
WebSphere MQ Everyplace V2.0.2

���

ii WebSphere MQ Everyplace V2.0.2

Contents

Designing your real application 1

Messaging 1

What are MQe messages? 1

MQeFields 6

Queues 8

What are MQe queues? 8

Queue names 8

Queue properties 9

Queue types 11

Queue persistent storage 13

Using queue aliases 13

MQe connection definitions 15

Queue manager operations 17

What is an MQe queue manager 17

The queue manager life cycle 18

Creating queue managers 18

Starting queue managers 24

Stopping queue managers 33

Deleting queue managers 34

Messaging life cycle 36

Messaging operations 39

Queue ordering 42

Servlet 46

Message delivery 49

Asynchronous message delivery 49

Synchronous message delivery 50

Assured and non-assured message delivery . . 50

Synchronous assured message delivery 51

Network topologies and message resolution . . . 58

Overview 58

Introduction 59

Local queue resolution 60

Remote queue resolution 63

Pushing store and forward queues 70

Home server queues 73

Via connections 76

Rerouting with queue manager aliases 79

MQe-MQ bridge message resolution 83

Security considerations 96

Resolution rules 96

Using aliases 98

Using queue aliases 98

Using queue manager aliases 98

Using adapters 101

Storage adapters 101

Communications adapters 102

How to write adapters 103

An example communications adapter 104

An example message store adapter 112

The WebSphere Everyplace Suite (WES)

communications adapter 116

Using rules 120

Queue manager rules 121

Transmission rules 125

Activating asynchronous remote queue

definitions 133

Queue rules 133

Bridge rules 139

Java Message Service (JMS) 139

Using JMS with MQe 139

Writing JMS programs 142

Restrictions in this version of MQe 148

Using Java Naming and Directory Interface

(JNDI) 149

Mapping JMS messages to MQe messages . . . 153

Errors and error handling 158

Error handling in Java 159

Error handling in C 159

Index 161

 iii

iv WebSphere MQ Everyplace V2.0.2

Designing your real application

Messaging

Overview of MQe messaging

The MQe programming model uses several entities, for example messages, queues, and queue managers,

that work together as a flexible toolkit. Each entity has a specific purpose and works together with other

entities to provide solutions for message topologies.

What are MQe messages?

Introduction to the use of MQe messages

Messages are collections of data sent by one application and intended for another application. MQe

messages contain application-defined content. When stored, they are held in a queue and such messages

may be moved across an MQe network.

MQe messages are a special type of MQeFields items, as described in “MQeFields” on page 6. Therefore,

you can use methods that are applicable to MQeFields with messages.

Therefore, messages are Fields objects with the addition of some special fields. Java™ provides a subclass

of MQeFields, MQeMsgObject which provides methods to manage these fields. The C code base does not

provide such a subclass. Instead, there are a number of mqeFieldsHelper_operation functions. The

following fields form the Unique ID of an MQe message:

v In Java, the timestamp, generated when the message is first created or, in C, when the message is first

put to a queue

v The name of the queue manager, to which the message is first put.

The Unique ID identifies a message within an MQe network provided all queue managers within the

MQe network are named uniquely. However, MQe does not check or enforce the uniqueness of queue

manager names.

In Java, the message is created when an instance of MQeMsgObject is created. In C, the Message is

″created″, that is UniqueID fields are added, when the message is put to a queue.

The mqeMsg_getMsgUIDFields()method or mqeFieldsHelpers_getMsgUidFields() function accesses the

UniqueID of a message, for example:

Java code

C code

rc = mqeFieldsHelpers_getMsgUidFields(hMgsObj,

 &exceptBlock,&hUIDFields);

MQe adds property related information to a message (and subsequently removes it) in order to

implement messaging and queuing operations. When sending a message between queue managers, you

can add resend information to indicate that data is being retransmitted.

Typical application-based messages have additional properties in accordance with their purpose. Some of

these additional properties are generic and common to many applications, such as the name of the

reply-to queue manager.

 1

Message properties

Table of MQe message properties

MQe supports the following message properties:

 Table 1. Message properties

Property name Java type C type Description

Action int MQEINT32 Used by administration to indicate actions such as

inquire, create, and delete

Correlation ID byte[] MQEBYTE[] Byte string typically used to correlate a reply with

the original message

Errors MQeFields MQeFieldsHndl Used by administration to return error information

Expire time int or long MQEINT32 or

MQEINT64

Time after which the message can be deleted (even

if it is not delivered)

Lock ID long MQEINT64 The key necessary to unlock a message

Message ID byte[] MQEBYTE[] A unique identifier for a message

Originating queue

manager

string MQeStringHndl The name of the queue manager that sent the

message

Parameters MQeFields MQeFieldsHndl Used by administration to pass administration

details

Priority byte MQEBYTE Relative order of priority for message transmission

Reason string MQeStringHndl Used by administration to return error information

Reply-to queue string MQeStringHndl Name of the queue to which a message reply

should be addressed

Reply-to queue manager string MQeStringHndl Name of the queue manager to which a message

reply should be addressed

Resend boolean MQEBOOL Indicates that the message is a resend of a previous

message

Return code byte MQEBYTE Used by administration to return the status of an

administration operation

Style byte MQEBYTE Distinguishes commands from request/reply for

example

Wrap message byte[] MQEBYTE[] Message wrapped to ensure data protection

Symbolic names:

Table of symbolic names corresponding to MQe message properties

 The following table lists the symbolic names corresponding to the MQe message properties:

 Table 2. Symbolic names that correspond to message property names

Property name Java constant C constant

Action MQeAdminMsg.Admin_Action MQE_ADMIN_ACTION

Correlation ID MQe.Msg_CorrelID MQE_MSG_CORRELID

Errors MQeAdminMsg.Admin_Errors MQE_ADMIN_ERRORS

Expire time MQe.Msg_ExpireTime MQE_MSG_EXPIRETIME

Lock ID MQe.Msg_LockID MQE_MSG_LOCKID

Message ID MQe.Msg_MsgID MQE_MSG_MSGID

2 WebSphere MQ Everyplace V2.0.2

Table 2. Symbolic names that correspond to message property names (continued)

Property name Java constant C constant

Originating queue

manager

MQe.Msg_OriginQMgr MQE_MSG_ORIGIN_QMGR

Parameters MQeAdminMsg.Admin_Params MQE_ADMIN_PARAMS

Priority MQe.Priority MQE_MSG_PRIORITY

Reason MQeAdminMsg.Admin_Reason MQE_ADMIN_REASON

Reply-to-queue MQe.Msg_ReplyToQ MQE_MSG_REPLYTO_Q

Reply-to queue

manager

MQe.Msg_ReplyToQMgr MQE_MSG_REPLYTO_QMGR

Resend MQe.Msg_Resend MQE_MSG_RESEND

Return code MQeAdminMsg.Admin_RC MQE_ADMIN_RC

Style MQe.Msg_Style MQE_MSG_STYLE

Wrap message MQe.Msg_WrapMsg MQE_MSG_WRAPMSG

Examples:

Message Properties - Examples

 In all cases, a defined constant allows the property name to be carried in a single byte. For example,

priority (if present) affects the order in which messages are transmitted, correlation ID triggers indexing

of a queue for fast retrieval of information, expire time triggers the expiry of the message, and so on.

Also, the default message dump command minimizes the size of the generated byte string for more

efficient message storage and transmission.

The MQe Message ID and Correlation ID allow the application to provide an identity for a message.

These are also used in interactions with the rest of the MQ family:

Java

MQeMsgObject msgObj = new MQeMsgObject;

msgObj.putArrayOfByte(MQe.Msg_ID, MQe.asciiToByte("1234"));

C

rc = mqeFields_putArrayOfByte(hMsg,&exceptBlock,

 MQE_MSG_MSGID,pByteArray,sizeByteArray);

Priority contains message priority values. Message priority is defined as in other members of the MQ

family. It ranges from 9 (highest) to 0 (lowest):

Java

MQeMsgObject msgObj = new MQeMsgObject();

msgObj.putByte(MQe.Msg_Priority, (byte)8);

C

rc = mqeFields_putByte(hsg,&exceptBlock, MQE_MSG_PRIORITY, (MQEBYTE)8);

Applications can create fields for their own data within messages:

Java

MQeMsgObject msgObj = new MQeMsgObject();

msgObj.putAscii("PartNo", "Z301");

msgObj.putAscii("Colour", "Blue");

msgObj.putInt("Size", 350);

C

Designing your real application 3

MQeFieldsHndl hPartMsg;

MQeStringHndl hSize_FieldLabel;

rc = mqeFields_new(&exceptBlock,&hPartMsg);

rc = mqeString_newUtf8(&exceptBlock,

 &hSize_FieldLabel,"Size");

rc = mqeFields_putInt32(hPartMsg,

 &exceptBlock,hSize_FieldLabel,350);

The priority of the message is used, in part, to control the order in which messages are removed from the

queue. If the message does not specify any, then the queue default priority is used . This, unless changed,

is 4. However, the application must interpret the different levels of priority.

In Java, you can extend the MQeMsgObject to include some methods that assist in creating messages, as

shown in the following example:

package messages.order;

import com.ibm.mqe.*;

/*** This class defines the Order Request format */

public class OrderRequestMsg extends MQeMsgObject

{

 public OrderRequestMsg() throws Exception

 {

 }

 /*** This method sets the client number */

 public void setClientNo(long aClientNo) throws Exception

 {

 putLong("ClientNo", aClientNo);

 }

 /*** This method returns the client number */

 public long getClientNo() throws Exception

 {

 return getLong("ClientNo");

 }

To find out the length of a message, you can enumerate on the message as each data type has methods

for getting its length.

Message filters

Introduction to MQe message filters

Filters allow MQe to perform powerful message searches. Most of the major queue manager operations

support the use of filters. You can create filters using MQeFields.

Using a filter, for example in a getMessage() call, causes an application to return the first available

message that contains the same fields and values as the filter. The following examples create a filter that

obtains the first message with a message id of ″1234″:

 Java

MQeFields filter = new MQeFields();

filter.putArrayOfByte(MQe.Msg_MsgID,

 MQe.AsciiToByte("1234"));

C rc = mqeFields_putArrayOfByte(hMsg, &exceptBlock, MQE_MSG_MSGID, pByteArray,

sizeByteArray);

You can use this filter as an input parameter to various API calls, for example getMessage.

4 WebSphere MQ Everyplace V2.0.2

Message expiry

Overview of the expiry of messages in queues

Queues can be defined with an expiry interval. If a message has remained on a queue for a period of

time longer than this interval then the message is automatically deleted. When a message is deleted, a

queue rule is called. This rule cannot affect the deletion of the message, but it does provide an

opportunity to create a copy of the message.

Messages can also have an expiry interval that overrides the queue expiry interval. You can define this by

adding a C MQE_MSG_EXPIRETIME or Java MQe.Msg_ExpireTime field to the message. The expiry time is

either relative (expire 2 days after the message was created), or absolute (expire on November 25th 2000,

at 08:00 hours). Relative expiry times are fields of type Int or MQEINT32, and absolute expiry times are

fields of type Long or MQEINT64.

In the example below, the message expires 60 seconds after it is created (60000 milliseconds = 60

seconds).

/* create a new message */

MQeMsgObject msgObj = new MQeMsgObject();

msgObj.putAscii("MsgData", getMsgData());

/* expiry time of sixty seconds after message was created */

msgObj.putInt(MQe.Msg_ExpireTime, 60000);

In the example below, the message expires on 15th May 2001, at 15:25 hours.

/* create a new message */

MQeMsgObject msgObj = new MQeMsgObject();

msgObj.putAscii("MsgData", getMsgData());

/* create a Date object for 15th May 2001, 15:25 hours */

Calendar calendar = Calendar.getInstance();

calendar.set(2001, 04, 15, 15, 25);

Date expiryTime = calendar.getTime();

/* add expiry time to message */

msgObj.putLong(MQe.Msg_ExpireTime, expiryTime.getTime());

/* put message onto queue */

qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

To set a relative expiry time use the following on a message handle:

mqeFields_putInt32(pErrorBlock, hMsg, relativeTime);

To set an absolute expiry time use:

mqeFields_putInt64(pErrorBlock,hMsg, absoluteTime);

All Times are in milliseconds

Checking for expired messages:

Explanation of when MQe checks for expired messages

 A message is checked for expiry when:

It is added to a queue

Expiry can occur when a message is added from the local API, pulled down via a Home Server

Queue, or pushed to a queue.

It is removed from a queue

Expiry can occur when a message can be removed from the local API, or when a message is

pulled remotely.

Designing your real application 5

A queue is activated

When a queue is activated, a reference to the queue is created in memory. Any message that has

expired is removed. The state of the message is irrelevant to this operation.

A queue is deleted

If an admin message arrives to delete a queue, the queue must be empty first. Therefore, before

this check is done, any expired messages are removed from the queue. The state of the message is

irrelevant to this operation.

A queue is checked for size

If an admin message arrives to inquire on the size of a queue, the queue is first purged of admin

messages.

You can add a queue rule to notify you when messages expire. However, in a certain situation between

two queue managers, a message may seem to expire twice. This is not because the message has been

duplicated, but is outlined in the following paragraph.

Assume that an asynchronous queue has a message on it due to expire at 10:00 1st Jan 2005. All messages

on such queues are transmitted using a 2 stage process. This process is equivalent to a putMessage and

confirmPutMessage pair of operations. Suppose that the first transmission stage occurs at 09:55. A

reference to the message appears on the remote queue manager. However, it is not yet available to an

application on that queue manager. Then, if the network fails until 10:05, the expiry time of the message

is missed. Therefore, the message expires on the remote queue and the queue expiry rule gets fired. Also,

in due course, the queue expiry rule gets fired on the destination queue manager.

Assurance of expiry:

Explains how to ensure message expiry

 The expiry time can be calculated to the millisecond. For correct operation the clocks of the machines

running the queue managers must be accurately aligned. Failure to do this within accuracy determined

by your choice of expiry times causes messages to appear active on one queue manager, while they have

expired on others. Ensure that you use the correct field type for the expiry value. An int (32 bit) field is

used for relative expiry times, and a long (64 bit) field is used for absolute times. The field name is the

same in both cases.

MQeFields

Overview of the MQeFields container structure

MQeFields is a container data structure widely used in MQe. You can put various types of data into the

container. It is particularly useful for representing data that needs to be transported, such as messages.

The following code creates an MQeFields structure:

 Java code

 /* create an MQeFields object */

 MQeFields fields = new MQeFields();

C code

MQeFieldsHndl hFields;

 rc = mqeFields_new(&exceptBlock, &hFields);

MQeFields contains a collection of orderless fields. Each field consists of a triplet of entry name, entry

value, and entry value type. MQeFields forms the basis of all MQe messages.

Use the entity name to retrieve and update values. It is good practice to keep names short, because the

names are included with the data when the MQeFields item is transmitted.

The name must:

6 WebSphere MQ Everyplace V2.0.2

v Be at least 1 character long

v Conform to the ASCII character set (characters with values 20 < value < 128)

v Exclude any of the characters { } [] # () : ; , ’ ″ =

v Be unique within MQeFields

Storage and retrieval of values in MQeFields

Examples of storing values in an MQeFields item, and retrieving values from an MQeFields item

The following example shows how to store values in an MQeFields item:

Java code

/* Store integer values into a fields object */

 fields.putInt("Int1", 1234);

 fields.putInt("Int2", 5678);

 fields.putInt("Int3", 0);

C code

MQeStringHndl hFieldName;

 rc = mqeString_newChar8(&errStruct, &hFieldName, "A Field Name");

 rc = mqeFields_putInt32(hNewFields,&errStruct,hFieldName,1234);

The following example shows how to retrieve values from an MQeFields item:

 Java code

/* Retrieve an integer value from a fields object */

 int Int2 = fields.getInt("Int2");

C code

MQEINT32 value;

 rc = mqeFields_getInt32(hNewFields, &errStruct, &value, hFieldName);

MQe provides methods for storing and retrieving the following data types:

v A fixed length array is handled using the putArrayOftype and getArrayOftype methods, where type can

be Byte, Short, Int, Long, Float, or Double.

v The ability to store variable length arrays is possible, but has been deprecated in this release. You can

access these arrays using the Java puttypeArray and gettypeArray calls or the C puttype calls.

v The Java code base has a slightly special form of operations for Float and Double types. This provides

compatibility with the MicroEdition. Floats are put using an Int representation and Doubles are put

using a Long representation. Use the Float.floatToIntBits() and Double.doubleToLongBits() to

perform the conversion. However, this is not required on the C API.

Embedding MQeFields items

Description of how to embed an MQeFields item within another MQeFields item

An MQeFields item can be embedded within another MQeFields item by using the putFields and

getFields methods.

The contents of an MQeFields item can be dumped in one of the following forms:

binary Binary form is normally used to send an MQeFields or MQeMsgObject object through the

network. The dump method converts the data to binary. This method returns a binary byte array

containing an encoded form of the contents of the item.

Note: This is not Java serialization.

When a fixed length array is dumped and the array does not contain any elements (its length is

zero), its value is restored as null.

Designing your real application 7

encoded string (Java only)

The string form uses the dumpToString method of the MQeFields item. It requires two

parameters, a template and a title. The template is a pattern string showing how the MQeFields

item data should be translated, as shown in the following example:

"(#0)#1=#2\r\n"

where

#0 is the data type (ascii or short, for example)

#1 is the field name

#2 is the string representation of the value

Any other characters are copied unchanged to the output string. The method successfully dumps

embedded MQeFields objects to a string, but due to restrictions, the embedded MQeFields data

may not be restored using the restoreFromString method.

Queues

Overview of MQe queues

What are MQe queues?

Introduction to MQe queues

MQe queues store messages. The queues are not directly visible to an application and all interactions

with the queues take place through queue managers. Each queue manager can have queues that it

manages and owns. These queues are known as local queues. MQe also allows applications to access

messages on queues that belong to another queue manager. These queues are known as remote queues.

Similar sets of operations are available on both local and remote queues, with the exception of defining

message listeners. Refer to “Message listeners” on page 44 for more information. The Queue types section

provides more information on the different types of queue you can have.

Messages are held in the queue’s persistent store. A queue accesses its persistent store through a queue

store adapter. These adapters are interfaces between MQe and hardware devices, such as disks or

networks, or software stores such as a database. Adapters are designed to be pluggable components,

allowing the protocols available to talk to the device to be easily changed.

Queues may have characteristics, such as authentication, compression and encryption. These

characteristics are used when a message object is stored on a queue.

Queue names

Constraints of MQe queue names

MQe queue names can contain the following characters:

v Numerics 0 to 9

v Lower case a to z

v Upper case A to Z

v Underscore _

v Period .

v Percent %

There are no inherent name length limitations in MQe.

Queues are configured using administration messages.

