

Hands-on Lab

Session 2166

IBM Integration Bus and

IBM Integration Bus on Cloud

RESTAsyncRequest node

KafkaProducer node

LoopBackRequest node
Callable Flows

Docker

IIB on Cloud

Provided by IBM BetaWorks

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 2 of 96
IBM InterConnect

© Copyright IBM Corporation 2017

IBM, the IBM logo and ibm.com are trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

This document is current as of the initial date of publication and may be changed by IBM at any time.

The information contained in these materials is provided for informational purposes only, and is provided
AS IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages
arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is
intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers
or licensors, or altering the terms and conditions of the applicable license agreement governing the use of
IBM software. References in these materials to IBM products, programs, or services do not imply that they
will be available in all countries in which IBM operates. This information is based on current IBM product
plans and strategy, which are subject to change by IBM without notice. Product release dates and/or
capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 3 of 96
IBM InterConnect

Table of Contents

1. PART 1 – ASYNCHRONOUS REST REQUEST NODE .. 4

1.1 OUTLINE OF INTEGRATION .. 4
1.1.1 Tasks ... 6
1.1.2 Preparation ... 6
1.1.3 The Chrome Postman plugin... 6
1.1.4 Model Definitions .. 7

1.2 EXPLORE THE HR_SERVICE REST API .. 8
1.2.1 Import the IIB REST API ... 8
1.2.2 Explore HR_Service ... 11
1.2.3 Explore the REST API in detail ... 15
1.2.4 Explore the asynchronous REST operation ... 19

1.3 EXTEND THE HR_SERVICE IMPLEMENTATION ... 23
1.3.1 Add the KafkaProducer node to the addNewEmployeeIntoDB operation 24
1.3.2 Add a RESTAsyncRequest node to the createEmployeeFromMultipart subflow 25
1.3.3 Add a RESTAsyncResponse node to the receiving application .. 30

1.4 EXPLORE AND START THE KAFKA SERVERS .. 32
1.4.1 Kafka configuration for IIB workshop ... 32
1.4.2 Explore the Kafka Configuration .. 33
1.4.3 Start the Kafka servers ... 34

1.5 TEST THE REST API ... 38
1.5.1 Deploy HR_Service and the HRDB shared library ... 38
1.5.2 Test HR_Service .. 39
1.5.3 Test with Postman .. 41

1.6 INVESTIGATE IN MORE DETAIL USING DEBUG MODE (OPTIONAL EXTENSION) 44
1.6.1 Execute the remainder of the flow ... 56

2. PART 2 – DISTRIBUTING WORKLOAD USING CALLABLE FLOWS ... 59

2.1 SCENARIO OVERVIEW .. 59
2.2 IMPORT RESOURCES ... 60
2.3 REVIEW THE SOLUTION .. 62

2.3.1 Review the getEmployeeCallable message flow.. 62
2.3.2 Review the getEmployeeUsingCallableFlowInvoke operation .. 65

2.4 THE NOSQL DATABASE ... 68
2.4.1 Start MongoDB ... 68

2.5 DEPLOY HR_SERVICE_CALLABLEFLOWS .. 70
2.6 SCENARIO:1 RUNNING CALLABLEFLOWINVOKE IN AN IIB DOCKER CONTAINER 71

2.6.1 Start the IIB Docker container ... 72
2.6.2 Deploy HR_Service in TESTNODE_Docker .. 74
2.6.3 Create and configure IIB Switch on the Windows environment .. 77
2.6.4 Configure TESTNODE_Docker to use IIB Switch .. 79
2.6.5 Re-test HR_Service running in TESTNODE_Docker ... 83

2.7 SCENARIO:2 RUNNING CALLABLEFLOWINVOKE IN IIB ON CLOUD .. 84
2.7.1 Deploy HR_Service to IIB on Cloud .. 85
2.7.2 Connect IIB on Cloud to TESTNODE_iibuser .. 88
2.7.3 Start your IIB on Cloud integration .. 91
2.7.4 Test HR_Service running in IIB on Cloud .. 93

3. APPENDIX ... 95

3.1 INSTRUCTIONS IF YOUR DOCKER CONTAINER CANNOT COMMUNICATE WITH WINDOWS 95
END OF LAB GUIDE .. 96

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 4 of 96
IBM InterConnect

1. Part 1 – Asynchronous REST Request node

1.1 Outline of integration

The first part of this lab session provides a technique for an IIB REST API to receive a
REST request that contains a multipart message payload in MIME format. The scenario
was constructed to address the requirement to process a REST message that contained
a binary image, as well as the standard JSON payload.

In this case, the REST message contains a standard JSON-formatted message, but also
includes an attachment. The REST message contains “new employee” data, and the IIB
REST API will take this information and add a new row to the EMPLOYEE and
EMPLOYEE_SUPPLEMENTARY tables. The attached file (an image of the new
employee) is included in the data written to the database.

Any updates made to the HRDB database are then sent to the local Kafka server, using
the KafkaProducer node in the IIB operation.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 5 of 96
IBM InterConnect

This integration scenario shows you how to use the REST Request node to invoke a
REST API operation. The REST Request node can be used synchronously or
asynchronously. This scenario will demonstrate the use of the asynchronous flavour of
this node.

The scenario implements a REST API, HR_Service, that processes a REST request that
has an attachment. HR_Service performs some initial processing, and then sends an
immediate response back to the client. HR_Service then uses the RESTAsyncRequest
node to invoke a further REST operation, where the main processing logic is performed.

The requesting client sends a REST request that contains two parts:

• A standard REST message in JSON format

• A binary part, in the form of a jpg image, attached to the REST request as a file.

In detail, the request message contains:

Part 1 - employeeData

{
"EMPLOYEE": {

"EMPNO": "000003",
"FIRSTNME": "Albert",
"MIDINIT": "J",
"LASTNAME": "Einstein",
"WORKDEPT": "A00",
"PHONENO": "0101",
"HIREDATE": "1912-07-27",
"JOB": "Manager",
"EDLEVEL": 9,
"SEX": "M",
"BIRTHDATE": "1879-03-14",
"SALARY": 9990,
"BONUS": 4440,
"COMM":6660 }

“EMPLOYEE_SUPPLEMENTARY”: {
“EMAIL”: userid@domain.com,
“MOBILEPHONE”: “447878123456”,
“TWITTERID”: “@davidh”,
“BOXID”: username@domain.com,
“IMAGE”: “Used only for the embedded image version of this app”}

}

Part 2 - employeeImage

Image of employee in binary format – used with the File Attachment version of this
app

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 6 of 96
IBM InterConnect

1.1.1 Tasks
In this part of the lab, you will perform the following tasks:

• Import and explore a partially completed REST API and IIB Application

• Complete the REST API and Application by adding the RESTAsyncRequest and
Response nodes, and the KafkaProducer node.

• Deploy the completed applications, and test with the Chrome Postman tool

• (Optionally) – rerun the tests using the debug feature of IIB.

1.1.2 Preparation
This scenario is based on the solution of the REST API HR_Service. The scenario uses
an IIB node called TESTNODE_iibuser. This has already been created and configured
to support this scenario.

This scenario does not ask you to build the solution from scratch. A complete solution is
provided, and you will investigate various aspects of the solution, and perform a test of
the provided solution.

1.1.3 The Chrome Postman plugin
Because this scenario needs to send a REST request with a mixed format message
payload, you will need to use a test tool that is capable of generating such a request. In
the development of this scenario, we have used Chrome Postman for this. This is already
installed on your system.

