
WebSphere MQ Everyplace V2.0.2

���

ii WebSphere MQ Everyplace V2.0.2

Contents

Chapter 1. How to configure MQe

objects 1

Introduction 1

Overview of MQe objects 2

Queue managers 3

Connections 3

Queues 6

Security and administration 13

Configuring with messages 14

Configuration by messages overview 14

The administration queue 14

The administration reply-to queue 15

Create the appropriate administration message 16

Set the required fields in a message - Java . . . 17

Set the required fields in the message - C . . . 23

Analyzing the data in the reply message . . . 23

The basic administration reply message 24

Outcome of request fields 25

Administration message Java examples - 2 . . . 26

Configuring with the C administrator API 30

Creating an administrator handle 30

Using the administrator handle 30

Freeing the administrator handle 31

Configuring from the command line 32

Example use of command-line tools 33

Chapter 2. Configuring MQe objects . . 39

Configuring queue managers 39

Introduction to configuring queue managers . . 39

Queue manager attributes 40

Create a queue manager 42

Delete a queue manager 42

Inquire and inquire all 43

Update 45

Add alias 45

Remove alias 46

List alias names 46

IsAlias 46

Configuring a queue manager using memory

only 47

Configuring local queues 48

Introduction 48

Local queue properties 49

Create a local queue 52

Delete a local queue 53

Add alias 53

List aliases 54

Remove alias 55

Update 55

Inquire and inquire all 56

Message storage adapter 57

Configuring remote queues 58

Introduction 58

Structures 58

Synchronous and asynchronous 59

Setting the operation mode 60

Creating a remote queue 61

Create synchronous 62

Create asynchronous 63

Transporter 63

Queue aliases 64

Configuring home server queues 64

Introduction 64

Configuration messages 65

Message transmission 66

Creating a home server queue 66

Configuring store-and-forward queues 67

Introduction 67

Store and forward queue attributes 69

Create store and forward queue 69

Delete store and forward queue 70

Add queue manager 70

Remove queue manager 71

Update 71

Inquire 72

Configuring connection definitions 72

Introduction 72

Configuring connection definitions in Java . . . 73

Configuring connection definitions in C 76

Configuring a listener 79

Java 79

Configuring bridge/gateway resources 81

Introduction to the MQ bridge 81

What makes a queue manager bridge-enabled . . 81

Finding out if a queue manager is bridge-enabled 81

Classes to bridge-enable a queue manager . . . 81

Overview of configuring the bridge 82

The bridge objects and hierarchy 84

Naming recommendations for interoperability

with MQ 89

Configuring a basic MQ bridge 89

Using MQe administration messages and MQ

PCF messages 91

Bridge configuration example 92

Administration of the bridge 96

Configuring a bridge for optimal throughput . . 99

Handling undeliverable messages 107

Bridge National Language Support 107

Configuring queue managers as servlets 109

Introduction 109

An example servlet configuration using WAS 109

JMS (Java Message Service) configuration 117

JMS Object naming changes from V2.0.1 . . . 117

Introduction to JMS 117

Configuring MQeConnectionFactory 118

Configuring MQeJMSQueue 119

The MQe administration tool for JMS 119

Extending MQeConnectionFactory 125

LDAP schema definition for Java object storage 126

JMX (Java Management Extensions) interface . . . 128

Introduction to MQe JMX 129

 iii

Setting up the MQe JMX interface 132

Enabling MQe applications for JMX managment 133

Accessing MQe MBeans via the MBeanServer 133

Divergence from MQe Administration Interface 141

Error handling 143

Notifications 144

Other Issues 146

Translation 147

Related information on JMX 148

Index 149

iv WebSphere MQ Everyplace V2.0.2

Chapter 1. How to configure MQe objects

Overview of configuring MQe queues, queue managers, and networks

This part of the information center provides the basic information necessary in order to configure MQe

queue managers and networks. It is also designed to help you to customize a configuration matching

your specific business requirements. It describes how individual MQe components can be created and

administered and how components may be used together in various topologies.

Introduction

This book provides the basic information necessary in order to configure MQe queue managers and

networks. It is also designed to allow a user to customize a configuration matching his or her specific

business requirements. It describes how individual MQe components can be created and administered

and how components may be used together in various topologies.

The contents include information on:

v Creating and starting queue managers

v Defining connectivity between queue managers

v Establishing the routes taken by messages through an MQe network

v Exercising control over the protocols used

v Determining where messages are staged, if appropriate

v Configuring queue-level security

v Appreciating the advantages and disadvantages of the available MQe configuration options

This introduction provides a map of various routes through the rest of the guide depending on the type

of configuration which the user hopes to achieve. Since these routes are described in terms of queue

manager configurations, a brief description of the MQe queue manager and associated components

follows.

In the following table, the necessary steps to configure each type of queue manager are itemized, together

with the corresponding chapters of this manual. The Basic Queue Manager configuration is a prerequisite

of all other configurations; that is to say, any queue manager must first be configured as a Basic Queue

Manager. Then, other types of functionality may be added as required.

Thus:

To configure a Client

Carry out steps 1, 2, 3, 4 and 5

To configure a Server

Carry out steps 1, 2, 6 and 7

To configure a queue manager with both Server and Client functionality

Carry out steps 1 through 7 inclusive

 Table 1. Configuring clients, servers, and queue managers

Requisite steps Topics

Basic queue manager

1. Create and start the queue manager “Configuring with messages” on page 14

 1

Table 1. Configuring clients, servers, and queue managers (continued)

Requisite steps Topics

2. Create a local queue “Configuring queue managers” on page 39

“Configuring local queues” on page 48

Client queue manager

3. Create a connection definition to a server “Configuring connection definitions” on page 72

4. Create a remote queue definition “Configuring remote queues” on page 58

5. Create a home server queue for triggered transmission

(required for remote asynchronous queues)

“Configuring home server queues” on page 64

Server queue manager

6. Create a listener “Configuring a listener” on page 79

7. Create a store-and-forward queue (optional) “Configuring store-and-forward queues” on page 67

8. Add bridge functionality “Configuring bridge/gateway resources” on page 81

Overview of MQe objects

Queue manager

A queue manager owns and controls MQe messages, queues, and connections (see below). It allows

applications to access messages and queues. Each queue manager has a unique name that distinguishes it

from any other MQe queue manager. Depending upon the needs of an application, queue managers can

differ in their collection of queues, messages, connections, and other objects, and also in the role they

play in a configuration.

MQe identifies three distinct roles for queue managers in addition to the basic queue manager

functionality:

v Client A queue manager that supplies messages to, or gets messages from, a server

v Server A queue manager that provides services to many attached client queue managers

v Gateway A server queue manager that also has the capability to exchange messages with MQ base

messaging queue managers

Queue

A queue may be used to store, process, or move messages. Each queue belongs to a queue manager and

applications can access queues through the queue manager. Each queue has a unique name that

distinguishes it from any other queue on that same queue manager. Local queues are not strictly

mandatory, however you cannot do much without them.

Message

A message is a collection of data which can be stored in a queue or moved across an MQe network.

Connection

A connection provides its local queue manager with the information it needs to establish communication

links with a remote queue manager. The name of a connection is the name of that remote queue manager.

Only one connection definition can exist on a local queue manager for each remote queue manager name.

Channel

A channel is an entity allowing a queue manager to move messages to a remote queue manager.

2 WebSphere MQ Everyplace V2.0.2

Registry

The registry is the primary store for queue manager related information. Each queue manager has its

own registry. Every queue manager uses the registry to hold details of its properties and objects.

Queue managers

No matter what role a queue manager performs, there is a basic amount of configuration required. This

basic configuration results in what is here termed a Basic Queue Manager. Depending upon the type of

role intended for the queue manager, this Basic Queue Manager is extended, resulting in a Client Queue

Manager, a Server Queue Manager or a Gateway Queue Manager. The following diagram attempts to

summarize these configurations:

 Table 2. Queue manager configuration

Basic Queue

Manager

+ Connection definition and

remote queue definition

=

Client queue manager

Basic Queue

Manager

+

Listener

=

Server queue manager

Basic Queue

Manager

+

Bridge functionality

=

Gateway queue manager

Basic Queue

Manager

+

Security configuration,

and so on

The complete management life cycle for most managed resources can be controlled with administration

messages. This means that the managed resource can be brought into existence, managed and then

deleted with administration messages. This is not the case for queue managers. Before a queue manager

can be managed it must be created and started.

The queue manager has very few characteristics itself, but it controls other MQe resources. When you

inquire on a queue manager, you can obtain a list of connections to other queue managers and a list of

queues that the queue manager can work with. Each list item is the name of either a connection or a

queue. Once you know the name of a resource, you can use the appropriate message to manage the

resource. For instance you use an MQeConnectionAdminMessage to manage connections.

Connections

Connections define how to connect one queue manager to another queue manager. Once a connection has

been defined, it is possible for a queue manager to put messages to queues on the remote queue

manager. The following diagram shows the constituent parts that are required for a remote queue on one

queue manager to communicate with a queue on a different queue manager:

Chapter 1. How to configure MQe objects 3

Communication happens at different levels:

Transporter:

Logical connection between two queues

Channel:

Logical connection between two systems

Adapter:

Protocol specific communication

The channel and adapter are specified as part of a connection definition. The transporter is specified as

part of a remote queue definition. The following example code shows a method that instantiates and

primes an MQeConnectionAdminMsg ready to create a connection:

/**

 * Setup an admin msg to create a connection definition

 */

public MQeConnectionAdminMsg addConnection(remoteQMgr

 adapter,

 parms,

 options,

 channel,

 description) throws Exception

{

 String remoteQMgr = "ServerQM";

 /*

 * Create an empty queue manager admin message and parameters field

 */

 MQeConnectionAdminMsg msg = new MQeConnectionAdminMsg();

 /*

 * Prime message with who to reply to and a unique identifier

 */

 MQeFields msgTest = primeAdminMsg(msg);

 /*

 * Set name of queue manager to add routes to

 */

 msg.setName(remoteQMgr);

 /*

 * Set the admin action to create a new queue

 * The connection is setup to use a default channel. This is an alias

 * which must have be setup on the queue manager for the connection to

 * work.

Local queue manager Remote queue manager

Channel Channel

Transporter Transporter

Listener

Remote
queue Queue

Network
adapter

Network
adapter

Figure 1. Queue manager connections

4 WebSphere MQ Everyplace V2.0.2

*/

 msg.create(adapter,

 parms,

 options,

 channel,

 description);

 return msg;

}

You use MQeConnectionAdminMsg to configure the client portion of a connection. The channel type is

com.ibm.mqe.MQeChannel. Normally an alias of DefaultChannel is configured for MQeChannel. The

following code fragment shows how to configure a connection on a client to communicate with a server

using the HTTP protocol.

/**

 * Create a connection admin message that creates a connection

 * definition to a remote queue manager using the HTTP protocol. Then

 * send the message to the client queue manager.

 */

public addClientConnection(MQeQueueManager myQM,

 String targetQMgr) throws Exception

{

 String remoteQMgr = "ServerQM";

 String adapter = "Network:127.0.0.1:80";

// This assumes that an alias called Network has been setup for

// network adapter com.ibm.mqe.adapters.MQeTcpipHttpAdapter

 String parameters = null;

 String options = null;

 String channel = "DefaultChannel";

 String description = "client connection to ServerQM";

 /*

 * Setup the admin msg

 */

 MQeConnectionAdminMsg msg = addConnection(remoteQMgr,

 adapter,

 parameters,

 options,

 channel,

 description);

 /*

 * Put the admin message to the admin queue (not using assured flows)

 */

 myQM.putMessage(targetQMgr,

 MQe.Admin_Queue_Name,

 msg,

 null,

 0);

}

Routing and aliases

Routing connections

You can set up a connection so that a queue manager routes messages through an intermediate queue

manager. This requires two connections:

1. A connection to the intermediate queue manager

2. A connection to the target queue manager

The first connection is created by the methods described earlier in this section, either as a client or as a

peer connection. For the second connection, the name of the intermediate queue manager is specified in

Chapter 1. How to configure MQe objects 5

place of the network adapter name. With this configuration an application can put messages to the target

queue manager but route them through one or more intermediate queue managers.

Aliases

You can assign multiple names or aliases to a connection. When an application calls methods on the

MQeQueueManager class that require a queue manager name to be specified, it can also use an alias.

You can alias both local and remote queue managers. To alias a local queue manager, you must first

establish a connection definition with the same name as the local queue manager. This is a logical

connection that can have all parameters set to null.

To add and remove aliases, use the Action_AddAlias and Action_RemoveAlias actions of the

MQeConnectionAdminMsg class. You can add or remove multiple aliases in one message. Put the aliases

that you want to manipulate directly into the message by setting the ASCII array field Con_Aliases.

Alternatively you can use the two methods addAlias() or removeAlias(). Each of these methods takes one

alias name but you can call the method repeatedly to add multiple aliases to a message.

The following snippet of code shows how to add connection aliases to a message:

/**

 * Setup an admin msg to add aliases

 to a queue manager (connection)

 */

public MQeConnectionAdminMsg addAliases(String queueManagerName

 String aliases[])

 throws Exception

{

 /*

 * Create an empty connection admin message

 */

 MQeConnectionAdminMsg msg = new MQeConnectionAdminMsg();

 /*

 * Prime message with who to

 reply to and a unique identifier */

 MQeFields msgTest = primeAdminMsg(msg);

 /*

 * Set name of the connection to add aliases to

 */

 msg.setName(queueManagerName);

 /*

 * Use the addAlias method to add aliases to the message.

 */

 for (int i=0; i<aliases.length; i++)

 {

 msg.addAlias(aliases[i]);

 }

 return msg;

}

Queues

The simplest of these is a local queue that is implemented in class MQeQueue and is managed by class

MQeQueueAdminMsg. All other types of queue inherit from MQeQueue. For each type of queue there is

a corresponding administration message that inherits from MQeQueueAdminMsg. The following sections

describe the administration of the various types of queues.

6 WebSphere MQ Everyplace V2.0.2

Local queue

You can create, update, delete and inquire on local queues and their descendents using administration

actions provided in MQe. The basic administration mechanism is inherited from MQeAdminMsg.

The name of a queue is formed from the target queue manager name, for a local queue this is the name

of the queue manager that owns the queue, and a unique name for the queue on that queue manager.

Two fields in the administration message are used to uniquely identify the queue, these are the ASCII

fields Admin_Name and Queue_QMgrName. You can use the setName(queueManagerName, queueName)

method to set these two fields in the administration message.

The following diagram shows an example of a queue manager configured with a local queue. Queue

manager qm1 has a local queue named invQ. The queue manager name characteristic of the queue is qm1,

which matches the queue manager name. The following diagram shows a local queue:

Message store:

 Local queues require a message store to store their messages. Each queue can specify what type of store

to use, and where it is located. Use the queue characteristic Queue_FileDesc to specify the type of

message store and to provide parameters for it. The field type is ascii and the value must be a file

descriptor of the form:

adapter class:adapter parameters

or

adapter alias:adapter parameters

For example:

MsgLog:d:\QueueManager\ServerQM12\Queues

MQe Version 2.1 provides two adapters, one for writing messages to disk and one for storing them in

memory. By creating an appropriate adapter, messages can be stored in any suitable place or medium

(such as DB2® database or writable CDs).

Queue
invQ

msg = getMessage(null, invQ, ...)

putMessage(null, invQ, msg, …)

qm1

Figure 2. Local queue

Chapter 1. How to configure MQe objects 7

The choice of adapter determines the persistence and resilience of messages. For instance if a memory

adapter is used then the messages are only as resilient as the memory. Memory may be a much faster

medium than disk but is highly volatile compared to disk. Hence the choice of adapter is an important

one.

If you do not provide message store information when creating a queue, it defaults to the message store

that was specified when the queue manager was created.

Take the following into consideration when setting the Queue_FileDesc field:

v Ensure that the correct syntax is used for the system that the queue resides on. For instance, on a

Windows® system use ″\″ as a file separator. On UNIX® systems use ″/″ as a file separator. In some

cases it may be possible to use either but this is dependent on the support provided by the JVM (Java™

Virtual Machine) that the queue manager runs in. As well as file separator differences, some systems

use drive letters (like Windows NT®) whereas others (like UNIX) do not.

v On some systems it is possible to specify relative directories (″ .\″), whilst on others it is not. Even on

those where relative directories can be specified, they should be used with great caution as the current

directory can be changed during the lifetime of the JVM. Such a change causes problems when

interacting with queues using relative directories.

Creating a local queue:

 The following code fragment demonstrates how to create a local queue:

/**

 * Create a new local queue

 */

protected void createQueue(MQeQueueManager localQM,

 String qMgrName,

 String queueName,

 String description,

 String queueStore

) throws Exception

{

 /*

 * Create an empty queue admin message and parameters field

 */

 MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

 MQeFields parms = new MQeFields();

 /*

 * Prime message with who to reply to and a unique identifier

 */

 MQeFields msgTest = primeAdminMsg(msg);

 /*

 * Set name of queue to manage

 */

 msg.setName(qMgrName, queueName);

 /*

 * Add any characteristics of queue here, otherwise

 * charateristics will be left to default values.

 /

 if (description != null) // set the description ?

 parms.putUnicode(MQeQueueAdminMsg.Queue_Description,

 description);

 if (queueStore != null) // Set the queue store ?

 // If queue store includes directory and file info then it

 // must be set to the correct style for the system that the

 // queue will reside on e.g \ or /

 parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

 queueStore);

8 WebSphere MQ Everyplace V2.0.2

/*

 * Other queue characteristics like queue depth, message expiry

 * can be set here ...

 */

 /*

 * Set the admin action to create a new queue

 */

 msg.create(parms);

 /*

 * Put the admin message to the admin queue (not assured delivery)

 */

 localQM.putMessage(qMgrName,

 MQe.Admin_Queue_Name,

 msg,

 null,

 0);

}

Queue security:

 Access and security are owned by the queue and may be granted for use by a remote queue manager

(when connected to a network), allowing the other queue managers in the network to send messages to

the queue, or receive messages from the queue. The following characteristics are used in setting up queue

security:

v Queue_Cryptor

v Queue_Authenticator

v Queue_Compressor

v Queue_TargetRegistry

v Queue_AttrRule

If either a cryptor or authenticator has been specified on a queue, the queue manager must have a private

registry defined. Any other queue manager that has remote queues which are directed to a queue with

security must also have a private registry. The only exception to this requirement is when using remote

synchronous queues.

Other queue characteristics:

 You can configure queues with many other characteristics, such as the maximum number of messages

that are permitted on the queue. For a description of these, see the MQeQueueAdminMsg section of the

Java API Programming Reference.

Aliases:

 Queue names can have aliases similar to those described for connections in “Routing and aliases” on

page 5. The code fragment in the connections section alias example shows how to setup aliases on a

connection. Setting up aliases on a queue is the same except that an MQeQueueAdminMsg is used

instead of an MQeConnectionAdminMsg.

Action restrictions:

 Some administrative actions can be performed only when the queue is in a predefined state, as follows:

Action_Update

v If the queue is in use, characteristics of the queue cannot be changed

v The security characteristics of the queue cannot be changed if there are messages on the queue

v The queue message store cannot be changed once it has been set

Chapter 1. How to configure MQe objects 9

Action_Delete

The queue cannot be deleted if the queue is in use or if there are messages on the queue

If the request requires that the queue is not in use, or that it has zero messages, the administration

request can be retried, either when the queue manager restarts or at regular time intervals. See “The basic

administration message” on page 17 for details on setting up an administration request retry.

Home-server queue

Home-server queues are implemented by the MQeHomeServerQueue class. They are managed with the

MQeHomeServerQueueAdminMsg class, which is a subclass of MQeRemoteQueueAdminMsg. The only

addition in the subclass is the Queue_QTimerInterval characteristic. This field is of type int and is set to a

millisecond timer interval. If you set this field to a value greater than zero, the home-server queue checks

the home server every n milliseconds to see if there are any messages waiting for collection. Any

messages that are waiting are delivered to the target queue. A value of 0 for this field means that the

home-server is polled only when the MQeQueueManager.triggertransmission method is called.

Note: If a home-server queue fails to connect to its store-and-forward queue (for instance if the

store-and-forward queue is unavailable when the home server queue starts) it stops trying until a trigger

transmit call is made.

10 WebSphere MQ Everyplace V2.0.2

The name of the home-server queue is set as follows:

v The queue name must match the name of the store-and-forward queue

v The queue manager attribute of the queue name must be the name of the home-server queue manager

The queue manager where the home-server queue resides must have a connection configured to the

home-server queue manager.

Figure 3 shows an example of a queue manager qm3 that has a home-server queue SFQ configured to

collect messages from its home-server queue manager qm2.

The configuration consists of:

v A home server queue manager qm2

v A store and forward queue SFQ on queue manager qm2 that holds messages for queue manager qm3

v A queue manager qm3 that normally runs disconnected and cannot accept connections from queue

manager qm2

v Queue manager qm3 has a connection configured to qm2

v A home server queue SFQ that uses queue manager qm2 as its home server

Connection to
qm3 via qm2

Connection to
qm2

push pull

Homeserver queue
manager for qm3

msg = getMessage(qm3, invQ, ...)

qm3

MQeQueue
invQ on qm3

MQeHomeServerQueue
SFQ on qm2

qm1

MQeRemoteQueue
invQ on qm3

mode:asynchronous

putMessage(qm3, invQ, msg, ...)

qm2

MQeStoreAndForwardQueue
SFQ on qm2

hold messages for: qm3

Figure 3. Home-server queue

Chapter 1. How to configure MQe objects 11

Any messages that are directed to queue manager qm3 through qm2 are stored on the store-and-forward

queue SFQ on qm2 until the home-server queue on qm3 collects them.

MQ bridge queue

An MQ bridge queue is a remote queue definition that refers to a queue residing on an MQ queue

manager. The queue holding the messages resides on the MQ queue manager, not on the local queue

manager.

 v The MQSaturnQM MQ queue manager has a local queue MQSaturnQ defined .

v The MQeEarthQM must have an MQ bridge queue defined called MQSaturnQ on the MQSaturnQM queue

manager.

v Applications attached to the MQeEarthQM queue manager put messages to the MQSaturnQ MQ bridge

queue, and the bridge queue delivers the message to the MQSaturnQ on the MQSaturnQM queue manager.

The definition of the bridge queue requires that bridge, MQ queue manager proxy, and client connection

names are specified to uniquely identify a client connection object in the bridge object hierarchy. Refer to

Figure 17 on page 83 for more information. This information identifies how the MQ bridge accesses the

MQ queue manager, to manipulate an MQ queue.

The MQ bridge queue provides the facility to put to a queue on a queue manager that is not directly

connected to the MQ bridge. This allows a message to be sent to an MQ queue manager (the target)

routed through another MQ queue manager. The MQ bridge queue takes the name of the target queue

manager and the intermediate queue manager is named by the MQ queue manager proxy.

For a complete list of the characteristics used by the MQ bridge queue, refer to

MQeMQBridgeQueueAdminMsg in the com.ibm.mqe.bridge section of Java Programming Reference.

The following table details the list of operations supported by the MQ bridge queue, once it has been

configured:

 Table 3. Message operations supported by MQ—bridge queue

Type of operation Supported by MQ bridge queue

getMessage() yes*

putMessage() yes

browseMessage() Yes*

browseAndLockMessage no

Note: * These functions have restrictions on their use.

MQeEarthQM

WebSphere MQ
Everyplace
application

WebSphere MQ
bridge queue

WebSphere MQ Everyplace
queue manager
Windows 2000

I/P address 20.8.9.50

MQSaturnQM

WebSphere MQ
queue manager

Windows NT
I/P address 20.8.9.51

WebSphere MQ
local queue

Figure 4. MQ bridge queue

12 WebSphere MQ Everyplace V2.0.2

If an application attempts to use one of the unsupported operations, an MQeException of

Except_NotSupported is returned.

When an application puts a message to the bridge queue, the bridge queue takes a logical connection to

the MQ queue manager from the pool of connections maintained by the bridge’s client connection object.

The logical connection to MQ is supplied by either the MQ Java Bindings classes, or the MQ Classes for

Java. The choice of classes depends on the value of the hostname field in the MQ queue manager proxy

settings. Once the MQ bridge queue has a connection to the MQ queue manager, it attempts to put the

message to the MQ queue.

An MQ bridge queue must always have an access mode of synchronous and cannot be configured as an

asynchronous queue. This means that, if your put operation is directly manipulating an MQ bridge queue

and returns success, your message has passed to the MQ system while your process was waiting for the

put operation to complete.

If you do not want to use synchronous operations against the MQ bridge queue, you can set up an

asynchronous remote queue definition that refers to the MQ bridge queue. Alternatively, you can set up a

store-and-forward queue, and home-server queue. These two alternative configurations provide the

application with an asynchronous queue to which it can put messages. With these configurations, when

your putMessage() method returns, the message may not necessarily have passed to the MQ queue

manager.

An example of MQ bridge queue usage is described in “Bridge configuration example” on page 92.

Administration queue

The administration queue is implemented in class MQeAdminQueue and is a subclass of MQeQueue, so

it has the same features as a local queue. It is managed using administration class

MQeAdminQueueAdminMsg.

If a message fails because the resource to be administered is in use, it is possible to request that the

message be retried. “The basic administration message” on page 17 provides details on setting up the

count for the maximum number of attempts. If the message fails due to the managed resource not being

available, and the maximum number of attempts has not been reached, the message is left on the queue

for processing at a later date. If the maximum number of attempts has been reached, the request fails

with an MQeException. By default the message is retried the next time the queue manager is started.

Alternatively, a timer can be set on the queue that processes messages on the queue at specified intervals.

The timer interval is specified by setting the long field Queue_QTimerInterval field in the administration

message. The interval value is specified in milliseconds.

Security and administration

By default, any MQe application can administer managed resources. The application can be running as a

local application to the queue manager that is being managed, or it can be running on a different queue

manager. It is important that the administration actions are secure, otherwise there is potential for the

system to be misused. MQe provides the basic facilities for securing administration using queue-based

security, as described in this information center.

If you use synchronous security, you can secure the administration queue by setting security

characteristics on the queue. For example, you can set an authenticator so that the user must be

authenticated to the operating system (Windows NT or UNIX) before they can perform administration

actions. This can be extended so that only a specific user can perform administration.

The administration queue does not allow applications direct access to messages on the queue, the

messages are processed internally. This means that messages put to the queue that have been secured

with message level security cannot be unwrapped using the normal mechanism of providing an attribute

Chapter 1. How to configure MQe objects 13

on a get or browse request. However, a queue rule class can be applied to the administration queue to

unwrap any secured messages so that they can be processed by the administration queue. The queue rule

browseMessage() must be coded to perform this unwrap and allow administration to take place.

Configuring with messages

This topic explains how you can administer MQe resources, locally or remotely, using administration

messages.

Configuration by messages overview

You can administer MQe resources using specialized messages called administration messages (admin

messages). Using these messages allows you to administer resources locally or remotely. The native code

base, if configured with an administration queue (admin queue), responds to admin messages. However,

it does not provide helper functions to create admin messages. For more information on this, refer to

“Configuring with the C administrator API” on page 30. Java is administered by admin messages. C can

be, but has an administration interface for local administration.

 These are the steps you need to follow when using administration messages to administer a resource:

1. Create an admin queue on the resource performing the administration, or make sure that one exists.

2. Create an appropriate admin message for the resource being managed.

3. Set the required fields in the message.

4. Put the admin message to the appropriate admin queue.

5. Wait for an admin reply message on the appropriate admin reply queue, if a reply has been requested

in the admin message.

6. Analyze the data in the admin reply message.

The administration queue

Before you can administer a queue manager (or its resources) using admin messages, you must start the

queue manager and configure an admin queue on it. The admin queue’s role is to process admin

messages in the sequence that they arrive on the queue. Only one request is processed at a time.

Managed
resource

admin
methods

Admin
application

AdminMsg
(Request)

AdminMsg
(Reply)

Queue
manager

Queue
manager

AdminMsg
(Request)

AdminMsg
(Reply)

AdminQ

ReplyQ

Figure 5. MQe administration using administration messages

14 WebSphere MQ Everyplace V2.0.2

Java

In Java, the queue can be created using the defineDefaultAdminQueue() method of the

MQeQueueManagerConfigure class. The name of the queue is AdminQ and applications can refer to it

using the constant MQe.Admin_Queue_Name.

C

In the native code base, an admin queue is created using the following API:

MQeAdminQParms params = ADMIN_Q_INIT_VAL;

rc = mqeAdministrator_AdminQueue_create(hAdmin, // handle to MQeAdministrator

 pExceptBlock, // handle to an exception block

 hQueueName, // the name of the queue to be created

 hQueueQMgrName, // the name of the queue’s

 //owning queue manager

 ¶ms); // pointer to structure

 // for configuring the

 // queue of type MQeAdminQParms,

In particular, the constant string handle MQE_ADMIN_QUEUE_NAME can be used as the admin queue name.

This is the equivalent of the constant MQe.Admin_Queue_Name in the Java code base.

The params structure can be initialized to contain default values for all admin queue properties. The

structure also contains an opFlags bit mask element that must be used to indicate which properties have

been set to a value other than the default value. The above example accepts all of the default values, as

specified using the ADMIN_Q_INIT_VAL constant.

The administration reply-to queue

This topic describes the use of administration reply-to queues in Java and C.

Java

In Java, a typical administration application instantiates a subclass of MQeAdminMsg, configures it with the

required administration request, and passes it to the AdminQ on the target queue manager. If the

application needs to know the outcome of the action, a reply can be requested. When the request has

been processed, the result of the request is returned in a message to the reply-to queue and queue

manager specified in the request message.

The reply can be sent to any queue manager or queue but you can configure a default reply-to queue that

is used solely for administration reply messages. This default queue is created using the

defineDefaultAdminReplyQueue() method of the MQeQueueManagerConfigure class. The name of the

queue is AdminReplyQ, and applications can refer to it using the constant MQe.Admin_Reply_Queue_Name.

C

In the native code base, as in the Java code base, any queue can be specified as the admin reply-to queue.

However, it is recommended that the default admin reply-to queue name, MQE_ADMIN_REPLY_QUEUE_NAME,

is used to name a queue dedicated to the role of admin reply-to queue. This name corresponds to

MQe.Admin_Reply_Queue_Name in the Java code base.

In practice, the native client is more likely to be receiving than to be sending admin messages. In this

case, the client needs a remote asynchronous queue definition of the admin reply-to queue on the server,

as well as a home server queue matching a store-and-forward queue on the server, to enable the admin

and admin reply messages to be transferred.

Chapter 1. How to configure MQe objects 15

Create the appropriate administration message

The administration queue does not know how to perform administration of individual resources. This

information is encapsulated in each resource and its corresponding message.

Java

In Java, there is a hierarchy of administration message types. For certain operations, the exact type of

administration message is required. For example, to create a Home Server ’queue’ you need a Home

Server Queue administration message. For other operations, a more general administration message is

appropriate. For example, to enquire upon a home server queue, you can use a queue administration

message or a remote queue administration message. If in doubt, use the exact type of administration

message.

The following messages are provided for administration of MQe resources:

 Table 4. Administration messages

Message name Purpose

MQeAdminMsg An abstract class that acts as the base class for

all administration messages

MQeAdminQueueAdminMsg Provides support for administering the

administration queue

MQeConnectionAdminMsg Provides support for administering connections

between queue managers

MQeHomeServerQueueAdminMsg Provides support for administering home-server

queues

MQeQueueAdminMsg Provides support for administering local queues

MQeQueueMangerAdminMsg Provides support for administering queue

managers

MQeRemoteQueueAdminMsg Provides support for administering remote

queues

MQeStoreAndForwardQueueAdminMsg Provides support for administering

store-and-forward queues

MQeCommunicationsListenerAdminMsg Provides support for administering

communications listeners

These base administration messages are provided in the com.ibm.mqe.administration package. Other

types or resource can be managed by subclassifying either MQeAdminMsg or one of the existing

administration messages. For instance, an additional administration message for managing the MQ bridge

is provided in the com.ibm.mqe.mqbridge package.

C

In the C code base, all messages are MQeFields instances. This applies to admin messages, and the admin

message types are distinguished by a special field inserted into the fields object. You need to create an

admin message of the appropriate type from new, inserting all of the required fields. Alternatively, for

local administration, use the native administration API. The native code base can respond correctly to all

administration messages but the native administration API is usually used for local administration.

16 WebSphere MQ Everyplace V2.0.2

Set the required fields in a message - Java

Administration messages convey the administration action required by a combination of data fields

stored in the message. These fields have well defined names, types, and values, and you can set up the

administration message using low level fields API. In Java, there are numerous helper methods to make

this task less arduous.

The following sections describe the constituent fields of admin messages and admin reply messages.

The basic administration message

Every request to administer an MQe resource takes the same basic form. The following table shows the

basic structure for all administration request messages:

A request is made up of:

1. Base administration fields, that are common to all administration requests.

2. Administration fields, that are specific to the resource being managed.

3. Optional fields to assist with the processing of administration messages.

Base administration fields

The base administration fields, that are common to all administration messages, are:

Admin_Target_QMgr

This field provides the name of the queue manager on which the requested action is to take place

(target queue manager). The target queue manager can be either a local or a remote queue

manager. As only one queue manager can be active at a time in a Java Virtual Machine, the target

queue manager, and the one to which the message is put, are the same.

Admin_Action

This field contains the administration action that is to be performed. Each managed resource

provides a set of administrative actions that it can perform. A single administration message can

only request that one action be performed. The following common actions are defined:

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure 6. Administration request message

Chapter 1. How to configure MQe objects 17

Table 5. Administration actions

Administration action Purpose

Action_Create Create a new instance of a managed resource.

Action_Delete Delete an existing managed resource

Action_Inquire Inquire on one or more characteristics of a managed

resource

Action_InquireAll Inquire on all characteristics of a managed resource

Action_Update Update one or more characteristics of a managed

resource

All resources do not necessarily implement these actions. For instance, it is not possible to create

a queue manager using an administration message. Specific administration messages can extend

the base set to provide additional actions that are specific to a resource.

 Each common action provides a method that sets the Admin_Action field:

 Table 6. Setting the administration action field

Administration action Setting method

Action_Create create (MQeFields parms)

Action_Delete delete (MQeFields parms)

Action_Inquire inquire (MQeFields parms)

Action_InquireAll inquireAll (MQeFields parms)

Action_Update update(MQeFields parms)

Admin_MaxAttempts

 This field determines how many times an action can be retried if the initial action fails. The retry

occurs either the next time that the queue manager restarts or at the next interval set on the

administration queue.

Other fields

For most failures further information is available in the reply message. It is the responsibility of

the requesting application to read and handle failure information. See “The basic administration

reply message” on page 24 for more details on using the reply data.

 A set of methods is available for setting some of the request fields:

 Table 7. Setting administration request fields

Administration action Field type Set and get methods

Admin_Parms MQeFields MQeFields getInputFields()

Admin_Action int setAction (int action)

Admin_TargetQMgr ASCII setTargetQMgr(String qmgr)

Admin_MaxAttempts int setMaxAttempts(int attempts)

Fields specific to the managed resource

Admin_Parms

This field contains the resource characteristics that are required for the action.

 Every resource has a set of unique characteristics. Each characteristic has a name, type and value,

and the name of each is defined by a constant in the administration message. The name of the

resource is a characteristic that is common to all managed resources. The name of the resource is

held in the Admin_Name, and it has a type of ASCII.

18 WebSphere MQ Everyplace V2.0.2

The full set of characteristics of a resource can be determined by using the characteristics()

method against an instance of an administration message. This method returns an MQeFields

object that contains one field for each characteristic. MQeFields methods can be used for

enumerating over the set of characteristics to obtain the name, type and default value of each

characteristic.

 The action requested determines the set of characteristics that can be passed to the action. In all

cases, at least the name of the resource, Admin_Name, must be passed. In the case of

Action_InquireAll this is the only parameter that is required.

 The following code could be used to set the name of the resource to be managed in an

administration message:

SetResourceName(MQeAdminMsg msg, String name)

{

 MQeFields parms;

 if (msg.contains(Admin_Parms))

 parms = msg.getFields(Admin_Parms);

 else

 parms = new MQeFields();

 parms.putAscii(Admin_Name, name);

 msg.putFields(Admin_Parms, parms);

}

 Alternatively, the code can be simplified by using the getInputFields() method to return the

Admin_Parms field from the message, or setName() to set the Admin_Name field into the message.

This is shown in the following code:

SetResourceName(MQeAdminMsg msg, String name)

{

 msg.SetName(name);

}

Other useful fields

By default, no reply is generated when an administration request is processed. If a reply is required, then

the request message must be set up to ask for a reply message. The following fields are defined in the

MQe class and are used to request a reply.

Msg_Style

A field of type int that can take one of three values:

Msg_Style_Datagram

A command not requiring a reply

Msg_Style_Request

A request that would like a reply

Msg_Style_Reply

A reply to a request

If Msg_Style is set to Msg_Style_Request (a reply is required), the location that the reply is to be sent to

must be set into the request message. The two fields used to set the location are:

Msg_ReplyToQ

An ASCII field used to hold the name of the queue for the reply

Msg_ReplyToQMgr

An ASCII field used to hold the name of the queue manager for the reply

If the reply-to queue manager is not the queue manager that processes the request then the queue

manager that processes the request must have a connection defined to the reply-to queue manager.

