem(header);

// Send the message to the IMS bridge queue.
//
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

Writing a message to the CICS bridge
Messages sent to WebSphere MQ for z/OS® using the CICS bridge require a
special header. The CICS bridge header is prefixed to regular message data.
ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueBridge ; // CICS bridge message queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqCicsBridgeHeader header ; // CICS bridge header information.

// Retrieve the message to be forwarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the CICS bridge header information.
// The reply-to format is often specified.
// Other attributes can be specified, but all have default values.
header.setReplyToFormat(/* ? */);

// Insert the CICS bridge header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the CICS bridge queue.

Writing to IMS bridge

10 Using C++

queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

Writing a message to the work header
Messages sent to WebSphere MQ for z/OS, which are destined for a queue
managed by the z/OS Workload Manager, require a special header. The work
header is prefixed to regular message data.
ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueWLM ; // WLM managed queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqWorkHeader header ; // Work header information

// Retrieve the message to be forwarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Insert the Work header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the WLM managed queue.
queueWLM.setConnectionReference(mgr);
queueWLM.setName(/* ? */);
queueWLM.put(msg);

Writing to CICS bridge

Chapter 1. Introduction to WebSphere MQ C++ 11

Sample programs
The sample programs are:
v HELLO WORLD (imqwrld.cpp)
v SPUT (imqsput.cpp) and SGET (imqsget.cpp)
v DPUT (imqdput.cpp)

The sample programs are located in the directories shown in Table 1. See “The base
directory” on page xi for an explanation of mqmtop and thlqual.

Table 1. Location of sample programs

Environment Directory containing source Directory containing built
programs

AIX <mqmtop>/samp <mqmtop>/samp/bin/ia

OS/400® /QIBM/ProdData/mqm/samp/ (see note 1)

Compaq Tru64
UNIX

<mqmtop>/samp <mqmtop>/samp/bin/ff

Compaq
NonStop
Kernel

$VOLUME.ZMQSSMPL $VOLUME.ZMQSSMPL

Compaq
OpenVMS
Alpha

sys$sysroot:
[syshlp.examples.mqseries]

sys$sysroot:
[syshlp.examples.mqseries.bin]

HP-UX <mqmtop>/samp <mqmtop>/samp/bin/ah and
<mqmtop>/samp/bin/hh.
(see note 2)

OS/2 Warp <mqmtop>\tools\cplus\samples <mqmtop>\tools\cplus\
samples\bin\i2

z/OS thlqual.SCSQCPPS None

Solaris <mqmtop>/samp <mqmtop>/samp/bin/as
<mqmtop>/samp/bin/ss

Windows XP,
2000, NT,

and 95

<mqmtop>\tools\cplus\samples <mqmtop>\tools\cplus\
samples\bin\in and
<mqmtop>\tools\cplus\
samples\bin\vn
(see note 3)

Windows 3.1
(16-bit client
only)

bin\vw bin\vw

Notes:

1. Programs built using the ILE C++ compiler for iSeries are in the library QMQM. The
include files are in /QIBM/ProdData/mqm/inc.

2. Programs built using the HP ANSI C++ compiler are found in directory
<mqmtop>/samp/bin/ah. For further information, see “Compilers for WebSphere MQ
and MQSeries platforms” on page 127.

3. Programs built using the IBM® VisualAge® for C++ for Windows V3.5 compiler are
found in directory <mqmtop>\tools\cplus\samples\bin\in. Programs built using the
Microsoft Visual C++® V6.0 are found in <mqmtop>\tools\cplus\samples\bin\vn. For
further information about these compilers, see “Compilers for WebSphere MQ and
MQSeries platforms” on page 127.

Sample programs

12 Using C++

|

|
|
|

||

|
|
|

|
|
|
|

|

|
|
|

|

Sample program HELLO WORLD (imqwrld.cpp)
This program shows how to put and get a regular datagram (C structure) using
the ImqMessage class. This sample uses few method invocations, taking advantage
of implicit method invocations such as open, close, and disconnect.

On all platforms except z/OS
If you are using a server connection to WebSphere MQ:
1. Run imqwrlds to use the existing default queue

SYSTEM.DEFAULT.LOCAL.QUEUE.
2. Run imqwrlds SYSTEM.DEFAULT.MODEL.QUEUE to use a temporary

dynamically assigned queue.

For details of executing C++ programs, see Appendix A, “Compiling and linking”,
on page 127.

Notes:

1. If you are using a client connection to WebSphere MQ, either:
a. Set up the MQSERVER environment variable (see WebSphere MQ Clients for

more information) and run imqwrldc, or
b. Run imqwrldc queue-name queue-manager-name channel-definition where a

typical channel-definition might be SYSTEM.DEF.SVRCONN/tcp/hostname
(1414)

2. If you are using MQSeries for Compaq NonStop Kernel, the include file
imqi.hpp is called imqihp, and is located in zmqslib.

On z/OS
Construct and run a batch job, using the sample JCL imqwrldr. See “Running
sample programs on z/OS” on page 135 for more information.

Sample code
Here is the code for the HELLO WORLD sample program.
extern "C" {
#include <stdio.h>
}

#include <imqi.hpp> // WebSphere MQ C++

#define EXISTING_QUEUE "SYSTEM.DEFAULT.LOCAL.QUEUE"

#define BUFFER_SIZE 12

static char gpszHello[BUFFER_SIZE] = "Hello world" ;
int main (int argc, char * * argv) {

ImqQueueManager manager ;
int iReturnCode = 0 ;

// Connect to the queue manager.
if (argc > 2) {

manager.setName(argv[2]);
}
if (manager.connect()) {

ImqQueue * pqueue = new ImqQueue ;
ImqMessage * pmsg = new ImqMessage ;

// Identify the queue which will hold the message.
pqueue -> setConnectionReference(manager);
if (argc > 1) {

pqueue -> setName(argv[1]);

Sample programs

Chapter 1. Introduction to WebSphere MQ C++ 13

|
|

// The named queue can be a model queue, which will result in
// the creation of a temporary dynamic queue, which will be
// destroyed as soon as it is closed. Therefore we must ensure
// that such a queue is not automatically closed and reopened.
// We do this by setting open options which will avoid the need
// for closure and reopening.
pqueue -> setOpenOptions(MQOO_OUTPUT │ MQOO_INPUT_SHARED │

MQOO_INQUIRE);
} else {

pqueue -> setName(EXISTING_QUEUE);

// The existing queue is not a model queue, and will not be
// destroyed by automatic closure and reopening. Therefore we
// will let the open options be selected on an as-needed basis.
// The queue will be opened implicitly with an output option
// during the "put", and then implicitly closed and reopened
// with the addition of an input option during the "get".

}

// Prepare a message containing the text "Hello world".
pmsg -> useFullBuffer(gpszHello , BUFFER_SIZE);
pmsg -> setFormat(MQFMT_STRING);

// Place the message on the queue, using default put message
// Options.
// The queue will be automatically opened with an output option.
if (pqueue -> put(* pmsg)) {

ImqString strQueue(pqueue -> name());

// Discover the name of the queue manager.
ImqString strQueueManagerName(manager.name());
printf("The queue manager name is %s.\n",

(char *)strQueueManagerName);

// Show the name of the queue.
printf("Message sent to %s.\n", (char *)strQueue);

// Retrieve the data message just sent ("Hello world" expected)
// from the queue, using default get message options. The queue
// is automatically closed and reopened with an input option
// if it is not already open with an input option. We get the
// message just sent, rather than any other message on the
// queue, because the "put" will have set the ID of the message
// so, as we are using the same message object, the message ID
// acts as in the message object, a filter which says that we
// are interested in a message only if it has this
// particular ID.

if (pqueue -> get(* pmsg)) {
int iDataLength = pmsg -> dataLength();

// Show the text of the received message.
printf("Message of length %d received, ", iDataLength);

if (pmsg -> formatIs(MQFMT_STRING)) {
char * pszText = pmsg -> bufferPointer();

// If the last character of data is a null, then we can
// assume that the data can be interpreted as a text
// string.
if (! pszText[iDataLength - 1]) {

printf("text is \"%s\".\n", pszText);
} else {

printf("no text.\n");
}

} else {

Sample programs

14 Using C++

printf("non-text message.\n");
}

} else {
printf("ImqQueue::get failed with reason code %ld\n",

pqueue -> reasonCode());
iReturnCode = (int)pqueue -> reasonCode();

}

} else {
printf("ImqQueue::open/put failed with reason code %ld\n",

pqueue -> reasonCode());
iReturnCode = (int)pqueue -> reasonCode();

}

// Deletion of the queue will ensure that it is closed.
// If the queue is dynamic then it will also be destroyed.
delete pqueue ;
delete pmsg ;

} else {
printf("ImqQueueManager::connect failed with reason code %ld\n"

manager.reasonCode());
iReturnCode = (int)manager.reasonCode();

}

// Destruction of the queue manager ensures that it is
// disconnected. If the queue object were still available
// and open (which it is not), the queue would be closed
// prior to disconnection.

return iReturnCode ;
}

Sample programs SPUT (imqsput.cpp) and SGET
(imqsget.cpp)

These programs place messages to, and retrieve messages from, a named queue.

On all platforms except z/OS
1. Run imqsputs queue-name.
2. Type in lines at the console, which are placed with WebSphere MQ as

messages.
3. Enter a null line to end the input.
4. Run imqsgets queue-name to retrieve all the lines and display them at the

console.

On z/OS
1. Construct and run a batch job using the sample JCL imqsputr. The messages

are read from the SYSIN data set.
2. Construct and run a batch job using the sample JCL imqsgetr. The messages

are retrieved from the queue and sent to the SYSPRINT data set.

See “Running sample programs on z/OS” on page 135 for more information.

These samples show the use of the following classes:
ImqError (see “ImqError” on page 52)
ImqMessage (see “ImqMessage” on page 65)
ImqObject (see “ImqObject” on page 78)
ImqQueue (see “ImqQueue” on page 90)

Sample programs

Chapter 1. Introduction to WebSphere MQ C++ 15

ImqQueueManager (see “ImqQueueManager” on page 102)

Sample program DPUT (imqdput.cpp)
This is a distribution list program that puts messages to a distribution list
consisting of two queues. DPUT shows the use of the ImqDistributionList class
(see “ImqDistributionList” on page 50). This sample is not supported on z/OS.
1. Run imqdputs queue-name-1 queue-name-2 to place messages on the two named

queues.
2. Run imqsgets queue-name-1 and imqsgets queue-name-2 to retrieve the messages

from those queues.

Implicit operations
Several operations can occur implicitly, just in time, to satisfy the prerequisite
conditions for the successful execution of a method. These implicit operations are
connect, open, reopen, close, and disconnect. You can control connect and open
implicit behavior using class attributes.

Connect
An ImqQueueManager object is connected automatically for any method that
results in any call to the MQI (see Appendix B, “MQI cross reference”, on
page 137).

Open
An ImqObject object is opened automatically for any method that results in an
MQGET, MQINQ, MQPUT, or MQSET call. Use the openFor method to specify
one or more relevant open option values.

Reopen
An ImqObject is reopened automatically for any method that results in an MQGET,
MQINQ, MQPUT, or MQSET call, where the object is already open, but the
existing open options are not adequate to allow the MQI call to be successful. The
object is temporarily closed using a temporary close options value of
MQCO_NONE. Use the openFor method to add a relevant open option.

Reopen can cause problems in specific circumstances:
v A temporary dynamic queue is destroyed when it is closed and can never be

reopened.
v A queue opened for exclusive input (either explicitly or by default) might be

accessed by others in the window of opportunity during closure and reopening.
v A browse cursor position is lost when a queue is closed. This situation does not

prevent closure and reopening, but prevents subsequent use of the cursor until
MQGMO_BROWSE_FIRST is used again.

v The context of the last message retrieved is lost when a queue is closed.

If any of these circumstances occur or can be foreseen, avoid reopens by explicitly
setting adequate open options before an object is opened (either explicitly or
implicitly).

Setting the open options explicitly for complex queue-handling situations results in
better performance and avoids the problems associated with the use of reopen.

Sample programs

16 Using C++

Close
An ImqObject is closed automatically at any point where the object state would no
longer be viable, for example if an ImqObject connection reference is severed, or if
an ImqObject object is destroyed.

Disconnect
An ImqQueueManager is disconnected automatically at any point where the
connection would no longer be viable, for example if an ImqObject connection
reference is severed, or if an ImqQueueManager object is destroyed.

Binary and character strings
Methods that set character (char *) data always take a copy of the data, but some
methods might truncate the copy, because certain limits are imposed by WebSphere
MQ.

The ImqString class (see “ImqString” on page 115) encapsulates the traditional
char * and provides support for:
v Comparison
v Concatenation
v Copying
v Integer-to-text and text-to-integer conversion
v Token (word) extraction
v Uppercase translation

The ImqBinary class (see “ImqBinary” on page 28) encapsulates binary byte arrays
of arbitrary size. In particular it is used to hold the following attributes:

accounting token (MQBYTE32)
connection tag (MQBYTE128)
correlation id (MQBYTE24)
facility token (MQBYTE8)
group id (MQBYTE24)
instance id (MQBYTE24)
message id (MQBYTE24)
message token (MQBYTE16)
transaction instance id (MQBYTE16)

Where these attributes belong to objects of the following classes:
ImqCICSBridgeHeader (see “ImqCICSBridgeHeader” on page 39)
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 54)
ImqIMSBridgeHeader (see “ImqIMSBridgeHeader” on page 60)
ImqMessageTracker (see “ImqMessageTracker” on page 72)
ImqQueueManager (see “ImqQueueManager” on page 102)
ImqReferenceHeader (see “ImqReferenceHeader” on page 112)
ImqWorkHeader (see “ImqWorkHeader” on page 124)

The ImqBinary class also provides support for comparison and copying.

Unsupported functions
The WebSphere MQ C++ classes and methods are independent of WebSphere MQ
platform. They might therefore offer some functions that are not supported on
certain platforms. If you try to use a function on a platform on which it is not
supported, the function is detected by WebSphere MQ but not by the C++
language bindings. WebSphere MQ reports the error to your program, like any
other MQI error.

Implicit operations

Chapter 1. Introduction to WebSphere MQ C++ 17

Unsupported function

18 Using C++

Chapter 2. C++ language considerations

This chapter details the aspects of the C++ language usage and conventions that
you must consider when writing application programs that use the Message Queue
Interface (MQI).

Header files
Header files are provided as part of the definition of the MQI, to help you write
WebSphere MQ application programs in the C++ language. These header files are
summarized in the following table.

Table 2. C/C++ header files

Filename Contents

IMQI.HPP C++ MQI Classes (includes CMQC.H and IMQTYPE.H)

IMQTYPE.H Defines the ImqBoolean data type

CMQC.H MQI data structures and manifest constants

To improve the portability of applications, code the name of the header file in
lowercase on the #include preprocessor directive:
#include <imqi.hpp> // C++ classes

Methods
Parameters that are const are for input only. Parameters whose signature includes a
pointer (*) or a reference (&) are passed by reference. Return values that do not
include a pointer or a reference are passed by value; in the case of returned objects,
these are new entities that become the responsibility of the caller.

Some method signatures include items that take a default if not specified. Such
items are always at the end of signatures and are denoted by an equal sign (=); the
value after the equal sign indicates the default value that applies if the item is
omitted.

All method names in these classes are mixed case, beginning with lowercase. Each
word, except the first within a method name, begins with a capital letter.
Abbreviations are not used unless their meaning is widely understood.
Abbreviations used include id (for identity) and sync (for synchronization).

Attributes
Object attributes are accessed using set and get methods. A set method begins with
the word set; a get method has no prefix. If an attribute is read-only, there is no set
method.

Attributes are initialized to valid states during object construction, and the state of
an object is always consistent.

© Copyright IBM Corp. 1997, 2002 19

Data types
All data types are defined by the C typedef statement. The type ImqBoolean is
defined as unsigned character in IMQTYPE.H and can have the values TRUE and
FALSE. You can use ImqBinary class objects in place of MQBYTE arrays, and
ImqString class objects in place of char *. Many methods return objects instead of
char or MQBYTE pointers to ease storage management. All return values become
the responsibility of the caller, and, in the case of a returned object, the storage can
be easily disposed of using delete.

Elementary data types
The datatype ImqBoolean is represented by typedef unsigned char ImqBoolean.

Manipulating binary strings
Strings of binary data are declared as objects of the ImqBinary class. Objects of
this class can be copied, compared, and set using the familiar C operators. For
example:
#include <imqi.hpp> // C++ classes

ImqMessage message ;
ImqBinary id, correlationId ;
MQBYTE24 byteId ;

correlationId.set(byteId, sizeof(byteId)); // Set.
id = message.id(); // Assign.
if (correlationId == id) { // Compare.

...

Manipulating character strings
When character data is accepted or returned using MQI C++ methods, the
character data is always null-terminated and can be of any length. However,
certain limits are imposed by WebSphere MQ that might result in information
being truncated. To ease storage management, character data is often returned in
ImqString class objects. These objects can be cast to char * using the conversion
operator provided, and used for read-only purposes in many situations where a
char * is required.

Note: The char * conversion result from an ImqString class object might be null.

Although C functions can be used on the char *, there are special methods of the
ImqString class that are preferable; operator length() is the equivalent of strlen
and storage() indicates the memory allocated for the character data.

Initial state of objects
All objects have a consistent initial state reflected by their attributes. The initial
values are defined in the class descriptions.

Data types

20 Using C++

Using C from C++
When using C functions from a C++ program, include headers as in the following
example:
extern "C" {
#include <string.h>
}

Notational conventions
This shows how to invoke the methods and declare the parameters:

ImqBoolean ImqQueue::get(ImqMessage & msg)

Declare and use the parameters as follows:
ImqQueueManager * pmanager ; // Queue manager
ImqQueue * pqueue ; // Message queue
ImqMessage msg ; // Message
char pszBuffer[100]; // Buffer for message data

pmanager = new ImqQueueManager ;
pqueue = new ImqQueue ;
pqueue -> setName("myreplyq");
pqueue -> setConnectionReference(pmanager);

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));

if (pqueue -> get(msg)) {
long lDataLength = msg.dataLength();

...
}

Using C from C++

Chapter 2. C++ language considerations 21

Notation

22 Using C++

Chapter 3. WebSphere MQ C++ classes

The WebSphere MQ C++ classes encapsulate the WebSphere MQ Message Queue
Interface (MQI). There is a single C++ header file, imqi.hpp, which covers all of
these classes.

For each class, the following information is shown:

Class hierarchy diagram
A class diagram showing the class in its inheritance relation to its
immediate parent classes, if any.

Other relevant classes
Document links to other relevant classes, such as parent classes, and the
classes of objects used in method signatures.

Object attributes
Attributes of the class. These are in addition to those attributes defined for
any parent classes. Many attributes reflect WebSphere MQ data-structure
members (see Appendix B, “MQI cross reference”, on page 137). For
detailed descriptions, see the WebSphere MQ Application Programming
Reference.

Constructors
Signatures of the special methods used to create an object of the class.

Object methods (public)
Signatures of methods that require an instance of the class for their
operation, and that have no usage restrictions.

Where it applies, the following information is also shown:

Class methods (public)
Signatures of methods that do not require an instance of the class for their
operation, and that have no usage restrictions.

Overloaded (parent class) methods
Signatures of those virtual methods that are defined in parent classes, but
exhibit different, polymorphic, behavior for this class.

Object methods (protected)
Signatures of methods that require an instance of the class for their
operation, and are reserved for use by the implementations of derived
classes. This section is of interest only to class writers, as opposed to class
users.

Object data (protected)
Implementation details for object instance data available to the
implementations of derived classes. This section is of interest only to class
writers, as opposed to class users.

Reason codes
MQRC_* values (see Appendix C, “Reason codes”, on page 149) that can be
expected from those methods that fail. For an exhaustive list of reason
codes that can occur for an object of a given class, consult the parent class
documentation. The documented list of reason codes for a given class does
not include the reason codes for parent classes.

© Copyright IBM Corp. 1997, 2002 23

Notes:

1. Objects of these classes are not thread-safe. This ensures optimal performance,
but take care not to access any given object from more than one thread.

2. For a multithreaded program, use a separate ImqQueueManager object for each
thread. WebSphere MQ requires a separate queue manager connection for each
thread, and does not permit cross-thread operations. Each ImqQueueManager
object must have its own independent collection of ImqQueue and other
objects, ensuring that objects in different threads are isolated from one another.

The classes are:
v “ImqAuthenticationRecord” on page 25
v “ImqBinary” on page 28
v “ImqCache” on page 30
v “ImqChannel” on page 33
v “ImqCICSBridgeHeader” on page 39
v “ImqDeadLetterHeader” on page 47
v “ImqDistributionList” on page 50
v “ImqError” on page 52
v “ImqGetMessageOptions” on page 54
v “ImqHeader” on page 58
v “ImqIMSBridgeHeader” on page 60
v “ImqItem” on page 63
v “ImqMessage” on page 65
v “ImqMessageTracker” on page 72
v “ImqNamelist” on page 76
v “ImqObject” on page 78
v “ImqProcess” on page 85
v “ImqPutMessageOptions” on page 87
v “ImqQueue” on page 90
v “ImqQueueManager” on page 102
v “ImqReferenceHeader” on page 112
v “ImqString” on page 115
v “ImqTrigger” on page 121
v “ImqWorkHeader” on page 124

C++ classes

24 Using C++

|

ImqAuthenticationRecord

This class encapsulates an authentication information record (MQAIR) for use
during execution of the ImqQueueManager::connect method, for custom SSL client
connections. See the description of that method for more details. This class is
available on WebSphere MQ, but not on the z/OS platform.

Other relevant classes
ImqBoolean (see “Elementary data types” on page 20)
ImqError (see “ImqError” on page 52)
ImqQueueManager (see “ImqQueueManager” on page 102)
ImqString (see “ImqString” on page 115)

Object attributes
connection name

The name of the connection to the LDAP CRL server. This is the IP address
or DNS name, followed optionally by the port number, in parentheses.

connection reference
A reference to an ImqQueueManager object that provides the required
connection to a (local) queue manager. The initial value is zero. Do not
confuse this with the ImqQueue queue manager name that identifies a
queue manager (possibly remote) for a named queue.

next authentication record
Next object of this class, in no particular order, having the same
connection reference as this object. The initial value is zero.

password
A password supplied for connection authentication to the LDAP CRL
server.

previous authentication record
Previous object of this class, in no particular order, having the same
connection reference as this object. The initial value is zero.

type The type of authentication information contained in the record.

Error

Authentication
Record

A

Figure 3. ImqAuthenticationRecord class

ImqAuthenticationRecord class

Chapter 3. WebSphere MQ C++ classes 25

|

|

|
|
|
|

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

||

user name
A user identifier supplied for authorization to the LDAP CRL server.

Constructors
ImqAuthenticationRecord();

The default constructor.

Object methods (public)
void operator = (const ImqAuthenticationRecord & air);

Copies instance data from air, replacing the existing instance data.

const ImqString & connectionName () const ;
Returns the connection name.

void setConnectionName (const ImqString & name);
Sets the connection name.

void setConnectionName (const char * name = 0);
Sets the connection name.

ImqQueueManager * connectionReference () const ;
Returns the connection reference.

void setConnectionReference (ImqQueueManager & manager);
Sets the connection reference.

void setConnectionReference (ImqQueueManager * manager = 0);
Sets the connection reference.

void copyOut (MQAIR * pAir);
Copies instance data to pAir, replacing the existing instance data. This
might involve allocating dependent storage.

void clear (MQAIR * pAir);
Clears the structure and releases dependent storage referenced by pAir.

ImqAuthenticationRecord * nextAuthenticationRecord () const ;
Returns the next authentication record.

const ImqString & password () const ;
Returns the password.

void setPassword (const ImqString & password);
Sets the password.

void setPassword (const char * password = 0);
Sets the password.

ImqAuthenticationRecord * previousAuthenticationRecord () const ;
Returns the previous authentication record.

MQLONG type () const ;
Returns the type.

void setType (const MQLONG type);
Sets the type.

const ImqString & userName () const ;
Returns the user name.

void setUserName (const ImqString & name);
Sets the user name.

ImqAuthenticationRecord class

26 Using C++

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

void setUserName (const char * name = 0);
Sets the user name.

Object methods (protected)
void setNextAuthenticationRecord (ImqAuthenticationRecord * pAir = 0);

Sets the next authentication record.

Attention: Use this function only if you are sure that it will not break the
authentication record list.

void setPreviousAuthenticationRecord (ImqAuthenticationRecord * pAir = 0);
Sets the previous authentication record.

Attention: Use this function only if you are sure that it will not break the
authentication record list.

ImqAuthenticationRecord class

Chapter 3. WebSphere MQ C++ classes 27

|
|

|

|
|

|
|

|
|

|
|

ImqBinary

This class encapsulates a binary byte array that can be used for ImqMessage
accounting token, correlation id, and message id values. It allows easy
assignment, copying, and comparison.

Other relevant classes
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)

Object attributes
data An array of bytes of binary data. The initial value is null.

data length
The number of bytes. The initial value is zero.

data pointer
The address of the first byte of the data. The initial value is zero.

Constructors
ImqBinary();

The default constructor.

ImqBinary(const ImqBinary & binary);
The copy constructor.

ImqBinary(const void * data, const size_t length);
Copies length bytes from data.

Item

Binary

A

Figure 4. ImqBinary class

ImqBinary class

28 Using C++

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the data to the message buffer, replacing any existing content. Sets
the msg format to MQFMT_NONE.

See the ImqItem class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Sets the data by transferring the remaining data from the message buffer,
replacing the existing data.

To be successful, the ImqMessage format must be MQFMT_NONE.

See the ImqItem class method description for further details.

Object methods (public)
void operator = (const ImqBinary & binary);

Copies bytes from binary.

ImqBoolean operator == (const ImqBinary & binary);
Compares this object with binary. It returns FALSE if not equal and TRUE
otherwise. The objects are equal if they have the same data length and the
bytes match.

ImqBoolean copyOut(void * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the data pointer to buffer. If the data length
is insufficient, the remaining space in buffer is filled with pad bytes. buffer
can be zero if length is also zero. length must not be negative. It returns
TRUE if successful.

size_t dataLength() const ;
Returns the data length.

ImqBoolean setDataLength(const size_t length);
Sets the data length. If the data length is changed as a result of this
method, the data in the object is uninitialized. It returns TRUE if
successful.

void * dataPointer() const ;
Returns the data pointer.

ImqBoolean isNull() const ;
Returns TRUE if the data length is zero, or if all the data bytes are zero.
Otherwise it returns FALSE.

ImqBoolean set(const void * buffer, const size_t length);
Copies length bytes from buffer. It returns TRUE if successful.

Object methods (protected)
void clear();

Reduces the data length to zero.

Reason codes
MQRC_NO_BUFFER
MQRC_STORAGE_NOT_AVAILABLE
MQRC_INCONSISTENT_FORMAT

ImqBinary class

Chapter 3. WebSphere MQ C++ classes 29

ImqCache

Use this class to hold or marshal data in memory. You can nominate a buffer of
memory of fixed size, or the system can provide a flexible amount of memory
automatically. This class relates to the MQI calls listed in Table 7 on page 138.

Other relevant classes
ImqError (see “ImqError” on page 52).

Object attributes
automatic buffer

Indicates whether buffer memory is managed automatically by the system
(TRUE) or is supplied by the user (FALSE). It is initially set to TRUE.

This attribute is not set directly. It is set indirectly using either the
useEmptyBuffer or the useFullBuffer method.

If user storage is supplied, this attribute is FALSE, buffer memory cannot
grow, and buffer overflow errors can occur. The address and length of the
buffer remain constant.

If user storage is not supplied, this attribute is TRUE, and buffer memory
can grow incrementally to accommodate an arbitrary amount of message
data. However, when the buffer grows, the address of the buffer might
change, so be careful when using the buffer pointer and data pointer.

buffer length
The number of bytes of memory in the buffer. The initial value is zero.

buffer pointer
The address of the buffer memory. The initial value is null.

data length
The number of bytes succeeding the data pointer. This must be equal to or
less than the message length. The initial value is zero.

data offset
The number of bytes preceding the data pointer. This must be equal to or
less than the message length. The initial value is zero.

Error

Cache

A

Figure 5. ImqCache class

ImqCache class

30 Using C++

data pointer
The address of the part of the buffer that is to be written to or read from
next. The initial value is null.

message length
The number of bytes of significant data in the buffer. The initial value is
zero.