Note that when Postman executes, this app does not actually run under Chrome; it
executes as a stand-alone application.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 7 of 96
IBM InterConnect

1.1.4 Model Definitions

The following JSON message models are used by this version of the HR_Service REST
API.

• DBRESP – contains database response information

• EMPLOYEE – defines columns in the EMPLOYEE table

• EMPLOYEE_SUPPLEMENTARY – defines columns in the
EMPLOYEE_SUPPLEMENTARY table

• DEPARTMENT – defines columns in the DEPARTMENT table

• EmployeeResponse
o DBResp (type = DBRESP)
o Employee (Array, type = EMPLOYEE)

• DepartmentResponse
o DBResp (type = DBRESP)
o Department (Array, type = DEPARTMENT)

• CompleteResponse
o DBResp_employee (type = DBRESP)
o Employee (type = EMPLOYEE, single object, not array)
o DBResp_department (type = DBRESP)
o Department (type = DEPARTMENT, single object, not array)
o DBResp_employee_supplementary (type = DBRESP)
o Employee_supplementary (type = EMPLOYEE_SUPPLEMENTARY)

• EmployeeSupplementaryResponse used when only accessing
EMPLOYEE_SUPPLEMENTARY)

o DBResp
o Employee_supplementary

• EmployeeAddUpdateCompleteRequest (input message, used when adding a
complete new employee)

o Employee
o EmployeeSupplementary

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 8 of 96
IBM InterConnect

1.2 Explore the HR_Service REST API

In this section of the lab exercise, you will import and explore the partial solution provided
for this scenario.

1.2.1 Import the IIB REST API

1. Ensure you are logged in to Windows as the user "iibuser", password = "passw0rd".
(You may already be logged in).

If it’s not started already, start the IIB Toolkit from the Start menu.

2. To avoid naming clashes, this scenario will be developed using a new workspace.

In the Integration Toolkit, click File, Switch Workspace. Give the new workspace the
name "RESTRequest", or similar.

3. Right-click in the Application Development pane and click ‘Import’:

In the IBM Integration folder, select Project Interchange, and click Next.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 9 of 96
IBM InterConnect

4. Import the following Project Interchange (PI) zip file:

C:\student10\REST_Request_Async_IC17\PI_files\

HR_Service_RESTRequestLab_startingPoint.IC17.zip

Note: Make sure that all four projects in this PI file are selected for import. The PI

includes the HRDB shared library and database project.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 10 of 96
IBM InterConnect

5. When imported, you should have in your workspace the HR_Service REST API and
the HRDB shared library that is referenced by the REST API.

The application HR_Service_AsyncBackend contains the message flow where you
will add theRESTAsyncResponse node, that will be invoked by the HR_Service
operation.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 11 of 96
IBM InterConnect

1.2.2 Explore HR_Service

In this section, you will explore the imported REST API.

1. Expand the HR_Service REST API and double-click “REST API Description”.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 12 of 96
IBM InterConnect

2. In the main editor view, scroll down to the Model Definitions section. Expand Model
Definitions, and expand some of the models.

The EmployeeAddUpdateCompleteRequest model is used in this lab. It comprises two
element types, EMPLOYEE and EMPLOYEE_SUPPLEMENTARY, each of which have
their own model definitions, shown in the list.

When you have finished here, collapse the Model Definitions section.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 13 of 96
IBM InterConnect

3. Move up to the Resources section, and expand the employees/complete/multipart
resource.

Look at the createEmployeeFromMultipart POST operation.

Note that the Request body has a schema type of
EmployeeAddUpdateCompleteRequest, and the Response body has a schema
type of CompleteResponse.

4. Scroll to the right, and open the subflow implementation of this operation.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 14 of 96
IBM InterConnect

5. This opens the implementation subflow. Each node will be investigated in detail over
the next few pages.

At a high level, the subflow performs the following actions:

a. Because the application is a REST API, the default parser has been set to JSON.
Therefore, initially, the subflow will not be able to properly parse the incoming
message (which is a MIME multipart message). To handle this, the first
processing node in the subflow is a “Reset Content Descriptor” node, which will
reparse the message using the MIME domain. When this happens, the multipart
message is parsed into its two constituent parts, Part1 (the JSON data, but still
held in binary format at this stage) and Part2 (the binary image).

b. The ReparseAndSaveImage node is an ESQL Compute node which further

processes these two parts.

• Part 2 (the image) is stored in the IIB Environment tree, and then converted
to Base64 encoded and stored back in the message tree.

• Part 1 is reparsed using the JSON parser, and the resulting parsed data is
stored in the message tree, now in JSON format.

c. The “Request received OK” mapping node constructs a simple response

message to acknowledge receipt of the message for the client.

The empty space below is where you will later add a new RESTAsyncRequest node.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 15 of 96
IBM InterConnect

1.2.3 Explore the REST API in detail

1. Select (click on) the Reset Content Descriptor node, and highlight the node Properties.

On the Basic tab, the following properties have been set:

• Message domain = MIME: for MIME wrapped data including multipart

• Reset message domain = ticked

This means that the incoming message, which is initially in MIME format, will be
reparsed as a MIME multipart message (the default parser for a REST API is JSON).
When this is done, the message tree will consist of several message parts, as many
parts as exist in the incoming message. In this example, you will see two message parts
(because the REST message is assumed to have just one attachment in this scenario).

Note that subsequent nodes in the flow can address different parts of the message only
by using the MIME parser, unless the message is again reparsed.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 16 of 96
IBM InterConnect

2. Open the ESQL Compute node ReparseAndSaveImage.

At this point in the flow, the message tree has been parsed by the MIME parser and
split into MIME “Parts”. Each part is referenced by the element name “Part[n]”, so is
referenced like this:

OutputRoot.MIME.Parts.Part[n]

The raw data (BLOB) is referenced by the value

OutputRoot.MIME.Data.BLOB.BLOB

So, the following statement adds a new element called “Data”, under the “Part[1]”
element, and populates the contents of “Data” by using the PARSE option with the
input as shown here. Note that 546 represents the Encoding of the data and 1208
represents the CCSID.

 CREATE LASTCHILD OF OutputRoot.MIME.Parts.Part[1].Data
 DOMAIN('JSON')

 PARSE(OutputRoot.MIME.Parts.Part[1].Data.BLOB.BLOB, 546,

 1208);

The next statement sets the “Data.BLOB” portion of the Part[1] output message to Null.
This is required because we no longer need the BLOB form of the message.

 SET OutputRoot.MIME.Parts.Part[1].Data.BLOB = NULL;

This statement saves the entire contents of Part[2] (the binary image) to the
Environment tree (in a folder called Variables).

set Environment.Variables.Image =

OutputRoot.MIME.Parts.Part[2].Data.BLOB.BLOB;

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 17 of 96
IBM InterConnect

 The next two statements manipulate the Employee and EmployeeSupplementary parts
of the message, in JSON format. The OutputRoot.JSON.* parts of the message are
constructed, by extracting them from the MIME part of the message.

 -- Set the Message Tree - Employee element

 set OutputRoot.JSON.Data.Employee =

 OutputRoot.MIME.Parts.Part[1].Data.JSON.Data.Employee;

 -- Set the Message Tree - EmployeeSupplementary element

 set OutputRoot.JSON.Data.EmployeeSupplementary =

 OutputRoot.MIME.Parts.Part[1].Data.JSON.Data.EmployeeSupplementary;

This statements converts the IMAGE (previously stored in the Environment.Variables
tree) into a Base64 encoded version, and stores the converted element into the
OutputRoot tree, now fully parsed and held in the JSON domain.