8 WebSphere MQ Everyplace V2.0.2

Queue properties

Table of MQe queue properties

Queue properties are shown in the following table. Not all the properties shown apply to all the queue

types:

 Field Name

provided as a static

string

C Static String -

MQe_Queue_Constants.h Explanation

Class to be used

for MQeField

value

Static string

value for

field name

Admin_Class Queue class String admtype

Admin_Name ASCII queue name String admname

Queue_Active MQE_QUEUE_ACTIVE Queue in

active/inactive state

boolean qact

Queue_AttRule Rule class controlling

security operations

String qar

Queue

_Authenticator

MQE_QUEUE_AUTHENTICATOR Authenticator class String qau

Queue_BridgeName Owning MQ bridge

name - bridge only

String q-mq-bridge

Queue_Client-

Connection

Client connection

name - bridge only

String q-mq-client-
con

Queue_CloseIdle Close the connection

to the remote queue

manager once all

messages have been

transmitted

boolean qcwi

Queue_CreationDate MQE_QUEUE_CREATIONDATE Date the queue was

created

long qcd

Queue_Compressor MQE_QUEUE_COMPRESSOR Compressor class String qco

Queue_Cryptor MQE_QUEUE_CRYPTOR Cryptor class String qcr

Queue_CurrentSize MQE_QUEUE_CURRENTSIZE Number of messages

on the queue

int qcs

Queue_Description MQE_QUEUE_DESCRIPTION Unicode description String qd

Queue_Expiry MQE_QUEUE_EXPIRY Expiry time for

messages

qe

Queue_FileDesc MQE_QUEUE_FILEDESC File descriptor,

specifies the type of

message store

String qfd

Queue_MaxIdletime Maximum time to

keep a connection

idle - bridge only

int q-mq-max-
idle-time

Queue_MaxMsgSize MQE_QUEUE_MAXMSGSIZE

MQE_QUEUE_NOLIMIT

Maximum length of

messages allowed on

the queue

int qms

Queue_MaxQSize MQE_QUEUE_MAXQSIZE

MQE_QUEUE_NOLIMIT

Maximum number of

messages allowed

int qmqs

Queue_Mode MQE_QUEUE_MODE

MQE_QUEUE_SYNCHRONOUS

MQE_QUEUE_ASYNCHRONOUS

Synchronous or

asynchronous

byte

Queue_Synchron-

ous

Queue_Asynchro-

nous

qm

Designing your real application 9

Field Name

provided as a static

string

C Static String -

MQe_Queue_Constants.h Explanation

Class to be used

for MQeField

value

Static string

value for

field name

Queue_MQQMgr MQ queue manager

proxy - bridge only

String q-mq-q-mgr

Queue_Priority MQE_QUEUE_PRIORITY Priority to be used

for messages (unless

overridden by a

message value)

byte qp

Queue_QAlias-

NameList

MQE_QUEUE_QALIASNAMELIST Alterantive names

for the queue

String[] qanl

Queue_QMgrName MQE_QUEUE_QMGRNAME Queue manager

owning the real

queue

String qqmn

Queue_QMgr-

NameList

MQE_QUEUE_QMGRNAMELIST -

for admin only, C does not support

store queues

Queue manager

targets - used in

store queues

String[] - qqmnl

Queue_Remote-

QName

Remote MQ field

name - bridge only

String q-mq-
remote-q

Queue_Rule Rule class for queue

properties

String qr

Queue_QTimer-

Interval

Delay before

processing pending

messages on Home

Server Queue - use

Rule for trigger

transmission instead

*

long qti

Queue_Target-

Registry

MQE_QUEUE_TARGETREGISTRY Target registry tupe String[] possible

values:

Queue_Registry-

None

Queue_Registry-

QMgr

Queue_Registry-

Queue

qtr

Queue_Transporter MQE_QUEUE_TRANSPORTER

MQE_QUEUE_DEFAULT-

TRANSPORTER

Transporter class String - use:

Queue_Default-

Transporter

qtc

Queue_Transporter-

XOR

Transporter to use

XOR compression

boolean qtxor

Queue_Transformer Transformer class String q-mq-
transformer

* If a timer interval is used on the HomeServer queue if an error occurs, the application never knows the

thread has stopped, and therefore cannot do anything about it. Instead, the timer interval should be set to

zero and a rule on the queue manager used to loop and explicitly call the triggerTransmission(). It is wise

not to set the loop too tight but to set the timer on the loop to a sensible value so messages are still

sent/retrieved without extraneous CPU being used.

10 WebSphere MQ Everyplace V2.0.2

Queue types

Introduction to MQe queue types

There are several different types of queues that you can use in an MQe environment.

Local queue

The simplest type of queue is a local queue. This type of queue is local to, and owned by, a specific

queue manager. It is the final destination for all messages. Applications on the owning queue manager

can interact directly with the queue to store messages in a safe and secure way, excluding hardware

failures or loss of the device.

You can use local queues either online or offline, either connected or not connected to a network. Queues

can also have security attributes set, in a very similar manner to protecting messages with attributes.

Access to messages on local queues is always synchronous, which means that the application waits until

MQe returns after completing the operation, for example a put, get, or browse operation.

The queue owns access and security and may allow a remote queue manager to use these characteristics,

when connected to a network. This allows others to send or receive messages to the queue.

Remote queue

A remote queue is a local queue belonging to another queue manager. This remote queue definition

exchanges messages with the remote local queue.

MQe can establish remote queues automatically. If you attempt to access a queue on another queue

manager, for example to send a message to that queue, MQe looks for a remote queue definition. If one

exists it is used. If not, queue discovery occurs.

Note: The concept of queue discovery does not apply to the C code base.

MQe discovers the authentication, cryptography, and compression characteristics of the real queue and

creates a remote queue definition. Such queue discovery depends upon the target being accessible. If the

target is not accessible, a remote definition must be supplied in some other way. When queue discovery

occurs, MQe sets the access mode to synchronous, because the queue is now known to be synchronously

available.

Synchronous remote queues are queues that can be accessed only when connected to a network that

communicates with the owning queue manager. If the network is not established, the operations return

an error. The owning queue controls the access permissions and security requirements needed to access

the queue. It is the application’s responsibility to handle any errors or retries when sending or receiving

messages, because, in this case, MQe is no longer responsible for once and once-only assured delivery.

Asynchronous remote queues are queues used to send messages to remote queues and can store messages

pending transmission. They cannot remotely retrieve messages. If the network connection is established,

messages are sent to the owning queue manager and queue. However, if the network is not connected,

messages are stored locally until there is a network connection and then the messages are transmitted.

This allows applications to operate on the queue when the device is offline. As a result, these queues

temporarily store messages at the sending queue manager while awaiting transmission.

Store-and-forward queue

Note: Store-and-forward queues are not implemented in the C code base.

Designing your real application 11

A store-and-forward queue stores messages on behalf of one or more remote queue managers until they

are ready to receive them. This can be configured to perform either of the following:

v Push messages either to the target queue manager or to another queue manager between the sending

and the target queue managers.

v Wait for the target queue manager to pull messages destined for it.

A store-and-forward queue stores messages associated with one or more target queue manager

destinations. Messages addressed to a specific or target queue manager are placed on the relevant

store-and-forward queue. The store-and-forward queue can optionally have a forwarding queue manager

name set. If this name is set, the queue attempts to send all its messages to that named queue manager. If

the name is not set, the queue just holds the messages.

Note: A store-and-forward queue and a home server queue should not have the same target queue

manager. A store-and-forward queue with a queue QueueManagerName that is not the same as its host

QueueManagerName, attempts to push messages to the remote queue manager. If that remote queue

manager has a home server queue, it may attempt to pull the same message simultaneously, causing the

message to lock.

Store-and-forward queues can hold messages for many target queue managers, or there may be one

store-and-forward queue for each target queue manager.

This type of queue is normally, but not necessarily, defined on a server or gateway in Java only. Multiple

store-and-forward queues can exist on a single queue manager, but the target names must not be

duplicated. The contents of a store-and-forward queue are not available to application programs.

Likewise a message sending application is quite unaware of the presence or role of store-and-forward

queues in message transmission.

Dead-letter queue

MQe has a similar dead-letter queue concept to MQ. Such queues store messages that cannot be

delivered. However, there are important differences in the manner in which they are used.

v In MQ, if a message is being moved from queue manager A to queue manager B, then if the target

queue on queue manager B cannot be found, the message can be placed on the receiving queue manager’s

(B’s) dead-letter queue.

v In MQe, if home-server queue on a client pulls a message from a server and is not able to deliver the

message to a local queue and the client has a dead letter queue, the message will be placed on the

client’s dead letter queue.

Note: In C, the Dead letter queue is just a local queue with a specific name.

The use of dead-letter queues with an MQ bridge needs special consideration. For more information,

see “MQ bridge queue” on page 13.

Administration queue

The administration queue is a specialized queue that processes administration messages.

Messages put to the administration queue are processed internally. Because of this applications cannot get

messages directly from the administration queue. Only one message is processed at a time, other

messages that arrive while a message is being processed are queued up and processed in the sequence in

which they arrive.

12 WebSphere MQ Everyplace V2.0.2

Home-server queue

This type of queue usually resides on a client and points to a store-and-forward queue on a server known

as the home-server. The home-server queue pulls messages from the home-server store-and-forward queue

when the client connects on the network.

In Java, home-server queues normally have a polling interval that causes them to check for any pending

messages on the server while the network is connected.

When this queue pulls a message from the server, it uses assured message delivery to put the message to

the local queue manager. The message is then stored on the target queue.

Home-server queues have an important role in enabling clients to receive messages over client-server

connections.

MQ bridge queue

Note: The C code base does not support MQ bridge queues.

This type of queue is always defined on an MQe gateway queue manager and provides a path from the

MQe environment to the MQ environment. The MQ bridge queue is a remote queue definition that refers

to a queue residing on an MQ queue manager.

Applications can use put, get, and browse operations on this type of queue, as if it were a local MQe

queue.

Queue persistent storage

Overview of MQe message stores

Local queues and asynchronous remote queues store messages and therefore have properties to determine

how and where the messages are stored.

The message store determines how the messages are mapped to the storage medium. The C and Java

versions of MQe support a default message store, allowing long file names. The Java version of MQe has

two additional message stores, MQeShortFilenameMessageStore that ensures the file name does not exceed

eight characters, and the MQe4690ShortFilenameMessageStore that supports the default file system on a

4690. A storage adapter provides the message store access to the storage medium, the Java and C versions

of MQe provide disk adapters with the Java version also providinges a case insensitive adapter and a

memory adapter.

The backing store used by a queue can be changed using an MQe administration message. Changing the

backing store is not allowed while the queue is active or contains messages. If the backing store used by

the queue allows the messages to be recovered in the event of a system failure, then this allows MQe to

assure the delivery of messages.

Using queue aliases

Introduces the use of queue aliases

Aliases can be assigned for MQe queues to provide a level of indirection between the application and the

real queues. Hence the attributes of a queue that an alias relates to can be changed without the

application needing to change. For instance, a queue can be given a number of aliases and messages sent

to any of these names will be accepted by the queue.

Designing your real application 13

Examples of queue aliasing

Illustrates some of the ways in which aliasing can be used with queues

The following examples illustrate some of the ways in which aliasing can be used with queues:

Merging applications:

Using queue aliasing to merge applications

 Suppose you have the following configuration:

v A client application that puts data to queue Q1

v A server application that takes data from Q1 for processing

v A client application that puts data to queue Q2

v A server application which takes data from Q2 for processing

Some time later the two server applications are merged into one application supporting requests from

both the client applications. It may now be appropriate for the two queues to be changed to one queue.

For example, you may delete Q2, and add an alias of the Q1 queue, calling it Q2. Messages from the client

application that previously used Q2 are automatically sent to Q1.

Upgrading applications:

Using queue aliasing to upgrade applications

 Suppose you have the following configuration:

v A queue Q1

v An application that gets messages from Q1

v An application that puts messages to Q1

You then develop a new version of the application that gets the messages. You can make the new

application work with a queue called Q2. You can define a queue called Q2 and use it to exercise the new

application. When you want it to go live, you let the old version clear all traffic off the Q1 queue, and

then create an alias of Q2 called Q1. The application that puts to Q1 will still work, but the messages will

end up on Q2.

Using different transfer modes to a single queue:

Using different transfer modes to a single queue, using queue aliasing

 Suppose you have a queue MY_Q_ASYNC on queue manager MQE1. Messages are passed to MY_Q_ASYNC by a

different queue manager MQE2, using a remote queue definition that is defined as an asynchronous queue.

Now suppose your application periodically wants to get messages in a synchronous manner from the

MY_Q_ASYNC queue.

The recommended way to achieve this is to add an alias to the MY_Q_ASYNC queue, perhaps called

MY_Q_SYNC. Then define a remote queue definition on your MQE2 queue manager, that references the

MY_Q_SYNC queue. This provides you with two remote queue definitions. If you use the MY_Q_ASYNC

definition, the messages are transported asynchronously. If you use the MY_Q_SYNC definition, synchronous

message transfer is used.

14 WebSphere MQ Everyplace V2.0.2

MQe connection definitions

Explains how logical connections between queue managers are established

MQe supports a method of establishing logical connections between queue managers, in order to send or

receive data.

MQe clients and servers communicate over connections called client/server channels.

Client/server channels have the following attributes:

v They are dynamic, that is created on demand. This differentiates them from MQ connections which

have to be explicitly created.

v You can only establish the connection from the client-side.

v A client can connect to many servers, with each connection using a separate channel.

v The server-side queue manager can accept many connections simultaneously, from a multitude of

different clients, using a listener for each protocol.

v They work through a Firewall, if the server-side of the connection is behind the Firewall. However, this

depends on the configuration of the Firewall.

v They are unidirectional and support the full range of functions provided by MQe, including both

synchronous and asynchronous messaging.

Note: Unidirectional means that the client can send data to, or request data from the server, but the

server-side cannot initiate requests of the client.

Standard connections, used for the client/server connection style, are unidirectional, but depend on a

listener at the server, as servers cannot initiate data transfer. The client initiates the connection request

and the server responds. A server can usually handle multiple incoming requests from clients. Over a

standard connection, the client has access to resources on the server. If an application on the server needs

synchronous access to resources on the client, a second connection is required where the roles are

reversed. However, because standard connections are themselves bidirectional, messages destined for a

client from its server’s transmission queue, are delivered to it over the standard (client/server) connection

that it initiated.

Figure 1. Two modes of transfer to a single queue

Designing your real application 15

A client can be a client to multiple servers simultaneously. The client/server connection style is generally

suited for use through Firewalls, because the target of the incoming connection is normally identified as

being acceptable to the Firewall.

Note: Supposing there are two server queue managers, SQM1 and SQM2. SQM2 has listener address host

2: 8082. Also, suppose that SQM1 has a connection to SQM2 and a listener addresss, host 1:8081. If you

create a connection definition on a client queue manager, named SQM2 with address host 1: 8081, this

transports commands for SQM2 to SQM1, which then transports them to SQM2. Avoid this construct, as

it is inefficient.

Because of the way channel security works, when a specific attribute rule is specified for a target queue,

it forces the local queue manager to create an instance of the same attribute rule,

examples.rules.AttributeRule and com.ibm.mqe.MQeAttributeRule are treated as the same rule. If this is

not a desirable behaviour, you can specify a null rule for the target queue. In this case,

com.ibm.mqe.MQeAttributeDefaultRule takes effect.

Connections can have various attributes or characteristics, such as authentication, cryptography,

compression, or the transmission protocol to use. Different connections can use different characteristics.

Each connection can have its own value set for each of the following attributes:

Authenticator

This attribute causes authentication to be performed. This is a security function that challenges the

putting application environment or user to prove their identity. It has a value of either NULL or an

authenticator that can perform user or connection authentication.

Cryptor

This attribute causes encryption and decryption to be performed on messages passing through the

channel. This is a security function that encodes the messages during transit so that you cannot read

them without the decoding information. Either null or a cryptor that can perform encryption and

decryption.

 The simplest type of cryptor is MQeXorCryptor, which encrypts the data being sent by performing an

exclusive-OR of the data. This encryption is not secure, but it modifies the data so that it cannot be

viewed. In contrast, MQe3DESCryptor implements triple DES, a symmetric-key encryption method.

Channel

The class providing the transport services.

Compressor

This attribute causes compression and decompression to be performed on messages passing through

the channel. This attempts to reduce the size of messages while they are being transmitted and

stored. Either null or a compressor that can perform data compression and decompression. The

simplest type of compressor is the MQeRleCompressor, which compresses the data by replacing

repeated characters with a count.

Destination

The server and port number for the connection. The target for this connection, for example

SERVER.XYZ.COM

 Typically, authentication only occurs when setting up the connection. All flows normally use compressors

and cryptors.

16 WebSphere MQ Everyplace V2.0.2

You can establish MQe connections using a variety of protocols allowing them to connect in a number of

different ways, for example:

v Permanent connection, for example a LAN, or leased line

v Dial out connection, for example using a standard modem to connect to an Internet service provider

(ISP)

v Dial out and answer connection, using a CellPhone, or ScreenPhone for example

MQe implements the communications protocols as a set of adapters, with one adapter for each of the

supported protocols. This enables you to add new protocols.

Queue manager operations

Explanation of the messaging operations that you can perform on a queue manager

This topic explains in detail the messaging operations that you can perform on a queue manager. It

describes the services, functions, and uses of queue managers under the following headings:

What is an MQe queue manager

Introduction to the function and use of queue managers

The MQe queue manager is the focal point of the MQe system. It provides:

v A central point of access to a messaging and queueing network for MQe applications

v Optional client-side queuing

v Optional administration functions

v Once and once-only assured delivery of messages

v Recovery from failure conditions

v Extendable rules-based behavior

Unlike base MQ, MQe has a single queue manager type. However, you can program MQe queue

managers to act as traditional clients or servers. You can also customize queue manager behavior using

rules. The MQe queue manager is embedded within user written programs and these programs can run

on any MQe supported device or platform.

Authenticator

Compressor

Cryptor

Authenticator

Compressor

Cryptor

Communications
protocol

Figure 2. MQe connection

Designing your real application 17

You can configure queue managers in a number of different ways, the main types being client, server,

and gateway. You can also update the queue store of a queue manager using administration messages.

For more information on administration messages, refer to the MQe Configuration Guide.

Communication with other queue managers on the MQe messaging network can be synchronous or

asynchronous. If you want to use synchronous communications, the originator, and the target MQe queue

managers must both be available on the network. Asynchronous communication allows an MQe

application to send messages even when the remote queue manager is offline.

The queue manager life cycle

Overview of the life cycle of a queue manager

Typically, an application creates a new queue manager, configures it with a number of queues, and then

frees the queue manager. An application also opens an existing queue manager, starts it, carries out

messaging operations, and then stops. A further administration program can reopen the queue manager,

remove all of its queues, and then stop. The following diagram displays this information:

Creating queue managers

A queue manager requires at least the following:

v A registry

v A queue manager definition

v Local default queue definitions

Once these definitions are in place you can run the queue manager and use the administration interface

to perform further configuration, such as adding more queues.

Methods to create these initial objects are supplied in the MQeQueueManagerConfigure class.

The example install programs examples.install.SimpleCreateQM and examples.install.SimpleDeleteQM

use this class.

Queue manager names

MQe queue manager names can contain the following characters:

v Numerics 0 to 9

v Lower case a to z

Load
existing

Free

Start

Stop

Create
queue

manager

Delete
queue

manager

Queue
manager

non-existant

Queue
manager

exists in the
registry

Created Active

Figure 3. The queue manager life cycle

18 WebSphere MQ Everyplace V2.0.2

v Upper case A to Z

v Underscore _

v Period .

v Percent %

There are no inherent name length limitations in MQe.

Creating a queue manager - step by step

The basic steps required to create a queue manager are:

1. Create and activate an instance of MQeQueueManagerConfigure

2. Set queue manager properties and create the queue manager definition

3. Create definitions for the default queues

4. Close the MQeQueueManagerConfigure instance

Create and activate an instance of MQeQueueManagerConfigure:

 You create the MQeQueueManagerConfigure object by calling the mqeQueueManagerConfigure_new

method. Apart from the ExceptionBlock and the new MQeQueueManagerConfigure Handle, this method

takes two additional parameters.

The method of operation depends on these parameters. ″NULL″ can be passed for these parameters, in

which case mqeQueueManagerConfigure_activate is called immediately after

mqeQueueManagerConfigure_new. Alternatively startup parameters can be passed.

You can activate the MQeQueueManagerConfigure class in either of the following ways:

1. Call the empty constructor followed by activate():

try

{

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

 // initialize the parameters

 qmConfig = new MQeQueueManagerConfigure();

 qmConfig.activate(parms, "MsgLog:qmName\\Queues\\");

}

catch (Exception e)

{ ... }

2. Call the constructor with parameters:

try

{

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

 // initialize the parameters

 qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");

}

catch (Exception e)

{ ... }

The first parameter is an MQeFields object that contains initialization parameters for the queue manager.

These must contain at least the following:

v An embedded MQeFields object (Name) that contains the name of the queue manager.

Designing your real application 19

v An embedded MQeFields object, that contains the location of the local queue store as the registry type

(LocalRegType) and the registry directory name (DirName). If a base file registry is used these are the

only parameters that are required. If a private registry is used, a PIN and KeyRingPassword are also

required.

The directory name is stored as part of the queue manager definition and is used as a default value for

the queue store in any future queue definitions. The directory does not have to exist and will be created

when needed.