Constructors
ImqCache();

The default constructor.

ImqCache(const ImqCache & cache);
The copy constructor.

Object methods (public)
void operator = (const ImqCache & cache);

Copies up to message length bytes of data from the cache object to the
object. If automatic buffer is FALSE, the buffer length must already be
sufficient to accommodate the copied data.

ImqBoolean automaticBuffer() const ;
Returns the automatic buffer value.

size_t bufferLength() const ;
Returns the buffer length.

char * bufferPointer() const ;
Returns the buffer pointer.

void clearMessage();
Sets the message length and data offset to zero.

size_t dataLength() const ;
Returns the data length.

size_t dataOffset() const ;
Returns the data offset.

ImqBoolean setDataOffset(const size_t offset);
Sets the data offset. The message length is increased if necessary to ensure
that it is no less than the data offset. This method returns TRUE if
successful.

char * dataPointer() const ;
Returns a copy of the data pointer.

size_t messageLength() const ;
Returns the message length.

ImqBoolean setMessageLength(const size_t length);
Sets the message length. Increases the buffer length if necessary to ensure
that the message length is no greater than the buffer length. Reduces the
data offset if necessary to ensure that it is no greater than the message
length. It returns TRUE if successful.

ImqBoolean moreBytes(const size_t bytes-required);
Assures that bytes-required more bytes are available (for writing) between
the data pointer and the end of the buffer. It returns TRUE if successful.

ImqCache class

Chapter 3. WebSphere MQ C++ classes 31

If automatic buffer is TRUE, more memory is acquired as required;
otherwise, the buffer length must already be adequate.

ImqBoolean read(const size_t length, char * & external-buffer);
Copies length bytes, from the buffer starting at the data pointer position,
into the external-buffer. After the data has been copied, the data offset is
increased by length. This method returns TRUE if successful.

ImqBoolean resizeBuffer(const size_t length);
Varies the buffer length, provided that automatic buffer is TRUE. This is
achieved by reallocating the buffer memory. Up to message length bytes of
data from the existing buffer are copied to the new one. The maximum
number copied is length bytes. The buffer pointer is changed. The message
length and data offset are preserved as closely as possible within the
confines of the new buffer. It returns TRUE if successful, and FALSE if
automatic buffer is FALSE.

Note: This method can fail with MQRC_STORAGE_NOT_AVAILABLE if
there is any problem with system resources.

ImqBoolean useEmptyBuffer(const char * external-buffer, const size_t length);
Identifies an empty user buffer, setting the buffer pointer to point to
external-buffer, the buffer length to length, and the message length to zero.
Performs a clearMessage. If the buffer is fully primed with data, use the
useFullBuffer method instead. If the buffer is partially primed with data,
use the setMessageLength method to indicate the correct amount. This
method returns TRUE if successful.

This method can be used to identify a fixed amount of memory, as
described above (external-buffer is not null and length is nonzero), in which
case automatic buffer is set to FALSE, or it can be used to revert to
system-managed flexible memory (external-buffer is null and length is zero),
in which case automatic buffer is set to TRUE.

ImqBoolean useFullBuffer(const char * externalBuffer, const size_t length);
As for useEmptyBuffer, except that the message length is set to length. It
returns TRUE if successful.

ImqBoolean write(const size_t length, const char * external-buffer);
Copies length bytes, from the external-buffer, into the buffer starting at the
data pointer position. After the data has been copied, the data offset is
increased by length, and the message length is increased if necessary to
ensure that it is no less than the new data offset value. This method
returns TRUE if successful.

If automatic buffer is TRUE, an adequate amount of memory is
guaranteed; otherwise, the ultimate data offset must not exceed the buffer
length.

Reason codes
MQRC_BUFFER_NOT_AUTOMATIC
MQRC_DATA_TRUNCATED
MQRC_INSUFFICIENT_BUFFER
MQRC_INSUFFICIENT_DATA
MQRC_NULL_POINTER
MQRC_STORAGE_NOT_AVAILABLE
MQRC_ZERO_LENGTH

ImqCache class

32 Using C++

ImqChannel

This class encapsulates a channel definition (MQCD) for use during execution of
the ImqQueueManager::connect method, for custom client connections. See the
description of that method, and “Sample program HELLO WORLD
(imqwrld.cpp)” on page 13, for more details.

Other relevant classes
ImqBoolean (see “Elementary data types” on page 20)
ImqError (see “ImqError” on page 52)
ImqQueueManager (see “ImqQueueManager” on page 102)
ImqString (see “ImqString” on page 115)

Object attributes
batch heart-beat

The number of milliseconds between checks that a remote channel is active
(WebSphere MQ). The initial value is 0.

channel name
The name of the channel. The initial value is null.

connection name
The name of the connection. For example, the IP address of a host
computer. The initial value is null.

heart-beat interval
The number of seconds between checks that a connection is still working.
The initial value is 300.

keep alive interval
The number of seconds passed to the communications stack specifying the
keep alive timing for the channel (WebSphere MQ for z/OS only). The
initial value is MQKAI_AUTO.

local address
The local communications address for the channel (WebSphere MQ).

A

Error

Channel

Figure 6. ImqChannel class

ImqChannel class

Chapter 3. WebSphere MQ C++ classes 33

|
|
|

|
|
|
|

|
|

maximum message length
The maximum length of message supported by the channel in a single
communication. The initial value is 4 194 304.

mode name
The name of the mode. The initial value is null.

password
A password supplied for connection authentication. The initial value is
null.

receive exit count
The number of receive exits. The initial value is zero. This attribute is
read-only.

receive exit names
The names of receive exits.

receive user data
Data associated with receive exits.

security exit name
The name of a security exit to be invoked on the server side of the
connection. The initial value is null.

security user data
Data to be passed to the security exit. The initial value is null.

send exit count
The number of send exits. The initial value is zero. This attribute is
read-only.

send exit names
The names of send exits.

send user data
Data associated with send exits.

SSL cipher specification
Cipher specification for use with SSL (WebSphere MQ).

SSL client authentication type
Client authentication type for use with SSL (WebSphere MQ).

SSL peer name
Peer name for use with SSL (WebSphere MQ).

transaction program name
The name of the transaction program. The initial value is null.

transport type
The transport type of the connection. The initial value is MQXPT_LU62.

user id
A user identifier supplied for authorization. The initial value is null.

Constructors
ImqChannel() ;

The default constructor.

ImqChannel(const ImqChannel & channel);
The copy constructor.

ImqChannel class

34 Using C++

|
|

|
|

|
|

Object methods (public)
void operator = (const ImqChannel & channel);

Copies instance data from channel, replacing any existing instance data.

MQLONG batchHeartBeat() const ;
Returns the batch heart-beat (WebSphere MQ).

ImqBoolean setBatchHeartBeat(const MQLONG heartbeat = 0L);
Sets the batch heart-beat (WebSphere MQ). This method returns TRUE if
successful.

ImqString channelName() const ;
Returns the channel name.

ImqBoolean setChannelName(const char * name = 0);
Sets the channel name. This method returns TRUE if successful.

ImqString connectionName() const ;
Returns the connection name.

ImqBoolean setConnectionName(const char * name = 0);
Sets the connection name. This method returns TRUE if successful.

MQLONG heartBeatInterval() const ;
Returns the heart-beat interval.

ImqBoolean setHeartBeatInterval(const MQLONG interval = 300L);
Sets the heart-beat interval. This method returns TRUE if successful.

MQLONG keepAliveInterval() const ;
Returns the keep alive interval (WebSphere MQ for z/OS only).

ImqBoolean setKeepAliveInterval(const MQLONG interval = MQKAI_AUTO);
Sets the keep alive interval (WebSphere MQ for z/OS only). This method
returns TRUE if successful.

ImqString localAddress() const ;
Returns the local address (WebSphere MQ).

ImqBoolean setLocalAddress (const char * address = 0);
Sets the local address (WebSphere MQ). This method returns TRUE if
successful.

MQLONG maximumMessageLength() const ;
Returns the maximum message length.

ImqBoolean setMaximumMessageLength(const MQLONG length = 4194304L);
Sets the maximum message length. This method returns TRUE if
successful.

ImqString modeName() const ;
Returns the mode name.

ImqBoolean setModeName(const char * name = 0);
Sets the mode name. This method returns TRUE if successful.

ImqString password() const ;
Returns the password.

ImqBoolean setPassword(const char * password = 0);
Sets the password. This method returns TRUE if successful.

size_t receiveExitCount() const ;
Returns the receive exit count.

ImqChannel class

Chapter 3. WebSphere MQ C++ classes 35

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

ImqString receiveExitName();
Returns the first of the receive exit names, if any. If the receive exit count
is zero, it returns an empty string.

ImqBoolean receiveExitNames(const size_t count, ImqString * names []);
Returns copies of the receive exit names in names. Sets any names in excess
of receive exit count to null strings. This method returns TRUE if
successful.

ImqBoolean setReceiveExitName(const char * name = 0);
Sets the receive exit names to the single name. name can be blank or null.
Sets the receive exit count to either 1 or zero. Clears the receive user data.
This method returns TRUE if successful.

ImqBoolean setReceiveExitNames(const size_t count, const char * names []);
Sets the receive exit names to names. Individual names values must not be
blank or null. Sets the receive exit count to count. Clears the receive user
data. This method returns TRUE if successful.

ImqBoolean setReceiveExitNames(const size_t count, const ImqString * names []
); Sets the receive exit names to names. Individual names values must not be

blank or null. Sets the receive exit count to count. Clears the receive user
data. This method returns TRUE if successful.

ImqString receiveUserData();
Returns the first of the receive user data items, if any. If the receive exit
count is zero, returns an empty string.

ImqBoolean receiveUserData(const size_t count, ImqString * data []);
Returns copies of the receive user data items in data. Sets any data in
excess of receive exit count to null strings. This method returns TRUE if
successful.

ImqBoolean setReceiveUserData(const char * data = 0);
Sets the receive user data to the single item data. If data is not null, receive
exit count must be at least 1. This method returns TRUE if successful.

ImqBoolean setReceiveUserData(const size_t count, const char * data []);
Sets the receive user data to data. count must be no greater than the receive
exit count. This method returns TRUE if successful.

ImqBoolean setReceiveUserData(const size_t count, const ImqString * data []);
Sets the receive user data to data. count must be no greater than the receive
exit count. This method returns TRUE if successful.

ImqString securityExitName() const ;
Returns the security exit name.

ImqBoolean setSecurityExitName(const char * name = 0);
Sets the security exit name. This method returns TRUE if successful.

ImqString securityUserData() const ;
Returns the security user data.

ImqBoolean setSecurityUserData(const char * data = 0);
Sets the security user data. This method returns TRUE if successful.

size_t sendExitCount() const ;
Returns the send exit count.

ImqString sendExitName();
Returns the first of the send exit names, if any. Returns an empty string if
the send exit count is zero.

ImqChannel class

36 Using C++

ImqBoolean sendExitNames(const size_t count, ImqString * names []);
Returns copies of the send exit names in names. Sets any names in excess of
send exit count to null strings. This method returns TRUE if successful.

ImqBoolean setSendExitName(const char * name = 0);
Sets the send exit names to the single name. name can be blank or null. Sets
the send exit count to either 1 or zero. Clears the send user data. This
method returns TRUE if successful

ImqBoolean setSendExitNames(const size_t count, const char * names []);
Sets the send exit names to names. Individual names values must not be
blank or null. Sets the send exit count to count. Clears the send user data.
This method returns TRUE if successful.

ImqBoolean setSendExitNames(const size_t count, const ImqString * names []);
Sets the send exit names to names. Individual names values must not be
blank or null. Sets the send exit count to count. Clears the send user data.
This method returns TRUE if successful.

ImqString sendUserData();
Returns the first of the send user data items, if any. , Returns an empty
string if the send exit count is zero.

ImqBoolean sendUserData(const size_t count, ImqString * data []);
Returns copies of the send user data items in data. Sets any data in excess
of send exit count to null strings. This method returns TRUE if successful.

ImqBoolean setSendUserData(const char * data = 0);
Sets the send user data to the single item data. If data is not null, send exit
count must be at least 1. This method returns TRUE if successful.

ImqBoolean setSendUserData(const size_t count, const char * data []);
Sets the send user data to data. count must be no greater than the send exit
count. This method returns TRUE if successful.

ImqBoolean setSendUserData(const size_t count, const ImqString * data []);
Sets the send user data to data. count must be no greater than the send exit
count. This method returns TRUE if successful.

ImqString sslCipherSpecification() const ;
Returns the SSL cipher specification (WebSphere MQ).

ImqBoolean setSslCipherSpecification(const char * name = 0);
Sets the SSL cipher specification (WebSphere MQ). This method returns
TRUE if successful.

MQLONG sslClientAuthentication() const ;
Returns the SSL client authentication type (WebSphere MQ).

ImqBoolean setSslClientAuthentication(const MQLONG auth =
MQSCA_REQUIRED);

Sets the SSL client authentication type (WebSphere MQ). This method
returns TRUE if successful.

ImqString sslPeerName() const ;
Returns the SSL peer name (WebSphere MQ).

ImqBoolean setSslPeerName(const char * name = 0);
Sets the SSL peer name (WebSphere MQ). This method returns TRUE if
successful.

ImqString transactionProgramName() const ;
Returns the transaction program name.

ImqChannel class

Chapter 3. WebSphere MQ C++ classes 37

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

ImqBoolean setTransactionProgramName(const char * name = 0);
Sets the transaction program name. This method returns TRUE if
successful.

MQLONG transportType() const ;
Returns the transport type.

ImqBoolean setTransportType(const MQLONG type = MQXPT_LU62);
Sets the transport type. This method returns TRUE if successful.

ImqString userId() const ;
Returns the user id.

ImqBoolean setUserId(const char * id = 0);
Sets the user id. This method returns TRUE if successful.

Reason codes
MQRC_DATA_LENGTH_ERROR
MQRC_ITEM_COUNT_ERROR
MQRC_NULL_POINTER
MQRC_SOURCE_BUFFER_ERROR

ImqChannel class

38 Using C++

ImqCICSBridgeHeader

This class encapsulates specific features of the MQCIH data structure (see Table 9
on page 139). Objects of this class are used by applications that send messages to

the CICS bridge through WebSphere MQ for z/OS.

Other relevant classes
ImqBinary (see “ImqBinary” on page 28)
ImqHeader (see “ImqHeader” on page 58)
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)
ImqString (see “ImqString” on page 115)

Object attributes
ADS descriptor

Send/receive ADS descriptor. This is set using MQCADSD_NONE. The
initial value is MQCADSD_NONE. The following additional values are
possible:

MQCADSD_NONE
MQCADSD_SEND
MQCADSD_RECV
MQCADSD_MSGFORMAT

attention identifier
AID key. The field must be of length MQ_ATTENTION_ID_LENGTH.

authenticator
RACF® password or passticket. The initial value contains blanks, of length
MQ_AUTHENTICATOR_LENGTH.

bridge abend code
Bridge abend code, of length MQ_ABEND_CODE_LENGTH. The initial
value is four blank characters. The value returned in this field is dependent
on the return code. See Table 3 on page 46 for more details.

Header

CICS
Bridge
Header

A

Figure 7. ImqCICSBridgeHeader class

ImqCICSBridgeHeader class

Chapter 3. WebSphere MQ C++ classes 39

bridge cancel code
Bridge abend transaction code. The field is reserved, must contain blanks,
and be of length MQ_CANCEL_CODE_LENGTH.

bridge completion code
Completion code, which can contain either the WebSphere MQ completion
code or the CICS EIBRESP value. The field has the initial value of
MQCC_OK. The value returned in this field is dependent on the return
code. See Table 3 on page 46 for more details.

bridge error offset
Bridge error offset. The initial value is zero. This attribute is read-only.

bridge reason code
Reason code. This field can contain either the WebSphere MQ reason or the
CICS EIBRESP2 value. The field has the initial value of MQRC_NONE. The
value returned in this field is dependent on the return code. See Table 3 on
page 46 for more details.

bridge return code
Return code from the CICS bridge. The initial value is MQCRC_OK.

conversational task
Whether the task can be conversational. The initial value is MQCCT_NO.
The following additional values are possible:

MQCCT_YES
MQCCT_NO

cursor position
Cursor position. The initial value is zero.

facility keep time
CICS bridge facility release time.

facility like
Terminal emulated attribute. The field must be of length
MQ_FACILITY_LIKE_LENGTH.

facility token
BVT token value. The field must be of length MQ_FACILITY_LENGTH.
The initial value is MQCFAC_NONE.

function
Function, which can contain either the WebSphere MQ call name or the
CICS EIBFN function. The field has the initial value of MQCFUNC_NONE,
with length MQ_FUNCTION_LENGTH. The value returned in this field is
dependent on the return code. See Table 3 on page 46 for more details.

The following additional values are possible when function contains a
WebSphere MQ call name:

MQCFUNC_MQCONN
MQCFUNC_MQGET
MQCFUNC_MQINQ
MQCFUNC_NONE
MQCFUNC_MQOPEN
MQCFUNC_PUT
MQCFUNC_MQPUT1

ImqCICSBridgeHeader class

40 Using C++

get wait interval
Wait interval for an MQGET call issued by the CICS bridge task. The initial
value is MQCGWI_DEFAULT. The field applies only when uow control
has the value MQCUOWC_FIRST. The following additional values are
possible:

MQCGWI_DEFAULT
MQWI_UNLIMITED

link type
Link type. The initial value is MQCLT_PROGRAM. The following
additional values are possible:

MQCLT_PROGRAM
MQCLT_TRANSACTION

next transaction identifier
ID of the next transaction to attach. The field must be of length
MQ_TRANSACTION_ID_LENGTH.

output data length
COMMAREA data length. The initial value is MQCODL_AS_INPUT.

reply-to format
Format name of the reply message. The initial value is MQFMT_NONE
with length MQ_FORMAT_LENGTH.

start code
Transaction start code. The field must be of length
MQ_START_CODE_LENGTH. The initial value is MQCSC_NONE. The
following additional values are possible:

MQCSC_START
MQCSC_STARTDATA
MQCSC_TERMINPUT
MQCSC_NONE

task end status
Task end status. The initial value is MQCTES_NOSYNC. The following
additional values are possible:

MQCTES_COMMIT
MQCTES_BACKOUT
MQCTES_ENDTASK
MQCTES_NOSYNC

transaction identifier
ID of the transaction to attach. The initial value must contain blanks, and
must be of length MQ_TRANSACTION_ID_LENGTH. The field applies
only when uow control has the value MQCUOWC_FIRST or
MQCUOWC_ONLY.

ImqCICSBridgeHeader class

Chapter 3. WebSphere MQ C++ classes 41

UOW control
UOW control. The initial value is MQCUOWC_ONLY. The following
additional values are possible:

MQCUOWC_FIRST
MQCUOWC_MIDDLE
MQCUOWC_LAST
MQCUOWC_ONLY
MQCUOWC_COMMIT
MQCUOWC_BACKOUT
MQCUOWC_CONTINUE

version
The MQCIH version number. The initial value is MQCIH_VERSION_2. The
only other supported value is MQCIH_VERSION_1.

Constructors
ImqCICSBridgeHeader();

The default constructor.

ImqCICSBridgeHeader(const ImqCICSBridgeHeader & header);
The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQCIH data structure into the message buffer at the beginning,
moving existing message data further along, and sets the message format
to MQFMT_CICS.

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQCIH data structure from the message buffer. To be successful,
the encoding of the msg object must be MQENC_NATIVE. Retrieve
messages with MQGMO_CONVERT to MQENC_NATIVE. To be
successful, the ImqMessage format must be MQFMT_CICS.

See the parent class method description for more details.

Object methods (public)
void operator = (const ImqCICSBridgeHeader & header);

Copies instance data from the header, replacing the existing instance data.

MQLONG ADSDescriptor() const;
Returns a copy of the ADS descriptor.

void setADSDescriptor(const MQLONG descriptor = MQCADSD_NONE);
Sets the ADS descriptor.

ImqString attentionIdentifier() const;
Returns a copy of the attention identifier, padded with trailing blanks to
length MQ_ATTENTION_ID_LENGTH.

void setAttentionIdentifier(const char * data = 0);
Sets the attention identifier, padded with trailing blanks to length
MQ_ATTENTION_ID_LENGTH. If no data is supplied, resets attention
identifier to the initial value.

ImqCICSBridgeHeader class

42 Using C++

ImqString authenticator() const;
Returns a copy of the authenticator, padded with trailing blanks to length
MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator(const char * data = 0);
Sets the authenticator, padded with trailing blanks to length
MQ_AUTHENTICATOR_LENGTH. If no data is supplied, resets
authenticator to the initial value.

ImqString bridgeAbendCode() const;
Returns a copy of the bridge abend code, padded with trailing blanks to
length MQ_ABEND_CODE_LENGTH.

ImqString bridgeCancelCode() const;
Returns a copy of the bridge cancel code, padded with trailing blanks to
length MQ_CANCEL_CODE_LENGTH.

void setBridgeCancelCode(const char * data = 0);
Sets the bridge cancel code, padded with trailing blanks to length
MQ_CANCEL_CODE_LENGTH. If no data is supplied, resets the bridge
cancel code to the initial value.

MQLONG bridgeCompletionCode() const;
Returns a copy of the bridge completion code.

MQLONG bridgeErrorOffset() const ;
Returns a copy of the bridge error offset.

MQLONG bridgeReasonCode() const;
Returns a copy of the bridge reason code.

MQLONG bridgeReturnCode() const;
Returns the bridge return code.

MQLONG conversationalTask() const;
Returns a copy of the conversational task.

void setConversationalTask(const MQLONG task = MQCCT_NO);
Sets the conversational task.

MQLONG cursorPosition() const ;
Returns a copy of the cursor position.

void setCursorPosition(const MQLONG position = 0);
Sets the cursor position.

MQLONG facilityKeepTime() const;
Returns a copy of the facility keep time.

void setFacilityKeepTime(const MQLONG time = 0);
Sets the facility keep time.

ImqString facilityLike() const;
Returns a copy of the facility like, padded with trailing blanks to length
MQ_FACILITY_LIKE_LENGTH.

void setFacilityLike(const char * name = 0);
Sets the facility like, padded with trailing blanks to length
MQ_FACILITY_LIKE_LENGTH. If no name is supplied, resets facility like
the initial value.

ImqBinary facilityToken() const;
Returns a copy of the facility token.

ImqCICSBridgeHeader class

Chapter 3. WebSphere MQ C++ classes 43

ImqBoolean setFacilityToken(const ImqBinary & token);
Sets the facility token. The data length of token must be either zero or
MQ_FACILITY_LENGTH. It returns TRUE if successful.

void setFacilityToken(const MQBYTE8 token = 0);
Sets the facility token. token can be zero, which is the same as specifying
MQCFAC_NONE. If token is nonzero it must address
MQ_FACILITY_LENGTH bytes of binary data. When using predefined
values such as MQCFAC_NONE, you might need to make a cast to ensure
a signature match. For example, (MQBYTE *)MQCFAC_NONE.

ImqString function() const;
Returns a copy of the function, padded with trailing blanks to length
MQ_FUNCTION_LENGTH.

MQLONG getWaitInterval() const;
Returns a copy of the get wait interval.

void setGetWaitInterval(const MQLONG interval = MQCGWI_DEFA
Sets the get wait interval.

MQLONG linkType() const;
Returns a copy of the link type.

void setLinkType(const MQLONG type = MQCLT_PROGRAM);
Sets the link type.

ImqString nextTransactionIdentifier() const ;
Returns a copy of the next transaction identifier data, padded with
trailing blanks to length MQ_TRANSACTION_ID_LENGTH.

MQLONG outputDataLength() const;
Returns a copy of the output data length.

void setOutputDataLength(const MQLONG length = MQCODL_AS_INPUT);
Sets the output data length.

ImqString replyToFormat() const;
Returns a copy of the reply-to format name, padded with trailing blanks to
length MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * name = 0);
Sets the reply-to format, padded with trailing blanks to length
MQ_FORMAT_LENGTH. If no name is supplied, resets reply-to format to
the initial value.

ImqString startCode() const;
Returns a copy of the start code, padded with trailing blanks to length
MQ_START_CODE_LENGTH.

void setStartCode(const char * data = 0);
Sets the start code data, padded with trailing blanks to length
MQ_START_CODE_LENGTH. If no data is supplied, resets start code to
the initial value.

MQLONG taskEndStatus() const;
Returns a copy of the task end status.

ImqString transactionIdentifier() const;
Returns a copy of the transaction identifier data, padded with trailing
blanks to the length MQ_TRANSACTION_ID_LENGTH.

void setTransactionIdentifier(const char * data = 0);
Sets the transaction identifier, padded with trailing blanks to length

ImqCICSBridgeHeader class

44 Using C++

MQ_TRANSACTION_ID_LENGTH. If no data is supplied, resets
transaction identifier to the initial value.

MQLONG UOWControl() const;
Returns a copy of the UOW control.

void setUOWControl(const MQLONG control = MQCUOWC_ONLY);
Sets the UOW control.

MQLONG version() const;
Returns the version number.

ImqBoolean setVersion(const MQLONG version = MQCIH_VERSION_2);
Sets the version number. It returns TRUE if successful.

Object data (protected)
MQLONG olVersion

The maximum MQCIH version number that can be accommodated in the
storage allocated for opcih.

PMQCIH opcih
The address of an MQCIH data structure. The amount of storage allocated
is indicated by olVersion.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR
MQRC_WRONG_VERSION

ImqCICSBridgeHeader class

Chapter 3. WebSphere MQ C++ classes 45

Return codes
Table 3. ImqCICSBridgeHeader class return codes

Return Code Function CompCode Reason Abend
Code

MQCRC_OK

MQCRC_BRIDGE_ERROR MQFB_CICS

MQCRC_MQ_API_ERROR WebSphere MQ
call name

WebSphere MQ
CompCode

WebSphere MQ
Reason

MQCRC_BRIDGE_TIMEOUT WebSphere MQ
call name

WebSphere MQ
CompCode

WebSphere MQ
Reason

MQCRC_CICS_EXEC_ERROR CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_SECURITY_ERROR CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_PROGRAM_NOT_AVAILABLE CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_TRANSID_NOT_AVAILABLE CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_BRIDGE_ABEND CICS
ABCODE

MQCRC_APPLICATION_ABEND CICS
ABCODE

ImqCICSBridgeHeader class

46 Using C++

ImqDeadLetterHeader

This class encapsulates features of the MQDLH data structure (see Table 10 on
page 140). Objects of this class are typically used by an application that encounters
an message that cannot be processed. A new message comprising a dead-letter
header and the message content is placed on the dead-letter queue, and the
message is discarded.

Other relevant classes
ImqHeader (see “ImqHeader” on page 58)
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)
ImqString (see “ImqString” on page 115)

Object attributes
dead-letter reason code

The reason the message arrived on the dead-letter queue. The initial value
is MQRC_NONE.

destination queue manager name
The name of the original destination queue manager. The name is a string
of length MQ_Q_MGR_NAME_LENGTH. Its initial value is null.

destination queue name
The name of the original destination queue. The name is a string of length
MQ_Q_NAME_LENGTH. Its initial value is null.

put application name
The name of the application that put the message on the dead-letter queue.
The name is a string of length MQ_PUT_APPL_NAME_LENGTH. Its
initial value is null.

put application type
The type of application that put the message on the dead-letter queue. The
initial value is zero.

Header

Dead Letter
Header

A

Figure 8. ImqDeadLetterHeader class

ImqDeadLetterHeader class

Chapter 3. WebSphere MQ C++ classes 47

put date
The date when the message was put on the dead-letter queue. The date is
a string of length MQ_PUT_DATE_LENGTH. Its initial value is a null
string.

put time
The time when the message was put on the dead-letter queue. The time is
a string of length MQ_PUT_TIME_LENGTH. Its initial value is a null
string.

Constructors
ImqDeadLetterHeader();

The default constructor.

ImqDeadLetterHeader(const ImqDeadLetterHeader & header);
The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQDLH data structure into the message buffer at the beginning,
moving existing message data further along. Sets the msg format to
MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page 58 for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQDLH data structure from the message buffer.

To be successful, the ImqMessage format must be
MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page 58 for further details.

Object methods (public)
void operator = (const ImqDeadLetterHeader & header);

Copies instance data is copied from header, replacing the existing instance
data.