 -- Make special arrangements for the binary image, which we want to

 store in the database as Base64 encoded.
 Set OutputRoot.JSON.Data.EmployeeSupplementary.IMAGE =

 BASE64ENCODE(Environment.Variables.Image);

This statement saves the value of EMPNO in the Environment.Variables tree, so that
an appropriate response can be returned to the client.

 -- Save EMPNO in Env, so that the later map can send an appropriate
 message back to the client.

 Set Environment.Variables.EMPNO = OutputRoot.JSON.Data.Employee.EMPNO;

And finally this statement set the value of the MIME part of the message tree to null.

 set OutputRoot.MIME = null

Close the Compute node.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 18 of 96
IBM InterConnect

3. The “Request received OK” mapping node builds a simple text message that is
returned to the client. This is done by building a JSON object message, and using an
XPath “concat” statement to include the EMPNO element into the response message.

Close the map.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 19 of 96
IBM InterConnect

1.2.4 Explore the asynchronous REST operation

1. In the HR_Service Resources folder, expand /employees/complete/backend, and
look at the addNewEmployeeIntoDB operation.

2. As above, scroll to the right to open the subflow implementation of this operation.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 20 of 96
IBM InterConnect

3. Open the map “Insert new Employee into database”.

This map has an input assembly in JSON format, which contains a full
EmployeeAddUpdateCompleteRequest assembly. Elements from this input message
are used in the various database functions in this map.

The map performs three database functions:

• Retrieves the DEPARTMENT row for the requested EMPNO from the
DEPARTMENT table.

• Inserts the EMPLOYEE data into the HRDB/EMPLOYEE table (using the
DEPARTMENT details just retrieved).

• Inserts the EmployeeSupplementary data into the
EMPLOYEE_SUPPLEMENTARY table.

In the “Return” transforms of each insert, the user return code, and number of rows
added, is set on the appropriate output message assembly. This information is used
for routing later in the flow.

Failure scenarios such as “duplicate record” are handled by saving database
returned data such as SQLSTATE in the output message.

The Failure transform of the EMPLOYEE insert is also configured to pass the
EMPNO to the output assembly. This is to enable a database failure to be reported
properly, but note that the full employee data is not recorded in the event of failure
(eg. a duplicate record). An appropriate mechanism would normally be provided for
this situation.

Close the map.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 21 of 96
IBM InterConnect

4. Open the saveInEnvironment mapping node.

The map performs a simple copy (Move) of the CompleteResponse input to the
Environment tree.

Close the map.

5. Highlight the Route node (Check success, duprec, or DB failure) and review the node
properties.

• The Match terminal is used when the database insert was successful (when the
number of rows added was not zero for both tables).

• The dupRec terminal is used when the SQLSTATE value is 23505 (SQL duplicate
row) for the EMPLOYEE table only. You can extend the flow yourself if you want to
check for other specific returns.

You will see a message suggesting that the Data element in the Filter pattern was not
found in the XML schema. This is because the XPath Expression builder does not
support the JSON form of messages, so XPath evaluation expressions (including filter
patterns) must be manually built.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 22 of 96
IBM InterConnect

6. Open the createDupRecResponse map node.

Review the various mappings that are provided. In particular, the SQL_Error_Message
is set with a Custom XPath transform, setting the message to a more readable form of
the SQL error message. Note that the input EMPLOYEE/EMPNO element is
connected to the Custom XPath transform, and referenced in the fn:concat Xpath
statement.

Close the map.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 23 of 96
IBM InterConnect

7. Open the prepareKafkaMessage mapping node.

Only one element, EMPNO, is actually published to Kafka, so the output assembly was
created dynamically by adding the employeeAdded element, using the “Add-User
Defined” context menu item in the map editor.

Close the map.

1.3 Extend the HR_Service implementation

In this section, you will complete the implementation of the various operations and flows.

You will

• Add a KafkaProducer node to the REST API operation addNewEmployeeIntoDB.

• Add a RESTAsyncRequest node to the createEmployeeFromMultipart operation.

• Complete the implementation of the asynchronous REST operation by adding a
corresponding RESTAsyncResponse node in a separate application.

• Deploy and test the completed applications.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 24 of 96
IBM InterConnect

1.3.1 Add the KafkaProducer node to the addNewEmployeeIntoDB
operation

1. Return to the addNewEmployeeIntoDB subflow.

From the Kafka folder in the node palette, drop a KafkaProducer node onto the flow,
in the open area as shown.

2. Add three connectors to the KafkaProducer node, as shown below.

When connecting to the input of the FileOutput node, make sure you select the “In”
terminal.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 25 of 96
IBM InterConnect

3. Select the KafkaProducer node to highlight the node properties.

Set the following properties:

• Topic name : employee

• Bootstrap servers: localhost:9092

• Acks: 1

Save the subflow (Ctrl-S).

1.3.2 Add a RESTAsyncRequest node to the
createEmployeeFromMultipart subflow

1. Switch to the createEmployeeFromMultipart subflow.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 26 of 96
IBM InterConnect

2. From the node palette, in the REST folder, drop a RESTAsyncRequest node onto
the flow editor, in the position as shown.

3. When the node is dropped on to the editor, a new window will open. The new node
can be configured using information from a variety of sources. In this lab, you will
use the Swagger document that represents the local HR_Service REST API, so
leave the default selection and click Next.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 27 of 96
IBM InterConnect

4. At the next window, you can choose the location of the Swagger document.
Choose the “Select from all referenced projects”, and highlight
HR_Employee_and_Department_Services.json.

Click Next.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 28 of 96
IBM InterConnect

5. At the next window, select the required REST operation. The
addNewEmployeeIntoDB operation should be at the bottom of the list, so scroll
down and select this operation.

Click Finish.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 29 of 96
IBM InterConnect

6. The new node will have been added to the flow. Connect the node as shown.

Select the node, and review the node properties. No properties need to be changed,
but note in particular the “Unique identifier”, which has been set to a value generated
by the IIB Toolkit. You can specify your own value here, but in this case, accept the
generated value.

Save the subflow (Ctrl-S).

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 30 of 96
IBM InterConnect

1.3.3 Add a RESTAsyncResponse node to the receiving application

1. Finally, complete the application that will handle the RESTAsyncResponse.

Expand the HR_Service_AsyncBackend application, and open the
HR_Service_AsyncResponse_insertDB message flow.

At the moment, this just has one node, a FileOutput node, which is used to record
database updates.

2. From the node palette, drop a RESTAsyncResponse node onto the flow, and connect
the Out terminal to both the In terminal and the Finish terminal of the FileOutput node.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 31 of 96
IBM InterConnect

3. Highlight the RESTAsyncResponse node, and view the Properties of the node.

No changes need to be made, because the IIB Toolkit has automatically generated
the same Unique identifier for the response node. As above, this can be changed to
a value of your own choosing, and if the node was located in a different workspace,
then this would need to be manually set.

In this case, leave the value unchanged (assuming you made no changes to the
corresponding RESTAsyncRequest node).

Save the message flow.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 32 of 96
IBM InterConnect

1.4 Explore and start the Kafka servers

The supplied VM system that is provided for this lab is supplied with a local installation
of the Apache Kafka system.