If you use an alias for any of the initialization parameters, or if you wish to use an alias to set the

connection attribute rule name, the aliases should be defined before activating

MQeQueueManagerConfigure .

 import com.ibm.mqe.*;

 import com.ibm.mqe.registry.*;

 import examples.queuemanager.MQeQueueManagerUtils;

 try

 {

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

 // initialize the parameters

 MQeFields qmgrFields = new MQeFields();

 MQeFields regFields = new MQeFields();

 // Queue manager name is needed

 qmgrFields.putAscii(MQeQueueManager.Name, "qmName");

 // Registry information

 regFields.putAscii(MQeRegistry.LocalRegType,

 "com.ibm.mqe.registry.MQeFileSession");

 regFields.putAscii(MQeRegistry.DirName, "qmname\\Registry");

 // add the embedded MQeFields objects

 parms.putFields(MQeQueueManager.QueueManager, qmgrFields);

 parms.putFields(MQeQueueManager.Registry, regFields);

 // activate the configure object

 qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");

 }

 catch (Exception e)

 { ... }

The example code includes creating an instance of MQeQueueManagerConfigure.

Set queue manager properties:

 When you have activated MQeQueueManagerConfigure, but before you create the queue manager

definition, you can set some or all of the following queue manager properties:

v You can add a description to the queue manager with mqeQueueManagerConfigure_setDescription()

v You can set a connection time-out value with mqeQueueManagerConfigure_setChannelTimeout()

v You can set the name of the connection attribute rule with

mqeQueueManagerConfigure_setChnlAttributeRuleName()

Call mqeQueueManagerConfigure_defineQueueManager() to create the queue manager definition. This

creates a registry definition for the queue manager that includes any of the properties that you set

previously.

 import com.ibm.mqe.*;

 import com.ibm.mqe.registry.*;

 import examples.queuemanager.MQeQueueManagerUtils;

 try

 {

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

20 WebSphere MQ Everyplace V2.0.2

// initialize the parameters

 ...

 // activate the configure object

 qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");

 qmConfig.setDescription("a test queue manager");

 qmConfig.setChnlAttributeRuleName("ChannelAttrRules");

 qmConfig.defineQueueManager();

 }

 catch (Exception e)

 { ... }

At this point you can call close() and free() MQeQueueManagerConfigure and run the queue manager,

however, it cannot do much because it has no queues. You cannot add queues using the administration

interface, because the queue manager does not have an administration queue to service the

administration messages.

The following sections show how to create queues and make the queue manager useful.

Create definitions for the default queues:

 MQeQueueManagerConfigure allows you to define the following four standard queues for the queue

manager:

defineDefaultAdminQueue()mqeQueueManagerConfigure_

This administration queue is needed to allow the queue manager to respond to administration

messages, for example to create new connection definitions and queues.

defineDefaultAdminReplyQueue()mqeQueueManagerConfigure_

This administration reply queue is a local queue, used by connections as the destination of reply

messages generated by administration.

defineDefaultDeadLetterQueue()mqeQueueManagerConfigure_

This dead letter queue can be used, depending on the rules in force, to store messages that

cannot be delivered to their correct destination.

defineDefaultSystemQueue()mqeQueueManagerConfigure_

This default local queue, SYSTEM.DEFAULT.LOCAL.QUEUE, has no special significance within

MQe itself, but it is useful when MQe is used with MQ messaging because it exists on every MQ

messaging queue manager.

All methods throw an exceptionreturn an error if the queue already exists.

 import com.ibm.mqe.*;

 import com.ibm.mqe.registry.*;

 import examples.queuemanager.MQeQueueManagerUtils;

 try

 {

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

 // initialize the parameters

 ...

 qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");

 qmConfig.setDescription("a test queue manager");

 qmconfig.defineDefaultAdminQueue();

 qmconfig.defineDefaultAdminReplyQueue();

 qmconfig.defineDefaultDeadLetterQueue();

 qmconfig.defineDefaultSystemQueue();

 }

 catch (Exception e)

 { ... }

Close the MQeQueueManagerConfigure instance:

Designing your real application 21

When you have defined the queue manager and the required queues, you can close()

MQeQueueManagerConfigure and run the queue manager.

The complete example looks like this:

 import com.ibm.mqe.*;

 import com.ibm.mqe.registry.*;

 import examples.queuemanager.MQeQueueManagerUtils;

 try

 {

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

 // initialize the parameters

 MQeFields qmgrFields = new MQeFields();

 MQeFields regFields = new MQeFields();

 // Queue manager name is needed

 qmgrFields.putAscii(MQeQueueManager.Name, "qmName");

 // Registry information

 regFields.putAscii(MQeRegistry.LocalRegType,

 "com.ibm.mqe.registry.MQeFileSession");

 regFields.putAscii(MQeRegistry.DirName, "qmname\\Registry");

 // add the embedded MQeFields objects

 parms.putFields(MQeQueueManager.QueueManager, qmgrFields);

 parms.putFields(MQeQueueManager.Registry, regFields);

 // activate the configure object

 qmConfig = new MQeQueueManagerConfigure(parms, "MsgLog:qmName\\Queues\\");

 qmConfig.setDescription("a test queue manager");

 qmConfig.setChnlAttributeRuleName("ChannelAttrRules");

 qmConfig.defineQueueManager();

 qmconfig.defineDefaultAdminQueue();

 qmconfig.defineDefaultAdminReplyQueue();

 qmconfig.defineDefaultDeadLetterQueue();

 qmconfig.defineDefaultSystemQueue();

 qmconfig.close();

 }

 catch (Exception e)

 { ... }

The registry definitions for the queue manager and the required queues are created immediately. The

queues are not created until they are activated.

Persistent configuration data

MQe queue managers, irrespective of their role within the MQe network, require some information to be

held in permanent storage. This is the responsibility of MQe. If there is additional information that must

persist between invocations of an application, this is the responsibility of the application.

Information held within the registry contains Queue Manager configuration details, for example:

v Information on where messages, queues, remote queue definitions, channel timeout, aliases, adapters,

and the message store are held and how to access them

v Connection definitions

v Security information

v Various bridge related objects

The following persistent information, useful to an application, is referred to in this manual as

environmental data:

v Registry information, class, path, storage adapter class, and registry type. This information is used to

locate an existing registry, allowing MQe to start an existing queue manager, or to create a new queue

manager registry.

v Class manager information, for example class and name.

22 WebSphere MQ Everyplace V2.0.2

v Queue manager type.

Creating simple queue managers

The simplest MQe queue manager is a queue manager that uses a registry based upon the internal

default values. The queue manager could be created without any queues, but its functionality would be

severely limited. The example we create contains four standard queues:

v Admin queue - so that administration can be performed

v Admin reply queue - a standard place to store replies from administration actions

v System default queue - a useful general purpose local queue

v Dead letter queue - a place for undeliverable messages

The simplest queue manager has no security and has a registry stored in the local file system. The steps

to achieve are:

v Create a registry on disk

v Create and start a queue manager using the registry

v Stop the queue manager

These actions are described for both the Java code base and the C code base, with example code for each.

The example Java code is shipped as examples.config.CreateQueueManager. For C example code, refer to

the HelloWorld compilation section and the transport-c file in the Broker example.

Creating a simple queue manager in Java:

 Registries are created in Java by using the class com.ibm.mqe.MQeQueueManagerConfigure. An instance

of this class is created, and activated by passing it some initialization parameters. The parameters are

supplied in the form of an MQeFields object. Within this MQeFields are contained two sub fields, one

holding information about the registry, and one holding information about the queue manager being

created. As we are creating a very simple queue manager, we only need to pass two parameters, the

queue manager name, in the queue manager parameters, and the registry location, in the registry

parameters. We can then use the MQeQueue ManagerConfigure to create the standard queues.

First, create three fields objects, one for the QueueManager parameters, one for the Registry parameters.

The third fields object, parms, is used to contain both the QueueManager and Registry fields objects.

MQeFields parms = new MQeFields();

MQeFields queueManagerParameters = new MQeFields();

MQeFields registryParameters = new MQeFields();

The QueueManager name needs to be set. Use the MQeQueueManager.Name as the Field Label constant.

queueManagerParameters.putAscii(MQeQueueManager.Name, queueManagerName);

The location of the persistent registry needs to be specified. Do this in the Registry Parameters field

object. Use the MQeRegistry.DirName as the Field Label constant.

registryParameters.putAscii(MQeRegistry.DirName, registryLocation);

The QueueManager and registry parameters can now be embedded in the main fields object.

parms.putFields(MQeQueueManager.QueueManager, queueManagerParameters);

parms.putFields(MQeQueueManager.Registry, registryParameters);

An instance of MQeQueueManagerConfigure can be created now. This needs the parameters fields object,

plus a String identifying the details of the queue store to use.

MQeQueueManagerConfigure qmConfig =

new MQeQueueManagerConfigure(parms, queueStore);

Designing your real application 23

The four common types of queues can now be created via four convenience methods as follows:

qmConfig.defineQueueManager();

qmConfig.defineDefaultSystemQueue();

qmConfig.defineDefaultDeadLetterQueue();

qmConfig.defineDefaultAdminReplyQueue();

qmConfig.defineDefaultAdminQueue();

Finally the MQeQueueManagerConfigure object can be closed.

qmConfig.close();

Creating a simple queue manager in C:

 Stage 1: Create the admin components

All local administration actions can be accomplished using the MQeAdministrator. This allows

you to create new QueueManagers and new Queues, and perform many other actions. For all

calls, a pointer to the exception block is required, along with a pointer for the QueueManager

handle.

Stage 2: Create a QueueManager

To create a QueueManager, two parameters structures are required. One contains the parameters

for the QueueManager, the other for the registry. In this simple case the default values are

suitable, with the addition of the location of the registry and queue store.

 The call to the administrator will create the QueueManager. Note that the QueueManager name is

passed into the call. A QueueManager Hndl is returned.

 if (MQERETURN_OK == rc) {

 MQeQueueManagerParms qmParams = QMGR_INIT_VAL;

 MQeRegistryParms regParams = REGISTRY_INIT_VAL;

 qmParams.hQueueStore = hQueueStore;

 qmParams.opFlags = QMGR_Q_STORE_OP;

 regParams.hBaseLocationName = hRegistryDir;

 display("Creating the Queue Manager\n");

 rc = mqeAdministrator_QueueManager_create(hAdministrator,

 &exceptBlk,

 &hQueueManager,

 hLocalQMName,

 &qmParams,

 ®Params);

 }

Starting queue managers

Queue managers need to be created before use. The creation step uses the QueueManagerConfigure Java

class or the C administration API to create persistent queue manager data in a registry. The queue

manager then uses the registry each time its starts.

Starting queue managers in Java

Normally, creating and starting a queue manager can require a large set of parameters. Therefore, the

required parameters are supplied as an instance of MQeFields, storing the values as fields of correct type

and name.

Figure 4. Create queue manager C example

24 WebSphere MQ Everyplace V2.0.2

The parameters fall into two categories, queue manager parameters and registry parameters. Each of

these categories is represented by its own MQeFields instance, and both are also enclosed in an

MQeFields instance. The following Java example explains this concept, passing the queue managers

name, ″ExampleQM″ and the location of a registry, ″C:\ExampleQM″:

 /*create fields for queue manager parameters and place the queue manager name

 MQeFields queueManagerParameters = new MQeFields();

 queueManagerParameters.putAscii(MQeQueueManager.Name, "ExampleQM");

 /*create fields for registry parameters and place the registry location

 MQeFields registryParameters = new MQeFields();

 registryParameters.putAscii(MQeRegistry.DirName, "C:\\ExampleQM\\registry");

 /*create fields for combined parameters and place the two sub fields

 MQeFields parameters = new MQeFields();

 parameters.putFields(MQeQueueManager.Registry, queueManagerParameters);

 parameters.putFields(MQeQueueManager.Registry, registryParameters);

Wherever you see ″initialize the parameters″ in code snippets, prepare a set of parameters as shown

in the example, including the appropriate options. Only one queue manager name and one registry

location are mandatory.

Starting a simple queue manager in Java:

 To start the simplest queue manager, you only need to provide the queue manager name and registry

location to the queue manager constructor. This starts and activates the queue manager, and when the

constructor returns the queue manager is running.

MQeQueueManager qm = newMQeQueueManager(queueManagerName, registryName);

There are other ways to start a queue manager that allow you to pass more parameters, in order to take

advantage of some advanced features.

Starting queue managers in C

The mqeQueueManager_new function loads a queue manager for an established registry. To do this, you

need information supplied by a queue manager parameter structure and a registry parameter structure.

The following example shows how you can set these structures to their default values, supplying only the

directories of the queue store and registry:

 MQeQueueManagerHndl hQueueManager;

 MQeRegistryParms regParms = REGISTRY_INIT_VAL;

 MQeQueueManagerParms qmParms = QMGR_INIT_VAL;

 regParms.hBaseLocationName = hRegistryDirectory;

 qmParms.hQueueStore = hStore;

 qmParms.opFlags = QMGR_Q_STORE_OP;

 rc = mqeQueueManager_new(&exceptBlock,

 &hQueueManager, hQMName,

 ®Params, &qmParms);

This creates a queue manager and loads its persistent information from the registry and creates queues.

However, you must start the queue manager to:

v Create messages

v Get and put messages

v Process administration messages, using the administration queue

Note: In C, the queues are activated on starting the queue manager.

To start the queue manager, use

 rc = mqeQueueManager_start(&hQueueManager, &exceptBlock);

Designing your real application 25

Once the queue manager is started, messaging operations can take place and any queues that have

messages on them are loaded.

To stop the queue manager, use:

 rc = mqeQueueManager_stop(&hQueueManager, &exceptBlock);

Once stopped, you can restart the queue manager as required.

At the end of the application, you must free the queue manager to release any resources it uses, for

example memory. First, stop the queue manager and then use:

 rc = mqeQueueManager_free(&hQueueManager, &exceptBlock);

Starting a simple queue manager in C:

 This process involves two steps:

1. Create the queue manager item.

2. Start the queue manager.

Creating the queue manager requires two sets of parameters, one set for the queue manager and one for

the registry. Both sets of parameters are initialized. The queue store and the registry require directories.

Note: All calls require a pointer to ExceptBlock and a pointer to the queue manager handle.

 if (MQERETURN_OK == rc) {

 MQeQueueManagerParms qmParams = QMGR_INIT_VAL;

 MQeRegistryParms regParams = REGISTRY_INIT_VAL;

 qmParams.hQueueStore = hQueueStore;

 qmParams.opFlags = QMGR_Q_STORE_OP;

 /* ... create the registry parameters -

 minimum that are required */

 regParams.hBaseLocationName = hRegistryDir;

 display("Loading Queue Manager from registry \n");

 rc = mqeQueueManager_new(&exceptBlock,

 &hQueueManager,

 hLocalQMName,

 &qmParams,

 ®Params);

}

You can now start the queue manager and carry out messaging operations:

 /* Start the queue manager */

 if (MQERETURN_OK == rc) {

 display("Starting the Queue Manager\n");

 rc = mqeQueueManager_start(hQueueManager,

 &exceptBlock);

 }

Queue manager parameters

List of the parameter names that can be passed to the queue manager and the registry.

The following lists the parameter names that you can pass to the queue manager and the registry:

Queue manager Parameters

MQeQueueManager.Name(ascii)

This is the name of the queue manager being started.

Registry Parameters

26 WebSphere MQ Everyplace V2.0.2

MQeRegistry.LocalRegType(ascii)

This is the type of registry being opened. MQe currently supports:

 file registry

Set this parameter to com.ibm.mqe.registry.MQeFileSession.

private registry

Set this parameter to com.ibm.mqe.registry.MQePrivateSession.

You also need a private registry for some security features.

MQeRegistry.DirName(ascii)

This is the name of the directory holding the registry files. You must pass this parameter for a file

registry.

MQeRegistry.PIN(ascii)

You need this PIN for a private registry.

Note: For security reasons, MQe deletes the PIN and KeyRingPassword, if supplied, from the

startup parameters as soon as the queue manager is activated.

MQeRegistry.CAIPAddrPort(ascii)

You need this address and port number of a mini-certificate server for auto-registration, so that

the queue manager can obtain its credentials from the mini-certificate server.

MQeRegistry.CertReqPIN(ascii)

This is the certificate request number allocated by the mini-certificate administrator to allow the

registry to obtain its credentials. You need this for auto-registration, so that the queue manager

can obtain its credentials from the mini-certificate server.

MQeRegistry.Separator(ascii)

This is used to specify a non-default separator. A separator is the character used between the the

components of an entry name, for example <QueueManager><Separator><Queue>. Although this

parameter is specified as a string, it must contain a single character. If it contains more than one,

only the first character is used. Use the same separator for each registry opened and do not

change it once a registry is in use. If you do not specify this parameter, the separator defaults to

″+″.

MQeRegistry.RegistryAdapter(ascii)

This is the class, or an alias that resolves to a class, of the adapter that the registry uses to store

its data. You must include this class if you want the registry to use an adapter other than the

default MQeDiskFieldsAdapter. You can use any valid storage adapter class.

 You always need the first two parameters. The last two are for auto-registration of the registry if it wishes

to obtain credentials from the mini-certificate server.

MQeRegistry.RegistryAdapter (ascii)

The class, (or an alias that resolves to a class), of the adapter that the registry uses to store its

data. This value should be included if you want the registry to use an adapter other than the

default MQeDiskFieldsAdapter. Any valid adapter class can be used.

 A queue manager can run:

v As a client

v As server

v In a servlet

The following sections describe the example client, servers and servlet that are provided in the

examples.queuemanager package.refer extensively to the example code to illustrate how to start queue

Designing your real application 27

managers. All queue managers are constructed from the same base MQe components, with some

additions that give each its unique properties. MQe provides an example class, MQeQueueManagerUtils,

that encapsulates many of the common functions.

All the examples require parameters at startup. These parameters are stored in standard ini files. The ini

files are read and the data is converted into an MQeFields object. The loadConfigFile() method in the

MQeQueueManagerUtils class performs this function.

Registry parameters for a queue manager

Description of the queue manager-related data held in the registry

The registry is the primary store for queue manager-related information; one exists for each queue

manager. Every queue manager uses the registry to hold its:

v Queue manager configuration data

v Communications listener resource definitions

v Queue definitions

v Remote queue definitions

v Remote queue manager definitions

v User data, including configuration-dependent security information

v Optional bridge resource definitions

Registry type

MQE_REGISTRY_LOCAL_REG_TYPE

The type of registry being opened. file registry and private registry are currently supported. A

private registry is required for some of the security features.

For a file registry this parameter should be set to:

com.ibm.mqe.registry.MQeFileSession

For a private registry it should be set to:

com.ibm.mqe.registry.MQePrivateSession

Aliases can be used to represent these values.

Client queue managers

A client typically runs on a device platform, and provides a queue manager that can be used by

applications on the device. It can open many connections to other queue managers.

A server usually runs for long periods of time, but clients are started and stopped on demand by the

application that use them. If multiple applications want to share a client , the applications must

coordinate the starting and stopping of the client.

Example - starting a client queue manager:

 Starting a client queue manager involves:

1. Ensuring that there is no client already running. (Only one client is allowed per Java Virtual

Machine.)