MQLONG deadLetterReasonCode() const ;
Returns the dead-letter reason code.

void setDeadLetterReasonCode(const MQLONG reason);
Sets the dead-letter reason code.

ImqString destinationQueueManagerName() const ;
Returns the destination queue manager name, stripped of any trailing
blanks.

void setDestinationQueueManagerName(const char * name);
Sets the destination queue manager name. Truncates data longer than
MQ_Q_MGR_NAME_LENGTH (48 characters).

ImqString destinationQueueName() const ;
Returns a copy of the destination queue name, stripped of any trailing
blanks.

void setDestinationQueueName(const char * name);
Sets the destination queue name. Truncates data longer than
MQ_Q_NAME_LENGTH (48 characters).

ImqDeadLetterHeader class

48 Using C++

ImqString putApplicationName() const ;
Returns a copy of the put application name, stripped of any trailing
blanks.

void setPutApplicationName(const char * name = 0);
Sets the put application name. Truncates data longer than
MQ_PUT_APPL_NAME_LENGTH (28 characters).

MQLONG putApplicationType() const ;
Returns the put application type.

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type.

ImqString putDate() const ;
Returns a copy of the put date, stripped of any trailing blanks.

void setPutDate(const char * date = 0);
Sets the put date. Truncates data longer than MQ_PUT_DATE_LENGTH (8
characters).

ImqString putTime() const ;
Returns a copy of the put time, stripped of any trailing blanks.

void setPutTime(const char * time = 0);
Sets the put time. Truncates data longer than MQ_PUT_TIME_LENGTH (8
characters).

Object data (protected)
MQDLH omqdlh

The MQDLH data structure.

Reason codes
MQRC_INCONSISTENT_FORMAT
MQRC_STRUC_ID_ERROR
MQRC_ENCODING_ERROR

ImqDeadLetterHeader class

Chapter 3. WebSphere MQ C++ classes 49

ImqDistributionList

This class encapsulates a dynamic distribution list that references one or more
queues for the purpose of sending a message or messages to multiple destinations.

Other relevant classes
ImqMessage (see “ImqMessage” on page 65)
ImqQueue (see “ImqQueue” on page 90)

Object attributes
first distributed queue

The first of one or more objects of class ImqQueue, in no particular order,
in which the ImqQueue distribution list reference addresses this object.

Initially there are no such objects. To open an ImqDistributionList
successfully, there must be at least one such object.

Note: When an ImqDistributionList object is opened, any open ImqQueue
objects that reference it are automatically closed.

Constructors
ImqDistributionList();

The default constructor.

ImqDistributionList(const ImqDistributionList & list);
The copy constructor.

Object methods (public)
void operator = (const ImqDistributionList & list);

All ImqQueue objects that reference this object are dereferenced before
copying. No ImqQueue objects will reference this object after the
invocation of this method.

Queue

Distribution
List

n

1

distributed from

Figure 9. ImqDistributionList class

ImqDistributionList class

50 Using C++

ImqQueue * firstDistributedQueue() const ;
Returns the first distributed queue.

Object methods (protected)
void setFirstDistributedQueue(ImqQueue * queue = 0);

Sets the first distributed queue.

ImqDistributionList class

Chapter 3. WebSphere MQ C++ classes 51

ImqError

This abstract class provides information on errors associated with an object. It
relates to the MQI calls listed in Table 11 on page 140.

Other relevant classes
None.

Object attributes
completion code

The most recent completion code. The initial value is zero. The following
additional values are possible:

MQCC_OK
MQCC_WARNING
MQCC_FAILED

reason code
The most recent reason code. The initial value is zero.

Constructors
ImqError();

The default constructor.

ImqError(const ImqError & error);
The copy constructor.

Object methods (public)
void operator = (const ImqError & error);

Copies instance data from error, replacing the existing instance data.

void clearErrorCodes();
Sets the completion code and reason code both to zero.

MQLONG completionCode() const ;
Returns the completion code.

MQLONG reasonCode() const ;
Returns the reason code.

A

Error

Figure 10. ImqError class

ImqError class

52 Using C++

Object methods (protected)
ImqBoolean checkReadPointer(const void * pointer, const size_t length);

Verifies that the combination of pointer and length is valid for read-only
access, and returns TRUE if successful.

ImqBoolean checkWritePointer(const void * pointer, const size_t length);
Verifies that the combination of pointer and length is valid for read-write
access, and returns TRUE if successful.

void setCompletionCode(const MQLONG code = 0);
Sets the completion code.

void setReasonCode(const MQLONG code = 0);
Sets the reason code.

Reason codes
MQRC_BUFFER_ERROR

ImqError class

Chapter 3. WebSphere MQ C++ classes 53

ImqGetMessageOptions

This class encapsulates the MQGMO data structure (see Table 12 on page 140).

Other relevant classes
ImqString (see “ImqString” on page 115)

Object attributes
group status

Status of a message for a group of messages. The initial value is
MQGS_NOT_IN_GROUP. The following additional values are possible:

MQGS_MSG_IN_GROUP
MQGS_LAST_MSG_IN_GROUP

match options
Options for selecting incoming messages. The initial value is
MQMO_MATCH_MSG_ID | MQMO_MATCH_CORREL_ID. The
following additional values are possible:

MQMO_GROUP_ID
MQMO_MATCH_MSG_SEQ_NUMBER
MQMO_MATCH_OFFSET
MQMO_MSG_TOKEN
MQMO_NONE

message token
Message token. A binary value (MQBYTE16) of length
MQ_MSG_TOKEN_LENGTH. The initial value is MQMTOK_NONE.

options
Options applicable to a message. The initial value is MQGMO_NO_WAIT.
The following additional values are possible:

MQGMO_WAIT
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_NO_SYNCPOINT

Error

A

Get
Message
Options

Figure 11. ImqGetMessageOptions class

ImqGetMessageOptions class

54 Using C++

MQGMO_MARK_SKIP_BACKOUT
MQGMO_BROWSE_FIRST
MQGMO_BROWSE_NEXT
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_MSG_UNDER_CURSOR
MQGMO_LOCK
MQGMO_UNLOCK
MQGMO_ACCEPT_TRUNCATED_MSG
MQGMO_SET_SIGNAL
MQGMO_FAIL_IF_QUIESCING
MQGMO_CONVERT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_NONE

resolved queue name
Resolved queue name. This attribute is read-only. Names are never longer
than 48 characters and can be padded to that length with nulls. The initial
value is a null string.

returned length
Returned length. The initial value is MQRL_UNDEFINED. This attribute is
read-only.

segmentation
The ability to segment a message. The initial value is MQSEG_INHIBITED.
The additional value, MQSEG_ALLOWED, is possible.

segment status
The segmentation status of a message. The initial value is
MQSS_NOT_A_SEGMENT. The following additional values are possible:

MQSS_SEGMENT
MQSS_LAST_SEGMENT

syncpoint participation
TRUE when messages are retrieved under syncpoint control.

wait interval
The length of time that the ImqQueue class get method pauses while
waiting for a suitable message to arrive, if one is not already available. The
initial value is zero, which effects an indefinite wait. The additional value,
MQWI_UNLIMITED, is possible. This attribute is ignored unless the
options include MQGMO_WAIT.

Constructors
ImqGetMessageOptions();

The default constructor.

ImqGetMessageOptions(const ImqGetMessageOptions & gmo);
The copy constructor.

ImqGetMessageOptions class

Chapter 3. WebSphere MQ C++ classes 55

Object methods (public)
void operator = (const ImqGetMessageOptions & gmo);

Copies instance data from gmo, replacing the existing instance data.

MQCHAR groupStatus() const ;
Returns the group status.

void setGroupStatus(const MQCHAR status);
Sets the group status.

MQLONG matchOptions() const ;
Returns the match options.

void setMatchOptions(const MQLONG options);
Sets the match options.

ImqBinary messageToken() const;
Returns the message token.

ImqBoolean setMessageToken(const ImqBinary & token);
Sets the message token. The data length of token must be either zero or
MQ_MSG_TOKEN_LENGTH. This method returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);
Sets the message token. token can be zero, which is the same as specifying
MQMTOK_NONE. If token is nonzero, then it must address
MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values, such as MQMTOK_NONE, you might not
need to make a cast to ensure a signature match, for example
(MQBYTE *)MQMTOK_NONE.

MQLONG options() const ;
Returns the options.

void setOptions(const MQLONG options);
Sets the options, including the syncpoint participation value.

ImqString resolvedQueueName() const ;
Returns a copy of the resolved queue name.

MQLONG returnedLength() const;
Returns the returned length.

MQCHAR segmentation() const ;
Returns the segmentation.

void setSegmentation(const MQCHAR value);
Sets the segmentation.

MQCHAR segmentStatus() const ;
Returns the segment status.

void setSegmentStatus(const MQCHAR status);
Sets the segment status.

ImqBoolean syncPointParticipation() const ;
Returns the syncpoint participation value, which is TRUE if the options
include either MQGMO_SYNCPOINT or
MQGMO_SYNCPOINT_IF_PERSISTENT.

ImqGetMessageOptions class

56 Using C++

void setSyncPointParticipation(const ImqBoolean sync);
Sets the syncpoint participation value. If sync is TRUE, alters the options
to include MQGMO_SYNCPOINT, and to exclude both
MQGMO_NO_SYNCPOINT and MQGMO_SYNCPOINT_IF_PERSISTENT.
If sync is FALSE, alters the options to include MQGMO_NO_SYNCPOINT,
and to exclude both MQGMO_SYNCPOINT and
MQGMO_SYNCPOINT_IF_PERSISTENT.

MQLONG waitInterval() const ;
Returns the wait interval.

void setWaitInterval(const MQLONG interval);
Sets the wait interval.

Object data (protected)
MQGMO omqgmo

An MQGMO Version 2 data structure. Access MQGMO fields supported
for MQGMO_VERSION_2 only.

This instance data is available for programs compiled on MQSeries Version
5 products.

PMQGMO opgmo
The address of an MQGMO data structure. The version number for this
address is indicated in olVersion. Inspect the version number before
accessing MQGMO fields, to ensure that they are present.

This instance data is available for programs compiled on MQSeries Version
5 products.

MQLONG olVersion
The version number of the MQGMO data structure addressed by opgmo.

This instance data is available for programs compiled on MQSeries Version
5 products.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR

ImqGetMessageOptions class

Chapter 3. WebSphere MQ C++ classes 57

ImqHeader

This abstract class encapsulates common features of the MQDLH data structure
(see Table 13 on page 141).

Other relevant classes
ImqCICSBridgeHeader (see “ImqCICSBridgeHeader” on page 39)
ImqDeadLetterHeader (see “ImqDeadLetterHeader” on page 47)
ImqIMSBridgeHeader (see “ImqIMSBridgeHeader” on page 60)
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)
ImqReferenceHeader (see “ImqReferenceHeader” on page 112)
ImqString (see “ImqString” on page 115)
ImqWorkHeader (see “ImqWorkHeader” on page 124)

Object attributes
character set

The original coded character set identifier. Initially MQCCSI_Q_MGR.

encoding
The original encoding. Initially MQENC_NATIVE.

format
The original format. Initially MQFMT_NONE.

header flags
The initial values are:

Zero for objects of the ImqDeadLetterHeader class
MQIIH_NONE for objects of the ImqIMSBridgeHeader class
MQRMHF_LAST for objects of the ImqReferenceHeader class
MQCIH_NONE for objects of the ImqCICSBridgeHeader class
MQWIH_NONE for objects of the ImqWorkHeader class

Item

A

Header

A

Figure 12. ImqHeader class

ImqHeader class

58 Using C++

Constructors
ImqHeader();

The default constructor.

ImqHeader(const ImqHeader & header);
The copy constructor.

Object methods (public)
void operator = (const ImqHeader & header);

Copies instance data from header, replacing the existing instance data.

virtual MQLONG characterSet() const ;
Returns the character set.

virtual void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);
Sets the character set.

virtual MQLONG encoding() const ;
Returns the encoding.

virtual void setEncoding(const MQLONG encoding = MQENC_NATIVE);
Sets the encoding.

virtual ImqString format() const ;
Returns a copy of the format, including trailing blanks.

virtual void setFormat(const char * name = 0);
Sets the format, padded to 8 characters with trailing blanks.

virtual MQLONG headerFlags() const ;
Returns the header flags.

virtual void setHeaderFlags(const MQLONG flags = 0);
Sets the header flags.

ImqHeader class

Chapter 3. WebSphere MQ C++ classes 59

ImqIMSBridgeHeader

This class encapsulates features of the MQIIH data structure (see Table 14 on
page 141). Objects of this class are used by applications that send messages to the
IMS bridge through WebSphere MQ for z/OS.

Note: The ImqHeader character set and encoding must have default values and
must not be set to any other values.

Other relevant classes
ImqBinary (see “ImqBinary” on page 28)
ImqHeader (see “ImqHeader” on page 58)
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)
ImqString (see “ImqString” on page 115)

Object attributes
authenticator

RACF password or passticket, of length
MQ_AUTHENTICATOR_LENGTH. The initial value is MQIAUT_NONE.

commit mode
Commit mode. See the OTMA User’s Guide for more information about IMS
commit modes. The initial value is MQICM_COMMIT_THEN_SEND. The
additional value, MQICM_SEND_THEN_COMMIT, is possible.

logical terminal override
Logical terminal override, of length MQ_LTERM_OVERRIDE_LENGTH.
The initial value is a null string.

message format services map name
MFS map name, of length MQ_MFS_MAP_NAME_LENGTH. The initial
value is a null string.

reply-to format
Format of any reply, of length MQ_FORMAT_LENGTH. The initial value is
MQFMT_NONE.

Header

A

IMS Bridge
Header

Figure 13. ImqIMSBridgeHeader class

ImqIMSBridgeHeader class

60 Using C++

security scope
Desired IMS security processing. The initial value is MQISS_CHECK. The
additional value, MQISS_FULL, is possible.

transaction instance id
Transaction instance identity, a binary (MQBYTE16) value of length
MQ_TRAN_INSTANCE_ID_LENGTH. The initial value is MQITII_NONE.

transaction state
State of the IMS conversation. The initial value is
MQITS_NOT_IN_CONVERSATION. The additional value,
MQITS_IN_CONVERSATION, is possible.

Constructors
ImqIMSBridgeHeader();

The default constructor.

ImqIMSBridgeHeader(const ImqIMSBridgeHeader & header);
The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQIIH data structure into the message buffer at the beginning,
moving existing message data further along. Sets the msg format to
MQFMT_IMS.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQIIH data structure from the message buffer.

To be successful, the encoding of the msg object must be
MQENC_NATIVE. Retrieve messages with MQGMO_CONVERT to
MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_IMS.

See the parent class method description for further details.

Object methods (public)
void operator = (const ImqIMSBridgeHeader & header);

Copies instance data from header, replacing the existing instance data.

ImqString authenticator() const ;
Returns a copy of the authenticator, padded with trailing blanks to length
MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator(const char * name);
Sets the authenticator.

MQCHAR commitMode() const ;
Returns the commit mode.

void setCommitMode(const MQCHAR mode);
Sets the commit mode.

ImqString logicalTerminalOverride() const ;
Returns a copy of the logical terminal override.

ImqIMSBridgeHeader class

Chapter 3. WebSphere MQ C++ classes 61

void setLogicalTerminalOverride(const char * override);
Sets the logical terminal override.

ImqString messageFormatServicesMapName() const ;
Returns a copy of the message format services map name.

void setMessageFormatServicesMapName(const char * name);
Sets the message format services map name.

ImqString replyToFormat() const ;
Returns a copy of the reply-to format, padded with trailing blanks to
length MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * format);
Sets the reply-to format, padded with trailing blanks to length
MQ_FORMAT_LENGTH.

MQCHAR securityScope() const ;
Returns the security scope.

void setSecurityScope(const MQCHAR scope);
Sets the security scope.

ImqBinary transactionInstanceId() const ;
Returns a copy of the transaction instance id.

ImqBoolean setTransactionInstanceId(const ImqBinary & id);
Sets the transaction instance id. The data length of token must be either
zero or MQ_TRAN_INSTANCE_ID_LENGTH. This method returns TRUE
if successful.

void setTransactionInstanceId(const MQBYTE16 id = 0);
Sets the transaction instance id. id can be zero, which is the same as
specifying MQITII_NONE. If id is nonzero, it must address
MQ_TRAN_INSTANCE_ID_LENGTH bytes of binary data. When using
predefined values such as MQITII_NONE, you might need to make a cast
to ensure a signature match, for example (MQBYTE *)MQITII_NONE.

MQCHAR transactionState() const ;
Returns the transaction state.

void setTransactionState(const MQCHAR state);
Sets the transaction state.

Object data (protected)
MQIIH omqiih

The MQIIH data structure.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR
MQRC_INCONSISTENT_FORMAT
MQRC_ENCODING_ERROR
MQRC_STRUC_ID_ERROR

ImqIMSBridgeHeader class

62 Using C++

ImqItem

This abstract class represents an item, perhaps one of several, within a message.
Items are concatenated together in a message buffer. Each specialization is
associated with a particular data structure that begins with a structure id.

Polymorphic methods in this abstract class allow items to be copied to and from
messages. The ImqMessage class readItem and writeItem methods provide another
style of invoking these polymorphic methods that is more natural for application
programs.

This class relates to the MQI calls listed in Table 15 on page 141.

Other relevant classes
ImqCache (see “ImqCache” on page 30)
ImqError (see “ImqError” on page 52)
ImqMessage (see “ImqMessage” on page 65)

Object attributes
structure id

A string of four characters at the beginning of the data structure. This
attribute is read-only. This attribute is recommended for derived classes. It
is not included automatically.

Constructors
ImqItem();

The default constructor.

ImqItem(const ImqItem & item);
The copy constructor.

Error

A

Item

A

Figure 14. ImqItem class

ImqItem class

Chapter 3. WebSphere MQ C++ classes 63

Class methods (public)
static ImqBoolean structureIdIs(const char * structure-id-to-test, const
ImqMessage & msg);

Returns TRUE if the structure id of the next ImqItem in the incoming msg
is the same as structure-id-to-test. The next item is identified as that part of
the message buffer currently addressed by the ImqCache data pointer. This
method relies on the structure id and therefore is not guaranteed to work
for all ImqItem derived classes.

Object methods (public)
void operator = (const ImqItem & item);

Copies instance data from item, replacing the existing instance data.

virtual ImqBoolean copyOut(ImqMessage & msg) = 0 ;
Writes this object as the next item in an outgoing message buffer,
appending it to any existing items. If the write operation is successful,
increases the ImqCache data length. This method returns TRUE if
successful.

Override this method to work with a specific subclass.

virtual ImqBoolean pasteIn(ImqMessage & msg) = 0 ;
Reads this object destructively from the incoming message buffer. The read
is destructive in that the ImqCache data pointer is moved on. However,
the buffer content remains the same, so data can be re-read by resetting the
ImqCache data pointer.

The (sub)class of this object must be consistent with the structure id found
next in the message buffer of the msg object.

The encoding of the msg object should be MQENC_NATIVE. It is
recommended that messages be retrieved with the ImqMessage encoding
set to MQENC_NATIVE, and with the ImqGetMessageOptions options
including MQGMO_CONVERT.

If the read operation is successful, the ImqCache data length is reduced.
This method returns TRUE if successful.

Override this method to work with a specific subclass.

Reason codes
MQRC_ENCODING_ERROR
MQRC_STRUC_ID_ERROR
MQRC_INCONSISTENT_FORMAT
MQRC_INSUFFICIENT_BUFFER
MQRC_INSUFFICIENT_DATA

ImqItem class

64 Using C++

ImqMessage

This class encapsulates an MQMD data structure (see Table 16 on page 141), and
also handles the construction and reconstruction of message data.

Other relevant classes
ImqCache (see “ImqCache” on page 30)
ImqItem (see “ImqItem” on page 63)
ImqMessageTracker (see “ImqMessageTracker” on page 72)
ImqString (see “ImqString” on page 115)

Object attributes
application id data

Identity information associated with a message. The initial value is a null
string.

application origin data
Origin information associated with a message. The initial value is a null
string.

backout count
The number of times that a message has been tentatively retrieved and
subsequently backed out. The initial value is zero. This attribute is
read-only.

character set
Coded Character Set Id. The initial value is MQCCSI_Q_MGR. The
following additional values are possible:

MQCCSI_INHERIT
MQCCSI_EMBEDDED

You can also use a Coded Character Set Id of your choice. For information
about this, see the code page conversion tables in the WebSphere MQ
Application Programming Reference.

Cache

Message

Message
Tracker

Figure 15. ImqMessage class

ImqMessage class

Chapter 3. WebSphere MQ C++ classes 65

encoding
The machine encoding of the message data. The initial value is
MQENC_NATIVE.

expiry A time-dependent quantity that controls how long WebSphere MQ retains
an unretrieved message before discarding it. The initial value is
MQEI_UNLIMITED.

format
The name of the format (template) that describes the layout of data in the
buffer. Names longer than eight characters are truncated to eight
characters. Names are always padded with blanks to eight characters. The
initial value is MQFMT_NONE. The following additional values are
possible:

MQFMT_ADMIN
MQFMT_CICS
MQFMT_COMMAND_1
MQFMT_COMMAND_2
MQFMT_DEAD_LETTER_HEADER
MQFMT_DIST_HEADER
MQFMT_EVENT
MQFMT_IMS
MQFMT_IMS_VAR_STRING
MQFMT_MD_EXTENSION
MQFMT_PCF
MQFMT_REF_MSG_HEADER
MQFMT_RF_HEADER
MQFMT_STRING
MQFMT_TRIGGER
MQFMT_WORK_INFO_HEADER
MQFMT_XMIT_Q_HEADER

You can also use an application-specific string of your choice. For more
information about this, see the Format field of the message descriptor
(MQMD) in the WebSphere MQ Application Programming Reference.

message flags
Segmentation control information. The initial value is
MQMF_SEGMENTATION_INHIBITED. The following additional values
are possible:

MQMF_SEGMENTATION_ALLOWED
MQMF_MSG_IN_GROUP
MQMF_LAST_MSG_IN_GROUP
MQMF_SEGMENT
MQMF_LAST_SEGMENT
MQMF_NONE

This attribute is not supported on z/OS.

message type
The broad categorization of a message. The initial value is
MQMT_DATAGRAM. The following additional values are possible:

ImqMessage class

66 Using C++

MQMT_SYSTEM_FIRST
MQMT_SYSTEM_LAST
MQMT_DATAGRAM
MQMT_REQUEST
MQMT_REPLY
MQMT_REPORT
MQMT_APPL_FIRST
MQMT_APPL_LAST

You can also use an application-specific value of your choice. For more
information about this, see the MsgType field of the message descriptor
(MQMD) in the WebSphere MQ Application Programming Reference.

offset Offset information. The initial value is zero. This attribute is not supported
on z/OS.

original length
The original length of a segmented message. The initial value is
MQOL_UNDEFINED. This attribute is not supported on z/OS.

persistence
Indicates that the message is important and must at all times be backed up
using persistent storage. This option implies a performance penalty. The
initial value is MQPER_PERSISTENCE_AS_Q_DEF. The following
additional values are possible:

MQPER_PERSISTENT
MQPER_NOT_PERSISTENT

priority
The relative priority for transmission and delivery. Messages of the same
priority are usually delivered in the same sequence as they were supplied
(although there are several criteria that must be satisfied to guarantee this).
The initial value is MQPRI_PRIORITY_AS_Q_DEF.

put application name
The name of the application that put a message. The initial value is a null
string.

put application type
The type of application that put a message. The initial value is
MQAT_NO_CONTEXT. The following additional values are possible:

MQAT_AIX
MQAT_CICS
MQAT_CICS_BRIDGE
MQAT_DOS
MQAT_IMS
MQAT_IMS_BRIDGE
MQAT_MVS
MQAT_NOTES_AGENT
MQAT_OS2
MQAT_OS390
MQAT_OS400
MQAT_QMGR

ImqMessage class

Chapter 3. WebSphere MQ C++ classes 67

|
|
|

MQAT_UNIX
MQAT_WINDOWS
MQAT_WINDOWS_NT
MQAT_XCF
MQAT_DEFAULT
MQAT_UNKNOWN
MQAT_USER_FIRST
MQAT_USER_LAST

You can also use an application-specific string of your choice. For more
information about this, see the PutApplType field of the message descriptor
(MQMD) in the WebSphere MQ Application Programming Reference.

put date
The date on which a message was put. The initial value is a null string.

put time
The time at which a message was put. The initial value is a null string.

reply-to queue manager name
The name of the queue manager to which any reply should be sent. The
initial value is a null string.

reply-to queue name
The name of the queue to which any reply should be sent. The initial value
is a null string.

report Feedback information associated with a message. The initial value is
MQRO_NONE. The following additional values are possible:

MQRO_EXCEPTION
MQRO_EXCEPTION_WITH_DATA
MQRO_EXCEPTION_WITH_FULL_DATA *
MQRO_EXPIRATION
MQRO_EXPIRATION_WITH_DATA
MQRO_EXPIRATION_WITH_FULL_DATA *
MQRO_COA
MQRO_COA_WITH_DATA
MQRO_COA_WITH_FULL_DATA *
MQRO_COD
MQRO_COD_WITH_DATA
MQRO_COD_WITH_FULL_DATA *
MQRO_PAN
MQRO_NAN
MQRO_NEW_MSG_ID
MQRO_NEW_CORREL_ID
MQRO_COPY_MSG_ID_TO_CORREL_ID
MQRO_PASS_CORREL_ID
MQRO_DEAD_LETTER_Q
MQRO_DISCARD_MSG

where * indicates values that are not supported on WebSphere MQ for
z/OS.

ImqMessage class

68 Using C++

|

sequence number
Sequence information identifying a message within a group. The initial
value is one. This attribute is not supported on z/OS.

total message length
The number of bytes that were available during the most recent attempt to
read a message. This number will be greater than the ImqCache message
length if the last message was truncated, or if the last message was not
read because truncation would have occurred. This attribute is read-only.
The initial value is zero.

This attribute can be useful in any situation involving truncated messages.

user id
A user identity associated with a message. The initial value is a null string.

Constructors
ImqMessage();

The default constructor.

ImqMessage(const ImqMessage & msg);
The copy constructor. See the operator = method for details.

Object methods (public)
void operator = (const ImqMessage & msg);

Copies the MQMD and message data from msg. If a buffer has been
supplied by the user for this object, the amount of data copied is restricted
to the available buffer size. Otherwise, the system ensures that a buffer of
adequate size is made available for the copied data.

ImqString applicationIdData() const ;
Returns a copy of the application id data.

void setApplicationIdData(const char * data = 0);
Sets the application id data.

ImqString applicationOriginData() const ;
Returns a copy of the application origin data.

void setApplicationOriginData(const char * data = 0);
Sets the application origin data.

MQLONG backoutCount() const ;
Returns the backout count.

MQLONG characterSet() const ;
Returns the character set.

void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);
Sets the character set.

MQLONG encoding() const ;
Returns the encoding.

void setEncoding(const MQLONG encoding = MQENC_NATIVE);
Sets the encoding.

MQLONG expiry() const ;
Returns the expiry.

ImqMessage class

Chapter 3. WebSphere MQ C++ classes 69

void setExpiry(const MQLONG expiry);
Sets the expiry.

ImqString format() const ;
Returns a copy of the format, including trailing blanks.

ImqBoolean formatIs(const char * format-to-test) const ;
Returns TRUE if the format is the same as format-to-test.

void setFormat(const char * name = 0);
Sets the format, padded to eight characters with trailing blanks.

MQLONG messageFlags() const ;
Returns the message flags.

void setMessageFlags(const MQLONG flags);
Sets the message flags.

MQLONG messageType() const ;
Returns the message type.

void setMessageType(const MQLONG type);
Sets the message type.

MQLONG offset() const ;
Returns the offset.

void setOffset(const MQLONG offset);
Sets the offset.

MQLONG originalLength() const ;
Returns the original length.

void setOriginalLength(const MQLONG length);
Sets the original length.

MQLONG persistence() const ;
Returns the persistence.

void setPersistence(const MQLONG persistence);
Sets the persistence.

MQLONG priority() const ;
Returns the priority.

void setPriority(const MQLONG priority);
Sets the priority.

ImqString putApplicationName() const ;
Returns a copy of the put application name.

void setPutApplicationName(const char * name = 0);
Sets the put application name.