1.4.1 Kafka configuration for IIB workshop

Kafka is installed in c:\tools\kafka_2.11-0.10.1.0. In the \bin\windows folder, there are
a number of “.bat” files that control various aspects of the Kafka system. For ease of use,
some of these have been copied into the folder c:\student10\kafka\commands.

On this system, Kafka has been configured to use a single Zookeeper server and three
Kafka servers. This enables a topic Replication Factor of three.

The Kafka servers are shown schematically below. Note that all the servers are defined
locally, so all have a unique listener port.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 33 of 96
IBM InterConnect

1.4.2 Explore the Kafka Configuration

1. In Windows Explorer, navigate to the folder c:\student10\kafka\config.

2. Open the file zookeeper.properties (right-click and open with Notepad++).

Review the properties, but do not make any changes.

#dataDir=/tmp/zookeeper
dataDir=c://kafka/zookeeper
the port at which the clients will connect
clientPort=2181
disable the per-ip limit on the number of connections since this is a non-
production config
maxClientCnxns=0

Close the file when complete.

3. Open the file server.properties.

Most properties have been left at the default values. The following properties have
been set as follows:

• Delete.topic.enable=true (allows topics to be removed at server restart)

• Broker.id=0 (unique number for each Kafka server)

• Listeners=PLAINTEXT://:9092 (unique port for each Kafka server)

• Log.dirs=c:/kafka/kafka-logs (location of kafka log files)

Topic deletion properties
delete.topic.enable=true

################## Server Basics ####################
The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

############### Socket Server Settings ###############
listeners=PLAINTEXT://:9092

################# Log Basics ################
A comma separated list of directories under which to store log files
log.dirs=c:/kafka/kafka-logs

Close the file when complete.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 34 of 96
IBM InterConnect

4. The server-1.properties and server-2.properties are configured similarly, as follows:

server-1.properties

• Delete.topic.enable=true

• Broker.id=1

• Listeners=PLAINTEXT://:9093

• Log.dirs=c:/kafka/kafka-logs-1

server-2.properties

• Delete.topic.enable=true

• Broker.id=2

• Listeners=PLAINTEXT://:9094

• Log.dirs=c:/kafka/kafka-logs-2

1.4.3 Start the Kafka servers

Windows shortcuts have been provided for the Kafka commands that are required to
start the various servers.

1. From the Windows Start menu (or from the desktop), open the folder “Kafka
commands)

The following shortcuts will be available:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 35 of 96
IBM InterConnect

2. Open (run) startZookeeper.cmd. A Windows DOS command window will open and
the zookeeper server will be started. A significant amount of log output will be
produced.

When started this way, the “startZookeeper.cmd” name will be shown in the title line
of the DOS window.

3. Open (run) startKafka.cmd.

As above, the server will produce some log output.

4. Repeat with startKafka-server1.cmd and startKafka-server2.cmd.

5. At this point, all Kafka servers are running, so now create a new topic.

Open a new DOS window, and change directory to

c:\student10\kafka\commands

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 36 of 96
IBM InterConnect

6. Run the createTopic.cmd file.

Provide the following values:

• Topic: employee

• Replication factor: 3

• Partitions 2

7. Run the command file listTopics.cmd.

The command will return “employee”.

8. Run the command file describeTopic.cmd.

Provide “employee” as the topic name. The command will return information about
the replication factor and partitions of the “employee” topic. If you have followed the
instructions above, you will see output similar to that below.

9. Run the command consumeMessages.cmd.

Specify the “employee” topic, and connect to the Kafka server with port 9092.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 37 of 96
IBM InterConnect

10. Open a further DOS window, and navigate to c:\student10\kafka\commands.

Run the command produceMessage.cmd.

Specify the “employee” topic, and connect to Kafka with port 9092.

Type some text message input, as shown below. Each message is terminated with
the Return key.

11. Back in the consumeMessages window, observe that the text messages you just
produced have been consumed by the consumeMessages client application.

You have now verified that the local Kafka system is configured correctly, and can
be used by the IIB applications.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 38 of 96
IBM InterConnect

1.5 Test the REST API

1.5.1 Deploy HR_Service and the HRDB shared library

1. Deploy the following resources:

• HRDB shared library

• HR_Service

• HR_Service_AsyncBackend

Note – the HR_Service_AsyncBackend must be deployed at this time. This is
because IIB will check for the existence of the REST asynchronous unique identifier
when the RESTAsyncRequest node is executed.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 39 of 96
IBM InterConnect

1.5.2 Test HR_Service

1. From the Start menu, start the Postman tool (type Postman into the Start Search
menu).

After the progress message…

… you will see the Postman main menu.

2. The required Postman project should already be available. You may need to click on
the ‘Complete’ tab so they are shown.

Highlight the second POST request, Add(Complete) using multipart image.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 40 of 96
IBM InterConnect

3. On the right pane, note that the URL is set to the required URL for the HR_Service
operation.

4. Click the “Body” tab.

Note the format of the message is “form-data”. Selecting this option means that you
can construct the payload of the message using a multipart format.

Note that the message has two parts:

• employeeData – the JSON part of the multipart message, with a message
payload representing a new EMPLOYEE.

• employeeImage – the binary part of the multipart message. In this example, you
will attach a jpg image of the new employee.

Note that the names employeeData and employeeImage do not need to match any
part of the message elements sent to the REST API.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 41 of 96
IBM InterConnect

5. Click “Bulk Edit” (above) to see the input message JSON data in its entirety.

Click Key-Value-Edit to return to the earlier display.

1.5.3 Test with Postman

1. Specify the name of the employeeImage file. Using the Choose Files button, set this
to

c:\student10\REST_Request_Async_IC17\data\employee.jpg

Set the employee number (EMPNO) to one that is known not to already exist (eg.
000001).

Click Send.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 42 of 96
IBM InterConnect

2. An immediate response will be received, as shown below.

3. Switch to the DOS window that has subscribed to the “employee” topic.

Note that employee 000001 has been published to the Kafka server.

4. In Windows Explorer, open the file
c:\student10\REST_Request_Async_IC17\output\

async_response.txt

Note that the employee update has been recorded in the text output file.

Close the file.

5. In Postman, click Send again (without changing the employee number).

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 43 of 96
IBM InterConnect

6. You will again see the successful response message:

7. Reopen the file async.response.txt. Note that a new line has been added that
indicates that EMPNO=000001 was a duplicate record, and has not been added to
the database.

In the integration as designed, for a duplicate row, the input data was not recorded
elsewhere. It would be possible to do this, and include a retry option with a different
employee number. This is left as an exercise for the reader.

Close the file.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 44 of 96
IBM InterConnect

1.6 Investigate in more detail using debug mode (optional
extension)

In this section, you will perform the test again, whilst having the IIB REST API in debug mode. Using this
tool, you will see the message tree at various stages in the flow, and see the multipart, MIME and JSON
messages as they are manipulated by the IIB flow.

1. First, activate the debugger on your IIB node/server.

Right-click the IIB server, and select Launch Debugger. If you have not already configured a port for
the debugger to use, use the configure button to specify a suitable port.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 45 of 96
IBM InterConnect

2. In the createEmployeeFromMultipart subflow (should still be open from above), add a breakpoint
after the Input node (right-click, Add Breakpoints….”.

The flow will show the blue breakpoint on the connector.