Chapter 1. How to configure MQe objects 19

For an administration request message to be correlated to its reply message the request message needs to

contain fields that uniquely identify the request, and that can then be copied into the reply message. MQe

provides two fields that can be used for this purpose:

Msg_MsgID

A byte array containing the message ID

Msg_CorrelID

A byte array containing the Correl ID of the message

Any other fields can be used but these two have the added benefit that they are used by the queue

manager to optimize searching of queues and message retrieval. The following code fragment provides

an example of how to prime a request message.

Administration message Java examples 1

As this is a frequently performed process, this code example combines each step in the primeAdminMsg()

method, that can be invoked in other sections of this documentation (assuming that the method has been

defined for the class in question).

public class LocalQueueAdmin extends MQe

{

 public String targetQMgr = "ExampleQM";

// target queue manager

public MQeFields primeAdminMsg(MQeAdminMsg msg) throws Exception

{

 /*

 * Set the target queue manager that will process this message

 */

 msg.setTargetQMgr(targetQMgr);

 /*

 * Ask for a reply message to be sent to the queue

 * manager that processes the admin request

 */

 msg.putInt (MQe.Msg_Style, MQe.Msg_Style_Request);

 msg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);

 msg.putAscii(MQe.Msg_ReplyToQMgr, targetQMgr);

 /*

 * Setup the correl id so we can match the reply to the request.

 * - Use a value that is unique to the this queue manager.

 */

 byte[] correlID =

 Long.toHexString((MQe.uniqueValue()).getBytes());

 msg.putArrayOfByte(MQe.Msg_CorrelID, correlID);

 /*

 * Ensure matching response message is retrieved

 * - set up a fields object that can be used as a match parameter

 * when searching and retrieving messages.

 */

 MQeFields msgTest = new MQeFields();

 msgTest.putArrayOfByte(MQe.Msg_CorrelID, new Byte{1, 2, 3, 4});

 /*

 * Return the unique filter for this message

 */

 return msgTest;

}

Depending on how the destination administration queue is defined, delivery of the message can be either

synchronous or asynchronous.

20 WebSphere MQ Everyplace V2.0.2

The next example is used to make an ’inquire all’ on a queue manager. This method performs the steps

required to address the admin message, request a reply, and add a unique marker to the message.

/* This method performs standard processing */

/* that primes an administration message so that */

/* we can handle it in a standard way */

/* This method sets the target queue manager */

/* (the queue manager upon which the admin */

/* action takes place. */

/* Requests that a reply message is sent to the */

/* admin reply queue on *the target queue manager. */

/* Incorporates a unique key in the message that */

/* can be used to retrieve the reply for this message.*/

/* The unique key is returned as a string,to be */

/* used by the routine extracting the reply. */

public static final String decorateAdminMsg(MQeAdminMsg msg,

 String targetQMName)throws Exception {

 //set the target queue manager

 msg.setTargetQMgr(targetQMName);

 //indicate that we require a reply message

 msg.putInt(MQe.Msg_Style,MQe.Msg_Style_Request);

 //use default reply-to queue on the target queue manager.

 msg.putAscii(MQe.Msg_ReplyToQ,MQe.Admin_Reply_Queue_Name);

 msg.putAscii(MQe.Msg_ReplyToQMgr,targetQMName);

 //create a unique tag that we can identify the reply with

 String match ="Msg"+System.currentTimeMillis();

 msg.putArrayOfByte(MQe.Msg_CorrelID,match.getBytes());

 return match;

}

Put the message on the target queue: The action defined in the admin message will only be performed

when the message reaches the admin queue on the target queue manager. The target queue manager will

need to have an admin queue.

To get the message to a remote target queue manager, you will need to have all the appropriate

connectivity in place.

If the administration is to be done on the local queue manager, no connectivity is required. Message

delivery is achieved by a simple put message call. Simply use the MQeQueueManager API call

putMessage(), specifying the destination queue manager and the standard admin queue name.

We can ignore the attribute, and confirmed parameters in our example, though they are available for

more controlled access to the admin queue.

//put the message to the right admin queue

LocalQueueManager.putMessage(targetQueueManagerName, MQe.Admin_Queue_Name,

 msg,null,0L);

Wait for an administration reply message: Since administration is performed asynchronously, you will

have to wait for the reply to the admin message in order to determine if the action was successful.

Standard MQe message processing is used to wait for a reply or notification of a reply. In the Java code

base, for instance, the queue manager API call waitForMessage() can be used for this purpose.

There is a time lag between sending the request and receiving the reply message. The time lag may be

small if the request is being processed locally or may be long if both the request and reply messages are

delivered asynchronously. The following Java code fragment could be used to send a request message

and wait for a reply:

public class LocalQueueAdmin extends MQe

{

 public String targetQMgr = "ExampleQM";

 // target queue manager

 public int waitFor = 10000;

Chapter 1. How to configure MQe objects 21

// millisecs to wait for reply

/*

 * Send a completed admin message.

 * Uses the simple putMessage method which is not assured if the

 * the queue is defined for synchronous operation.

 */

public void sendRequest(MQeAdminMsg msg) throws Exception

{

 myQM.putMessage(targetQMgr,

 MQe.Admin_Queue_Name,

 msg,

 null,

 0L);

}

/*

 * Wait ten seconds for a reply message. This method will wait for

 * a limited time on either a local or a remote reply to queue.

 *

 *

 */

public MQeAdminMsg waitForReply(MQeFields msgTest) throws Exception {

 int secondsElapsed = 0;

 MQeAdminMsg msg = null;

 try {

 msg = (MQeAdminMsg)myQM.getMessage(

 targetQMgr,

 MQe.Admin_Reply_Queue_Name,

 msgTest, null, 0L);

 } catch (MQeException e) {

 if (e.code() != MQe.Except_Q_NoMatchingMsg) {

 // if the exception is ’no matching

 //message then ignore it. This

 // will result in a null return value.

 //Rethrow all other exceptions

 throw e;

 }

 }

 while (null == msg && secondsElapsed < 10) {

 Thread.sleep(1000);

 secondsElapsed++;

 try {

 msg = (MQeAdminMsg)myQM.getMessage(

 targetQMgr,

 MQe.Admin_Reply_Queue_Name,

 msgTest, null, 0L);

 } catch (MQeException e) {

 if (e.code() != MQe.Except_Q_NoMatchingMsg) {

 // if the exception is ’no matching message’ then ignore it. This

 // will result in a null return value. Rethrow all other exceptions

 throw e;

 }

 }

 }

 return msg;

}

This method is a simple wrapper for the MQeQueueManager API call waitForMessage(), that sets up a filter

to select the required admin reply, and casts any message obtained to an admin message.

/**

*Wait for message -waits for a message to arrive on the admin reply queue

*of the specified target queue manager.Will wait only for messages with the

*specified unique tag return message,or return null if timed out */

public static final MQeAdminMsg waitForRemoteAdminReply(

 MQeQueueManager localQueueManager,

22 WebSphere MQ Everyplace V2.0.2

String remoteQueueManagerName,

 String match)throws Exception {

 //construct a filter to ensure we only get the matching reply

 MQeFields filter =new MQeFields();

 filter.putArrayOfByte(MQe.Msg_CorrelID,match.getBytes());

 //now wait for the reply message

 MQeMsgObject reply =localQueueManager.waitForMessage(

 remoteQueueManagerName,

 MQe.Admin_Reply_Queue_Name,

 filter,

 null,

 0L,

 10000);//wait for 10 seconds

 return (MQeAdminMsg)reply;

}

Set the required fields in the message - C

This section applies to the C code base only.

Since administration is performed asynchronously, you have to wait for the reply to the administration

message in order to determine if the action was successful. You therefore need to request a reply (the

default is to send no reply) and specify where to send the reply message. The destination for the reply

message should be a convenient local queue.

Remember that the administration code needs to send the reply message to the destination specified, and

so may need connection definitions and listeners set up. It is easiest to get the administration reply

message sent to the administration reply queue on the machine on which the administration is

performed. The connectivity used to deliver the administration message to the target queue manager can

then be used to retrieve the administration reply message from the target queue manager. This is the

technique we use in the following examples.

Another useful task you can perform at this stage is to add an identifying field to the administration

request message, so that you can easily identify the matching reply. You do this by adding a byte array

field called MQe.Msg_CorrelID to the message. The administration code ensures that this field is copied

into the reply message. If you wished you could then use this to correlate the administration action with

the administration response.

Analyzing the data in the reply message

Administration reply messages contain information about the success or failure of the attempt to perform

the administration request. There are three levels of success:

1. Total success - the action happened as requested. For enquire requests the messages contains the data

requested.

2. Total failure - the action failed. The message contains a reason why the action failed.

3. Partial failure - some portion of a composite request failed. For example an attempt to update five

fields might be successful for three, but unsuccessful for two. The fields that failed, and the reason for

their failure is contained in the message.

Total success

If the administration action is successful then the return message contains a byte field called

MQeAdminMsg.Admin_RC with a value of MQeAdminMsg.RC_Success.

Total failure

If the administration action is a complete failure then the return message contains a byte field

called MQeAdminMsg.Admin_RC with a value of MQeAdminMsg.RC_Fail. It also contains a

String field called MQeAdminMsg#Admin_Reason which contains a description of the failure.

Partial failure

If the administration action is a partial failure then the return message contains a byte field called

Chapter 1. How to configure MQe objects 23

MQeAdminMsg.Admin_RC with a value of MQeAdminMsg.RC_Mixed. The String field called

MQeAdminMsg.Admin_Reason which only contains a general explanation ’errors occurred’. For more

detail, access the field called MQeAdminMsg.Admin_Errors. The MQeFields object contains any

errors related to subproblems that occur when a request fails with a return code of RC_Fail or

RC_Mixed. For each attribute in error, there is a corresponding field in this MQeFields object. If the

field that was processed was an array then the corresponding error field is of type ASCII array. If

the field that was processed was not an array then the corresponding error field is of type ASCII.

 For example if an update request was made to change 4 attributes of a resource and 2 of the

updates were successful and 2 failed, this field would contain information detailing the reason for

the 2 failures.

 Each error is typically a toString() representation of the exception that caused the failure. If the

exception is of type com.ibm.mqe.MQeException the string includes the MQeException code at the

start of the string as ″Code=nnn″.

The basic administration reply message

Once an administration request has been processed, a reply, if requested, is sent to the reply-to queue

manager queue. The reply message has the same basic format as the request message with some

additional fields.

A reply is made up of:

1. Base administration fields. These are copied from the request message.

2. Administration fields that are specific to the resource being managed.

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2, 5

(Error field items: 1 per
characteristic in error.)

Field in error
…

6

Admin_Errors:

Reply admin field items:

Admin_RC
Admin_Reason

4

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure 7. Administration reply message

24 WebSphere MQ Everyplace V2.0.2

3. Optional fields to assist with the processing of administration messages. These are copied from the

request message.

4. Administration fields detailing outcome of request.

5. Administration fields providing detailed results of the request that are specific to the resource being

managed.

6. Administration fields detailing errors that are specific to the resource being managed.

The first three items are describe in “The basic administration message” on page 17. The reply specific

fields are described in the following sections.

Outcome of request fields

Admin_RC field

 This byte field contains the overall outcome of the request. This is a field of type int that is set to

one of:

MQeAdminMsg.RC_Success

The action completed successfully.

MQeAdminMsg.RC_Failed

The request failed completely.

MQeAdminMsg.RC_Mixed

The request was partially successful. A mixed return code could result if a request is

made to update four attributes of a queue and three succeed and one fails.

Admin_Reason

A Unicode field containing the overall reason for the failure in the case of Mixed and Failed.

Admin_Parms

An MQeFields object containing a field for each characteristics of the managed resource.

Admin_Errors

An MQeFields object containing one field for each update that failed. Each entry contained in the

Admin_Errors field is of type ASCII or asciiArray.

 The following methods are available for getting some of the reply fields:

 Table 8. Getting administration reply fields

Administration field Field type Get method

Admin_RC int int getAction()

Admin_Reason Unicode String getReason()

Admin_Parms MQeFields MQeFields getOutputFields()

Admin_Errors MQeFields MQeFields getErrorFields()

Depending on the action performed, the only fields of interest may be the return code and reason. This is

the case for delete. For other actions such as inquire, more details may be required in the reply message.

For instance, if an inquire request is made for fields Queue_Description and Queue_FileDesc, the resultant

MQeFields object would contain the values for the actual queue in these two fields.

The following table shows the Admin_Parms fields of a request message and a reply message for an

inquire on several parameters of a queue:

Chapter 1. How to configure MQe objects 25

Table 9. Enquiring on queue parameters

Admin_Parms field name Request message Reply message

Type Value Type Value

Admin_Name ASCII ″TestQ″ ASCII ″TestQ″

Queue_QMgrName ASCII ″ExampleQM″ ASCII ″ExampleQM″

Queue_Description Unicode null Unicode ″A test queue″

Queue_FileDesc ASCII null ASCII ″c:\queues\″

For actions where no additional data is expected on the reply, the Admin_Parms field in the reply matches

that of the request message. This is the case for the create and update actions.

Some actions, such as create and update, may request that several characteristic of a managed resource be

set or updated. In this case, it is possible for a return code of RC_Mixed to be received. Additional details

indicating why each update failed are available from the Admin_Errors field. The following table shows

an example of the Admin_Parms field for a request to update a queue and the resultant Admin_Errors field:

 Table 10. Request and reply message to update a queue

Field name Request message Reply message

Type Value Type Value

Admin_Parms field

Admin_Name ASCII ″TestQ″ ASCII ″TestQ″

Queue_QMgrName ASCII ″ExampleQM″ ASCII ″ExampleQM″

Queue_Description Unicode null Unicode ″ExampleQM″ ″A new

description″

Queue_FileDesc ASCII null Unicode ″D:\queues″

Admin_Errors field

Queue_FileDesc n/a n/a ASCII ″Code=4;com.ibm.

mqe.MQeException: wrong

field type″

For fields where the update or set is successful there is no entry in the Admin_Errors field.

A detailed description of each error is returned in an ASCII string. The value of the error string is the

exception that occurred when the set or update was attempted. If the exception was an MQeException,

the actual exception code is returned along with the toString representation of the exception. So, for an

MQeException, the format of the value is:

"Code=nnnn;toString representation of the exception"

Administration message Java examples - 2

This method shows how you might analyze a reply message, and return a boolean to indicate whether or

not the action was successful. Error messages are printed to the console.

/**

*Reply true if the given admin reply

*message represents a successful

*admin action.Return false otherwise.

*A message indicating success

*or failure will be printed to the console.

*If the admin action was not successful then the reason will be printed

*to the console

26 WebSphere MQ Everyplace V2.0.2

*/

public static final boolean isSuccess(MQeAdminMsg reply)

 throws Exception {

 boolean success =false;

 final int returnCode =reply.getRC();

 switch (returnCode){

 case MQeAdminMsg.RC_Success:

 System.out.println("Admin succeeded");

 success =true;

 break;

 case MQeAdminMsg.RC_Fail:

 /* all on one line */

 System.out.println("Admin failed,reason:"+

 reply.getReason());

 break;

 case MQeAdminMsg.RC_Mixed:

 System.out.println("Admin partially succeeded:\n"

 +reply.getErrorFields());

 break;

 }

 return success;

}

Decorating the queue manager

This method is implemented in class examples.config.BasicAdministration. It addresses the administration

message, requests a reply, and adds a unique marker to the message.

 /**

 * This method performs standard processing that

 * decorates an administration message

 * so that we can handle it in a standard way.

 * <p>This method:

 * <p> Sets the target queue manager

 * (the queue maanger upon which

 * the administration action takes place.

 * <p> Requests that a reply message is sent

 * to the administration reply queue on

 * the target queue manager.

 * <p> Incorporates a unique key in the message

 * that can be used to retrieve

 * the reply for this message.

 * The unique key is returned as a string, to be

 * used by the routine extracting the reply.

 */

 public static final String decorateAdminMsg(MQeAdminMsg msg,

 String targetQMName) throws Exception {

 // set the target queue manager

 msg.setTargetQMgr(targetQMName);

 // indicate that we require a reply message

 msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);

 // use default reply-to queue on the target queue manager.

 msg.putAscii(MQe.Msg_ReplyToQ, MQe.administration_Reply_Queue_Name);

 msg.putAscii(MQe.Msg_ReplyToQMgr, targetQMName);

 // create a unique tag that we can identify the reply with

 String match = "Msg" + System.currentTimeMillis();

 msg.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

 return match;

 }

Chapter 1. How to configure MQe objects 27

Putting the administration message

Use the MQeQueueManager API call putMessage(), specifying the destination queue manager and the

standard administration queue name. You can ignore the attribute, and confirmed parameters in the

example, though they are available for more controlled access to the administration queue.

 // put the message to the right administration queue

 localQueueManager.putMessage(targetQueueManagerName,

 MQe.Admin_Queue_Name,

 msg, null, 0L);

Waiting for the administration reply

This method is implemented in class examples.config.BasicAdministration. It is a simple wrapper for

the MQeQueueManager API call waitForMessage(), which sets up a filter to select the required

administration reply, and casts any message obtained to an administration message.

 /**

 * Wait for message - waits for a message to

 * arrive on the administration reply queue

 * of the specified target queue manager.

 * Will wait only for messages with the

 * specified unique tag

 * return message, or null if timed out

 */

 public static final MQeAdminMsg waitForRemoteAdminReply(

 MQeQueueManager localQueueManager,

 String remoteQueueManagerName,

 String match) throws Exception {

 // construct a filter to ensure we only get the matching reply

 MQeFields filter = new MQeFields();

 filter.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

 // now wait for the reply message

 MQeMsgObject reply = localQueueManager.waitForMessage(

 remoteQueueManagerName,

 MQe.Admin_Reply_Queue_Name,

 filter,

 null,

 0L,

 10000); // wait for 10 seconds

 return (MQeAdminMsg)reply;

 }

Analyzing the reply message

This method is implemented in class examples.config.BasicAdministration. It shows how you might

analyze a reply message, and return a reply that indicates whether or not the action was successful. Any

error messages are printed to the console.

 /**

 * Reply true if the given administration

 * reply message represents a successful

 * administration action. Return false otherwise.

 * A message indicating success

 * or failure will be printed to the console.

 * If the administration action was not successful

 * then the reason will be printed

 * to the console

 */

 public static final boolean isSuccess(MQeAdminMsg reply)

 throws Exception {

 boolean success = false;

 final int returnCode = reply.getRC();

 switch (returnCode) {

 case MQeAdminMsg.RC_Success:

28 WebSphere MQ Everyplace V2.0.2

System.out.println("Admin succeeded");

 success = true;

 break;

 case MQeAdminMsg.RC_Fail:

 System.out.println("Admin failed, reason:

 "+ reply.getReason());

 break;

 case MQeAdminMsg.RC_Mixed:

 System.out.println("Admin partially succeeded:\n"

 +reply.getErrorFields());

 break;

 }

 return success;

 }

Updating a queue manager description

This method is implemented in class examples.config.QueueManagerAdmin. It shows how to use the

primitives in the BasicAdministration class to update a queue manager description, and to report the

success of the action.

 /**

 * Update the description field of the

 * specified queue manager to the specified

 * string. Use the supplied queueManager

 * reference as the access to the

 * MQe network.

 *

 * @param queueManager (MQeQueueManager): access point to the MQe network

 * @param queueManagerName (String): name of queue manager to modify

 * @param (String): new description for queue manager

 */

 public static final boolean updateQueueManagerDescription(

 MQeQueueManager queueManager,

 String targetQueueManagerName,

 String description)

 throws Exception {

 // create administration message

 MQeQueueManagerAdminMsg msg = new MQeQueueManagerAdminMsg();

 // request an update

 msg.setAction(MQeAdminMsg.Action_Update);

 // set the new value of the parameter

 //into the input fields in the message

 // the field name is the attribute name,

 // and the field value is the new

 // value of the attribute. The type is specified

 // by the administration message.

 // In this case, the field name is ’description’,

 // the value is the new

 // description, an the type is Unicode.

 msg.getInputFields().putAscii(

 MQeQueueManagerAdminMsg.QMgr_Description,

 description);

 // set up for reply etc

 String uniqueTag = BasicAdministration.decorateAdminMsg(

 msg, targetQueueManagerName);

 // put the message to the right administration queue

 queueManager.putMessage(targetQueueManagerName,

 MQe.Admin_Queue_Name,

 msg, null, 0L);

 // wait for the reply message

 MQeAdminMsg reply = BasicAdministration.waitForRemoteAdminReply(

Chapter 1. How to configure MQe objects 29

queueManager,

 targetQueueManagerName,

 uniqueTag);

 return BasicAdministration.isSuccess(reply);

 }

Configuring with the C administrator API

To create and administer Queue Managers and their associated objects (queues etc.), the Java API uses the

MQeQueueManagerConfigure class and admin messages. In the C API, admin activities are performed

using an Administrator API. The native code base responds to admin messages correctly but no provision

is provided for creating them. Therefore, the Administrator API is the recommended method for local

administration.

For complete documentation on the Administrator API and all the available options, refer to the C

Programming Reference.

Creating an administrator handle

Before any administration can take place, an administrator handle must be created using the

mqeAdministrator_new API call. The prototype for the call is:

MQERETURN mqeAdministrator_new(MQeExceptBlock* pExceptBlock,

 MQeAdministratorHndl* phAdmin,

 MQeQueueManagerHndl hQueueMgr)

The first parameter is a pointer to a valid exception block. The second parameter is a pointer to an

administrator handle, which is filled in with a valid handle upon successful return from the function. The

third parameter is an optional queue manager handle. If the queue manager to be administered already

exists, it must be created using the mqeQueueManager_new function, and the queue manager handle

returned must be passed to the mqeAdministrator_new call.

To create a queue manager, NULL must be passed as the third parameter to the mqeAdministrator_new call.

If NULL is used, pass the mqeAdministrator_free or mqeAdministrator_QueueManager_create call. Once the

mqeAdministrator_QueueManager_create call has been executed, the administrator handle can be used as

normal.

Using the administrator handle

Once an Administrator Handle has been created, any of the mqeAdministrator calls can then be used. The

calls are all of the form:

MQERETURN mqeAdministrator_Object_action(

 MQeAdministratorHndl hAdministrator,

 MQeExceptBlock* pExceptBlock,

 ...)

Where:

v object is the type of object to be administered, for example, a queue manager, local queue, or

synchronous remote queue

v action is the operation to be performed, for example, create, delete, inquire, or update.

Note: Some actions are only available for some object types.

Example calls:

30 WebSphere MQ Everyplace V2.0.2

If NULL is used to create an MQeAdministratirHndl, the next administration API call can only be one of

MQeAdministrator_free or MQeAdministrator_create_QueueManager. Once the queue manager has been

created, all the administration APIs are available for use.

 mqeAdministrator_LocalQueue_create

/* create a local queue */

 mqeAdministrator_AdminQueue_inquire

/* inquire on a local queue */

Many of the APIs, particularly the inquire and update calls, have arguments which are structures

containing multiple elements, some of which may or may not be filled in. In order to accommodate this

functionality, such structures contain an element called ″opFlags″, a set of bits to indicate which elements

of the structure are set. Also supplied are macros that initialize these opFlag structures to appropriate

values, and macros for each bit that can be set.

For instance, if you wanted to inquire on a local queue but you were only interested in the description

and the Maximum Message Size fields, then you would do the following:

MQeLocalQParms lqParms = LOCAL_Q_INIT_VAL;

lqParms.opFlags |= QUEUE_DESC_OP;

lqParms.opFlags |= QUEUE_MAX_MSG_SIZE_OP;

/* Note that the | function is being used */

/* call inquire function */

Similarly, if you wanted to test which elements are filled in when such a structure is returned from a

function, you would do the following:

if(lqParms.opFlags & QUEUE_DESC_OP)

{ /* description is set*/

}

if(lqParms.opFlags & QUEUE_MAX_MSG_SIZE_OP)

{ /* max msg size is set*/

}

Freeing the administrator handle

When the application has finished with the administrator handle it should be destroyed using the

mqeAdministrator_free call. This allows the system to free up any resources that are in use by the

administrator. Once an administrator handle has been freed, it must not be used in any of the

mqeAdministrator_* API calls - if the handle is used, the behavior is indeterminate, but is likely cause an

access violation. If further administration actions are to be performed, the handle can be recreated with

the mqeAdministrator_new call.

 When a handle has been freed, set it to NULL. If this handle is then reused accidentally, the API returns an

error.

 rc = mqeAdministrator_new(&exceptBlock,

 &hAdministrator,

 NULL);

 if(MQERETURN_OK == rc)

 { /* mqeAdministrator_QueueManager_create */

 /* further mqeAdministrator calls */

 /* ... */

 rc = mqeAdministrator_free(hAdministrator,

 &exceptBlock);

 } hAdministrator = NULL;

Figure 8. Creating an Administrator Handle for a new Queue Manager

Chapter 1. How to configure MQe objects 31

Table 11. Common reason and return codes

Return codes Reason codes Notes®

MQERETURN_ADMINISTRATION_ERROR MQEREASON_INVALID_QMGR_NAME Name has invalid

character or is NULL

MQEREASON_INVALID_QUEUE_NAME Name has invalid

character or is NULL

MQERETURN_INVALID_ARGUMENT MQEREASON_API_NULL_POINTER Pointer is NULL

MQEREASON_WRONG_TYPE Wrong type handle has

been passed, for

example,

QueueManager hndl

instead of MQeFields

MQERETURN_QUEUE_ERROR MQEREASON_QMGR_QUEUE_EXISTS Queue already Exists

MQEREASON_QMGR_QUEUE_NOT_EMPTY Queue is not empty

MQERETURN_QUEUE_MANAGER_ERROR MQEREASON_UNKOWN_QUEUE Queue does not exist

MQEREASON_UNKOWN_QUEUE_MANAGER Queue manager does

not exist

MQERETURN_NOTHING_TO_DO MQEREASON_DUPLICATE Name already in use

MQEREASON_NO_SUCH_QUEUE_ALIAS The queue alias

specified does not exist

Configuring from the command line

MQe includes some tools that enable the administration of MQe objects from the command line, using

simple scripts. The following tools are provided:

QueueManagerUpdater

Creates a device queue manager from an ini file, and sends an administration message to update

the characteristics of a queue manager.

IniFileCreator

Creates an ini file with the necessary content for a client queue manager.

LocalQueueCreator

Opens a client queue manager, adds a local queue definition to it, and closes the queue manager.

HomeServerCreator

Opens a server queue manager, adds a home-server queue, and closes the queue manager.

 /* mqeQueueManager_new(...,&hQueueManager,...) */

 /* ... */

 rc = mqeAdministrator_new(&exceptBlock,

 &hAdministrator,

 hQueueManager);

 if(MQERETURN_OK == rc)

 {

 /* further mqeAdministrator calls */

 /* ... */

 rc = mqeAdministrator_free(hAdministrator,

 &exceptBlock);

 }

Figure 9. Creating an Administrator Handle for an existing Queue Manager

32 WebSphere MQ Everyplace V2.0.2

ConnectionCreator

Allows a connection to be added to an MQe queue manager without programming anything in

Java.

RemoteQueueCreator

Opens a device queue manager for use, sends it an administration message to cause a remote

queue definition to be created, then closes the queue manager.

MQBridgeCreator

Creates an MQ bridge on an MQe queue manager.

MQQMgrProxyCreator

Creates an MQ queue manager proxy for a bridge.

MQConnectionCreator

Creates a connection definition for an MQ system on a proxy object.

MQListenerCreator

Creates an MQ transmit queue listener to pull messages from MQ.

MQBridgeQueueCreator

Creates an MQe queue that can reference messages on an MQ queue.

StoreAndForwardQueueCreator

Creates a store-and-forward queue.

StoreAndForwardQueueQMgrAdder

Adds a queue manager name to the list of queue managers for which the store-and-forward

queue accepts messages.

The following files are also provided:

Example script files

Two example .bat files, and a runmqsc script to demonstrate setting up a fictitious network

configuration, involving a branch, a gateway, and an MQ system.

Rolled-up Java example

An example of how a batch file can be rolled-up into a Java file for batch-language independence.

Example use of command-line tools

You can use the command-line tools to create an initial queue manager configuration using a script,

without needing to know how to program in Java.

The following example demonstrates how to use these tools to configure the network topology shown in

the following figure:

Chapter 1. How to configure MQe objects 33

In this scenario:

v The branch offices need to send sales information to the central site for processing by applications on

the MQ server

v Each branch has a single machine with DNS names BRANCH000, BRANCH001, and BRANCH002 respectively.

These machines all run MQe, and each has a single queue manager called BRANCH000QM, BRANCH001QM,

and BRANCH002QM respectively.

v The central office machine GATEWAY00 runs a single gateway queue manager GATEWAY00QM

v The central office machine CENTRAL00 runs MQ with a single queue manager called CENTRAL00QM

v When a sale occurs, a message is sent to the MQ queue manager called CENTRAL00QM, into a queue

called BRANCH.SALES.QUEUE.

v The messages are encoded in a byte array at the branch, and sent inside an MQeMQMsgObject.

v The MQ system must be able to send messages back to each branch queue manager.

v The topology must also be able to cope with the addition of a Firewall later between the branches and

the gateway.

v The MQ-bound queue traffic should use the 56-bit DES cryptor.

Script files required

The following scripts are needed to configure this network topology:

Central.tst

Used with the runmqsc script to create relevant objects on CENTRAL00QM

CentralQMDetails.bat

Used to describe the CENTRAL00QM to other scripts

GatewayQMDetails.bat

Used to describe the GATEWAY00QM to other scripts

CreateGatewayQM.bat

Used to create the gateway queue manager

CreateBranchQM.bat

Used to create a branch queue manager

Local area
network

GATEWAY00
central office

runs
WebSphere MQ

Everyplace

CENTRAL00
central office

runs
WebSphere MQ

Leased
lines

Branch000

Branch001

Branch002

Figure 10. MQe administration scenario

34 WebSphere MQ Everyplace V2.0.2

These .bat files can all be found in the installed product, in MQe\Java\Demo\Windows.

Note: Although the example scripts provided are in the Windows .bat file format, they could be

converted to work equally well in any scripting language available on your system.

MQe and MQ objects defined by the scripts

The following objects are created by the scripts to provide the branch-to-central routing:

The following objects are created by the scripts to provide the central-to-branch routing:

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Remote queue:
Name: BRANCH.SALES.QUEUE
Queue manager: CENTRAL00QM

Connection
Name:CENTRAL00QM
Routed vis: GATEWAY00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

Listener
<port>

WebSphere MQ classes
for Java

JVM
GATEWAY00QM (MQe)
BridgeQueue
Name: BRANCH.SALES.QUEUE
Qmgr: GATEWAY))QM
Connection
Name:CENTRAL00QM
Route:null

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (WebSphere MQ)

Local queue: “BRANCH.SALES.QUEUE”

Local queue: “SYNC.Q.GATEWAY00QM”

Server connection channel: “FOR.GATEWAY00QM”

Figure 11. Branch to central routing

Chapter 1. How to configure MQe objects 35

How to use the script files

Follow these procedures to create the required objects and operate the example scenario, using the

supplied script files:

 1. Edit the JavaEnv.bat

Make sure you have edited the JavaEnv.bat file to set your required working environment.

 2. Create a command-line session

Create a command-line session, and invoke the JavaEnv.bat to make the settings available in the

current environment.

 3. Gather hardware required

Locate all the hardware on which you will be installing the network topology. Gather the machine

names of those machines available to you, and note them down. If you have only one machine

available, you can still use the scripts to deploy the example network topology, as you can specify

the same hostname for each queue manager.

 4. Create an MQ queue manager

By default, the scripts assume this is called CENTRAL00QM listening on port 1414 for client channel

connections.

 5. Describe the MQ queue manager

Edit and review the CentralQMDetails.bat file to make sure that its details match those of the MQ

queue manager you have just created. All values, except the name of the machine on which the MQ

queue manager sits, are defaulted in the script file.

 6. Describe the gateway queue manager

WebSphere MQ classes
for Java

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Home-server queue:
Name: ToBranchQueue
Queue manager: GATEWAY00QM

Local queue
Name:FromCentralQ
Queue manager: BRANCH00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

JVM

GATEWAY00QM (MQe)
Store-and-forward queue “ToBranchQ”
with target qmgrs “BRANCH00QM”,
“BRANCH001QM”, and “BRANCH002QM”

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (WebSphere MQ)

Remote queue manager alias: “BRANCH000QM”
(transmit queue: TO.GATEWAY00QM)

Local transmit queue: “TO.GATEWAY00QM”
Server connection channel: “FOR>GATEWAY00QM”

WebSphere MQ application puts to
“FromCentralQ” on “BRANCH00QM”

Transmit queue listener “TO.GATEWAY00QM”

Figure 12. Central to branch routing

36 WebSphere MQ Everyplace V2.0.2

Edit and review the GatewayQMDetails.bat file to make sure that details of the gateway queue

manager are decided on, and available for the other .bat files to use. The default name of the

gateway queue manager created by the scripts is GATEWAY00QM. You will need to set the machine

name, and port number it will listen on. This port must be available for use. Tip: On Windows

machines, use the command netstat -a to get a list of ports currently in use.

 7. Review the central.tst file

Read the central.tst file, make sure it won’t create any MQ objects you are unhappy with on your

MQ queue manager.

 8. Distribute all the scripts to all machines

Copy all of the scripts to all of the machines on which you will be running MQe queue managers.

This step spreads knowledge to all the machines in your network, of the host names, port numbers,

and queue manager names that you have decided to use. If any of these files are changed, delete all

MQe queue managers and restart from this point in the instructions.

 9. Run the central.tst script on your new MQ queue manger

The central.tst script is in a format used by the runmqsc sample program supplied with MQ. Pipe

the central.tst file into runmqsc to configure your MQ queue manger For example:

runmqsc CENTRAL00QM < Central.tst

Use the MQ Explorer to view the resultant MQ objects that are created. Milestone: You have now set

up your MQ system.

10. Run the CreateGatewayQM script

The CreateGatewayQM script uses the details in the CentralQMDetails and GatewayQMDetails

scripts to create a gateway queue manager. The script needs no parameters.

11. Check for the test message

The script that creates the queue manager sends a test message to the MQ system. Use the MQ

Explorer tool to look at the target queue (BRANCH.SALES.QUEUE by default) to make sure a test

message arrived. The body of the test message contains the string ABCD. Milestone: You have now set

up your MQe gateway queue manager.

12. Keep the gateway queue manager running

During the running of the CreateGatewayQM script, an example server program is invoked to start

the gateway queue manager, and keep it running. An AWT application runs, displaying a window

on the screen.Do not close this window. All the time this window is active, the MQe gateway queue

manager it represents is also active. Closing the window closes the MQe gateway queue manager

and breaks the path from the branch queue managers to the MQ queue manager.

13. Create a branch queue manager

If your branch queue manager needs to run on a different machine, you may need to edit the

JavaEnv.bat file to set up your local environment. Create a command-line session, and call

JavaEnv.bat as before to set up your environment. Use the CreateBranchQM script to create a branch

queue manager. The syntax of the command is :

CreateBranchQM.bat branchNumber portListeningOn

Where:

branchNumber

Is a 3-digit number, padded with leading zeros, indicating which branch the queue manager

is being created for. For example, 000, 001, 002...

portListeningOn

Is a port on which the device branch queue manager listens on for administration requests.

For example, 8082, 8083...

Note: The port must not already be in use
Hint: On Windows machines, use the netstat -a command to view the list of ports in use.

Chapter 1. How to configure MQe objects 37

During the script, a test message is sent to your MQ system. Use the MQ Explorer to make

sure the test message arrived successfully. The body of the test message contains the string

ABCD.

 At the end of the script, an example program is used to start the MQe queue manager. An

AWT application runs, displaying a window on the screen.As with the gateway queue

manager, do not close this window until you wish to close the queue manager.
14. Explore the branch queue manager

The branch queue manager is set up with a channel manager and listener, on the port you specified

when you created it, and the Primary Network connection is HttpTcpipAdapter. As a result, you can

use the MQe_Explorer to view the queue managers. Refer to “How to use MQe_Explorer to view the

configuration.” Milestone: You now have a branch queue manager set up.

Note: An MQe queue manager should be named uniquely. Never create two queue managers with

the same name.

You can now use the MQe_Explorer to view the configuration.

How to use MQe_Explorer to view the configuration

To use the MQe_Explorer to view your configuration:

1. Start the MQe_Explorer.exe program.

2. Stop one of the branch queue managers, for example, BRANCH002QM.

3. Open the BRANCH002QM.ini file, and navigate from there.

38 WebSphere MQ Everyplace V2.0.2

Chapter 2. Configuring MQe objects

Configuring queue managers

Introduction to configuring queue managers

The queue manager is the central component of MQe.

It provides the main programming interface for application programs, and it also owns queues,

communication and MQ bridge subsystems.

Java and C differ significantly in the area of creating and deleting queue managers:

v In Java, general queue manager configuration is performed using administration messages, but creation

and deletion is performed using the MQeQueueManagerConfigure class.

v In C, all administration is performed using the administrator API.

Java

Queue managers are created and deleted using the MQeQueueManagerConfigure class. General queue

manager administration is performed using the MQeQueueManagerAdminMsg class which inherits from

MQeAdminMsg.