MQLONG putApplicationType() const ;
Returns the put application type.

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type.

ImqString putDate() const ;
Returns a copy of the put date.

void setPutDate(const char * date = 0);
Sets the put date.

ImqMessage class

70 Using C++

ImqString putTime() const ;
Returns a copy of the put time.

void setPutTime(const char * time = 0);
Sets the put time.

ImqBoolean readItem(ImqItem & item);
Reads into the item object from the message buffer, using the ImqItem
pasteIn method. It returns TRUE if successful.

ImqString replyToQueueManagerName() const ;
Returns a copy of the reply-to queue manager name.

void setReplyToQueueManagerName(const char * name = 0);
Sets the reply-to queue manager name.

ImqString replyToQueueName() const ;
Returns a copy of the reply-to queue name.

void setReplyToQueueName(const char * name = 0);
Sets the reply-to queue name.

MQLONG report() const ;
Returns the report.

void setReport(const MQLONG report);
Sets the report.

MQLONG sequenceNumber() const ;
Returns the sequence number.

void setSequenceNumber(const MQLONG number);
Sets the sequence number.

size_t totalMessageLength() const ;
Returns the total message length.

ImqString userId() const ;
Returns a copy of the user id.

void setUserId(const char * id = 0);
Sets the user id.

ImqBoolean writeItem(ImqItem & item);
Writes from the item object into the message buffer, using the ImqItem
copyOut method. Writing can take the form of insertion, replacement, or
an append: this depends on the class of the item object. This method
returns TRUE if successful.

Object data (protected)
MQMD omqmd

The MQMD data structure.

ImqMessage class

Chapter 3. WebSphere MQ C++ classes 71

ImqMessageTracker

This class encapsulates those attributes of an ImqMessage or ImqQueue object that
can be associated with either object. It relates to the MQI calls listed in Table 17 on
page 142.

Other relevant classes
ImqBinary (see “ImqBinary” on page 28)
ImqError (see “ImqError” on page 52)
ImqMessage (see “ImqMessage” on page 65)
ImqQueue (see “ImqQueue” on page 90)

Object attributes
accounting token

A binary value (MQBYTE32) of length
MQ_ACCOUNTING_TOKEN_LENGTH. The initial value is
MQACT_NONE.

correlation id
A binary value (MQBYTE24) of length MQ_CORREL_ID_LENGTH that
you assign to correlate messages. The initial value is MQCI_NONE. The
additional value, MQCI_NEW_SESSION, is possible.

feedback
Feedback information to be sent with a message. The initial value is
MQFB_NONE. The following additional values are possible:

MQFB_SYSTEM_FIRST
MQFB_SYSTEM_LAST
MQFB_APPL_FIRST
MQFB_APPL_LAST
MQFB_COA
MQFB_COD
MQFB_EXPIRATION
MQFB_PAN

Message
Tracker

A

Error

Figure 16. ImqMessageTracker class

ImqMessageTracker class

72 Using C++

MQFB_NAN
MQFB_QUIT
MQFB_DATA_LENGTH_ZERO
MQFB_DATA_LENGTH_NEGATIVE
MQFB_DATA_LENGTH_TOO_BIG
MQFB_BUFFER_OVERFLOW
MQFB_LENGTH_OFF_BY_ONE
MQFB_IIH_ERROR
MQFB_NOT_AUTHORIZED_FOR_IMS
MQFB_IMS_ERROR
MQFB_IMS_FIRST
MQFB_IMS_LAST
MQFB_CICS_APPL_ABENDED
MQFB_CICS_APPL_NOT_STARTED
MQFB_CICS_BRIDGE_FAILURE
MQFB_CICS_CCSID_ERROR
MQFB_CICS_CIH_ERROR
MQFB_CICS_COMMAREA_ERROR
MQFB_CICS_CORREL_ID_ERROR
MQFB_CICS_DLQ_ERROR
MQFB_CICS_ENCODING_ERROR
MQFB_CICS_INTERNAL_ERROR
MQFB_CICS_NOT_AUTHORIZED
MQFB_CICS_UOW_BACKED_OUT
MQFB_CICS_UOW_ERROR

You can also use an application-specific string of your choice. For more
information about this, see the Feedback field of the message descriptor
(MQMD) in the WebSphere MQ Application Programming Reference.

group id
A binary value (MQBYTE24) of length MQ_GROUP_ID_LENGTH unique
within a queue. The initial value is MQGI_NONE.

message id
A binary value (MQBYTE24) of length MQ_MSG_ID_LENGTH unique
within a queue. The initial value is MQMI_NONE.

Constructors
ImqMessageTracker();

The default constructor.

ImqMessageTracker(const ImqMessageTracker & tracker);
The copy constructor. See the operator = method for details.

ImqMessageTracker class

Chapter 3. WebSphere MQ C++ classes 73

Object methods (public)
void operator = (const ImqMessageTracker & tracker);

Copies instance data from tracker, replacing the existing instance data.

ImqBinary accountingToken() const ;
Returns a copy of the accounting token.

ImqBoolean setAccountingToken(const ImqBinary & token);
Sets the accounting token. The data length of token must be either zero or
MQ_ACCOUNTING_TOKEN_LENGTH. This method returns TRUE if
successful.

void setAccountingToken(const MQBYTE32 token = 0);
Sets the accounting token. token can be zero, which is the same as
specifying MQACT_NONE. If token is nonzero, it must address
MQ_ACCOUNTING_TOKEN_LENGTH bytes of binary data. When using
predefined values such as MQACT_NONE, you might need to make a cast
to ensure a signature match; for example, (MQBYTE *)MQACT_NONE.

ImqBinary correlationId() const ;
Returns a copy of the correlation id.

ImqBoolean setCorrelationId(const ImqBinary & token);
Sets the correlation id. The data length of token must be either zero or
MQ_CORREL_ID_LENGTH. This method returns TRUE if successful.

void setCorrelationId(const MQBYTE24 id = 0);
Sets the correlation id. id can be zero, which is the same as specifying
MQCI_NONE. If id is nonzero, it must address
MQ_CORREL_ID_LENGTH bytes of binary data. When using predefined
values such as MQCI_NONE, you might need to make a cast to ensure a
signature match; for example, (MQBYTE *)MQCI_NONE.

MQLONG feedback() const ;
Returns the feedback.

void setFeedback(const MQLONG feedback);
Sets the feedback.

ImqBinary groupId() const ;
Returns a copy of the group id.

ImqBoolean setGroupId(const ImqBinary & token);
Sets the group id. The data length of token must be either zero or
MQ_GROUP_ID_LENGTH. This method returns TRUE if successful.

void setGroupId(const MQBYTE24 id = 0);
Sets the group id. id can be zero, which is the same as specifying
MQGI_NONE. If id is nonzero, it must address MQ_GROUP_ID_LENGTH
bytes of binary data. When using predefined values such as MQGI_NONE,
you might need to make a cast to ensure a signature match, for example
(MQBYTE *)MQGI_NONE.

ImqBinary messageId() const ;
Returns a copy of the message id.

ImqBoolean setMessageId(const ImqBinary & token);
Sets the message id. The data length of token must be either zero or
MQ_MSG_ID_LENGTH. This method returns TRUE if successful.

void setMessageId(const MQBYTE24 id = 0);
Sets the message id. id can be zero, which is the same as specifying

ImqMessageTracker class

74 Using C++

MQMI_NONE. If id is nonzero, it must address MQ_MSG_ID_LENGTH
bytes of binary data. When using predefined values such as
MQMI_NONE, you might need to make a cast to ensure a signature
match, for example (MQBYTE *)MQMI_NONE.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR

ImqMessageTracker class

Chapter 3. WebSphere MQ C++ classes 75

ImqNamelist

This class encapsulates a namelist. It relates to the MQI calls listed in Table 18 on
page 142.

Other relevant classes
ImqObject (see “ImqObject” on page 78)
ImqString (see “ImqString” on page 115)

Object attributes
name count

The number of object names in namelist names. This attribute is read-only.

namelist names
Object names, the number of which is indicated by the name count. This
attribute is read-only.

Constructors
ImqNamelist();

The default constructor.

ImqNamelist(const ImqNamelist & list);
The copy constructor. The ImqObject open status is false.

ImqNamelist(const char * name);
Sets the ImqObject name to name.

Object methods (public)
void operator = (const ImqNamelist & list);

Copies instance data from list, replacing the existing instance data. The
ImqObject open status is false.

ImqBoolean nameCount(MQLONG & count);
Provides a copy of the name count. It returns TRUE if successful.

MQLONG nameCount ();
Returns the name count without any indication of possible errors.

Object

A

Namelist

Figure 17. ImqNamelist class

ImqNamelist class

76 Using C++

ImqBoolean namelistName (const MQLONG index, ImqString & name);
Provides a copy of one the namelist names by zero based index. It returns
TRUE if successful.

ImqString namelistName (const MQLONG index);
Returns one of the namelist names by zero-based index without any
indication of possible errors.

Reason codes
MQRC_INDEX_ERROR
MQRC_INDEX_NOT_PRESENT

ImqNamelist class

Chapter 3. WebSphere MQ C++ classes 77

ImqObject

This class is abstract. When an object of this class is destroyed, it is automatically
closed, and its ImqQueueManager connection severed. This class relates to the
MQI calls listed in Table 19 on page 143.

Other relevant classes
ImqBinary (see “ImqBinary” on page 28)
ImqError (see “ImqError” on page 52)
ImqNamelist (see “ImqNamelist” on page 76)
ImqQueue (see “ImqQueue” on page 90)
ImqQueueManager (see “ImqQueueManager” on page 102)
ImqString (see “ImqString” on page 115)

Class attributes
behavior

Controls the behavior of implicit opening.

IMQ_IMPL_OPEN (8L)
Implicit opening is allowed. This is the default.

Object attributes
alteration date

The alteration date. This attribute is read-only.

alteration time
The alteration time. This attribute is read-only.

alternate user id
The alternate user id, up to MQ_USER_ID_LENGTH characters. The initial
value is a null string.

alternate security id
The alternate security id. A binary value (MQBYTE40) of length
MQ_SECURITY_ID_LENGTH. The initial value is MQSID_NONE.

Error

A

Object

A

Figure 18. ImqObject class

ImqObject class

78 Using C++

close options
Options that apply when an object is closed. The initial value is
MQCO_NONE. This attribute is ignored during implicit reopen operations,
where a value of MQCO_NONE is always used.

connection reference
A reference to an ImqQueueManager object that provides the required
connection to a (local) queue manager. For an ImqQueueManager object, it
is the object itself. The initial value is zero.

Note: Do not confuse this with the ImqQueue queue manager name that
identifies a queue manager (possibly remote) for a named queue.

description
The descriptive name (up to 64 characters) of the queue manager, queue,
namelist, or process. This attribute is read-only.

name The name (up to 48 characters) of the queue manager, queue, namelist, or
process. The initial value is a null string. The name of a model queue
changes after an open to the name of the resulting dynamic queue.

Note: An ImqQueueManager can have a null name, representing the
default queue manager. The name changes to the actual queue
manager after a successful open. An ImqDistributionList is dynamic
and must have a null name.

next managed object
This is the next object of this class, in no particular order, having the same
connection reference as this object. The initial value is zero.

open options
Options that apply when an object is opened. The initial value is
MQOO_INQUIRE. There are two ways to set appropriate values:
1. Do not set the open options and do not use the open method.

WebSphere MQ automatically adjusts the open options and
automatically opens, reopens, and closes objects as required. This can
result in unnecessary reopen operations, because WebSphere MQ uses
the openFor method, and this adds open options incrementally only.

2. Set the open options before using any methods that result in an MQI
call (see Appendix B, “MQI cross reference”, on page 137). This ensures
that unnecessary reopen operations do not occur. Set open options
explicitly if any of the potential reopen problems are likely to occur (see
“Reopen” on page 16).
If you use the open method, you must ensure that the open options are
appropriate first. However, using the open method is not mandatory;
WebSphere MQ still exhibits the same behavior as in case 1, but in this
circumstance, the behavior is efficient.

Zero is not a valid value; set the appropriate value before attempting to
open the object. This can be done using
eithersetOpenOptions(lOpenOptions) followed by open(), or
openFor(lRequiredOpenOption).

Notes:

1. MQOO_OUTPUT is substituted for MQOO_INQUIRE during the open
method for a distribution list, as MQOO_OUTPUT is the only valid

ImqObject class

Chapter 3. WebSphere MQ C++ classes 79

open option at this time. However, it is good practice always to set
MQOO_OUTPUT explicitly in application programs that use the open
method.

2. Specify MQOO_RESOLVE_NAMES if you want to use the resolved
queue manager name and resolved queue name attributes of the
ImqQueue class.

open status
Whether the object is open (TRUE) or closed (FALSE). The initial value is
FALSE. This attribute is read-only.

previous managed object
The previous object of this class, in no particular order, having the same
connection reference as this object. The initial value is zero.

queue manager identifier
The queue manager identifier. This attribute is read-only.

Constructors
ImqObject();

The default constructor.

ImqObject(const ImqObject & object);
The copy constructor. The open status will be FALSE.

Class methods (public)
static MQLONG behavior();

Returns the behavior.

void setBehavior(const MQLONG behavior = 0);
Sets the behavior.

Object methods (public)
void operator = (const ImqObject & object);

Performs a close if necessary, and copies the instance data from object. The
open status will be FALSE.

ImqBoolean alterationDate(ImqString & date);
Provides a copy of the alteration date. It returns TRUE if successful.

ImqString alterationDate();
Returns the alteration date without any indication of possible errors.

ImqBoolean alterationTime(ImqString & time);
Provides a copy of the alteration time. It returns TRUE if successful.

ImqString alterationTime();
Returns the alteration time without any indication of possible errors.

ImqString alternateUserId() const ;
Returns a copy of the alternate user id.

ImqBoolean setAlternateUserId(const char * id);
Sets the alternate user id. The alternate user id can be set only while the
open status is FALSE. This method returns TRUE if successful.

ImqBinary alternateSecurityId() const ;
Returns a copy of the alternate security id.

ImqObject class

80 Using C++

ImqBoolean setAlternateSecurityId(const ImqBinary & token);
Sets the alternate security id. The alternate security id can be set only
while the open status is FALSE. The data length of token must be either
zero or MQ_SECURITY_ID_LENGTH. It returns TRUE if successful.

ImqBoolean setAlternateSecurityId(const MQBYTE32 token = 0);
Sets the alternate security id. token can be zero, which is the same as
specifying MQSID_NONE. If token is nonzero, it must address
MQ_SECURITY_ID_LENGTH bytes of binary data. When using predefined
values such as MQSID_NONE, you might need to make a cast to ensure
signature match; for example, (MQBYTE *)MQSID_NONE.

The alternate security id can be set only while the open status is TRUE. It
returns TRUE if successful.

ImqBoolean setAlternateSecurityId(const unsigned char * id = 0);
Sets the alternate security id.

ImqBoolean close();
Sets the open status to FALSE. It returns TRUE if successful.

MQLONG closeOptions() const ;
Returns the close options.

void setCloseOptions(const MQLONG options);
Sets the close options.

ImqQueueManager * connectionReference() const ;
Returns the connection reference.

void setConnectionReference(ImqQueueManager & manager);
Sets the connection reference.

void setConnectionReference(ImqQueueManager * manager = 0);
Sets the connection reference.

virtual ImqBoolean description(ImqString & description) = 0 ;
Provides a copy of the description. It returns TRUE if successful.

ImqString description();
Returns a copy of the description without any indication of possible errors.

virtual ImqBoolean name(ImqString & name);
Provides a copy of the name. It returns TRUE if successful.

ImqString name();
Returns a copy of the name without any indication of possible errors.

ImqBoolean setName(const char * name = 0);
Sets the name. The name can only be set while the open status is FALSE,
and, for an ImqQueueManager, while the connection status is FALSE. It
returns TRUE if successful.

ImqObject * nextManagedObject() const ;
Returns the next managed object.

ImqBoolean open();
Changes the open status to TRUE by opening the object as necessary,
using amongst other attributes the open options and the name. This
method uses the connection reference information and the
ImqQueueManager connect method if necessary to ensure that the
ImqQueueManager connection status is TRUE. It returns the open status.

ImqObject class

Chapter 3. WebSphere MQ C++ classes 81

|

ImqBoolean openFor(const MQLONG required-options = 0);
Attempts to ensure that the object is open with open options, or with open
options that guarantee the behavior implied by the required-options
parameter value..

If required-options is zero, input is required, and any input option suffices.
So, if the open options already contain one of:

MQOO_INPUT_AS_Q_DEF
MQOO_INPUT_SHARED
MQOO_INPUT_EXCLUSIVE

the open options are already satisfactory and are not changed; if the open
options do not already contain any of the above,
MQOO_INPUT_AS_Q_DEF is set in the open options.

If required-options is nonzero, the required options are added to the open
options; if required-options is any of the above, the others are reset.

If any of the open options are changed and the object is already open, the
object is closed temporarily and reopened in order to adjust the open
options.

It returns TRUE if successful. Success indicates that the object is open with
appropriate options.

MQLONG openOptions() const ;
Returns the open options.

ImqBoolean setOpenOptions(const MQLONG options);
Sets the open options. The open options can be set only while the open
status is FALSE. It returns TRUE if successful.

ImqBoolean openStatus() const ;
Returns the open status.

ImqObject * previousManagedObject() const ;
Returns the previous managed object.

ImqBoolean queueManagerIdentifier(ImqString & id);
Provides a copy of the queue manager identifier. It returns TRUE if
successful.

ImqString queueManagerIdentifier();
Returns the queue manager identifier without any indication of possible
errors.

Object methods (protected)
virtual ImqBoolean closeTemporarily();

Closes an object safely before reopening. It returns TRUE if successful. This
method assumes that the open status is TRUE.

MQHCONN connectionHandle() const ;
Returns the MQHCONN associated with the connection reference. This
value is zero if there is no connection reference or if the
ImqQueueManager is not connected.

ImqBoolean inquire(const MQLONG int-attr, MQLONG & value);
Returns an integer value, the index of which is an MQIA_* value. In case
of error, the value is set to MQIAV_UNDEFINED.

ImqObject class

82 Using C++

|
|

ImqBoolean inquire(const MQLONG char-attr, char * & buffer, const size_t
length);

Returns a character string, the index of which is an MQCA_* value.

Note: Both the above methods return only a single attribute value. If a
snapshot is required of more than one value, where the values are
consistent with each other for an instant, WebSphere MQ C++ does
not provide this facility and you must use the MQINQ call with
appropriate parameters.

virtual void openInformationDisperse();
Disperses information from the variable section of the MQOD data
structure immediately after an MQOPEN call.

virtual ImqBoolean openInformationPrepare();
Prepares information for the variable section of the MQOD data structure
immediately before an MQOPEN call, and returns TRUE if successful.

ImqBoolean set(const MQLONG int-attr, const MQLONG value);
Sets a WebSphere MQ integer attribute.

ImqBoolean set(const MQLONG char-attr, const char * buffer, const size_t
required-length);

Sets a WebSphere MQ character attribute.

void setNextManagedObject(const ImqObject * object = 0);
Sets the next managed object.

Attention: Use this function only if you are sure it will not break the
managed object list.

void setPreviousManagedObject(const ImqObject * object = 0);
Sets the previous managed object.

Attention: Use this function only if you are sure it will not break the
managed object list.

Object data (protected)
MQHOBJ ohobj

The WebSphere MQ object handle (valid only when open status is TRUE).

MQOD omqod
The embedded MQOD data structure. The amount of storage allocated for
this data structure is that required for an MQOD Version 2. Inspect the
version number (omqod.Version) and access the other fields as follows:

MQOD_VERSION_1
All other fields in omqod can be accessed.

MQOD_VERSION_2
All other fields in omqod can be accessed.

MQOD_VERSION_3
omqod.pmqod is a pointer to a dynamically allocated, larger, MQOD.
No other fields in omqod can be accessed. All fields addressed by
omqod.pmqod can be accessed.

Note: omqod.pmqod.Version can be less than omqod.Version,
indicating that the WebSphere MQ client has more
functionality than the WebSphere MQ server.

ImqObject class

Chapter 3. WebSphere MQ C++ classes 83

|
|

|
|

Reason codes
MQRC_ATTRIBUTE_LOCKED
MQRC_INCONSISTENT_OBJECT_STATE
MQRC_NO_CONNECTION_REFERENCE
MQRC_STORAGE_NOT_AVAILABLE
MQRC_REOPEN_SAVED_CONTEXT_ERR
(reason codes from MQCLOSE)
(reason codes from MQCONN)
(reason codes from MQINQ)
(reason codes from MQOPEN)
(reason codes from MQSET)

ImqObject class

84 Using C++

ImqProcess

This class encapsulates an application process (a WebSphere MQ object of type
MQOT_PROCESS) that can be triggered by a trigger monitor (see Table 20 on
page 143).

Other relevant classes
ImqObject (see “ImqObject” on page 78)

Object attributes
application id

The identity of the application process. This attribute is read-only.

application type
The type of the application process. This attribute is read-only.

environment data
The environment information for the process. This attribute is read-only.

user data
User data for the process. This attribute is read-only.

Constructors
ImqProcess();

The default constructor.

ImqProcess(const ImqProcess & process);
The copy constructor. The ImqObject open status is FALSE.

ImqProcess(const char * name);
Sets the ImqObject name.

Object methods (public)
void operator = (const ImqProcess & process);

Performs a close if necessary, and then copies instance data from process.
The ImqObject open status will be FALSE.

Object

A

Process

Figure 19. ImqProcess class

ImqProcess class

Chapter 3. WebSphere MQ C++ classes 85

ImqBoolean applicationId(ImqString & id);
Provides a copy of the application id. It returns TRUE if successful.

ImqString applicationId();
Returns the application id without any indication of possible errors.

ImqBoolean applicationType(MQLONG & type);
Provides a copy of the application type. It returns TRUE if successful.

MQLONG applicationType();
Returns the application type without any indication of possible errors.

ImqBoolean environmentData(ImqString & data);
Provides a copy of the environment data. It returns TRUE if successful.

ImqString environmentData();
Returns the environment data without any indication of possible errors.

ImqBoolean userData(ImqString & data);
Provides a copy of the user data. It returns TRUE if successful.

ImqString userData();
Returns the user data without any indication of possible errors.

ImqProcess class

86 Using C++

ImqPutMessageOptions

This class encapsulates the MQPMO data structure (see Table 21 on page 143).

Other relevant classes
ImqError (see “ImqError” on page 52)
ImqMessage (see “ImqMessage” on page 65)
ImqQueue (see “ImqQueue” on page 90)
ImqString (see “ImqString” on page 115)

Object attributes
context reference

An ImqQueue that provides a context for messages. Initially there is no
reference.

options
The put message options. The initial value is MQPMO_NONE. The
following additional values are possible:

MQPMO_SYNCPOINT
MQPMO_NO_SYNCPOINT
MQPMO_NEW_MSG_ID
MQPMO_NEW_CORREL_ID
MQPMO_LOGICAL_ORDER
MQPMO_NO_CONTEXT
MQPMO_DEFAULT_CONTEXT
MQPMO_PASS_IDENTITY_CONTEXT
MQPMO_PASS_ALL_CONTEXT
MQPMO_SET_IDENTITY_CONTEXT
MQPMO_SET_ALL_CONTEXT
MQPMO_ALTERNATE_USER_AUTHORITY
MQPMO_FAIL_IF_QUIESCING

Error

A

Put
Message
Options

Figure 20. ImqPutMessageOptions class

ImqPutMessageOptions class

Chapter 3. WebSphere MQ C++ classes 87

record fields
The flags that control the inclusion of put message records when a message
is put. The initial value is MQPMRF_NONE. The following additional
values are possible:

MQPMRF_MSG_ID
MQPMRF_CORREL_ID
MQPMRF_GROUP_ID
MQPMRF_FEEDBACK
MQPMRF_ACCOUNTING_TOKEN

ImqMessageTracker attributes are taken from the ImqQueue object for any
field that is specified. ImqMessageTracker attributes are taken from the
ImqMessage object for any field that is not specified.

resolved queue manager name
Name of a destination queue manager determined during a put. The initial
value is null. This attribute is read-only.

resolved queue name
Name of a destination queue determined during a put. The initial value is
null. This attribute is read-only.

syncpoint participation
TRUE when messages are put under syncpoint control.

Constructors
ImqPutMessageOptions();

The default constructor.

ImqPutMessageOptions(const ImqPutMessageOptions & pmo);
The copy constructor.

Object methods (public)
void operator = (const ImqPutMessageOptions & pmo);

Copies instance data from pmo, replacing the existing instance data.

ImqQueue * contextReference() const ;
Returns the context reference.

void setContextReference(const ImqQueue & queue);
Sets the context reference.

void setContextReference(const ImqQueue * queue = 0);
Sets the context reference.

MQLONG options() const ;
Returns the options.

void setOptions(const MQLONG options);
Sets the options, including the syncpoint participation value.

MQLONG recordFields() const ;
Returns the record fields.

void setRecordFields(const MQLONG fields);
Sets the record fields.

ImqPutMessageOptions class

88 Using C++

ImqString resolvedQueueManagerName() const ;
Returns a copy of the resolved queue manager name.

ImqString resolvedQueueName() const ;
Returns a copy of the resolved queue name.

ImqBoolean syncPointParticipation() const ;
Returns the syncpoint participation value, which is TRUE if the options
include MQPMO_SYNCPOINT.

void setSyncPointParticipation(const ImqBoolean sync);
Sets the syncpoint participation value. If sync is TRUE, the options are
altered to include MQPMO_SYNCPOINT, and to exclude
MQPMO_NO_SYNCPOINT. If sync is FALSE, the options are altered to
include MQPMO_NO_SYNCPOINT, and to exclude
MQPMO_SYNCPOINT.

Object data (protected)
MQPMO omqpmo

The MQPMO data structure.

Reason codes
MQRC_STORAGE_NOT_AVAILABLE

ImqPutMessageOptions class

Chapter 3. WebSphere MQ C++ classes 89

ImqQueue

This class encapsulates a message queue (a WebSphere MQ object of type
MQOT_Q). It relates to the MQI calls listed in Table 22 on page 144.

Other relevant classes
ImqCache (see “ImqCache” on page 30)
ImqDistributionList (see “ImqDistributionList” on page 50)
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 54)
ImqMessage (see “ImqMessage” on page 65)
ImqMessageTracker (see “ImqMessageTracker” on page 72)
ImqObject (see “ImqObject” on page 78)
ImqPutMessageOptions (see “ImqPutMessageOptions” on page 87)
ImqQueueManager (see “ImqQueueManager” on page 102)
ImqString (see “ImqString” on page 115)

Object attributes
backout requeue name

Excessive backout requeue name. This attribute is read-only.

backout threshold
Backout threshold. This attribute is read-only.

base queue name
Name of the queue that the alias resolves to. This attribute is read-only.

cluster name
Cluster name. This attribute is read-only.

cluster namelist name
Cluster namelist name. This attribute is read-only.

creation date
Queue creation data. This attribute is read-only.

creation time
Queue creation time. This attribute is read-only.

Object

Queue

Message
Tracker

A

Figure 21. ImqQueue class

ImqQueue class

90 Using C++

current depth
Number of messages on the queue. This attribute is read-only.

default bind
Default bind. This attribute is read-only.

default input open option
Default open-for-input option. This attribute is read-only.

default persistence
Default message persistence. This attribute is read-only.

default priority
Default message priority. This attribute is read-only.

definition type
Queue definition type. This attribute is read-only.

depth high event
Control attribute for queue depth high events. This attribute is read-only.

depth high limit
High limit for the queue depth. This attribute is read-only.

depth low event
Control attribute for queue depth low events. This attribute is read-only.

depth low limit
Low limit for the queue depth. This attribute is read-only.

depth maximum event
Control attribute for queue depth maximum events. This attribute is
read-only.

distribution list reference
Optional reference to an ImqDistributionList that can be used to distribute
messages to more than one queue, including this one. The initial value is
null.

Note: When an ImqQueue object is opened, any open ImqDistributionList
object that it references is automatically closed.

distribution lists
The capability of a transmission queue to support distribution lists. This
attribute is read-only.

dynamic queue name
Dynamic queue name. The initial value is AMQ.* for all Personal
Computer and UNIX platforms.

harden get backout
Whether to harden the backout count. This attribute is read-only.

index type
Index type. This attribute is read-only.

inhibit get
Whether get operations are allowed. The initial value is dependent on the
queue definition. This attribute is valid for an alias or local queue only.

inhibit put
Whether put operations are allowed. The initial value is dependent on the
queue definition.