3. Invoke the test again. In Postman, provide a new value for EMPNO (eg. 000011), and click Send.

You may need to use the slide bar to move to the top of the Postman window to see the input data.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 46 of 96
IBM InterConnect

4. The flow will start, and execution will stop at the first breakpoint. (Respond Yes to switch to the Debug
perspective).

5. Highlight the debugger Variables view, and expand the incoming message.

Note that no user data is visible, and JSON parsing errors have occurred. This is because the REST
API is configured to expect JSON data, but the message payload is not JSON. It is a multipart
message with a JSON component, and a binary component, so the message has failed to be parsed.

6. Click the Step Over icon in the debugger control view.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 47 of 96
IBM InterConnect

7. The debugger will pause after the Reset Content Descriptor node.

In the Variables view, expand the Message. Note that the message has been parsed by the MIME
parser.
Fully expand the MIME message, and note that there are two parts to the message.

• The JSON part of the message. (The data has not yet been parsed by the JSON parser, so
the data is a BLOB and is not yet readable. However, the Debug perspective in the Toolkit
renders the data in a readable hexadecimal format, as shown below).

• Part 2 is the binary data, containing the attached jpg image. Note the Content-Disposition
contains the filename, and the Content-Type contains the type of data. Selecting the BLOB
item shows the raw data of the binary part of the message.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 48 of 96
IBM InterConnect

8. The debugger is currently paused just before the ReparseAndSaveImage compute node. It is
instructive to observe the ESQL, and how the message tree is manipulated, so click the green down-
arrow, as shown on the debug control line, to enter the ESQL node in debug mode.

9. Click the Step Over icon a few times, until the next line to be executed (the highlighted line) is the
line starting

SET OutputRoot.MIME.Parts …

This means that the line starting CREATE LASTCHILD .. has just been executed.

The “Create LASTCHILD” statement does two things:

1) Creates a new element called “JSON” in the array OutputRoot.MIME.Parts.Part[1].Data
2) Parses the BLOB part of the message and uses this to populate the new element

Parts.Part[1].Data.JSON.
Because the BLOB data was a JSON message, this results in the EMPLOYEE message
being recreated in the new output element.

You will see this on the next page.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 49 of 96
IBM InterConnect

10. In the Variables view, expand OutputRoot. You will see that MIME section now has a new Data
element under Parts.Part[1]. This Data element has been created in the JSON domain, so you are
now able to see the Employee data in its fully parsed state (even though it is currently held under
the MIME part of the message).

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 50 of 96
IBM InterConnect

11. In the debugger, step over once more.

The line above the highlighted line shown below will have been executed.

12. In Variables, note that the OutputRoot, under the MIME section, does not now contain a BLOB folder

(the last line just set it to Null).

13. In the debugger, step over once more.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 51 of 96
IBM InterConnect

14. In variables, expand Environment.

Note that the Environment folder now has a folder called Variables, with an element called Image.

15. Step over twice more.

Two ESQl statements have been executed, to set the OutputRoot.JSON.Data.Employee and
EmployeeSupplementary elements.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 52 of 96
IBM InterConnect

16. The OutputRoot message now has a JSON folder as a primary folder in the JSON domain. It contains
the full data of the EMPLOYEE and EMPLOYEE_SUPPLEMENTARY elements.

Note that the IMAGE element is not yet populated.

17. Step over once more.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 53 of 96
IBM InterConnect

18. Inspecting the Variables once more will show that the IMAGE element has been populated, and in
fact has been converted to a Base64 encoded version of the binary image.

19. Step over once more.

The Variables now show that the Environment contains a new variable EMPNO.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 54 of 96
IBM InterConnect

20. Step over once more.

The message tree is now in the format that is required for normal JSON processing. The message
body is in the JSON domain, and no other domains (eg. MIME) are present in the message.

21. Step over once more. The ESQL compute node will complete, and flow execution will resume. The
flow will stop at the next node breakpoint.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 55 of 96
IBM InterConnect

22. In the Variables view, you will see that the flow has now extracted the JSON part of the message,
and this is now held in the message tree, directly under the JSON folder.

Additionally, the attached JPG image has been extracted, and is located in the Environment tree,
under Variables/Image, in binary format.

So, we now have the incoming message split into its two parts. The JSON part now represents the
complete message. Additionally, the IMAGE has been converted from a binary attachment to a
Base64 encoded element, contained in the main message body.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 56 of 96
IBM InterConnect

1.6.1 Execute the remainder of the flow

The remainder of this lab guide will not explicitly show the execution of every ESQL statement, although
you are welcome to do so in your own testing.

1. Step over the node after the addNewEmployeeIntoDB node.

2. The Variables now show that there is no message body (OutputRoot) at this point.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 57 of 96
IBM InterConnect

3. Step over once more.

The output message now contains a simple text message built by the map node.

4. Click Step Over to complete execution of the flow. If you have taken more than 180 seconds to execute
this flow, the debugger will probably terminate. Click the debugger terminate buttons.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 58 of 96
IBM InterConnect

5. The same process can be used to debug the addNewEmployeeIntoDB subflow.

Note that when setting breakpoints, it is only necessary to set a breakpoint at the start of the flow.
However, when a node that has multiple output terminals is used, explicit breakpoints should be set
after each such node, as shown by right-clicking the “Check success, duprec or DB failure” Route node:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 59 of 96
IBM InterConnect

2. Part 2 – Distributing Workload using Callable Flows

The Callable Flows feature enables the ability to split message flow processing
between locations in a call/return (blocked wait) programming model.

The CallableFlowInvoke node in a calling flow calls the CallableInput node of a callable
flow. For example, a REST API running on IIB on Cloud can use a CallableFlowInvoke
node to call a message flow (contained in an Application) running locally on premises.
The message flow running locally uses a CallableInput node to receive input data and
a CallableReply node to return data to the REST API on IIB on Cloud.

2.1 Scenario Overview

In this part of the lab you will explore the Callable Flows feature by configuring a REST
API called HR_Service with an operation that uses a CallableFlowInvoke node to access
a remote message flow.

The REST API (HR_Service) will be deployed in two remote locations:

a) Scenario 1: an IIB environment running in a Docker Container.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 60 of 96
IBM InterConnect

b) Scenario 2: the IBM service managed IIB on Cloud environment.

In each scenario the callable flow (known as HR_Service_CallableFlow) is running
locally in your Windows environment and will return information from a NoSQL database
using the IIB LoopBackRequest node.

2.2 Import Resources

The REST API and Callable Flow Application are provided for you. These are contained
in a project interchange file which you will import into the Integration Toolkit.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 61 of 96
IBM InterConnect

The majority of tasks in this part of the lab are concerned with the configuration of the
various components that will enable the REST API and Callable Flow to execute in
different locations, and to access the MongoDB database.

1. The version of HR_Service that is used in this part of the lab is slightly different

from that used earlier, so you will create a new workspace in which to import the
solution files.

In the Integration Toolkit, click File, Switch Workspace. Give the new workspace
the name "CallableFlows", or similar.

2. Right-click in the Application Development window and click ‘Import’.

Select Project Interchange, then click Next. Use the Browse button to navigate to
c:\student10\CallableFlowsIC17\PIfiles.

Select CallableFlowsSolutionIC17.Solution.zip

Select All, then Finish:

3. HR_Service REST API and HR_Service_CallableFlows will now appear in your
Application Development window:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 62 of 96
IBM InterConnect

2.3 Review the Solution

In this next section you will review the REST API HR_Service and
HR_Service_CallableFlows.