2. Adding any aliases to the system

3. Enabling trace if required

4. Starting the queue manager

The following code fragment starts a client queue manager:

28 WebSphere MQ Everyplace V2.0.2

MQERETURN createQueueManager(MQeExceptBlock *pErrorBlock, MQeQueueManagerHndl *phQMgr,

 MQeFieldsHndl hInitFields, MQeStringHndl hQStore)

{

 MQERETURN rc;

 MQeQueueManagerConfigureHndl hQMgrConfigure;

 /* Create instance of QueueManagerConfigure Class */

 rc = mqeQueueManagerConfigure_new(pErrorBlock,&hQMgrConfigure,

 hInitFields,hQStore);

 if (MQERETURN_OK == rc) {

 /* define queue manager */

 rc = mqeQueueManagerConfigure_defineQueueManager(hQMgrConfigure, pErrorBlock);

 if (MQERETURN_OK == rc) {

 /* define system default queues */

 rc = mqeQueueManagerConfigure_defineDefaultSystemQueue(hQMgrConfigure,

 pErrorBlock, NULL);

 }

 /* close mqeQueueManagerConfigure */

 (void)mqeQueueManagerConfigure_close(hQMgrConfigure, NULL);

 if (MQERETURN_OK == rc) {

 /* create queue manager */

 rc = mqeQueueManager_new(pErrorBlock, phQMgr);

 if (MQERETURN_OK == rc) {

 rc = mqeQueueManager_activate(*phQMgr, pErrorBlock, hInitFields);

 }

 }

 /* free mqeQueueManagerConfigure */

 (void)mqeQueueManagerConfigure_free(hQMgrConfigure, NULL);

 }

 return rc;

}

/*-------------------------------------*/

/* Init - first stage setup */

/*-------------------------------------*/

public void init(MQeFields parms) throws Exception

{

 if (queueManager != null)

/* One queue manager at a time */

 {

 throw new Exception("Client already running");

 }

 sections = parms;

/* Remember startup parms */

 MQeQueueManagerUtils.processAlias(sections);

/* set any alias names */

// Uncomment the following line to start trace

 before the queue manager is started

// MQeQueueManagerUtils.traceOn("MQeClient Trace", null);

/* Turn trace on */

 /* Display the startup parameters */

 System.out.println(sections.dumpToString("#1\t=\t#2\r\n"));

 /* Start the queue manage */

 queueManager = MQeQueueManagerUtils.processQueueManager(sections, null);

}

Once you have started the client, you can obtain a reference to the queue manager object by using API

call mqeQueueManager_getReference(queueManagerName)either from the static class variable

MQeClient.queueManager or by using the static method

MQeQueueManager.getReference(queueManagerName).

Designing your real application 29

The following code fragment loads aliases into the system:

public static void processAlias(MQeFields sections) throws Exception

{

 if (sections.contains(Section_Alias))

/* section present ? */

 {

/* ... yes */

 MQeFields section = sections.getFields(Section_Alias);

 Enumeration keys = section.fields();

/* get all the keywords */

 while (keys.hasMoreElements())

/* as long as there are keywords*/

 {

 String key = (String) keys.nextElement();

/* get the Keyword */

 MQe.alias(key, section.getAscii(key).trim());

/* add */

 }

 }

}

Use the processAlias method to add each alias to the system. MQe and applications can use the aliases

once they have been loaded.

Starting a queue manager involves:

1. Instantiating a queue manager. The name of the queue manager class to load is specified in the alias

QueueManager. Use the MQe class loader to load the class and call the null constructor.

2. Activate the queue manager. Use the activate method, passing the MQeFields object representation of

the ini file. The queue manager only makes use of the [QueueManager] and [Registry] sections from

the startup parameters.

The following code fragment starts a queue manager:

public static MQeQueueManager processQueueManager(MQeFields sections,

 Hashtable ght) throws Exception

{

/* */

 MQeQueueManager queueManager = null;

/* work variable */

 if (sections.contains(Section_QueueManager))

/* section present ? */

 {

/* ... yes */

 queueManager = (MQeQueueManager) MQe.loader.loadObject(Section_QueueManager);

 if (queueManager != null)

/* is there a Q manager ? */

 {

 queueManager.setGlobalHashTable(ght);

 queueManager.activate(sections);

/* ... yes, activate */

 }

 }

 return(queueManager);

/* return the alloated mgr */

}

Example - MQePrivateClient:

 MQePrivateClient is an extension of MQeClient with the addition that it configures the queue manager

and registry to allow for secure queues. For a secure client, the [Registry] section of the startup

parameters is extended as follows:

30 WebSphere MQ Everyplace V2.0.2

(ascii)LocalRegType=PrivateRegistry

 Location of the registry

(ascii)DirName=.\ExampleQM\PrivateRegistry

 Adapter on which registry sits

(ascii)Adapter=RegistryAdapter

Network address of certificate authority

(ascii)CAIPAddrPort=9.20.7.219:8082

For MQePrivateClient and MQePrivateServer to work, the startup parameters must not contain

CertReqPIN, KeyRingPassword and CAIPAddrPort.

Server queue managers

A server usually runs on a server platform. A server can run server-side applications but can also run

client-side applications. As with clients, a server can open connections to many other queue managers on

both servers and clients. One of the main characteristics that differentiate a server from a client is that it

can handle many concurrent incoming requests. A server often acts as an entry point for many clients

into an MQe network . MQe provides the following server examples:

MQeServer

A console based server.

MQePrivateServer

A console based server with enhanced security.

AwtMQeServer

A graphical front end to MQeServer.

MQBridgeServer

In addition to the normal MQe server functions, this server can send and receive messages to and

from other members of the MQ family. This server is in package

examples.mqbridge.queuemanager.

Example - MQeServer:

 MQeServer is the simplest server implementation.

qm_server server_QMgr_name [-p private_reg_PIN]

You must supply the -p parameter if the queue manager uses a private registry. Otherwise, the queue

manager’s registry is treated as a file registry. The program activates the queue manager (including a

listener listening on port 8081) and goes into an indefinite sleep.

Use ctrl-C to shut down the server.

To delete the constructed queue manager, use the example qm_delete.

When two queue managers communicate with each other, MQe opens a connection between the two

queue managers. The connection is a logical entity that is used as a queue manager to queue manager

pipe. Multiple connections may be open at any time.

Server queue managers, unlike client queue managers, can have one or more listeners. A listener waits for

communications from other queue managers, and processes incoming requests, usually by forwarding

them to its owning queue manager. Each listener has a specified adapter that defines the protocol of

incoming communications, and also specifies any extra data required.

You create listeners on the local queue manager using administration messages, remotely and locally.

However, a remote queue manager must have a listener in order to receive a message.

Designing your real application 31

A listener that has just been created by sending administration messages to the queue manager does not

then start. To start it you can send an administration message explicitly to start the listener, or you can

restart the queue manager. (However, listeners are persistent in the registry. This means that, once

created, listeners that exist at queue manager startup are started automatically).

This example shows how to create and start a listener using administration messages:

String listenerName = "MyListener";

 String listenAdapter = "com.ibm.mqe.adapters.MQeTcpipHttpAdapter";

 int listenPort = 1881;

 int channelTimeout = 300000;

 int maxChannels = 0;

 MQeCommunicationsListenerAdminMsg msg = new MQeCommunicationsListenerAdminMsg();

 msg.setName(listenerName);

 msg.create(listenAdapter, listenPort, channelTimeout, maxChannels);

 .

 .

 .

 //In order to start the listener use the start action

 MQeCommunicationsListenerAdminMsg msg = new MQeCommunicationsListenerAdminMsg();

 msg.setName(listenerName);

 msg.start();

 .

 .

When the listener is started, the server is ready to accept network requests.

When the server is deactivated:

1. The listener is stopped, preventing any new incoming requests

2. The queue manager is closed

Example - MQePrivateServer:

 MQePrivateServer is an extension of MQeServer with the addition that it configures the queue manager

and registry to allow for secure queues.

Environment relationship

This topic describes some requirements for running Java and C implementations of MQe.

Java code

The java queue manager runs inside an instance of a JVM. You can have only one queue manager per

JVM. However, you can invoke multiple instances of the JVM.

Each of these queue managers must have a unique name. Java applications run inside the same JVM as

the queue manager they use.

C code

You can run only one queue manager within a native C process. You need multiple processes for multiple

queue managers. Each of these queue managers must have a unique name.

32 WebSphere MQ Everyplace V2.0.2

Stopping queue managers

Overview of stopping queue managers in Java and C

Stopping a queue manager in Java

There are 2 ways to close down a QueueManager, and one of the close methods should be called by MQe

applications when they have finished using the queue manager:

v closeQuiese

v closeImmediate

closeQuiesce:

Stopping a queue manager using the closeQuiesce method

 This method closes a Queue Manager, specifying a delay to allow existing internal processes to finish

normally. Note that this delay is only implemented as a series of 100ms pause and retry cycles. Calling

this method prevents any new activity, such as transmitting a message, from being started, but allows

activities already in progress to complete. The delay is a suggestion only, and various JVM dependant

thread scheduling factors could result in the delay being greater. If the activities currently in progress

finish sooner, then the method returns before the expiry of the quiesce duration.

If the queue has not closed at the expiry of this period, it is forced to close.

After this method has been called, no more event notifications will be dispatched to message listeners. It

is conceivable that messages may complete their arrival after this method has been called (and before it

finishes). Such messages will not be notified. Application programmers should be aware of this, and not

assume that every message arrival will generate a message event.

MQeQueueManager qmgr = new MQeQueueManager();

MQeMsgObject msgObj = null;

try {

 qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

} catch (MQeException e) {// Handle the exception here

}

qmgr.closeQuiesce(3000); // close QMgr

closeImmediate:

Stopping a queue manager using the closeImmediate method

 This closes Queue Manager immediately.

After this method has been called, no more event notifications are dispatched to message listeners.

Messages might complete their arrival after this method has been called, and before it finishes. Such

messages are not notified, and therefore message arrival does not generate a message event.

MQeQueueManager qmgr = new MQeQueueManager();

MQeMsgObject msgObj = null;

try {

 qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

} catch (MQeException e) {// Handle the exception here

}

qmgr.closeImmediate(); // close QMgr

Stopping a queue manager in C

Following the removal of the message from the queue, you can stop and free the queue manager. You can

also free the strings that were created. Finally, terminate the session:

Designing your real application 33

(void)mqeQueueManager_stop(hQueueManager,&exceptBlock);

 (void)mqeQueueManager_free(hQueueManager,&exceptBlock);

 /* Lets do some clean up */

 (void)mqeString_free(hFieldLabel,&exceptBlock);

 (void)mqeString_free(hLocalQMName,&exceptBlock);

 (void)mqeString_free(hLocalQueueName,&exceptBlock);

 (void)mqeString_free(hQueueStore,&exceptBlock);

 (void)mqeString_free(hRegistryDir,&exceptBlock);

 (void)mqeSession_terminate(&exceptBlock);

Deleting queue managers

This section details how to delete a queue manager in Java and C.

Java

Steps required to delete queue managers in Java

The basic steps required to delete a queue manager are:

1. Use the administration interface to delete any definitions

2. Create and activate an instance of MQeQueueManagerConfigure

3. Delete the standard queue and queue manager definitions

4. Close the MQeQueueManagerConfigure instance

When these steps are complete, the queue manager is deleted and can no longer be run. The queue

definitions are deleted, but the queues themselves are not deleted. Any messages remaining on the

queues are inaccessible.

Note: If there are messages on the queues they are not automatically deleted. Your application programs

should include code to check for, and handle, remaining messages before deleting the queue manager.

1. Delete any definitions

You can use MQeQueueManagerConfigure to delete the standard queues that you created with it. Use the

administration interface to delete any other queues before you call MQeQueueManagerConfigure.

2. Create and activate an instance of MQeQueueManagerConfigure

This process is the same as when creating a queue manager. See “Creating queue managers” on page 18.

3. Delete the standard queue and queue manager definitions

Delete the default queues by calling:

v mqeQueueManagerConfigure_deleteAdminQueueDefinition() to delete the administration queue

v mqeQueueManagerConfigure_deleteAdminReplyQueueDefinition() to delete the administration reply

queue

v mqeQueueManagerConfigure_deleteDeadLetterQueueDefinition() to delete the dead letter queue

v mqeQueueManagerConfigure_deleteSystemQueueDefinition() to delete the default local queue

These methods work successfully even if the queues do not exist.

Delete the queue manager definition by calling

mqeQueueManagerConfigure_deleteQueueManagerDefinition()

34 WebSphere MQ Everyplace V2.0.2

import com.ibm.mqe.*;

 import examples.queuemanager.MQeQueueManagerUtils;

 try

 {

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

 // initialize the parameters

 ...

 // Establish any aliases defined by the .ini file

 MQeQueueManagerUtils.processAlias(parms);

 qmConfig = new MQeQueueManagerConfigure(parms);

 qmConfig.deleteAdminQueueDefinition();

 qmConfig.deleteAdminReplyQueueDefinition();

 qmConfig.deleteDeadLetterQueueDefinition();

 qmConfig.deleteSystemQueueDefinition();

 qmConfig.deleteQueueManagerDefinition();

 qmconfig.close();

 }

 catch (Exception e)

 { ... }

You can delete the default queue and queue manager definitions together by calling

mqeQueueManagerConfigure_deleteStandardQMDefinitions(). This method is provided for convenience

and is equivalent to:

 deleteDeadLetterQueueDefinition();

 deleteSystemQueueDefinition();

 deleteAdminQueueDefinition();

 deleteAdminReplyQueueDefinition();

 deleteQueueManagerDefinition();

4. Close the MQeQueueManagerConfigure instance

When you have deleted the queue and queue manager definitions, you can close the

MQeQueueManagerConfigure instance.

The complete example looks like this:

 import com.ibm.mqe.*;

 import examples.queuemanager.MQeQueueManagerUtils;

 try

 {

 MQeQueueManagerConfigure qmConfig;

 MQeFields parms = new MQeFields();

 // initialize the parameters

 ...

 // Establish any aliases defined by the .ini file

 MQeQueueManagerUtils.processAlias(parms);

 qmConfig = new MQeQueueManagerConfigure(parms);

 qmConfig.deleteStandardQMDefinitions();

 qmconfig.close();

 }

 catch (Exception e)

 { ... }

C

Steps required to delete queue managers in C

The steps in deleting a queue manager are:

1. Remove all Connection Definitions.

2. Remove all Queues, including any ″system″ queues, for example the dead letter queue. Ensure all

queues are empty.

3. Remove the queue manager.

Designing your real application 35

You require an administrator to perform these functions. We also recommend stopping the queue

manager first.

Note: Deleting the queue mananger will free the queue manager handle for you.

MQeAdministratorHndl hAdmin:

/* Create the new administrator based on the exisitng QM Handle */

rc = mqeAdministrator_new(&exceptBlock,

 &hAdmin,hQueueManager);

if (MQERETURN_OK == rc) {

 if (MQERETURN_OK == rc) {

 /* delete any conncetion definitins for example :*/

 rc = mqeAdministrator_Connection_delete(hAdmin,

 &exceptBlock,

 hRemoteQM);

 }

 /* delete all the local queues here - remember to do "special*/

 /*queues" for example ... */

 if (MQERETURN_OK == rc) {

 rc = mqeAdministrator_LocalQueue_delete(hAdmin,

 &exceptBlock,

 MQE_DEADLETTER_QUEUE_NAME,

 hLocalQMName);

 }

 /* Finally delete the queue manager */

 if (MQERETURN_OK == rc) {

 rc = mqeAdministrator_QueueManager_delete(hAdmin,

 &exceptBlock);

 }

 /* free of the amdinsitrator */

 (void)mqeAdministrator_free(hAdmin, &exceptBlock);

}

Messaging life cycle

Description of the series of states through which a message progresses when it is put to a queue

When a message is put to a queue it progresses through a series of states. This section describes these

states and related commands or events under the following headings:

Message states

Most queue types hold messages in a persistent store, for example a hard disk. While in the store, the

state of the message varies as it is transferred into and out of the store. As shown in Figure 5 on page 37:

36 WebSphere MQ Everyplace V2.0.2

In this diagram, ″start″ and ″deleted″ are not actual message states. They are the entry and exit points of

the state model. The message states are:

Put unConfirmed

A message is put to the message store of a queue with a confirmID. The message is effectively

hidden from all actions except confirmPutMessage or undo.

Unlocked

A message has been put to a queue and is available to all operations.

Locked for Browse

A browse with lock retrieves messages. Messages are hidden from all queries except getMessage,

unlock, delete, undo, and unlockMessage. A lockID is returned from the browse operation. You

must supply this lockID to all other operations.

Get Unconfirmed

A getMessage call has been made with a confirmID, but the get has not been confirmed. The

message is invisible to all queries except confirmGetMessage, confirm, and undo. Each of these

actions requires the inclusion of the matching confirmID to confirm the get.

Browse Get Unconfirmed

A message got while it is locked for browse. You can do this only by passing the correct lockID

to the getMessage function.

On an asynchronous remote queue, other states exist where a message is being transmitted to another

machine. These states are entered as ″unlocked″, that is only confirmed messages are transmitted.

start

putUnconfirmed

Deleted

browseGetUnconfirmed

lockedForBrowse

unlocked

putMessage
(with confirmId>0)

confirmPutMessage

getUnconfirmed

PutMessage
(with confirmId=0)

undo

unlockMessage

undo

browseWithLock

undo

getMessage
(with confirmId>0)

getMessage

deleteMessage

deleteMessage

getMessage
(with confirmId=0)

getMessage
(with confirmId>0)

confirmGetMessage

confirmGetMessage

undo

Figure 5. Stored message state flow

Designing your real application 37

Message events

Messages pass from one state to another as a result of an event. These events are typically generated by

an API call. The possible message events, as shown in Figure 5 on page 37, are:

putMessage

Places a message on a queue. This does not require a confirmID.

getMessage

Retrieves a message from a queue. This does not require a confirmID.

putMessage with confirmId>0

Places a message on a queue. This requires a confirmID. However, messages do not arrive at the

receiving end in the order of sending, but in the order of confirmation.

confirmPutMessage

A confirm for an earlier putMessage with a confirmID>0.

getMessage with confirmId>0

Retrieves message from a queue. This requires a confirmID.

confirmGetMessage

A confirm for an earlier getMessage with a confirmID>0.

browseWithLock

Browses messages and lock those that match. Prevents messages from changing while browse is

in operation.

unlockMessage

Unlocks a message locked with a browsewithLock command.

undo Unlocks a message locked with a browse, undoes a getMessage with a confirmID>0, or undoes a

putMessage with a confirmID>0.

deleteMessage

Removes a message from a queue.

Message index fields

Due to memory size constraints, complete messages are not held in memory, but, to enable faster

message searching, MQe holds specific fields from each message in a message index. The fields that are

held in the index are:

 Java In Java, the following fields are held in the index:

UniqueID

MQe.Msg_OriginQMgr + MQe.Msg_Time

MessageID

MQe.Msg_ID

CorrelationID

MQe.Msg_CorrelID

Priority

MQe.Msg_Priority

C In C, the following fields are held in the index:

 UniqueID

MQE_MSG_ORIGIN_QMGR + MQE_MSG_TIME

MessageID

MQE_MSG_MSGID

38 WebSphere MQ Everyplace V2.0.2

CorrelationID

MQE_MSG_CORRELID

Priority

MQE_MSG_PRIORITY

Providing these fields in a filter makes searching more efficient, since MQe may not have to load all the

available messages into memory.

Messaging operations

The following table shows which types of messaging operations are valid on local queues, synchronous

remote queues, and asynchronous remote queues. Note that the Listen and Wait operations are

supported in Java only.

 Table 3. Messaging operations on MQe queues

Operation Local queue Synchronous remote queue Asynchronous remote

queue

“Put” Yes Yes Yes

“Get” on page 40 Yes Yes No

“Browse” on page 40 Yes Yes No

“confirmPut” on page 41 Yes Yes Yes

“confirmGet” on page 41 Yes Yes No

“Delete” on page 40 Yes Yes No

“Listen” on page 41 Yes No No

“Wait” on page 41 Yes Yes No

Note:

1. The synchronous remote wait operation is implemented through a poll of the remote queue, so the

actual wait time is a multiple of the poll time

2. The MQ bridge supplied with MQe only supports an assured or unassured put, unassured get, and

unassured browse (without lock).

Put

This operation places specified messages on a specified queue. The queue can belong to a local or remote

queue manager. Puts to remote queues can occur immediately, or at a later time, depending on how the

remote queue is defined on the local queue manager.

If a remote queue is defined as synchronous, message transmission occurs immediately. If a remote queue

is defined as asynchronous, the message is stored within the local queue manager. The message remains

there until it is transmitted. The put message call may finish before the message is put. Refer to “Message

delivery” on page 49 for more information.

Note: In Java, if the local queue manager does not hold a definition of the remote queue then it attempts

to contact the queue synchronously. This does not apply to the C code base.