ImqQueue class

Chapter 3. WebSphere MQ C++ classes 91

initiation queue name
Name of the initiation queue. This attribute is read-only.

maximum depth
Maximum number of messages allowed on the queue. This attribute is
read-only.

maximum message length
Maximum length for any message on this queue, which can be less than
the maximum for any queue managed by the associated queue manager.
This attribute is read-only.

message delivery sequence
Whether message priority is relevant. This attribute is read-only.

next distributed queue
Next object of this class, in no particular order, having the same
distribution list reference as this object. The initial value is zero.

If an object in a chain is deleted, the previous object and next object are
updated so that their distributed queue links no longer point to the deleted
object.

open input count
Number of ImqQueue objects that are open for input. This attribute is
read-only.

open output count
Number of ImqQueue objects that are open for output. This attribute is
read-only.

previous distributed queue
Previous object of this class, in no particular order, having the same
distribution list reference as this object. The initial value is zero.

If an object in a chain is deleted, the previous object and next object are
updated so that their distributed queue links no longer point to the deleted
object.

process name
Name of the process definition. This attribute is read-only.

queue manager name
Name of the queue manager (possibly remote) where the queue resides. Do
not confuse the queue manager named here with the ImqObject connection
reference, which references the (local) queue manager providing a
connection. The initial value is null.

queue type
Queue type. This attribute is read-only.

remote queue manager name
Name of the remote queue manager. This attribute is read-only.

remote queue name
Name of the remote queue as known on the remote queue manager. This
attribute is read-only.

resolved queue manager name
Resolved queue manager name. This attribute is read-only.

resolved queue name
Resolved queue name. This attribute is read-only.

ImqQueue class

92 Using C++

|
|
|

|
|
|

retention interval
Queue retention interval. This attribute is read-only.

scope Scope of the queue definition. This attribute is read-only.

service interval
Service interval. This attribute is read-only.

service interval event
Control attribute for service interval events. This attribute is read-only.

shareability
Whether the queue can be shared. This attribute is read-only.

storage class
Storage class. This attribute is read-only.

transmission queue name
Name of the transmission queue. This attribute is read-only.

trigger control
Trigger control. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

trigger data
Trigger data. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

trigger depth
Trigger depth. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

trigger message priority
Threshold message priority for triggers. The initial value depends on the
queue definition. This attribute is valid for a local queue only.

trigger type
Trigger type. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

usage Usage. This attribute is read-only.

Constructors
ImqQueue();

The default constructor.

ImqQueue(const ImqQueue & queue);
The copy constructor. The ImqObject open status will be FALSE.

ImqQueue(const char * name);
Sets the ImqObject name.

Object methods (public)
void operator = (const ImqQueue & queue);

Performs a close if necessary, and then copies instance data from queue.
The ImqObject open status will be FALSE.

ImqBoolean backoutRequeueName(ImqString & name);
Provides a copy of the backout requeue name. It returns TRUE if
successful.

ImqQueue class

Chapter 3. WebSphere MQ C++ classes 93

ImqString backoutRequeueName();
Returns the backout requeue name without any indication of possible
errors.

ImqBoolean backoutThreshold(MQLONG & threshold);
Provides a copy of the backout threshold. It returns TRUE if successful.

MQLONG backoutThreshold();
Returns the backout threshold value without any indication of possible
errors.

ImqBoolean baseQueueName(ImqString & name);
Provides a copy of the base queue name. It returns TRUE if successful.

ImqString baseQueueName();
Returns the base queue name without any indication of possible errors.

ImqBoolean clusterName(ImqString & name);
Provides a copy of the cluster name. It returns TRUE if successful.

ImqString clusterName();
Returns the cluster name without any indication of possible errors.

ImqBoolean clusterNamelistName(ImqString & name);
Provides a copy of the cluster namelist name. It returns TRUE if
successful.

ImqString clusterNamelistName();
Returns the cluster namelist name without any indication of errors.

ImqBoolean creationDate(ImqString & date);
Provides a copy of the creation date. It returns TRUE if successful.

ImqString creationDate();
Returns the creation date without any indication of possible errors.

ImqBoolean creationTime(ImqString & time);
Provides a copy of the creation time. It returns TRUE if successful.

ImqString creationTime();
Returns the creation time without any indication of possible errors.

ImqBoolean currentDepth(MQLONG & depth);
Provides a copy of the current depth. It returns TRUE if successful.

MQLONG currentDepth();
Returns the current depth without any indication of possible errors.

ImqBoolean defaultInputOpenOption(MQLONG & option);
Provides a copy of the default input open option. It returns TRUE if
successful.

MQLONG defaultInputOpenOption();
Returns the default input open option without any indication of possible
errors.

ImqBoolean defaultPersistence(MQLONG & persistence);
Provides a copy of the default persistence. It returns TRUE if successful.

MQLONG defaultPersistence();
Returns the default persistence without any indication of possible errors.

ImqBoolean defaultPriority(MQLONG & priority);
Provides a copy of the default priority. It returns TRUE if successful.

ImqQueue class

94 Using C++

MQLONG defaultPriority();
Returns the default priority without any indication of possible errors.

ImqBoolean defaultBind(MQLONG & bind);
Provides a copy of the default bind. It returns TRUE if successful.

MQLONG defaultBind();
Returns the default bind without any indication of possible errors.

ImqBoolean definitionType(MQLONG & type);
Provides a copy of the definition type. It returns TRUE if successful.

MQLONG definitionType();
Returns the definition type without any indication of possible errors.

ImqBoolean depthHighEvent(MQLONG & event);
Provides a copy of the enablement state of the depth high event. It returns
TRUE if successful.

MQLONG depthHighEvent();
Returns the enablement state of the depth high event without any
indication of possible errors.

ImqBoolean depthHighLimit(MQLONG & limit);
Provides a copy of the depth high limit. It returns TRUE if successful.

MQLONG depthHighLimit();
Returns the depth high limit value without any indication of possible
errors.

ImqBoolean depthLowEvent(MQLONG & event);
Provides a copy of the enablement state of the depth low event. It returns
TRUE if successful.

MQLONG depthLowEvent();
Returns the enablement state of the depth low event without any
indication of possible errors.

ImqBoolean depthLowLimit(MQLONG & limit);
Provides a copy of the depth low limit. It returns TRUE if successful.

MQLONG depthLowLimit();
Returns the depth low limit value without any indication of possible
errors.

ImqBoolean depthMaximumEvent(MQLONG & event);
Provides a copy of the enablement state of the depth maximum event. It
returns TRUE if successful.

MQLONG depthMaximumEvent();
Returns the enablement state of the depth maximum event without any
indication of possible errors.

ImqDistributionList * distributionListReference() const ;
Returns the distribution list reference.

void setDistributionListReference(ImqDistributionList & list);
Sets the distribution list reference.

void setDistributionListReference(ImqDistributionList * list = 0);
Sets the distribution list reference.

ImqBoolean distributionLists(MQLONG & support);
Provides a copy of the distribution lists value. It returns TRUE if
successful.

ImqQueue class

Chapter 3. WebSphere MQ C++ classes 95

MQLONG distributionLists();
Returns the distribution lists value without any indication of possible
errors.

ImqBoolean setDistributionLists(const MQLONG support);
Sets the distribution lists value. It returns TRUE if successful.

ImqString dynamicQueueName() const ;
Returns a copy of the dynamic queue name.

ImqBoolean setDynamicQueueName(const char * name);
Sets the dynamic queue name. The dynamic queue name can be set only
while the ImqObject open status is FALSE. It returns TRUE if successful.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options);
Retrieves a message from the queue, using the specified options. Invokes
the ImqObject openFor method if necessary to ensure that the ImqObject
open options include either one of the MQOO_INPUT_* values, or the
MQOO_BROWSE value, depending on the options. If the msg object has an
ImqCache automatic buffer, the buffer grows to accommodate any
message retrieved. The clearMessage method is invoked against the msg
object before retrieval.

This method returns TRUE if successful.

Note: The result of the method invocation is FALSE if the ImqObject
reason code is MQRC_TRUNCATED_MSG_FAILED, even though
this reason code is classified as a warning. If a truncated message is
accepted, the ImqCache message length reflects the truncated
length. In either event, the ImqMessage total message length
indicates the number of bytes that were available.

ImqBoolean get(ImqMessage & msg);
As for the previous method, except that default get message options are
used.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options, const
size_t buffer-size);

As for the previous two methods, except that an overriding buffer-size is
indicated. If the msg object employs an ImqCache automatic buffer, the
resizeBuffer method is invoked on the msg object prior to message
retrieval, and the buffer does not grow further to accommodate any larger
message.

ImqBoolean get(ImqMessage & msg, const size_t buffer-size);
As for the previous method, except that default get message options are
used.

ImqBoolean hardenGetBackout(MQLONG & harden);
Provides a copy of the harden get backout value. It returns TRUE if
successful.

MQLONG hardenGetBackout();
Returns the harden get backout value without any indication of possible
errors.

ImqBoolean indexType(MQLONG & type);
Provides a copy of the index type. It returns TRUE if successful.

MQLONG indexType();
Returns the index type without any indication of possible errors.

ImqQueue class

96 Using C++

ImqBoolean inhibitGet(MQLONG & inhibit);
Provides a copy of the inhibit get value. It returns TRUE if successful.

MQLONG inhibitGet();
Returns the inhibit get value without any indication of possible errors.

ImqBoolean setInhibitGet(const MQLONG inhibit);
Sets the inhibit get value. It returns TRUE if successful.

ImqBoolean inhibitPut(MQLONG & inhibit);
Provides a copy of the inhibit put value. It returns TRUE if successful.

MQLONG inhibitPut();
Returns the inhibit put value without any indication of possible errors.

ImqBoolean setInhibitPut(const MQLONG inhibit);
Sets the inhibit put value. It returns TRUE if successful.

ImqBoolean initiationQueueName(ImqString & name);
Provides a copy of the initiation queue name. It returns TRUE if
successful.

ImqString initiationQueueName();
Returns the initiation queue name without any indication of possible
errors.

ImqBoolean maximumDepth(MQLONG & depth);
Provides a copy of the maximum depth. It returns TRUE if successful.

MQLONG maximumDepth();
Returns the maximum depth without any indication of possible errors.

ImqBoolean maximumMessageLength(MQLONG & length);
Provides a copy of the maximum message length. It returns TRUE if
successful.

MQLONG maximumMessageLength();
Returns the maximum message length without any indication of possible
errors.

ImqBoolean messageDeliverySequence(MQLONG & sequence);
Provides a copy of the message delivery sequence. It returns TRUE if
successful.

MQLONG messageDeliverySequence();
Returns the message delivery sequence value without any indication of
possible errors.

ImqQueue * nextDistributedQueue() const ;
Returns the next distributed queue.

ImqBoolean openInputCount(MQLONG & count);
Provides a copy of the open input count. It returns TRUE if successful.

MQLONG openInputCount();
Returns the open input count without any indication of possible errors.

ImqBoolean openOutputCount(MQLONG & count);
Provides a copy of the open output count. It returns TRUE if successful.

MQLONG openOutputCount();
Returns the open output count without any indication of possible errors.

ImqQueue * previousDistributedQueue() const ;
Returns the previous distributed queue.

ImqQueue class

Chapter 3. WebSphere MQ C++ classes 97

ImqBoolean processName(ImqString & name);
Provides a copy of the process name. It returns TRUE if successful.

ImqString processName();
Returns the process name without any indication of possible errors.

ImqBoolean put(ImqMessage & msg);
Places a message onto the queue, using default put message options. Uses
the ImqObject openFor method if necessary to ensure that the ImqObject
open options include MQOO_OUTPUT.

This method returns TRUE if successful.

ImqBoolean put(ImqMessage & msg, ImqPutMessageOptions & pmo);
Places a message onto the queue, using the specified pmo. Uses the
ImqObject openFor method as necessary to ensure that the ImqObject open
options include MQOO_OUTPUT, and (if the pmo options include any of
MQPMO_PASS_IDENTITY_CONTEXT, MQPMO_PASS_ALL_CONTEXT,
MQPMO_SET_IDENTITY_CONTEXT, or MQPMO_SET_ALL_CONTEXT)
corresponding MQOO_*_CONTEXT values.

This method returns TRUE if successful.

Note: If the pmo includes a context reference, the referenced object is
opened, if necessary, to provide a context.

ImqString queueManagerName() const ;
Returns the queue manager name.

ImqBoolean setQueueManagerName(const char * name);
Sets the queue manager name. The queue manager name can be set only
while the ImqObject open status is FALSE. This method returns TRUE if
successful.

ImqBoolean queueType(MQLONG & type);
Provides a copy of the queue type value. It returns TRUE if successful.

MQLONG queueType();
Returns the queue type without any indication of possible errors.

ImqBoolean remoteQueueManagerName(ImqString & name);
Provides a copy of the remote queue manager name. It returns TRUE if
successful.

ImqString remoteQueueManagerName();
Returns the remote queue manager name without any indication of
possible errors.

ImqBoolean remoteQueueName(ImqString & name);
Provides a copy of the remote queue name. It returns TRUE if successful.

ImqString remoteQueueName();
Returns the remote queue name without any indication of possible errors.

ImqBoolean resolvedQueueManagerName(ImqString & name);
Provides a copy of the resolved queue manager name. It returns TRUE if
successful.

Note: This method fails unless MQOO_RESOLVE_NAMES is among the
ImqObject open options.

ImqQueue class

98 Using C++

ImqString resolvedQueueManagerName() ;
Returns the resolved queue manager name, without any indication of
possible errors.

ImqBoolean resolvedQueueName(ImqString & name);
Provides a copy of the resolved queue name. It returns TRUE if successful.

Note: This method fails unless MQOO_RESOLVE_NAMES is among the
ImqObject open options.

ImqString resolvedQueueName() ;
Returns the resolved queue name, without any indication of possible
errors.

ImqBoolean retentionInterval(MQLONG & interval);
Provides a copy of the retention interval. It returns TRUE if successful.

MQLONG retentionInterval();
Returns the retention interval without any indication of possible errors.

ImqBoolean scope(MQLONG & scope);
Provides a copy of the scope. It returns TRUE if successful.

MQLONG scope();
Returns the scope without any indication of possible errors.

ImqBoolean serviceInterval(MQLONG & interval);
Provides a copy of the service interval. It returns TRUE if successful.

MQLONG serviceInterval();
Returns the service interval without any indication of possible errors.

ImqBoolean serviceIntervalEvent(MQLONG & event);
Provides a copy of the enablement state of the service interval event. It
returns TRUE if successful.

MQLONG serviceIntervalEvent();
Returns the enablement state of the service interval event without any
indication of possible errors.

ImqBoolean shareability(MQLONG & shareability);
Provides a copy of the shareability value. It returns TRUE if successful.

MQLONG shareability();
Returns the shareability value without any indication of possible errors.

ImqBoolean storageClass(ImqString & class);
Provides a copy of the storage class. It returns TRUE if successful.

ImqString storageClass();
Returns the storage class without any indication of possible errors.

ImqBoolean transmissionQueueName(ImqString & name);
Provides a copy of the transmission queue name. It returns TRUE if
successful.

ImqString transmissionQueueName();
Returns the transmission queue name without any indication of possible
errors.

ImqBoolean triggerControl(MQLONG & control);
Provides a copy of the trigger control value. It returns TRUE if successful.

MQLONG triggerControl();
Returns the trigger control value without any indication of possible errors.

ImqQueue class

Chapter 3. WebSphere MQ C++ classes 99

ImqBoolean setTriggerControl(const MQLONG control);
Sets the trigger control value. It returns TRUE if successful.

ImqBoolean triggerData(ImqString & data);
Provides a copy of the trigger data. It returns TRUE if successful.

ImqString triggerData();
Returns a copy of the trigger data without any indication of possible
errors.

ImqBoolean setTriggerData(const char * data);
Sets the trigger data. It returns TRUE if successful.

ImqBoolean triggerDepth(MQLONG & depth);
Provides a copy of the trigger depth. It returns TRUE if successful.

MQLONG triggerDepth();
Returns the trigger depth without any indication of possible errors.

ImqBoolean setTriggerDepth(const MQLONG depth);
Sets the trigger depth. It returns TRUE if successful.

ImqBoolean triggerMessagePriority(MQLONG & priority);
Provides a copy of the trigger message priority. It returns TRUE if
successful.

MQLONG triggerMessagePriority();
Returns the trigger message priority without any indication of possible
errors.

ImqBoolean setTriggerMessagePriority(const MQLONG priority);
Sets the trigger message priority. It returns TRUE if successful.

ImqBoolean triggerType(MQLONG & type);
Provides a copy of the trigger type. It returns TRUE if successful.

MQLONG triggerType();
Returns the trigger type without any indication of possible errors.

ImqBoolean setTriggerType(const MQLONG type);
Sets the trigger type. It returns TRUE if successful.

ImqBoolean usage(MQLONG & usage);
Provides a copy of the usage value. It returns TRUE if successful.

MQLONG usage();
Returns the usage value without any indication of possible errors.

Object methods (protected)
void setNextDistributedQueue(ImqQueue * queue = 0);

Sets the next distributed queue.

Attention: Use this function only if you are sure it will not break the
distributed queue list.

void setPreviousDistributedQueue(ImqQueue * queue = 0);
Sets the previous distributed queue.

Attention: Use this function only if you are sure it will not break the
distributed queue list.

ImqQueue class

100 Using C++

|
|

|
|

Reason codes
MQRC_ATTRIBUTE_LOCKED
MQRC_CONTEXT_OBJECT_NOT_VALID
MQRC_CONTEXT_OPEN_ERROR
MQRC_CURSOR_NOT_VALID
MQRC_NO_BUFFER
MQRC_REOPEN_EXCL_INPUT_ERROR
MQRC_REOPEN_INQUIRE_ERROR
MQRC_REOPEN_TEMPORARY_Q_ERROR
(reason codes from MQGET)
(reason codes from MQPUT)

ImqQueue class

Chapter 3. WebSphere MQ C++ classes 101

ImqQueueManager

This class encapsulates a queue manager (a WebSphere MQ object of type
MQOT_Q_MGR). It relates to the MQI calls listed in Table 23 on page 145.

Other relevant classes
ImqAuthenticationRecord (see “ImqAuthenticationRecord” on page 25)
ImqChannel (see “ImqChannel” on page 33)
ImqObject (see “ImqObject” on page 78)

Class attributes
behavior

Controls the behavior of implicit connection and disconnection.

IMQ_EXPL_DISC_BACKOUT (0L)
An explicit call to the disconnect method implies backout. This
attribute is mutually exclusive with IMQ_EXPL_DISC_COMMIT.

IMQ_EXPL_DISC_COMMIT (1L)
An explicit call to the disconnect method implies commit (the
default). This attribute is mutually exclusive with
IMQ_EXPL_DISC_BACKOUT.

IMQ_IMPL_CONN (2L)
Implicit connection is allowed (the default).

IMQ_IMPL_DISC_BACKOUT (0L)
An implicit call to the disconnect method, which can occur during
object destruction, implies backout. This attribute is mutually
exclusive with the IMQ_IMPL_DISC_COMMIT.

IMQ_IMPL_DISC_COMMIT (4L)
An implicit call to the disconnect method, which can occur during
object destruction, implies commit (the default). This attribute is
mutually exclusive with IMQ_IMPL_DISC_BACKOUT.

Object

Queue
Manager

n

1

managed by

A

Figure 22. ImqQueueManager class

ImqQueueManager class

102 Using C++

Object attributes
authority event

Controls authority events. This attribute is read-only.

begin options
Options that apply to the begin method. The initial value is
MQBO_NONE.

channel auto definition
Channel auto definition value. This attribute is read-only.

channel auto definition event
Channel auto definition event value. This attribute is read-only.

channel auto definition exit
Channel auto definition exit name. This attribute is read-only.

channel reference
A reference to a channel definition for use during client connection. While
connected, this attribute can be set to null, but cannot be changed to any
other value. The initial value is null.

character set
Coded character set identifier (CCSID). This attribute is read-only.

cluster workload data
Cluster workload exit data. This attribute is read-only.

cluster workload exit
Cluster workload exit name. This attribute is read-only.

cluster workload length
Cluster workload length. This attribute is read-only.

command input queue name
System command input queue name. This attribute is read-only.

command level
Command level supported by the queue manager. This attribute is
read-only.

connect options
Options that apply to the connect method. The initial value is
MQCNO_NONE. The following additional values are possible:

MQCNO_STANDARD_BINDING
MQCNO_FASTPATH_BINDING
MQCNO_HANDLE_SHARE_NONE
MQCNO_HANDLE_SHARE_BLOCK
MQCNO_HANDLE_SHARE_NO_BLOCK

connection status
TRUE when connected to the queue manager. This attribute is read-only.

connection tag
A tag to be associated with a connection. This attribute can only be set
when not connected. The initial value is null.

cryptographic hardware
Configuration details for cryptographic hardware. For MQ client
connections (WebSphere MQ , except Windows systems).

dead-letter queue name
Name of the dead-letter queue. This attribute is read-only.

ImqQueueManager class

Chapter 3. WebSphere MQ C++ classes 103

|
|
|

|
|
|

default transmission queue name
Default transmission queue name. This attribute is read-only.

distribution lists
Capability of the queue manager to support distribution lists.

first authentication record
The first of one or more objects of class ImqAuthenticationRecord, in no
particular order, in which the ImqAuthenticationRecord connection
reference addresses this object. For MQ client connections (WebSphere
MQ).

first managed object
The first of one or more objects of class ImqObject, in no particular order,
in which the ImqObject connection reference addresses this object. The
initial value is zero.

inhibit event
Controls inhibit events. This attribute is read-only.

key repository
Location of the key database file in which keys and certificates are stored.
For MQ client connections (WebSphere MQ).

local event
Controls local events. This attribute is read-only.

maximum handles
Maximum number of handles. This attribute is read-only.

maximum message length
Maximum possible length for any message on any queue managed by this
queue manager. This attribute is read-only.

maximum priority
Maximum message priority. This attribute is read-only.

maximum uncommitted messages
Maximum number of uncommitted messages within a unit or work. This
attribute is read-only.

performance event
Controls performance events. This attribute is read-only.

platform
Platform on which the queue manager resides. This attribute is read-only.

remote event
Controls remote events. This attribute is read-only.

repository name
Repository name. This attribute is read-only.

repository namelist
Repository namelist name. This attribute is read-only.

start-stop event
Controls start-stop events. This attribute is read-only.

syncpoint availability
Availability of syncpoint participation. This attribute is read-only.

Note: Queue manager-coordinated global units of work are not supported
on the OS/400 platform. You can program a unit of work, externally

ImqQueueManager class

104 Using C++

|
|
|
|
|

|
|
|

coordinated by OS/400, using the _Rcommit and _Rback native
system calls. Start this type of unit of work by starting the
WebSphere MQ application under job-level commitment control
using the STRCMTCTL command. See the WebSphere MQ Application
Programming Guide for further details. Backout and commit are
supported on the OS/400 platform for local units of work
coordinated by a queue manager.

trigger interval
Trigger interval. This attribute is read-only.

Constructors
ImqQueueManager();

The default constructor.

ImqQueueManager(const ImqQueueManager & manager);
The copy constructor. The connection status will be FALSE.

ImqQueueManager(const char * name);
Sets the ImqObject name to name.

Destructors
When an ImqQueueManager object is destroyed, it is automatically disconnected.

Class methods (public)
static MQLONG behavior();

Returns the behavior.

void setBehavior(const MQLONG behavior = 0);
Sets the behavior.

Object methods (public)
void operator = (const ImqQueueManager & mgr);

Disconnects if necessary, and copies instance data from mgr. The
connection status is be FALSE.

ImqBoolean authorityEvent(MQLONG & event);
Provides a copy of the enablement state of the authority event. It returns
TRUE if successful.

MQLONG authorityEvent();
Returns the enablement state of the authority event without any indication
of possible errors.

ImqBoolean backout();
Backs out uncommitted changes. It returns TRUE if successful.

ImqBoolean begin();
Begins a unit of work. The begin options affect the behavior of this
method. It returns TRUE if successful, but it also returns TRUE even if the
underlying MQBEGIN call returns
MQRC_NO_EXTERNAL_PARTICIPANTS or
MQRC_PARTICIPANT_NOT_AVAILABLE (which are both associated with
MQCC_WARNING).

MQLONG beginOptions() const ;
Returns the begin options.

ImqQueueManager class

Chapter 3. WebSphere MQ C++ classes 105

|
|
|
|
|

void setBeginOptions(const MQLONG options = MQBO_NONE);
Sets the begin options.

ImqBoolean channelAutoDefinition(MQLONG & value);
Provides a copy of the channel auto definition value. It returns TRUE if
successful.

MQLONG channelAutoDefinition();
Returns the channel auto definition value without any indication of
possible errors.

ImqBoolean channelAutoDefinitionEvent(MQLONG & value);
Provides a copy of the channel auto definition event value. It returns
TRUE if successful.

MQLONG channelAutoDefinitionEvent();
Returns the channel auto definition event value without any indication of
possible errors.

ImqBoolean channelAutoDefinitionExit(ImqString & name);
Provides a copy of the channel auto definition exit name. It returns TRUE
if successful.

ImqString channelAutoDefinitionExit();
Returns the channel auto definition exit name without any indication of
possible errors.

ImqBoolean channelReference(ImqChannel * & pchannel);
Provides a copy of the channel reference. If the channel reference is
invalid, sets pchannel to null. This method returns TRUE if successful.

ImqChannel * channelReference();
Returns the channel reference without any indication of possible errors.

ImqBoolean setChannelReference(ImqChannel & channel);
Sets the channel reference. This method returns TRUE if successful.

ImqBoolean setChannelReference(ImqChannel * channel = 0);
Sets or resets the channel reference. This method returns TRUE if
successful.

ImqBoolean characterSet(MQLONG & ccsid);
Provides a copy of the character set. It returns TRUE if successful.

MQLONG characterSet();
Returns a copy of the character set, without any indication of possible
errors.

ImqBoolean clusterWorkloadData(ImqString & data);
Provides a copy of the cluster workload exit data. It returns TRUE if
successful.

ImqString clusterWorkloadData();
Returns the cluster workload exit data without any indication of possible
errors.

ImqBoolean clusterWorkloadExit(ImqString & name);
Provides a copy of the cluster workload exit name. It returns TRUE if
successful.

ImqString clusterWorkloadExit();
Returns the cluster workload exit name without any indication of possible
errors.

ImqQueueManager class

106 Using C++

ImqBoolean clusterWorkloadLength(MQLONG & length);
Provides a copy of the cluster workload length. It returns TRUE if
successful.

MQLONG clusterWorkloadLength();
Returns the cluster workload length without any indication of possible
errors.

ImqBoolean commandInputQueueName(ImqString & name);
Provides a copy of the command input queue name. It returns TRUE if
successful.

ImqString commandInputQueueName();
Returns the command input queue name without any indication of
possible errors.

ImqBoolean commandLevel(MQLONG & level);
Provides a copy of the command level. It returns TRUE if successful.

MQLONG commandLevel();
Returns the command level without any indication of possible errors.

ImqBoolean commit();
Commits uncommitted changes. It returns TRUE if successful.

ImqBoolean connect();
Connects to the queue manager with the given ImqObject name, the
default being the local queue manager. If you want to connect to a specific
queue manager, use the ImqObject setName method before connection. If
there is a channel reference, it is used to pass information about the
channel definition to MQCONNX in an MQCD. The ChannelType in the
MQCD is set to MQCHT_CLNTCONN. channel reference information,
which is only meaningful for client connections, is ignored for server
connections. The connect options affect the behavior of this method. This
method sets the connection status to TRUE if successful. It returns the new
connection status.

If there is a first authentication record, the chain of authentication records
is used to authenticate digital certificates for secure client channels.

You can connect more than one ImqQueueManager object to the same
queue manager. All use the same MQHCONN connection handle and
share UOW functionality for the connection associated with the thread. The
first ImqQueueManager to connect obtains the MQHCONN handle. The
last ImqQueueManager to disconnect performs the MQDISC.

For a multithreaded program, each thread must use a separate
ImqQueueManager object. Connections in different threads have different
MQHCONN connection handles.