The following actions are applicable to queue managers:

v MQeAdminMsg.Action_Inquire

v MQeAdminMsg.Action_InquireAll

v MQeAdminMsg.Action_Update

The MQeAdminMsg.Admin_Name field in the administration message is used to identify the queue manager.

The method setName(String) can be used set this field in the administration message.

Note: For all administration messages, information relating to the destination queue manager, reply

queue, and so on, must be set. This is referred to in the examples below as priming the administration

message.

The examples show how to create the administration message to achieve the required result. The message

then needs to be sent, and the administration reply messages checked as required.

C

All administration is done via the administration API. These APIs are of the form:

MQERETURN MQEPUBLISHED mqeAdministrator_QueueManager_action();

Where action is one of the following:

create Create a Queue Manager

delete Delete a Queue Manager

update

Updates the properties of a queue manager

inquire

Inquires the properties of a queue manager

addAlias

Adds a Queue Manager Alias

 39

removeAlias

Removes a Queue Manager Alias

listAliasNames

Lists all the aliases present for this qmgr.

isAlias

Determines if a qmgr name is an alias or a real qmgr.

 For the create update and inquire calls a structure is passed in for various parameters.

Queue manager attributes

Queue Managers have a number of attributes, which are listed below. Information about these attributes

is passed either via API parameters, or configuration structures or MQeField objects.

The first list shows all the possible queue manager attributes and indicates which are available in the

code bases.

 Table 12. Queue Manager attributes

Attribute Description Java Native C Read/Write

Bridge Capable Determines if the

queue manager has

MQBridge

functionality

Yes Yes (but always false) Read

Channel Attribute

Rule

The attribute rule to

be used by this queue

manager’s channels

Yes No Read/Write

Channel Timeout The timeout to be

used by this queue

manager’s outgoing

channels

Yes Yes Read/Write

Communications

Listeners

The list of listeners

defined on this queue

manager

Yes No Read

Connections The list of

connections known

by this queue

manager

Yes Yes Read

Description A free-format textual

description of this

queue manager.

Yes Yes Read/Write

Maximum

Transmission Threads

The maximum

number of

background

transmission threads

supported by this

queue manager.

Yes No Read/Write

Queues The list of queues

owned by this queue

manager

Yes Yes Read

Queue Store The location where

this queue manager

will store its queues

Yes Yes Read/Write

40 WebSphere MQ Everyplace V2.0.2

Table 12. Queue Manager attributes (continued)

Attribute Description Java Native C Read/Write

Qmgr Rules The rules class which

will be used by this

queue manager

Yes Yes Read/Write

Java

The parameters in Java are passed in using MQeFields objects. The values are passed using field elements

of specific types.

The field names are as follows. All the symbolic names are public static final strings in the

MQeQueueManagerAdminMsg class.

 Table 13. Java Parameters passed in using MQeFields

Element type

Field name constants

Symbolic Value

boolean QMgr_BridgeCapable bridge_capable

ascii QMgr_ChnlAttrRules chnlattrrules

long QMgr_ChnlTimeout chnltimeout

fields array QMgr_CommsListeners commsls

fields array QMgr_Connections conns

unicode QMgr_Description desc

int QMgr_MaximumTransmissionThreads maximumTransmissionThreads

fields arrayEach element

contains a fields object

containing

{QMgr_QueueName,

QMgr_QueueQMgrName,

QMgr_QueueType}

QMgr_Queues queues

ascii QMgr_QueueStore queueStore

ascii QMgr_Rules rules

C

All the C parameters are passed in using a parameter structure. This structure needs to be initialized

before it can be used - set it to QMGR_INIT_VAL.

 Table 14. Parameter structures for C

Element Type Element Name Notes

MQEINT32 opFlags Flags to indicate what parts of this

structure have been set/requested

MQeStringHndl hDescription

MQeStringHndl hQueueManagerRules

MQEINT64 channelTimeOut

MQeStringHndl hQueueStore

MQeVectorHndl hQueues

MQeVectorHndl hConnections

MQEBOOL bridgeCapable Valid values {MQE_TRUE,

MQE_FALSE}

Chapter 2. Configuring MQe objects 41

Create a queue manager

Java

MQeFields parms = new MQeFields();

MQeFields queueManagerParameters = new MQeFields();

queueManagerParameters.putAscii(MQeQueueManager.Name, "MyQmgrName");

parms.putFields(MQeQueueManager.QueueManager, queueManagerParameters);

MQeFields registryParameters = new MQeFields();

registryParameters.putAscii(MQeRegistry.DirName, "c:\MyRegLocation");

parms.putFields(MQeQueueManager.Registry, registryParameters);

String queueStore = "MsgLog:" + java.io.File.separator + "queues";

MQeQueueManagerConfigure qmConfig = new MQeQueueManagerConfigure(parms, queueStore);

qmConfig.defineQueueManager();

qmConfig.defineDefaultSystemQueue();

qmConfig.defineDefaultDeadLetterQueue();

qmConfig.defineDefaultAdminReplyQueue();

qmConfig.defineDefaultAdminQueue();

qmConfig.close();

C

The information for the queue is passed in via a structure to the API. Two important points are:

v The structure is initialized using QMGR_INIT_VAL

v The properties that are set are indicated using the opFlags elements of the structure. Each property has

a corresponding bit mask – these need to be bitwise ORed together.
MQeQueueManagerParms qmParams = QMGR_INIT_VAL;

MQeRegistryParms regParams = REGISTRY_INIT_VAL;

/* String parameters for the location of the msg store */

qmParams.hQueueStore = hQueueStore;

/* Indicate what parts of the structure have been set */

qmParams.opFlags = QMGR_Q_STORE_OP;

/* ... create the registry parameters - minium that are required */

regParams.hBaseLocationName = hRegistryDir;

rc = mqeAdministrator_QueueManager_create(hAdministrator,

 &exceptBlk,

 &hQueueManager,

 hLocalQMName,

 &qmParams,

 ®Params);

Delete a queue manager

Java

MQeFields parms = new MQeFields();

MQeFields queueManagerParameters = new MQeFields();

queueManagerParameters.putAscii(MQeQueueManager.Name, "MyQmgrName");

parms.putFields(MQeQueueManager.QueueManager, queueManagerParameters);

MQeFields registryParameters = new MQeFields();

registryParameters.putAscii(MQeRegistry.DirName, "c:\MyRegLocation");

parms.putFields(MQeQueueManager.Registry, registryParameters);

String queueStore = "MsgLog:" + java.io.File.separator + "queues";

MQeQueueManagerConfigure qmConfig =

42 WebSphere MQ Everyplace V2.0.2

new MQeQueueManagerConfigure(parms, queueStore);

qmConfig.deleteDefaultAdminReplyQueue();

qmConfig.deleteDefaultAdminQueue();

qmConfig.deleteDefaultDeadLetterQueue();

qmConfig.deleteDefaultSystemQueue();

qmConfig.deleteQueueManager();

qmConfig.close();

C

In order to delete a queue manager:

v The queue manager must be stopped

v All queues must be deleted

v All connection definitions must be deleted

Note there is no parameter structure here – just a Queue Manager handle.

rc = mqeAdministrator_QueueManager_delete(hAdministrator,

 pExceptBlock);

if (EC(&exceptBlk) == MQERETURN_QUEUE_MANAGER_ERROR)

 {

 if(ERC(&exceptBlk) == MQEREASON_QMGR_ACTIVATED)

 {

 /* qmgr not been stopped - take appropriate actions */

 }

 else if(ERC(&exceptBlk) == MQEREASON_QMGR_QUEUE_EXISTS)

 {

 /* queues exist - take appropriate actions */

 }

 else if(ERC(&exceptBlk) == MQEREASON_CONNECTION_DEFINITION_EXISTS)

 {

 /* connection defs exist - take appropriate actions */

 }

 else

 {

 /* unknown error */

 }

 }

Inquire and inquire all

In general, when inquiring on objects in MQe, you can:

v ask for particular parameters which are of interest using inquire

v ask for all information using inquireAll.

Java

Inquire

//inquire

//Request the value of description

try {

 //Prime admin message with targetQM name, reply to queue, and so on

 MQeAdminMsg msg = (MQeAdminMsg) new MQeQueueManagerAdminMsg();

 parms = new MQeFields();

 parms.putUnicode(MQeQueueManagerAdminMsg.QMgr_Description, null);

 //set the name of the queue to inquire on

 msg.setName("ExampleQM");

 //Set the action required and its parameters into the message

 msg.inquire(parms);

Chapter 2. Configuring MQe objects 43

//Put message to target admin queue (code not shown)

 } catch (Exception e) {

 System.err.println("Failure ! " + e.toString());

}

Inquire all

//inquire all

try {

 MQeAdminMsg msg = (MQeAdminMsg) new MQeQueueManagerAdminMsg();

 //set the name of the queue to inquire on

 msg.setName("ExampleQM");

 //Set the action required and its parameters into the message

 msg.inquireAll(new MQeFields());

 } catch (Exception e) {

 System.err.println("Failure ! " + e.toString());

 }

C

The example below shows how to inquire on the list of queues. This is the most complex inquire that can

be performed as a vector of structures is returned. All these structures must be freed as shown below.

This queue info structure contains three strings and an MQeQueueType:

v String: QueueQueueManager Name. Must be freed

v String: QueueName. Must be freed

v Constant string: The Java Class Name - need not be freed

v Primitive: MQeQueueType.

The Queue Info structure must be freed using the mqeMemory_free function. Please see C Programming

Reference for more information on the mqeMemory function.

As well as information on queues, a vector of connection definitions can be returned. This should also be

freed when it has been processed.

 MQeQueueManagerParms qmParms = QMGR_INIT_VAL;

 qmParms.opFlags |= QMGR_QUEUES_OP;

 rc = mqeAdministrator_QueueManager_inquire(hAdministrator,

 &exceptBlk,

 &qmParms);

 if (MQERETURN_OK == rc) {

 /* This has returned a Vector of information */

 /* blocks about the queues */

 MQeVectorHndl hListQueues = qmParms.hQueues;

 MQEINT32 numberQueues;

 rc = mqeVector_size(hListQueues,&exceptBlk,&numberQueues);

 if (MQERETURN_OK == rc) {

 MQEINT32 count;

 /* Loop round the array to get the information */

 /* about the queues */

 for (count=0;count<numberQueues;count++) {

 MQeQMgrQParms *pQueueInfo;

 rc = mqeVector_removeAt(hListQueues,

 &exceptBlk,

 &pQueueInfo,

 count);

 if (MQERETURN_OK == rc) {

 /* Queue QueueManager - FREE THIS STRING when done */

 MQeStringHndl hQMgrName = pQueueInfo->hOwnerQMgrName;

 /* QueueName - FREE THIS STRING*/

 MQeStringHndl hQueueName = pQueueInfo->hQMgrQName;

44 WebSphere MQ Everyplace V2.0.2

/* A Constant String matching the Java Class Name */

 /* for this queue one of

 * MQE_QUEUE_LOCAL

 * MQE_QUEUE_REMOTE

 * MQE_QUEUE_ADMIN

 * MQE_QUEUE_HOME_SERVER

 */

 MQeStringHndl hQueueClassName = pQueueInfo->hQueueType;

 /* Will be set from MQeQueueType */

 MQeQueueType queueType = pQueueInfo->queueExactType;

 (void)mqeMemory_free(&exceptBlk,pQueueInfo);

 }

 }

 }

 /* the vector needs to be freed as well */

 mqeVector_free(hListQueues,&exceptBlk);

 }

Update

Java

//Set name of resource to be managed

try {

 MQeAdminMsg msg = (MQeAdminMsg) new MQeQueueManagerAdminMsg();

 msg.setName("ExampleQM");

 //Change the value of description

 parms = new MQeFields();

 Parms.putUnicode(MQeQueueManagerAdminMsg.QMgr_Description,

 "Change description ...");

 //Set the action required and its parameters into the message

 msg.update(parms);

 } catch (Exception e) {

 System.err.println("Failure ! " + e.toString());

}

C

This shows how to update the description. Note that the queues and so on, can not be updated, via this

API - they must be done via the specific Queue update methods.

Updates of the Description, ChannelTimeout and QueueStore are allowed. QueueStore changes will only

take effect for any new queues that are created.

 MQeQueueManagerParms qmParms = QMGR_INIT_VAL;

 qmParms.opFlags | = QMGR_DESC_OP;

 qmParms.hDescription = hNewDescription;

 rc = mqeAdministrator_QueueManager_update(hAdministrator,

 &exceptBlk,

 &qmParms);

Add alias

Note: Note that it is not possible to chain aliases together. So QM1 can’t be an alias for QM2, which itself

is an alias for QM3.

Chapter 2. Configuring MQe objects 45

Java

In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.

Refer to the Configuring a Connection section for more information.

C

The real name of the queue manager is hRealTargetQMname, and the alias to this is hAliasName.

Note that these strings will be duplicated internally, so could be freed if not required elsewhere.

rc = mqeAdministrator_QueueManager_addAlias(hAdministrator,

 &exceptBlk,

 hAliasName,

 hRealTargetQMName);

Remove alias

Java

In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.

Refer to the Configuring a Connection section for more information.

C

Removes the Alias hAliasName. An error is returned if this is not present.

rc = mqeAdministrator_QueueManager_removeAlias(hAdministrator,

 &exceptBlk,

 hAliasName);

List alias names

Java

In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.

Refer to the Configuring a Connection section for more information.

C

Lists all aliases, into a new MQeVector. These are the Alias names.

Note that when the vector is freed, its contents will automatically also be freed.

MQeVectorHndl hAliasList;

rc = mqeAdministrator_QueueManager_listAliasNames(hAdministrator,

 &exceptBlk,

 &hAliasList);

if (MQERETURN_OK == rc) {

 /* do processing */

 rc = mqeVector_free(hAliasList,&exceptBlk);

}

IsAlias

Java

In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.

Refer to the Configuring a Connection section for more information.

46 WebSphere MQ Everyplace V2.0.2

C

MQEBOOL isAlias;

rc = mqeAdministrator_QueueManager_isAlias(hAdministrator,

 &exceptBlk,

 hName,

 &isAlias);

if (isAlias==MQE_TRUE) {

 /* name is alias */

}

Configuring a queue manager using memory only

This topic applies only to the Java code base.

It is sometimes required that applications have a queue manager which exists in memory only. MQe

Version 2.0 provides the ability to configure and use a queue manager using memory resources only,

without the need to persist any information at all to disk.

An MQe queue manager normally uses two mechanisms to store data:

v Configuration information is stored via a registry to an adapter.

v Messages are stored via a message store, which in turn uses an adapter to store data.

The default is the MQeDiskFieldsAdapter, which persists information to disk.

Using the MQeMemoryFieldsAdapter instead of the MQeDiskFieldsAdapter for both of these tasks

allows the queue manager to be defined, used to transmit and store messages, and deleted all without

accessing a disk.

In-memory MQe queue managers have the following characteristics:

v Functionally they can do everything other MQe queue managers can do.

v Nothing is stored to disk.

v Messages and configuration stored to registries or queues are nonpersistent. They are lost if all

instances of the MQeMemoryFieldsAdapter are garbage collected, or in the event of the JVM being

shut down.

v The same steps are required to configure the in-memory queue manager, except they are required

every time the JVM is started.

v Transient queue managers which are created, used, and destroyed can be easier to implement, with no

clean-up problems if the JVM terminates abnormally.

Solutions that find this particular configuration of an MQe queue manager useful have the following

properties:

v Disk space is not available or nonexistent, for example in Java applets.

v Message traffic is synchronous only to remote queue managers.

v The application requires no local message store which cannot be recovered from elsewhere if the JVM

is terminated.

v The highest performance is required. Memory operations are much faster than disk operations, so

configuring a queue manager using purely memory resources normally increases performance of queue

manager configurations which, otherwise store information to disk. Using too much memory can result

in thrashing, and synchronous remote queues ususally run at the same speed on a memory-hosted or

disk-hosted queue manager.

v Creation and sending of messages for which no replies are required, though in-memory queue

managers can obtain replies, you would normally leave replies on persistent queue managers and

browse or get them using a synchronous remote queue.

Chapter 2. Configuring MQe objects 47

An example of the configuration technique can be seen in the examples.queuemanager.MQeMemoryQM class.

Note that the MQeMemoryFieldsAdapter is instantiated explicitly at the start, and a reference is held

until the point where the queue manager, and messages it contains are no longer required.

Note also that it is still important that in-memory queue managers have names which are unique within

the messaging network.

Configuring local queues

Introduction

Local queues, as the name suggests, are local to the owning queue manager.

The name of a queue is formed from the target queue manager name (for a local queue this is the name

of the queue manager that owns the queue), and a unique name for the queue on that queue manager.

These two components of a queue name have ASCII values.

The method setName(String, String) can be used to set the QueueName and the owning

QueueManagerName in the administration message.

Java

The simplest type of queue is a local queue, managed by class MQeQueueAdminMsg.

For other types of queue there is a corresponding administration message that inherits from

MQeQueueAdminMsg.

The MQeQueueAdminMsg inherits from the MQeAdminMsg.

The following actions are applicable on queues:

v MQeAdminMsg.Action_Create

v MQeAdminMsg.Action_Delete

v MQeAdminMsg.Action_Inquire

v MQeAdminMsg.Action_InquireAll

v MQeAdminMsg.Action_Update

v MQeQueueAdminMsg.Action_AddAlias

v MQeQueueAdminMsg.Action_RemoveAlias

Note: For all administration messages, information relating to the destination queue manager must be

set. This is referred to in the examples below as priming the administration message. The examples show

how to create the administration message to achieve the required result. The messages needs then to be

sent, and the admin reply messages checked as required.

C

All administration is done via the administration APIs, which are of the form:

MQERETURN MQEPUBLISHED mqeAdministrator_queuetype_action();

Where action can be one of the following:

create Create a Queue

delete Delete a Queue

update

Update the properties of a queue

48 WebSphere MQ Everyplace V2.0.2

inquire

Inquire the properties of a queue

listAliasName

List all the Queue Aliases

addAlias

Add a Queue Alias

removeAlias

Remove a Queue Alias

 QueueType can be one of the following:

v LocalQueue

v SyncRemoteQueue

v AsyncRemoteQueue

v AdminQueue

v HomeServerQueue

For the create, update, and inquire calls, a structure is passed in as a parameter. There is a general

structure for elements that are applicable to all queues. For more specialized forms of queues, such as

HomeServer, there are structures which are composed of a reference to the general structure plus

additional information. For more information, refer to “Configuring with the C administrator API” on

page 30.

Local queue properties

Queues have a number of properties, which are listed below. Information about these properties is passed

either via discrete API parameters or configuration structures (MQeFields) objects.

The first list shows all the possible queue properties and indicates which are available in the code bases.

All other queues will have these properties also.

 Table 15. Queue properties available in each code base

Property Description Java Native Read/Write

Queue name Identifies the name of

the local queue

Yes Yes Read (write on create)

Local qMgr The name of the local

queue manager

owning the queue

Yes Yes Read (write on create)

Adapter The class (or alias) of

a storage adapter that

provides access to the

message storage

medium (see Storage

adapters on page 116)

Yes No – only one

adapter in code base

Read

Alias Alias names are

optional alternative

names for the queue

(see below)

Yes Yes Read/Write

Attribute rule The attribute class (or

alias) associated with

the security attributes

of the queue (for

more details see later

in this chapter)

Yes No Read/Write

Chapter 2. Configuring MQe objects 49

Table 15. Queue properties available in each code base (continued)

Property Description Java Native Read/Write

Authenticator The authenticator

class (or alias)

associated with the

queue (for more

details see later in

this chapter)

Yes No Read/Write

Class The class (or alias)

used to realize the

local queue

Yes No Read

Compressor The compressor class

(or alias) associated

with the queue (for

more details see later

in this chapter)

Yes No Read/Write

Cryptor The cryptor class (or

alias) associated with

the queue (for more

details see later in

this chapter)

Yes No Read/Write

Description An arbitrary string

describing the queue

Yes Yes Read/Write

Expiry The time after which

messages placed on

the queue expire

Yes Yes Read/Write

Maximum depth The maximum

number of messages

that may be placed

on the queue

Yes Yes Read/Write

Maximum message

length

The maximum length

of a message that

may be placed on the

queue

Yes Yes Read/Write

Message store The class (or alias)

that determines how

messages on the local

queue are stored

Yes No – only one

message store

available

Read (write on create)

Path The location of the

queue store

Yes Yes Read

Priority The default priority

associated with

messages on the

queue

Yes Yes Read/Write

Rule The class (or alias) of

the rule associated

with the queue;

determines behavior

when there is a

change in state for

the queue

Yes No – rules handled

on global level

Read/Write

50 WebSphere MQ Everyplace V2.0.2

Table 15. Queue properties available in each code base (continued)

Property Description Java Native Read/Write

Target registry The target registry to

be used with the

authenticator class

(that is, None, Queue,

or Queue manager)

Yes No Read/Write

Java

The parameters in Java are passed in using MQeFields objects. The values are passed using field elements

of specific types.

The field names are as follows. All the symbolic names are public static final static Strings on the

MQeQueueAdminMsg class.

 Table 16. Queue properties available in Java

Element type

Field name constants

Notes Symbolic Value

Unicode Queue_CreationDate qcd

Int Queue_CurrentSize qcs

Unicode Queue_Description qd

Long Queue_Expiry qe

Ascii Queue_FileDesc qfd

Int Queue_MaxMsgSize qms If no limit, use Queue_NoLimit

(which is -1)

Int Queue_MaxQSize qmqs If no limit, use Queue_NoLimit

(which is -1)

Ascii Queue_Mode qm Possible values are given by the

constants:

Queue_Asynchronous

Queue_Synchronous

Byte Queue_Priority qp Between 0 and 9 inclusive

Ascii array Queue_QAliasNameList qanl

Ascii Queue_QMgrName qqmn

Ascii Queue_AttrRule qar

Ascii Queue_Authenticator qau

Ascii Queue_Compressor qco

Ascii Queue_Cryptor qcr

Byte Queue_TargetRegistry qtr Possible values are given by the

constants: Queue_RegistryNone

Queue_RegistryQMgr

Queue_RegistryQueue

Ascii Queue_Rule qr

C

All the C parameters are passed in using a parameter structure. This structure needs to be initialized

before it can be used by setting it to LOCAL_Q_INIT_VAL.

Chapter 2. Configuring MQe objects 51

Table 17. Queue properties available in C

Element type Element name Description

MQEINT32 opFlags Flags to indicate what parts of this

structure have been set/requested

MQeStringHndl hDescription Description of the queue

MQeStringHndl hFileDesc File Description for the Message

Store (Read/Create/Write)

MQeVectorHndl hQAliasNameList Alias List

MQEINT64 queueExpiry Queue Expiry

MQEINT64 queueCreationDate Queue Creation Date

MQEINT32 queueMaxMsgSize Queue Max Message Size

MQEINT32 queueMaxQSize Maximum Number of messages on

the queue

MQEINT32 queueCurrentSize Current® size of the Queue (all msg

states)

MQEBOOL queueActive Indication of the Queue’s state

MQEBYTE queuePriority Priority of messages on the queue

Create a local queue

When creating a queue, a number of parameters can be specified. In this example a queue is created,

with a maximum size of 200 messages, expiry time of 20,000ms, and a description.

Java

First of all create the MQeQueueAdminMsg object. This needs to be primed to set up the origin queue

manager administration reply.

/* Create an empty queue admin message and parameters field */

MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

MQeFields parms = new MQeFields();

/** Prime message with who to reply to and a unique identifier */

/* Set name of queue to manage */

msg.setName(qMgrName, queueName);

/* Add any characteristics of queue here, otherwise */

/* characteristics will be left to default values. */

parms.putUnicode(MQeQueueAdminMsg.Queue_Description, description);

parms.putInt32(MQeQueueAdminMsg.Queue_MaxQSize,200);

parms.putInt32(MQeQueueAdminMsg. Queue_Expiry, 20000);_

/* Set the admin action to create a new queue */

msg.create(parms);

Once the Admin message has been created, it must be sent to the local admin queue.

C

The information for the queue is passed in via a structure to the API. Two important points are:

v The structure is initialized using LOCAL_Q_INIT_VAL

v The properties that are set are indicated using the opFlags elements of the structure. Each property has

a corresponding bit mask, which needs to be ORed together. Omitting the QUEUE_DESC_OP would mean

that the queue does not have its description set, even though a value was present in the structure.

52 WebSphere MQ Everyplace V2.0.2

MQeLocalQParms localQParms = LOCAL_Q_INIT_VAL;

localQParms.queueMaxQSize = 200;

localQParms.queueExpiry = 20000;

localQParms.queueDescription = hDescription;

//this is an MQeStringHndl

localQParms.opFlags = QUEUE_MAX_Q_SIZE_OP | QUEUE_EXPIRY_OP | QUEUE_DESC_OP;

rc = mqeAdministrator_LocalQueue_create(hAdministrator,

 &exceptBlk,

 hLocalQueueName,

 hLocalQMName,

 &localQParms);

Delete a local queue

Before a queue is deleted, it must be empty. Create a new administration message and set the delete

action.

Java

/* Create an empty queue admin message and parameters field */

MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

MQeFields parms = new MQeFields();

/** Prime message with who to reply to and a unique identifier */

/* Set name of queue to manage */

msg.setName(qMgrName, queueName);

/* Set the admin action to create a new queue */

msg.delete(parms);

C

The deletion of a queue requires that the queue be empty of messages.

Note that there is no parameter structure here – just the QueueName and QueueManager name.

rc = mqeAdministrator_LocalQueue_delete(hAdministrator,

 &exceptBlk,

 hLocalQueueName,

 hLocalQMName);

if (EC(&exceptBlk) == MQERETURN_QUEUE_ERROR

 && ERC(&exceptBlk) == MQEREASON_QMGR_QUEUE_NOT_EMPTY)

 {

 /* queue not empty - take appropriate actions */

 }

Add alias

Queues can be known by multiple names or aliases. If you try to add an alias that already exists, you

will get an error.

Java

To add an alias name to a queue, use the addAlias method on the MQeQueueAdminMsg.

With admin messages multiple add alias and remove alias operations can be done in one admin message.

Chapter 2. Configuring MQe objects 53

C

Use the addAlias() method to add an alias name.

Note that aliases have to be added one at a time.

For other types of queues, such as Remote Queues, the format of the API remains the same, just change

LocalQueue to, for example, SyncRemoteQueue.

rc = mqeAdministrator_LocalQueue_addAlias(hAdministrator,

 &exceptBlk,

 hLocalQueueName,

 hLocalQMName,

 hAliasName);

if (EC(&exceptBlk) == MQERETURN_NOTHING_TO_DO

 && ERC(&exceptBlk) ==MQEREASON_DUPLICATE)

 {

 /* already has alias */

 }

List aliases

Use the listAlias() method to list the aliases in use.

Java

To get a list of Alias Names using Administration Messages, use the inquire action and specify a field of

Queue_QAliasNameList in the parameters Fields Object.

C

A list of aliases can be obtained from the C API by using the following API. Note that the Vector must be

freed after use.

if (MQERETURN_OK == rc)

 {

 MQeVectorHndl hVectorAliases;

 rc = mqeAdministrator_LocalQueue_listAliasNames(hAdministrator,

 &exceptBlk,

 hLocalQueueName,

 hLocalQMName,

 &hVectorAliases);

 /* process the aliases vector here */

 rc = mqeVector_free(hVectorAliases,&exceptBlk);

 }

/* Create an empty queue admin message and parameters field */

MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/* Prime message with who to reply to and a unique identifier

 * and set the name of the QueueManager and Queue

 */

/* Add a name that will be the alias of this queue */

msg.addAlias("Fred");

/* Set the admin action to update the queue */

msg.update(parms);

Figure 13. Adding an alias to a queue in Java

54 WebSphere MQ Everyplace V2.0.2

Remove alias

Note that removing an alias could potentially alter the routing of messages. Therefore, this operation

should be treated with care.

Java

/* Create an empty queue admin message and parameters field */

MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/* Prime the message with who to reply to and a unique identifier

/* and set the name of the QueueManager and Queue */

/* Specify the alias of the queue to be removed */

msg.removeAlias("Fred");

/* Set the admin action to update the queue */

msg.update(parms);

C

rc = mqeAdministrator_LocalQueue_removeAlias(hAdministrator,

 &exceptBlk,

 hLocalQueueName,

 hLocalQMName,

 hAliasName);

if (EC(&exceptBlk) == MQERETURN_NOTHING_TO_DO

 && ERC(&exceptBlk) == MQEREASON_NO_SUCH_QUEUE_ALIAS)

 {

 /* alias doesn’t exist */

 }

Update

Some of the properties of a queue can be updated.

This is only those properties which are marked as writable in the table of properties.

A similar technique is used to update and inquire upon other types of queues, such as remote and home

server queues.

Java

The parameter field object needs to be set with field elements that need to be updated.

/* Create an empty queue admin message and parameters field */

MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/* Prime the message with who to reply to and a unique identifier

 * and set the name of the QueueManager and Queue

 */

MQeFields params = new MQeFields();

/* Add a new description for the queue */

msg.putAscii(MQeQueueAdminMsg.Queue_Descrpition,"New Description");

/* Set the admin action to update the queue */

msg.update(parms);

C

In a similar manner to creating the Queue, the parameter structure needs to be set with the details to

update.

For example, to update the description of the queue:

Chapter 2. Configuring MQe objects 55

MQeLocalQParms localQParms = LOCAL_Q_INIT_VAL;

localQParms.queueDescription = hDescription; //MQeStringHndl

localQParms.opFlags |= QUEUE_DESC_OP;

rc = mqeAdministrator_LocalQueue_update(hAdministrator,

 &exceptBlk,

 hLocalQueueName,

 hLocalQMName,

 &localQParms);

Inquire and inquire all

It is possible to inquire the properties of queue by using the inquire action.

The details that are required are set.

When using the Java administration message, the administration reply message contains a fields object

with the required information.

When using the C API, a structure will be filled out with the requested information.

Java

There are two ways of inquiring on a queue: inquire and inquireAll.

InquireAll will return a Fields object in the admin reply message.

/* Create an empty queue admin message and parameters field*/

 MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/*Prime message with who to reply to and a unique identifier

 * Set the admin action to get all characteristics of queue manager.

 */

msg.inquireAll(new MQeFields());

/* get message back from the admin reply queue to match */

/* and retrieve the results from the reply message */

The fields object that is returned in the administration reply message is populated with all of the

properties of the queue. To get access to a specific value use the field labels as in the property table

above. For example, to get at the queue description, assuming respMsg is the administration reply

message:

// all on one line:

String description = respMsg.getOutputFields().

 getAscii(com.ibm.mqe.administration.Queue_Description)

Instead of requesting all the properties of a queue, particular ones can be requested and returned. If, for

example, only the description is required the following can be used:

MQeFields requestedProperties = new MQeFields();

requestedProperties.putAscii(Queue_Description);

msg.inquire(requestedProperties)

/* Retrieve the administration reply */

/* message from the relevant queue */

/* Then retrieve the returned MQeFields */

/* object from this message */

MQeFields outputFields = respMsg.getOutputFields();

outputFields now contains the field Queue_Description only.

56 WebSphere MQ Everyplace V2.0.2

C

The API takes the same parameter structure that the other APIs (such as create) take.

To specify the elements that are of interest, set opFlags accordingly.

To get, for example, the queue maximum depth, expiry, and description, set opflags as follows:

MQeLocalQParms params = LOCAL_Q_INIT_VAL;

params.opflags = QUEUE_MAX_Q_SIZE_OP | QUEUE_EXPIRY_OP | QUEUE_DESC_OP;

rc = mqeAdministrator_LocalQueue_inquire(hAdministrator,

 &exceptBlk,

 hQueueName,

 hQueueMgrName,

 ¶ms);

if (MQERETURN_OK == rc) {

 MQEINT64 queueExpiry = params.queueExpiry;

 MQEINT32 queueMaxSize = params.queueMaxQSize;

 MQeStringHndl queueDescription = params. hDescription;

}

Message storage adapter

A local queue uses a queue store adapter to handle its communications with the storage device. Adapters

are interfaces between MQe and hardware devices, such as disks or networks, or software, such as

databases. Adapters are designed to be pluggable components, allowing the queue store to be easily

changed.

All types of queue other than those that are remote and synchronous require a message store to store

their messages. Each queue can specify what type of store to use, and where it is located. The queue

characteristic Queue_FileDesc is used to specify the type of message store and to provide parameters for

it. The file descriptor takes the form:

v adapterClass:adapterParameters or

v adapterAlias:adapterParameters

For example assuming MsgLog has been defined as an MQe alias:

MsgLog:d:\QueueManager\ServerQM12\Queues

A number of storage adapters are provided and include:

v MQeDiskFieldsAdapter to store messages on a file system

v MQeMemoryFieldsAdapter to store messages in memory

v Other storage adapters can be found in package com.ibm.mqe.adapters

The choice of adapter determines the persistence and resilience of messages. For instance if a memory

adapter is used then the messages are only as resilient as the memory. Memory may be a much faster

medium than disk but is highly volatile compared to disk. Hence the choice of adapter is an important

one.

If a message store is not defined when creating a queue, the default is to use the message store that was

specified when the queue manager was created.

Note that under the C code base, there is only one supplied message store, and one adapter, therefore the

format of the QueueStore is fixed (the MsgLog is left as a placeholder for future expansion).

Examples where this option would be used are:

v When you want to use the MemoryFieldsAdapter to store data in memory and not on disk

Chapter 2. Configuring MQe objects 57

v Alternative Message Stores are provided, such as the ShortFilename message store for 4690

Take the following into consideration when setting the Queue_FileDesc field:

v Ensure that the correct syntax is used for the system that the queue resides on. For instance, on a

Windows system use ″\″ as a file separator, and on UNIX systems use ″/″. In some cases it may be

possible to use either but this is dependent upon the support provided by the JVM (Java Virtual

Machine) that the queue manager runs in. As well as file separator differences, some systems such as

Windows use drive letters, but others such as UNIX do not.

v On some systems it is possible to specify relative directories (″ .\″) on others it is not. Even on those

where relative directories can be specified, they should be used with great caution as the current

directory can be changed during the lifetime of the JVM. Such a change causes problems when

interacting with queues using relative directories.

Configuring remote queues

Introduction

Consider two QueueManagers, QM_A and QM_B:

v There is a queue on QM_B called Queue_One – which is a local queue on QM_B. Initially this is only

accessible to the QM_B, QM_A has no access to it.

v In order to get access to Queue_One, QM_A needs a Remote Queue Definition (usually abbreviated to

RemoteQueue).

v When referring to the Remote Queue Definition, the term QueueQueueManager is used to refer to

QM_B, that is, the QueueQueueManager is the QueueManager upon which the LocalQueue referenced

by the Remote Queue Definition resides.

In summary, remote queues are references to queues that reside on a queue manager that is remote to

where the definition is. The remote queue has the same name as the target queue but the remote queue

definition also identifies the owning or target queue manager of the real queue.

The remote definition of the queue should, in most cases, match that of the real queue. If this is not the

case different results may be seen when interacting with the queue. For instance:

For asynchronous queues if the max message size on the remote definition is greater than that on the real

queue, the message is accepted for storage on the remote queue but may be rejected when moved to the

real queue. The message is not lost, it remains on the remote queue but cannot be delivered.

If the security characteristics for a synchronous queue do not match, MQe negotiates with the real queue

to decide what security characteristics should be used. In some cases, the message put is successful, in

others an attribute mismatch exception is returned.

Structures

The constants provided for setting the Transport and Transporter XOR parameter are provided for

backward compatibility. The structure for Asynchronous Remote Queues is the same, apart from the

name.

typedef struct MQeRemoteAsyncQParms

{

 /**< Queue Parms Structure - for general parameters */

 MQeQueueParms baseParms;

 /**< Transport Class (Read/Write) */

 MQeStringHndl hQTransporterClass;

} MQeRemoteAsyncQParms;

58 WebSphere MQ Everyplace V2.0.2

Synchronous and asynchronous

The difference between the two types of remote queue definition is that with synchronous a message put

to a remote queue definition is sent over the network in real-time and put to the queue on the remote

queue manager, whereas with asynchronous the message is put to a temporary store and transmitted

when a network connection becomes available.

Synchronous

Synchronous remote queues are queues that can only be accessed when connected to a network

that has a communications path to the owning queue manager (or next hop). If the network is

not established then the operations such as put, get, and browse cause an exception to be raised.

The owning queue controls the access permissions and security requirements needed to access the

queue. It is the application’s responsibility to handle any errors or retries when sending or

receiving messages as, in this case, MQe is no longer responsible for once-only assured delivery.

Asynchronous

Asynchronous remote queues are queues that move messages to remote queues but cannot

remotely retrieve messages. When message are put to the remote queue, the messages are

temporarily stored locally. When there is network connectivity, transmission has been triggered

and rules allow, an attempt is made to move the messages to the target queue. Message delivery

will be once-only assured delivery.

 This allows applications to operate on the queue when the device is offline. Consequently,

asynchronous queues require a message store in order that messages can be temporarily stored at

the sending queue manager whilst awaiting transmission.

Note: In the Java code base, the mode of an instance of the MQeRemoteQueue class is set to

Queue_Synchronous or Queue_Asynchronous to indicate whether the queue is synchronous or

asynchronous. In the native code base, two distinct sets of APIs are used to create and administer

synchronous and asynchronous remote queues.