Assured delivery depends on the value of the confirmID parameter. Passing a non-zero value transmits

the message as normal, but the message is locked on the target queue until a subsequent confirm is

received. Passing a value of zero transmits the message without the need for a subsequent confirm.

However, message delivery is not assured. Refer to “Message delivery” on page 49, for more information

on assured and non-assured message delivery.

Designing your real application 39

You can protect a message using message-level security.

Get

This operation returns an available message from a specified queue and removes the message from the

queue. The queue can belong to a local or remote MQe queue manager, but cannot be an asynchronous

remote queue.

If you do not specify a filter, the first available message is returned. If you do specify a filter, the first

available message that matches the filter is returned. Including a valid lockID in the message filter allows

you to get messages that have been locked by a previous browse operation. If no message is available,

the get operation returns an error.

Using assured message delivery depends on the value of the confirmID parameter. Passing a non-zero

value returns the message as normal. However, the message is locked and is not removed from the target

queue until it receives a subsequent confirm. You can issue a confirm using the confirmGetMessage()

method. However, message delivery is not assured. Refer to “Message delivery” on page 49, for more

information on assured and non-assured message delivery.

Browse

You can browse queues for messages using a filter, for example message ID or priority . Browsing

retrieves all the messages that match the filter, but leaves them on the queue. The queue can belong to a

local or remote queue manager.

MQe also supports Browsing under lock. This allows you to lock the matching messages on the queue. You

can lock messages individually, or in groups identified through a filter, and the locking operation returns

a lockID. Use the lockID to get or delete messages. An option on browse allows you to return either the

full messages, or only the UniqueIDs.

 MQeVectorHndl hListMsgs;

 rc = mqeQueueManager_browseMessages(hQueueManager,

 &exceptBlock,

 &hListMsgs,

 hQMName,

 hQueueName,

 hFilter,

 NULL,MQE_FALSE);

if (MQERETURN_OK == rc) {

 /* process list using mqeVector_* apis */

 /* free off the vector */

 rc = mqeVector_free(hListMsgs,&exceptBlock);

}

Returning an entire collection of messsages can be expensive in terms of system resources. Setting the

justUID parameter to true and returns the uniqueID of each message that matches the filter only.

The messages returned in the collection are still visible to other MQe APIs. Therefore, when performing

subsequent operations on the messages contained in the enumeration, the application must be aware that

another application can process these messages once the collection is returned. To prevent other

applications from processing messages, use the browseMessagesAndLock method to lock messages

contained in the enumeration.

Delete

This method deletes a message from a queue. It does not return the message to the application that called

it. You must specify the UniqueID and you can delete only one message per operation.

40 WebSphere MQ Everyplace V2.0.2

The queue can belong to a local or synchronous remote MQe queue manager. Including a valid lockID in

the message filter allows you to delete messages that have been locked by a previous operation, for

example browse. If a message is not available, the application returns an error.

/* Example for deleting a message */

MQeFieldsHndl hMsg,hFilter;

/* create the new message */

rc = mqeFields_new(&exceptBlock, &hMsg);

if (MQERETURN_OK == rc) {

 /* add application fields here */

 /* ... */

 /* put message to a queue */

 rc = mqeQueueManager_putMessage(hQueueManager,

 &exceptBlock,

 hQMName,

 hQueueName, hMsg,

 NULL,0);

 if (MQERETURN_OK == rc) {

 /* Delete requires a filter -

 this can most easily be*/

 /* found from the UID fields of the message*/

 rc = mqeFieldsHelper_getMsgUidFields(hMsg,

 &exceptBlock,

 &hFilter);

 }

}

/* some time later want to delete the message -

 use the esatblished filter */

rc = mqeQueueManager_deleteMessage(hQueueManager,

 &exceptBlock,

 hQMName,

 hQueueName,

 hFilter);

confirmPut

This method performs the confirmation of a previously successful putMessage() operation.

confirmGet

This method confirms the successful receipt of a message retrieved from a queue manager by a previous

getMessage() operation. The message remains locked on the target queue until it receives a confirm flow.

Listen

Applications can listen for MQe message events, again with an optional filter. However, in order to do

this, you must add a listener to a queue manager. Listeners are notified when messages arrive on a

queue.

Wait

This method implements message polling. It allows you to specify a time for messages to arrive on a

queue. Java implements a helper function for this. The C code base, as it is non-threaded, must

implement a function in application layer code. The following example demonstrates the Wait method:

 Java Message polling uses the waitForMessage() method. This command issues a getMessage()

Designing your real application 41

command to the remote queue at regular intervals. As soon as a message that matches the

supplied filter becomes available, it is returned to the calling application:

 qmgr.waitForMessage("RemoteQMgr",

 "RemoteQueue",

 filter,

 null,

 0,

 60000);

The waitForMessage() method polls the remote queue for the length of time specified in its final

parameter. The time is specified in milliseconds. Therefore, in the example, polling lasts for 6

seconds. This blocks the thread on which the command is running for 6 seconds, unless a

message is returned earlier. Message polling works on both local and remote queues.

Note: Using this technique sends multiple requests over the network.

Queue ordering

Overview of the ordering of messages on a queue

The order of messages on a queue is primarily determined by their priority. Message priority ranges from

9 (highest) to 0 (lowest). Messages with the same priority value are ordered by the time at which they

arrive on the queue, with messages that have been on the queue for the longest being at the head of the

priority group.

Reading messages on a queue

If you issue a getMessage command when a queue is empty, the queue throws a Java code base

Except_Q_NoMatchingMsg exception or returns a C code base MQERETURN_QUEUE_ERROR,

MQEREASON_NO_MATCHING_MSG. This allows you to create an application that reads all the available messages

on a queue.

Java

Encasing the getMessage() call inside a try..catch block allows you to test the code of the resulting

exception. This is done using the code() method of the MQeException class. You can compare the result

from the code() method with a list of exception constants published by the MQe class. If the exception is

not of type Except_Q_NoMatchingMsg, throw the exception again.

The following code shows this technique:

 try

 {

 while(true)

 { /* keep getting messages until

 an exception is thrown */

 MQeMsgObject msg = qmgr.getMessage("myQMgr", "myQueue",

 null, null, 0);

 processMessage(msg);

 }

 }

 catch (Exception e)

 {

 if (e.code() != MQe.Except_Q_NoMatchingMsg)

 throw e;

 }

Therefore, you can read all messages from a queue by iteratively getting messages until

MQe.Except_Q_NoMatchingMsg is returned.

42 WebSphere MQ Everyplace V2.0.2

C

You can read all messages from a queue by looping, until the return code is MQERETURN_QUEUE_WARNING

and the reason code is MQEREASON_NO_MATCHING_MSG.

Browse and Lock

Performing BrowseAndLock on a group of messages allows an application to ensure that no other

application is able to process messages when they are locked. The messages remain locked until that

application unlocks them. No other application can unlock the messages. Any messages that arrive on the

queue after the BrowseAndLock operation are not locked.

An application can perform either a get or a delete operation on the messages to remove them from the

queue. To do this, the application must supply the lockID that is returned with the enumeration of

messages.

Specifying the lockID allows applications to work with locked messages without having to unlock them

first.

Instead of removing the messages from the queue, it is also possible just to unlock them. This makes

them visible once again to all MQe applications. You can achieve this by using the unlockMessage

method.

Note: See the MQe Configuration Guide for special considerations with MQ bridge queues.

Example - Java:

Example of BrowseAndLock (Java)

 The MQeMessageEnumerationMQeEnumeration object contains all the messages that match the filter

supplied to the browse. MQeEnumeration can be used in the same manner as the standard Java

Enumeration. You can enumerate all the browsed messages as follows:

Note: You must supply a confirmID, in case the action of locating messages fails. It must be possible to

undo the location, and this action requires the confirmID.
 long confirmID = MQe.uniqueValue();

 MQeEnumeration msgEnum = qmgr.browseMessagesAndLock(null,

 "MyQueue",

 null, null,

 confirmID, false);

 while(msgEnum.hasMoreElements())

 {

 MQeMsgObject msg = (MQeMsgObject)msgEnum.nextElement();

 System.out.println("Message from queue manager: " +

 msg.getAscii(MQe.Msg_OriginQMgr));

 }

The following code performs a delete on all the messages returned in the enumeration. The message’s

UniqueID and lockID are used as the filter on the delete operation:

 while(msgEnum.hasMoreElements())

 {

 MQeMsgObject msg = (MQeMsgObject)

 msgEnum.getNextMessage(null,0);

 processMessage(msg);

 MQeFields filter = msg.getMsgUIDFields();

 filter.putLong(MQe.Msg_LockID,

Designing your real application 43

msgEnum.getLockId());

 qmgr.deleteMessage(null, "MyQueue", filter);

 }

Example - C:

Example of BrowseAndLock (C)

 The C code base example gets the actual message. Note the additional parameters, a confirmID in case

the operation needs undoing, and the lockID.

 MQeVectorHndl hMessages;

 MQEINT64 lockID, confirmID=42;

 rc = mqeQueueManager_browseAndLock(hQueueManager,

 &exceptBlock,

 &hmessages,

 &lockID,

 hQueueManagerName,

 hQueueName,

 hFilter,

 NULL, /*No Attribute*/

 confirmID,

 MQE_TRUE); /*Just UIDs*/

 /*process vector*/

 MQeFieldsHndl hGetFilter;

 rc = mqeFields_new(&exceptBlock, &hGetFilter);

 if (MQERETURN_OK == rc){

 rc = mqeFields_putInt64(&hGetFilter,

 &exceptBlock,

 MQE_MSG_LOCKID,

 lockID);

 if (MQERETURN_OK == rc){

 rc = mqeQueueManager_getMessage(&hQueueManager,

 &exceptBlock,

 hQueueManagerName,

 hQueueName,

 hGetFilter,

 &hMsg);

 }

Message listeners

Note: This section does not apply to the C code base.

MQe allows an application to listen for events occurring on queues. The application is able to specify

message filters to identify the messages in which it is interested, as shown in the following Java example:

/* Create a filter for "Order" messages of priority 7 */

MQeFields filter = new MQeFields();

filter.putAscii("MsgType", "Order");

filter.putByte(MQe.Msg_Priority, (byte)7);

/* activate a listener on "MyQueue" */

qmgr.addMessageListener(this, "MyQueue", filter);

The following parameters are passed to the addMessageListener() method:

v The name of the queue on which to listen for message operations

v A callback object that implements MQeMessageListenerInterface

v An MQeFields object containing a message filter

When a message arrives on a queue with a listener attached, the queue manager calls the callback object

that it was given when the message listener was created.

44 WebSphere MQ Everyplace V2.0.2

The following is an example of the way in which an application would normally handle message events

in Java:

public void messageArrived(MQeMessageEvent msgEvent)

 {

 String queueName =msgEvent.getQueueName();

 if (queueName.equals("MyQueue"))

 {

 try

 {

 /*get message from queue */

 MQeMsgObject msg =qmgr.getMessage(null,queueName,

 msgEvent.getMsgFields(),null,0);

 processMessage(msg);

 }

 catch (MQeException e)

 {

 ...

 }

 }

 }

messageArrived() is a method implemented in MQeMessageListenerInterface. The msgEvent parameter

contains information about the message, including:

v The name of the queue on which the message arrived

v The UID of the message

v The messageID

v The correlationID

v Message priority

Message filters only work on local queues. A separate technique known as polling allows messages to be

obtained as soon as they arrive on remote queues.

Message polling

Note: This section does not apply to the C code base.

Message polling uses the mqeQueueManager_waitForMessage() method. This command issues a

mqeQueueManager_getMessage() command to the remote queue at regular intervals. As soon as a

message that matches the supplied filter becomes available, it is returned to the calling application.

A wait for message call typically looks like this:

 qmgr.waitForMessage("RemoteQMgr", "RemoteQueue",

 filter, null, 0, 60000);

The mqeQueueManager_waitForMessage() method polls the remote queue for the length of time specified

in its final parameter. The time is specified in milliseconds, so in the example above, the polling lasts for

60 seconds. The thread on which the command is executing is blocked for this length of time, unless a

message is returned earlier.

Message polling works on both local and remote queues.

Note: Use of this technique results in multiple requests being sent over the network.

Trigger transmission

This method attempts to transmit pending messages. Only unlocked messages are transmitted.

Designing your real application 45

Asynchronous remote queues and home server queues respond to trigger transmission processing. Put

messages with no confirmID or put messages and confirm them before calling this method. Only

messages that are fully ’put’ can be transmitted.

Trigger transmission rules

There are a number of rules, which can control the trigger transmission processing, if processing occurs.

See the Rules topic for more information.

rc = mqeQueueManager_triggerTransmission(hQueueManager,&exceptBlock);

Servlet

Overview of servlet queue managers, which run inside a Web server

As well as running as a standalone server, a queue manager can be encapsulated in a servlet to run

inside a Web server . A servlet queue manager has nearly the same capabilities as a server queue

manager. MQeServlet provides an example implementation of a servlet. As with the server, servlets use

ini files to hold start up parameters. A servlet uses many of the same MQe components as the server.

The main component not required in a servlet is the connection listener, this function is handled by the

Web server itself. Web servers only handle http data streams so any MQe client that wishes to

communicate with an MQe servlet must use the http adapter

(com.ibm.mqe.adapters.MQeTcpipHttpAdaper). When you configure connections to queue managers

running in servlets, you must specify the name of the servlet in the parameters field of the connection.

Example - configuring a connection on a servlet

The following definitions configure a connection on servlet /servlet/MQe with queue manager

PayrollQM:

Connection name

PayrollQM

Channel

com.ibm.mqe.communications.MQeChannel

Note: The com.ibm.mqe.MQeChannel class has been moved and is now known as

com.ibm.mqe.communications.MQeChannel. Any references to the old class name in

administration messages is replaced automatically with the new class name.

Channel Adapter

com.ibm.mqe.adapters.MQeTcpipAdapter:192.168.0.10:80

Parameters

/servlet/MQe

Options

Example - configuring a connection on a servlet using aliases

If the relevant aliases have been set up, you can configure the connection as follows:

Connection name

PayrollQM

Channel

DefaultChannel

Adapter

Network:192.168.0.10:80

46 WebSphere MQ Everyplace V2.0.2

Parameters

/servlet/MQe

Options

Differences between server and servlet startup

The main differences compared to a server startup are:

v The servlet overrides the init method of the superclass. This method is called by the Web server to start

the servlet. Typically this occurs when the first request for the servlet arrives.

v The name of the startup ini file cannot be passed in from the command line. The example expects to

obtain the name using the servlet method getInitParameter() which takes the name of a parameter and

returns a value. The MQe servlet uses a Startup parameter that it expects to contain an ini file name.

The mechanism for configuring parameters in a Web server is Web server dependant.

v A listener is not started as the Web server handles all network requests on behalf of the servlet.

v As there is no listener a mechanism is required to time-out connections that have been inactive for

longer than the time-out period. A simple timer class MQeChannelTimer is instantiated to perform this

function. The TimeInterval value is the only parameter used from the [Listener] section of the ini file.

Example - starting a servlet

The MQe servlet extends C servlet namejavax.servlet.http.HttpServlet and overrides methods for starting,

stopping and handling new requests. The following code fragment starts a servlet:

C example

/**

 * Servlet initialization......

 */

public void init(ServletConfig sc) throws ServletException

{

 // Ensure supers constructor is called.

 super.init(sc);

 try

 {

 // Get the the server startup ini file

 String startupIni;

 if ((startupIni = getInitParameter("Startup")) == null)

 startupIni = defaultStartupInifile;

 // Load it

 MQeFields sections = MQeQueueManagerUtils.loadConfigFile(startupIni);

 // assign any class aliases

 MQeQueueManagerUtils.processAlias(sections);

 // Uncomment the following line to start trace before the queue

 // manager is started

 // MQeQueueManagerUtils.traceOn("MQeServlet Trace", null);

 // Start connection manager

 channelManager = MQeQueueManagerUtils.processChannelManager(sections);

 // check for any pre-loaded classes

 loadTable = MQeQueueManagerUtils.processPreLoad(sections);

 // setup and activate the queue manager

 queueManager = MQeQueueManagerUtils.processQueueManager(sections,

 channelManager.getGlobalHashtable());

 // Start ChannelTimer (convert time-out from secs to millisecs)

 int tI =

 sections.getFields(MQeQueueManagerUtils.Section_Listener).getInt

Designing your real application 47

("TimeInterval");

 long timeInterval = 1000 * tI;

 channelTimer = new MQeChannelTimer(channelManager, timeInterval);

 // Servlet initialization complete

 mqe.trace(1300, null);

 }

 catch (Exception e)

 {

 mqe.trace(1301, e.toString());

 throw new ServletException(e.toString());

 }

}

Example - handling incoming requests

A servlet relies on the Web server for accepting and handling incoming requests. Once the Web server

has decided that the request is for an MQe servlet, it passes the request to MQe using the doPost()

method. The following code handles this request:

C example

/**

 * Handle POST......

 */

public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException

{

 // any request to process ?

 if (request == null)

 throw new IOException("Invalid request");

 try

 {

 int max_length_of_data = request.getContentLength();

 // data length

 byte[] httpInData = new byte[max_length_of_data];

 // allocate data area

 ServletOutputStream httpOut = response.getOutputStream();

 // output stream

 ServletInputStream httpIn = request.getInputStream();

 // input stream

 // get the request

 read(httpIn, httpInData, max_length_of_data);

 // process the request

 byte[] httpOutData = channelManager.process(null, httpInData);

 // appears to be an error in that content-

 length is not being set

 // so we will set it here

 response.setContentLength(httpOutData.length);

 response.setIntHeader("content-length", httpOutData.length);

 // Pass back the response

 httpOut.write(httpOutData);

 }

 catch (Exception e)

 {

 // pass it on ...

 throw new IOException("Request failed" + e);

 }

}

This method:

48 WebSphere MQ Everyplace V2.0.2

1. Reads the http input data stream into a byte array. The input data stream may be buffered so the

read() method is used to ensure that the entire data stream is read before continuing.

Note: MQe only handles requests with the doPost() method, it does not accept requests using the

doGet() method

2. The request is passed to MQe through a connection manager. From this point, all processing of the

request is handled by core MQe classes such as the queue manager.

3. Once MQe has completed processing the request, it returns the result wrapped in http headers as a

byte array. The byte array is passed to the Web server and is transmitted back to the client that

originated the request.

Running multiple servlets on a web server

Web servers can run multiple servlets. It is possible to run multiple different MQe servlets within a Web

server, with the following restrictions:

v Each servlet must have a unique name

v Only one queue manager is allowed per servlet

v Each MQe servlet must run in a different Java Virtual Machine (JVM)

Message delivery

Details of the different types of message delivery process

MQe networks are composed of connected queue managers and can include gateways. They can span

multiple physical networks and route messages between them. In general they provide synchronous and

asynchronous access to queues with a programming model that is independent of queue location.

Asynchronous message delivery

An asynchronous put to a remote queue places the message on the backing store associated with the local

definition of that queue, along with its destination queue manager name, queue name, and the

compressor, authenticator, and cryptor characteristics that match the target destination of the message.

The message’s dump method is called as it is saved to persistent storage in a secure format that is

defined by its destination queue. The queue manager controls message delivery. It identifies or establishes

a connection with appropriate characteristics to the queue manager for the next hop, then creates or

reuses a transporter to the target queue manager. The transporter dumps the message and transmits the

resulting byte string. The target queue manager and queue name are not part of that message flow.

If appropriate, the message is encrypted and compressed over the connection. If it has reached its

destination queue manager, it is decrypted and decompressed. A new message is created, using the

restore method, and the resultant message is placed on the destination queue. If the message has not

reached its destination queue manager, it is decrypted and decompressed. It is then re-encrypted,

compressed, and placed on a store-and-forward queue for onward transmission, if a store-and-forward

queue exists. In both cases it is held on its respective queue in a secure format, as defined by its

destination queue.

A characteristic of asynchronous message delivery is that messages are passed to the queue manager at

intermediate hops, being queued for onward transmission. Messages are taken off the intermediate

queues first in order of priority, then in order of arrival on the queue. Duplicate messages, created when

you resend a message, are also taken off the intermediate queues in the order of their arrival on the

queue.