In this scenario the REST API HR_Service uses a CallableFlowInvoke node to call a
callable flow running on the integration node in the Windows environment.

2.3.1 Review the getEmployeeCallable message flow

1. In the Integration Toolkit, expand HR_Service_CallableFlows and then open
getEmployeeCallable in the message flow editor:

2. Click the CallableInput node and review the node properties:

Note the Endpoint Name is set to CALLABLE_Input. This value is also specified
on the Target Endpoint Name in the CallableFlowInvoke node in the calling
message flow (see below).

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 63 of 96
IBM InterConnect

3. Open the ESQL node “Set LoopBack Filter string” :

4. The purpose of the ESQL node is to set the filter string used by the
LoopBackRequest node to include the employeeNumber passed in the URL
when the REST API HR_Service is called. This ensures that only documents
relevant to the request are returned by the LoopBackRequest node:

Close the ESQL editor without saving any changes.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 64 of 96
IBM InterConnect

5. Click the LoopBackRequest node and review the node properties tab:

The data source name “localmongodb” is configured in datasources.json in
C:\ProgramData\IBM\MQSI\connectors\loopback\. The file enables the
message flow to access the local mongoDB environment (no further
configuration of this file is required).

The LoopBack Object field is set to EMPLOYEE. The HRDB database in
mongodb has been pre-loaded with employee documents in json message
format.

Note the Loopback operation is set to Retrieve.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 65 of 96
IBM InterConnect

6. The CallableReply node passes control back to the CallableFlowInvoke node

2.3.2 Review the getEmployeeUsingCallableFlowInvoke operation

1. Open the HR_Service REST API Description.

Expand Resources and note the getEmployeeUsingCallableFlowInvoke
operation in /employees/{employeeNumber}/CallableFlowsExample resource:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 66 of 96
IBM InterConnect

2. Scroll to the right and click the open the subflow for the operation:

3. The getEmployeeUsingCallableFlowInvoke subflow will open:

4. The getEmployeeNumber mapping node stores the employeeNumber passed in
the REST API URL in the message tree, ready to be passed to the
CallableFlowInvoke node.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 67 of 96
IBM InterConnect

5. Click the CallableFlowInvoke node and select the node properties tab:

Note: the Target Application is set to HR_Service_CallableFlows (the application
you imported).

The Target Endpoint Name is set to “CALLABLE_Input“.

6. Close the HR_Service REST API and the getEmployeeCallable message flow.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 68 of 96
IBM InterConnect

2.4 The NoSQL database

The function of getEmployeeCallable is to provide information from a local noSQL
Database. In this scenario the database is MongoDB. In this next section you will
prepare the MongoDB environment ready to be used in this scenario. The MongoDB
environment has already been pre-configured for you in this lab environment. The
MongoDB loopback connector has been installed into the IIB environment you are
using. For more information on configuring IIB to use the LoopBack node refer to the
online Knowledge Center.

2.4.1 Start MongoDB

1. If there are Windows command prompts open from the previous part of this lab
please close them all now.

2. In a Windows Command Prompt, navigate to :

c:\student10\Loopback\mongodb\commands

Run the command:

startMongoDB

For info, this will run the MongoDB command:

mongod.exe --dbpath c:\student10\Loopback\mongodb\data\db

This command will start the MongoDB server.

No defaults have been changed, so the MongoDB server will start with the
client listener on port 27017.

The command window will be held open. Do not close this window, if the
window is closed the MongoDB server will terminate.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 69 of 96
IBM InterConnect

3. Start a Mongo client shell. Open a new Windows Command Prompt, and
execute the command "mongo".

This will use the default port of 27017, and connect to the started server.

Note: that the mongo client will initially connect to the server, and will connect to
the test database.

4. To verify the MongoDB server is working correctly enter the following
commands.

To switch to the HRDB database:

use HRDB

To list all documents in the EMPLOYEE collection:

db.EMPLOYEE.find()

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 70 of 96
IBM InterConnect

2.5 Deploy HR_Service_CallableFlows

In this scenario the REST API HR_Service uses a CallableFlowInvoke node to call a
callable flow running on the integration node in the Windows environment.

1. In the Integration Nodes view, right click on the default integration server and

select Delete > All Flows and Resources to avoid conflicts with earlier scenarios.

2. In the Integration Toolkit drag and drop the HR_Service_CallableFlows

application onto the default server in TESTNODE_iibuser:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 71 of 96
IBM InterConnect

2.6 Scenario:1 Running CallableFlowInvoke in an IIB Docker
Container

A Docker container with IIB V10.0.0.7 is provided for you on the Windows system you
are using. The Docker container runs in an Ubuntu Linux environment (hosted in the
Windows system using Oracle VirtualBox). In this next section you will start the Ubuntu
Linux image and the IIB Docker Container in preparation for deploying the calling
REST API.

The Docker container is configured with an IIB integration node TESTNODE_Docker.
For information purposes (do not execute these commands) the container was
created using the following method:

• Obtain a docker file and scripts from https://github.com/ot4i/iib-docker

• Build a Docker image called iibv10007image using:

docker build –t iibv10007image .

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 72 of 96
IBM InterConnect

• The iibv10007image is then used to create a Docker container called
IIB_Container an integration node name of TESTNODE_Docker and default
IIB port values exposed using:

docker run --name IIB_Container

-e LICENSE=accept

-e NODENAME=TESTNODE_Docker

-p 7800:7800

-p 4414:4414

-h BETAWORKS-ESB10-DOCKER

iibv10007image

The Docker build and run comands can take some time to complete. In order to use the
IIB environment running in Docker, the Docker start command is used to start
IIB_Container.

2.6.1 Start the IIB Docker container

1. Open a Docker command prompt by double-clicking on the Docker Quickstart
Terminal icon

When you open the Docker Quickstart Terminal a terminal window will open.
If the default Ubuntu Linux VM image managed and controlled by Oracle VM
VirtualBox is not started, it will be started automatically.

The Docker technology is not the focus in this lab, for more information on
Docker is available at https://www.docker.com.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 73 of 96
IBM InterConnect

2. When the terminal opens, you will see the details of the default Ubuntu VM. In
this example, the name of the VM is “default” and the IP address is

192.168.99.100.

To see the list of docker images type: docker images

3. List the current Docker container using:

docker ps –a

The –a will show the container if it is not started.

4. Start the docker container with IIB installed by entering the command:

docker start IIB_Container

5. Verify the docker container is running by entering the command:

docker ps

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 74 of 96
IBM InterConnect

2.6.2 Deploy HR_Service in TESTNODE_Docker

TESTNODE_Docker will now be running in the IIB_Container in the hosted Linux
environment. In this next section you will use the IIB Web Admin interface to deploy the
HR_Service REST API on TESTNODE_Docker.

1. Open a Firefox browser and select the “IIB Docker” link (in the IIB folder). This
will direct the browser to the Web Admin interface for the IIB node
TESTNODE_Docker that is running in the Docker container:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 75 of 96
IBM InterConnect

2. On the left navigation bar, expand Servers. Click the triangle next to the “default”
server and select Deploy:

3. In the Deploy Bar file window, use the Browse button to navigate to
c:\student10\CallableflowsIC17\barfiles and select

HR_Service.bar.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 76 of 96
IBM InterConnect

4. In the Deploy preview window, note the details of the targetApplication

and targetEndpointName in the CallableFlowInvoke node.

Click Deploy:

5. After a few seconds a green message will appear detailing that the deploy was
successful. Reload the page using the browser refresh button.