ImqBinary connectionTag () const ;
Returns the connection tag.

ImqBoolean setConnectionTag (const MQBYTE128 tag = 0);
Sets the connection tag. If tag is zero, clears the connection tag. This
method returns TRUE if successful.

ImqBoolean setConnectionTag (const ImqBinary & tag);
Sets the connection tag. The data length of tag must be either zero (to clear
the connection tag) or MQ_CONN_TAG_LENGTH. This method returns
TRUE if successful.

ImqQueueManager class

Chapter 3. WebSphere MQ C++ classes 107

|
|

|
|

MQLONG connectOptions() const ;
Returns the connect options.

void setConnectOptions(const MQLONG options = MQCNO_NONE);
Sets the connect options.

ImqBoolean connectionStatus() const ;
Returns the connection status.

ImqString cryptographicHardware ();
Returns the cryptographic hardware (WebSphere MQ, except Windows
systems).

ImqBoolean setCryptographicHardware (const char * hardware = 0);
Sets the cryptographic hardware (WebSphere MQ, except Windows
systems). This method returns TRUE if successful.

ImqBoolean deadLetterQueueName(ImqString & name);
Provides a copy of the dead-letter queue name. It returns TRUE if
successful.

ImqString deadLetterQueueName();
Returns a copy of the dead-letter queue name, without any indication of
possible errors.

ImqBoolean defaultTransmissionQueueName(ImqString & name);
Provides a copy of the default transmission queue name. It returns TRUE
if successful.

ImqString defaultTransmissionQueueName();
Returns the default transmission queue name without any indication of
possible errors.

ImqBoolean disconnect();
Disconnects from the queue manager and sets the connection status to
FALSE. Closes all ImqProcess and ImqQueue objects associated with this
object, and severs their connection reference before disconnection. If more
than one ImqQueueManager object is connected to the same queue
manager, only the last to disconnect performs a physical disconnection;
others perform a logical disconnection. Uncommitted changes are
committed on physical disconnection only.

This method returns TRUE if successful. If it is called when there is no
existing connection, the return code is also true.

ImqBoolean distributionLists(MQLONG & support);
Provides a copy of the distribution lists value. It returns TRUE if
successful.

MQLONG distributionLists();
Returns the distribution lists value without any indication of possible
errors.

ImqAir * firstAuthenticationRecord () const ;
Returns the first authentication record (WebSphere MQ).

void setFirstAuthenticationRecord (const ImqAir * air = 0);
Sets the first authentication record (WebSphere MQ).

ImqObject * firstManagedObject() const ;
Returns the first managed object.

ImqQueueManager class

108 Using C++

|
|
|

|
|
|

|
|

|
|

|
|

ImqBoolean inhibitEvent(MQLONG & event);
Provides a copy of the enablement state of the inhibit event. It returns
TRUE if successful.

MQLONG inhibitEvent();
Returns the enablement state of the inhibit event without any indication of
possible errors.

ImqString keyRepository ();
Returns the key repository (WebSphere MQ).

ImqBoolean setKeyRepository (const char * repository = 0);
Sets the key repository (WebSphere MQ). It returns TRUE if successful.

ImqBoolean localEvent(MQLONG & event);
Provides a copy of the enablement state of the local event. It returns TRUE
if successful.

MQLONG localEvent();
Returns the enablement state of the local event without any indication of
possible errors.

ImqBoolean maximumHandles(MQLONG & number);
Provides a copy of the maximum handles. It returns TRUE if successful.

MQLONG maximumHandles();
Returns the maximum handles without any indication of possible errors.

ImqBoolean maximumMessageLength(MQLONG & length);
Provides a copy of the maximum message length. It returns TRUE if
successful.

MQLONG maximumMessageLength();
Returns the maximum message length without any indication of possible
errors.

ImqBoolean maximumPriority(MQLONG & priority);
Provides a copy of the maximum priority. It returns TRUE if successful.

MQLONG maximumPriority();
Returns a copy of the maximum priority, without any indication of
possible errors.

ImqBoolean maximumUncommittedMessages(MQLONG & number);
Provides a copy of the maximum uncommitted messages. It returns TRUE
if successful.

MQLONG maximumUncommittedMessages();
Returns the maximum uncommitted messages without any indication of
possible errors.

ImqBoolean performanceEvent(MQLONG & event);
Provides a copy of the enablement state of the performance event. It
returns TRUE if successful.

MQLONG performanceEvent();
Returns the enablement state of the performance event without any
indication of possible errors.

ImqBoolean platform(MQLONG & platform);
Provides a copy of the platform. It returns TRUE if successful.

MQLONG platform();
Returns the platform without any indication of possible errors.

ImqQueueManager class

Chapter 3. WebSphere MQ C++ classes 109

|
|

|
|

ImqBoolean remoteEvent(MQLONG & event);
Provides a copy of the enablement state of the remote event. It returns
TRUE if successful.

MQLONG remoteEvent();
Returns the enablement state of the remote event without any indication of
possible errors.

ImqBoolean repositoryName(ImqString & name);
Provides a copy of the repository name. It returns TRUE if successful.

ImqString repositoryName();
Returns the repository name without any indication of possible errors.

ImqBoolean repositoryNamelistName(ImqString & name);
Provides a copy of the repository namelist name. It returns TRUE if
successful.

ImqString repositoryNamelistName();
Returns a copy of the repository namelist name without any indication of
possible errors.

ImqBoolean startStopEvent(MQLONG & event);
Provides a copy of the enablement state of the start-stop event. It returns
TRUE if successful.

MQLONG startStopEvent();
Returns the enablement state of the start-stop event without any indication
of possible errors.

ImqBoolean syncPointAvailability(MQLONG & sync);
Provides a copy of the syncpoint availability value. It returns TRUE if
successful.

MQLONG syncPointAvailability();
Returns a copy of the syncpoint availability value, without any indication
of possible errors.

ImqBoolean triggerInterval(MQLONG & interval);
Provides a copy of the trigger interval. It returns TRUE if successful.

MQLONG triggerInterval();
Returns the trigger interval without any indication of possible errors.

Object methods (protected)
void setFirstManagedObject(const ImqObject * object = 0);

Sets the first managed object.

Object data (protected)
MQHCONN ohconn

The WebSphere MQ connection handle (meaningful only while the
connection status is TRUE).

ImqQueueManager class

110 Using C++

Reason codes
MQRC_ATTRIBUTE_LOCKED
MQRC_ENVIRONMENT_ERROR
MQRC_FUNCTION_NOT_SUPPORTED
MQRC_REFERENCE_ERROR
(reason codes for MQBACK)
(reason codes for MQBEGIN)
(reason codes for MQCMIT)
(reason codes for MQCONNX)
(reason codes for MQDISC)
(reason codes for MQCONN)

ImqQueueManager class

Chapter 3. WebSphere MQ C++ classes 111

ImqReferenceHeader

This class encapsulates features of the MQRMH data structure. It relates to the
MQI calls listed in Table 24 on page 147.

Other relevant classes
ImqBinary (see “ImqBinary” on page 28)
ImqHeader (see “ImqHeader” on page 58)
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)
ImqString (see “ImqString” on page 115)

Object attributes
destination environment

Environment for the destination. The initial value is a null string.

destination name
Name of the data destination. The initial value is a null string.

instance id
Instance identifier. A binary value (MQBYTE24) of length
MQ_OBJECT_INSTANCE_ID_LENGTH. The initial value is
MQOII_NONE.

logical length
Logical, or intended, length of message data that follows this header. The
initial value is zero.

logical offset
Logical offset for the message data that follows, to be interpreted in the
context of the data as a whole, at the ultimate destination. The initial value
is zero.

logical offset 2
High-order extension to the logical offset. The initial value is zero.

reference type
Reference type. The initial value is a null string.

Header

A

Reference
Header

Figure 23. ImqReferenceHeader class

ImqReferenceHeader class

112 Using C++

source environment
Environment for the source. The initial value is a null string.

source name
Name of the data source. The initial value is a null string.

Constructors
ImqReferenceHeader();

The default constructor.

ImqReferenceHeader(const ImqReferenceHeader & header);
The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQRMH data structure into the message buffer at the
beginning, moving existing message data further along, and sets the msg
format to MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on 58 for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQRMH data structure from the message buffer.

To be successful, the ImqMessage format must be
MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on 58 for further details.

Object methods (public)
void operator = (const ImqReferenceHeader & header);

Copies instance data from header, replacing the existing instance data.

ImqString destinationEnvironment() const ;
Returns a copy of the destination environment.

void setDestinationEnvironment(const char * environment = 0);
Sets the destination environment.

ImqString destinationName() const ;
Returns a copy of the destination name.

void setDestinationName(const char * name = 0);
Sets the destination name.

ImqBinary instanceId() const ;
Returns a copy of the instance id.

ImqBoolean setInstanceId(const ImqBinary & id);
Sets the instance id. The data length of token must be either 0 or
MQ_OBJECT_INSTANCE_ID_LENGTH. This method returns TRUE if
successful.

void setInstanceId(const MQBYTE24 id = 0);
Sets the instance id. id can be zero, which is the same as specifying
MQOII_NONE. If id is nonzero, it must address
MQ_OBJECT_INSTANCE_ID_LENGTH bytes of binary data. When using
pre-defined values such as MQOII_NONE, you might need to make a cast
to ensure a signature match, for example (MQBYTE *)MQOII_NONE.

ImqReferenceHeader class

Chapter 3. WebSphere MQ C++ classes 113

MQLONG logicalLength() const ;
Returns the logical length.

void setLogicalLength(const MQLONG length);
Sets the logical length.

MQLONG logicalOffset() const ;
Returns the logical offset.

void setLogicalOffset(const MQLONG offset);
Sets the logical offset.

MQLONG logicalOffset2() const ;
Returns the logical offset 2.

void setLogicalOffset2(const MQLONG offset);
Sets the logical offset 2.

ImqString referenceType() const ;
Returns a copy of the reference type.

void setReferenceType(const char * name = 0);
Sets the reference type.

ImqString sourceEnvironment() const ;
Returns a copy of the source environment.

void setSourceEnvironment(const char * environment = 0);
Sets the source environment.

ImqString sourceName() const ;
Returns a copy of the source name.

void setSourceName(const char * name = 0);
Sets the source name.

Object data (protected)
MQRMH omqrmh

The MQRMH data structure.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR
MQRC_STRUC_LENGTH_ERROR
MQRC_STRUC_ID_ERROR
MQRC_INSUFFICIENT_DATA
MQRC_INCONSISTENT_FORMAT
MQRC_ENCODING_ERROR

ImqReferenceHeader class

114 Using C++

ImqString

This class provides character string storage and manipulation for null-terminated
strings. Use an ImqString in place of a char * in most situations where a parameter
calls for a char *.

Other relevant classes
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)

Object attributes
characters

Characters in the storage that precede a trailing null.

length Number of bytes in the characters. If there is no storage, the length is zero.
The initial value is zero.

storage
A volatile array of bytes of arbitrary size. A trailing null must always be
present in the storage after the characters, so that the end of the characters
can be detected. Methods ensure that this situation is maintained, but
ensure, when setting bytes in the array directly, that a trailing null exists
after modification. Initially, there is no storage attribute.

Constructors
ImqString();

The default constructor.

ImqString(const ImqString & string);
The copy constructor.

ImqString(const char c);
The characters comprise c.

ImqString(const char * text);
The characters are copied from text.

Item

A

String

Figure 24. ImqString class

ImqString class

Chapter 3. WebSphere MQ C++ classes 115

ImqString(const void * buffer, const size_t length);
Copies length bytes starting from buffer and assigns them to the characters.
Substitution is made for any null characters copied. The substitution
character is a period (.). No special consideration is given to any other
non-printable or non-displayable characters copied.

Class methods (public)
static ImqBoolean copy(char * destination-buffer, const size_t length, const char *
source-buffer, const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the
number of characters in source-buffer is insufficient, fills the remaining
space in destination-buffer with pad characters. source-buffer can be zero.
destination-buffer can be zero if length is also zero. Any error codes are lost.
This method returns TRUE if successful.

static ImqBoolean copy (char * destination-buffer, const size_t length, const char *
source-buffer, ImqError & error-object, const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the
number of characters in source-buffer is insufficient, fills the remaining
space in destination-buffer with pad characters. source-buffer can be zero.
destination-buffer can be zero if length is also zero. Any error codes are set in
error-object. This method returns TRUE if successful.

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the characters to the message buffer, replacing any existing content.
Sets the msg format to MQFMT_STRING.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Sets the characters by transferring the remaining data from the message
buffer, replacing the existing characters.

To be successful, the encoding of the msg object must be
MQENC_NATIVE. Retrieve messages with MQGMO_CONVERT to
MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_STRING.

See the parent class method description for further details.

Object methods (public)
char & operator [] (const size_t offset) const ;

References the character at offset offset in the storage. Ensure that the
relevant byte exists and is addressable.

ImqString operator () (const size_t offset, const size_t length = 1) const ;
Returns a substring by copying bytes from the characters starting at offset.
If length is zero, returns the rest of the characters. If the combination of
offset and length does not produce a reference within the characters, returns
an empty ImqString.

void operator = (const ImqString & string);
Copies instance data from string, replacing the existing instance data.

ImqString class

116 Using C++

ImqString operator + (const char c) const ;
Returns the result of appending c to the characters.

ImqString operator + (const char * text) const ;
Returns the result of appending text to the characters. This can also be
inverted. For example:
strOne + “string two” ;
“string one” + strTwo ;

Note: Although most compilers accept strOne + “string two”; Microsoft
Visual C++ requires strOne + (char *)“string two” ;

ImqString operator + (const ImqString & string1) const ;
Returns the result of appending string1 to the characters.

ImqString operator + (const double number) const ;
Returns the result of appending number to the characters after conversion
to text.

ImqString operator + (const long number) const ;
Returns the result of appending number to the characters after conversion
to text.

void operator += (const char c);
Appends c to the characters.

void operator += (const char * text);
Appends text to the characters.

void operator += (const ImqString & string);
Appends string to the characters.

void operator += (const double number);
Appends number to the characters after conversion to text.

void operator += (const long number);
Appends number to the characters after conversion to text.

void operator char * () const ;
Returns the address of the first byte in the storage. This value can be zero,
and is volatile. Use this method only for read-only purposes.

ImqBoolean operator < (const ImqString & string) const ;

ImqBoolean operator > (const ImqString & string) const ;

ImqBoolean operator <= (const ImqString & string) const ;

ImqBoolean operator >= (const ImqString & string) const ;

ImqBoolean operator == (const ImqString & string) const ;

ImqBoolean operator != (const ImqString & string) const ;
Compares the characters with those of string using the compare method. It
returns either TRUE or FALSE.

short compare(const ImqString & string) const ;
Compares the characters with those of string. The result is zero if the
characters are equal, negative if less than and positive if greater than.
Comparison is case sensitive. A null ImqString is regarded as less than a
nonnull ImqString.

ImqString class

Chapter 3. WebSphere MQ C++ classes 117

|
|

ImqBoolean copyOut(char * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the characters to the buffer. If the number of
characters is insufficient, fills the remaining space in buffer with pad
characters. buffer can be zero if length is also zero. It returns TRUE if
successful.

size_t copyOut(long & number) const ;
Sets number from the characters after conversion from text, and returns the
number of characters involved in the conversion. If this is zero, no
conversion has been performed and number is not set. A convertible
character sequence must begin with the following values:
<blank(s)>
<+│->
digit(s)

size_t copyOut(ImqString & token, const char c = ‘ ’) const ;
If the characters contain one or more characters that are different from c,
identifies a token as the first contiguous sequence of such characters. In
this case token is set to that sequence, and the value returned is the sum of
the number of leading characters c and the number of bytes in the
sequence. Otherwise, returns zero and does not set token.

size_t cutOut(long & number);
Sets number as for the copy method, but also removes from characters the
number of bytes indicated by the return value. For example, the string
shown in the following example can be cut into three numbers by using
cutOut(number) three times:
strNumbers = “-1 0 +55 ”;

while (strNumbers.cutOut(number));
number becomes -1, then 0, then 55
leaving strNumbers == “ ”

size_t cutOut(ImqString & token, const char c = ‘ ’);
Sets token as for the copyOut method, and removes from characters the
strToken characters and also any characters c that precede the token
characters. If c is not a blank, removes characters c that directly succeed the
token characters. Returns the number of characters removed. For example,
the string shown in the following example can be cut into three tokens by
using cutOut(token) three times:
strText = “ Program Version 1.1 ”;

while (strText.cutOut(token));

// token becomes “Program”, then “Version”,
// then “1.1” leaving strText == “ ”

The following example shows how to parse a DOS path name:
strPath = “C:\OS2\BITMAP\OS2LOGO.BMP”

strPath.cutOut(strDrive, ’:’);
strPath.stripLeading(’:’);
while (strPath.cutOut(strFile, ’\’));

// strDrive becomes “C”.
// strFile becomes “OS2”, then “BITMAP”,
// then “OS2LOGO.BMP” leaving strPath empty.

ImqString class

118 Using C++

ImqBoolean find(const ImqString & string);
Searches for an exact match for string anywhere within the characters. If no
match is found, it returns FALSE. Otherwise, it returns TRUE. If string is
null, it returns TRUE.

ImqBoolean find(const ImqString & string, size_t & offset);
Searches for an exact match for string somewhere within the characters
from offset offset onwards. If string is null, it returns TRUE without
updating offset. If no match is found, it returns FALSE (the value of offset
might have been increased). If a match is found, it returns TRUE and
updates offset to the offset of string within the characters.

size_t length() const ;
Returns the length.

ImqBoolean pasteIn(const double number, const char * format = “%f”);
Appends number to the characters after conversion to text. It returns TRUE
if successful.

The specification format is used to format the floating point conversion. If
specified, it must be one suitable for use with printf and floating point
numbers, for example %.3f.

ImqBoolean pasteIn(const long number);
Appends number to the characters after conversion to text. It returns TRUE
if successful.

ImqBoolean pasteIn(const void * buffer, const size_t length);
Appends length bytes from buffer to the characters, and adds a final trailing
null. Substitutes any null characters copied. The substitution character is a
period (.). No special consideration is given to any other nonprintable or
nondisplayable characters copied. This method returns TRUE if successful.

ImqBoolean set(const char * buffer, const size_t length);
Sets the characters from a fixed-length character field, which might contain
a null. Appends a null to the characters from the fixed-length field if
necessary. This method returns TRUE if successful.

size_t storage() const ;
Returns the number of bytes in the storage.

ImqBoolean setStorage(const size_t length);
Allocates (or reallocates) the storage. Preserves any original characters,
including any trailing null, if there is still room for them, but does not
initialize any additional storage.

This method returns TRUE if successful.

size_t stripLeading(const char c = ‘ ’);
Strips leading characters c from the characters and returns the number
removed.

size_t stripTrailing(const char c = ‘ ’);
Strips trailing characters c from the characters and returns the number
removed.

ImqString upperCase() const ;
Returns an uppercase copy of the characters.

ImqString class

Chapter 3. WebSphere MQ C++ classes 119

|

Object methods (protected)
ImqBoolean assign(const ImqString & string);

Equivalent to the equivalent operator = method, but non-virtual. It returns
TRUE if successful.

Reason codes
MQRC_DATA_TRUNCATED
MQRC_NULL_POINTER
MQRC_STORAGE_NOT_AVAILABLE
MQRC_BUFFER_ERROR
MQRC_INCONSISTENT_FORMAT

ImqString class

120 Using C++

ImqTrigger

This class encapsulates the MQTM data structure (see Table 25 on page 147).
Objects of this class are typically used by a trigger monitor program, whose task is
to wait for these particular messages and act on them to ensure that other
WebSphere MQ applications are started when messages are waiting for them.

See the IMQSTRG sample program for a usage example.

Other relevant classes
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 54)
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)
ImqString (see “ImqString” on page 115)

Object attributes
application id

Identity of the application that sent the message. The initial value is a null
string.

application type
Type of application that sent the message. The initial value is zero. The
following additional values are possible:

MQAT_AIX
MQAT_CICS
MQAT_DOS
MQAT_IMS
MQAT_MVS
MQAT_NOTES_AGENT
MQAT_OS2
MQAT_OS390
MQAT_OS400
MQAT_UNIX

A

Item

Trigger

Figure 25. ImqTrigger class

ImqTrigger class

Chapter 3. WebSphere MQ C++ classes 121

MQAT_WINDOWS
MQAT_WINDOWS_NT
MQAT_USER_FIRST
MQAT_USER_LAST

environment data
Environment data for the process. The initial value is a null string.

process name
Process name. The initial value is a null string.

queue name
Name of the queue to be started. The initial value is a null string.

trigger data
Trigger data for the process. The initial value is a null string.

user data
User data for the process. The initial value is a null string.

Constructors
ImqTrigger();

The default constructor.

ImqTrigger(const ImqTrigger & trigger);
The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Writes an MQTM data structure to the message buffer, replacing any
existing content. Sets the msg format to MQFMT_TRIGGER.

See the ImqItem class method description on 63 for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQTM data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_TRIGGER.

See the ImqItem class method description on 63 for further details.

Object methods (public)
void operator = (const ImqTrigger & trigger);

Copies instance data from trigger, replacing the existing instance data.

ImqString applicationId() const ;
Returns a copy of the application id.

void setApplicationId(const char * id);
Sets the application id.

MQLONG applicationType() const ;
Returns the application type.

void setApplicationType(const MQLONG type);
Sets the application type.

ImqTrigger class

122 Using C++

ImqBoolean copyOut(MQTMC2 * ptmc2);
Encapsulates the MQTM data structure, which is the one received on
initiation queues. Fills in an equivalent MQTMC2 data structure provided
by the caller, and sets the QMgrName field (which is not present in the
MQTM data structure) to all blanks. The MQTMC2 data structure is
traditionally used as a parameter to applications started by a trigger
monitor. This method returns TRUE if successful.

ImqString environmentData() const ;
Returns a copy of the environment data.

void setEnvironmentData(const char * data);
Sets the environment data.

ImqString processName() const ;
Returns a copy of the process name.

void setProcessName(const char * name);
Sets the process name, padded with blanks to 48 characters.

ImqString queueName() const ;
Returns a copy of the queue name.

void setQueueName(const char * name);
Sets the queue name, padding with blanks to 48 characters.

ImqString triggerData() const ;
Returns a copy of the trigger data.

void setTriggerData(const char * data);
Sets the trigger data.

ImqString userData() const ;
Returns a copy of the user data.

void setUserData(const char * data);
Sets the user data.

Object data (protected)
MQTM omqtm

The MQTM data structure.

Reason codes
MQRC_NULL_POINTER
MQRC_INCONSISTENT_FORMAT
MQRC_ENCODING_ERROR
MQRC_STRUC_ID_ERROR

ImqTrigger class

Chapter 3. WebSphere MQ C++ classes 123

ImqWorkHeader

This class encapsulates specific features of the MQWIH data structure (see Table 26
on page 147). Objects of this class are used by applications putting messages to the

queue managed by the z/OS Workload Manager.

Other relevant classes
ImqBinary (see “ImqBinary” on page 28)
ImqHeader (see “ImqHeader” on page 58)
ImqItem (see “ImqItem” on page 63)
ImqMessage (see “ImqMessage” on page 65)
ImqString (see “ImqString” on page 115)

Object attributes
message token

Message token for the z/OS Workload Manager, of length
MQ_MSG_TOKEN_LENGTH. The initial value is MQMTOK_NONE.

service name
The 32-character name of a process. The name is initially blanks.

service step
The 8-character name of a step within the process. The name is initially
blanks.

Constructors
ImqWorkHeader();

The default constructor.

ImqWorkHeader(const ImqWorkHeader & header);
The copy constructor.

Header

A

Work
Header

Figure 26. ImqWorkHeader class

ImqWorkHeader class

124 Using C++

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQWIH data structure into the beginning of the message buffer,
moving the existing message data further along, and sets the msg format to
MQFMT_WORK_INFO_HEADER.

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQWIH data structure from the message buffer.

To be successful, the encoding of the msg object must be MQENC_NATIVE.
Retrieve messages with MQGMO_CONVERT to MQENC_NATIVE.

The ImqMessage format must be MQFMT_WORK_INFO_HEADER.

See the parent class method description for more details.

Object methods (public)
void operator = (const ImqWorkHeader & header);

Copiesw instance data from header, replacing the existing instance data.

ImqBinary messageToken () const;
Returns the message token.

ImqBoolean setMessageToken(const ImqBinary & token);
Sets the message token. The data length of token must be either zero or
MQ_MSG_TOKEN_LENGTH. It returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);
Sets the message token. token can be zero, which is the same as specifying
MQMTOK_NONE. If token is nonzero, it must address
MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values such as MQMTOK_NONE, you might need
make a cast to ensure a signature match; for example,
(MQBYTE *)MQMTOK_NONE.

ImqString serviceName () const;
Returns the service name, including trailing blanks.

void setServiceName(const char * name);
Sets the service name.

ImqString serviceStep () const;
Returns the service step, including trailing blanks.

void setServiceStep(const char * step);
Sets the service step.

Object data (protected)
MQWIH omqwih

The MQWIH data structure.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR

ImqWorkHeader class

Chapter 3. WebSphere MQ C++ classes 125

126 Using C++

Appendix A. Compiling and linking

The compilers for each platform are listed in “Compilers for WebSphere MQ and
MQSeries platforms”, together with the switches and link libraries to use.

If you are writing programs for OS/400, see “Compiling C++ sample programs for
iSeries” on page 131.

If you are writing programs for Windows systems, see “Compiling VisualAge C++
sample programs for Windows” on page 131.

If you are writing programs for Compaq NonStop Kernel, see “Building C++
sample programs on Compaq NonStop Kernel” on page 132.

If you are writing programs for z/OS, see “Building an application on z/OS” on
page 134.

Compilers for WebSphere MQ and MQSeries platforms
The compilers can be used on both the WebSphere MQ client and the WebSphere
MQ server, unless indicated otherwise.

AIX
If you are using the IBM VisualAge C++ Professional, Version 5.0 compiler, use the
following switches and libraries:

Switches
xlC[_r] -qchars=signed -I/usr/mqm/inc

Libraries
-limqb23ia[_r] -limq{c|s}23ia[_r]

Notes:

1. {c|s} denotes that you must enter either c for a client application or s for a
server application.

2. To build a threaded application you need to link with the libraries ending in _r.

Compaq Tru64 UNIX
If you are using the Compaq C++ for Tru64 UNIX Version 6.2 compiler on Compaq
Tru64 UNIX Version 4.0, use the following switches and libraries:

Switches
cxx -std1[-pthread]

Libraries
-limq{c|s}23ff[_r] -limqb23ff[_r]

Notes:

1. {c|s} denotes that you must enter either c for a client application or s for a
server application.

2. To build threaded applications, you need to use the –pthread switch and link
with libraries ending in _r.

© Copyright IBM Corp. 1997, 2002 127

|
|

|
|

If you are using the Compaq C++ for Tru64 UNIX Version 6.2 compiler on Compaq
Tru64 UNIX Version 5.0, use the following switches and libraries:

Switches
cxx -pthread

Libraries
-limq{c|s}23ff -limqb23ff

Note: {c|s} denotes that you must enter either c for a client application or s for a
server application.

HP-UX
If you are using the HP ANSI C++ compiler on HP-UX, use the following switches
and libraries:

Switches
aCC -D_HPUX_SOURCE

Libraries
-limqi23ah[_r|_d] {-lmqm[_r|_d] | -lmqic[_r|_d]}

Notes:

1. If you compile with aCC, you must also link with aCC.
2. Link library -lmqm in with a server application; link library -lmqic in with a

client application.
3. To build non-threaded applications, you do not need to link with libraries

ending in _r or _d; the non-underscore version of the libraries suffices. To build
draft 10 pthreads applications, link with the libraries ending in _r. To build
draft 4 pthreads applications, link with the libraries ending in _d.

iSeries
If you are using the IBM ILE for C++ for iSeries compiler, use the following
switches and libraries:

Switches
DFTCHAR*(SIGNED)

Libraries
BNDSRVPGM(QMQM/IMQB23I4[_R] QMQM/IMQS23I4[_R])

Note: To build a threaded application you need to link with the libraries ending in
_R.