Designing your real application 49

Synchronous message delivery

Synchronous message delivery is similar to the asynchronous case described above, but the queue

manager involvement in intermediate hops takes place at a much lower level, involving the transporter

and connections. An end-to-end connection is established, using the adapters defined in the protocol

specifications at each intermediate node, to identify the next link. At the end of the last link, where no

further relevant file descriptors exist, the message gets passed to the higher layers of the queue manager

for processing. Thus the sending node does not queue the message but passes it along the connection,

through intermediate hops, and then gives it to the destination queue manager to place it on the target

queue.

The link into MQ uses a bridge queue on the gateway, which transforms the message into an MQ format.

This mechanism means that synchronous MQe style messaging from a device is possible to MQ, with the

connection terminating at the gateway. The message is delivered in real time from the gateway, through a

client channel, to an MQ server. From there its destination can require it to be routed asynchronously

along MQ message channels.

In a similar manner, a device capable of only synchronous messaging can send messages to an

asynchronous MQe queue, provided that a suitable intermediary is available.

Assured and non-assured message delivery

Message delivery using synchronous message transmission can be assured or non-assured.

Assured message delivery

Asynchronous transmission introduces the concept of assured message delivery. When delivering messages

asynchronously, MQe delivers each message once, and once-only, to its destination queue. However, this

assurance is only valid if the definition of the remote queue and remote queue manager match the

current characteristics of the remote queue and remote queue manager. If a remote queue definition and

the remote queue do not match, then it is possible that a message may become undeliverable. In this case

the message is not lost, but remains stored on the local queue manager.

Non-assured message delivery

Non-assured delivery of a message takes place in a single network flow. The queue manager sending the

message creates or reuses a channel to the destination queue manager.

The message to be sent is dumped to create a byte-stream, and this byte stream is given to the channel

for transmission. Once program control has returned from the channel the sender queue manager knows

that the message has been successfully given to the target queue manager, that the target has logged the

message on a queue, and that the message has been made visible to MQe applications.

However, a problem can occur if the sender receives an exception over the channel from the target. The

sender has no way of knowing if the exception occurred before or after the message was logged and

made visible. If the exception occurred before the message was made visible it is safe for the sender to

send the message again. However, if the exception occurred after the message was made visible, there is

a danger of introducing duplicate messages into the system since an MQe application could have

processed the message before it was sent the second time.

The solution to this problem involves transmitting an additional confirmation flow. If the sender

application receives a successful response to this flow, then it knows that the message has been delivered

once and once-only.

50 WebSphere MQ Everyplace V2.0.2

Synchronous assured message delivery

You can perform assured message delivery using synchronous message transmission.

Put message - assured put

You can perform assured message delivery using synchronous message transmission, but the application

must take responsibility for error handling.

The confirmID parameter of the putMessage method dictates whether a confirm flow is expected or not. A

value of zero means that message transmission occurs in one flow, while a value of greater than zero

means that a confirm flow is expected. The target queue manager logs the message to the destination

queue as usual, but the message is locked and invisible to MQe applications, until a confirm flow is

received. When you put messages with the confirmID, the messages are ordered by confirm time, not

arrival time.

an MQe application can issue a put message confirmation using the

mqeQueueManager_confirmPutMessage method. Once the target queue manager receives the flow

generated by this command, it unlocks the message, and makes it visible to MQe applications. You can

confirm only one message at a time. It is not possible to confirm a batch of messages.

The mqeQueueManager_confirmPutMessage() method requires you to specify the UniqueID of the

message, not the confirmID used in the prior put message command. The confirmID is used to restore

messages that remain locked after a transmission failure.

Example (Java) - assured put:

 A skeleton version of the code required for an assured put is shown below:

 long confirmId = MQe.uniqueValue();

 try

Application puts message,
specifying a confirm ID.

Message is unlocked and
is now visible to other
WebSphere MQ Everyplace
applications.

Message is saved to
persistent store. Message is
locked and is not yet visible
to other WebSphere MQ
Everyplace applications.

Application knows that the
message has been successfully
delivered.

Application confirms the
put of the message.

Application knows that the
message is locked on target
queue manager.

Originator Target queue manager

Step 1

Step 2

Network

Put

Put
success

Confirm
success

Confirm

Figure 6. Assured put of synchronous messages

Designing your real application 51

{

 qmgr.putMessage("RemoteQMgr", "RemoteQueue",

 msg, null, confirmId);

 }

 catch(Exception e)

 {

 /* handle any exceptions*/

 }

 try

 {

 qmgr.confirmPutMessage("RemoteQMgr", "RemoteQueue",

 msg.getMsgUIDFields());

 }

 catch (Exception e)

 {

 /* handle any exceptions */

 }

Example (C) - assured put:

 A skeleton version of the code required for an assured put is shown below:

 /* generate confirm Id */

 MQEINT64 confirmId;

 rc = mqe_uniqueValue(&exceptBlock,

 &confirmId);

 /* put message to queue using this confirm Id */

 if(MQERETURN_OK == rc) {

 rc = mqeQueueManager_putMessage(hQMgr,

 &exceptBlock,

 hQMgrName, hQName,

 hMsg, NULL, confirmId);

 /* now confirm the message put */

 if(MQERETURN_OK == rc) {

 /* first get the message uid fields */

 MQeFieldsHndl hFilter;

 rc = mqeFieldsHelper_getMsgUidFields(hMsg,

 &exceptBlock,

 &hFilter);

 if(MQERETURN_OK == rc) {

 rc = mqeQueueManager_confirmPutMessage(hQMgr,

 &exceptBlock,

 hQMgrName,

 hQName, hFilter);

 }

 }

 }

Exception handling - put message:

 If a failure occurs during step 1 in “Put message - assured put” on page 51, the application should

retransmit the message. There is no danger of introducing duplicate messages into the MQe network

since the message at the target queue manager is not made visible to applications until the confirm flow

has been successfully processed.

If the MQe application retransmits the message, it should also inform the target queue manager that this

is happening. The target queue manager deletes any duplicate copy of the message that it already has.

The application sets the MQE_MSG_RESENDMQe.Msg_Resend field to do this.

If a failure occurs during step 2 in “Put message - assured put” on page 51, the application should send

the confirm flow again. There is no danger in doing this since the target queue manager ignores any

52 WebSphere MQ Everyplace V2.0.2

confirm flows it receives for messages that it has already confirmed. This is shown in the following

example, taken from the example program examples.application.example6.

Example - Java:

 This example is taken from the examples.application.example6 example application:

 boolean msgPut = false;

 /* put successful? */

 boolean msgConfirm = false;

 /* confirm successful? */

 int maxRetry = 5;

 /* maximum number of retries */

 long confirmId = MQe.uniqueValue();

 int retry = 0;

 while(!msgPut &&

 retry < maxRetry)

 {

 try

 {

 qmgr.putMessage("RemoteQMgr",

 "RemoteQueue",

 msg, null,

 confirmId);

 msgPut = true;

 /* message put successful */

 }

 catch(Exception e)

 {

 /* handle any exceptions */

 /* set resend flag for

 retransmission of message */

 msg.putBoolean(MQe.Msg_Resend, true);

 retry ++;

 }

 }

 if (!msgPut)

 /* was put message successful?*/

 /* Number of retries has

 exceeded the maximum allowed,

 /*so abort the put*/

 /* message attempt */

 return;

 retry = 0;

 while(!msgConfirm &&

 retry < maxRetry)

 {

 try

 {

 qmgr.confirmPutMessage("RenoteQMgr",

 "RemoteQueue",

 msg.getMsgUIDFields());

 msgConfirm = true;

 /* message confirm successful*/

 }

 catch (Exception e)

 {

 /* handle any exceptions*/

 /* An Except_NotFound

 exception means */

 /*that the message has already */

 /* been confirmed */

 if (e instanceof MQeException &&

Designing your real application 53

((MQeException)e).code() == Except_NotFound)

 putConfirmed = true;

 /* confirm successful */

 /* another type of exception -

 need to reconfirm message */

 retry ++;

 }

 }

Example - C:

 This example is taken from the examples.application.example6 example application:

MQEINT32 maxRetry = 5;

rc = mqeQueueManager_putMessage(hQMgr,

 &exceptBlock,

 hQMgrName,

 hQName, hMsg,

 NULL, confirmId);

/* if the put attempt fails,

 retry up to the maximum number*/

/*of retry times permitted,

 setting the re-send flag. */

while (MQERETURN_OK != rc

 && --maxRetry > 0) {

 rc = mqeFields_putBoolean(hMsg, &exceptBlock,

 MQE_MSG_RESEND, MQE_TRUE);

 if(MQERETURN_OK == rc) {

 rc = mqeQueueManager_putMessage(hQMgr, &exceptBlock,

 hQMgrName, hQName,

 hMsg, NULL, confirmId);

 }

}

if(MQERETURN_OK == rc) {

 MQeFieldsHndl hFilter;

 maxRetry = 5;

 rc = mqeFieldsHelper_getMsgUidFields(hMsg,

 &exceptBlock,

 &hFilter);

 if(MQERETURN_OK == rc) {

 rc = mqeQueueManager_confirmPutMessage(hQMgr,

 &exceptBlock,

 hQMgrName, hQName,

 hFilter);

 }

 while (MQERETURN_OK != rc

 && --maxRetry > 0) {

 rc = mqeQueueManager_confirmPutMessage(hQMgr,

 &exceptBlock,

 hQMgrName,

 hQName,

 hFilter);

 }

}

Get message - assured get

Assured message get works in a similar way to put. If a get message command is issued with a

confirmId parameter greater than zero, the message is left locked on the queue on which it resides until a

confirm flow is processed by the target queue manager. When a confirm flow is received, the message is

deleted from the queue. Figure 7 on page 55 describes a get of synchronous messages:

54 WebSphere MQ Everyplace V2.0.2

Example (Java) - assured get:

 This example code is taken from the examples.application.example6 example program.

boolean msgGet = false;

/* get successful? */

boolean msgConfirm = false;

/* confirm successful? */

MQeMsgObject msg = null;

int maxRetry = 5;

/* maximum number of retries */

long confirmId = MQe.uniqueValue();

int retry = 0;

while(!msgGet && retry < maxRetry)

{

 try

 {

 msg = qmgr.getMessage("RemoteQMgr",

 "RemoteQueue",

 filter, null,

 confirmId);

 msgGet = true;

 /* get succeeded */

 }

 catch (Exception e)

 {

 /* handle any exceptions */

 /* if the exception is of type

 Except_Q_NoMatchingMsg, meaning that */

 /* the message is unavailable

 then throw the exception */

 if (e instanceof MQeException)

 if (((MQeException)e).code() ==

 Except_Q_NoMatchingMsg)

 throw e;

 retry ++;

 /* increment retry count */

 }

}

if (!msgGet)

 /* was the get successful? */

Originator Target

O1. Application issues a Get Message (specifying a confirm Id)

T1.Message state in persistent store
changed to ‘Get_Uncomfirmed’.
Message returned to originator.

O2. Application issues a Confirm Get Message.

T2.Message removed from queue.

O3. Application now holds sole copy of message.

Figure 7. Assured get of synchronous messages

Designing your real application 55

/* Number of retry attempts has

 exceeded the maximum allowed, so abort */

 /* get message operation */

 return;

while(!msgConfirm && retry < maxRetry)

{

 try

 {

 qmgr.confirmGetMessage("RemoteQMgr",

 "RemoteQueue",

 msg.getMsgUIDFields());

 msgConfirm = true;

 /* confirm succeeded */

 }

 catch (Exception e)

 {

 /* handle any exceptions */

 retry ++; /* increment retry count */

 }

}

Example (C) - assured get:

 This example code is taken from the examples.application.example6 example program.

MQEINT32 maxRetry = 5;

rc = mqeQueueManager_getMessage(hQMgr,

 &exceptBlock,

 hQMgrName,

 hQName, hMsg,

 NULL, confirmId);

/* if the get attempt fails, retry

 up to the maximum number of*/

/*retry times permitted,

 setting the re-send flag. */

while (MQERETURN_OK != rc &&

 --maxRetry > 0) {

 rc = mqeFields_getBoolean(hMsg,

 &exceptBlock,

 MQE_MSG_RESEND,

 MQE_TRUE);

 if(MQERETURN_OK == rc) {

 rc = mqeQueueManager_getMessage(hQMgr,

 &exceptBlock,

 hQMgrName,

 hQName, hMsg,

 NULL,

 confirmId);

 }

}

if(MQERETURN_OK == rc) {

 MQeFieldsHndl hFilter;

 maxRetry = 5;

 rc = mqeFieldsHelper_getMsgUidFields(hMsg,

 &exceptBlock,

 &hFilter);

 if(MQERETURN_OK == rc) {

 rc = mqeQueueManager_confirmGetMessage(hQMgr,

 &exceptBlock,

 hQMgrName,

 hQName,

 hFilter);

 }

56 WebSphere MQ Everyplace V2.0.2

while (MQERETURN_OK != rc &&

 --maxRetry > 0) {

 rc = mqeQueueManager_confirmPutMessage(hQMgr,

 &exceptBlock,

 hQMgrName,

 hQName,

 hFilter);

 }

}

Undo command:

 The value passed as the confirmId parameter also has another use. The value is used to identify the

message while it is locked and awaiting confirmation. If an error occurs during a get operation, it can

potentially leave the message locked on the queue. This happens if the message is locked in response to

the get command, but an error occurs before the application receives the message. If the application

reissues the get in response to the exception, then it will be unable to obtain the same message because it

is locked and invisible to MQe applications.

However, the application that issued the get command can restore the messages using the undo method.

The application must supply the confirmId value that it supplied to the get message command. The undo

command restores messages to the state they were in before the get command.

The undo command also has relevance for the mqeQueueManager_putMessage and

mqeQueueManager_browseMessagesAndLock commands. As with get message, the undo command restores

any messages locked by the mqeQueueManager_browseMessagesandLock command to their previous state.

If an application issues an undo command after a failed mqeQueueManager_putMessage command, then

any message locked on the target queue awaiting confirmation is deleted.

The undo command works for operations on both local and remote queues.

Undo command example - Java:

boolean msgGet = false;

/* get successful? */

boolean msgConfirm = false;

/* confirm successful? */

MQeMsgObject msg = null;

int maxRetry = 5;

/* maximum number of retries */

long confirmId = MQe.uniqueValue();

int retry = 0;

while(!msgGet && retry < maxRetry)

{

 try

 {

 msg = qmgr.getMessage("RemoteQMgr",

 "RemoteQueue",

 filter, null,

 confirmId);

 msgGet = true;

 /* get succeeded */

 }

 catch (Exception e)

 {

 /* handle any exceptions */

 /* if the exception is of type

 Except_Q_NoMatchingMsg, meaning that */

 /* the message is unavailable

 then throw the exception */

 if (e instanceof MQeException)

Designing your real application 57

if (((MQeException)e).code() == Except_Q_NoMatchingMsg)

 throw e;

 retry ++; /* increment retry count */

 /* As a precaution, undo the message

 on the queue. This will remove */

 /* any lock that may have been put on

 the message prior to the */

 /* exception occurring */

 myQM.undo(qMgrName, queueName, confirmId);

 }

}

if (!msgGet)

 /* was the get successful? */

 /* Number of retry attempts has

 exceeded the maximum allowed, so abort */

 /* get message operation */

 return;

while(!msgConfirm && retry < maxRetry)

{

 try

 {

 qmgr.confirmGetMessage("RemoteQMgr",

 "RemoteQueue",

 msg.getMsgUIDFields());

 msgConfirm = true;

 /* confirm succeeded */

 }

 catch (Exception e)

 {

 /* handle any exceptions */

 retry ++;

 /* increment retry count */

 }

}

Undo command example - C:

MQeFieldsHndl hMsg;

rc = mqeQueueManager_getMessage(hQMgr, &exceptBlock,

 &hMsg, hQMgrName,

 hQName, hFilter,

 NULL, confirmId);

/* if unsuccessful, undo the operation */

if(MQERETURN_OK != rc) {

 rc = mqeQueueManager_undo(hQMgr, &exceptBlock,

 hQMgrName, hQName,

 confirmId);

}

Network topologies and message resolution

Introduction to message routes and their use with MQe

Overview

This topic explains, in detail, the concept of message routes and how to use them with MQe.

Several features of MQe allow the routing of messages to be altered dynamically. However, you need to

ensure that there are no ’in doubt’ messages that would be affected by the change. If a message is put

with a non-zero confirm ID, and then the MQe network topology is changed to alter the routing of the

subsequent confirmGetMessage call, the unconfirmed message will not be found. MQe protocol treats a

failure to confirm a put as an indication that the put message has been confirmed already, and therefore

58 WebSphere MQ Everyplace V2.0.2

assumes success. This could leave an unconfirmed message on a queue, which represents a loss of a

message, and therefore breaks the assured delivery promise.

Since MQe uses the same two step process to assure delivery of asynchronously sent messages, regardless

of whether a zero or non-zero confirmId is used, changing the network topology can break the assured

delivery of asynchronous message sends.

Notation

The topics within Network topologies and message resolution use a consistent notation for illustrating the

resources. This allows the areas of specific interest to be shown prominently, while the less relevant parts

of a system can be hidden. This is easier to show with a diagram:

The following diagram shows the same resources in the ’dispersed’ form:

The line with a diamond shape shows that the queue manager is the child of the host. This preserves the

parent/child relationship from the tree, which would otherwise be lost by separating the elements.

Introduction

The route that a message takes through an MQe network can depend upon many resources (queues,

connection definitions, listeners and so on). These need to be correctly set up, often in pairs whose

settings need to be complementary. Failure to set up the correct resources, or setting certain of their

values incorrectly can result in failure to deliver messages. Since the task of setting up a network that

correctly routes messages can initially appear complex, this topic describes the theory underlying

message resolution.

A common source of confusion with MQe is the differentiation between a local queue that exists on a

remote machine (or queue manager), and a local definition of that queue on the remote machine. Both of

these entities are commonly referred to as ’remote queue’s. In order to clarify these, the term ’remote

queue reference’ is used to describe a local definition of a queue that resides on another (remote) machine

(or queue manager).

Host
localhost

LocalQM
Queues

LocalQueue

Figure 8. A host and the MQe resources on it

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Figure 9. A host and the MQe resources on it: ’dispersed’ form

Designing your real application 59

Local queue resolution

Local message putting is fundamental to MQe. Messages, if they are to be useful, must always end up on

a local queue. Message route resolution is the mechanism by which a message travels through an MQe

network to its ultimate destination.

The following diagram shows a simple local message put.

 The message route is shown for a message put to (QueueManager)LocalQM destined for the

(Queue)LocalQueue@LocalQM. This is clearly a put to a local queue, as the queue’s ’queue manager

name’ is the same as the name of the queue manager to which the message is put.

The message route is shown with an arrow labelled with the message route name. The arrow indicates

the direction in which the message flows. The text on the label indicates the currently used target name

(this can change during message resolution). LocalQM looks for a queue to accept a message for

LocalQueue@LocalQM. The process of determining which queue to place a message on is called Queue

Resolution. LocalQM finds an exact match for the destination, the local queue. It then puts the message

onto the local queue. The message will then reside on the local queue until it is retrieved via the

getMessage() API call.

Local queue alias

Local queues can have aliases. If we add a queue alias to the local queue we provide it with another

name by which it will be known. So the local queue LocalQueue@LocalQM could be given an alias of

’LocalQueueAlias’, as shown in the following diagram:

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

LocalQueue@LocalQM

Figure 10. A simple local message put

60 WebSphere MQ Everyplace V2.0.2

Messages addressed to LocalQueueAlias@LocalQM would be directed by the queue manager to

LocalQueue@LocalQM. We could envisage this as the message being placed on the matching alias, almost

as if the alias were a queue, and then the alias moves the message to the correct destination, as shown in

the following diagram:

 The redirection of the message by the alias is accompanied by a change in the ’destination queue name’

from LocalQueueAlias@LocalQM to LocalQueue@LocalQM. The fact that the message was originally put

to the alias is completely lost. This can be seen by the labelling of the message route from the alias to the

queue. In this particular case the change of ’put name’ is of little or no importance, but this is important

in more complex message resolutions.