This diagram shows an example of a remote queue set up for synchronous operation and a remote queue

setup for asynchronous operation.

Chapter 2. Configuring MQe objects 59

qm1

qm2

RemoteQ
invQ on qm2

mode:asynchronous

qm1

Remote
synchronous

Remote
asynchronous

RemoteQ
invQ on qm2

mode:synchronous

getMessage(qm2, invQ, ..)

qm2

Queue
invQ

on qm2

Queue
invQ

on qm2

getMessage(qm2, invQ, ..)

putMessage(qm2, invQ, msg,...) putMessage(qm2, invQ, msg, ...)

In both the synchronous and asynchronous examples queue manager qm2 has a local queue invQ.

In the synchronous example, queue manager qm1 has a remote queue definition of queue invQ. invQ

resides on queue manager qm2. The mode of operation is set to synchronous.

An application using queue manager qm1 and putting messages to queue qm2.invQ establishes a

network connection to queue manager qm2 (if it does not already exist) and the message is immediately

put on the real queue. If the network connection cannot be established then the application receives an

exception that it must handle.

In the asynchronous example, queue manager qm1 has a remote queue definition of queue invQ. invQ

resides on queue manager qm2. The mode of operation is set to asynchronous.

An application using queue manager qm1 and putting messages to queue qm2.invQ stores messages

temporarily on the remote queue on qm1. When the transmission rules allow, the message is moved to

the real queue on queue manager qm2. The message remains on the remote queue until the transmission

is successful.

Setting the operation mode

v To set a queue for synchronous operation, set the Queue_Mode field to Queue_Synchronous.

v To set a queue for asynchronous operation, set the Queue_Mode field to Queue_Asynchronous.

Asynchronous queues require a message store to temporarily store messages. Definition of this

message store is the same as for local queues.

60 WebSphere MQ Everyplace V2.0.2

Creating a remote queue

The following code fragments show how to setup an administration message to create a remote queue.

For synchronous operation, the queue characteristics for inclusion in the remote queue definition can be

obtained using queue discovery.

Java

The following code fragment shows how to setup an administration message to create a remote queue.

/**

 * Create a remote queue

 */

protected void createQueue(MQeQueueManager localQM,

 String targetQMgr,

 String qMgrName,

 String queueName,

 String description,

 String queueStore,

 byte queueMode)

 throws Exception

{

 /*

 * Create an empty queue admin

 * message and parameters field

 */

 MQeRemoteQueueAdminMsg msg = new MQeRemoteQueueAdminMsg();

 MQeFields parms = new MQeFields();

 /*

 * Prime message with who to reply

 * to and a unique identifier

 */

 MQeFields msgTest = primeAdminMsg(msg);

 /*

 * Set name of queue to manage

 */

 msg.setName(qMgrName, queueName);

 /*

 * Add any characteristics of queue here, otherwise

 * characteristics will be left to default values.

 */

 if (description != null) // set the description ?

 parms.putUnicode(MQeQueueAdminMsg.Queue_Description,

 description);

 /*

 * set the queue access mode if mode is valid

 */

 if (queueStore != MQeQueueAdminMsg.Queue_Asynchronous &&

 queueStore != MQeQueueAdminMsg.Queue_Synchronous)

 throw new Exception ("Invalid queue store");

 parms.putByte(MQeQueueAdminMsg.Queue_Mode,

 queueMode);

 if (queueStore != null) // Set the queue store ?

 /*

 * If queue store includes directory and file info then it

 * must be set to the correct style for the system that the

 * queue will reside on e.g \ or /

 */

 parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

 queueStore);

 /*

Chapter 2. Configuring MQe objects 61

* Other queue characteristics like queue depth, message expiry

 * can be set here ...

 */

 /*

 * Set the admin action to create a new queue

 */

 msg.create(parms);

 /*

 * Put the admin message to the admin

 * queue (not assured delivery)

 * on the target queue manager

 */

 localQM.putMessage(targetQMgr,

 MQe.Admin_Queue_Name,

 msg,

 null,

 0);

}

C

The parameter structure of the synchronous remote queue contains two elements:

v The first is a parameter structure of the same type as that used for local queues: MQeQueueParms.

v The second is the transporter for use with this queue.

The remote queue shares the properties of the local queue, hence the reason for the local queue structure.

Note that the opFlags parameter, for specifying what elements of the structure have been set, is in the

MQeQueueParms structure.

typedef struct MQeRemoteSyncQParms

{

 /*< Queue Parms Structure for general parameters */

 MQeQueueParms baseParms;

 /*< Transporter Class (Read/Write) */

 MQeStringHndl hQTransporterClass;

} MQeRemoteSyncQParms;

Create synchronous

Java

First create the remote queue administration message.

MQeRemoteQueueAdminMsg msg = new AdminMsg();

MQeFields params = new MQeFields();

Then prime the administration message, as explained in Chapter 1, “How to configure MQe objects,” on

page 1.

Then set the queue queue manager name.

msg.setName(queueQMgrName, queueName);

params.putUnicode(descriptiorn);

/* set this to be a synchronous queue */

params.putByte(MQeQueueAdminMsg.Queue_Mode,

 MQeQueueAdminMsg.Queue_Synchronous);

62 WebSphere MQ Everyplace V2.0.2

Now, set the administration action to create the queue.

msg.create(params);

/* send the message */

C

This is the C API to create a sync queue. It is very similar to the Local Queue creation. Options for

description, max size etc can be set just as for the local queue.

MQeRemoteSyncQParms remoteSyncQParms = REMOTE_SYNC_Q_INIT_VAL;

rc = mqeAdministrator_SyncRemoteQueue_create(hAdministrator,

 &exceptBlk,

 hQueueName,

 hServerName,

 &remoteSyncQParms);

Create asynchronous

Java

MQeRemoteQueueAdminMsg msg = new MQeRemoteQueueAdminMsg();

MQeFields params = new MQeFields();

/* Prime the admin message */

msg.setName(queueQMgrName, queueName);

params.putUnicode(description);

/* set this to be an asynchronous queue */

params.putByte(MQeQueueAdminMsg.Queue_Mode,

 MQeQueueAdminMsg.Queue_Asynchronous);

/*

 * Assuming that MsgLog is an established Alias,

 * set the QueueStore location

 */

params.putAscci(MQeQueueAdminMsg.Queue_FileDesc,

 "MsgLog:c:\queuestore");

/* Set the administration action to create the queue */

msg.create(params);

/* send the message */

C

This is the C API to create an async queue. It is very similar to the Local Queue creation. Options for

description, max size etc can be set just as for the local queue.

MQeRemoteAsyncQParms remoteAsyncQParms = REMOTE_ASYNC_Q_INIT_VAL;

rc = mqeAdministrator_AsyncRemoteQueue_create(hAdministrator,

 &exceptBlk,BROKERTRADE_Q_NAME,

 SERVER_QM_NAME, &remoteAsyncQParms);

Transporter

One of the parameters of Remote Queue Definition is the transport that is in use. This can be modified if

required.

Usually it is set to the DefaultTransporter, com.ibm.mqe.MQeTransporter.

Note that this cannot be modified after the Queue has been created.

Chapter 2. Configuring MQe objects 63

Queue aliases

The administration of aliases is the same as for LocalQueues, because the MQeRemoteQueueAdminMsg is a

subclass of the MQeQueueAdminMsg.

Under C use the following APIs in the same way as for a local queue.

mqeAdministrator_SyncRemoteQueue_addAlias

mqeAdministrator_SyncRemoteQueue_removeAlias

mqeAdministrator_AsyncRemoteQueue_addAlias

mqeAdministrator_AsyncRemoteQueue_removeAlias

Configuring home server queues

Introduction

A home-server queue definition identifies a store-and-forward queue on a remote queue manager. The

home-server queue then pulls any messages that are destined for the home-server queue’s local queue

manager, off the store-and-forward queue. Multiple home-server queue definitions may be defined on a

single queue manager, where each one is associated with a different remote queue manager.

Home-server queues normally reside on a device and are typically set to pull messages from a server

whenever the device connects to the network. When a message is pulled from the server, the message is

then put on the correct target local queue. If the target queue does not exist then a rule is called which

allows the message to be placed on a dead letter queue.

The name of the home-server queue is set as follows:

v The queue name must match the name of the store-and-forward queue

v The queue manager attribute of the queue name must be the name of the home-server queue manager

v The queue manager where the home-server queue resides must have a connection configured to the

home-server queue manager where the store-and-forward queue resides..

64 WebSphere MQ Everyplace V2.0.2

The above diagram shows an example of a queue manager qm3 that has a home-server queue SFQ

configured to collect messages from its home-server queue manager qm2. The configuration consists of:

v A home server queue manager qm2

v A store and forward queue SFQ on queue manager qm2 that holds messages for queue manager qm3

v A queue manager qm3 that normally runs disconnected and cannot accept connections from queue

manager qm2

v Queue manager qm3 has a connection configured to qm2

v A home server queue SFQ that uses queue manager qm2 as its home server

Any messages that are directed to queue manager qm3 through qm2 are stored on the store-and-forward

queue SFQ on qm2 until the home-server queue on qm3 collects them.

Configuration messages

The Java class extends MQeRemoteQueueAdminMsg which provides most of the MQeHomeServerQueueAdminMsg

administration capability for remote queues. This class adds additional actions and constants for

managing home server queues.

Connection to
qm3 via qm2

Connection to
qm2

push pull

Homeserver queue
manager for qm3

msg = getMessage(qm3, invQ, ...)

qm3

MQeQueue
invQ on qm3

MQeHomeServerQueue
SFQ on qm2

qm1

MQeRemoteQueue
invQ on qm3

mode:asynchronous

putMessage(qm3, invQ, msg, ...)

qm2

MQeStoreAndForwardQueue
SFQ on qm2

hold messages for: qm3

Figure 14. Home-server queue

Chapter 2. Configuring MQe objects 65

Home-server queues are implemented by the MQeHomeServerQueue class. They are managed with the

MQeHomeServerQueueAdminMsg class which is a subclass of MQeRemoteQueueAdminMsg. The only addition in

the subclass is the Queue_QTimerInterval characteristic. This field is of type int and is set to a millisecond

timer interval. If you set this field to a value greater than zero, the home-server queue checks the home

server every n milliseconds to see if there are any messages waiting for collection. Any messages that are

waiting are delivered to the target queue. A value of 0 for this field means that the home-server is only

polled when the MQeQueueManager.triggertransmission method is called

Note: If a home-server queue fails to connect to its store-and-forward queue (for instance if the

store-and-forward queue is unavailable when the home server queue starts) it will stop trying until a

trigger transmit call is made.

Message transmission

Java

A home server queue can be requested to check for pending messages:

v By setting a poll interval in field Queue_QTimerInterval, that causes a regular check for messages on

the server whilst connectivity is available. When network connectivity is not available or a network

outage occurs, the polling will stop and not restart until the queue is triggered using the

MQeQueueManager.triggerTransmission() method.

v When the MQeQueueManager.triggerTransmission() method is called.

Home server queues have an important role in enabling devices to receive messages over client-server

channels particularly in environments where it is not possible for a server to establish a connection to a

device.

C

The C code base does not have background threads.

Therefore, the HomeServerQueue will only pull down messages from a Store and Forward Queue when

mqeQueueManager_triggerTransmission is called.

The trigger transmission method will only return when an attempt has been made to transmit all

messages.

Creating a home server queue

Java

The home server queue is created in a similar manner to other queues. It is generally recommended not

to use a time interval but to control the transmission using triggerTransmission.

C

if (MQERETURN_OK == rc) {

 MQeHomeServerQParms homeServerQParms = HOME_SERVER_Q_INIT_VAL;

 rc = mqeAdministrator_HomeServerQueue_create(hAdministrator,

 &exceptBlk,

 hQueueName,

 hServerName,

 &homeServerQParms);

Administration is performed using the following APIs.

mqeAdministration_HomeServerQueue_action()

66 WebSphere MQ Everyplace V2.0.2

The MQeHomeServerQParms structure is used to pass parameters. Note that the first element is the

MQeRemoteSyncQParms structure. This maps onto the MQeHomeServerQueueAdminMsg inheriting function from

the MQeRemoteQueueAdminMsg.

typedef struct MQeHomeServerQParms

{

 /**<Remote Queue Parameters to be filled in */

 MQeRemoteSyncQParms remoteQParms;

 /**<Time Interval - for Java compatibility only*/

 MQEINT64 qTimerInterval;

} MQeHomeServerQParms;

Configuring store-and-forward queues

Introduction

Note: Since there is no concept of a store and forward queue in C all of the following information relates

to the Java code base. The store and forward queue is managed by class

MQeStoreAndForwardQueueAdminMsg which inherits from MQeQueueAdminMsg.

A store and forward queue is normally defined on a server and can be configured in the following ways:

v Forward messages either to the target queue manager, or to another queue manager between the

sending and the target queue managers. In this case the store-and-forward queue pushes messages

either to the next hop or to the target queue manager

v Hold messages until the target queue manager can collect the messages from the store-and-forward

queue. This can be accomplished using a home-server queue, as described in Configuring home server

queues - Introduction. Using this approach messages are pulled from the store-and-forward queue.

Store-and-forward queues are implemented by the MQeStoreAndForwardQueue class. They are managed

with the MQeStoreAndForwardQueueAdminMsg class, which is a subclass of

MQeRemoteQueueAdminMsg. The main addition in the subclass is the ability to add and remove the

names of queue managers for which the store-and-forward queue can hold messages.

Apart from the characteristics shared by all remote queues, a store-and-forward queue object also has a

property identifying its set of target queue managers. The string field Queue_QMgrNameList, with the

value ″qqmnl″, identifies the field in an administration message representing the set of target queue

managers. The value of this field is set or retrieved using putAsciiArray() and getAsciiArray() methods.

Each store-and-forward queue has to be configured to handle messages for any queue managers for

which it can hold messages. Use the Action_AddQueueManager action, described earlier in this section,

to add the queue manager information to each queue:

v If you want the store-and-forward queue to push messages to the next queue manager, the queue

manager name attribute of the store-and-forward queue must be the name of the next queue manager.

A connection with the same name as the next queue manager must also be configured. The

store-and-forward queue uses this connection as the transport mechanism for pushing messages to the

next hop.

v If you want the store-and-forward queue to wait for messages to be collected or pulled, the queue

manager name attribute of the store-and-forward queue has no meaning , but it must still be

configured. The only restriction on the queue manager attribute of the queue name is that there must

not be a connection with the same name. If there is such a connection, the queue tries use the

connection to forward messages.

Chapter 2. Configuring MQe objects 67

The diagram shows an example of two store and forward queues on different queue managers, one setup

to push messages to the next queue manager, the other setup to wait for messages to be collected:

v Queue manager qm2 has a connection configured to queue manager qm3

v Queue manager qm2 has a store-and-forward queue configuration that pushes messages using

connection qm3, to queue manager qm3. Note that the queue manager name portion of the

store-and-forward queue is qm3 which matches the connection name. Store-and-forward queue qm3.SFQ

on qm2 temporarily holds messages on behalf of qma, qmb and qmc, (but not qm3).

v Queue manager qm3 has a store-and-forward queue qm3.SFQ. The queue manager name portion of the

queue name qm3 does not have a corresponding connection called qm3, so all messages are stored on

the queue until they are collected.

v Store-and-forward queue qm3.SFQ on qm3 holds messages on behalf of queue managers qma, qmb and

qmc. Messages are stored until they are collected or they expire.

If a queue manager wants to send a message to another queue manager using a store-and-forward queue

on an intermediate queue manager, the initiating queue manager must have:

v A connection configured to the intermediate queue manager

v A connection configured to the target queue manager routed through the intermediate queue manager

v A remote queue definition for the target queue

When these conditions are fulfilled, an application can put a message to the target queue on the target

queue manager without having any knowledge of the layout of the queue manager network. This means

that changes to the underlying queue manager network do not affect application programs.

Connection to
qmb via qm2

Connection to
qma via qm2

Connection
to qm3

qma qmb qmc

Gateway Gateway

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm2

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm3

qm1

MQeRemoteQueue
invQ on qma

mode:asynchronous

putMessage(qma, invQ, msg, …)

Figure 15. Store-and-forward queue

68 WebSphere MQ Everyplace V2.0.2

In the diagram, queue manager qm1 has been configured to allow messages to be put to queue invQ on

queue manager qma. The configuration consists of:

v A connection to the intermediate queue manager qm2

v A connection to the target queue manager qma

v A remote asynchronous queue invQ on qma

If an application program uses queue manager qm1 to put a message to queue invQ on queue manager

qma the message flows as follows:

1. The application puts the message to asynchronous queue qma.invQ. The message is stored locally on

qm1 it is transmitted.

2. When transmission rules allow, the message is moved. Based on the connection definition for qma, the

message is routed to queue manager qm2

3. The only queue configured to handle messages for queue invQ on queue manager qma is

store-and-forward queue qm3.SFQ on qm2. The message is temporarily stored in this queue

4. The stored and forward queue has a connection that allows it to push messages to its next hop which

is queue manager qm3

5. Queue manager qm3 has a store-and-forward queue qm3.SFQ that can hold messages destined for

queue manager qma so the message is stored on that queue

6. Messages for qma remain on the store-and-forward queue until they are collected by queue manager

qma. See Configuring home server queues - Introduction for how to set this up.

Store and forward queue attributes

Store and forward queues have a number of attributes extra to those of remote queues – these are listed

below. Information about these attributes is passed either via API parameters or configuration

structures/MQeFields objects.

In Java, the queue manager name list identifies the field in the message representing a set of target queue

managers. This does not occur in the native code base.

Java

The parameters in Java are passed in using MQeFields objects. The values are passed using field elements

of specific types. The field names are as follows:

 Table 18. Java parameters

Element type Field label Textual value of field label

public static final java.lang.String Queue_QMgrNameList ″qqmnl″

Create store and forward queue

There are no extra parameters other than those used in creating a remote queue that can be specified for

creating a store and forward queue. In this example a queue with a description is created.

Java

As with all queues the first action is to create the appropriate admin message object. This then needs to

be followed by priming the message using the code introduced in “Configuring with messages” on page

14.

/* Create an empty store and forward queue dmin message and parameters field */

MQeStoreAndForwardQueueAdminMsg msg = new MQeStoreAndForwardQueueAdminMsg();

MQeFields parms = new MQeFields();

/* Prime message stating who to reply to and a unique identifier */

/* Refer to Chapter 2, Administration using administration messages, */

Chapter 2. Configuring MQe objects 69

/* for a definition of the user helper method primeAdminMsg(); */

primeAdminMsg(msg);

/* Set name of queue to manage */

msg.setName(qMgrName, queueName);

/* Add any characteristics of the queue here, otherwise */

/* characteristics will be left to default values. */

parms.putUnicode(MQeQueueAdminMsg.Queue_Description, description);

/* Set the admin action to create a new queue */

msg.create(parms);

After the administration message has been created, it needs to be sent to the local administration queue.

Delete store and forward queue

In this example the constructor is used to set the QueueName and the QueueManager name. This is an

alternative to using the setName() method on the admin message.

Java

As with all queues deletion requires that the queue be empty of messages. Note that there is no

parameter structure here – just the QueueName and QueueManager name.

/* Create an empty store-and-forward queue admin message */

MQeStoreAndForwardQueueAdminMsg msg =

 new MQeStoreAndForwardQueueAdminMsg (qMgrName, queueName);

/* Prime message with who to reply to, and a unique identifier */

primeAdminMsg(msg);

/* Set the admin action to delete a queue */

 msg.delete(new MQeFields());

Add queue manager

You can add and delete queue manager names with the following actions:

v Action_AddQueueManager

v Action_RemoveQueueManager

You can add or remove multiple queue manager names with one administration message.

You can put names directly into the message by setting the ASCII array field Queue_QMgrNameList.

Alternatively, you can use the methods:

v addQueueManager()

v removeQueueManager()

Each of these methods takes one queue manager name, but you can call the method repeatedly to add

multiple queue managers to a message.

This action is specific to store and forward queues. In the following example multiple queue manager

names are added to a String array (queueManagerNames) and set into the fields object. The action and

fields object are added to the message.

70 WebSphere MQ Everyplace V2.0.2

Java

/* Create an empty store and forward queue admin message and parameters field */

MQeStoreAndForwardQueueAdminMsg msg =

 new MQeStoreAndForwardQueueAdminMsg (qMgrName, queueName);

MQeFields parms = new MQeFields();

/* Prime message with who to reply to, and a unique identifier */

primeAdminMsg(msg);

/*

 * Add any characteristics of queue here, otherwise

 * characteristics will be left to default values.

 */

parms.putAsciiArray(MQeStoreAndForwardQueueAdminMsg.Queue_QMgrNameList,

 queueManagerNames);

/* Set the admin action to add a queue manager to a queue */

msg.putInt(MQeAdminMsg.Admin_Action,

 MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager);

/* Put the fields object into the message */

msg.putFields(MQeAdminMsg.Admin_Parms, parms);

Remove queue manager

This action is specific to store and forward queues. In this example the helper method

removeQueueManager() is used to remove a single queue manager.

Java

/* Create an empty store and forward queue admin message*/

MQeStoreAndForwardQueueAdminMsg msg =

 new MQeStoreAndForwardQueueAdminMsg (qMgrName, queueName);

/* Prime message with who to reply to and a unique identifier */

primeAdminMsg(msg);

/* Set the admin action to remove a queue manager */

msg.removeQueueManager(queueManagerName);

Update

In this example the description and of a store and forward queue and the maximum number of messages

allowed on the queue are updated.

Java

/* Create an empty store and forward queue admin message and parameters field */

MQeStoreAndForwardQueueAdminMsg msg =

 new MQeStoreAndForwardQueueAdminMsg ();

MQeFields parms = new MQeFields();

/* Prime message with who to reply to, and a unique identifier */

primeAdminMsg(msg);

/* Set name of queue to manage */

Chapter 2. Configuring MQe objects 71

msg.setName(qMgrName, queueName);

/*

 * Add any characteristics of queue here, otherwise

 * characteristics will be left to default values

 */

parms.putUnicode(MQeQueueAdminMsg.Queue_Description, description);

parms.putInt(MQeQueueAdminMsg.Queue_MaxQSize,10);

/* Set the admin action to update */

msg.update(parms);

Inquire

In this example the list of queue manager names of a store and forward queue are inquired.

Java

/* Create an empty store and forward queue admin message and parameters field */

MQeStoreAndForwardQueueAdminMsg msg = new MQeStoreAndForwardQueueAdminMsg ();

MQeFields parms = new MQeFields();

/** Prime message with who to reply to, and a unique identifier */

primeAdminMsg(msg);

/* Set name of queue to manage */

msg.setName(qMgrName, queueName);

/* Add any characteristics of queue here that you want to inquire.*/

parms.putAsciiArray(MQeStoreAndForwardQueueAdminMsg.Queue_QMgrNameList,

 new String[0]);

/* Set the admin action to inquire */

msg.inquire(parms);

Configuring connection definitions

Introduction

Connection definitions provide MQe with information on how to locate and communicate with remote

queue managers. The name of a connection definition is that of the remote queue manager to which it

describes a route, thus there may only be one direct connection definition for a remote queue manager.

As connection definitions define the MQe network they are held in permanent storage in the registry and

therefore persist across instances of the queue manager.

The route created using a connection definition uses an internal object called a channel as the transport

mechanism to send data between two queue managers. Channels may not be accessed directly by a user

but configuration decisions made for a queue manager affects the behavior of a channel.

At the lowest level of the communications layers is the communications adapter. The reason they are

mentioned here is that it is imperative the connection definition defines the same communications

adapter class as the adapter class being used by the listener on the listening queue manager. If the

communications adapters are not exactly the same a successful connection will not be made.

72 WebSphere MQ Everyplace V2.0.2

For the connection definition to create a successful connection to a remote queue manager it is necessary

for the correct communications adapter, the correct network address of the listening queue manager and

the correct listening location to be specified. If any of this information is incorrect it is not possible to

make a connection to the remote queue manager.

Note:

As will be seen from the examples there is much repetitive code involved in creating then checking the

reply for an administration message. It is therefore probably desirable to put this code into a common

class that may be used by all classes creating and checking the replies of administration messages.

The full code for updating a connection definition and for deleting a connection definition may be found

in the examples supplied with the MQe product.

Direct connection definition

A direct connection definition supplies information to allow the local queue manager to create a channel

to a remote queue manager in the MQe network. The information is the actual network information for

the remote queue manager and does not involve any routing via other queue managers.

There are two variants of a direct connection, these are:

Alias connection definition

 An alias connection definition provides just one piece of information, the name of an actual

connection definition or another alias. One may think of these aliases as queue manager aliases,

they allow an administrator to set up a connection definition to a particular queue manager

which may then be referred to by another name.

MQ connection definition

 This is a specialized connection that identifies a remote queue manager as an MQ queue manager

as opposed to an MQe queue manager. For further information on the Bridge functionality of

MQe, refer to “Configuring bridge/gateway resources” on page 81.

Indirect connection definition

You can also have an indirect connection definition:

Via connection definition

 A via connection definition supplies information to allow the local queue manager to create a

channel to a remote queue manager using a route via an intermediate queue manager. The

intermediate queue manager(s) should be configured so they have connection definitions to either

the next queue manager in the route or the final destination queue manager. It is the

responsibility of the administrator to ensure that all necessary connection definitions are

configured on the route.

Configuring connection definitions in Java

Creating a connection definition

In order to create a connection definition an administration message must be created and put to the

administration queue. A reply must be received to indicate successful creation of a connection definition

before any attempt is made to use the connection, indeterminate behavior may result if an attempt is

made to use a connection before such as reply has been received.

In order to show how one might create a connection definition we shall use the

examples.config.CreateConnectionDefinition example. A connection definition administration message

has a number of methods to help create the message correctly. First of all we need to create an

MQeConnectionAdminMsg:

MQeConnectionAdminMsg connectionMessage = new MQeConnectionAdminMsg();

Chapter 2. Configuring MQe objects 73

Once we have created the connection administration message we need to set the name of the resource we

wish to work on:

connectionMessage.setName("RemoteQM");

We now need to set the information in the administration message that will set the action to create and

will provide the information for the route to our remote queue manager:

connectionMessage.create("com.ibm.mqe.adapters.MQeTcpipHistoryAdapter:

 127.0.0.1:8082",

 null,

 null,

 "Default Channel",

 "Example connection");

There are a number of things to note about the information passed to the create method.

The first parameter is a colon delimited string and has a profound affect on what type of connection

definition will be created. The string used in the above example will create a connection to a queue

manager called RemoteQM using the communications adapter MQeTcpipHistoryAdapter running on the

local machine listening at port 8082. If we had merely specified a queue manager name, for instance

″ServerQM″ then a via connection definition would have been created and we would have to either

already have a connection definition for ServerQM or create one before we attempted to use the via

connection definition.

The second parameter is really only useful for HTTP adapters that may run a servlet on the server. This

is where you would define your servlet name which would then be passed within the HTTP header.

The third parameter allows the persistent option to be set or unset, although in reality this should be

done with great care as the default values for persistence are set within the communications adapters so

they are consistent with the protocol being used. For instance the MQeTcpipLengthAdapter and

MQeTcpipHistoryAdapter both use persistence, that is the socket is kept open, the MQeTcpipHttpAdapter

on the other hand uses a new socket for each conversation.

The fourth parameter defines the channel, this should always be set to ″Default Channel″.

The fifth parameter provides descriptive text for the connection definition.

We now need to add information to the administration message that will determine which queue

manager receives the administration message.

connectionMessage.setTargetQMgr("LocalQM");

Specify that you want to receive a reply, if using the Msg_Style_Datagram, indicate that no reply was

required. The reply indicates success or failure of the administrative action.

connectionMessage.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);

The queue and queue manager that will receive the reply, this may not necessarily be the queue manager

that created and sent the administration message. Using the default administration reply queue allows

you to use the definition of the String provided in the MQe class. Also, the reply must arrive on the local

queue.

connectionMessage.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);

connectionMessage.putAscii(MQe.MSG_ReplyToQMgr, "LocalQM");

A unique identifier must be added to the message before putting it onto the administration queue. This

allows you to identify the appropriate reply message. Use the system time in order to do this.

String match = "Msg" + System.currentTimeMillis();

connectionMessage.putArrayOfByte(MQe.Msg_CorrelID, match.getByte());

74 WebSphere MQ Everyplace V2.0.2

You can now put our administration message to the default administration queue, the fourth parameter

allows for an MQeAttribute to be specified with the fifth parameter allowing for an identifier that allows

you to undo the put. As neither is required, specify null and zero respectively.

queueManager.putMessage("LocalQM",

 MQe.Admin_Queue_Name,

 connectionMessage, null, 0);

Before we can safely use the connection definition we need to ensure it has been correctly created and

must therefore wait for a reply. We specified the reply should be sent to the queue manager LocalQM on

the default administration reply queue. We create a filter using the correlation id so we get the correct

reply:

MQeFields filter = new MQeFields();

filter.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

Now using the filter we have created we wait for a reply message on the default administration reply

queue. The return from the waitForMessage method gives an MQeMsgObject, so we cast that to an

MQeAdminMsg. The fourth parameter which we have set to null may be used for an MQeAttribute, this

is set to null as we have not used security during this example, the zero passed in parameter five is for a

confirm ID that may be used in an undo operation, again we have not used this. The last parameter

defines how long to wait in milliseconds, we are waiting for three seconds.

// all on one line

MQeAdminMsg response = (MQeAdminMsg)

 queueManager.waitForMessage(queueManagerName,

 MQe.Admin_Reply_Queue_Name,

 filter,

 null, 0, 3000);

Once we have received the reply we check to make sure we have a successful return code, there is

additional checking done within the example, for the purposes of this manual we just look at the

successful return. As can be seen there is a useful method on the administration message which will

return a return code to us for easy checking.

switch (response.getRC()) {

 case MQeAdminMsg.RC_Success :

 System.out.println("connection created");

 break;

We have now successfully created a connection definition to a remote queue manager.

Altering and deleting connection definitions

Connection definitions define the network for MQe and therefore great care should be taken when

altering or deleting them. It is strongly recommended that when altering or deleting a connection

definition one should ensure there is no activity on the network that may be using that connection

definition.

As with creating a connection definition, in order to alter or delete a connection definition an

administration message must be used. The approach is the same as for creating a connection definition,

with a different action being used for the administration message. For instance in order to update a

connection definition the following method should be used:

updateMessage.update(

 "com.ibm.mqe.adapters.MQeTcpipHttpAdapter:127.0.0.1:8083",

 null, null, "DefaultChannel", "Altered Example Connection");

In order to delete a connection definition all that is required is the resource name and the relevant action

being set, so the following method is used:

deleteMessage.setAction(MQeAdminMsg.Action_Delete);

Chapter 2. Configuring MQe objects 75

Configuring connection definitions in C

There is an important difference between administration available in C to that in Java. The Java product

relies solely on the administration message, C provides an administration API for the user to locally

administer MQe. More information may be found abut the administration API in “Configuring with the

C administrator API” on page 30, this chapter assumes you have already read the chapter on

administration and know how to create an administrator handle and exception block used in the calls to

the administration API. This example is in transport.c in the broker.dll for C.

Before we look at the individual functions providing the API to administer the connection definition, it

will be worthwhile looking at the structure containing the information about the connection definition

that is passed into all the functions requiring information, that is all except the function to delete the

connection definition. The MQeConnectionDefinitionParms structure is as follows:

MQEVERSION version;

MQEINT32 opFlags;

MQeStringHndl hDescription;

MQeStringHndl hAdapterClass;

MQeStringHndl * phAdapterParms;

MQEINT32 destParmLen;

MQeStringHndl hAdapterCommand;

MQeStringHndl hChannelClass;

MQeStringHndl hViaQMName;

Version

This is a field for internal use only and should not be set by the user.

opFlags

On input to a function this field provides bit flags indicating the areas of the resource that are to

be administered. On output from a function if the action has been successful the flags will

indicate the operations performed, if the action has failed the flags will indicate the failed

component.

hDescription

The description for this connection definition.

hAdapterClass

The communications adapter class that will be used by this connection definition, currently there

is just one communications adapter for C. In the MQe_Adapter_Constants.h header file there is a

constant to define the class – MQE_HTTP_ADAPTER.

phAdapterParams

An array containing the network information required to connect to the remote queue manager.

In an IP network this will contain the network address and IP port. The first element in the array

is assumed to be the IP address, the second element is assumed to be the port number.

destParmLen

The length of the phAdapterParams array.

hAdapterCommand

This field may contain a servlet name to be included in an HTTP header.

hChannelClass

The class of channel to use, this should be set to MQE_CHANNEL_CLASS, defined in

MQe_Connection_Constants.h

hViaQMName

If this connection definition defines a via connection then all other parameters should be null

with this parameter containing the name of the via queue manager name.

 A constant in MQe_Connection_Constant.h - CONNDEF_INIT_VAL will set the values of this structure to

initial values which can then be altered as required.

76 WebSphere MQ Everyplace V2.0.2

Creating a connection definition

In order to create a connection definition will need to call the function:

mqeAdministrator_Connection_create(MQeAdministratorHndl, hAdmin,

 MQeExceptBlock* pExceptBlock,

 MQeStringHndl hConnectionName,

 MQeConnectionDefinitionParms* pParams);

The third parameter will define the name of the connection definition. As stated, this must be the name

of the remote queue manager to which this connection definition holds the route.

The fourth parameter is a structure holding information that is required to setup the connection definition

information. Either the hViaQMName field should be set or the hAdapterClass, phAdapterParams,

destParmLen, hAdapterCommand and hChannelClass in order to create a connection definition. For

instance, to create a connection definition, first create and set up an MQeConnectionDefinition parameter

structure:

/* Create the structure and set it to the initial values */

MQeConnectionDefinitionParms parms = CONNDEF_INIT_VAL;

Create an MQeString to hold the name of the remote queue manager, this becomes the name of the

connection definition:

rc = OSAMQESTRING_NEW(&error, "ServerQM", SB_STR, &hQueueMgrName);

Set the adapter and channel class names, these must be set to these names as these are the only classes

currently supported:

parms.hAdapterClass = MQE_HTTP_ADAPTER;

parms.hChannelClass = MQE_CHANNEL_CLASS;

In order to set up an array we need to allocate some memory then setup the network information. This

example shows using the loopback address with the listener expected to be on port 8080:

OSAMEMORY_ALLOC(&error, (MQEVOID**) &parms.phAdapterParms,

 (sizeof(MQEHANDLE) * 2), "comms test");

rc = OSAMQESTRING_NEW(&error, "127.0.0.1", SB_STR,

 &parms.phAdapterParms[0]);

rc = OSAMQESTRING_NEW(&error, "8080", SB_STR,

 &parms.phAdapterParms[1]);

We now set the number of element in the array:

parms.destParmLen = 2;

And last of all set the flags to tell the receiving administration function what information it should look

for in the structure:

parms.opFlags = CONNDEF_ADAPTER_CLASS_OP |

 CONNDEF_ADAPTER_PARMS_OP |

 CONNDEF_CHANNEL_CLASS_OP;

Now, having set everything up we can call the administration function in order to create our connection

definition. Note, it is wise to check the return code in order to determine whether the call has been

successful

rc = mqeAdministrator_Connection_create(hAdministrator, &error,

 hQueueMgrName, &parms);

if (MQERETURN_OK == rc) {

 fprintf(pOutput,

 "connection definition to ServerQM at 127.0.0.1:8081 successfully added\n");

 }

Chapter 2. Configuring MQe objects 77

The above creates a direct connection definition, if we want to create a via connection definition we

would need to set the parameter structure to the default values and the name of the remote queue

manager as usual:

MQeConnectionDefinitionParms parms = CONNDEF_INIT_VAL;

rc = OSAMQESTRING_NEW(&error, "ServerQM", SB_STR, &hQueueMgrName);

We now need to set the name of the queue manager that will then route

the messages on to the remote queue manager.

rc = OSAMQESTRING_NEW(&error,

 "RoutingQM",

 SB_STR,

 &parms.hViaQMName);

Now all that is left to do is correctly set the flags that tells the administration function what to look for in

the structure:

parms.opFlags = CONNDEF_VIAQM_OP;

We then call the function as with the direct connection definition:

rc = mqeAdministrator_Connection_create(hAdministrator,

 &error,

 hQueueMgrName,

 &parms);

Altering and deleting connection definitions

Altering a connection definition

As has been previously stated it is strongly recommended you ensure a connection is not being used

when a connection definition is updated. The flags are used to determine which parts of the information

in the connection definition are to be updated. So, even if a value is provided in the structure, if the

correct flag is not set that value will not be used:

MQeConnectionDefinitionParms parms = CONNDEF_INIT_VAL;

We will create a new description:

rc = OSAMQESTRING_NEW(&error, "replacement description", SB_STR,

 &parms.hDescription);

If we set the opFlags field as follows the description will not be updated, instead the administration

function will attempt to update the value for the name of the via queue manager:

parms.opFlags = CONNDEF_VIAQM_OP;

We need to set the opFlags field as follows in order to obtain the desired behavior:

Parms.opFlags = CONNDEF_DESC_OP;

The function to update the connection definition is then called as follows:

rc = mqeAdministration_Connection_update(hAdministrator , &error,

 hQueueMgrName, &parms);

Deleting connection definitions

A connection may be deleted as follows. If the connection doesn’t exist then the return code of

MQERETURN_COMMS_MANAGER_WARNING will be given with the reason code of

MQEREASON_CONDEF_DOES_NOT_EXIST.

rc = mqeAdministrator_Connection_delete(hAdministrator,

 &error, hQueueMgrName);

78 WebSphere MQ Everyplace V2.0.2

Configuring a listener

In order for a queue manager to receive requests from other queue managers it is necessary for an

MQeListener to be instantiated and running.