Linux for Intel
If you are using the GNU g++ compiler, version 2.95.2 or version 3.0.3, use the
following switches and libraries. No other version 2 compilers are supported. You
can use the version 3.0.3 libraries with other version 3 compilers (check the
compatibility statement installed with the compiler you want to use). By default
the version 3.0.3 libraries are linked to /opt/mqm/lib and /usr/lib.

Switches
g++ -fsigned-char -I/usr/mqm/inc

Compiling and linking

128 Using C++

|
|

|
|
|

|

|
|
|
|
|

|

|

|

Libraries (v2.95.2)
-L/opt/mqm/lib/2.95.2 -W,-rpath/opt/mqm/lib/2.95.2 -limqb23gl[_r]

-limq{c|s}23gl[_r]

Libraries (v3.0.3)
-L/opt/mqm/lib/3.0.3 -W,-rpath/opt/mqm/lib/3.0.3 -limqb23gl[_r]

-limq{c|s}23gl[_r]

Notes:

1. {c|s} denotes that you must enter either c for a client application or s for a
server application.

2. To build a threaded application you need to link with the libraries ending in _r.

Linux for zSeries
If you are using the GNU g++ compiler version 2.95.3, use the following switches
and libraries.

Switches
g++ -fsigned-char -I/usr/mqm/inc

Libraries
-L/opt/mqm/lib/2.95.3 -W,rpath/opt/mqm/lib/2.95.3 -limqb23gl[_r]

-limq{c|s}23gl[_r]

Notes:

1. {c|s} denotes that you must enter either c for a client application or s for a
server application.

2. To build a threaded application you need to link with the libraries ending in
_r.

OS/2 Warp
If you are using the IBM VisualAge for C++ Version 3.0 for OS/2 compiler, use the
following switches and libraries:

Switches
icc /Gd /Gm /Gs /J-

Libraries
imqb23i2 imq{c|s}23i2

Note: {c|s} denotes that you must enter either c for a client application or s for a
server application.

Compaq NonStop Kernel
If you are using the NSK C++ compiler, see the sample compile and bind scripts
NMCCPP and NMLDCPP for details of the required parameters.

Solaris (SPARC and Intel platforms)
If you are using the Sun WorkShop Compiler C++ Version 5.0, use the following
switches and libraries:

Switches
CC -mt

Libraries
-limqb23as -limq{c|s}23as {-lmqic|-lmqm} \
-lmqmcs -lmqmzse -lsocket -lnsl -ldl

Compiling and linking

Appendix A. Compiling and linking 129

|

|
|

|

|
|

|

|
|

|

|

|
|

|

|

|

|
|

|

|
|

|
|

|

|
|

Notes:

1. {c|s} denotes that you must enter either c for a client application or s for a
server application.

2. Link library -lmqm in with a server application; link library -lmqic in with a
client application.

Windows 3.1 (16–bit client only)
If you are using the Microsoft Visual C++ Version 1.5 for Windows 3.1 compiler,
use the following switches and libraries:

Switches
cl -ALw -Mq

Libraries
imqb23vw imqc23vw mqic

Note: There are no C++ component entries for trace in this environment.

Windows 95, Windows NT, Windows 2000, and Windows XP
If you are using the IBM VisualAge for C++ for Windows Version 3.5 compiler, use
the following switches and libraries:

Switches
icc /Gd /Gm /Gs /J-

Libraries
imqb23in imq{c|s}23in

Notes:

1. {c|s} denotes that you must enter either c for a client application or s for a
server application.

2. There are no C++ component entries for trace in this environment.

If you are using the Microsoft Visual C++ Version 6.0 compiler (also Version 4.x
and 5.0 on Windows 95), use the following switches and libraries:

Switches
cl -MD

Libraries
imqb23vn imq{c|s}23vn

Note: {c|s} denotes that you must enter either c for a client application or s for a
server application.

z/OS
If you are using the IBM z/OS C/C++ Version 2 Release 4 or later compiler, use
the following switches and libraries:

Switches
/cxx

Libraries
The side-decks are:
imqs23dm imqb23dm, or imqs23dr imqb23dr, or imqs23dc imqb23dc

and the corresponding DLL load modules are:

Compiling and linking

130 Using C++

|
|

imqs23im imqb23im, or imqs23ir imqb23ir, or imqs23ic imqb23ic

Compiling C++ sample programs for iSeries
This section is aimed at the C++ programmer who wants to write programs for the
OS/400 platform.

IBM ILE C++ for iSeries is a native compiler for C++ programs. In addition, IBM
VisualAge for C++ for iSeries provides cross-compilers with clients running on
OS/2, Windows 95, or Windows NT. The cross-compilers also generate object
modules that can be bound into OS/400 programs.

The following instructions describe how to use the native compiler to create
WebSphere MQ C++ applications. Users of the VisualAge cross-compilers must
interpret the instructions according to their version of the product.
1. Install the ILE C++ for iSeries compiler as directed in the Read Me first! manual

that accompanies the product.
2. Ensure that the QCXXN library is in your library list.
3. Create the HELLO WORLD sample program:

a. Create a module:
CRTCPPMOD MODULE(MYLIB/IMQWRLD) +
SRCSTMF(’/QIBM/ProdData/mqm/samp/imqwrld.cpp’) +
INCDIR(’/QIBM/ProdData/mqm/inc’) DFTCHAR(*SIGNED) +
TERASPACE(*YES)

The source for the C++ sample programs can be found in
/QIBM/ProdData/mqm/samp and the include files in /QIBM/ProdData/mqm/inc.

Alternatively, the source can be found in library SRCFILE(QCPPSRC/LIB)
SRCMBR(IMQWRLD).

b. Bind this with WebSphere MQ-supplied service programs to produce a
program object:
CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +
BNDSRVPGM(QMQM/IMQB23I4 QMQM/IMQS23I4)

See “iSeries” on page 128 for alternative service programs that you can use.
c. Execute the HELLO WORLD sample program, using

SYSTEM.DEFAULT.LOCAL.QUEUE:
CALL PGM(MYLIB/IMQWRLD)

Compiling VisualAge C++ sample programs for Windows
This section is aimed at C++ programmers who want to write VisualAge programs
for the Windows 95, Windows NT, Windows 2000, and Windows XP platforms.

The IBM VisualAge for C++ for Windows Version 3.5 run-time library
cppwm35i.dll is used by WebSphere MQ C++ and is redistributed, using the
DLLRNAME utility from the VisualAge product, under the name imqwm35i.dll.
Using DLLRNAME, you can also use the redistributed file, rather than supplying a
redistribution copy of your own.

To use the WebSphere MQ redistributed file, process your executables after
construction. Build your executable application in the normal way, whether it is a
dynamic link library or a program, and then type the following to rebind the
application.

Compiling and linking

Appendix A. Compiling and linking 131

|

|
|

|

dllrname applicname cppwm35i=imqwm35i

Building C++ sample programs on Compaq OpenVMS Alpha
This section is aimed at the C++ programmer who wants to write programs for the
Compaq OpenVMS Alpha platform.

To compile the sample programs, use:
cxx/include=mqs_include:<progname.cxx>

To link the programs:
1. Create an options file (<progname.opt>) that contains the line:

sys$share:imqb/share,sys$share:imqc/share

2. Link using the command:
cxxlink <prgname.obj>,<progname.opt>/options

Building C++ sample programs on Compaq NonStop Kernel
This section tells you how to build the samples on Compaq NonStop Kernel in two
ways:
1. “Native (using native static library MQMLIBN)”
2. “Native (using SRL MQSRLLIB)” on page 133

Native (using native static library MQMLIBN)
NMCPPALL Usage: NMCPALL

Macro to compile all samples native using
NMCCPP.

NMCCPP Usage: NMCCPP source-code-file-name

This is a basic macro for compiling a C++ source
file using the include files contained in subvolume
ZMQSLIB. For example, to compile the sample
IMQSGETP, use NMCCPP IMQSGETP. If the
compilation is successful, the macro produces an
object file with the last character of the file name
replaced by the letter O; for example, IMQSGETO.

NMLDCPP Usage: NMLDCPP exe-file-name

This basic macro links an object file with the Static
Native MQI library MQMLIBN in ZMQSLIB.

NMLDCPPA Usage: NMLDCPPA

This TACL macro binds each of the sample object
files into executables using the NMLDSAMP
macro.

NMBLDCPP Usage: NMBUILDC

This TACL macro compiles and binds all of the
Native C++ sample files using the macros
NMCPPALL and NMLDCPPA.

Compiling on Windows systems

132 Using C++

|

|
|

|

|

|

|

|

|

|

|
|

|
|
|
|

|

||

|
|

||

|
|
|
|
|
|
|

||

|
|

||

|
|
|

||

|
|
|

Native (using SRL MQSRLLIB)
NMLDCPPS

Usage: NMLDCPPS MQSeries-Private-SRL-Volume

This basic macro links an object file with the Native MQ SRL MQSRLLIB
in ZMQSLIB.

NMLDCPSA
Usage: NMLDCPSA

This TACL macro binds each of the sample object files into executables
using the NMLDCPPS macro.

NMBLDSCP
Usage: NMBLDSCP MQSeries-Private-SRL-Volume

This TACL macro compiles and binds all of the Native C sample files using
the macros NMCPPALL and NMLDCPSA.

Building C++ samples on Compaq NonStop Kernel

Appendix A. Compiling and linking 133

|

|
|

|
|

|
|

|
|

|
|

|
|

Building an application on z/OS
You can write C++ programs for three of the environments that WebSphere MQ for
z/OS supports:
v Batch
v RRS batch
v CICS

When you have written the C++ program for your WebSphere MQ application,
create an executable application by compiling, pre-linking, and link-editing it.

WebSphere MQ C++ for z/OS is implemented as z/OS DLLs for the IBM C++ for
z/OS language. Using DLLs, you concatenate the supplied definition side-decks
with the compiler output at pre-link time. This allows the linker to check your calls
to the WebSphere MQ C++ member functions.

Note: There are three sets of side-decks for each of the three environments.

To build a WebSphere MQ for z/OS C++ application, create and run JCL. Use the
following procedure:
1. If your application runs under CICS, use the CICS-supplied procedure to

translate CICS commands in your program.
In addition, for CICS applications you need to:
a. Add the SCSQLOAD library to the DFHRPL concatenation.
b. Define the CSQCAT1 CEDA group using the member IMQ4B100 in the

SCSQPROC library.
c. Install CSQCAT1.

2. Compile the program to produce object code. The JCL for your compilation
must include statements that make the product data definition files available to
the compiler. The data definitions are supplied in the following WebSphere MQ
for z/OS libraries:
v thlqual.SCSQC370
v thlqual.SCSQHPPS

Be sure to specify the /cxx compiler option.

Note: The name thlqual is the high level qualifier of the WebSphere MQ
installation library on z/OS.

3. Pre-link the object code created in step 2, including the following definition
side-decks, which are supplied in thlqual.SCSQDEFS:
v imqs23dm and imqb23dm for batch
v imqs23dr and imqb23dr for RRS batch
v imqs23dc and imqb23dc for CICS

4. Link-edit the object code created in step 3, to produce a load module, and store
it in your application load library.

To run batch or RRS batch programs, include the libraries thlqual.SCSQAUTH and
thlqual.SCSQLOAD in the STEPLIB or JOBLIB data set concatenation.

To run a CICS program, first get your system administrator to define it to CICS as
a WebSphere MQ program and transaction. You can then run it in the usual way.

z/OS applications

134 Using C++

|

|

|
|

|

|

|

Running sample programs on z/OS
WebSphere MQ for z/OS supplies three sample programs, together with JCL to
run them. The programs are described in “Sample programs” on page 12.

The sample applications are supplied in source form only. The files are:

Table 4. z/OS sample program files

Sample Source program (in library
thlqual.SCSQCPPS)

JCL (in library
thlqual.SCSQPROC)

HELLO WORLD imqwrld imqwrldr

SPUT imqsput imqsputr

SGET imqsget imqsgetr

To run the samples, compile and link-edit them as with any C++ program (see
“Building an application on z/OS” on page 134). Use the supplied JCL to construct
and run a batch job. You must initially customize the JCL, by following the
commentary included with it.

Building and running applications under z/OS UNIX System
Services

To build an application under the UNIX System Services shell, you must give the
compiler access to the WebSphere MQ include files (located in thlqual.SCSQC370
and thlqual.SCSQHPPS), and link against two of the DLL side-decks (located in
thlqual.SCSQDEFS). At runtime, the application needs access to the WebSphere
MQ data sets thlqual.SCSQLOAD, thlqual.SCSQAUTH, and one of the language
specific data sets, such as thlqual.SCSQANLE.

Sample commands to compile the HELLO WORLD C++ sample
program
1. Copy the sample into the HFS using the TSO oput command, or use FTP. The

rest of this example assumes that you have copied the sample into a directory
called /u/fred/sample, and named it imqwrld.cpp.

2. Log into the UNIX System Services shell, and change to the directory where
you placed the sample.

3. Set up the C++ compiler so that it can accept the DLL side-deck and .cpp files
as input:
/u/fred/sample:> export _CXX_EXTRA_ARGS=1
/u/fred/sample:> export _CXX_CXXSUFFIX="cpp"

4. Compile and link the sample program. The following command links the
program with the batch side-decks; the RRS batch side-decks can be used
instead. The \ character is used to split the command over more than one line.
Do not enter this character; enter the command as a single line:
/u/fred/sample:> c++ -o imqwrld -I "//’thlqual.SCSQC370’" \
-I "//’thlqual.SCSQHPPS’" imqwrld.cpp \
"//’thlqual.SCSQDEFS(IMQS23DM)’" "//’thlqual.SCSQDEFS(IMQB23DM)’"

For more information on the TSO oput command, refer to the z/OS UNIX System
Services Command Reference.

Samples on z/OS

Appendix A. Compiling and linking 135

You can also use the make utility to simplify building C++ programs. Here is a
sample makefile to build the HELLO WORLD C++ sample program. It separates
the compile and link stages. Set up the environment as in step 3 on page 135 above
before running make.
flags = -I "//’thlqual.SCSQC370’" -I "//’thlqual.SCSQHPPS’"
decks = "//’thlqual.SCSQDEFS(IMQS23DM)’" "//’thlqual.SCSQDEFS(IMQB23DM)’"

imqwrld: imqwrld.o
c++ -o imqwrld imqwrld.o $(decks)

imqwrld.o: imqwrld.cpp
c++ -c -o imqwrld $(flags) imqwrld.cpp

Refer to z/OS UNIX System Services Programming Tools for more information on
using make.

Sample commands to run the HELLO WORLD C++ sample
program
1. Log into the UNIX System Services shell, and change to the directory where

you built the sample.
2. Set up the STEPLIB environment variable to include the WebSphere MQ data

sets:
/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQLOAD
/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQAUTH
/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQANLE

3. Run the sample:
/u/fred/sample:> ./imqwrld

Applications under z/OS UNIX System Services

136 Using C++

Appendix B. MQI cross reference

This appendix contains information relating C++ to the MQI; read it together with
the WebSphere MQ Application Programming Reference.

The information covers:
v “Data structure, class, and include-file cross reference”
v “Class attribute cross reference” on page 138

Data structure, class, and include-file cross reference
Table 5. Data structure, class, and include-file cross reference

Data structure Class Include file

MQAIR ImqAuthenticationRecord imqair.hpp

ImqBinary imqbin.hpp

ImqCache imqcac.hpp

MQCD ImqChannel imqchl.hpp

MQCIH ImqCICSBridgeHeader imqcih.hpp

MQDLH ImqDeadLetterHeader imqdlh.hpp

MQOR ImqDistributionList imqdst.hpp

ImqError imqerr.hpp

MQGMO ImqGetMessageOptions imqgmo.hpp

ImqHeader imqhdr.hpp

MQIIH ImqIMSBridgeHeader imqiih.hpp

ImqItem imqitm.hpp

MQMD ImqMessage imqmsg.hpp

ImqMessageTracker imqmtr.hpp

ImqNamelist imqnml.hpp

MQOD, MQRR ImqObject imqobj.hpp

MQPMO, MQPMR, MQRR ImqPutMessageOptions imqpmo.hpp

ImqProcess imqpro.hpp

ImqQueue imqque.hpp

MQBO, MQCNO ImqQueueManager imqmgr.hpp

MQRMH ImqReferenceHeader imqrfh.hpp

ImqString imqstr.hpp

MQTM ImqTrigger imqtrg.hpp

MQTMC

MQTMC2 ImqTrigger imqtrg.hpp

MQXQH

MQWIH ImqWorkHeader imqwih.hpp

© Copyright IBM Corp. 1997, 2002 137

|

Class attribute cross reference
Table 6 to Table 26 contain cross-reference information for each C++ class. These
cross references relate to the use of the underlying WebSphere MQ procedural
interfaces. Read this together with the WebSphere MQ Application Programming
Reference. The classes ImqBinary, ImqDistributionList, and ImqString have no
attributes that fall into this category and are excluded.

ImqAuthenticationRecord
Table 6. ImqAuthenticationRecord cross reference

Attribute Data structure Field Call

connection name MQAIR AuthInfoConnName MQCONNX

password MQAIR LDAPPassword MQCONNX

type MQAIR AuthInfoType MQCONNX

user name MQAIR LDAPUserNamePtr MQCONNX

MQAIR LDAPUserNameOffset MQCONNX

MQAIR LDAPUserNameLength MQCONNX

ImqCache
Table 7. ImqCache cross reference

Attribute Call

automatic buffer MQGET

buffer length MQGET

buffer pointer MQGET, MQPUT

data length MQGET

data offset MQGET

data pointer MQGET

message length MQGET, MQPUT

ImqChannel
Table 8. ImqChannel cross reference

Attribute Data structure Field Call

batch heart-beat MQCD BatchHeartbeat MQCONNX

channel name MQCD ChannelName MQCONNX

connection name MQCD ConnectionName MQCONNX

MQCD ShortConnectionName MQCONNX

heart-beat interval MQCD HeartbeatInterval MQCONNX

keep alive interval MQCD KeepAliveInterval MQCONNX

local address MQCD LocalAddress MQCONNX

maximum message length MQCD MaxMsgLength MQCONNX

mode name MQCD ModeName MQCONNX

password MQCD Password MQCONNX

Class attribute reference

138 Using C++

|

||

||||

||||

||||

||||

||||

||||

||||

|

|

|

Table 8. ImqChannel cross reference (continued)

Attribute Data structure Field Call

receive exit count MQCD MQCONNX

receive exit names MQCD ReceiveExit MQCONNX

MQCD ReceiveExitsDefined MQCONNX

MQCD ReceiveExitPtr MQCONNX

receive user data MQCD ReceiveUserData MQCONNX

MQCD ReceiveUserDataPtr MQCONNX

security exit name MQCD SecurityExit MQCONNX

security user data MQCD SecurityUserData MQCONNX

send exit count MQCD MQCONNX

send exit names MQCD SendExit MQCONNX

MQCD SendExitsDefined MQCONNX

MQCD SendExitPtr MQCONNX

send user data MQCD SendUserData MQCONNX

MQCD SendUserDataPtr MQCONNX

SSL cipher specification MQCD sslCipherSpecification MQCONNX

SSL client authentication type MQCD sslClientAuthentication MQCONNX

SSL peer name MQCD sslPeerName MQCONNX

transaction program name MQCD TpName MQCONNX

transport type MQCD TransportType MQCONNX

user id MQCD UserIdentifier MQCONNX

ImqCICSBridgeHeader
Table 9. ImqCICSBridgeHeader cross reference

Attribute Data structure Field

bridge abend code MQCIH AbendCode

ADS descriptor MQCIH AdsDescriptor

attention identifier MQCIH AttentionId

authenticator MQCIH Authenticator

bridge completion code MQCIH BridgeCompletionCode

bridge error offset MQCIH ErrorOffset

bridge reason code MQCIH BridgeReason

bridge cancel code MQCIH CancelCode

conversational task MQCIH ConversationalTask

cursor position MQCIH CursorPosition

facility token MQCIH Facility

facility keep time MQCIH FacilityKeepTime

facility like MQCIH FacilityLike

function MQCIH Function

get wait interval MQCIH GetWaitInterval

Class attribute reference

Appendix B. MQI cross reference 139

||||

||||

||||

Table 9. ImqCICSBridgeHeader cross reference (continued)

Attribute Data structure Field

link type MQCIH LinkType

next transaction identifier MQCIH NextTransactionId

output data length MQCIH OutputDataLength

reply-to format MQCIH ReplyToFormat

bridge return code MQCIH ReturnCode

start code MQCIH StartCode

task end status MQCIH TaskEndStatus

transaction identifier MQCIH TransactionId

uow control MQCIH UowControl

version MQCIH Version

ImqDeadLetterHeader
Table 10. ImqDeadLetterHeader cross reference

Attribute Data structure Field

dead-letter reason code MQDLH Reason

destination queue manager name MQDLH DestQMgrName

destination queue name MQDLH DestQName

put application name MQDLH PutApplName

put application type MQDLH PutApplType

put date MQDLH PutDate

put time MQDLH PutTime

ImqError
Table 11. ImqError cross reference

Attribute Call

completion code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,
MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQSET

reason code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,
MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQSET

ImqGetMessageOptions
Table 12. ImqGetMessageOptions cross reference

Attribute Data structure Field

group status MQGMO GroupStatus

match options MQGMO MatchOptions

message token MQGMO MessageToken

options MQGMO Options

resolved queue name MQGMO ResolvedQName

returned length MQGMO ReturnedLength

Class attribute reference

140 Using C++

Table 12. ImqGetMessageOptions cross reference (continued)

Attribute Data structure Field

segmentation MQGMO Segmentation

segment status MQGMO SegmentStatus

MQGMO Signal1

MQGMO Signal2

syncpoint participation MQGMO Options

wait interval MQGMO WaitInterval

ImqHeader
Table 13. ImqHeader cross reference

Attribute Data structure Field

character set MQDLH, MQIIH CodedCharSetId

encoding MQDLH, MQIIH Encoding

format MQDLH, MQIIH Format

header flags MQIIH, MQRMH Flags

ImqIMSBridgeHeader
Table 14. ImqIMSBridgeHeader cross reference

Attribute Data structure Field

authenticator MQIIH Authenticator

commit mode MQIIH CommitMode

logical terminal override MQIIH LTermOverride

message format services map name MQIIH MFSMapName

reply-to format MQIIH ReplyToFormat

security scope MQIIH SecurityScope

transaction instance id MQIIH TranInstanceId

transaction state MQIIH TranState

ImqItem
Table 15. ImqItem cross reference

Attribute Call

structure id MQGET

ImqMessage
Table 16. ImqMessage cross reference

Attribute Data structure Field Call

application id data MQMD ApplIdentityData

application origin data MQMD ApplOriginData

Class attribute reference

Appendix B. MQI cross reference 141

Table 16. ImqMessage cross reference (continued)

Attribute Data structure Field Call

backout count MQMD BackoutCount

character set MQMD CodedCharSetId

encoding MQMD Encoding

expiry MQMD Expiry

format MQMD Format

message flags MQMD MsgFlags

message type MQMD MsgType

offset MQMD Offset

original length MQMD OriginalLength

persistence MQMD Persistence

priority MQMD Priority

put application name MQMD PutApplName

put application type MQMD PutApplType

put date MQMD PutDate

put time MQMD PutTime

reply-to queue manager name MQMD ReplyToQMgr

reply-to queue name MQMD ReplyToQ

report MQMD Report

sequence number MQMD MsgSeqNumber

total message length DataLength MQGET

user id MQMD UserIdentifier

ImqMessageTracker
Table 17. ImqMessageTracker cross reference

Attribute Data structure Field

accounting token MQMD AccountingToken

correlation id MQMD CorrelId

feedback MQMD Feedback

group id MQMD GroupId

message id MQMD MsgId

ImqNamelist
Table 18. ImqNamelist cross reference

Attribute Inquiry Call

name count MQIA_NAME_COUNT MQINQ

namelist name MQCA_NAMELIST_NAME MQINQ

Class attribute reference

142 Using C++

ImqObject
Table 19. ImqObject cross reference

Attribute Data
structure

Field Inquiry Call

alteration date MQCA_ALTERATION_DATE MQINQ

alteration time MQCA_ALTERATION_TIME MQINQ

alternate user id MQOD AlternateUserId

alternate security id

close options MQCLOSE

description MQCA_Q_DESC,
MQCA_Q_MGR_DESC,
MQCA_PROCESS_DESC

MQINQ

name MQOD ObjectName MQCA_Q_MGR_NAME,
MQCQ_Q_NAME,
MQCA_PROCESS_NAME

MQINQ

open options MQOPEN

open status MQOPEN,
MQCLOSE

queue manager
identifier

queue
manager
identifier

MQCA_Q_MGR_IDENTIFIER MQINQ

ImqProcess
Table 20. ImqProcess cross reference

Attribute Inquiry Call

application id MQCA_APPL_ID MQINQ

application type MQIA_APPL_TYPE MQINQ

environment data MQCA_ENV_DATA MQINQ

user data MQCA_USER_DATA MQINQ

ImqPutMessageOptions
Table 21. ImqPutMessageOptions cross reference

Attribute Data structure Field

context reference MQPMO Context

MQPMO InvalidDestCount

MQPMO KnownDestCount

options MQPMO Options

record fields MQPMO PutMsgRecFields

resolved queue manager name MQPMO ResolvedQMgrName

resolved queue name MQPMO ResolvedQName

MQPMO Timeout

MQPMO UnknownDestCount

syncpoint participation MQPMO Options

Class attribute reference

Appendix B. MQI cross reference 143

ImqQueue
Table 22. ImqQueue cross reference

Attribute Data
structure

Field Inquiry Call

backout requeue name MQCA_BACKOUT_REQ_Q_NAME MQINQ

backout threshold MQIA_BACKOUT_THRESHOLD MQINQ

base queue name MQCA_BASE_Q_NAME MQINQ

cluster name MQCA_CLUSTER_NAME MQINQ

cluster namelist name MQCA_CLUSTER_NAMELIST MQINQ

creation date MQCA_CREATION_DATE MQINQ

creation time MQCA_CREATION_TIME MQINQ

current depth MQIA_CURRENT_Q_DEPTH MQINQ

default bind MQIA_DEF_BIND MQINQ

default input open
option

MQIA_DEF_INPUT_OPEN_OPTION MQINQ

default persistence MQIA_DEF_PERSISTENCE MQINQ

default priority MQIA_DEF_PRIORITY MQINQ

definition type MQIA_DEFINITION_TYPE MQINQ

depth high event MQIA_Q_DEPTH_HIGH_EVENT MQINQ

depth high limit MQIA_Q_DEPTH_HIGH_LIMIT MQINQ

depth low event MQIA_Q_DEPTH_LOW_EVENT MQINQ

depth low limit MQIA_Q_DEPTH_LOW_LIMIT MQINQ

depth maximum event MQIA_Q_DEPTH_MAX_LIMIT MQINQ

distribution lists MQIA_DIST_LISTS MQINQ,
MQSET

dynamic queue name MQOD DynamicQName

harden get backout MQIA_HARDEN_GET_BACKOUT MQINQ

index type MQIA_INDEX_TYPE MQINQ

inhibit get MQIA_INHIBIT_GET MQINQ,
MQSET

inhibit put MQIA_INHIBIT_PUT MQINQ,
MQSET

initiation queue name MQCA_INITIATION_Q_NAME MQINQ

maximum depth MQIA_MAX_Q_DEPTH MQINQ

maximum message
length

MQIA_MAX_MSG_LENGTH MQINQ

message delivery
sequence

MQIA_MSG_DELIVERY_SEQUENCE MQINQ

next distributed queue

open input count MQIA_OPEN_INPUT_COUNT MQINQ

open output count MQIA_OPEN_OUTPUT_COUNT MQINQ

Class attribute reference

144 Using C++

Table 22. ImqQueue cross reference (continued)