The resolution of the queue alias is performed just before the message is routed to the queue. The

resolution is as late as it could possibly be, and is sometimes termed ’late resolution’.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

Figure 11. LocalQueue@LocalQM with an alias of ’QueueAlias’.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

LocalQueueAlias@LocalQM

LocalQueue@LocalQM

Figure 12. A message being placed on a matching alias

Designing your real application 61

Queue manager alias

Queue aliases enable you to refer to queues by more than one name. Queue Manager Aliases enable you

to refer to queue managers by more than one name. We can define a Queue Manager Alias ’AliasQM’

referring to the local queue manager, as shown in the following diagram:

 Messages addressed to ’AliasQM’ are routed to ’LocalQM’, as shown in the following diagram:

 The redirection of the message by the alias is accompanied by a change in the ’destination queue name’

from LocalQueue@AliasQM to LocalQueue@LocalQM. The fact that the message was originally put to the

alias is completely lost. This can be seen by the labelling of the message route from the alias to the queue.

Queue Manager Aliases are resolved at the beginning of message resolution. Queue Manager Aliases are

very effective as part of complex topologies

To complete the picture we can resolve both the Queue Manager Alias and the Queue Alias, as shown in

the following diagram:

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Manager Alias
AliasQM = LocalQM

Figure 13. Defining a queue manager alias

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Manager Alias
AliasQM = LocalQM

LocalQueue@AliasQM

LocalQueue@LocalQM

Figure 14. Addressing messages to a queue manager alias

62 WebSphere MQ Everyplace V2.0.2

Here we put a message to LocalQueueAlias@AliasQM, and it is resolved first via the Queue Manager

Alias, and then through the Queue Alias.

Resolution of queueManager aliases happens as soon as the request reaches a queue manager. The effect

is to substitute the aliased string for the aliasing string. So for the first example above, as soon as the

putMessage(″AliasQM″,....) call crosses the API, it is converted to a putMessage(″LocalQM″,....) call. This

resolution is also performed when a message is put to a remote queue manager. On a remote queue

manager the queue aliases on that queue manager are used, not those on the originating queue manager.

An alias can point to another alias. However, circular definitions have unpredictable results. An alias can

also be made of the local queue manager name. This allows a queue manager to behave as if it were

another queue manager. This pretence means that we can remove a queue manager entirely from the

network, and by creating suitable queue manager aliases elsewhere we can allocate its workload to

another queue manager. This feature is useful when modifying MQe network topologies, because servers,

under the control of system administrators, can be moved, removed or renamed without breaking the

connectivity of clients, which may not be so readily accessible.

Remote queue resolution

Remote queue resolution involves connection definitions and network resolution. It requires a setup

where there are two queue managers, one of which is the local queue manager that you use to put the

message, and the other is the queue manager to which you want the message to go. The remote queue

manager must have a listener, and the local queue manager must have a connection definition describing

the listener, as shown in the following diagram:

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

Queue Manager Alias
AliasQM = LocalQM

LocalQueue@LocalQM

LocalQueueAlias@AliasQM

LocalQueueAlias@LocalQM

Figure 15. Resolving the queue manager alias and the queue alias

Designing your real application 63

The connection definition/listener pair allows MQe to establish the network communications necessary to

flow the message. The connection definition contains information about communicating with a single

queue manager. The connection definition is named for the queue manager to which it defines a route. So

in this example the connection definition is called TargetQM, and contains the information necessary to

establish connection with (QueueManager)TargetQM. This information includes the address of the

machine upon which the queue manager resides (remote host in this example), the port upon which the

queue manager is listening (8081 in this example), and the protocol to use when conversing with the

queue manager (FastNetwork in this example).

You need a remote queue reference on LocalQM representing the destination queue TargetQueue which

resides on TargetQM. There are therefore two entities called TargetQueue@TargetQM. One is the ’real’

queue, that is a local queue, and one is a reference to the real queue, a remote queue reference, as shown

in the following diagram:

 The message resolution for a put on LocalQM to TargetQueue@TargetQM works as shown in the

following diagram:

Host
localhost

Queue Manager
LocalQM

Connection
Host

Queue Manager
TargetQM

Listener
DefaultListener

connects to

remotehost
TargetQM(FastNetwork:remotehost:8082)

Figure 16. Local and remote queue managers with a definition and listener pair

Host
localhost

Queue Manager
LocalQM

Remote Queue

Connection

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Listener
DefaultListener

connects using

resolves to

connects to

remotehost

TargetQM(FastNetwork:remotehost:8082

TargetQueue@TargetQM

Figure 17. A remote queue reference.

64 WebSphere MQ Everyplace V2.0.2

The message route is as follows:

v The message is put on LocalQM addressed to TargetQueue@TargetQM.

v LocalQM performs queue resolution and finds the remote queue reference as an exact match. LocalQM

places the message onto the remote queue reference.

v The remote queue reference then performs connection resolution. It looks for a connection that will

allow it to pass the message to the queue manager owning the final queue. The remote queue reference

finds the connection definition called TargetQM and passes the message to it.

v The connection definition now moves the message to its partner listener, which puts the message to the

remote queue manager.

v The remote queue manager performs queue resolution just as if the message had been put locally, finds

TargetQueue@TargetQM, and puts the message on it.

Although the connection definition and listener are vital to the message resolution, they do not affect the

routing in this example. This is shown in the following diagram:

Host
localhost

Queue Manager
LocalQM

Remote Queue
TargetQueue@TargetQM

Connection

Host
remotehost

Queue Manager
TargetQM

Local Queue
TargetQueue

Listener
DefaultListener

resolves to

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQMTargetQueue@TargetQM

TargetQueue@TargetQM

TargetQM(FastNetwork:remotehost:8082)

Figure 18. Message resolution for a put

Designing your real application 65

In later examples the connection definitions play a more important role, and they are shown explicitly.

For now assume the presence of the logical link formed by the listener and not show them in the

diagrams. It is often much more convenient to use a simplified view of the message route. You can do

this by thinking of the four elements that contribute to this message resolution as a single, composite,

entity. This entity is a Message Route, as shown in the following diagram:

 Here you can see the message route that indicates that all messages put to LocalQM and addressed to

TargetQueue@TargetQM will be moved directly to the destination. A Message Route is valid only if all

the necessary components (Connection Definition, Listener, Remote Queue Definition, and destination

queue) are present and correctly configured.

The Message Route is defined as a Push Message Route because messages are pushed from the source

queue to the destination queue, by LocalQM.

Aliases on remote queues

You can use aliases on the remote queue, as the last step is simply queue resolution performed on

TargetQM. The Queue Alias on the target queue appears to the local system as if it were a queue. The

remote queue definition on the local system is therefore named for the Queue Alias, rather than the target

Host
localhost

Queue Manager
LocalQM

Remote Queue
TargetQueue@TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQM

remotehost

Figure 19. Message resolution for a put

Host
localhost

Queue Manager
LocalQM

Push Message Route
TargetQueue

Host

Queue Manager
TargetQM

remotehost

@TargetQM

Figure 20. A message route entity

66 WebSphere MQ Everyplace V2.0.2

queue. The following diagram makes this clear (note that the connection definition and the listener are

hidden):

 Here a remote queue reference is defined which actually refers to an alias for a queue on TargetQM.

When you perform a put on LocalQM addressed to QueueAlias@TargetQM the resolution works as

shown in the following diagram:

v Queue resolution on LocalQM finds the remote queue reference. The fact that this is a reference to a

queue alias is completely immaterial to queue resolution.

v Connection resolution works entirely as described above

v queue resolution on TargetQM now behaves exactly as local queue resolution of a queue alias

described earlier.

Note that the destination name for the message remains QueueAlias@TargetQM until queue resolution

onTargetQM. The Remote Queue Definition completes the requirements for another Message Route, as

shown in the following diagram:

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
TargetQueueAliasTargetQueueAlias@TargetQM

remotehost

Remote Queue

Figure 21. Using aliases on the remote queue

Host
localhost

Queue Manager
LocalQM

Remote Queue

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
TargetQueueAlias

TargetQueueAlias@TargetQM

TargetQueueAlias@TargetQM

TargetQueue@TargetQM

TargetQueueAlias@TargetQM

remotehost

TargetQueueAlias@TargetQM

Figure 22. Message resolution for a put to a remote queue, using a Queue alias defined on TargetQM

Designing your real application 67

Parallel routes

Aliases allow the creation of parallel routes between a source and a destination. This is sometimes useful

when you want to send messages synchronously if possible, but asynchronously if the remote end is not

currently connected. You can do this with the setup illustrated in the following diagram:

 Here two aliases have been defined on the target queue. One alias will be used to route synchronous

traffic to the target queue, one will be used to route asynchronous traffic.

On LocalQM two remote queue definitions have been defined, one pointing at each alias. You can create

an asynchronous Remote Queue Definition called Async@TargetQM, and a synchronous Remote Queue

Definition called Sync@TargetQM. By choosing the name of the queue that you put to (Sync@TargetQM

or Async@TargetQM) you can choose the route that the message follows, even though the destination is

the same. First, the resolution of the synchronous route by putting a message to Sync@TargetQM, as

shown in the following diagram:

Host
localhost

Queue Manager
LocalQM

Push Message Route
TargetQueueAlias

Host

Queue Manager
TargetQM

remotehost

@TargetQM

Figure 23. Message route entity of messages put to TargetQueueAlias on TargetQM

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

resolves to

resolves to

Async@TargetQM

Sync@TargetQM

RemoteQueue

remotehost

RemoteQueue

Figure 24. Creating parallel routes between source and destination

68 WebSphere MQ Everyplace V2.0.2

And secondly the asynchronous resolution using AsyncAlias@TargetQM, as shown in the following

diagram:

 You could choose to view this as a pair of Push Message Routes, as shown in the following diagram:.

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

Sync@TargetQM

Sync@TargetQM

TargetQueue@TargetQM

Sync@TargetQM

RemoteQueue
Async@TargetQM

RemoteQueue

remotehost

Figure 25. Resolving the synchronous route

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

Target Queue@TargetQM

Async@TargetQM

Sync@TargetQM

Async@TargetQM

Async@TargetQM

remotehost

Remote Queue

Remote Queue

Figure 26. Resolving the asynchronous route

Designing your real application 69

Chaining remote queue references

Remote queue references can be chained together to form a longer route. This requires the use of “Via

connections” on page 76.

Pushing store and forward queues

MQe has a queue type that accepts messages on a queue manager basis rather than on a queue basis.

These are called Store and Forward (S&F) queues. S&F queues maintain a list of queue manager names,

called Queue Manager Entries (QMEs). The S&F queue will accept messages for any queue manager

represented by a QME. This acceptance is independent of the destination queue name, and so allows one

queue (the S&F queue) to route all messages for a given, or several given queue managers.

S&F queues can operate in two modes, pushing mode and pulling mode. In pushing mode the messages

are moved to the next queue manager just as with remote queue references. In pulling mode the

messages are removed from the S&F queue by the action of a Home Server Queue. This section deals

only with the pushing of messages, pulling messages with a home server queue is described in another

section. A typical pushing S&F queue system might look like this:

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Push Message Route
Async
@TargetQM

remotehost

Push Message Route
Sync
@TargetQM

Figure 27. A pair of push message routes

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Queue Manager Entry
TargetQM

Connection
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

connects to

connects using

resolves to

(FastNetwork:remotehost:8082)
remotehost

SafQueue@TargetQM

Figure 28. A typical pushing S&F queue system

70 WebSphere MQ Everyplace V2.0.2

A S&F queue called SafQueue has a queue manager entry (QME) for TargetQM. This allows it to accept

messages for any queue on TargetQM. In common with ordinary Remote Queues, a Store and Forward

queue requires a connection definition/listener pair set up in order to push messages. Unlike a normal

Remote Queue Definition, a Store and Forward Queue effectively pushes to a Queue Manager rather than

to a queue. The message arrives at the Queue Manager, where queue resolution is performed. When a

message is put to LocalQM addressed to TargetQ@TargetQM the resolution is as follows:

v LocalQM performs queue resolution which finds the queue manager entry TargetQM on SafQueue.

LocalQM puts the message to the QME.

v Putting a message to the QME is equivalent to putting the message on the S&F queue owning the

QME.

v The S&F queue performs connection resolution and finds the connection definition, and so uses it to

push messages to RemoteQM.

v The queue manager then performs queue resolution and places the message on the target queue.

The Store and Forward queue forms part of a Multi Message Route. This abstract entity represents the

potential for messages addressed to any queue on TargetQM, and so is called *@TargetQM, as shown in

the following diagram:

 If there is no queue to which the message can be put, then it is not delivered. This prevents any further

messages from being pushed from that Store and Forward queue to that Queue Manager.

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Queue Manager Entry
TargetQM

Connection
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

SafQueue@TargetQM

remotehost
(FastNetwork:remotehost:8082)

Figure 29. Routing of a message put to LocalQM and addressed to TargetQ@TargetQM

Host
localhost

Queue Manager
LocalQM

Multi Message Route
*@TargetQM

Host

Queue Manager
TargetQM

remotehost

Figure 30. A multi message route

Designing your real application 71

S&F queues and remote queue references

Because Store and Forward (S&F) queues can accept messages for any queue on a given queue manager,

they can appear to be in conflict with a remote queue reference. In such cases the remote queue reference

takes precedence, because it is more specific. So if add a remote queue reference to the S&F queue

resolution, the message route resolution changes immediately, and the S&F queue becomes irrelevant, as

shown in the following diagram:

 The queue resolution finds the best (most exact) match for the message address.

So a message put to QueueAlias@TargetQM goes via the S&F queue (asynchronous transmission), but a

put to TargetQueue@TargetQM goes synchronously via the remote queue reference.

Chaining S&F queues

Pushing store and forward queues can be chained together into a more complex route, as shown in the

following diagram:

 The Store and Forward queue on LocalQM (SaFQueue@RemoteQM) has a Queue Manager Entry for

TargetQM, but actually pushes to RemoteQM. LocalQM requires a connection definition to RemoteQM,

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQMTargetQueue@TargetQM

SafQueue@TargetQM

remotehost

Remote Queue
TargetQueue@TargetQM

Figure 31. How routes using remote queue definitions take precedence over store-and-forward queue routes

Host
targethost

Queue Manager
TargetQM

Local Queue
TargetQueue

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager

Store And Forward Queue

Targets
TargetQM

resolves toresolves to

SafQueue@RemoteQM

remotehost

RemoteQM

SafQueue@RemoteQM

Figure 32. Pushing S&F queues chained together

72 WebSphere MQ Everyplace V2.0.2

but not to TargetQM. A message can then be transported via the intermediate S&F queue, as shown in

the following diagram:

 This works because the combination of queue resolution and connection resolution on LocalQM results in

the message being put to the S&F queue on RemoteQM, which can then move it to its destination. The

chain of Store and Forward Queues could be arbitrarily long, with each queue manager in the chain

needing to know only about the next queue manager in the chain. The Message Routes express this very

succinctly, as shown in the following diagram:

Home server queues

Home server queues pull messages from store and forward queues. The S&F queue may be a ’pushing’

S&F queue (that is, has a valid connection definition). Home server queues only pull messages across a

single ’hop’, (that is, from a remote queue manager with which it is directly connected) and only pull

messages whose intended destination is the local queue manager - the queue manager upon which the

home server queue resides. A typical Home Server Queue configuration is illustrated below:

Host
targethost

Queue Manager
TargetQM

Local Queue
TargetQueue

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager
RemoteQM

Store And Forward Queue

Targets
TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM
TargetQueue@TargetQM

TargetQueue@TargetQM

SafQueue@RemoteQM SafQueue@RemoteQM

remotehost

Figure 33. Transporting messages via an intermediate S&F queue

Host
targethost

Queue Manager
TargetQM

Host
localhost

Queue Manager
LocalQM

Multi Message Route

Host

Queue Manager

Multi Message Route

remotehost

*@TargetQM

RemoteQM

*@TargetQM

Figure 34. A chain of store and forward queues

Designing your real application 73

The diagram shows a simple HomeServerQueue setup. In this configuration the server queue manager

has no connection definition to the client; instead it has a store queue (that is, a store and forward queue

with no target queue manager) that collects all messages bound for the client. This message collection

embraces all queue destinations on the client.

The client pulls the messages from the store queue using a home server queue pointing at the store

queue on the client. The home server queue never stores messages itself, it collects them from the store

queue and delivers them to their destinations on the client. The client makes the connection request to

the server using its connection definition.

The home server queue ’homeServerQueue@RemoteQM’ attempts to pull messages from the queue

manager ’RemoteQM’. It requires a connection definition to be able to do this. The home server queue is

able to pull messages only if there is a store and forward queue that is storing messages for LocalQM.

Messages that are pulled from RemoteQM are then ’pushed’ to local queues on LocalQM. This is shown

in the following diagram, where a Home Server Queue on LocalQM is pulling messages (for LocalQM)

from RemoteQM. In this case a message for TargetQueue@LocalQM is shown being pulled, and the

resolution at the queue manager has been hidden for clarity. In reality, the Home Server Queue presents

each pulled message to the local queue manager for resolution, as shown in the following diagram:

Host
localhost

Queue Manager
LocalQM

Connection

Host

Queue Manager

Store And Forward Queue

Targets
LocalQM

Listener
DefaultListenerconnects using

pulls from

connects to

remotehost

RemoteQM

RemoteQM

SafQueue@RemoteQM

homeServerQueue@RemoteQM

(FastNetwork:remotehost:8082)

Home Server ‘Queue’

Figure 35. A home server queue configuration

74 WebSphere MQ Everyplace V2.0.2

The pull message route can be viewed at a more abstract level, as shown in the following diagram:

 How are pulled message routes useful, and where would you use them? The most important feature of a

pulled message route is that the flow of messages is under the control of the local queue manager. This

makes it very useful to a client that spends much of its time disconnected. If you had to rely on the

server pushing message, the server would need to continuously poll the client to check if it was available.

This would not be a good solution for large numbers of clients, as much of the servers time would be

spent polling for disconnected clients.

Instead, with a Home Server queue, each client pulls messages when it is connected, and the server only

has to deal with real requests from connected clients. One concrete example of this is the administration

of queue managers that do not have listener capability. Administration messages for the client are placed

upon a Store and Forward queue. The client can then use a Home Server queue to pull these when it is

Host
localhost

Queue Manager
LocalQM

Local Queue
TargetQueue

Host

Queue Manager

Store And Forward Queue

Queue Manager Entry
LocalQM

TargetQueue@LocalQM TargetQueue@LocalQM

TargetQueue@LocalQM

TargetQueue@LocalQM

RemoteQM

homeServerQueue@RemoteQM

remotehost

SafQueue@RemoteQM

Home Server ‘Queue’

Figure 36. A home server queue pulling messages

Host
localhost

Queue Manager
LocalQM

Pull Message Route

Host

Queue Manager

remotehost

*@LocalQM

RemoteQM

Figure 37. An abstract pull message route

Designing your real application 75

connected. Administration reply messages could then be pushed using normal push remote queue, as

shown in the following diagram:

Via connections

Via connections allow messages to be routed via an intermediate queue manager. For example, you might

want messages from LocalQM to travel to TargetQM via RemoteQM. You can already do this with

’pushing’ store and forward queues, but via connections provide another mechanism, as shown in the

following diagram:

Host
localhost

Queue Manager
LocalQM

Pull Message Route

Push Message Route

Host

Queue Manager

admin messages

RemoteQM

remotehost

Admin Replies

Figure 38. Administering queue managers that do not have listener capability

76 WebSphere MQ Everyplace V2.0.2

The diagram above illustrates the components being used. The connection definition called ’TargetQM’ on

LocalQM does not contain the address of TargetQM, but simply refers to the connection definition called

’RemoteQM’. This means that any messages destined for TargetQM will be sent to RemoteQM, and

RemoteQM will be able to move the messages onward. In the diagram above, RemoteQM has the

necessary connection to move the message to TargetQM.