Note: This functionality is only available in Java.

A listener uses a communications adapter to listen at a named location, in an IP network this is a named

port.

For a client to make a successful connection, the network address of the listening queue manager, the

named location, and the communications adapter class must be made known to the client.

An error in any one of these in the connection definition on the client will result in an error when they

try to connect.

Java

In order to create a listener is it necessary to use an administration message. The following is based upon

the example example.config.ConfigListener, the administration message is instantiated as follows:

MQeCommunicationsListenerAdminMsg createMessage =

 new MQeCommunicationsListenerAdminMsg();

We now need to provide a name for the listener:

createMessage.setName("Listener1");

The name of the queue manager to which the administration message is intended is also required:

createMessage.setTargetQMgr(queueManagerName);

The next thing we need to do is set the action for the administration message as well as providing the

information the listener requires in order to function.

createMessage.create(com.ibm.mqe.adapters.MQeTcpipHistoryAdapter,

 8087, 36000000, 10);

The first parameter provides the name of the communications adapter we wish to use, in this instance we

have stipulated the MQeTcpipHistoryAdapter, an alias may be used instead. The type of communications

adapter being used by the listener needs to be made known to clients wishing to connect to the queue

manager using the listener.

The second parameter defines the named location the listener uses, in this instance an IP port number of

8087, again the clients will need to be aware of this in order to contact this listener.

The third parameter specifies the channel timeout value. This value is used to determine when an

incoming channel should be closed. MQe polls the channels, if a channel has been idle for longer than the

timeout value it will be closed.

The last parameter determines the maximum number of channels the listener will have running at any

one time. If a client tries to connect once this value has been reached the connection is refused.

Having set the correct action and provided the relevant information we can set the message type, in this

instance we are using a request message style which indicates we would like a reply to indicate success

or failure. However, it might make no difference if a description is altered successfully or not. In this

case, use a message style of datagram which indicates no reply is required.

createMessage.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);

Chapter 2. Configuring MQe objects 79

When requesting a reply, provide the queue and owning queue manager name to which the reply must

be sent. This example uses the default administration reply queue.

createMessage.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);

createMessage.putAscii(MQe.Msg_ReplyToQMgr, queueManagerName);

To get the correct reply message that corresponds to our administration message, use a correlation ID.

This is copied from the administration message into the reply so we can get the correct message. To

generate an id that is relatively safe as being unique, use the system time:

String match = "Msg" + System.currentTimeMillis();

createMessage.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

We are now in a position to put the administration message to the administration queue of the target

queue manager. The last two parameters provide the ability to use an attribute and an id to allow the

undo method to be called, neither of which we shall worry about at this juncture.

queueManager.putMessage(queueManagerName, MQe.Admin_Queue_Name,

 createMessage, null, 0);

Having put the message to the queue we shall now wait for a reply. As can be seen we use the

correlation identifier we used to put the message in order to get the reply and there is a useful method

that provides us with the reason code to indicate success or failure.

MQeFields filter = new MQeFields();

filter.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

// now wait for a reply

MQeAdminMsg response = (MQeAdminMsg)

 queueManager.waitForMessage(queueManagerName,

 MQe.Admin_Reply_Queue_Name,

 filter,

 null, 0, 3000);

// the administration message has a method that

// will get out the return code :

switch (response.getRC()) {

 case MQeAdminMsg.RC_Success :

 break;

Having successfully created our listener we need to start it, the listener is only automatically started on

the next restart of the queue manager. Again an administration message is required to start or stop a

listener, we can use the approach taken above, using the following methods in the

MQeCommunicationsListenerAdminMsg class. To start the listener:

MQeCommunicationsListenerAdminMsg startMessage =

 new MQeCommunicationsListenerAdminMsg();

.

.

.

startMessage.start();

To stop the listener:

MQeCommunicationsListenerAdminMsg startMessage =

 new MQeCommunicationsListenerAdminMsg();

.

.

.

startMessage.stop();

In order to delete a listener we need to set the action of the administration message to delete as follows:

deleteMessage.setAction(MQeAdminMsg.Action_Delete);

80 WebSphere MQ Everyplace V2.0.2

If you try to delete a listener that is running you will receive an exception, so make sure your listener has

successfully stopped before trying to delete it.

Configuring bridge/gateway resources

Introduction to the MQ bridge

This section describes how MQe can be made to interact with MQ using a gateway.

v A gateway is an MQe queue manager configured with a bridge that allows it to interact with MQ.

v The bridge is an MQe object (in the same sense that queues, connections and so on are objects).

v The MQ queue manager does not require any special configuration. It is referred to within MQe as the

queue queue manager.

v The gateway runs on a machine acting as a server that can connect to another machine running MQ.

The gateway cannot run on a device.

v The gateway and MQ can both be running on the same machine if required.

v In a complex setup, a gateway can have multiple bridges configured (this is very unusual).

What makes a queue manager bridge-enabled

Some MQe queue managers are capable of exchanging messages with MQ, and some are not.

Those which can are said to be bridge-enabled or bridge-capable. Put simply, a bridge-enabled queue

manager is one which runs in an environment capable of supporting the MQ Java classes, and when the

MQ bridge software is available for the JVM to load.

When an MQe queue manager is activated, it attempts to load the MQ bridge software component. If the

MQe classes and dependent software are all loadable, then the queue manager can later report that it is

bridge-capable. If required Java classes are not loadable, then error information is traced at that point, but

the queue manager will continue to activate, resulting in a queue manager which reports that it is not

bridge-capable.

Finding out if a queue manager is bridge-enabled

If you apply an inquireAll operation to a queue manager, a bridge-capable property is returned. This

field is boolean. A true value indicates that the classes required to support the bridge function are present

on the class path. A false value indicates that required classes are missing from the class path.

v If the queue manager is reporting that it is bridge-capable, bridge resources can be configured and

manipulated on that queue manager.

v If the queue manager reports that it is not bridge-capable, any attempt to administer bridge resources

will fail. Such situations are often indicative that the required MQ Java classes, or parts of the MQ

bridge software are not available on the classpath.

Changing the classpath to reference the MQ Java and MQ bridge classes, and restarting the JVM in

which the MQe queue manager is running should result in the queue manager reporting that it is

bridge-capable. The code in

examples.mbridge.administration.commandline.IsQueueManagerBridgeCapable provides an example of

how to code this query.

Classes to bridge-enable a queue manager

To use the MQ bridge you must have these two arrangements:

1. MQ Classes for Java version 5.1 or later, installed on your MQe system, and available on the classpath

for JVMs to use. MQ Classes for Java is available for free download from the Web as SupportPac™

MA88. This can be downloaded free. The MQ classes for Java are also shipped with MQ software, but

might not be installed depending on the options selected when MQ was installed. An example script

Chapter 2. Configuring MQe objects 81

below demonstrates what might be needed to set the correct environment on a Windows system. This

example was taken from the Java\Demo\Windows folder. A similar bsh UNIX example can be found

in Java\Demo\Unix directory.

@Rem Set up the name of the MQ Series directory.

@Rem This should be modified to suit your installation.

set MQDIR=C:\Program Files\IBM\MQSeries

@Rem If you wish to use the MQ bridge then the CLASSPATH also

@Rem needs to know how to get to the MQSeries Java Client.

if Exist "%MQDIR%\java\lib"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib;

if Exist "%MQDIR%\java\lib\com.ibm.mq.jar"∧

 set CLASSPATH=%CLASSPATH%; %MQDIR%\java\lib\com.ibm.mq.jar

if Exist "%MQDIR%\java\lib\com.ibm.mqbind.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mqbind.jar

if Exist "%MQDIR%\java\lib\com.ibm.mq.iiop.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mq.iiop.jar

if Exist "%MQDIR%\java\lib\jta.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jta.jar

if Exist "%MQDIR%\java\lib\jndi.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jndi.jar

if Exist "%MQDIR%\java\lib\jms.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jms.jar

if Exist "%MQDIR%\java\lib\com.ibm.mqjms.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mqjms.jar

if Exist "%MQDIR%\java\lib\connector.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\connector.jar

if Exist "%MQDIR%\java\lib\fscontext.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\fscontext.jar

if Exist "%MQDIR%\java\lib\ldap.jar"∧

 set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\ldap.jar

@Rem The MQSeries Bridge also requires access to the MQSeries

@Rem Executables so that native DLLs can be found.

if Exist "%MQDIR%\java\lib" set PATH=%PATH%;%MQDIR%\java\lib

if Exist "%MQDIR%\bin" set PATH=%PATH%;%MQDIR%\bin;

2. MQe classes, of which an example of superset classes can be found in the Java/Jars/MQeGateway.jar

file. Deploying this file and adding it to your classpath will provide the queue manager with all the

required classes necessary to use bridge function. For example,

set CLASSPATH=%CLASSPATH%;%MQeDIR%\Java\Jars\MQeGateway.jar

Overview of configuring the bridge

The configuration of the MQ bridge requires you to perform some actions on the MQ queue manager,

and some on the MQe queue manager. The bridge can be divided into two pieces:

v Configuration of resources required to route a message from MQe to MQ

v Configuration of resources required to route a message from MQ to MQe

Configuration of both types of routes is discussed in the following sections.

82 WebSphere MQ Everyplace V2.0.2

The bridge objects are defined in a hierarchy as shown in the following diagram:

 The following rules govern the relationship between the various objects in that diagram:

v An MQe bridges object is associated with a single MQe queue manager.

v A single bridges object may have more than one bridge object associated with it. You might want to

configure several MQ bridge instances with different routings.

WebSphere MQ Everyplace gateway

WebSphere MQ
bridge queue

WebSphere MQ
bridge

transmission queue
listener

WebSphere MQ server

Xmit queue
WebSphere MQ

local queue
WebSphere MQ

Routed
messages

put,
browse,
get

Figure 16. Bridge configuration

WebSphere MQ
Everyplace

queue manager
Bridges

Bridge

WebSphere MQ
queue manager

proxy

Client
connection

Transmission
queue listenerAdapter

Only one queue manager
is allowed per JVM.
However, you may have
multiple JVMs.

Only one bridges object
is allowed per JVM

WebSphere MQ Everyplace server

Figure 17. Bridge object hierarchy

Chapter 2. Configuring MQe objects 83

v Each bridge can have a number of MQ queue manager proxy definitions.

v Each MQ queue manager proxy definition can have a number of client connections that allow

communication with MQe.

v Each client connection connects to a single MQ queue manager. Each connection may use a different

server connection on the MQ queue manager, or a different set of security, send, and receive exits, ports

or other parameters.

v An MQ bridge client connection may have a number of transmission queue listeners that use that

bridge service to connect to the MQ queue manager.

v A listener uses only one client connection to establish its connection.

v Each listener connects to a single transmission queue on the MQ system.

v Each listener moves messages from a single MQ transmission queue to anywhere on the MQe network,

(through the MQe queue manager its bridge is associated with). So an MQ bridge can funnel multiple

MQ message sources through one MQe queue manager onto the MQe network.

v When moving MQe messages to the MQ network, the MQe queue manager creates a number of adapter

objects. Each adapter object can connect to any MQ queue manager (providing it is configured) and

can send its messages to any queue. So an MQ bridge can dispatch MQe messages routed through a

single MQe queue manager to any MQ queue manager.

The bridge configuration option allows an MQe queue manager to communicate with MQ host and

distributed queue managers through client channels. The bridge component manages a pool of client

channels that can be attached to one or more host or distributed queue managers. You can configure

multiple bridge-enabled MQe queue managers in a single network.

A gateway may have a number of transmit queue listeners that use that gateway to connect to the MQ

queue manager and retrieve a messages from MQ to MQe. A listener uses only one service to establish its

connection, with each listener connecting to a single transmission queue on the MQ queue manager. Each

listener moves messages from a single MQ transmission queue to anywhere on the MQe network, via its

parent gateway queue manager. Thus, a single gateway queue manager can funnel multiple MQ message

sources into the MQe network.

When moving messages in the other direction, from MQe to MQ, the gateway queue manager configures

one or more bridge queues. Each bridge queue can connect to any queue manager directly and send its

messages to the target queue. In this way a gateway can dispatch MQe messages routed through a single

MQe queue manager to any MQ queue manager, either directly or indirectly.

The bridge objects and hierarchy

Bridges resource

The bridges resource is responsible for maintaining a list of bridge resources. It provides a single resource

which can be started and stopped, where starting and stopping a bridges resource can start and stop all

the resources beneath it in the resource hierarchy. It is owned by the MQe queue manager. If the MQe

queue manager is bridge-enabled, then a bridges resource is automatically created, and present. This

resource has no persistent information associated with it. It has the following properties:

 Table 19. Bridges properties

Property Explanation

Bridgename List of bridge names

Run state Status: running or stopped

The bridges, and the other bridge resources can be started and stopped independently of the MQe queue

manager. If such a bridge resource is started (or stopped) the action also applies to all of its children, that

is all bridges, queue manager proxies, client connections, and transmission queue listeners.

84 WebSphere MQ Everyplace V2.0.2

More detail of these properties can be found in the Java Programming Reference in the administration

class com.ibm.mqe.mqbridge.MQeMQBridgesAdminMsg. The bridges resource supports the Inquire and

InquireAll, start, and stop operations. Create, delete, and update are not appropriate actions to use with

this resource.

Bridge resource

The bridge resource is responsible for holding a number of persistent property values, and a list of MQ

queue manager proxy resources. If started or stopped, it can act as a single point of control to start and

stop all the resources beneath it in the bridge hierarchy. Each bridge object supports the full range of

create, inquire, inquire-all, update, start, stop, and delete operations. Examples of these operations can be

found in the java class examples.mqbridge.administration.programming.AdminHelperBridge. The bridge

resource has the following properties:

 Table 20. Bridge properties

Property Explanation

Class Bridge class

Default transformer The default class, rule class, to be used to transform a message from MQe to

MQ, or vice versa, if no other transformer class has been associated with the

destination queue

Heartbeat interval The basic timing unit to be used for performing actions against bridges

Name Name of the bridge

Run state Status: running or stopped

Startup rule class Rule class used when the bridge is started

MQ Queue Manager Proxy

Children

List of all Queue Manager Proxies that are owned by this bridge

More detail of each property can be found in the Java Programming Reference, in the administration class

com.ibm.mqe.mqbridge.MQeMQBridgeAdminMsg.

In simple cases a default transformer (rule) can be used to handle all message conversions. Additionally a

transformer can be set on a per listener basis (for messages from MQ to MQe) that overrides this default.

For more specific control the transformation rules can be set on a target queue basis using bridge queue

definitions on the MQe Java Programming Reference. This applies both to MQe and MQ target queues.

MQ queue manager proxy

The MQ queue manager proxy holds the properties specific to a single MQ queue manager. The proxy

properties are shown in the following table:

 Table 21. MQ queue manager proxy properties

Property Explanation

Class MQ queue manager proxy class

MQ host name IP host name used to create connections to the MQ queue manager via the Java

client classes. If not specified then the MQ queue manager is assumed to be on

the same machine as the bridge and the Java bindings are used

MQ queue manager proxy name The name of the MQ queue manager

Name of owning bridge Name of the bridge that owns this MQ queue manager proxy

Run state Status: running or stopped

Startup rule class Rule class used when the MQ queue manager is started

Client Connection Children List of all the client connections that are owned by this proxy

Chapter 2. Configuring MQe objects 85

More detail of each property can be found in the Java Programming Reference, in the administration class

com.ibm.mqe.mqbridge.MQeMQQMgrProxyAdminMsg.

Each proxy object supports the full range of create,inquire, inquire-all, update, start, stop, delete

operations. Examples of these operations can be found in the java class

examples.mqbridge.administration.programming.AdminHelperMQQMgrProxy.

Client connection resource

The client connection definition holds the detailed information required to make a connection to an MQ

queue manager. The connection properties are shown in the following table:

 Table 22. Client connection service properties

Property Explanation

Adapter class Class to be used as the gateway adapter

CCSID* The integer MQ CCSID value to be used

Class Bridge client connection service class

Max connection idle time The maximum time a connection is allowed to be idle before being terminated

MQ password* Password for use by the Java client

MQ port* IP port number used to create connections to the MQ queue manager via the

Java client classes. If not specified then the MQ queue manager is assumed to be

on the same machine as the bridge and the Java bindings are used

MQ receive exit class* Used to match the receive exit used at the other end of the client channel; the

exit has an associated string to allow data to be passed to the exit code

MQ security exit class* Used to match the security exit used at the other end of the client channel; the

exit has an associated string to allow data to be passed to the exit code

MQ send exit class* Used to match the send exit used at the other end of the client channel; the exit

has an associated string to allow data to be passed to the exit code

MQ user ID* user ID for use by the Java client

Client connection service name Name of the server connection channel on the MQ machine

Name of owning queue manager

proxy

The name of the owning queue manager proxy

Startup rule class Rule class used when the bridge client connection service is started

Sync queue name The name of the MQ queue that is used by the bridge for synchronization

purposes

Sync queue purger rules class The rules class to be used when a message is found on the synchronous queue

Run state Status: running or stopped

Name of owning Bridge The name of the bridge that owns this client connection

MQ XmitQ Listener Children List of all the listeners that use this client connection

The adapter class is used to send messages from MQe to MQ and the sync queue is used to keep track

of the status of this process. Its contents are used in recovery situations to guarantee assured messaging;

after a normal shutdown the queue is empty. It can be shared across multiple client connections and

across multiple bridge definitions provided that the receive, send and security exits are the same. This

queue can also be used to store state about messages moving from MQ to MQe , depending upon the

listener properties in use. The sync queue purger rules class is used when a message is found on the

sync queue, indicating a failure of MQe to confirm a message.

The maximum connection idle time is used to control the pool of Java client connections maintained by

the bridge client connection service to its MQ system. When an MQ connection becomes idle, through

lack of use, a timer is started and the idle connection is discarded if the timer expires before the

86 WebSphere MQ Everyplace V2.0.2

connection is reused. Creation of MQ connections is an expensive operation and this process ensures that

they are efficiently reused without consuming excessive resources. A value of zero indicates that a

connection pool should not be used.

More detail of each property can be found in the Java Programming Reference, in the administration class

com.ibm.mqe.mqbridge.MQeClientConnectionAdminMsg.

Each client connection object supports the full range of create,inquire, inquire-all, update, start, stop,

delete operations. Examples of these operations can be found in the Java class

examples.mqbridge.administration.programming.AdminHelperMQClientConnection.

Transmit queue listener resource

The listener moves messages from MQ to MQe.

 Table 23. Listener properties

Property Explanation

Class Listener class

Dead letter queue name Queue used to hold messages from MQ to MQe that cannot be delivered

Listener state store adapter Class name of the adapter used to store state information

Listener name Name of the MQ XMIT queue supplying messages

Owning client connection service

name

Client connection service name

Run state Status: running or stopped

Startup rule class Rule class used when the listener is started

Transformer class Rule class used to determine the conversion of an MQ message to MQe

Undelivered message rule class Rule class used to determine action when messages from MQ to MQe cannot be

delivered

Seconds wait for message An advanced option that can be used to control listener performance in

exceptional circumstances

More detail of each property can be found in the Java Programming Reference, in the administration class

com.ibm.mqe.mqbridge.MQeListenerAdminMsg.

Each transmit queue listener object supports the full range of create, inquire, inquire-all, update, start,

stop, delete operations. Examples of these operations can be found in the Java class

examples.mqbridge.administration.programming.AdminHelperMQTransmitQueueListener

The undelivered message rule class determines what action is taken when a message from MQ to MQe

cannot be delivered. Typically it is placed in the dead letter queue of the MQ system.

In order to provide assured delivery of messages, the listener class uses the listener state store

adapter to store state information, either on the MQe system or in the sync queue of the MQ system.

The transmission queue listener allows MQ remote queues to refer to MQe local queues. You can also

create MQe remote queues that refer to MQ local queues. These MQe remote queue definitions are called

MQ bridge queues and they can be used to get, put and browse messages on an MQ queue.

Chapter 2. Configuring MQe objects 87

Bridge queue

An MQ bridge queue definition can contain the following attributes.

 Table 24. MQ bridge queue properties

Property Explanation

Alias names Alternative names for the queue

Authenticator Must be null

Class Object class

Client connection Name of the client connection service to be used

Compressor Must be null

Cryptor Must be null

Expiry Passed to transformer

Maximum message size Passed to the rules class

Mode Must be synchronous

MQ queue manager proxy Name of the MQ queue manager to which the message should first be sent

MQ bridge Name of the bridge to convey the message to MQ

Name Name by which the remote MQ queue is known to MQe

Owning queue manager Queue manager owning the definition

Priority Priority to be used for messages, unless overridden by a message value

Remote MQ queue name Name of the remote MQ queue

Rule Rule class used for queue operations

Queue manager target MQ queue manager owning the queue

Transformer Name of the transformer class that converts the message from MQe format to

MQ format

Type MQ bridge queue

More detail of each property can be found in the Java Programming Reference, in the administration class

com.ibm.mqe.mqbridge.MQeMQBridgeQueueAdminMsg.

Example code which manipulates a bridge queue can be found in the Java class

examples.mqbridge.administration.programmingAdminHelperBridgeQueue.

Note: The cryptor, authenticator, and compressor classes define a set of queue attributes that dictate the

level of security for any message passed to this queue. From the time on MQe that the message is sent

initially, to the time when the message is passed to the MQ bridge queue, the message is protected with

at least the queue level of security. These security levels are not applicable when the MQ bridge queue

passes the message to the MQ system, the security send and receive exits on the client connection are

used during this transfer. No checks are made to make sure that the queue level of security is

maintained.

MQ bridge queues are synchronous only. Asynchronous applications must therefore use either a

combination of MQe store-and-forward and home-server queues, or asynchronous remote queue

definitions as an intermediate step when sending messages to MQ bridge queues.

Applications make use of MQ bridge queues like any other MQe remote queue, using the putMessage,

browseMessages, and getMessage methods of the MQeQueueManager class. The queue name parameter in

these calls is the name of the MQ bridge queue, and the queue manager name parameter is the name of

88 WebSphere MQ Everyplace V2.0.2

the MQ queue manager. However, in order for this queue manager name to be accepted by the local

MQe server, a connection definition with this MQ queue manager name must exist with null for all the

parameters, including the channel name.

Note: there are some restrictions on the use of getMessage and browseMessages with MQ bridge queues.

It is not possible to get or browse messages from MQ bridge queues that point to MQ remote queue

definitions. Nor is it possible to use nonzero Confirm IDs on MQ bridge queue gets. This means that the

getMessage operation on MQ bridge queues does not provide assured delivery. If you need a get

operation to be assured, you should use transmission-queue listeners to transfer messages from MQ.

Administration of the MQ bridge is handled in the same way as the administration of a normal MQe

queue manager, through the use of administration messages. New classes of messages are defined as

appropriate to the queue.

Naming recommendations for interoperability with MQ

To create an MQe network that can interoperate with an MQ network and avoid problems, adopt the

same limitations in naming convention for both systems. The following differences are relevant:

v MQ queue and queue manager names can have a forward slash (/) character. This character is not

valid in MQe object names. Do not use this character in the name of any MQ queue or queue manager.

v MQ queue and queue manager names have a limit of 48 characters, but MQe names have no length

restrictions. Do not define MQe queues or queue managers with names that contain more than 48

characters.

v MQ queue names can have leading or trailing period (.) character. This is not allowed in MQe. Do not

define any MQ queue or queue manager with a name that starts or ends with this character.

v Name queue managers uniquely, such that a queue manager with the same name does not exist on the

MQe network and the MQ network.

If you choose not to follow these guidelines, then you may experience problems when trying to address

an MQe queue from an MQ application.

Configuring a basic MQ bridge

To configure a very basic installation of the MQ bridge complete the following steps:

 1. Make sure you have an MQ system installed and that you understand local routing conventions, and

how to configure the system.

 2. Install MQe on a system (it can be on the same system as MQ)

 3. If MQ Classes for Java is not already installed, download it from the Web and install it on the MQ

system.

 4. Set up your MQe system and verify that it is working properly before you try to connect it to MQ.

 5. Update the MQe_java\Classes\JavaEnv.bat file so that it points to the Java classes that are part of

the MQ Classes for Java, and to the classpath for your JRE (Java Runtime Environment). Ensure that

the SupportPac MA88 .jar files are in the classpath, and that the java\lib and \bin directories are in

your path. This is set by the MQE_VM_OPTIONS_LOCN which should be set to point to the vm_options.txt

file during installation.

 6. Plan the routing you intend to implement. You need to decide which MQ queue managers are going

to talk to which MQe queue managers.

 7. Decide on a naming convention for MQe objects and MQ objects and document it for future use.

 8. Modify your MQe system to define an MQ bridge on your chosen MQe server. See Java

Programming Reference for information on using examples.mqbridge.awt.AwtMQBridgeServer to

define a bridge.

 9. Connect the chosen MQ queue manager to the bridge on the MQe server as follows:

v On the MQ queue manager:

Chapter 2. Configuring MQe objects 89

– Define one or more Java server connections so that MQe can use the MQ Classes for Java to

talk to this queue manager. This involves the following steps:

a. Define the server connections

b. Define a sync queue for MQe to use to provide assured delivery to the MQ system. You

need one of these for each server connection that the MQe system can use.
v On the MQe server:

a. Define an MQ queue manager proxy object which holds information about the MQ queue

manager. This involves the following steps:

1) Collect the Hostname of the MQ queue manager.

2) Put the name in the MQ queue manager proxy object.
b. Define a Client Connection object that holds information about how to use the MQ Classes for

Java to connect to the server connection on the MQ system. This involves the following steps:

1) Collect the Port number, and all other server connection parameters.

2) Use these values to define the client connection object so that they match the definition on

the MQ queue manager.
10. Modify your configuration on both MQe and MQ to allow messages to pass from MQ to MQe.

a. Decide on the number of routes from MQ to your MQe network. The number of routes you need

depends on the amount of message traffic (load) you use across each route. If your message load

is high you may wish to split your traffic into multiple routes.

b. Define your routes as follows:

1) For each route define a transmission queue on your MQ system. DO NOT define a

connection for these transmission queues.

2) For each route create a matching transmission queue listener on your MQe system.

3) Define a number of remote queue definitions, (such as remote queue manager aliases and

queue aliases) to allow MQ messages to be routed onto the various MQe-bound transmission

queues that you defined in step b. 1.
11. Modify your configuration on MQe to allow messages to pass from MQe to MQ:

a. Publish details about all the queue managers on your MQ network you want to send messages to

from the MQe network. Each MQ queue manager requires a connections definition on your MQe

server. All fields except the Queue manager name should be null, to indicate that the normal

MQe communications connections should not be used to talk to this queue manager.

b. Publish details about all the queues on your MQ network you want to send messages to from the

MQe network. Each MQ queue requires an MQ bridge queue definition on your MQe server.

This is the MQe equivalent of a DEFINE QREMOTE in MQ.

v The queue name is the name of the MQ queue to which the bridge should send any messages

arriving on this MQ bridge queue.

v The queue manager name is the name of the MQ queue manager on which the queue is

located.

v The bridge name indicates which bridge should be used to send messages to the MQ network.

v The MQ queue manager proxy name is the name of the MQ queue manager proxy object, in

the MQe configuration, that can connect to an MQ queue manager.

v The MQ queue manager should have a route defined to allow messages to be posted to the

Queue Name on Queue Manager Name to deliver the message to its final destination.
12. Start your MQ and MQe systems to allow messages to flow. The MQ system client channel listener

must be started. All the objects you have defined on the MQe must be started. These objects can be

started in any of the following ways:

v Explicitly using the Administration GUI described in MQe Configuration Guide.

v Configuring the rules class, as described in MQe System Programming Guide, to indicate the

startup state (running or stopped), and restarting the MQe server

90 WebSphere MQ Everyplace V2.0.2

v A mixture of the two previous methods

The simplest way to start objects manually, is to send a start command to the relevant bridge object.

This command should indicate that all the children of the bridge, and children’s children should be

started as well.

v To allow messages to pass from MQe to MQ, start the client connection objects in MQe.

v To allow messages to pass from MQ to MQe, start both the client connection objects, and the

relevant transmission queue listeners.
13. Create transformer classes, and modify your MQe configuration to use them. A transformer class

converts messages from MQ message formats into an MQe message format, and vice versa. These

format-converters must be written in Java and configured in several places in the MQ bridge

configuration.

a. Create transformer classes

v Determine the message formats of the MQ messages that need to pass over the bridge.

v Write a transformer class, or a set of transformer classes to convert each MQ message format

into an MQe message. Transformers are not directly supported by the C bindings.
b. You can replace the default transformer class. Use the administration GUI to update the default

transformer class parameter in the bridge object’s configuration.

c. You can specify a non-default transformer for each MQ bridge queue definition. Use the

administration GUI to update the transformer field of each MQ bridge queue in the

configuration.

d. You can specify a non-default transformer for each MQ transmission queue listener. Use the

administration GUI to update the transformer field of each listener in the configuration.

e. Restart the bridge, and listeners.

Using MQe administration messages and MQ PCF messages

PCF messages are administration messages used by MQ queue managers. SupportPac MS0B: ″MQSeries®

Java classes for PCF″ contains Java code, which supplies PCF message support. This code is available as a

free download.

If you download and install it, and put the com.ibm.mq.pcf.jar file on your ClassPath environment

variable, you have access to Java classes, which can dynamically manipulate MQ resources. When PCF

messages are combined with MQe administration messages, complete programmatic configuration of

bridge resources, and corresponding resources on an MQe queue manager are possible. Example code

contained in the examples.mqbridge.administration.programming.AdminHelperMQ class, used in

conjunction with the examples.mqbridge.administration.programming.MQAgent demonstrates how to do

this. This example code has been added to the examples.awt.AwtMQeServer program, such that clicking

menu View->Connect local MQ default queue manager will:

v Ensure that a bridge object exists, creating one as required.

v Query properties from the default MQ queue manager.

v Attempt to connect that queue manager to the currently running MQe queue manager.

v Ensure a proxy object representing the default MQ queue manager exists, creating one if necessary.

v Ensure an MQe client connection exists, and that a corresponding MQ server connection channel exists

also, creating these resources if necessary.

v Ensure a ’sync queue’ exists on the MQ queue manager.

v Ensure a transmit queue on MQ exists, and create if necessary.

v Ensure a matching MQ transmit queue listener exists in the configuration of the current MQe queue

manager, creating one if necessary.

v Ensure all the bridge resources are started.

v Ensure a test queue on the MQ queue manager exists, creating one if necessary.

v Ensure a matching MQe bridge queue exists, which refers to that test queue.

Chapter 2. Configuring MQe objects 91

v Send a test MQeMQMsgObject to the test queue to make sure the configuration is working.

v Get the test MQeMQMsgObject from the test queue to make sure the configuration is working.

Bridge configuration example

This section describes an example configuration of 4 systems.

Requirement

The requirement for this example is that all machines are able to post a message to a queue on any of the

other machines.

It is assumed that all machines are permanently connected to the network, except the MQeMoonQM

machine, which is only occasionally connected.

The four systems are:

MQeMoonQM

This is an MQe client queue manager, sited on a handheld PC. The user periodically attaches the

handheld PC to the network, to communicate with the MQeEarthQM MQe gateway.

MQeEarthQM

This is on a Windows 2000 machine, with an IP address of 20.8.9.50 This is an MQe gateway

(server) queue manager.

MQSaturnQM

This is an MQ queue manager, installed on a Windows NT platform. The IP address is 20.8.9.51

MQJupiterQM

This is an MQ queue manager, installed on a System/390® platform.

MQJupiterQM

MQeMoonQM

Hand held PC

MQSaturnQM

WebSphere MQ server
I/P address 20.8.9.51

System 390

WebSphere MQ Everyplace server
I/P address 20.8.9.50

MQeEarthQM

WebSphere MQ
bridge queue

Figure 18. Configuration example

92 WebSphere MQ Everyplace V2.0.2

Initial setup

For this example, it is assumed that there are local queues, to which messages can be put, on all the

queue managers. These queues are called:

v MQeMoonQ on MQeMoonQM

v MQeEarthQ on MQeEarthQM

v MQSaturnQ on MQSaturnQM

v MQJupiterQ on MQJupiterQM

Now any application connected to any of the queue managers can post a message to any of the queues

MQeMoonQ, MQeEarthQ, MQSaturnQ or MQJupiterQ.

MQeMoonQM to/from MQeEarthQM

On MQeMoonQM:

1. Define a connection with the following parameters:

Target queue manager name: MQeEarthQM

Adapter: FastNetwork:20.8.9.50

Note: Check that the adapter you specify when you define the connection matches the

adapter used by the Listener on the MQeEarthQM queue manager.
Applications can now connect directly to any queue defined on the MQeEarthQM queue

manager directly, when the MQeMoonQM is connected to the network. The requirement states

that applications on MQeMoonQM must be able to send messages to MQeEarthQ in an

asynchronous manner. This requires a remote queue definition to set up the asynchronous

linkage to the MQeEarthQ queue.

2. Define a remote queue with the following parameters:

Queue name: MQeEarthQ

Queue manager name: MQeEarthQM

Access mode: Asynchronous

Applications on MQeMoonQM now have access to the MQeMoonQ (a local queue) in a synchronous

manner, and the MQeEarthQ in an asynchronous manner.

MQeEarthQM to MQeMoonQM

Because the MQeMoonQM is not attached to the network for most of the time, use a store-and-forward queue

on the MQeEarthQM to collect messages destined for the MQeMoonQM queue manager.

On MQeEarthQM:

1. Define a store-and-forward-queue with the following parameters:

Queue name: TO.HANDHELDS

Queue Manager Name: MQeEarthQM

2. Add a queue manager to the store-and-forward queue using the following parameters:

Queue Name: TO.HANDHELDS

Queue manager: MQeMoonQM

A (similarly named) home-server queue is needed on the MQeMoonQM queue manager. This queue pulls

messages out of the store-and-forward queue and puts them to a queue on the MQeMoonQM queue manager.

On MQeMoonQM:

1. Define a home-server queue with the following parameters:

Chapter 2. Configuring MQe objects 93

Queue Name: TO.HANDHELDS

Queue manager name: MQeEarthQM

Any messages arriving at MQeEarthQM that are destined for MQeMoonQM are stored temporarily in the

store-and-forward queue TO.HANDHELDS. When MQeMoonQM next connects to the network, its home-server

queue TO.HANDHELDS gets any messages currently on the store-and-forward queue, and delivers them to

the MQeMoonQM queue manager, for storage on local queues.

Applications on MQeEarthQM can now send messages to MQeMoonQ in an asynchronous manner.

MQeEarthQM to MQSaturnQ

On MQeEarthQM:

1. Define a bridge with the following parameters:

Bridge name: MQeEarthQMBridge

2. Define an MQ queue manager proxy with the following parameters:

Bridge Name: MQeEarthQMBridge

MQ QMgr Proxy Name: MQSaturnQM

Hostname: 20.8.9.51

3. Define a client connection with the following parameters:

Bridge Name: MQeEarthQMBridge

MQ QMgr Proxy Name: MQSaturnQM

ClientConnectionName: MQeEarth.CHANNEL

SyncQName: MQeEarth.SYNC.QUEUE

4. Define a connection with the following parameters:

ConnectionName: MQSaturnQM

Channel: null

Adapter: null

5. Define an MQ bridge queue with the following parameters:

Queue Name: MQSaturnQ

MQ Queue manager name: MQSaturnQM

Bridge name: MQeEarthQMBridge

MQ QMgr Proxy Name: MQSaturnQM

ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a server connection channel with the following parameters:

Name: MQeEarth.CHANNEL

2. Define a local sync queue with the following parameters:

Name: MQeEarth.SYNC.QUEUE

The sync queue is needed for assured delivery.

 Applications on MQeEarthQM can now send messages to the MQSaturnQ on MQSaturnQM.

MQeEarthQM to MQJupiterQ

On MQeEarthQM:

1. Define a connection with the following parameters:

94 WebSphere MQ Everyplace V2.0.2

ConnectionName: MQeJupiterQM

Channel: null

Adapter: null

2. Define an MQ bridge queue with the following parameters:

Queue Name: MQJupiterQ

MQ Queue manager name: MQJupiterQM

Bridge name: MQeEarthQMBridge

MQ QMgr Proxy Name: MQSaturnQM

ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a remote queue definition with the following parameters:

Queue Name: MQJupiterQ

Transmission Queue: MQJupiterQM.XMITQ

On both MQSaturnQM and MQJupiterQM:

1. Define a channel to move the message from the MQJupiterQM.XMITQ on MQSaturnQM to

MQJupiterQM.

 Now applications on MQeEarthQM can send a message to MQJupiterQ on MQJupiterQM, through MQSaturnQM.

MQeMoonQM to MQJupiterQ and MQSaturnQ

On MQeMoonQM:

1. Define a connection with the following parameters:

Target Queue manager name: MQSaturnQM

Adapter: MQeEarthQM

The connection indicates that any message bound for the MQSaturnQM queue manager should

go through the MQeEarthQM queue manager.