6. Select the HR_Service REST API in the left navigation window. In the right
window, click the API tab and copy the REST API Base URL:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 77 of 96
IBM InterConnect

7. Open a Firefox tab and paste the REST API Base URL into the browser.

Append “/employees/000010/CallableFlowsExample” onto the URL and

press enter.

The CallableFlowInvoke node running on TESTNODE_Docker cannot locate the
getEmployeeCallable message flow running in the Windows environment
(BETAWORKS-ESB10). In order for the CallableFlowInvoke node to establish a
connection with the getEmployeeCallable message flow (in
HR_Service_CallableFlows), a secure trusted connection must be configured on
both sides.

In the next section you will configure a callable flow agent to enable the
communication between the two flows.

Leave this Browser window open. You will re-test the URL when the IIB
Switch configuration is complete.

2.6.3 Create and configure IIB Switch on the Windows environment

In this part of the lab you will create an IIB Switch on the Windows IIB environment. This
will enable a secure connection between the integration node running in your hosted
Docker environment (TESTNODE_Docker) and the integration node running in
Windows (TESTNODE_iibuser).

The Switch can be created on either of the IIB installations. In this scenario you will create
the IIB Switch on the Windows environment.

The files generated will be stored in the folder c:\temp.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 78 of 96
IBM InterConnect

1. Open an Integration Console and run the command:

iibcreateswitchcfg /hostname BETAWORKS-ESB10 /output c:\temp

The command will respond with the following messages:

Generated self signed certificate file

'c:\temp\adminClient.p12'

Generated switch configuration file 'c:\temp\switch.json'

Generated agentx configuration file 'c:\temp\agentx.json'

2. The command creates two JSON configuration files, and a certificate.

• adminClient.p12: is a certificate used to store a private keys and

certificate chain for the connection between the IIB Docker container and the
‘On-premises’ Integration Node.

• switch.json: is used to create the Switch server.

• agentx.json: is used by the mqsichangeproperties command to

configure secure connectivity for the integration servers where your flows
are deployed. The file is used to configure both IIB environments – IIB
running on Windows and IIB running in the Docker container.

The flag /hostname in the command above ensures that the above configuration

files contain the hostname where the Switch has been created.

3. Run the iibswitch command to create the Switch server by using the configuration
file (switch.json) that you created in the previous step.

iibswitch create switch /config c:\temp\switch.json

You will see the following response:

Creating iibswitch component 'switch', please wait...

iibswitch created and started.

If you receive the response "iibswitch already created, cannot create", rerun the
command and replace create with update.

4. To test that the Switch server is created and running, run the command

mqsilist IIBSWITCH_NODE

The response will read:

BIP1286I: Integration server 'IIBSWITCH_SERVER' on integration node 'IIBSWITCH_NODE' is

running

BIP8071I: Successful command completion.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 79 of 96
IBM InterConnect

5. You will need to ensure that the integration server where you have deployed your
Callable Application has the correct certificate to communicate securely with the
Switch server.

This requires you to run the mqsichangeproperties command for each integration
server where you have deployed callable message flows. The command uses the
integration server configuration file (agentx.json) that you created in step 1.

In an Integration Console, navigate to
c:\student10\CallableflowsIC17\commands\ and run the file:

ConfigureTESTNODE_iibuserDockerAgentX.cmd

Ensure the command, completes with BIP8071I: Successful command completion.

For information the comand that this file runs is:

mqsichangeproperties TESTNODE_iibuser

–e default

–o ComIbmIIBSwitchManager

–n agentXConfigFile

–p c:\temp\agentx.json

6. Stop and restart the TESTNODE_iibuser on the Windows environment to make
the changes effective:

mqsistop TESTNODE_iibuser

mqsistart TESTNODE_iibuser

2.6.4 Configure TESTNODE_Docker to use IIB Switch

In this part of the lab, you will configure TESTNODE_Docker running in the Docker
container to access TESTNODE_iibuser in the Windows environment through a secure
connection.

Now that you have the IIB Switch running on the Windows environment, the same
agentx.json configuration file is required on TESTNODE_Docker. When this

configuration is complete, both IIB nodes will be able access callable flows running on
each other’s environment, through a secure connection.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 80 of 96
IBM InterConnect

2.6.4.1 Copy agentx.json to the IIB Docker Linux File System

1. Docker provides a command (docker cp) which will copy a file from a host to the
Docker image (or vice versa).

The configuration file agentx.json is in the c:\temp folder, which is a local

folder on the VM. You will copy that file to the directory /opt/ibm in the Linux file
system used by the Docker container IIB_Container.

In the Docker Quickstart terminal, run the command (Note the forward slashes in
all parts of this command):

docker cp c:/temp/agentx.json IIB_Container:/opt/ibm

You will verify the copy in the following steps.

2.6.4.2 Configure Docker Quickstart Terminal for MQSI commands

In this section you will set up the Docker Quickstart terminal to run commands directly in
the IIB_Container running in the hosted Ubuntu Linux environment.

1. In the Docker Quickstart terminal, attach a bash session to the IIB_Container by

running the command:

docker exec –it IIB_Container /bin/bash

Commands you type in this terminal will now be executed in IIB_Container.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 81 of 96
IBM InterConnect

2. Verify that the earlier copy of the agentx.json file was successful and is

available in the container.

If you followed the instructions the file should be in the /opt/ibm directory. Go to

that directory to view its content. In the command prompt, run the command below.

cd /opt/ibm

3. List the /opt/ibm contents, by running the command: ls -al

You will see that the agentx.json file has been copied successfully and you should
see the current date.

4. Verify that IIB_Container can communicate with the Windows system using the
hostname BETAWORKS-ESB10. Type:

Ping BETAWORKS-ESB10

If you receive a successful response from the ping command, proceed with the
next steps.

If the hostname cannot be resolved, Refer to the Appendix at the back of this guide
to add a host entry for BETAWORKS-ESB10 to /etc/hosts, then come back to the
next instruction in this lab.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 82 of 96
IBM InterConnect

5. When you start an IIB runtime component on Linux and UNIX systems, the runtime
component will inherit the environment from where you issue the mqsistart
command.

You must therefore initialize the environment before you start a component; the
command mqsiprofile performs this initialization

The mqsiprofile command is located in the IIB directory

/opt/ibm/iib-10.0.0.8/server/bin.

In the Docker command prompt, run the command below (note the dot at the
beginning).

. /opt/ibm/iib-10.0.0.8/server/bin/mqsiprofile

If the command is successful you will see no response.

6. The Docker Quickstart terminal will now be capable of running mqsi commands.
Run the command :

mqsilist

You will see that the command return confirmation that TESTNODE_Docker is up and

running.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 83 of 96
IBM InterConnect

2.6.4.3 Configure TESTNODE_Docker to connect to IIB Switch

1. In order to configure TESTNODE_Docker to connect to the IIB Switch on the IIB in

your Windows environment, run the mqsichangeproperties command using the
generated agentx.json configuration file.

Run the command (all on one line)

mqsichangeproperties TESTNODE_Docker

 -e default

 -o ComIbmIIBSwitchManager

 -n agentXConfigFile

 -p /opt/ibm/agentx.json

The command will complete successfully with the response:

BIP8071I: Successful command completion.