Attribute Data
structure

Field Inquiry Call

previous distributed
queue

process name MQCA_PROCESS_NAME MQINQ

queue manager name MQOD ObjectQMgrName

queue type MQIA_Q_TYPE MQINQ

remote queue manager
name

MQCA_REMOTE_Q_MGR_NAME MQINQ

remote queue name MQCA_REMOTE_Q_NAME MQINQ

resolved queue
manager name

MQOD ResolvedQMgrName

resolved queue name MQOD ResolvedQName

retention interval MQIA_RETENTION_INTERVAL MQINQ

scope MQIA_SCOPE MQINQ

service interval MQIA_Q_SERVICE_INTERVAL MQINQ

service interval event MQIA_Q_SERVICE_INTERVAL_EVENT MQINQ

shareability MQIA_SHAREABILITY MQINQ

storage class MQCA_STORAGE_CLASS MQINQ

transmission queue
name

MQCA_XMIT_Q_NAME MQINQ

trigger control MQIA_TRIGGER_CONTROL MQINQ,
MQSET

trigger data MQCA_TRIGGER_DATA MQINQ,
MQSET

trigger depth MQIA_TRIGGER_DEPTH MQINQ,
MQSET

trigger message
priority

MQIA_TRIGGER_MSG_PRIORITY MQINQ,
MQSET

trigger type MQIA_TRIGGER_TYPE MQINQ,
MQSET

usage MQIA_USAGE MQINQ

ImqQueueManager
Table 23. ImqQueueManager cross reference

Attribute Data
structure

Field Inquiry Call

authority event MQIA_AUTHORITY_EVENT MQINQ

begin options MQBO Options MQBEGIN

channel auto definition MQIA_CHANNEL_AUTO_DEF MQINQ

channel auto definition
event

MQIA_CHANNEL_AUTO_EVENT MQIA

channel auto definition
exit

MQIA_CHANNEL_AUTO_EXIT MQIA

Class attribute reference

Appendix B. MQI cross reference 145

Table 23. ImqQueueManager cross reference (continued)

Attribute Data
structure

Field Inquiry Call

channel reference MQCD ChannelType MQCONNX

character set MQIA_CODED_CHAR_SET_ID MQINQ

cluster workload data MQCA_CLUSTER_WORKLOAD_DATA MQINQ

cluster workload exit MQCA_CLUSTER_WORKLOAD_EXIT MQINQ

cluster workload
length

MQIA_CLUSTER_WORKLOAD_LENGTH MQINQ

command input queue
name

MQCA_COMMAND_INPUT_Q_NAME MQINQ

command level MQIA_COMMAND_LEVEL MQINQ

connect options MQCNO Options MQCONN,
MQCONNX

connection status MQCONN,
MQCONNX,
MQDISC

connection tag MQCD ConnTag MQCONNX

cryptographic
hardware

MQSCO CryptoHardware MQCONNX

dead-letter queue
name

MQCA_DEAD_LETTER_Q_NAME MQINQ

default transmission
queue name

MQCA_DEF_XMIT_Q_NAME MQINQ

distribution lists MQIA_DIST_LISTS MQINQ

first authentication
record

MQSCO AuthInfoRecOffset MQCONNX

MQSCO AuthInfoRecPtr MQCONNX

inhibit event MQIA_INHIBIT_EVENT MQINQ

key repository MQSCO KeyRepository MQCONNX

local event MQIA_LOCAL_EVENT MQINQ

maximum handles MQIA_MAX_HANDLES MQINQ

maximum message
length

MQIA_MAX_MSG_LENGTH MQINQ

maximum priority MQIA_MAX_PRIORITY MQINQ

maximum
uncommitted messages

MQIA_MAX_UNCOMMITTED_MSGS MQINQ

performance event MQIA_PERFORMANCE_EVENT MQINQ

platform MQIA_PLATFORM MQINQ

remote event MQIA_REMOTE_EVENT MQINQ

repository name MQCA_REPOSITORY_NAME MQINQ

repository namelist MQCA_REPOSITORY_NAMELIST MQINQ

start-stop event MQIA_START_STOP_EVENT MQINQ

syncpoint availability MQIA_SYNCPOINT MQINQ

trigger interval MQIA_TRIGGER_INTERVAL MQINQ

Class attribute reference

146 Using C++

|
|

|
|

|

|

ImqReferenceHeader
Table 24. ImqReferenceHeader

Attribute Data structure Field

destination environment MQRMH DestEnvLength, DestEnvOffset

destination name MQRMH DestNameLength, DestNameOffset

instance id MQRMH ObjectInstanceId

logical length MQRMH DataLogicalLength

logical offset MQRMH DataLogicalOffset

logical offset 2 MQRMH DataLogicalOffset2

reference type MQRMH ObjectType

source environment MQRMH SrcEnvLength, SrcEnvOffset

source name MQRMH SrcNameLength, SrcNameOffset

ImqTrigger
Table 25. ImqTrigger cross reference

Attribute Data structure Field

application id MQTM ApplId

application type MQTM ApplType

environment data MQTM EnvData

process name MQTM ProcessName

queue name MQTM QName

trigger data MQTM TriggerData

user data MQTM UserData

ImqWorkHeader
Table 26. ImqWorkHeader cross reference

Attribute Data structure Field

message token MQWIH MessageToken

service name MQWIH ServiceName

service step MQWIH ServiceStep

Class attribute reference

Appendix B. MQI cross reference 147

Class attribute reference

148 Using C++

Appendix C. Reason codes

The following reason codes are in addition to those documented for the WebSphere
MQ MQI, in the WebSphere MQ Application Programming Reference.

Note: The following list is in alphabetic order.

MQRC_ATTRIBUTE_LOCKED (6104 or X'17D8')
An attempt has been made to change the value of an attribute of an
object while that object is open, or, for an ImqQueueManager object,
while that object is connected. Certain attributes cannot be changed
in these circumstances. Close or disconnect the object (as
appropriate) before changing the attribute value.

An object might have been connected or opened unexpectedly and
implicitly to perform an MQINQ call. Check the attribute
cross-reference table (see Appendix B, “MQI cross reference”, on
page 137) to determine whether any of your method invocations
result in an MQINQ call.

Corrective action: include MQOO_INQUIRE in the ImqObject open
options and set them earlier.

MQRC_BINARY_DATA_LENGTH_ERROR (6111 or X'17DF')
The length of the binary data is inconsistent with the length of the
target attribute. Zero is a correct length for all attributes.
v The correct length for an accounting token is

MQ_ACCOUNTING_TOKEN_LENGTH.
v The correct length for an alternate security id is

MQ_SECURITY_ID_LENGTH.
v The correct length for a correlation id is

MQ_CORREL_ID_LENGTH.
v The correct length for a facility token is

MQ_FACILITY_LENGTH.
v The correct length for a group id is MQ_GROUP_ID_LENGTH.
v The correct length for a message id is MQ_MSG_ID_LENGTH.
v The correct length for an instance id is

MQ_OBJECT_INSTANCE_ID_LENGTH.
v The correct length for a transaction instance id is

MQ_TRAN_INSTANCE_ID_LENGTH.
v The correct length for a message token is

MQ_MSG_TOKEN_LENGTH.

MQRC_BUFFER_NOT_AUTOMATIC (6112 or X'17E0')
A user-defined (and managed) buffer cannot be resized. A
user-defined buffer can only be replaced or withdrawn. A buffer
must be automatic (system-managed) before it can be resized.

MQRC_CONTEXT_OBJECT_NOT_VALID (6121 or X'17E9')
The ImqPutMessageOptions context reference does not reference a
valid ImqQueue object. The object has been previously destroyed.

© Copyright IBM Corp. 1997, 2002 149

MQRC_CONTEXT_OPEN_ERROR (6122 or X'17EA')
The ImqPutMessageOptions context reference references an
ImqQueue object that could not be opened to establish a context.
This might be because the ImqQueue object has inappropriate open
options. Inspect the referenced object reason code to establish the
cause.

MQRC_CURSOR_NOT_VALID (6105 or X'17D9')
The browse cursor for an open queue has been invalidated since it
was last used by an implicit reopen (see “Reopen” on page 16).

Corrective action: set the ImqObject open options explicitly to cover
all eventualities so that implicit reopening is not required.

MQRC_DATA_TRUNCATED (6115 or X'17E3')
Data has been truncated when copying from one buffer to another.
This might be because the target buffer cannot be resized, there is a
problem addressing one or other buffer, or a buffer is being
downsized with a smaller replacement.

MQRC_DISTRIBUTION_LIST_EMPTY (6126 or X'17EE')
An ImqDistributionList failed to open because there are no
ImqQueue objects referenced.

Corrective action: establish at least one ImqQueue object in which
the distribution list reference addresses the ImqDistributionList
object, and retry.

MQRC_ENCODING_ERROR (6106 or X'17DA')
The encoding of the (next) message item needs to be
MQENC_NATIVE for pasting.

MQRC_INCONSISTENT_FORMAT (6119 or X'17E7')
The format of the (next) message item is inconsistent with the class
of object into which the item is being pasted.

MQRC_INCONSISTENT_OBJECT_STATE (6120 or X'17E8')
There is an inconsistency between this object, which is open, and the
referenced ImqQueueManager object, which is not connected.

MQRC_INCONSISTENT_OPEN_OPTIONS (6127 or X'17EF')
A method failed because the object is open, and the ImqObject open
options are inconsistent with the required operation. The object
cannot be reopened implicitly because the IMQ_IMPL_OPEN flag of
the ImqObject behavior class attribute is false.

Corrective action: open the object with appropriate ImqObject open
options and retry.

MQRC_INSUFFICIENT_BUFFER (6113 or X'17E1')
There is insufficient buffer space available after the data pointer to
accommodate the request. This might be because the buffer cannot
be resized.

MQRC_INSUFFICIENT_DATA (6114 or X'17E2')
There is insufficient data after the data pointer to accommodate the
request.

MQRC_NEGATIVE_LENGTH (6117 or X'17E5')
A negative length has been supplied where a zero or positive length
is required.

Reason codes

150 Using C++

MQRC_NEGATIVE_OFFSET (6118 or X'17E6')
A negative offset has been supplied where a zero or positive offset is
required.

MQRC_NO_BUFFER (6110 or X'17DE')
No buffer is available. For an ImqCache object, one cannot be
allocated, denoting an internal inconsistency in the object state that
should not occur.

MQRC_NO_CONNECTION_REFERENCE (6109 or X'17DD')
The connection reference is null. A connection to an
ImqQueueManager object is required.

MQRC_NOT_CONNECTED (6124 or X'17EC')
A method failed because a required connection to a queue manager
was not available, and a connection cannot be established implicitly
because the IMQ_IMPL_CONN flag of the ImqQueueManager
behavior class attribute is FALSE.

Corrective action: establish a connection to a queue manager and
retry.

MQRC_NOT_OPEN (6125 or X'17ED')
A method failed because a WebSphere MQ object was not open, and
opening cannot be accomplished implicitly because the
IMQ_IMPL_OPEN flag of the ImqObject behavior class attribute is
FALSE.

Corrective action: open the object and retry.

MQRC_NULL_POINTER (6108 or X'17DC')
A null pointer has been supplied where a nonnull pointer is either
required or implied.

MQRC_REFERENCE_ERROR (6129 or X'17F1')
An object reference is invalid.

There is a problem with the address of a referenced object. At the
time of use, the address of the object is nonnull, but is invalid and
cannot be used for its intended purpose.

Corrective action: check that the referenced object is neither deleted
nor out of scope, or remove the reference by supplying a null
address value.

MQRC_REOPEN_EXCL_INPUT_ERROR (6100 or X'17D4')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 16) is required but closure has been
prevented.

Closure has been prevented because the queue is open for exclusive
input and closure might result in the queue being accessed by
another process or thread, before the queue is reopened by the
process or thread that presently has access.

Corrective action: set the open options explicitly to cover all
eventualities so that implicit reopening is not required.

Reason codes

Appendix C. Reason codes 151

MQRC_REOPEN_INQUIRE_ERROR (6101 or X'17D5')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 16) is required but closure has been
prevented.

Closure has been prevented because one or more characteristics of
the object need to be checked dynamically prior to closure, and the
open options do not already include MQOO_INQUIRE.

Corrective action: set the open options explicitly to include
MQOO_INQUIRE.

MQRC_REOPEN_SAVED_CONTEXT_ERR (6102 or X'17D6')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 16) is required but closure has been
prevented.

Closure has been prevented because the queue is open with
MQOO_SAVE_ALL_CONTEXT, and a destructive get has been
performed previously. This has caused retained state information to
be associated with the open queue and this information would be
destroyed by closure.

Corrective action: set the open options explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_REOPEN_TEMPORARY_Q_ERROR (6103 or X'17D7')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 16) is required but closure has been
prevented.

Closure has been prevented because the queue is a local queue of
the definition type MQQDT_TEMPORARY_DYNAMIC, that would
be destroyed by closure.

Corrective action: set the open options explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_STRUC_ID_ERROR (6107 or X'17DB')
The structure id for the (next) message item, which is derived from
the 4 characters beginning at the data pointer, is either missing or is
inconsistent with the class of object into which the item is being
pasted.

MQRC_STRUC_LENGTH_ERROR (6123 or X'17EB')
The length of a data structure is inconsistent with its content. For an
MQRMH, the length is insufficient to contain the fixed fields and all
offset data.

Reason codes

152 Using C++

MQRC_WRONG_VERSION (6128 or X'17FO')
A method failed because a version number specified or encountered
is either incorrect or not supported.

For the ImqCICSBridgeHeader class, the problem is with the version
attribute.

Corrective action: if you are specifying a version number, use one
that is supported by the class. If you are receiving message data
from another program, ensure that both programs are using
consistent and supported version numbers.

MQRC_ZERO_LENGTH (6116 or X'17E4')
A zero length has been supplied where a positive length is either
required or implied.

The following list shows reason codes in numeric order.

Reason code Decimal Hex.

MQRC_REOPEN_EXCL_INPUT_ERROR 6100 X'000017D4'
MQRC_REOPEN_INQUIRE_ERROR 6101 X'000017D5'
MQRC_REOPEN_SAVED_CONTEXT_ERR 6102 X'000017D6'
MQRC_REOPEN_TEMPORARY_Q_ERROR 6103 X'000017D7'
MQRC_ATTRIBUTE_LOCKED 6104 X'000017D8'
MQRC_CURSOR_NOT_VALID 6105 X'000017D9'
MQRC_ENCODING_ERROR 6106 X'000017DA'
MQRC_STRUC_ID_ERROR 6107 X'000017DB'
MQRC_NULL_POINTER 6108 X'000017DC'
MQRC_NO_CONNECTION_REFERENCE 6109 X'000017DD'
MQRC_NO_BUFFER 6110 X'000017DE'
MQRC_BINARY_DATA_LENGTH_ERROR 6111 X'000017DF'
MQRC_BUFFER_NOT_AUTOMATIC 6112 X'000017E0'
MQRC_INSUFFICIENT_BUFFER 6113 X'000017E1'
MQRC_INSUFFICIENT_DATA 6114 X'000017E2'
MQRC_DATA_TRUNCATED 6115 X'000017E3'
MQRC_ZERO_LENGTH 6116 X'000017E4'
MQRC_NEGATIVE_LENGTH 6117 X'000017E5'
MQRC_NEGATIVE_OFFSET 6118 X'000017E6'
MQRC_INCONSISTENT_FORMAT 6119 X'000017E7'
MQRC_INCONSISTENT_OBJECT_STATE 6120 X'000017E8'
MQRC_CONTEXT_OBJECT_NOT_VALID 6121 X'000017E9'
MQRC_CONTEXT_OPEN_ERROR 6122 X'000017EA'
MQRC_STRUC_LENGTH_ERROR 6123 X'000017EB'
MQRC_NOT_CONNECTED 6124 X'000017EC'
MQRC_NOT_OPEN 6125 X'000017ED'
MQRC_DISTRIBUTION_LIST_EMPTY 6126 X'000017EE'
MQRC_INCONSISTENT_OPEN_OPTIONS 6127 X'000017EF'
MQRC_WRONG_VERSION 6128 X'000017F0'
MQRC_REFERENCE_ERROR 6129 X'000017F1'

Reason codes

Appendix C. Reason codes 153

Reason codes

154 Using C++

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2002 155

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX CICS IBM
IBMLink IMS iSeries
MQSeries OS/2 OS/400
RACF VisualAge WebSphere
z/OS zSeries

Microsoft, Visual C++, Windows, and Windows NT are registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices

156 Using C++

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be the trademarks or service marks
of others.

Notices

Appendix D. Notices 157

158 Using C++

Index

A
attributes of objects 19

B
binary strings 17, 20
Booch class diagrams 2
bufferPointer method 8
buffers, message 4
building applications

z/OS 134
z/OS UNIX System Services 135

C
C Set++ 131
C, using from C++ 21
C++ language considerations 19
character strings 17, 20
CICS bridge, writing a message to 10
classes

Booch class diagrams 2
ImqAuthenticationRecord 25
ImqBinary 28
ImqCache 30
ImqChannel 33
ImqCICSBridgeHeader 39
ImqDeadLetterHeader 47
ImqDistributionList 50
ImqError 52
ImqGetMessageOptions 54
ImqHeader 58
ImqIMSBridgeHeader 60
ImqItem 63
ImqMessage 65
ImqMessageTracker 72
ImqNamelist 76
ImqObject 78
ImqProcess 85
ImqPutMessageOptions 87
ImqQueue 90
ImqQueueManager 102
ImqReferenceHeader 112
ImqString 115
ImqTrigger 121
ImqWorkHeader 124

close, implicit operation 17
CMQC.H header file 19
Compaq NonStop Kernel

building sample programs 132
Compaq OpenVMS Alpha

compiling 132
compilers for WebSphere MQ platforms,

overview 127
compiling sample programs

Compaq OpenVMS Alpha 132
iSeries 131
Windows 131
z/OS 134

connect, implicit operation 16

connection, secondary 108
constants

MQCA_* 82
MQIA_* 82
MQIAV_UNDEFINED 82
MQOO_*

BROWSE 96
INPUT_* 96
OUTPUT 98
PASS_ALL_CONTEXT 98
PASS_IDENTITY_CONTEXT 98
SET_ALL_CONTEXT 98
SET_IDENTITY_CONTEXT 98

MQPMO_*
PASS_ALL_CONTEXT 98
PASS_IDENTITY_CONTEXT 98
SET_ALL_CONTEXT 98
SET_IDENTITY_CONTEXT 98

MQRC_*
TRUNCATED_MSG_FAILED 96

conventions 21
copyOut method 7
cppwm35i (IBM VisualAge for C++ for

Windows run-time library) 131

D
data

preparation 4
structures 137
types 20

datagram, putting and getting 13
dataPointer method 8
dead-letter queue, writing a message

to 9
declaring parameters 23
disconnect, implicit operation 17
distribution list, putting messages to 16
DLLRNAME 131
DPUT sample program 16

E
elementary data types 20
examples

custom encapsulated message-writing
code 7

declaration and use conventions 21
headers 21
ImqDeadLetterHeader class 7
manipulating binary strings 20
preparing message data 4
retrieving items within a message 5
retrieving messages into a fixed area

of storage 8
sample programs 12

DPUT (imqdput.cpp) 16
HELLO WORLD

(imqwrld.cpp) 13
SGET (imqsget.cpp) 15

examples (continued)
sample programs (continued)

SPUT (imqsput.cpp) 15
writing a message to the CICS

bridge 10
writing a message to the dead-letter

queue 9
writing a message to the IMS

bridge 9
writing a message to the work

header 11

F
features of WebSphere MQ C++ 2
functions not supported 17

G
get method 8
getting a datagram, sample program 13

H
header example 21
header files

CMQC.H 19
IMQI.HPP 19, 23
IMQTYPE.H 19

HELLO WORLD sample program 13

I
IBM ILE C++ 131
implicit operations 16
ImqAuthenticationRecord class 25
ImqBinary class 28
ImqCache class 30
ImqChannel class 33
ImqCICSBridgeHeader class 39
ImqDeadLetterHeader class 47
ImqDistributionList class 50
ImqError class 52
ImqGetMessageOptions class 54
ImqHeader class 58
IMQI.HPP header file 19, 23
ImqIMSBridgeHeader class 60
ImqItem class 63
ImqMessage class 65
ImqMessageTracker class 72
ImqNamelist class 76
ImqObject class 78
ImqProcess class 85
ImqPutMessageOptions class 87
ImqQueue class 90
ImqQueueManager class 102
ImqReferenceHeader class 112
ImqString class 115
ImqTrigger class 121

© Copyright IBM Corp. 1997, 2002 159

IMQTYPE.H header file 19
ImqWorkHeader class 124
IMS bridge, writing a message to 9
include-files 137
initial state for objects 20
introduction to WebSphere MQ C++ 1
iSeries compiling 131
item

description 5
handling classes 2
retrieving from a message 5

L
language considerations

attributes 19
binary strings 20
character strings 20
data types 20
header files 19
methods 19
notational conventions 21
using C from C++ 21

link libraries 127
linking 127

M
manipulating strings

example 20
introduction 17

message buffers
application (manual) 4
system (automatic) 4

message data preparation 4
message headers

CICS bridge header 10
dead-letter header 9
IMS bridge header 9
work header 11

message items
description 5
formats 70
identification 64

messages
placing on named queue, example 15
putting to a distribution list,

example 16
reading 5
retrieving from named queue,

example 15
writing

to the CICS bridge 10
to the dead-letter queue 9
to the IMS bridge 9
to the work header 11

method signatures 19
methods 4
MQCA_* constants 82
MQIA_* constants 82
MQIAV_UNDEFINED constant 82
MQOO_BROWSE constant 96
MQOO_INPUT_* constants 96
MQOO_OUTPUT constant 98
MQOO_PASS_ALL_CONTEXT

constant 98

MQOO_PASS_IDENTITY_CONTEXT
constant 98

MQOO_RESOLVE_NAMES 80
MQOO_SET_ALL_CONTEXT

constant 98
MQOO_SET_IDENTITY_CONTEXT

constant 98
MQPMO_PASS_ALL_CONTEXT

constant 98
MQPMO_PASS_IDENTITY_CONTEXT

constant 98
MQPMO_SET_ALL_CONTEXT

constant 98
MQPMO_SET_IDENTITY_CONTEXT

constant 98
MQRC_TRUNCATED_MSG_FAILED

constant 96
multithreaded program 24

N
notational conventions, example 21

O
object attributes 19
objects, initial state 20
open options 16
open, implicit operation 16
openFor method 16
operating systems supporting C++ 1
OS/400 compilers

IBM ILE C++ 131
VisualAge C++ 131

P
parameters

declaring 23
passing 19

passing parameters 19
pasteIn method 7
placing messages on named queue,

example 15
platforms supporting C++ 1
preparing message data

example 4
introduction 4

products supporting C++ 1
programming

Windows 131
z/OS 134

putting a datagram, sample program 13
putting messages to a distribution list,

example 16

Q
queue

putting messages on 15
retrieving messages from 15

queue management classes 2
queue manager name 79
queue name 79

R
RACF password 60
reading messages 5
reason codes 149
reopen, implicit operation 16
retrieving items within a message,

example 5
retrieving messages from named queue,

example 15
return codes 46
running applications under z/OS UNIX

System Services 135
running samples on z/OS 135

S
sample programs

building Compaq NonStop
Kernel 132

DPUT (imqdput) 16
HELLO WORLD (imqwrld) 12
SGET (imqsget) 15
SPUT (imqsput) 15

searching for a substring 119
secondary connection 108
setMessageLength method 4
SGET sample program 15
single header file 23
SPUT sample program 15
strings, manipulating 17
structure id 64
switches 127
syncpoint control 104

T
threads

multiple 24
queue manager connections 107

U
unit of work

backout 105
begin 105
commit 107
OS/400 104
syncpoint message retrieval 56
syncpoint message sending 89
uncommitted messages (maximum

number) 104
unsupported functions 17
useEmptyBuffer method 4, 8
useFullBuffer method 4
using C from C++ 21

V
Visual C++ 131
VisualAge C++ 131

160 Using C++

W
WebSphere MQ

features 2
Object Model 2

Windows compiling 131
work header, writing a message to 11
write method 4
writeItem method 4
writing messages

to the CICS bridge 10
to the dead-letter queue 9
to the IMS bridge 9
to the work header 11

Z
z/OS compiling 134

Index 161

162 Using C++

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–816151
– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1997, 2002 163

164 Using C++

����

Printed in U.S.A.

SC34-6067-02

	Contents
	Figures
	Tables
	About this book
	What you need to know to understand this book
	The base directory

	How to use this book
	Terms used in this book

	Summary of changes
	Changes for this edition (SC34-6067-02)
	Changes for the previous editions (SC34-6067-00 and -01)

	Chapter 1. Introduction to WebSphere MQ C++
	Features of WebSphere MQ C++
	Preparing message data
	Reading messages
	Writing a message to the dead-letter queue
	Writing a message to the IMS bridge
	Writing a message to the CICS bridge
	Writing a message to the work header
	Sample programs
	Sample program HELLO WORLD (imqwrld.cpp)
	On all platforms except z/OS
	On z/OS
	Sample code

	Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)
	On all platforms except z/OS
	On z/OS

	Sample program DPUT (imqdput.cpp)

	Implicit operations
	Connect
	Open
	Reopen
	Close
	Disconnect

	Binary and character strings
	Unsupported functions

	Chapter 2. C++ language considerations
	Header files
	Methods
	Attributes
	Data types
	Elementary data types

	Manipulating binary strings
	Manipulating character strings
	Initial state of objects
	Using C from C++
	Notational conventions

	Chapter 3. WebSphere MQ C++ classes
	ImqAuthenticationRecord
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object methods (protected)

	ImqBinary
	Other relevant classes
	Object attributes
	Constructors
	Overloaded ImqItem methods
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqCache
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Reason codes

	ImqChannel
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Reason codes

	ImqCICSBridgeHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded ImqItem methods
	Object methods (public)
	Object data (protected)
	Reason codes
	Return codes

	ImqDeadLetterHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded ImqItem methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqDistributionList
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object methods (protected)

	ImqError
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqGetMessageOptions
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqHeader
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)

	ImqIMSBridgeHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded ImqItem methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqItem
	Other relevant classes
	Object attributes
	Constructors
	Class methods (public)
	Object methods (public)
	Reason codes

	ImqMessage
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object data (protected)

	ImqMessageTracker
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Reason codes

	ImqNamelist
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Reason codes

	ImqObject
	Other relevant classes
	Class attributes
	Object attributes
	Constructors
	Class methods (public)
	Object methods (public)
	Object methods (protected)
	Object data (protected)
	Reason codes

	ImqProcess
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)

	ImqPutMessageOptions
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqQueue
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqQueueManager
	Other relevant classes
	Class attributes
	Object attributes
	Constructors
	Destructors
	Class methods (public)
	Object methods (public)
	Object methods (protected)
	Object data (protected)
	Reason codes

	ImqReferenceHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded ImqItem methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqString
	Other relevant classes
	Object attributes
	Constructors
	Class methods (public)
	Overloaded ImqItem methods
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqTrigger
	Other relevant classes
	Object attributes
	Constructors
	Overloaded ImqItem methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqWorkHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded ImqItem methods
	Object methods (public)
	Object data (protected)
	Reason codes

	Appendix A. Compiling and linking
	Compilers for WebSphere MQ and MQSeries platforms
	AIX
	Compaq Tru64 UNIX
	HP-UX
	iSeries
	Linux for Intel
	Linux for zSeries
	OS/2 Warp
	Compaq NonStop Kernel
	Solaris (SPARC and Intel platforms)
	Windows 3.1 (16–bit client only)
	Windows 95, Windows NT, Windows 2000, and Windows XP
	z/OS

	Compiling C++ sample programs for iSeries
	Compiling VisualAge C++ sample programs for Windows
	Building C++ sample programs on Compaq OpenVMS Alpha
	Building C++ sample programs on Compaq NonStop Kernel
	Native (using native static library MQMLIBN)
	Native (using SRL MQSRLLIB)

	Building an application on z/OS
	Running sample programs on z/OS
	Building and running applications under z/OS UNIX System Services
	Sample commands to compile the HELLO WORLD C++ sample program
	Sample commands to run the HELLO WORLD C++ sample program

	Appendix B. MQI cross reference
	Data structure, class, and include-file cross reference
	Class attribute cross reference
	ImqAuthenticationRecord
	ImqCache
	ImqChannel
	ImqCICSBridgeHeader
	ImqDeadLetterHeader
	ImqError
	ImqGetMessageOptions
	ImqHeader
	ImqIMSBridgeHeader
	ImqItem
	ImqMessage
	ImqMessageTracker
	ImqNamelist
	ImqObject
	ImqProcess
	ImqPutMessageOptions
	ImqQueue
	ImqQueueManager
	ImqReferenceHeader
	ImqTrigger
	ImqWorkHeader

	Appendix C. Reason codes
	Appendix D. Notices
	Trademarks

	Index
	Sending your comments to IBM