2. Define a remote queue definition with the following parameters:

Queue name: MQSaturnQ

Queue manager name: MQSaturnQM

Access mode: Asynchronous

3. Define a connection with the following parameters:

Target Queue manager name: MQJupiterQM

Adapter: MQeEarthQM

4. Define a remote queue definition with the following parameters:

Queue name: MQJupiterQ

Queue manager name: MQJupiterQM

Access mode: Asynchronous

 Applications connected to MQeMoonQM can now issue messages to MQeMoonQ, MQeEarthQ, MQSaturnQ, and

MQJupiterQ, even when the handheld PC is disconnected from the network.

MQSaturnQM to MQeEarthQ

On MQSaturnQM:

1. Define a local queue with the following parameters:

Chapter 2. Configuring MQe objects 95

Queue name: MQeEarth.XMITQ

Queue type: transmission queue

2. Define a queue manager alias (remote queue definition) with the following parameters:

Queue name: MQeEarthQM

Remote queue manager name: MQeEarthQM

Transmission queue: MQeEarth.XMITQ

On MQeEarthQM:

1. Define a Transmission queue listener with the following parameters:

Bridge name: MQeEarthQMBridge

MQ QMgr Proxy Name: MQSaturnQM

ClientConnectionName: MQeEarth.CHANNEL

Listener Name: MQeEarth.XMITQ

 Applications on MQSaturnQM can now send messages to MQeEarthQ using the MQeEarthQM queue manager

alias . This routes each message onto the MQeEarth.XMITQ, where the MQe transmission queue listener

MQeEarth.XMITQ gets them, and moves them onto the MQe network.

MQSaturnQM to MQeMoonQ

On MQSaturnQM:

1. Define a queue manager alias (remote queue definition) with the following parameters:

Queue name: MQeMoonQM

Remote queue manager name: MQeMoonQM

Transmission queue: MQeEarth.XMITQ

 Applications on MQSaturnQM can now send messages to MQeMoonQ using the MQeMoonQM queue manager

alias . This routes each message to the MQeEarth.XMITQ, where the MQe transmission queue listener

MQeEarth.XMITQ gets them, and posts them onto the MQe network.

The store-and-forward queue TO.HANDHELDS collects the message, and when the MQeMoonQM next connects

to the network, the home-server queue retrieves the message from the store-and-forward queue, and

delivers the message to the MQeMoonQ.

MQJupiterQM to MQeMoonQ

On MQJupiterQM:

 Set up remote queue manager aliases for the MQeEarthQM and MQeMoonQM to route messages to

MQSaturnQM using normal MQ routing techniques.

Administration of the bridge

Bridge administration actions

Run state: Each administered object has a run state. This can be running or stopped indicating whether

the administered object is active or not.

When an administered object is stopped, it cannot be used, but its configuration parameters can be queried

or updated.

If the MQ bridge queue references a bridge administered object that is stopped, it is unable to convey an

MQe message onto the MQ network until the bridge, MQ queue manager proxy, and client connection

objects are all started.

96 WebSphere MQ Everyplace V2.0.2

The run state of administered objects can be changed using the start and stop actions from the

MQeMQBridgeAdminMsg, MQeMQQMgrProxyAdminMsg, MQeClientConnectionAdminMsg, orMQeListenerAdminMsg

administration message classes.

Start action: An administrator can send a start action to any of the administered objects.

The affect children boolean flag affects the results of this action:

v The start action starts the administered object and all its children (and children’s children) if the

affect children boolean field is in the message and is set to true.

v If the flag is not in the message or is set to false, only the administered object receiving the start

action changes its run-state.

For example, sending start to a bridge object with affect children as true causes all proxy, client

connection, and listeners that are ancestors, to start. If affect children is not specified, only the bridge is

started. An object cannot be started unless its parent object has already been started. Sending a start event

to an administered object attempts to start all the objects higher in the hierarchy that are not already

running.

Stop action: An administered object can be stopped by sending it a stop action. The receiving

administered object always makes sure all the objects below it in the hierarchy are stopped before it is

stopped itself.

Inquire action: The inquire action queries values from an administered object.

If the administered object is running, the values returned on the inquire are those that are currently in

use.

The values returned from a stopped object reflect any recent changes to values made by an update action.

Thus, a sequence of:

 start, update, inquire

returns the values configured before the update,

A sequence of:

 start, update, stop, inquire

returns the values configured after the update.

You may find it less confusing if you stop any administered object before updating variable values.

Update action: The update action changes one or more values for characteristics for an administered

object. The values set by an update action do not become current until the administered object is next

stopped. (See “Inquire action.”)

Delete action: The delete action permanently removes all current and persistent information about the

administered object. The affect children boolean flag affects the outcome of this action. If the affect

children flag is present and set to true the administered object receiving this action issues a stop action,

and then a delete action to all the objects below it in the hierarchy, removing a whole piece of the

hierarchy with one action. If the flag is not present, or it is set to false, the administered object deletes

only itself, but this action cannot take place unless all the objects in the hierarchy below the current one

have already been deleted.

Create action: The create action creates an administered object. The run state of the administered object

created is initially set to stopped.

Chapter 2. Configuring MQe objects 97

Bridge considerations when stopping an MQ queue manager

Before you stop an MQ queue manager, issue a stop administration message to all the MQ

queue-manager-proxy bridge objects. This stops the MQe network from trying to use the MQ queue

manager and possibly interfering with the shutdown of the MQ queue manager. This can also be

achieved by issuing a single stop administration message to the MQeBridges object.

If you choose not to stop the MQ queue-manager-proxy bridge object before you shut the MQ queue

manager, the behavior of the MQ shutdown and the MQ bridge depends on the type of MQ queue

manager shutdown you choose, immediate shutdown or controlled shutdown.

Immediate shutdown: Stopping an MQ queue manager using immediate shutdown severs any

connections that the MQ bridge has to the MQ queue manager (this applies to connections formed using

the MQSeries Classes for Java in either the bindings or client mode). The MQ system shuts down as

normal.

This causes all the MQ bridge transmission queue listeners to stop immediately, each one warning that it

has shut down due to the MQ queue manager stop.

Any MQ bridge queues that are active retain a broken connection to the MQ queue manager until:

v The connection times-out, after being idle for an idle time-out period, as specified on the

client-connection bridge object, at which point the broken connection is closed.

v The MQ bridge queue is told to perform some action, such as put a message to MQ, that attempts to

use the broken connection. The putMessage operation fails and the broken connection is closed.

When an MQ bridge queue has no connection, the next operation on that queue causes a new connection

to be obtained. If the MQ queue manager is not available, the operation on the queue fails synchronously.

If the MQ queue manager has been restarted after the shutdown, and a queue operation, such as

putMessage, acts on the bridge queue, then a new connection to the active MQ queue manager is

established, and the operation executes as expected.

Controlled shutdown: Stopping an MQ queue manager using the controlled shutdown does not sever

any connections immediately, but waits until all connections are closed (this applies to connections

formed using the MQSeries Classes for Java in either the bindings or client mode). Any active MQ bridge

transmission queue listeners notice that the MQ system is quiescing, and stop with a relevant warning.

Any MQ bridge queues that are active retain a connection to the MQ queue manager until:

v The connection times-out, after being idle for an idle time-out period, as specified on the client

connection bridge object, at which point the broken connection is closed, and the controlled shutdown

of the MQ queue manager completes.

v The MQ bridge queue is told to perform some action, such as put a message to MQ, that attempts to

use the broken connection. The putMessage operation fails, the broken connection is closed, and the

controlled shutdown of the MQ queue manager completes.

The bridge client-connection object maintains a pool of connections, that are awaiting use. If there is no

bridge activity, the pool retains MQ client channel connections until the connection idle time exceeds the

idle time-out period (as specified on the client connection object configuration), at which point the

channels in the pool are closed.

When the last client channel connection to the MQ queue manager is closed, the MQ controlled

shutdown completes.

Administered objects and their characteristics

This section describes the characteristics of the different types of administered objects associated with the

MQe MQ bridge. Characteristics are object attributes that can be queried using an inquireAll()

administration message. The results can be read and used by the application, or they can be sent in an

98 WebSphere MQ Everyplace V2.0.2

update or create administration message to set the values of the characteristics. Some characteristics can

also be set using the create and update administration messages. Each characteristic has a unique label

associated with it and this label is used to set and get the characteristic value.

Characteristics of bridges objects

 Refer to Java Programming Reference for information on the

com.ibm.mqe.mqbridge.MQeMQBridgesAdminMsg.

Characteristics of bridge objects

 Refer to Java Programming Reference for information on the

com.ibm.mqe.mqbridge.MQeMQBridgeAdminMsg.

Characteristics of MQ queue manager proxy objects

 Refer to Java Programming Reference for information on the

com.ibm.mqe.mqbridge.MQeMQQMgrProxyAdminMsg.

Characteristics of client connection objects

 Refer to Java Programming Reference for information on the

com.ibm.mqe.mqbridge.MQeClientConnectionAdminMsg.

Characteristics of MQ transmission queue listener objects

 Refer to Java Programming Reference for information on the

com.ibm.mqe.mqbridge.MQeListenerAdminMsg.

Configuring a bridge for optimal throughput

Using MQe, you can create a gateway to allow messages to flow to MQ. You will need to create certain

MQe objects to configure a gateway. These objects include a bridge, queue manager proxy, client

connection, bridge queue, and optionally a transmission queue listener if messages are also to be sent

from MQ back to MQe.

In a standard configuration, a single client connection is created along with a single bridge queue. This is

sufficient to start sending messages from MQe to MQ. If there are a large number of clients connecting to

the gateway, the number of messages sent per second through to MQ decreases.

Gateway configuration

As Figure 19 on page 100 shows, if there are multiple clients connecting to the gateway queue manager

through the communications listener, there may be a bottleneck created by the bridge queue. To alleviate

this problem, you can create multiple bridge queues, client connections, server connection channels, and

sync queues.

Chapter 2. Configuring MQe objects 99

Care needs to be taken on deciding the number of bridge queues to create as there is a point at which the

performance of the gateway decreases with an increased number of bridge queues.

Finding and creating the optimal configuration

To find the optimal configuration for your setup, you need to create the MQe objects and perform tests to

measure the throughput of messages. This empirical testing should ideally take place on a similar

network to the production network, using production type message data.

Use the SupportPac MQe_Script to create tests that are both easy to configure and repeatable. This

SupportPac is a command line based tool for creating and administering MQe resources. MQe_Script

embeds a scripting language called TCL that you can use to write intelligent scripts that add logic and

control. You can download this support from the from the Business Integration SupportPacs Web

site:http://www.ibm.com/software/integration/support/supportpacs . To access the download from this

site, select the WebSphere® MQ Everyplace® product from the list box.

Figure 19. Standard configuration of a MQe gateway

100 WebSphere MQ Everyplace V2.0.2

http://www.ibm.com/software/integration/support/supportpacs

Using MQe_Script, you can write scripts that create all the necessary objects on the gateway, and

optionally the clients. Parameters can be passed into a script in such a way that the script takes in the

number of required bridge queues. As a result, the bridge queues and all the other relevant MQe objects

are created.

By using this method to create MQe configurations, you can quickly and easily experiment with the

number of bridge queues required to achieve the desired throughput. Once you write the script, no extra

programming is required.

MQe_Script can even be used to modify any existing configurations that may exist.

Although MQe_Script does not modify MQ objects, these can be created using MQSC commands.

MQe_Script does come with an example MQSC script showing how to create the MQ objects necessary to

communicate with an MQ Everyplace gateway .

Setting up the gateway

Follow these steps to set up the gateway:

v The gateway requires a single instance of a bridge object and a single instance of a WebSphere MQ

queue manager proxy object.

v Next, you need to create the client connection objects. How many client connection objects you need to

create will depend on how many bridge queues are required.

v Finally, you need to create the bridge queues with each one using a different client connection.

Setting up the clients

Each client must have a remote queue definition to the MQ queue. If multiple bridge queues are being

used on the gateway, an alias is needed on the remote queue definition so that any application putting

messages using a client gets the correct path to the MQ queue. This also helps as applications do not

have to be aware of the clients putting to different queues.

For example, if three clients existed, each putting to separate bridge queues, b1, b2, and b3, all remote

queue definitions could have an alias of b. Any application putting to the clients can then simply put to

queue b. This allows changes in the underlying network without having to make any changes to the

application.

To utilize all the bridge queues created on the gateway, and therefore achieve optimal message

throughput, the bridge queues should be equally divided amongst all the clients. Therefore, if there are

50 bridge queues and 5000 clients, 100 clients should create a remote queue definition to bridgeq1, another

100 should create a remote queue definition to bridgeq2 and so on.

Creating the gateway

This section provides the basic steps and code snippets to create a gateway. The MQe_Script commands

used in this section are provided as a full script along with any undefined variables in “Sample script to

create a gateway” on page 104.

 1. Create a queue manager.

To create a basic queue manager, provide a name and disk location. The disk location is where the

registry will be saved to and any messages for queues.

mqe_script_qm -create -qmname $GATEWAYQM -qmpath $PATH

 2. Start the queue manager.

The command used here does not specify a queue manager name to load. This is because if used

directly after a create command, the queue manager details are cached. For more information on

how to load a previously created queue manager, please see the documentation accompanying

MQe_Script when you download the SupportPac.

mqe_script_qm –load

 3. Create a listener.

Chapter 2. Configuring MQe objects 101

The listener must be given a name and a port to listen on. Optionally, the type of adapter can be

specified if it is something other than the default (TCPIP HTTP).

mqe_script_listen -create -listenname $LISTENER -port $GATEWAYPORT

 4. Start the listener.

By default listeners are not started after they are created. Once the queue manager has been stopped

and restarted however, the listener will then start automatically.

mqe_script_listen –start -listenname $LISTENER

 5. Create a bridge.

An arbitrary name is needed for the bridge object. This acts as the parent for all the other

bridge-related objects.

mqe_script_bridge -create -bridgename $BRIDGE

 6. Create a queue manager proxy.

The queue manager proxy must be associated with the bridge object previously created. It must also

be named according to the name of the MQ queue manager with which the connection will take

place. Finally, the IP address or hostname of the machine on which the MQ queue manager is

defined is required.

mqe_script_mqproxy -create -proxyname $PROXY -bridgename $BRIDGE -hostname $ADDRESS

 7. Create a connection definition to the MQ queue manager.

A special MQ connection must be created to define the MQ queue manager. This needs to have the

same name as the MQ queue manager.

mqe_script_condef -create -cdname $PROXY -type mq

 8. Create multiple client connection channels.

These must be associated with the queue manager proxy and bridge objects previously created. They

must have the same name as a server connection channel on the MQ queue manager. Finally, the

MQ sync queue, which it will use, must be defined. This will be different for each client connection

channel. If the MQ queue manager is not listening on the default port of 1414, the port number must

also be defined.

mqe_script_mqconn -create -clientconnname CCj -proxyname $PROXY -bridgename $BRIDGE -syncqname

 $SYNCQ$j -port $PORT

 9. Optionally, to receive messages back from MQ, create multiple transmission queue listeners.

If a transmission queue listener is required, it must be associated with the client connection channel,

queue manager proxy and bridge objects previously created. It must have the same name as the

transmission queue on the MQ queue manager.

mqe_script_mqlisten -create -listenname $LISTEN -clientconnname CCj -proxyname

 $PROXY -bridgename $BRIDGE

10. Create multiple bridge queues.

A name must be provided for the bridge queue. Under normal circumstances, the bridge queue

names reflect the name of the MQ destination queue. An alternative way of linking the bridge queue

to the MQ queue is to use an additional parameter, the MQ Queue Name, which allows the name of

the bridge queue to be something different. It is this latter approach that needs to be taken when

defining multiple bridge queues. Each bridge queue must be associated with an individual client

connection. In other words, there is a one-to-one relationship. The bridge queue also needs to be

associated with the bridge and the queue manager proxy, thus linking the bridge queue to a specific

MQ queue manager, queue and connection.

 mqe_script_bridgeq -create -qname $BRIDGEQ$j -bridgename $BRIDGE -destination $PROXY

 -mqqname $REALBRIDGEQ -clientconnname CCj

11. Start the bridge.

Starting the bridge will by default start all the child objects too. If you have created transmission

queue listeners and your MQ queue manager is not contactable, this may result in the transmission

queue listener failing to start. This is something to watch out for as the command may come back as

102 WebSphere MQ Everyplace V2.0.2

successful even if all the child objects were not started. On the other hand, an error may be thrown

and you may wish to ignore it and carry on with the script. Each of the child objects can be started

individually if preferred.

mqe_script_bridge -start -bridgename $BRIDGE

Steps to create the client

The basic steps to create a client are defined below. The MQe_Script commands to accompany these are

provided along with any undefined variables in “Sample script to create a client” on page 106.

1. Create a queue manager.

Provide a name and disk location.

 mqe_script_qm –create –qmname $CLIENT –qmpath $PATH

2. Start the queue manager.

See the code example below.

mqe_script_qm –load

3. Create a connection definition to the gateway queue manager.

The connection definition must have the same name as the gateway queue manager. Define the port

on which the gateway is listening and, if the gateway is listening on an adapter other than the

default, this must also be defined.

mqe_script_condef –create –cdname $GATEWAYQM –port $PORT –address $ADDRESS

4. Create a via connection definition to the MQ queue manager.

The client must know about the MQ queue manager to put messages to its queues. A via connection

can be created where the name of the connection is the MQ queue manager name and the via name is

the gateway queue manager.

mqe_script_condef –create –cdname $MQNAME –viaqmname $GATEWAYQM

5. Create a remote queue definition to the bridge queue and add an alias.

The name of the remote queue definition must match one of the bridge queues defined on the

gateway. The queue manager name of the MQ queue manager must also be defined.

To use multiple bridge queues, where the bridge queue name is not the same as the real MQ queue

name, aliases must be used. An application can not use a bridge queue name on the gateway as the

queue name of the MQ queue because that queue does not exist on the MQ queue manager.

Also, the remote definition of the queue can not be called the real MQ queue name as that reference

does not exist on the gateway queue manager. It is therefore useful to add the actual name of the MQ

queue as an alias to the remote queue definition so that applications know exactly where the message

should be sent to.

mqe_script_sproxyq –create –qname $BRIDGEQ$BRIDGEQNUM –destination $MQNAME –alias $REALBRIDGENAME

When using MQe_Script, the alias can be added at the time of creation or as an update in a later stage

if the remote queue definition already exists.

6. Test the connection by sending a message from the client to the MQ queue manager.

For applications to make the same call, independent of which client they are putting messages to, the

message can be put using the alias of the remote queue definition.

mqe_script_msg –put –qname $REALBRIDGENAME –qmname $MQNAME

Tips on writing a script

When writing a script, it is often easier to define a set of variables at the beginning of the script. This

makes any changes to the naming conventions or number of MQe objects easier to manage.

In TCL variables are defined using the set command and referenced using a $ in front of the variable

name.

It is also useful to define variables in capital letters so that they can easily be identified within a script.

set PATH "C:\\MQeScript\\gateway"

Chapter 2. Configuring MQe objects 103

When calling MQe_Script commands, they can be defined on their own or TCL control structures can be

added to provide feedback on the success of the command and potentially exit the script if errors occur.

One method of checking the success of a command is to use an if / else block with a catch command.

if { [catch {mqe_script_qm -create -qmname $GATEWAYQM -qmpath

$PATH} error] } {

 puts "An error occurred creating queue manager";

 puts "The reason was: $error"

 exit

} else {

 puts "Queue manager created"

}

As the above code snippet shows, the puts command is used to print text to the screen and the exit

command stops the execution of the script. If any errors are thrown, the error text is saved in the variable

named “error” and can then be accessed.

If a script is being written to create a number of bridge objects defined by a variable, the creation of those

objects can be placed inside a loop. The easiest method of creating multiple objects is to have a standard

name for each of the objects then add a number to each of them so they are unique.

for {set j 1} {$j <= $QNUM} {incr j} {

 #create all the client connections

mqe_script_mqconn -create -clientconnname CCj -proxyname $PROXY -bridgename $BRIDGE

 -syncqname $SYNCQ$j -port $PORT

}

The above snippet shows how names can be created using a loop variable. $CC is already defined as a

client connection name prefix and $SYNCQ as a sync queue name prefix.

The code snippet also introduces the use of the # to define a comment.

In order to supply MQe_Script with a script file, it must be saved with a .tcl extension and the command

to supply a script is the source command.

source {C:\MQeScript\gatewayscript.tcl}

For more information on TCL and writing scripts, refer to the documentation accompanying MQe_Script.

Sample script to create a gateway

set PATH "C:\\MQeScript\\gateway"

set ADDRESS 127.0.0.1

set GATEWAYQM gatewayqm

set LISTENER listener

set GATEWAYPORT 1881

set PROXY QM_jane

set BRIDGE bridge

set REALBRIDGEQ mqlocalq

set CC FOR.GATEWAYQM.

set LISTEN togateway

set BRIDGEQ bridgeq

set SYNCQ SYNC.QUEUE.

set PORT 1414 set QNUM 50

#create the gateway queue manager

if { [catch {mqe_script_qm -create -qmname $GATEWAYQM -qmpath $PATH} error] } {

 puts "An error occurred creating queue manager";

 puts "The reason was: $error"

 exit

104 WebSphere MQ Everyplace V2.0.2

} else {

 puts "Queue manager created"

}

#load the queue manager

if { [catch {mqe_script_qm -load} error] } {

 puts "An error occurred loading queue manager";

 puts "The reason was: $error"

 exit

} else {

 puts "Queue manager loaded"

}

#create the listener

if { [catch {mqe_script_listen -create -listenname $LISTENER -port

$GATEWAYPORT} error] } {

 puts "An error occurred creating a listener";

 puts "The reason was: $error"

 exit

} else {

 puts "Listener created" }

#create a bridge

if { [catch {mqe_script_bridge -create -bridgename $BRIDGE} error] }

{

 puts "An error occurred creating bridge";

 puts "The reason was: $error"

 exit

} else {

 puts "Bridge created"

}

#create a mq proxy

if { [catch {mqe_script_mqproxy -create -proxyname $PROXY -bridgename $BRIDGE

 -hostname $ADDRESS} error] } {

 puts "An error occurred creating proxy";

 puts "The reason was: $error"

 exit

} else {

 puts "MQ queue manager proxy created"

}

#create a connection to the WebSphere MQ queue manager

if { [catch {mqe_script_condef -create -cdname $PROXY -type mq} error] } {

 puts "An error occurred creating connection for the MQ queue manager";

 puts "The reason was: $error"

 exit

} else {

 puts "Connection to MQ queue manager created"

}

#create the client connections, listeners and bridge queues

for {set j 1} {$j <= $QNUM} {incr j} {

 #create all the client connections

if { [catch {mqe_script_mqconn -create -clientconnname CCj -proxyname $PROXY

-bridgename $BRIDGE -syncqname $SYNCQ$j -port $PORT} error] } {

 puts "An error occurred creating client connection CCj";

 puts "The reason was: $error"

 exit

} else {

Chapter 2. Configuring MQe objects 105

puts "client connection created"

}

#create all the listeners on the new client connections

if { [catch {mqe_script_mqlisten -create -listenname $LISTEN -clientconnname CCj

-proxyname $PROXY -bridgename $BRIDGE} error] } {

 puts "An error occurred creating listener $LISTEN on client connection CCj";

 puts "The reason was: $error"

 exit

} else {

 puts "listener created"

}

#create all the bridge queues

if { [catch {mqe_script_bridgeq -create -qname $BRIDGEQ$j -bridgename $BRIDGE

-destination $PROXY -mqqname $REALBRIDGEQ -clientconnname CCj} error] } {

 puts "An error occurred creating bridge queue $BRIDGEQ ";

 puts "The reason was: $error"

 exit

 } else {

 puts "bridge queue created"

 }

}

We’ve finished the script... let’s close the queue manager

if { [catch {mqe_script_qm -unload} error] } {

 puts "Failed to stop the queue manager"

 puts "The reason was: $error"

 exit }

else {

 puts "Queue manager stopped"

}

puts "CreateGatewayQM script completed successfully"

exit 0

Sample script to create a client

This script only shows the basic MQe_Script commands to save duplication. Control structures could be

placed around the commands or they could be run as is.

For this script to run successfully, the queue manager created by the gateway script must be running as

must the MQ queue manager.

set CLIENT client1

set PATH "C:\\MQeScript\\client"

set ADDRESS 127.0.0.1

set GATEWAYQM gatewayqm

set PORT 1881

set BRIDGEQ bridgeq

set BRIDGEQNUM 1

set REALBRIDGENAME mqlocalq

set MQNAME QM_jane

mqe_script_qm –create –qmname $CLIENT –qmpath $PATH

mqe_script_qm –load

mqe_script_condef –create –cdname $GATEWAYQM –port $PORT –address $ADDRESS

mqe_script_condef –create –cdname $MQNAME –viaqmname $GATEWAYQM

mqe_script_sproxyq –create –qname $BRIDGEQ$BRIDGEQNUM –destination $MQNAME –alias $REALBRIDGENAME

mqe_script_msg –put –qname $REALBRIDGENAME –qmname $MQNAME

106 WebSphere MQ Everyplace V2.0.2

Performance increase

By creating an MQe network that uses multiple bridge queues, the number of messages per second that

can be sent through the gateway could be dramatically increased.

The number of messages sent through the gateway is not only dependant on the configuration of your

gateway, but on other issues such as the type of messages being sent, network configuration, and

hardware.

In one test scenario, it was found that when approximately 1350 clients were connecting to a gateway, the

increase in the number of messages being sent per second between a single bridge queue and 10 bridge

queues was 34 fold.

This rose to an 86-fold increase when comparing a single bridge queue to 50 bridge queues but

comparing a single bridge queue to 1350 bridge queues the increase dropped back to 34 fold.

Note this increase is only related to messages being sent to MQ and not messages received from MQ.

Conclusion

Using multiple bridge queues and client connection objects can dramatically increase the throughput of

messages from MQe to MQ. However, there are no concrete figures for these performance increases since

it is dependant on more than the MQe configuration.

MQe_Script can be used to create these configurations with the ability to make simple changes to affect

how many objects are created which is an important part of achieving the optimal number for your

individual setup.

Handling undeliverable messages

The MQ bridge’s transmission queue listener acts in a similar way to an MQ channel, pulling messages

from an MQ transmission queue, and delivering them to the MQe network.

It follows the MQe convention in that if a message cannot be delivered, an undelivered message rule is

consulted to determine how the transmission queue listener should react.

If the rule indicates the report options in the message header, and these indicate that the message should

be put onto a dead-letter queue, the message is placed on the MQ queue, on the sending queue manager.

Bridge National Language Support

This section describes how the MQ bridge handles messages flowing between MQSeries systems that use

different national languages. The following diagram depicts the flow of a message from an MQe client

application to an MQ application.

Chapter 2. Configuring MQe objects 107

1. Client application

a. The client application builds an MQe message object containing the following data:

A Unicode field

This string is generated using appropriate libraries available on the client machine (if

C/C++ is being used).

A byte field

This field should never be translated

An ascii field

This string has a very limited range of valid characters, conforming to the ASCII standard.

The only valid characters are those that are invariant over all ASCII code pages.
b. The message is put to the Palm queue manager. No translation is done during this put.

2. Client queue manager puts to the server queue manager

The message is not translated at all through this step.

3. MQe server puts the message onto the MQ bridge queue

The message is not translated at all through this step.

4. MQ bridge passes the MQe message to the user-written transformer

Note: The examples in this section are in Java because transformers can only be written in Java.

The transformer creates an MQ message as follows:

v The Unicode field in the MQe message is retrieved using:

String value = MQemsg.GetUnicode(fieldname)

v The retrieved value is copied to the MQ message using MQmsg.writeChars(value)

v The byte field in the MQe message is retrieved using:

Byte value = MQemsg.getByte(fieldName)

v The retrieved value is copied to the MQ message using MQmsg.writeByte(value)

v The ascii field in the MQe message is retrieved using either MQmsg.writeChars(value) to create a

unicode value, or MQmsg.writeString(value) to create a code-set-dependent value, in the MQ

message.

Palm
queue

manager

WebSphere
MQ

bridge

Transformer

WebSphere
MQ

queue
manager

W
eb

S
ph

er
e

M
Q

Ja
va

 C
lie

nt
 /

B
in

di
ng

s

WebSphere
MQ

Everyplace
server
queue

manager

WebSphere MQ
Everyplace server

Palm
application

Palm Pilot WebSphere MQ
server

1

2 3 5

WebSphere
MQ

application

64

Figure 20. Message flow from MQe to MQ

108 WebSphere MQ Everyplace V2.0.2

If using writeString(), the character set of the string may also be set. The transformer returns the

resultant MQ message to the calling MQ bridge code.

5. The MQ bridge passes the message to MQ using the MQ Classes for Java

Unicode values in the MQ message are translated from big-endian to little-endian, and vice versa, as

required. Byte values in the MQ message are translated from big-endian to little-endian, and vice

versa, as required. The field that was created using writeString() is translated as the message is put

to MQ, using conversion routines inside the MQ Classes for Java. ASCII data should remain ASCII

data regardless of the character set conversions performed. The translations done during this step

depend on the code page of the message, the CCSID of the sending MQ Classes for Java client

connection, and the CCSID of the receiving MQ server connection.

6. The message is got by an MQ application

If the message contains a unicode string, the application must deal with that string as a unicode

string, or else convert it into some other format (UTF8, for example). If the message contains a byte

string, the application may use the bytes as it is (raw data). If the message contains a string, it is read

from the message, and may be converted to a different data format as required by the application.

This conversion is dependent on the codeset value in the characterSet header field. Java classes

provide this automatically.

Conclusion

If you have an MQe application, and wish to convey character-related data from MQe to MQ, your

choice of method is determined largely by the data you wish to convey:

v If your data contains characters in the variant ranges of the ASCII character code pages, the

character for a codepoint changes as you change between the various ASCII code pages, then use

either putUnicode, which is never subject to translation between code pages, or putArrayOfByte, in

which case you have to handle the translation between the sender’s code page and the receiver’s code

page.

Note: DO NOT USE putAscii() as the characters in the variant parts of the ASCII code pages are

subject to translation.

v If your data contains only characters in the invariant ranges of the ASCII character code pages, then

you can use putUnicode (which is never subject to translation between code pages) or putAscii, which

is never subject to translation between code pages, as all your data lies within the invariant range of

the ASCII code pages.

Configuring queue managers as servlets

Introduction

An MQe queue manager can run within a servlet.

Note: In MQe version 2.0, the deprecated jar must be in the classpath for servlets to work.

This section describes an example servlet that is included with MQe, and how to configure it using

WebSphere Application Server 4.0 (WAS).

An example servlet configuration using WAS

An MQe queue manager can run within a servlet.

Note: In MQe version 2.0, the deprecated jar must be in the classpath for servlets to work.

This section describes an example servlet that is included with MQe, and how to configure it using

WebSphere Application Server 4.0 (WAS).

Chapter 2. Configuring MQe objects 109

An example servlet that receives trace from the com.ibm.mqe.trace.MQeTraceToBinaryMidp trace handler

is included with the example classes.

It is examples.trace.MQeTraceServlet.

Using this as an example, the following information explains how to configure it to work with WAS 4.0.

Other application servers will require different steps.

Start the Application Assembly tool

First of all, the servlet code must be packaged into a form that suits the application server. This example

will create a web module for use with WAS 4.0.

From the WebSphere Administrative Console, choose the menu item Application Assembly tool from the

Tools menu. The Application assembly tool should appear.

 Select ″Create Web Module Wizard″, and click OK. In specifying the properties, enter the file name, and

more information, if you wish.

Specifying web module properties

In specifying the properties, enter the file name, and more information, if you wish.

Figure 21. The WebSphere administrative console

110 WebSphere MQ Everyplace V2.0.2

Adding files to the application

The next step is to add files to the application. The examples.trace.MQeTraceServlet is in the

MQeExamples.jar and relies on classes from MQeGateway.jar, MQeExamples.jar and MQeTraceDecode.jar.

Since you’ve included all the classes you need, the next panel that asks you if you want to make

distributable, or set a classpath, can be left blank, just click next. The next panel is to set any icons for

this web application. If you don’t have any, just click next.

Figure 22. Specifying Web module properties

Figure 23. Adding files to the application

Chapter 2. Configuring MQe objects 111

Adding web components

Next you have to specify the component properties.

 Only the component name is compulsory, but you may want to add a display name and a description.

The next panel allows you to specify which class is the servlet to run.

Specifying component type and class name

The next panel allows you to specify which class is the servlet to run.

Figure 24. Adding web comopnents

Figure 25. Specifying component type and class name

112 WebSphere MQ Everyplace V2.0.2

The next four panels can safely be left blank, they are for specifying icons, security roles and initialization

parameters.

After this, you must specify what URL will map to your servlet. The final URL will be of the form

http://hostname:port/specified_dir/specified_url_pattern

Specifying a URL to map to your servlet

After this, you must specify what URL will map to your servlet. The final URL will be of the form

http://hostname:port/specified_dir/specified_url_pattern

 All of the subsequent panels can be left blank. They are for adding resources, context parameters, error

pages, MIME mappings, tag libraries, welcome files and EJB references.

Click Finish, and then save the file. If you save the file to \AppServer\InstallableApps\ where you

installed WebSphere application server, then it will automatically appear in the list of servlets in the

administration panel.

Finishing and saving the file

Click Finish, and then save the file. If you save the file to \AppServer\InstallableApps\ where you

installed WebSphere application server, then it will automatically appear in the list of servlets in the

administration panel.

Figure 26. Specifying a URL to map to your servlet

Chapter 2. Configuring MQe objects 113

Next, this component needs to be imported and started. From the wizards button, select ″Install

Enterprise Application″.

Install enterprise application

Next, this component needs to be imported and started. From the wizards button, select ″Install

Enterprise Application″.

 Install your component as a standalone module.

Installing your component as a standalone module

Install your component as a standalone module.

Figure 27. Saving the file

Figure 28. Install enterprise application

114 WebSphere MQ Everyplace V2.0.2

Specify an application name, and a root for the web module. This is the part of the URL immediately

after the http://hostname:portnumber/ and shouldn’t be left as /

Specifying an application name

Specify an application name, and a root for the web module. This is the part of the URL immediately

after the http://hostname:portnumber/ and shouldn’t be left as /

 All of the subsequent panels can be left blank, they are about controlling users, EJB roles, JNDI bindings,

EJB mappings, resource references, datasources for EJB, data sources for CMP, and virtual hosts.

Figure 29. Installing your component as a standalone module

Figure 30. Specifying an application name

Chapter 2. Configuring MQe objects 115

Finishing the configuration

Starting the web module

Next, the web module has to be started. Select the application server that it has been configured for. It

should appear under Installed Web Modules.

Figure 31. Information dialog

Figure 32. Starting the web module

116 WebSphere MQ Everyplace V2.0.2

Start succeeded

Using the servlet

If everything went well, it should now be available for use from the

com.ibm.mqe.trace.MQeTraceToBinaryMidp.

Because this servlet doesn’t support get, then viewing the URL with a web browser will result in a 405

error. This is normal.

If your application server is set up with the defaults, the URL for the servlet is

http://localhost:9080/mqetrace/trace.

JMS (Java Message Service) configuration

JMS Object naming changes from V2.0.1

The following naming changes apply starting from MQe V2.0.1 (the old names will still work for

backward compatibility).

 Old name New name

QueueConnection Connection

MQeQueueConnection MQeConnection

MQeQueueConnectionFactory MQeConnectionFactory

QueueConnectionFactory ConnectionFactory

Introduction to JMS

For JMS applications to be portable, they must be isolated from the administration of the underlying

messaging provider. This is achieved by defining JMS administered objects which encapsulate

provider-specific information. Administered objects are created and configured using provider-specific

facilities, but are used by clients through portable JMS interfaces.

There are two types of JMS administered object:

Figure 33. Information dialog success message

Chapter 2. Configuring MQe objects 117

v A ConnectionFactory, used by a client to create a connection with a provider.

v A Destination, used by a client to specify the destination of messages it is sending and the source of

messages that it receives.

In MQe JMS these correspond to two classes:

v MQeConnectionFactory must be configured so that it can obtain a reference to an MQe queue manager.

v MQeJMSQueue can be configured with details of an MQe queue.

Note:

These classes are typically placed in a JNDI namespace by an administrator.

However, because on small devices access to a JNDI namespace may be impractical or may represent an

unnecessary overhead, these classes do not include the necessary methods to allow them to be bound by

JNDI.

Instead, two subclasses, MQeJNDIConnectionFactory and MQeJMSJNDIQueue extend these classes to allow

them to be stored using JNDI.

Configuring MQeConnectionFactory

MQeConnectionFactory is the MQe implementation of the javax.jms.ConnectionFactory interface. It is

used to generate instances of Connection classes, which for MQe must have a reference to an active

queue manager. The ConnectionFactory must be able to create a reference to an active queue manager in

order to pass it on to the Connection classes that it generates. The MQeConnectionFactory class can be

configured to obtain a reference to a queue manager in the following ways:

v It can start a client queue manager itself.

v It can look for a queue manager already running in the JVM.