2. Stop and restart the TESTNODE_Docker:

mqsistop TESTNODE_Docker

and
mqsistart TESTNODE_Docker

3. If you need access to the IIB syslog messages for TESTNODE_Docker.

Run the command: tail –f /var/log/syslog

2.6.5 Re-test HR_Service running in TESTNODE_Docker

1. In the Firefox browser you left open, press refresh on the URL (the URL you

copied from the IIB Web Administration tool). The HR_Service REST API is now
able to call getEmployeeCallable. The Callable Flow then uses the
LoopBackRequest node to obtain data from the NoSQL database for the employee
with EMPNO=000010.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 84 of 96
IBM InterConnect

2.7 Scenario:2 Running CallableFlowInvoke in IIB on Cloud

In this section of the lab you will deploy HR_Service to the IBM Managed Service IIB on
Cloud environment. You will then configure the REST API running on IIB on Cloud to
enable communication to your “on premises” IIB integration node TESTNODE_iibuser.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 85 of 96
IBM InterConnect

2.7.1 Deploy HR_Service to IIB on Cloud

1. Open a new browser tab and in the Bookmarks Toolbar click “Cloud” and then
the "IIB on Cloud" bookmark.

For reference the URL is:

https://ibm-cloud-ui.ibmintegrationbus.ibmcloud.com/

2. Enter your ‘IBMid’ and password and click ‘Sign in’.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 86 of 96
IBM InterConnect

3. The IIB on Cloud default integration space is opened.

You will now upload a BAR file containing the REST API HR_Service.

Click ‘Add Integration’.

4. Click ‘Upload your BAR file’.

5. In the File Upload window, navigate to
“C:\student10\CallableflowsIC17\barfiles” and select

HR_Service.bar. Click Open.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 87 of 96
IBM InterConnect

6. IIB on Cloud will verify the contents of the bar file and present the contents as an
Integration.
Scroll down to the Basic Authentication section and turn off basic authentication
by clicking the OFF button.

Click Save.

7. The Web user interface will show that the integration is ‘Preparing’. This may
take a minute or two to complete.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 88 of 96
IBM InterConnect

8. Refresh the browser session to see the status. After a few minutes the status will
turn to stopped:

2.7.2 Connect IIB on Cloud to TESTNODE_iibuser

In this part of the lab, you will create a ‘switch’ which will connect your IIB on Cloud
system to your local IIB environment. The switch will run on IIB on Cloud. You will
configure TESTNODE_iibuser to use the IIB on Cloud Switch configuration. This will
allow HR_Service running on IIB on Cloud to connect via a secure connection to
HR_Service_CallableFlows that is running locally on your Windows environment.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 89 of 96
IBM InterConnect

2.7.2.1 Set up an agent

1. Click on the Callable Flows tab. If you receive a message saying that the callable

flow connectivity is being restarted, refresh the page.

Click Set up an agent.

2. A window will pop-up to show the steps required for setting up the agent.
You already have a local installation of IIB, so the first step is not required.

Click ‘Download Configuration’.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 90 of 96
IBM InterConnect

3. Select to Save the file and then click ‘OK’.

Save the file in the default location (C:\Users\iibuser\Downloads)

4. To configure TESTNODE_iibuser to use this configuration a command file has be

supplied. In an Integration Console, navigate to:

“C:\student10\CallableflowsIC17\commands”

Enter the command
“ConfigureTESTNODE_iibuserIIBonCloudAgentX.cmd”.

Make sure the command responds with: BIP8071I: Successful command
completion

For information, the batch file executes this command:

mqsichangeproperties TESTNODE_iibuser

 -e default

 -o ComIbmIIBSwitchManager

 -n agentXConfigFile

 -p C:\Users\iibuser\Downloads\agentx.json

5. Now that you have configured TESTNODE_iibuser to use the IIB on Cloud agent,

test the agentx configuration, by clicking on Test Agent in the IIB on Cloud browser
window.

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 91 of 96
IBM InterConnect

6. You will see the message ‘1 agent connected’ in a green box:

Click Finish.

7. The browser window will now show the Callable Flows that IIB on Cloud has
access to on your local Windows environment:

2.7.3 Start your IIB on Cloud integration

1. In the IIB on Cloud Web UI, click Integrations, then click the start button for the

HR_Service integration:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 92 of 96
IBM InterConnect

2. Confirm that the integration will be started:

3. The IIB on Cloud Web UI will show that the integration is starting.

It may take a minute or two for the integration to start completely and you can
check its status by click on ‘Refresh Listing’:

4. When the Integration has started, the status will change to Running:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 93 of 96
IBM InterConnect

2.7.4 Test HR_Service running in IIB on Cloud

In this part of the lab you will test your IIB on Cloud Integration. The REST API
HR_Service will call the message flow getEmployeeCallable in
HR_Service_CallableFlows through the IIB Secure connection.

getEmployeeCallable will retrieve Employee data from the EMPLOYEE collection in the
MongoDB database and return the response to IIB on Cloud.

1. When HR_Service is running, click on HR_Service name.

The view shows you more details about the integration.

Click ‘Public Endpoints’:

2. Click HR_Service in the “Service URLs” section, then click “Show full URL”

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 94 of 96
IBM InterConnect

3. The full URL will automatically be highlighted, copy the URL (ctrl c) and paste the
URL into a new browser tab:

4. In the browser window replace {employeeNumber} with 000010 and press

enter:

5. After a few seconds, the browser will show a response, indicating that the
HR_Service running on IIB on Cloud can communicate successfully with the
Callable Flow getEmployeeCallable running in your local Windows environment:

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 95 of 96
IBM InterConnect

3. Appendix

3.1 Instructions if your Docker Container cannot communicate with
Windows

For scenario 1 of the Callable Flows part of this lab to work correctly, IIB_Container
needs to be able to successfully communicate with the Windows host BETAWORKS-
ESB10.

In the lab environment you are using there is a possibility that without intervention this
will not work. The following section outlines the tasks necessary to enable successful
network communication between the IIB_Container running in Linux and the Windows
system (where TESTNODE_iibuser is running).

1. You will need the IP address of the Windows environment where
TESTNODE_iibuser is running. The host name is BETAWORKS-ESB10.

Obtain the IP address for the Windows environment by running ipconfig in a

Windows command prompt, for example:

2. In the Docker Quickstart terminal (you will be in the bash shell prompt), enter:

cd /etc

then
sudo vi hosts

Session 2166, IIB RESTAsyncRequest node and Callable Flows

Page 96 of 96
IBM InterConnect

3. You will now be editing the Linux system hosts file as the administrator using vi.
Follow the next steps very carefully:

• Type ‘<shift> g‘ (upper case G) on your keyboard, this will place

the cursor at the bottom of the hosts file.

• Type ’o’ to add a blank line to the file - this will also put you in to

“insert” mode, anything you now type appear in the file.

• Type ’192.168.xxx.xxx BETAWORKS-ESB10’

where xxx.xxx is the last part of the exact IP address of the

Windows VM. For example in the screen capture the ip address is
192.168.246.130)

• Press the ‘Esc’ape key on your keyboard

• Type ’:wq!’ and then press the Enter key – note if you need to

start again because you have misspelled anything, type ’:q!’

to discard your changes and start again.

4. If changes have been made correctly, you should now be able to ping the
Windows host name (BETAWORKS-ESB10) from the IIB_Container bash
command session.

Return to step 4. In the section Configure Docker Quickstart Terminal for MQSI
commands on page 81.

End of Lab Guide

Note: More lab guides in this series can be found at:
https://ibm.biz/betaworks-iib