However, if neither of these options are suitable then the MQeConnectionFactory class can be extended to

provide the required behavior, see “Extending MQeConnectionFactory” on page 125.

To configure a connection factory to start a queue manager itself, it must be given a reference to an

initialization (.ini) file that contains all the information it needs to start the queue manager. The

connection factory is configured using its setIniFileName() method:

(MQeConnectionFactory(factory)).setIniFileName(filename);

where ’filename’ is the name of the initialization file. When the connection factory has been configured

with the name of the initialization file, it can either be stored in a JNDI directory, so that it can be looked

up by application programs, or it can be used directly in an application program. When the connection

factory generates its first Connection it starts the client queue manager using the initialization file and

passes a reference to the active queue manager to the Connection. If it generates more Connection classes,

it passes them a reference to the same active queue manager. When the last Connection is closed, the

connection factory closes the queue manager.

Note: Do not use the MQeQueueManager.close() methods to shut down a queue manager started by a

connection factory.

To configure a connection factory to look for an existing queue manager, the initialization file name

should be set to null. This is the default value when the MQeConnectionFactory class is created, and it

can also be set explicitly using the setIniFileName() method:

(MQeConnectionFactory(factory)).setIniFileName(null);

In this case, when the connection factory generates a Connection, it looks for a queue manager already

running in the JVM and passes the Connection a reference to it. An exception is thrown if no queue

118 WebSphere MQ Everyplace V2.0.2

manager is running. If it generates more Connection classes, it passes them a reference to the same queue

manager. When an external queue manager is used, the connection factory does not close the queue

manager when the last Connection is closed.

Note: A JVM can run only one MQe queue manager at a time. Therefore, if you use a connection factory

to start a queue manager, it should not be used to start the same queue manager in a different JVM,

running on the same machine, while the first one is still active.

Configuring MQeJMSQueue

MQeJMSQueue is the MQe implementation of the Queue class. It is used to represent MQe queues within

JMS applications. It is configured by its constructor:

public MQeJMSQueue(String mqeQMgrName, String mqeQueueName) throws JMSException

where:

v mqeQMgrName is the name of the MQe queue manager which owns the queue

v mqeQueueName is the name of the MQe queue

If the queue manager name is null, the local queue manager is used (that is, the queue manager that JMS

is connected to). If the queue name is null, a JMSException is thrown.

When the queue has been configured, it can either be stored in a JNDI directory, so that it can be looked

up by application programs, or it can be used directly in an application program. There is an alternative

way to configure a queue within an application, by using the QueueSession.createQueue() method. This

takes one parameter, which is the name of the queue. For MQe JMS this can either be the queue manager

name followed by a plus sign followed by the queue name:

ioQueue =session.createQueue("myQM+myQueue");

or just the queue name:

ioQueue =session.createQueue("myQueue");

If the queue name is used on its own, the local queue manager is assumed.

Note: MQe JMS can only put messages to a local queue or an asynchronous remote queue and it can

only receive messages from a local queue. It cannot put to or receive messages from a synchronous

remote queue.

The MQe administration tool for JMS

The administration tool provides a simple way for administrators to define and edit the properties of

MQe JMS administered objects.

This tool is based on the administration tool shipped with JMS for MQ, differing only in the properties

that can be applied to JMS administered objects.

The JMS administration tool is included in MQeJMSAdmin.jar.

Configuring the JMS administration tool

You must configure the administration tool with values for the following three parameters:

INITIAL_CONTEXT_FACTORY

This indicates the service provider that the tool uses. There are currently two supported values

for this property:

v com.sun.jndi.ldap.LdapCtxFactory (for LDAP)

v com.sun.jndi.fscontext.RefFSContextFactory (for file system context)

Chapter 2. Configuring MQe objects 119

PROVIDER_URL

This indicates the URL of the session’s initial context, the root of all JNDI operations carried out

by the tool. Two forms of this property are currently supported:

v ldap://hostname/contextname (for LDAP)

v file:[drive:]/pathname (for file system context)

SECURITY_AUTHENTICATION

This indicates whether JNDI passes over security credentials to your service provider. This

parameter is used only when an LDAP service provider is used. This property can currently take

one of three values:

v none (anonymous authentication)

v simple (simple authentication)

v CRAM-MD5 (CRAM-MD5 authentication mechanism)

 If a valid value is not supplied, the property defaults to none. If the parameter is set to either simple or

CRAM-MD5, security credentials are passed through JNDI to the underlying service provider. These

security credentials are in the form of a user distinguished name (User DN) and password. If security

credentials are required, then the user will be prompted for these when the tool initializes.

Note: The text typed is echoed to the screen, and this includes the password. Therefore, take care that

passwords are not disclosed to unauthorized users.

These parameters are set in a plaintext configuration file consisting of a set of key-value pairs, separated

by an ″=″. This is shown in the following example:

#Set the service provider

INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

#Set the initial context

PROVIDER_URL=ldap://polaris/o=ibm_us,c=us

#Set the authentication type

SECURITY_AUTHENTICATION=none

(A ″#″ in the first column of the line indicates a comment, or a line that is not used.)

An example configuration file is included in examples/jms/MQeJMSAdmin.config.

Starting the JMS administration tool

To start the tool in interactive mode, enter the command:

java com.ibm.mqe.jms.admin.MQeJMSAdmin [-cfg config_filename]

where the -cfg option specifies the name of an alternative configuration file. If no configuration file is

specified, then the tool looks for a file named MQeJMSAdmin.config in the current directory.

After authentication, if necessary, the tool displays a command prompt:

InitCtx>

indicating that the tool is using the initial context defined in the PROVIDER_URL configuration

parameter.

To start the tool in batch mode, enter the command:

java com.ibm.mqe.jms.admin.MQeJMSAdmin < script.scp

where script.scp is a script file that contains administration commands. The last command in this file

must be an END command.

120 WebSphere MQ Everyplace V2.0.2

JMS Administration commands

When the command prompt is displayed, the tool is ready to accept commands. Administration

commands are generally of the following form:

verb [param]*

where verb is one of the administration verbs listed in Table 25. All valid commands consist of at least

one (and only one) verb, which appears at the beginning of the command in either its standard or short

form.

The parameters a verb may take depend on the verb. For example, the END verb cannot take any

parameters, but the DEFINE verb may take anything between 1 and 20 parameters. Details of the verbs

that take at least one parameter are discussed later in this section.

 Table 25. Administration verbs

Verb Short form Description

ALTER ALT Change at least one of the properties

of a given administered object

DEFINE DEF Create and store an administered

object, or create a new subcontext

DISPLAY DIS Display the properties of one or more

stored administered objects, or the

contents of the current context

DELETE DEL Remove one or more administered

objects from the namespace, or

remove an empty subcontext

CHANGE CHG Alter the current context, allowing

the user to traverse the directory

namespace anywhere below the

initial context (pending security

clearance)

COPY CP Make a copy of a stored administered

object, storing it under an alternative

name

MOVE MV Alter the name under which an

administered object is stored

END Close the administration tool

Verb names are not case-sensitive.

Usually, to terminate commands, you press the carriage return key. However, you can override this by

typing the ″+″ symbol directly before the carriage return. This enables you to enter multi-line commands,

as shown in the following example:

DEFINE Q(BookingsInputQueue)+

QMGR(ExampleQM)+

QUEUE(QUEUE.BOOKINGS)

Lines beginning with one of the characters *, #, or / are treated as comments.

Manipulating subcontexts

You can use the verbs CHANGE , DEFINE , DISPLAY and DELETE to manipulate directory namespace

subcontexts. Their use is described in the following table

Chapter 2. Configuring MQe objects 121

Table 26. Syntax and description of commands used to manipulate subcontexts

Command syntax Description

DEFINE CTX(ctxName) Attempts to create a new child subcontext of the current

context, having the name ctxName. Fails if there is a

security violation, if the subcontext already exists, or if

the name supplied is invalid.

DISPLAY CTX Displays the contents of the current context.

Administered objects are annotated with a ’a’,

subcontexts with ’[D]’. The Java type of each object is

also displayed.

DELETE CTX(ctxName) Attempts to delete the current context’s child context

having the name ctxName. Fails if the context is not

found, is non-empty, or if there is a security violation.

CHANGE CTX(ctxName) Alters the current context, so that it now refers to the

child context having the name ctxName. One of two

special values of ctxName may be supplied:

=UP which moves to the current context’s parent

=INIT which moves directly to the initial context
Fails if the specified context does not exist, or if there is a

security violation.

Administering JMS objects

Two object types can currently be manipulated by the administration tool. These are listed in the

following table:

 Table 27. JMS administered objects

Object type Keyword Description

MQeJNDIQueueConnectionFactory QCF The MQe implementation of the JMS

ConnectionFactory interface. This

represents a factory object for creating

connections in the JMS 1.02b

Point-to-Point messaging domain.

MQeJNDIConnectionFactory CF The MQe implementation of the JMS

ConnectionFactory interface. This

represents a factory object for creating

connections in the JMS 1.1 unified

messaging domain.

MQeJMSJNDIQueue Q The MQe implementation of the JMS

Queue interface. This represents a

message Destination.

Verbs used with JMS objects

You can use the verbs ALTER, DEFINE, DISPLAY, DELETE, COPY and MOVE to manipulate

administered objects in the directory namespace. The following table summarizes their use. Substitute

TYPE with the keyword that represents the required administered object, as listed in the table above in

“Administering JMS objects” above.

122 WebSphere MQ Everyplace V2.0.2

Table 28. Syntax and description of commands used to manipulate administered objects

Command syntax Description

ALTER TYPE(name) [property]* Attempts to update the given administered object’s

properties with the ones supplied. Fails if there is a

security violation, if the specified object cannot be found,

or if the new properties supplied are invalid.

DEFINE TYPE(name) [property]* Attempts to create an administered object of type TYPE

with the supplied properties, and tries to store it under

the name name in the current context. Fails if there is a

security violation, if the supplied name is invalid or

already exists, or if the properties supplied are invalid.

DISPLAY TYPE(name) Displays the properties of the administered object of type

TYPE , bound under the name name in the current

context. Fails if the object does not exist, or if there is a

security violation.

DELETE TYPE(name) Attempts to remove the administered object of type

TYPE, having the name name, from the current context.

Fails if the object does not exist, or if there is a security

violation.

COPY TYPE(nameA) TYPE(nameB) Makes a copy of the administered object of type TYPE,

having the name nameA, naming the copy nameB. This

all occurs within the scope of the current context. Fails if

the object to be copied does not exist, if an object of

name nameB already exists, or if there is a security

violation.

MOVE TYPE(nameA) TYPE(nameB) Moves (renames) the administered object of type TYPE,

having the name nameA , to nameB . This all occurs

within the scope of the current context. Fails if the object

to be moved does not exist, if an object of name nameB

already exists, or if there is a security violation.

Creating JMS objects

Objects are created and stored in a JNDI namespace using the following command syntax:

DEFINE TYPE (name)[property]*

That is, the DEFINE verb, followed by a TYPE (name) administered object reference, followed by zero or

more properties.

LDAP naming of JMS objects

To store your objects in an LDAP environment, their names must comply with certain conventions. One

of these is that object and subcontext names must include a prefix, such as cn=(common name), or

ou=(organizational unit). The administration tool simplifies the use of LDAP service providers by

allowing you to refer to object and context names without a prefix. If you do not supply a prefix, the tool

automatically adds a default prefix (currently cn=) to the name you supply.

This is shown in the following example.

InitCtx>DEFINE Q(testQueue)

InitCtx>DISPLAY CTX

Contents of InitCtx

 a cn=testQueue com.ibm.mqe.jms.MQeJMSJNDIQueue

1 Object(s)

0 Context(s)

1 Binding(s),1 Administered

Chapter 2. Configuring MQe objects 123

Note that although the object name supplied does not have a prefix, the tool automatically adds one to

ensure compliance with the LDAP naming convention. Likewise, submitting the command DISPLAY

Q(testQueue) also causes this prefix to be added.

You may need to configure your LDAP server to store Java objects. Information to assist with this

configuration is provided in “LDAP schema definition for Java object storage” on page 126.

JMS object properties

A property consists of a name-value pair in the format:

PROPERTY_NAME(property_value)

Names and values are not case sensitive, but are restricted to a set of recognized names shown in the

following table:.

 Table 29. Property names and valid values

Property Short form Valid values

AUTHENTICATOR AUTH Any String

CLIENTID CID Any String

DESCRIPTION DESC Any String

DUPSOKCOUNT DOC Any positive integer

INIFILE INI Any String

ISMQNATIVE ISMQ ″True″ or ″False″

JMXENABLED JMSX ″True″ or ″False″

QUEUE QU Any String

QMANAGER QMGR Any String

SHUTDOWN SHUT Any positive integer

Most of these properties apply only to specific object types, but note that ConnectionFactory properties

apply also to QueueConnectionFactory properties. The properties and the types they apply to are listed in

the following table, together with a short description.

Two columns indicate the properties that apply to QCF/CF (QueueConnectionFactory or

ConnectionFactory) and Q (Queue).

 Table 30. Property names and descriptions

Property QCF/CF Q Description

AUTHENTICATOR Y Fully-qualified class name implementing

com.ibm.mqe.jms.MQeJMSAuthenticator interface.

CLIENTID Y A string identifier for the client

DESCRIPTION Y Y A description of the stored object

DUPSOKCOUNT Y The number of messages to receive before

acknowledgment in a DUPS_OK_ACKNOWLEDGE

Session.

INIFILE Y An initialization (.ini) file for an MQe Queue Manager

ISMQNATIVE Y The destination is a non-JMS, MQ, queue.

JMSXENABLED Y Enable JMSX properties.

QUEUE Y The name of an MQe queue

QMANAGER Y The name of an MQe queue manager

124 WebSphere MQ Everyplace V2.0.2

Table 30. Property names and descriptions (continued)

Property QCF/CF Q Description

SHUTDOWN Y Delay before connection shutdown, in milliseconds.

Extending MQeConnectionFactory

By default MQeConnectionFactory will either look for a queue manager already running in the JVM, or

will start its own using an initialization (.ini) file.

A third option is to extend MQeConnectionFactory to provide the desired behavior. The preferred way to

do this is to override two internal methods, startQueueManager() and stopQueueManager(). The first

method is called to start and configure an MQe queue manager when a Connection is first created, while

the second shuts it down cleanly when the final Connection is closed. These methods are both public to

make them easy to override, but they should not normally be called by an application.

The following class shows a simple way of extending MQeConnectionFactory to start its own queue

manager without the need for an initialization file:

import javax.jms.*;

import examples.config.*;

import com.ibm.mqe.jms.MQeConnectionFactory;

import com.ibm.mqe.MQeQueueManager;

import java.io.File;

// type on one line:

public class MQeExtendedConnectionFactory

 extends MQeConnectionFactory {

 // Queue Manager Name -

 private static final String queueManagerName = "ExampleQM";

 // Location of the registry -

 private static final String registryLocation = ".\\ExampleQM";

 // Queue store -

 private static final String queueStore = "MsgLog:"

 + registryLocation

 + File.separator

 + "Queues";

 // the MQe Queue Manager -

 private static MQeQueueManager queueManager = null;

 public MQeQueueManager startQueueManager() throws JMSException {

 try {

 CreateQueueManager.createQueueManagerDefinition(

 queueManagerName, registryLocation, queueStore);

 queueManager=CreateQueueManager.startQueueManager(

 queueManagerName, registryLocation);

 }

 catch (Exception e) {

 JMSException je = new JMSException("QMgr start failed");

 je.setLinkedException(e);

 throw je;

 }

 return queueManager;

 }

 public void stopQueueManager() throws Exception {

 CreateQueueManager.stopQueueManager(queueManager);

 }

}

Chapter 2. Configuring MQe objects 125

In this example the actual queue manager startup and shutdown has been delegated to the

CreateQueueManager examples described in an earlier chapter.

LDAP schema definition for Java object storage

This section gives details of the schema definitions (attribute and objectClass definitions) needed in an

LDAP directory in order for it to store Java objects. These are required if you wish to use an LDAP server

as your JNDI service provider for storing MQe JMS administered objects.

Some servers may already contain these definitions in their schema. The exact procedure to check

whether your server contains them, and to add them if they are not there, will vary from server to server.

Please read the documentation that comes with your LDAP server and your LDAP JNDI service provider.

Much of the data contained in this section has been taken from RFC 2713 Schema for Representing Java

Objects in an LDAP Directory, which can be found at http://www.faqs.org/rfcs/rfc2713.html.

Please note that some LDAP servers may require you to turn off schema checking, even after these

definitions have been added.

Attribute definitions

 Table 31. Attribute settings for javaCodebase

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.7

Syntax IA5 String (1.3.6.1.4.1.1466.115.121.1.26)

Maximum length 2,048

Single/multi-valued Multi-valued

User modifiable? Yes

Matching rules caseExactIA5match

Access class Normal

Usage userApplications

Description URL(s) specifying the location of class definition

 Table 32. Attribute settings for javaClassName

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.6

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Single-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Fully qualified name of distinguished Java class or

interface

 Table 33. Attribute settings for javaClassNames

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.13

126 WebSphere MQ Everyplace V2.0.2

http://www.faqs.org/rfcs/rfc2713.html

Table 33. Attribute settings for javaClassNames (continued)

Attribute Value

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Multi-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Fully qualified Java class or interface name

 Table 34. Attribute settings for javaFactory

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.10

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Single-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Fully qualified Java class name of a JNDI object Factory

 Table 35. Attribute settings for javaReferenceAddress

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.11

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Multi-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Addresses associated with a JNDI Reference

 Table 36. Attribute settings for javaSerializedData

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.8

Syntax Octet String (1.3.6.1.4.1.1466.115.121.1.40)

Single/multi-valued Single-valued

User modifiable? Yes

Access class Normal

Chapter 2. Configuring MQe objects 127

Table 36. Attribute settings for javaSerializedData (continued)

Attribute Value

Usage userApplications

Description Serialized form of a Java object

objectClass definitions

 Table 37. objectClass definition for javaSerializedObject

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.5

Extends/superior javaObject

Type AUXILIARY

Required attributes javaSerializedData

 Table 38. objectClass definition for javaObject

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.4

Extends/superior Top

Type ABSTRACT

Required attributes javaClassName

Optional attributes javaClassNames, javaCodebase, javaDoc description

 Table 39. objectClass definition for javaContainer

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.1

Extends/superior Top

Type STRUCTURAL

Required attributes cn

 Table 40. objectClass definition for javaNamingReference

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.7

Extends/superior javaObject

Type AUXILIARY

Optional attributes attrs javaReferenceAddress javaFactory

JMX (Java Management Extensions) interface

This section describes the MQe Java Management Extensions interface. The name is shortened in the

text to MQe JMX.

The MQe JMX interface provides a JMX instrumentation level for MQe resources (queue managers,

queues, and so on). This JMX instrumentation level facilitates the local and remote configuration and

128 WebSphere MQ Everyplace V2.0.2

administration of MQe queue managers and their associated objects, such as queues, connections,

listeners and bridge objects. In order to validate the operation of the network, test messages can be sent

to queues within the MQe network.

This feature facilitates the management of MQe resources through JMX from all platforms that are

supported for JMX. For further information on platform support for JMX, see the JMX specification V1.2

at

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

.

(Note that queue managers and their resources on platforms which are not supported by JMX can still be

remotely administered via JMX.)

For those who are familiar with either the MQe_Explorer tool (formerly packaged in IBM® SupportPac

ES02) or the MQe_Script tool (formerly packaged in IBM SupportPac ES04), the MQe JMX interface

facilitates the equivalent configurative and administrative functionality. Objects created using MQe_Script,

MQe_Explorer (version 2 or later) and the MQe JMX interface can interact together. These SupportPacs

are now bundled together as ES06 MQe Server Support SupportPac.

The MQe JMX interface includes full support for the configuration and management of gateway queue

managers, that is, those MQe queue managers that can bridge to MQ queue managers and queues. The

interface does not support the configuration of the MQ queue managers themselves, as these should be

configured using the various MQ management tools and protocols.

Introduction to MQe JMX

The Java Management Extensions (also called the JMX specification) define an architecture, the design

patterns, the APIs, and the services for application and network management in the Java programming

language. The JMX specification provides Java developers across all industries with the means to

instrument Java code, create smart Java agents, implement distributed management middleware and

managers, and smoothly integrate these solutions into existing management systems.

The JMX architecture provides the following benefits:

v Enables Java applications to be managed without heavy investment

A Java application simply needs to embed a managed object server and make some of its functionality

available as one or several Manageable Beans registered in the object server; that is all it takes to

benefit from the management infrastructure.

v Provides a scalable management architecture

Every JMX agent service is an independent module that can be plugged into the management agent,

depending on the requirements. This component-based approach means that JMX solutions can scale

from small footprint devices to large telecommunications switches and beyond.

v Integrates existing management solutions

JMX smart agents are capable of being managed through HTML browsers or by various management

protocols such as SNMP and WBEM. The JMX APIs are open interfaces that any management system

vendor can leverage.

v Can leverage future management concepts

The APIs of the JMX specification can implement flexible and dynamic management solutions through

the Java programming language which can leverage emerging technologies.

The goal of the JMX API for MQe is to provide a JMX instrumentation level for MQe resources (queue

managers, queues, and so on). The instrumentation is designed to have a small footprint, and to be

flexible, easy to use and JMX compliant.

v Small footprint

Chapter 2. Configuring MQe objects 129

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

The JMX API for MQe and the JMX implementation minimize resource demands in terms of size and

memory requirements.

v Flexible

The implementation is modular so that MQe developers can choose to use the API when manageability

is desired and the overhead of the JMX implementation is within the capabilities of their target

platforms. Or they can choose to leave it out without incurring any memory or performance penalty.

v Easy to use

The API is simple and easy to use: it is possible to enable an existing MQe application for JMX with

only a few lines of code.

v JMX compliant

JMX compliance is virtually guaranteed by using the reference implementation developed by Sun

Microsystems. From JMX v.1.2 onwards, open MBeans are a mandatory part of any JMX

implementation, so we adhere to the data types required for open MBean instrumentation. Thus, all

operation parameters and attributes are of the following data types:

– Simple data types:

- java.lang.Void

- java.lang.Boolean

- java.lang.Byte

- java.lang.Character

- java.lang.String

- java.lang.Short

- java.lang.Integer

- java.lang.Long

- java.lang.Float

- java.lang.Double
– Arrays of the above types:

- javax.management.ObjectName

- javax.management.openmbean.CompositeData

- javax.management.openmbean.TabularData

JMX architecture

The JMX architecture is multilayered, as shown in the following diagram:

 Distributed Services

level

Web browser Other JMX-compliant

management

applications

Proprietary management

applications

Agent level Protocol adapters Connectors.. JMX manager

..

MBeanServer...

...

Agent Services

Instrumentation level Instrumentation strategy (MQe JMX implementation)

Application Resources

The scope of the MQe JMX implementation is limited to the Instrumentation level and Instrumentation

strategy (MQe JMX implementation).

The following are explanations of some of the terms used in the diagram:

130 WebSphere MQ Everyplace V2.0.2

Distributed services level

The distributed services level of the JMX architecture contains the middleware that connects

agents to management applications.

Agent level

The agent level of the JMX architecture provides a registry for handling the manageable

resources, called the MBeanServer, as well as several agent services which are themselves

MBeans.

JMX agent

A JMX agent is a combination of an instance of the MBeanServer, its registered MBeans and any

agent services within a single JVM.

Managed Beans (MBeans)

Resources instrumented according to the rules of the JMX specification. There are two main

categories of MBeans:

v Standard MBeans implement their own interface, and are static.

v Dynamic MBeans (of which there are several sub-categories) implement a JMX interface called

DynamicMBean. This interface contains methods that allow the management interface of the

managed resource to be discovered at run-time.

Instrumentation level

The instrumentation level of the JMX architecture is the level at which resources to be managed

are instrumented for JMX management. To make this possible, the resources must be

instrumented as MBeans.

Resource

Any entity that needs to be monitored or controlled by a management application. In the context

of this implementation, MQe queue managers, queues, and so on, are all resources.

Instrumenting your MQe resources as JMX MBeans

In your application, load or create your queue manager and activate it as usual. Now, create JMX MBeans

for your queue manager and its resources as follows:

MQeQueueManagerJmx.createMQeMBeans(mbServer);

where mbServer is your instance of MBeanServer.

This method creates and registers MBeans for all of your queue manager resources: queues, bridge

objects, connections and listeners.

Note: Whenever MQe resources are created or removed from this point, corresponding MBeans are also

registered with or deregistered from the MBeanServer instance. It is strongly recommended that you do

not create and register or deregister MQe MBeans independently of using the MQe interface, otherwise

the MQe MBean representations may not be consistent and may not function as intended. For example,

you should not use the register/unregister facilities offered by various adapters. Using the MQe JMX

interface to create and delete methods ensures that MBeans are registered and unregistered in the

approved manner. However, the AdminBean is an exception to this rule – see “ObjectName” on page 133.

You need to create one or more connectors or adaptors to allow JMX management clients to connect to

and manage your MQe applications. Both the Sun and Tivoli® JMX Reference Implementations provide

adaptors which allow you to manage your MQe application through a web browser. Please refer to the

reference implementations for documentation and examples.

In addition to the HtmlAdaptorServer, the Sun JDMK provides the HttpConnectorServer,

HttpsConnectorServer, the RmiConnectorServer, and the SnmpAdaptorServer. These allow JMX

management clients to connect to and manage JMX manageable resources using the HTTP, HTTPS, RMI,

and SNMP protocols. Refer to the JDMK for documentation and examples.

Chapter 2. Configuring MQe objects 131

Once you have your connector(s) or adaptor(s), or both, you are in a position to access the MQe MBeans

as specified in the JMX specification. You need to have all of the following queues set up:

v An admin queue on your local queue manager for local administration. The default assumes that this

queue is named AdminQ but you can re-set this using the Admin MBean.

v An admin reply queue called AdminReplyQ.

v Queues named AdminQ and AdminReplyQ on any remote queue managers that you wish to manage

via the JMX interface. If either of these queues does not exist (or the relevant connection definitions

and listeners for remote two-way admin-adminReply communication do not exist), you may experience

problems when performing remote administration.

When you have closed your MQe queue manager at the end of your application, you must invoke the

following static method to ensure that all MQe JMX resources are cleaned up:

MQeQueueManagerJmx.endMQeJMXSession()

It is important that this method is called after the queue manager has been closed.

Typographical conventions in this JMX documentation

Text enclosed in angle brackets and italicized, for example <QMName>, represents a symbolic name, the

value of which should be substituted with a value provided by the user as the command is typed.

Text written using a monospaced font, for example getMBeanInfo, represents user input, code in files, or

text entered into a browser textbox.

Setting up the MQe JMX interface

The MQe JMX interface executes as an application running in a Java Virtual Machine (JVM). All it

requires is an activated local queue manager. Given this, the interface can then manage the instrumented

local queue manager, and the queue manager’s resources. It can also manage any remotely activated MQe

queue managers (and their resources) for which the local queue manager is able to connect directly to the

MQe network.

Note: Before you can use JMX you must make sure certain properties files exist on your classpath. See

“Translation” on page 147 for details.

MQe JMX

v A JVM version 1.2 or later

v A compliant implementation of the JMX specification.

The jar files provided by the JMX specification implementation must be added to the CLASSPATH before

you attempt to use the MQe JMX interface APIs. The JMX Reference Implementation provided by Sun is

freely available and redistributable (http://java.sun.com/products/JavaManagement/). To install it:

1. Download the Reference Implementation binary code, which comes in a ZIP file

2. Extract the contents to a directory

3. Copy lib/jmxri.jar and lib/jmxtools.jar into the extension directory of your Java runtime environment,

or make sure they are in your classpath.

The JMX API for MQe has been developed in compliance with the JMX specification v.1.2.

The Tivoli Implementation of the JMX specification is also freely available

(http://www.alphaworks.ibm.com/tech/TMX4J). To install it:

1. Download the binary code, which comes in a ZIP file.

2. Extract the contents to a directory

3. Copy the relevant jars for your platform into the extension directory of your Java runtime

environment, or make sure they are in your classpath.

132 WebSphere MQ Everyplace V2.0.2

Enabling MQe applications for JMX managment

To enable your MQe applications for JMX management:

1. Obtain a compliant implementation of the JMX specification and set up your Java development

environment so that the JMX and MQe JMX class libraries are accessible (as described in “Setting up

the MQe JMX interface” on page 132).

2. Create your MQe application as usual, ensuring that your queue manager is loaded, then call the

following static method, passing it your MBeanServer instance, to create MBeans for all of the queue

manager’s resources:

MQeQueueManagerJmx.createMQeMBeans(MBeanServer mbServer);

Each of the MBeans is registered with your MBeanServer instance. For further details see

“Instrumenting your MQe resources as JMX MBeans” on page 131.

3. Create one or more connectors or adaptors to allow JMX management clients to connect to and

manage your MQe applications. For further details on creating connectors and adaptors, see

“Instrumenting your MQe resources as JMX MBeans” on page 131. You are now in a position to

manage all of your MQe resources via JMX using the interface corresponding to your chosen

connector or adaptor. It is also very important that you invoke the following static method at the end

of your application to ensure that all MQe JMX resources are cleaned up:

MQeQueueManagerJmx.endMQeJMXSession()

Accessing MQe MBeans via the MBeanServer

The MQe JMX interface provides the instrumentation level of the JMX architecture. We are not providing

an implementation of the agent level, which is made up of the MBeanServer and the JMX agent services.

Since the role of the MBean server is to act as a registry for MBeans, the user’s instance of MBean server

has to be passed to the instrumentation code via the MQeQueueManagerJmx.createMQeMBeans() method

described in this section. All instrumented MQe MBeans are then registered with this MBeanServer

instance.

An instance of an MBeanServer is created using one of two static methods of the MBeanServerFactory

class: createMBeanServer() or newMBeanServer(). Once this instance has been created, MBeanServer

methods can be used to access and manipulate the MBeans registered with the MBeanServer. In

particular, the following methods allow the user to retrieve and set MQe MBean attributes and invoke

operations. (The method names below assume that mbeanServer is the instance of MBeanServer.)

mbeanServer.getAttribute(ObjectName objName, String attributeName);

mbeanServer.getAttributes(ObjectName objName, String[] attributeNames);

mbeanServer.setAttribute(ObjectName objName, Attribute attribute);

mbeanServer.setAttributes(ObjectName objName, AttributeList attributes);

mbeanServer.invoke(ObjectName name, String operationName,

 Object params[], String signature[]);

For further details on the parameter types Attribute and AttributeList, see “Related information on JMX”

on page 148. The concept of an MBean’s ObjectName is central to the MQe JMX interface and is

discussed in the following section.

ObjectName

An MBeanServer instance interacts with the MBeans registered with it via their ObjectNames. When an

MBean is registered with an MBeanServer, both the MBean object instance and the corresponding MBean

ObjectName instance are passed as parameters to the registration method. From this point onwards, the

ObjectName is passed to all MBeanServer methods pertaining to this MBean.

ObjectNames are also returned from query methods on the MBeanServer instance which are designed to

inquire upon the MBeans registered with the MBeanServer. A form of pattern matching can be used in

these methods. Therefore the ObjectName hierarchy corresponding to MQe instrumented resources has

been designed to facilitate queries on types of MQe resource such as Application Queue and Indirect

Connection.

Chapter 2. Configuring MQe objects 133

An object name consists of a string made up of two components: the domain name and the key property

list. It has the format:

Domain-name:key1=value1[,key2=value2,...keyX=valueX]

A domain name corresponds to a namespacing prefix which identifies a group of MQe resources.

The following table provides a full description of the MQe JMX object naming conventions.

 Table 41. MQe JMX Object Naming Conventions

MQe Resource ObjectName

Local Queue Manager com.ibm.MQe_LocalQueueManager:name

 = <QMName>

Remote Queue Manager com.ibm.MQe_RemoteQueueManagers:name

 = <QMName>

Local Queue Manager Alias com.ibm.MQe_LocalQueueManager:name

 = <QMAliasName>,

type = alias,

resourceName = <QMName>

Remote Queue Manager

Alias

com.ibm.MQe_RemoteQueueManagers:name

 = <QMAliasName>,

type = alias,

resourceName = <QMName>

Application Queue com.ibm.MQe_<OwningQMName>_ApplicationQueues:name

 = <QName>

Application Queue Alias com.ibm.MQe_<OwningQMName>_ApplicationQueues:name

 = <QAlias>,

type = alias,

resourceName = <QName@OwningQMName>

Sync Proxy Queue com.ibm.MQe_<OwningQMName>_SyncProxyQueues:name

 = <QName>,

DestinationQMgr = <DestinationQMgrName>

Sync Proxy Queue Alias com.ibm.MQe_<OwningQMName>_ SyncProxyQueues:name

 = <QAlias>,

type = alias,

resourceName = <QName@DestinationQMgrName>

Async Proxy Queue com.ibm.MQe_<OwningQMName>_ AsyncProxyQueues:name

 = <QName>,

DestinationQMgr = <DestinationQMgrName>

Async Proxy Queue Alias com.ibm.MQe_<OwningQMName>_ AsyncProxyQueues:name

 = <QAlias>,

type = alias,

resourceName = <QName@DestinationQMgrName>

Admin Queue com.ibm.MQe_<OwningQMName>_AdminQueues:name

 = <QName>

Admin Queue Alias com.ibm.MQe_<OwningQMName>_ AdminQueues:name

 = <QAlias>,

type = alias,

resourceName = <QName@OwningQMName>

Home Server Queue com.ibm.MQe_<OwningQMName>_HomeServerQueues:name

 = <QName>,

GetFromQMgr = <GetFromQMgr>

134 WebSphere MQ Everyplace V2.0.2

Table 41. MQe JMX Object Naming Conventions (continued)

MQe Resource ObjectName

Store Queue

com.ibm.MQe_<OwningQMName>_StoreQueues:name

 = <QName>

Forward Queue com.ibm.MQe_<OwningQMName>_ForwardQueues:name

 = <QName>,

ForwardToQMgr = <ForwardToQMgrName>

MQeMQBridge Queue com.ibm.MQe_<OwningQMName>_BridgeQueues:name

 = <QName>,

DestinationQMgr = <DestinationQMgrName>

MQeMQBridge Queue Alias com.ibm.MQe_<OwningQMName>_BridgeQueues:name

 = <QAlias>,

type = alias,

resourceName = <QName@DestinationQMgrName>

Alias Connection com.ibm.MQe_<OwningQMName>_MQConnections:name

 = <ConnectionName>

Alias Connection Alias com.ibm.MQe_<OwningQMName>_MQConnections:name

 = <AliasName>,

type = alias,

resourceName = <ConnectionName>

Direct Connection com.ibm.MQe_<OwningQMName>_DirectConnections:name

 = <ConnectionName>

Direct Connection Alias com.ibm.MQe_<OwningQMName>_DirectConnections:name

 = <AliasName>,

type = alias,

resourceName = <ConnectionName>

Indirect Connection com.ibm.MQe_<OwningQMName>_IndirectConnections:name

 = <ConnectionName>

Indirect Connection Alias com.ibm.MQe_<OwningQMName>_IndirectConnections:name

 = <AliasName>,

type = alias,

resourceName = <ConnectionName>

MQ Connection com.ibm.MQe_<OwningQMName>_MQConnections:name

 = <ConnectionName>

MQ Connection Alias com.ibm.MQe_<OwningQMName>_MQConnections:name

 = <AliasName>,

type = alias,

resourceName = <ConnectionName>

Communications Listener com.ibm.MQe_<OwningQMName>_CommunicationsListeners:name

 = <ListenerName>

MQ Bridge com.ibm.MQe_<OwningQMName>_Bridges:name

 = <BridgeName>

MQ QMgrProxy com.ibm.MQe_<OwningQMName>_MQQueueManagerProxies:name

 = <ProxyName>,

bridge = <BridgeName>

MQ Client Connection com.ibm.MQe_<OwningQMName>_MQClientConnections:name

 = <ClientConnName>,

bridge = <BridgeName>,

qmgrProxy = <ProxyName>

Chapter 2. Configuring MQe objects 135

Table 41. MQe JMX Object Naming Conventions (continued)

MQe Resource ObjectName

MQ Listener com.ibm.MQe_<OwningQMName>_MQListeners:name

 = <ListenerName>,

bridge = <BridgeName>,

qmgrProxy = <ProxyName>,

clientConnection = <ClientConnName>

MQe Admin bean com.ibm.MQe_Admin:name = AdminBean

From the application, using this schema, queries may be done on the MBeans using the name or type

fields or wildcards in the string preceding the colon (this string is known as the Domain). Thus it is easy

to search for all application queues, all proxy queues, all connection aliases, and so on.

There are some important points to note about the use of ObjectNames for MQe resources:

v There are no spaces in these names since these make queries more difficult. Therefore, you must ensure

that no spaces are accidentally inserted into object names used as parameters to methods, or exceptions

will arise due to the resource not being found.

v Object names are case sensitive.

v When a queue has an alias, the resourceName property key in the alias MBean object name has a value

which is composed of a string of the form queueName@queueManagerName.

The MQe JMX interface provides a helper method to instrument a queue manager’s resources as MBeans

(The MQeQueueManagerJmx method createMQeMBeans()). When this method is used, all of the MBeans

have object names following the pattern specified above. However, it would also be possible for an

application to instantiate instances of MQe MBeans by calling the appropriate constructor and it would

then be possible to register the resultant MBean with the MBeanServer with an object name chosen by the

application.

It is strongly recommended that you adhere to the naming conventions described above and do not

register or unregister MQe MBeans independently of the MQe JMX interface. The MQe JMX interface

helper method MQeQueueManagerJmx.createMQeMBeans() should always be used to instrument your

MQe resources as MBeans.

The only instance where calling the constructor to create a MQe MBean is supported is to change defaults

of the Admin MBean. This can be seen in the example code provided in the examples\jmx directory. For

example, the register/unregister facilities offered by various adaptors should not be used - going via the

MQe JMX interface create and delete methods ensures that MBeans are registered and unregistered in the

approved manner (the AdminBean is an exception to this rule).

These conventions are used within the MQe code and the processing of MBeans may not be consistent if

a different naming pattern is used. Using the helper method ensures a consistency of behavior, for

example, when a refresh occurs on remote queue manager MBeans due to a resource having been added

or removed by some method other than via JMX.

The object name patterns described above have been selected with a view to facilitating queries on the

MBeanServer instance for its registered MBeans. Such queries allow for pattern-matching based on the

object names. (See the JMX resource documentation listed in the preface for descriptions of how

MBeanServer queries work). For example, to get a subset of registered MBeans corresponding to a local

queue manager’s application queues, the following query could be made:

// set up a filter for retrieving MyLocalQM’s Application Queue MBeans

ObjectName scope =

 new ObjectName("com.ibm.MQe_MyLocalQM_ApplicationQueues:*");

// use the JMX MBeanServer API to make the query

136 WebSphere MQ Everyplace V2.0.2

Set results = mbeanServer.queryNames(scope,null);

// iterate through the results

Iterator iter = results.iterator();

ObjectName objName = null;

while(iter.hasNext()) {

objName = (ObjectName)iter.next();

 // process each result

 ...

}

The following example shows how to find out which resources actually represent queue aliases:

// set up a filter for retrieving all aliases for queues

ObjectName scope = new ObjectName("*Queues:*,type=alias");

// use the JMX MBeanServer API to make the query

Set results = mbeanServer.queryNames(scope,null);

// etc.

Useful MBeanServer methods

Once you have called the helper method MQeQueueManagerJmx.createMQeMBeans(), which instruments all

of your queue manager resources as MBeans, you are in a position to manipulate those resources using

the standard MBeanServer API.

In general terms, this manipulation involves either the setting or getting of MBean resource attributes or

the invocation of MBean resource operations.

All attribute and operation manipulation at this level is done via the following agent-layer API.

getMBeanInfo:

public MBeanInfo getMBeanInfo(ObjectName objName)

 throws InstanceNotFoundException,

 IntrospectionException,

 ReflectionException;

In order to use some of the other MBeanServer methods described in this section, such as the invoke()

method, you need information about the relevant input parameters. For example, you may need to know

what operations can be invoked upon a given resource, what input parameters are required for a

particular operation, what the type of each of these parameters is and what the return value type is.

There are two ways in which you can obtain this information. Firstly, you can use the list of attributes

and operations for each MQe JMX-instrumented resource. You can look up the information that you need

and hard-code it into an application as required.

Alternatively, you can use the getMBeanInfo() MBeanServer method that the agent layer provides to

retrieve the input parameter information. This method takes as its sole parameter the ObjectName

instance that corresponds to the equivalent MQe resource. The method returns a complex structure that

contains information on the following properties of an MBean: class name, description, attributes,

constructors, operations, notifications.

The information that the getMBeanInfo() method returns on attributes, constructors, operations and

notifications consists of further structures of types MBeanAttributeInfo, MBeanConstructorInfo,

MBeanOperationInfo and MBeanNotificationInfo. The method can also retrieve an MBeanParameterInfo

instance that corresponds to each MBeanOperationInfo instance, and so on.

Below is one example of how to use the getMBeanInfo() method. Given the complexity of the MBeanInfo

object, you will also find it helpful to refer to the JMX information sources listed in the Related Material

section.

Chapter 2. Configuring MQe objects 137

Suppose you know that an instrumented MQe application queue MBean has an addAlias method but

you want to check the return type of this method. To do this, you would use the getMBeanInfo() method

as follows:

/* call the getMBeanInfo() method on */

/* the MBeanServer instance for the queue MBean */

MBeanInfo beanInfo = mbeanServer.getMBeanInfo(queueObjName);

/* retrieve information on operations for that MBean */

MBeanOperationInfo[] beanOps = beanInfo.getOperations();

/* loop through the operations until we find the one we want */

for(int i = 0; i < beanOps.length; i++) {

 if(beanOps[i].getName().equals("addAlias")) {

 /* get the return type for that operation */

 String retval = beanOps[i].getReturnType();

 System.out.println(retval);

 break;

 }

A very useful aspect of these information structures is the description parameter. Instances of

MBeanAttributeInfo, MBeanParameterInfo, MBeanConstructorInfo and MBeanOperationInfo all have a

getDescription() method, which you can use to return a text description of the item in question.

getAttribute:

public Object getAttribute(ObjectName objName, String attrname)

 throws MBeanException,

 AttributeNotFoundException,

 InstanceNotFoundException,

 ReflectionException;

This API allows the agent layer to retrieve the value of an MBean attribute. (See the JMX documentation

on the Attribute class for further details.) From the point of view of the MQe JMX interface, the most

important properties of this class are name and value. The getAttribute() method takes two parameters:

an ObjectName corresponding to the resource in question (a JMX-instrumented queue, for example) and a

String parameter corresponding to the Attribute name. The method returns an Object which must be cast

to the expected type of the Attribute value.

So, for example, if a MQe queue MBean has an attribute named Description of type java.lang.String, the

value for that attribute would be retrieved at the agent layer as follows (assuming that the ObjectName

for the queue in question has been retrieved from a query):

String queueDesc = (String)mbeanServer.getAttribute(queueObjName,

 "Description");

This method throws exceptions of type: AttributeNotFoundException, MBeanException, or

ReflectionException. MQe Exceptions are returned wrapped in MBeanExceptions. See “Error handling”

on page 143.

Note: For the sake of convenience, the try/catch blocks needed to catch exceptions thrown by these

MBeanServer methods are omitted in the examples in these sections. See “Error handling” on page 143.

Some adapters such as the Sun HtmlAdaptorServer invoke the getAttribute() and setAttribute() methods

recursively when getting or setting several attributes rather than invoking getAttributes() or

setAttributes(). This may result in a high overhead. In this case, it is advisable to increase the

cacheInterval attribute in the Admin MBean. Caching attribute values decreases the amount of work

being done by the adaptor.

getAttributes:

138 WebSphere MQ Everyplace V2.0.2

public AttributeList getAttributes(ObjectName name,

 String[] attributes)

 throws InstanceNotFoundException,

 ReflectionException;

The attributes parameter consists of an array of the names of attributes to be retrieved. The return value

is of type javax.management.AttributeList extends java.util.ArrayList and provides methods for

adding Attribute objects to an AttributeList. Attributes are retrieved from an AttributeList using an

instance of Iterator and the Attribute class methods getName() and getValue().

String[] attributeNames = {"Description","Expiry"};

AttributeList myAttrs =

 mbeanServer.getAttributes(queueObjName,attributeNames);

Iterator myIter = myAttrs.iterator();

while(myIter.hasNext()) {

 Attribute attribute = (Attribute)myIter.next();

 System.out.println("Attribute name: " + attribute.getName());

 System.out.println("Attribute value: " + attribute.getValue());

}

The corresponding method for getAttributes() at the instrumentation level cannot throw user exceptions.

This limits the usefulness of getAttributes() at the agent layer as, for example, MQe exceptions cannot be

retrieved. Instead of using getAttributes(), it may be more useful to loop through the String array of

attribute names (attributeNames), calling getAttribute() for each, though this increases the overhead. The

same applies to setAttributes().

setAttribute:

public void setAttribute(ObjectName name,

 Attribute attribute)

 throws InstanceNotFoundException,

 AttributeNotFoundException,

 InvalidAttributeValueException,

 MBeanException,

 ReflectionException;

This method is used to set the name and value of a new Attribute or to update the current value of an

Attribute. The following example shows how to use the JMX-instrument MQe queue MBean known by

object name queueObjName to set the Description attribute at the agent level:

Attribute descAttr =

 new Attribute("Description","A description for my queue");

mbeanServer.setAttribute(queueObjName, descAttr);

Some adapters such as the Sun HtmlAdaptorServer invoke the getAttribute() and setAttribute() methods

recursively when getting or setting several attributes rather than invoking getAttributes() or

setAttributes(). This may result in a high overhead. In this case, it would be a good idea to increase the

cacheInterval attribute in the Admin MBean. Caching attribute values will decrease the amount of work

being done by the adaptor.

setAttributes:

public AttributeList setAttributes(ObjectName name,

 AttributeList attribute)

 throws InstanceNotFoundException,

 ReflectionException;

This method is used to set or update several Attributes at once. The following example shows how to use

the JMX-instrumented MQe queue MBean known by object name queueObjName, to set the Description

and Expiry attributes at the agent level:

/*create the attributes to update */

Attribute descAttr =

 new Attribute("Description","A new description for my queue");

Attribute expiryAttr =

Chapter 2. Configuring MQe objects 139

new Attribute("Expiry", new Long(1000));

/*create the input parameter AttributeList */

/* and add our Attributes to the List */

AttributeList toUpdate = new AttributeList();

toUpdate.add(descAttr);

toUpdate.add(expiryAttr);

/* call setAttributes() and check results if required */

AttributeList updates = mbeanServer.setAttributes(queueObjName, toUpdate);

/* can now process updates as shown in getAttributes() */

Note: The same limitations apply to error handling for setAttributes as those described earlier for

getAttributes().

invoke:

public Object invoke(ObjectName name,

 String operationName,

 Object[] params,

 String[] signature)

 throws InstanceNotFoundException,

 MBeanException,

 ReflectionException;

This method is used to invoke JMX-wrappered MQe operations on MQe JMX-instrumented resources.

The input parameters are:

name

the ObjectName corresponding to the MQe resource to be administered.

operationName

the name of the operation to be invoked, for example: addAlias.

params

an array representing the input parameters to the operation.

signature

an array representing the data types corresponding to each parameter.

Note: The indices for entries in params and signature must correspond: the entry at index j in signature

must represent the data type of the entry at index j in params.

Suppose you want to invoke the addAlias() method on a MQe queue represented by object name

queueObjName where there is one input parameter of type String, which represents the alias name. The

following example shows how to do this:

Object[] params = {new String("myAlias")};

String[] signature = {new String("java.lang.String")};

mbeanServer.invoke(queueObjName, "addAlias", params, signature);

In this case, there is no return value to worry about. However, although this is a relatively simple

example, it illustrates the principles which apply to all operations invoked using this method.

Data types

In the example for the MBeanServer invoke() method in the previous subsection, the input parameter

String[] signature represents the data types of all input parameters to the method being invoked.

In order to ensure compliance with the OpenMBean model, we only use the approved data types for our

attribute getter() and setter() methods and for operation parameters. The data types specified when

invoke() is called are therefore always limited to a set of approved types as follows:

140 WebSphere MQ Everyplace V2.0.2

v Simple data types:

– java.lang.Void

– java.lang.Boolean

– java.lang.Byte

– java.lang.Character

– java.lang.String

– java.lang.Short

– java.lang.Integer

– java.lang.Long

– java.lang.Float

– java.lang.Double
v Arrays of the above types:

– javax.management.ObjectName

– javax.management.openmbean.CompositeData

– javax.management.openmbean.TabularData

The class name literals for each type have a specific format as follows:

v The simple data types listed above are returned as described, for example ″java.lang.Byte″

v For arrays of these types, the situation is more complex. For the purpose of the MQe JMX types, the

only array types are of types java.lang.String and java.lang.Short. These array types are defined as

follows:

 Table 42. Data Types and Class Name Literal Strings

Data Type Class Name Literal String

String[] ″[Ljava.lang.String;″

Short[] ″[Ljava.lang.Short;″

Note: Notice the semi-colon as the end of the class name. In all contexts where a data type has to be

specified throughout the JMX instrumentation and agent layers, the class name literal format must be

used.

Divergence from MQe Administration Interface

This section describes those aspects of the MQe JMX interface that differ in their implementation from the

MQe administrative interface.

Messaging operations

The MQe JMX interface is intended as an administrative resource to assist in the configuration and

management of MQe resources via JMX. Messaging operations do not therefore fall into its brief and such

messaging operations as are provided are intended only for test purposes. putMessage() and

deleteMessage() operations are provided for permitted queue types. These messaging operations provide

a very limited scope for testing a network’s connectivity and configuration. As the messaging operations

are minimal it is not possible to test the operation of a network using store or forward queues.

The putMessage() method takes a single java.lang.String parameter representing the text of a message

body. The user can only provide this single String – no further customization of the test message can take

place. This message is put to the queue represented by the MBean upon which the method is invoked.

The MBean representing the queue in question also has an attribute called Messages (to qualify this

statement, only MBeans representing queues of a type on which browse is permitted have this attribute).

This attribute is of type [Ljava.lang.String; and can be retrieved using getAttribute()or getAttributes().

Each item in the String array represents the text of the message body put to the queue using the

Chapter 2. Configuring MQe objects 141

putMessage() method. If messages are put to the queue in question by any means other than the JMX

interface putMessage() method, the text body will not be readable by the JMX interface and the value

returned for Messages will reflect this.

The index of a message body in the Messages array can be used to delete that message from the queue

using the deleteMessage() method. The index is passed in as the only parameter to the deleteMessage()

method.

Note that both the putMessage() and the deleteMessage() methods should only be invoked via the

MBeanServer invoke() method. This is true for all operations listed in this section.

Store and Forward queues

In MQe, there is a single queue class, MQeStoreAndForwardQueue, which encompasses the functionality

of both Store Queues and Forward Queues in the MQe JMX interface. This type of queue has the capacity

to do both of the following:

v Forward messages either to the target queue manager (which MQe JMX calls ForwardToQMgr), or to

another queue manager between the sending and the target queue managers. In this case the

store-and-forward queue pushes messages either to the next hop or to the target queue manager.

v Hold messages until the target queue manager can collect the messages from the store-and-forward

queue. This can be accomplished using a home-server queue. Using this approach messages are pulled

from the store-and-forward queue. The target queue manager, in this case, is included in what MQe

JMX calls the DestinationQMgrList.

MQeStoreAndForwardQueues have a property identifying their set of target queue managers

(Queue_QMgrNameList).

In the case of the Store Queue MBean, there is no ForwardToQMgr. The sole purpose of this queue is to

store messages for the queues in its DestinationQMgrList.

The Forward Queue MBean instance, by contrast, has a ForwardToQMgr as well as a DestinationQMgrList.

Thus it has both the forward and store capabilities of the MQeStoreAndForwardQueue while the Store Queue

just has the store capability.

This division of functionality between queue MBean representations is intended to simplify the roles of

the queues in question. The Store Queue is, in effect, a ″storing″ queue without the ″forwarding″ capacity

of the Forward Queue.

Programmatic interface versus user interface terminology

Queue references: When programming in MQe, you refer to different types of queues by the references

used in this documentation.

When a queue is displayed in the JMX user interface, however, it is given a different reference. The

following table shows the relationship between the user interface references and the programmatic

references.

 Table 43. Queue reference mapping

User interface queue

reference

Programming interface queue

reference

MQeAdminMessage class

Admin Admin MQeAdminQueueAdminMsg

Application Local MQeQueueAdminMsg

Async Proxy Remote (where the mode is

asynchronous)

MQeRemoteQueueAdminMsg

Bridge Bridge MQeBridgeQueueAdminMsg

142 WebSphere MQ Everyplace V2.0.2

Table 43. Queue reference mapping (continued)

User interface queue

reference

Programming interface queue

reference

MQeAdminMessage class

Forward Store and Forward (different

owning queue manager name

from local queue manager)

MQeStoreAndForwardQueueAdminMsg

Home Server Home Server MQeHomeServerQueueAdminMsg

Proxy Remote (incorporates both

queue modes)

MQeRemoteQueueAdminMsg

Store Store and Forward (same

owning queue manager name

as local queue manager)

MQeStoreAndForwardQueueAdminMsg

Sync Proxy Remote (where the mode is

synchronous)

MQeRemoteQueueAdminMsg

Queue queue manager references: When programming in MQe, you use the term queueqm — most

queues have an associated queue manager and this is the queueqm. You refer to these different types of

queue managers by the references used in this documentation.

However, when a queueqm is displayed in the JMX user interface it is given a different reference.

The following table shows how the queueqm is referred to for each type of queue, using the user interface

references for both.

 Table 44. Queueqm reference mapping

User interface queue reference User interface queueqm

reference

Description

Admin none Same as the local queue manager name

Application none Same as the local queue manager name

Async Proxy DestinationQMgr The name of the queue manager that holds

the corresponding application queue

Bridge DestinationQMgr The name of the MQ queue manager that

holds the corresponding MQ queue

Forward ForwardToQMgr The name of the queue manager that

messages arriving on this queue will be

forwarded to

Home Server GetFromQMgr The name of the queue manager that

messages on store or forward queues will

be pulled from

Store none Same as the local queue manager name

Sync Proxy DestinationQMgr The name of the queue manager that holds

the corresponding application queue

Error handling

The MBeanException class is defined in the Sun JMX Specification (1.2) as follows:

This class represents ″user defined″ exceptions thrown by MBean methods in the agent. It ″wraps″ the

actual ″user defined″ exception thrown. This exception will be built by the MBeanServer when a call to

an MBean method results in an unknown exception.

Chapter 2. Configuring MQe objects 143

There are methods in the MBeanException class that will return the original exception class and any

message that was inside the exception:

public Exception getTargetException();

public Throwable getCause();

Therefore, an application can retrieve and handle any MQe (or other) exceptions.

However, it may be the case that exceptions caught at the agent layer may not be adequately displayed

via the adapter or connector used. For example, the Sun RI HtmlAdaptorServer does not retrieve and

display exceptions wrappered in MBeanExceptions.

This impacts the usefulness of using the HtmlAdaptorServer to get back MQeExceptions when setting

attributes. For example, MQe throws an exception if you attempt to set a queue priority outside the range

0-9. All that the HtmlAdaptorServer shows is that the Priority attribute value has not been set. This is an

unfortunate limitation to this specific adapter.

If a null value is entered for a required parameter on an operation a NullPointerException will be inside

the wrapped MBeanException.

Any exception returning from MQe after an operation or an attempt to set an attribute is made will be of

type MQeException inside the MBeanException.

Notifications

The JMX specification provides a notification mechanism which has been implemented in the MQe JMX

interface.

This interface implements the JMX NotificationBroadcaster class and can therefore send notifications to

any applications which implement the corresponding JMX NotificationListener class.

A notification in this context is a message sent by a notification broadcaster to a notification listener via

the JMX infrastructure.

Notifications of two classes which subclass the JMX Notification class are sent from the MQe JMX

interface. These classes are:

v com.ibm.mqe.jmx.MQeAliasNotification;

v javax.management.AttributeChangeNotification.

MQeAliasNotification

This class extends javax.management.Notification and provides the following notification types:

v mqe.connection.alias.added: when an alias is added to a connection.

v mqe.connection.alias.removed: when an alias is removed from a connection.

v mqe.queue.alias.added: when an alias is added to a queue.

v mqe.queue.alias.removed: when an alias is removed from a queue.

v mqe.queuemanager.alias.added: when an alias is added to a queue manager.

v mqe.queuemanager.alias.removed: when an alias is removed from a queue manager.

AttributeChangeNotification

This class is used to notify interested JMX listeners when the value of an MBean attribute changes. It

provides the following notification type:

v jmx.attribute.changed: when the value of an attribute changes.

If an exception occurs when an attempt is made to change an attribute, the text of the exception will be

passed back to the user via the notification ’message’. The getMessage() method can thus be used to

144 WebSphere MQ Everyplace V2.0.2

retrieve the exception text. The AttributeChangeNotification class also provides getOldValue() and

getNewValue() methods to return the original attribute value and the value to which it is being changed.

In the event of an error, getNewValue() will not return the actual attribute value (since the attempt to

change the attribute has not succeeded) – in this case, getOldValue() returns the actual attribute value at

the point of notification.

Using notifications

In order to receive notifications, a user (at the Agent layer) implements the JMX NotificationListener

interface and then invokes the addNotificationListener on the MBeanServer instance:

public void addNotificationListener(ObjectName objName,

 NotificationListener listener,

 NotificationFilter filter,

 Object handback);

where

v objectName represents the MBean from which notifications are to be received

v listener is the user’s instance of NotificationListener

v filter is an optional filter used if only a subset of possible notifications is required (may be null)

v handback is an object which can be used to hold private data that the handler of the received

notification wants to access (may be null)

Note: There is an alternative addNotificationListener() method on the MBeanServer which passes

the ObjectName for the listener rather than the actual NotificationListener instance. This can be used if

the NotificationListener instance is itself a registered MBean.

If you have any resources with aliases, and you add listeners for notifications from both a resource and

its aliases, you will receive multiple identical notifications. It is a good idea to ensure that object names

passed as parameters to the addNotificationListener() method do not contain the property key-value pair

″type=alias″.

Having called this API, the user’s listener will now be added to the broadcaster’s table of listeners.

In order to handle received notifications, the user also has to implement the following method:

public void handleNotification (Notification notification,

 Object handback);

where:

v notification is the Notification instance sent by the NotificationBroadcaster object

v handback is an object which can be used to hold private data which the handler of the received

notification wishes to access (may be null)

This method is where the received notifications are processed. The Notification class provides several

useful methods which may be used to extract information about the notification:

public String getType(); // returns the notification type

public Object getSource(); // returns the source of the notification

public long getSequence(); // returns the sequence number of

 // the notification [1]

public String getMessage(); // returns a text message associated with

 // the notification

public Object getUserData(); // returns the handback object

Note:

1. The sequence number provides information on the occurrence of the notification but is not set in this

MQe JMX implementation so will always have a value of 0.

Chapter 2. Configuring MQe objects 145

The following example shows how the agent could set up listeners for certain MQe MBeans. In this

example, the user is only interested in receiving notifications from MBeans representing application

queues belonging to the local queue manager TestQueueManager:

 /* find all the mbeans and set up listeners for them */

ObjectName scope = new

ObjectName("com.ibm.MQe_TestQueueManager_ApplicationQueues:*");

Set results = mbeanServer.queryNames(scope,null);

Iterator iter = results.iterator();

while(iter.hasNext()) {

 /* for each bean, check that it is not an alias MBean –

 * these beans have type=alias in the ObjectName */

 ObjectName objName = (ObjectName)iter.next();

 String type = objName.getKeyProperty("type");

 if(type == null || !type.equals("alias")) {

 /* add a listener */

 mbeanServer.addNotificationListener(objName,this,null,null);

 }

 }

Other Issues

Setting attributes of array type

It is possible for attributes of array type (for example, [Ljava.lang.String;) to be written to as well as

read from. So, it is possible, for instance, to update a queue’s array of aliases using the MQe JMX

interface.

However, there are limitations to the manner in which some adapters allow the user to make such

updates. For example, the Sun RI HtmlAdaptorServer adapter will only provide an array for the update

which is of the same dimensions as the current array. Thus, if a queue has no existing aliases, the array

for update will be of size zero, and hence no new alias can be added for the queue using the queue alias

attribute. However, in this case, an alias can be added using the addAlias() operation.

If a queue has two existing aliases, then the array provided for the alias attribute update is of size two.

One or both of the two aliases can be changed using the writable array. However, some adapters do not

allow the user to clear the contents of the array cells and pass back an array containing empty string(s).

This will cause an exception. Hence these adapters will only allow an update which keeps the number of

existing aliases constant.

Since these are limitations of specific adapters only, we have decided to allow such array attributes to be

updated where appropriate. The alternative would be to force users to use operations for adding aliases

rather than using the attribute update potential.

This specific example may also be extended to situations where the capability of the adapter or connector

does not match the capability of a programmatic interface. We are not in a situation to predict such

limitations in advance and hence there may be features of our implementation which are not ideally

suited to some adaptors and connectors. We have decided against constricting the functionality of our

instrumentation layer to match the capabilities of specific adapters.

Alias MBeans

Certain MQe resources – queues, queue managers and connections – can have aliases, other names by

which they can be known. In order to facilitate administration, the MQe JMX interface re-registers

MBeans which have aliases under an object name corresponding to the alias. Thus for example if the JMX

interface is used to add an alias myAlias to an application queue myQueue, the queue MBean is actually

registered twice,

once with object name

com.ibm.MQe_<OwningQMName>_ApplicationQueues:name=myQueue

146 WebSphere MQ Everyplace V2.0.2

and once with object name

com.ibm.MQe_<OwningQMName>_ApplicationQueues:name=myAlias,

type=alias,

resourceName=myQueue@<OwningQMName>.

This means that the administrator does not have to be aware of the real name of the resource in order to

administer it via JMX.

Likewise, when aliases are removed from resources, the corresponding ObjectName is de-registered.

One side-effect of this practice is that if a user chooses to create and register some MQe MBeans without

using the helper method createMQeMBeans(), this may result in an inconsistent picture where some

resources are registered with alias names while others are not. This enforces the argument for using the

helper method to create and register all MQe MBeans.

Translation

Description attributes for MQe resources are available in all the different MQe supported languages, in

translated properties files. The language used for the descriptions will be selected according to the default

locale of your machine, using the normal Java convention, as described briefly below.

You must provide appropriate properties files on your classpath for all languages, including US English.

The properties files can be found in the folder Java/com/ibm/mqe/properties below the folder in which

MQe was installed. This directory contains two required properties files in all the supported languages:

v AdminDescBundle

v JMXDescBundle

Either all the properties files can be added to the classpath or just the files required for your language.

There are two default files:

v AdminDescBundle.properties

v JMXDescBundle.properties

that contain the English descriptions. These files will be used if there is no matching translated file for

your locale.

All other files have a country code XX appended to the first part of the filename to make

JMXDescBundle_XX.properties where XX is one of the following country codes:

 Code Language

de German

es Spanish

fr French

it Italian

ja Japanese

ko Korean

pt_BR Brazilian Portuguese

zh Chinese

zh_TW Traditional Chinese

The Java system for selecting the language is as follows:

Chapter 2. Configuring MQe objects 147

1. determine the computer’s default locale, for example fr_FR

2. Search for that locale through the files provided, checking the language code on each:

v If a fully-qualified language code file, for example file_fr_FR is not found, then it will use the

semi-qualified code file, if it exists — in that example file_fr

v When a file with a fully-qualified code is found, only the fully matching locale will select it, for

example locale pt_BR will use the file file_pt_BR, but locale pt_PT will not, and will hence default

to English.

Note: The JTC recommend that when a fully-qualified language code file exists, the semi-qualified code

file must also exist, even if it is empty.

For full information on this, see these websites:

http://oss.software.ibm.com/icu/userguide/design.html

http://java.sun.com/products/jdk/1.2/docs/api/java/util/ResourceBundle.html

Related information on JMX

This section lists various sources of information that you might find useful.

Books

v Perry, J. Steven, Java Management Extensions: Managing Java Applications with JMX (O’Reilly &

Associates, Inc: 2002)

v Jasnowski, Mike. JMX Programming (Wiley Publishing, Inc: 2002)

Articles

v http://java.sun.com/products/JavaManagement/ (Sun articles, downloads, resources for JMX)

v http://mx4j.sourceforge.net/ (Open Source JMX http://mx4j.sourceforge.net/)

v http://www-106.ibm.com/developerworks/library/j-jmx1/

v http://www-106.ibm.com/developerworks/library/j-jmx2/

v http://www-106.ibm.com/developerworks/library/j-jmx3/ (Article: From black boxes to enterprises

Parts 1-3)

v http://www.informit.com/content/index.asp?session_id={61F6D302-4F4F-4D68-96D8-
AD545B00CA28}&product_id={583CB44A-AC47-4959-9C01-FA8DF0884EEE} (Article: Managing

Complex systems with JMX)

v http://jcp.org/aboutJava/communityprocess/maintenance/jsr003/jmx1.2-change-log.txt (Changes

between JMX 1.1 and 1.2)

Other resources

v http://www.alphaworks.ibm.com/tech/TMX4J (IBM Tivoli Tivoli’s implementation of the JMX

Specification)

v http://www.jguru.com/forums/JMX (JGuru JMX forum).

148 WebSphere MQ Everyplace V2.0.2

http://oss.software.ibm.com/icu/userguide/design.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/ResourceBundle.html
http://java.sun.com/products/JavaManagement/
http://mx4j.sourceforge.net/
http://www-106.ibm.com/developerworks/library/j-jmx1/
http://www-106.ibm.com/developerworks/library/j-jmx2/
http://www-106.ibm.com/developerworks/library/j-jmx3/
http://www.informit.com/content/index.asp?session_id={61F6D302-4F4F-4D68-96D8-AD545B00CA28}&product_id={583CB44A-AC47-4959-9C01-FA8DF0884EEE}
http://www.informit.com/content/index.asp?session_id={61F6D302-4F4F-4D68-96D8-AD545B00CA28}&product_id={583CB44A-AC47-4959-9C01-FA8DF0884EEE}
http://jcp.org/aboutJava/communityprocess/maintenance/jsr003/jmx1.2-change-log.txt
http://www.alphaworks.ibm.com/tech/TMX4J
http://www.jguru.com/forums/JMX

Index

A
ACII characters

invariant 107

action restrictions on queues 9

actions for the MQ bridge 96

administered objects characteristics, MQ

bridge 98

administration of managed resources
connections 3

administration request message 17

ASCII characters 107

variant 107

B
bridge

bridge resource 85

bridges resource 84

Bridge resources
objects characteristics 98

run state 96

C
characteristics of resources 18

client connection object 82

code pages and MQ bridge 107

command line 32

example 33

script files 34

script objects 35

use 33

using script files 36

configuring
the MQ bridge 82

connections, administration of 3

creating remote queues 61

creating, local queues 8

E
example

MQSeries bridge configuration 92

examples 96

F
fields specific to managed resources 18

fields, administration of 17

H
hierarchy of bridge objects 82

I
invariant characters, ASCII 107

L
listener 87, 88

M
message operations supported by

MQ—bridge queue 12

MQ 98

queue manager, shutting down 98

MQ bridges object 82

MQ PCF messages 91

MQe_Explorer, viewing

configurations 38

Msg_ReplyToQ 19

Msg_Style 19

MsgReplyToQMgr 19

N
national language considerations for MQ

bridge 107

O
objects

MQ bridge, characteristics 98

objects, MQe 35

Q
queue manager proxy 85

queues 67

action restrictions 9

queues (continued)
administering 6

administration 13

aliases 9

asynchronous 60

home-server, administering 10

local, administering 7

local, creating 8

message store 7

MQ bridge, administering 12

remote, creating 61

security 9

queues, synchronous 60

R
reply message, administration 24

resource characteristics 18

restrictions on queue actions 9

run state of MQ bridge 96

S
script files 34

security 13

shutting down and MQ queue

manager 98

Store-and-forward queue 67

T
the MQ bridge

configuring 82

object hierarchy 82

The MQ bridge
administration actions 96

code page considerations 107

configuration example 92

national language considerations 107

objects characteristics 98

queue, administering 12

run state 96

transmission queue listener object 82

V
variant characters, ASCII 107

 149

	Contents
	Chapter 1. How to configure MQe objects
	Introduction
	Overview of MQe objects
	Queue managers
	Connections
	Routing and aliases

	Queues
	Local queue
	Home-server queue
	MQ bridge queue
	Administration queue

	Security and administration

	Configuring with messages
	Configuration by messages overview
	The administration queue
	The administration reply-to queue
	Create the appropriate administration message
	Set the required fields in a message - Java
	The basic administration message
	Base administration fields
	Fields specific to the managed resource
	Other useful fields
	Administration message Java examples 1

	Set the required fields in the message - C
	Analyzing the data in the reply message
	The basic administration reply message
	Outcome of request fields
	Administration message Java examples - 2
	Decorating the queue manager
	Putting the administration message
	Waiting for the administration reply
	Analyzing the reply message
	Updating a queue manager description

	Configuring with the C administrator API
	Creating an administrator handle
	Using the administrator handle
	Freeing the administrator handle

	Configuring from the command line
	Example use of command-line tools
	Script files required
	MQe and MQ objects defined by the scripts
	How to use the script files
	How to use MQe_Explorer to view the configuration

	Chapter 2. Configuring MQe objects
	Configuring queue managers
	Introduction to configuring queue managers
	Java
	C

	Queue manager attributes
	Java
	C

	Create a queue manager
	Java
	C

	Delete a queue manager
	Java
	C

	Inquire and inquire all
	Java
	C

	Update
	Java
	C

	Add alias
	Java
	C

	Remove alias
	Java
	C

	List alias names
	Java
	C

	IsAlias
	Java
	C

	Configuring a queue manager using memory only

	Configuring local queues
	Introduction
	Java
	C

	Local queue properties
	Java
	C

	Create a local queue
	Java
	C

	Delete a local queue
	Java
	C

	Add alias
	Java
	C

	List aliases
	Java
	C

	Remove alias
	Java
	C

	Update
	Java
	C

	Inquire and inquire all
	Java
	C

	Message storage adapter

	Configuring remote queues
	Introduction
	Structures
	Synchronous and asynchronous
	Setting the operation mode
	Creating a remote queue
	Java
	C

	Create synchronous
	Java
	C

	Create asynchronous
	Java
	C

	Transporter
	Queue aliases

	Configuring home server queues
	Introduction
	Configuration messages
	Message transmission
	Java
	C

	Creating a home server queue
	Java
	C

	Configuring store-and-forward queues
	Introduction
	Store and forward queue attributes
	Java

	Create store and forward queue
	Java

	Delete store and forward queue
	Java

	Add queue manager
	Java

	Remove queue manager
	Java

	Update
	Java

	Inquire
	Java

	Configuring connection definitions
	Introduction
	Direct connection definition
	Indirect connection definition

	Configuring connection definitions in Java
	Creating a connection definition
	Altering and deleting connection definitions

	Configuring connection definitions in C
	Creating a connection definition
	Altering and deleting connection definitions

	Configuring a listener
	Java

	Configuring bridge/gateway resources
	Introduction to the MQ bridge
	What makes a queue manager bridge-enabled
	Finding out if a queue manager is bridge-enabled
	Classes to bridge-enable a queue manager
	Overview of configuring the bridge
	The bridge objects and hierarchy
	Bridges resource
	Bridge resource
	MQ queue manager proxy
	Client connection resource
	Transmit queue listener resource
	Bridge queue

	Naming recommendations for interoperability with MQ
	Configuring a basic MQ bridge
	Using MQe administration messages and MQ PCF messages
	Bridge configuration example
	MQeMoonQM to/from MQeEarthQM
	MQeEarthQM to MQeMoonQM
	MQeEarthQM to MQSaturnQ
	MQeEarthQM to MQJupiterQ
	MQeMoonQM to MQJupiterQ and MQSaturnQ
	MQSaturnQM to MQeEarthQ
	MQSaturnQM to MQeMoonQ
	MQJupiterQM to MQeMoonQ

	Administration of the bridge
	Bridge administration actions
	Bridge considerations when stopping an MQ queue manager
	Administered objects and their characteristics

	Configuring a bridge for optimal throughput
	Gateway configuration
	Finding and creating the optimal configuration
	Setting up the gateway
	Setting up the clients
	Creating the gateway
	Steps to create the client
	Tips on writing a script
	Sample script to create a gateway
	Sample script to create a client
	Performance increase
	Conclusion

	Handling undeliverable messages
	Bridge National Language Support

	Configuring queue managers as servlets
	Introduction
	An example servlet configuration using WAS
	Start the Application Assembly tool
	Specifying web module properties
	Adding files to the application
	Adding web components
	Specifying component type and class name
	Specifying a URL to map to your servlet
	Finishing and saving the file
	Install enterprise application
	Installing your component as a standalone module
	Specifying an application name
	Finishing the configuration
	Starting the web module
	Start succeeded
	Using the servlet

	JMS (Java Message Service) configuration
	JMS Object naming changes from V2.0.1
	Introduction to JMS
	Configuring MQeConnectionFactory
	Configuring MQeJMSQueue
	The MQe administration tool for JMS
	Configuring the JMS administration tool
	Starting the JMS administration tool
	JMS Administration commands
	Manipulating subcontexts
	Administering JMS objects
	Verbs used with JMS objects
	Creating JMS objects
	LDAP naming of JMS objects
	JMS object properties

	Extending MQeConnectionFactory
	LDAP schema definition for Java object storage
	Attribute definitions
	objectClass definitions

	JMX (Java Management Extensions) interface
	Introduction to MQe JMX
	JMX architecture
	Instrumenting your MQe resources as JMX MBeans
	Typographical conventions in this JMX documentation

	Setting up the MQe JMX interface
	Enabling MQe applications for JMX managment
	Accessing MQe MBeans via the MBeanServer
	ObjectName
	Useful MBeanServer methods
	Data types

	Divergence from MQe Administration Interface
	Messaging operations
	Store and Forward queues
	Programmatic interface versus user interface terminology

	Error handling
	Notifications
	MQeAliasNotification
	AttributeChangeNotification
	Using notifications

	Other Issues
	Setting attributes of array type
	Alias MBeans

	Translation
	Related information on JMX

	Index