The message flows as expected, as shown in the following diagram:

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Manager
LocalQM

Remote Queue

Connection

ViaConnection

Queue Manager

Remote Queue

Connection
TargetQM
(FastNetwork:targethost:8082)

connects to

connects using

resolves to

connects to

connects using

resolves toconnects via

(FastNetwork:targethost:8082)

TargetQueue@TargetQM

TargetQueue@TargetQM

RemoteQM

RemoteQM

TargetQM(RemoteQM)

Figure 39. Via connections

Designing your real application 77

The Remote Queue on LocalQM uses Connection Resolution to find the Via Connection. This then passes

the message on to the real connection which moves the message to RemoteQM. On RemoteQM queue

resolution proceeds as for the simple case.

You can see the topology most clearly using Message Routes, as shown in the following diagram:

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Manager
LocalQM

Connection

ViaConnection

Queue Manager

Connection
TargetQM
(FastNetwork:targethost:8082)

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

(FastNetwork:targethost:8082)

RemoteQM

RemoteQM

RemoteQueue

RemoteQueue

TargetQM(RemoteQM)

Figure 40. Message flow using a via connection

78 WebSphere MQ Everyplace V2.0.2

This is known as ’chaining remote queues’. The central remote queue can be synchronous, asynchronous,

or even a store and forward queue.

Rerouting with queue manager aliases

Fail-over is a common situation that illustrates the important part that Queue Manager Aliases play in

routing.

In the following examples, you can see a client communicating with a server, and a have a backup server

that can be used if the main server fails, or is taken down for maintenance:

Queue Manager
TargetQM

Queue Manager
LocalQM

Push Message Route
TargetQueue

Queue Manager

Push Message Route
TargetQueue

RemoteQM

@TargetQM @TargetQM

Figure 41. Via connections expressed using message route schema

Designing your real application 79

The diagram above shows the local client queue manager, with a connection to ServerQM and a remote

queue definition for TargetQueue@ServerQM. The server (bottom left) has a local queue as the target for

the example message, and this is mimicked by the backup server (bottom right). Additionally, on the

client queue manager, there is a Queue Manager Alias mapping the name Server to ServerQM. This

mapping is then used for messages put to the server. The message resolution is shown below for the

normal operating configuration, where a message put to TargetQueue@Server is directed to

TargetQueue@ServerQM:

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = ServerQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

Remote QueueRemote Queue
TargetQueue@BackupQMTargetQueue@ServerQM

Figure 42. Queue manager aliases and fail-over.

80 WebSphere MQ Everyplace V2.0.2

The alias maps messages for Server to ServerQM, and this selects the remote queue definition

TargetQueue@ServerQM. If the network administrator needs to route traffic to the backup server, only the

Queue Manager Alias needs to be changed (it is in fact deleted, and recreated with a different target

name, in this case BackupQM):

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = ServerQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

TargetQueue@ServerQM

TargetQueue@ServerQM

TargetQueue@ServerQM

TargetQueue@Server

TargetQueue@BackupQM
Remote Queue

TargetQueue@ServerQM

TargetQueue@ServerQM
Remote Queue

Figure 43. Routing traffic using a ″server″ alias

Designing your real application 81

The change of alias reroutes the message to a different remote queue, and hence on to the backup queue

manager and to TargetQueue@BackupQM. There is a pair of message routes, one to each server, and a

Queue Manager Alias to choose between the message routes, as shown in the following diagram:

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = BackupQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@ServerQM
Remote Queue Remote Queue

TargetQueue@BackupQM

Figure 44. Routing traffic to the backup server, using a ″server″ alias

82 WebSphere MQ Everyplace V2.0.2

The example above required a change to every client on a system that requires rerouting to a backup

server. If there are a large number of clients this might be impractical. In addition, each client requires

two complete message route definitions (a remote queue and a connection definition for each). You can

avoid the need to change the client by having a second server ready to listen on the same address and

port as the first. When the administrator wants to change over the first can be brought down, and the

second can change over. In this situation it might be useful to keep the names of the servers different.

The backup server can be given a Queue Manager Alias mapping BackupQM to ServerQM. This allows

BackupQM to take the place of ServerQM.

MQe-MQ bridge message resolution

A connection between MQe and MQ queue managers involves a collection of objects. The following

diagram shows only the entities that form the communications link between the two queue managers:

Queue Manager
LocalQM

Queue Manager Alias
Server = BackupQM

Push Message Route
TargetQueue

Push Message Route
TargetQueue

Queue Manager
ServerQM

Queue Manager
BackupQM

TargetQueue@BackupQM

TargetQueue@Server

@ServerQM @BackupQM

Figure 45. Choosing between message routes

Designing your real application 83

The important entities are:

v (Bridge)MQeEarthQMBridge - a bridge resource owned and controlled by the MQeEarthQM queue

manager.

v (MQ Queue Manager Proxy)MQSaturnQM - describes MQSaturnQM and how to connect to it.

v (BridgeConnection)MQeEarth.CHANNEL - a communications path between MQeEarthQM and

MQSaturnQM.

v (MQ Server Connection Channel) MQeEarth.CHANNEL - a standard MQ server channel providing an

entry point to MQSaturnQM for MQeEarthQM.

These entities are described in more details in other parts of this documentation. These entities are used

in the following examples of bridge connectivity, but are not shown in the diagrams.

Pulling messages from MQ

By setting up a Transmit queue on MQ, and a bridge listener on an MQe queue manager, you can enable

the queue manager to pull messages from the transmit queue. Although in theory this is sufficient to pull

messages from the transmission queue, you cannot place messages onto the transmission queue without

creating extra queues on an MQ queue manager.

Single pull route:

 To allow the messages to be correctly routed, you can create extra queues on an MQ queue manager. The

simplest form is to create a remote queue on MQ to allow messages addressed to

TargetQueue@MQeEarthQM to be accepted by the MQ queue manager, as shown in the following

diagram:

Host
earth

Queue Manager
MQeEarthQM

Bridge
MQeEarthQMBridge

MQ Queue Manager Proxy
MQSaturnQM

Bridge Connection
MQeEarth.CHANNEL

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Server Connection Channel
MQeEarth.CHANNEL

refers to

connects using

Figure 46. Connecting MQe and MQ queue managers.

84 WebSphere MQ Everyplace V2.0.2

Messages addressed to TargetQueue@MQeEarthQM are placed upon the MQ Transmit queue. The bridge

listener then pulls them from the transmit queue and presents them to the MQe queue manager. Message

resolution then takes place, as shown in the following diagram:

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Bridge
MQeEarthQMBridge

MQ Queue Manager Proxy
MQSaturnQM

Bridge Connection
MQeEarth.CHANNEL

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQeEarthQM

MQ Transmit Queue
MQeEarth.XMITQ

MQ Server Connection Channel
MQeEarth.CHANNEL

refers to

connects using

resolves to

pulls from

uses

MQ Remote Queue

MQSaturnQ@MQSaturnQM

Figure 47. Creating a remote queue on MQ

Designing your real application 85

This is effectively a single pull message route:

Multiple pull route:

 It is generally more efficient to use a multiple pull message route as this requires the same number of

resource definitions, but will handle all the traffic for the MQe queue manager. This is done using a

Remote queue manager alias on MQ (effectively a remote queue where the target queue name is the same

as the target queue manager name), as shown in the following diagram:

Host
earth

Queue Manager
MQeEarthQM

Local Queue
TargetQueue

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeEarth.XMITQ

TargetQueue

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

MQ Remote Queue

MQ Transmit Queue

Figure 48. Bridge listener pulling from an MQe transmit queue

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

TargetQueue@MQeEarthQM

Figure 49. A single pull message route

86 WebSphere MQ Everyplace V2.0.2

Message resolution works as before, but now messages for any queue on MQeEarthQM will be moved,

making this a multiple pull message route, as shown in the following diagram:

Pushing messages to MQ

Pushing messages to MQ is quite straightforward. Again you need to presume the presence of the

common components described in “MQe-MQ bridge message resolution” on page 83, but now you need

to create a Bridge Queue which is an MQe Remote queue that refers to a queue on an MQ queue

manager, as shown in the following diagram:

Host
earth

Queue Manager
MQeEarthQM

Local Queue
TargetQueue

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeEarth.XMITQ

MQeEarthQM

pulls from

uses

MQ Transmit Queue

MQ Remote Queue

Figure 50. A multiple pull message route

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeEarthQM

Figure 51. Multiple pull route, expressed using message route schema

Designing your real application 87

Messages travel as expected across this remote queue definition, as shown below:

 This is exactly the same as a simple push message route between two queue managers, as shown below:

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

resolves to

MQSaturnQ@MQSaturnQM

Figure 52. Pushing messages to MQ

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue
MQSaturnQ@MQSaturnQM

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

Figure 53. Messages travelling across a remote queue definition

88 WebSphere MQ Everyplace V2.0.2

Connecting a client to MQ via a bridge

A common topology is to allow messages to flow between MQ and a client MQe queue manager. This

cannot happen directly, but requires an intermediate bridge-enabled MQeQueue manager. The client can

then be a small footprint device with no knowledge of MQ. Additions are needed to allow a client

(MQeMoonQM, on a device called moon) to communicate with MQ, as shown in the following diagram:

 This adds the following:

v (Host)moon

v (QueueManager) MQeMoonQM on (Host)moon

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Host
saturn

MQ Queue Manager
MQSaturnQM

@MQSaturnQM

Figure 54. Simplified view of route pushing messages to MQ

Host
moon

Queue Manager
MQeMoonQM

Connection
MQeEarthQM
(FastNetwork:earth:8082)

Host
earth

Queue Manager
MQeEarthQM

Store And Forward Queue

Targets
MQeMoonQM

Listener
DefaultListener

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeMoonQM

connects using

pulls from

connects to

Home Server ‘Queue’
SafQueue@MQeEarthQM

SafQueue@MQeEarthQM

@MQeEarthQM

MQ Remote Queue

Figure 55. A client communicating with MQ

Designing your real application 89

v A connection definition from MQeMoonQM to a matching listener on MQeEarthQM to provide the

connectivity between the two MQe queue managers.

v A store and forward queue on MQeEarthQM that accepts and holds messages for MQeMoonQM, and a

home server queue on MQeMoonQM that pulls messages from the store and forward queue.

v A remote queue definition on the MQ queue manager that routes messages for MQeMoonQM to the

transmission queue MQeEarth.XMITQ. This allows messages for MqeMoonQM to be placed on the

transmission queue, from where they are pulled to MQeEarthQM.

The topology is more readily seen as message routes, as shown in the following diagram:

 Messages can be pushed to MQ by using a via connection to chain remote queues, as shown below:

Host
moon

Queue Manager
MQeMoonQM

Pull Message Route

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM *@MQeEarthQM

Figure 56. Simplified pull routes from MQ through an MQe gateway to an MQe device style queue manager

90 WebSphere MQ Everyplace V2.0.2

Here a via connection has been added to route messages destined for MQSaturnQM vian MQeEarthQM,

and a remote queue definition for MQSaturnQ@MQSaturnQM has been added. The messages can now

flow from the client to MQ, as shown in the following diagram:

Figure 57. Pushing messages using a via connection

Designing your real application 91

This topology is more easily understood as a collection of message routes, as follows:

Host

Queue Manager
MQeMoonQM

Connection
MQeEarthQM(FastNetwork:earth:8082)

ViaConnection
MQSaturnQM(MQeEarthQM)

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM
Remote Queue

moon

Figure 58. Pushing messages to MQ

Host

Queue Manager
MQeMoonQM

Pull Message Route

Push Message Route
MQSaturnQ

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

moon

@MQSaturnQM @MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM
*@MQeEarthQM

Figure 59. Simplified view showing routes which push messages from a device style MQe queue manager to an MQ

queue manager

92 WebSphere MQ Everyplace V2.0.2

Pushing messages to MQ with a via connection

A common topology allows messages to flow between MQ and a client MQe queue manager. This cannot

happen directly, but requires an intermediate bridge-enabled MQeQueue manager. The client can then be

a small footprint device with no knowledge of MQ. If you start with the configuration we have above,

the following additions are needed to allow a client (MQeMoonQM, on a device called moon) to

communicate with MQ, as shown in the following diagram:

 The following have been added:

v (Host)moon

v (QueueManager) MQeMoonQM on (Host)moon

v A connection definition from MQeMoonQM to a matching listener on MQeEarthQM to provide the

connectivity between the two MQe queue managers.

v A store and forward queue on MQeEarthQM that accepts and holds messages for MQeMoonQM, and a

home server queue on MQeMoonQM that pulls messages from the store and forward queue.

v A remote queue definition on the MQ queue manager that routes messages for MQeMoonQM to the

transmission queue MQeEarth.XMITQ. This allows messages for MqeMoonQM to be placed on the

transmission queue, from where they are pulled to MQeEarthQM.

The topology is more readily seen as message routes, as shown in the following diagram:

Host
moon

Queue Manager
MQeMoonQM

Connection
MQeEarthQM
(FastNetwork:earth:8082)

Host
earth

Queue Manager
MQeEarthQM

Store And Forward Queue

Targets
MQeMoonQM

Listener
DefaultListener

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeMoonQM

connects using

pulls from

connects to

Home Server ‘Queue’
SafQueue@MQeEarthQM

SafQueue@MQeEarthQM

@MQeEarthQM

MQ Remote Queue

Figure 60. A client communicating with MQ

Designing your real application 93

Messages can be pushed to MQ by using a via connection to chain remote queues, as shown in the

following diagram:

 Here we have added a via connection, to route messages destined for MQSaturnQM vian MQeEarthQM,

and we have added a remote queue definition for MQSaturnQ@MQSaturnQM. The messages can now

flow from the client to MQ, as shown in the following diagram:

Host
moon

Queue Manager
MQeMoonQM

Pull Message Route

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM *@MQeEarthQM

Figure 61. Simplified pull routes from MQ through an MQe gateway to an MQe device style queue manager

Figure 62. Pushing messages using a via connection

94 WebSphere MQ Everyplace V2.0.2

This topology is more easily understood as a collection of message routes, as shown in the following

diagram:

Host

Queue Manager
MQeMoonQM

Connection
MQeEarthQM(FastNetwork:earth:8082)

ViaConnection
MQSaturnQM(MQeEarthQM)

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM
Remote Queue

moon

Figure 63. Pushing messages to MQ

Host

Queue Manager
MQeMoonQM

Pull Message Route

Push Message Route
MQSaturnQ

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

moon

@MQSaturnQM @MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM
*@MQeEarthQM

Figure 64. Simplified view showing routes which push messages from a device style MQe queue manager to an MQ

queue manager

Designing your real application 95

Security considerations

Remote queue definitions define the security requirements that must be satisfied by channels moving

messages to target queues. The queue manager attribute rule defines the rules for upgrading channels;

consequently with a sufficiently flexible rule, multiple security requirements can be met by a single

channel.

When a message must be stored on a queue, either en route or at the destination, then the queue

attribute rule determines if the channel security meets the requirements of the queue. Note however that

there are message transfers that do not involve a channel, for example, when a home server places a

message it has received from a store queue on to its destination queue. In these cases there are no

security requirements to be satisfied in the transfer, but the message will be stored in its destination

queue in a manner controlled by that queue’s security characteristics. When the home server queue gets

the message from the store queue, a channel is involved (with characteristics determined by the home

server queue and which must be acceptable to the store queue). However, when the home server queue

passes the message to the destination queue, there are no channel characteristics to be compared with the

destination queue’s security characteristics.

In a single hop, message transfer, the security checking is between the source and target queue managers.

In multiple hop, asynchronous message transfers, security checking occurs stepwise over each hop.

Resolution rules

Resolution rules always start with a message being presented to a queue manager, with a specified

destination queue manager name and a specified destination queue name. This is equivalent to the API

call putMessage(queueManagerName, queueName, msg,....). The destinationQueueManagerName and

destinationQueueName must identify a local queue onto which the message should eventually be placed.

Rule 1: Resolve queue manager aliases

If the queue manager has an alias mapping destinationQueueManagerName to another name, for

example realQueueManagerName, then this substitution is made first, and the call:

putMessage(destinationQueueManagerName, destinationQueueName

is effectively transformed to

putMessage(realQueueManagerName, destinationQueueName.

From this point on destinationQueueManagerName is completely forgotten, and realQueueManagerName

is used.

Queue resolution

The queue manager now looks for a queue to place the message on, selecting the queue with the best

match according to the rules shown in Exact match, Queue alias match, S&F queue, Queue discovery, and

Failure, below:

’Exact’ match

Local queue or remote queue definition where the queue name matches the destinationQueueName and

the queue’s queue manager name matches the destinationQueueManagerName.

The term ’queues queue manager name’ needs to be explained further. For a local queue this is the same

as the name of the queue manager where the queue resides. For a local queue localQ@localQM, localQM

is the queue’s queue manager name.

96 WebSphere MQ Everyplace V2.0.2

For a remote queue definition remoteQ@remoteQM residing on localQM, the queues queue manager

name is remoteQM.

Queue Alias Match

If a queue (remote definition or local) has a matching queue manager name and an alias and this alias

matches destinationQueueName then this queue will considered a match. Effectively the put message

call:

putMessage(destinationQueueManagerName, queueAliasName

is transformed to

putMessage(destinationQueueManagerName, realQueueName.

at this point. The original name of the queue used in the put call is entirely forgotten from this point on

in the resolution.

S&F queue

If there is no exact match the queue manager searches for an inexact match. An inexact math is a Store

and Forward queue that will accept messages for the given queue manager name. The search for a store

and forward queue ignores the destinationQueueName. If an appropriate Store And Forward queue is

found, then the message is put to it, using the destinationQueueManagerName and

destinationQueueName, and the StoreAndForward queue stores the destination with the message.

Queue Discovery

If no queue has been found that will accept the message, and the message is not for a local queue, the

queue manager tries to find the remote destination queue and create a remote queue definition for it

automatically. This is called queue discovery. The queue manager can only perform discovery if:

v There is a connection definition to the destination queue manager

v There is an active communications path to the destination queue manager

v The destination queue exists

v There is a via connection to a queue manager where a remote connection definition exists

If discovery is successful, the newly created remote queue definition is used. This behaves as if an exact

match on a remote queue definition had been found in the first place.

The remote queue definition created by discovery is always synchronous, even if the queue to which it

resolves is asynchronous, or is a Store and forward queue.

Failure

If no queue has been found by the above steps, the message put is deemed to have failed.

Push across network

A message placed upon a remote queue is pushed across the network. The queue first locates a

connection definition with the correct name, and then puts the message to the remote queue manager

using the connection definition as the entry to the communications link.

The queue seeks a connection definition whose name is the same as the queue’s queue manager name.

The connection may be a normal connection, or a via connection.

Designing your real application 97

Normal

A normal connection points to a listener upon the destination queue manager. The put message

command is routed directly to the destination queue manager. The putMessage call is then resolved just

as if it had been placed on the queue manager via the API.

Via

A via connection points at another connection called the ’real’ connection. All commands performed on

the via connection are delegated to the real connection. Via connections can be chained, and so the

command may travel ’via’ several indirections before reach a real connection. The names of the put

message destination are not changed by the use of a via connection.

Eventually the command is routed to a ’normal’ connection definition, then across the network to a

queue manager, where the message put is resolved.

Home server pulling

Home server queues pull messages from Store and forward queues. The route of the pull spans only a

single network hop. Only messages for the queue manager hosting the home server queue are pulled

down. Messages pulled from the store and forward queue are presented to the queue manager using a

normal put method call, and are then resolved as normal. The messages pulled down this way should all

be destined for local queues.

Using aliases

Introduction to the use of aliases with MQe queues and queue managers

Aliases can be assigned for MQe queues to provide a level of indirection between the application and the

real queues. For example, a queue can be given a number of aliases and messages sent to any of these

names will be accepted by the queue.

Using queue aliases

See “Using queue aliases” on page 13 for information about the ways in which aliasing can be used with

MQe queues.

Using queue manager aliases

This topic describes the ways in which aliasing can be used with MQe queue managers.

Addressing a queue manager with several different names

Suppose you have a queue manager SERVER23QM on the server SAMPLEHOST, listening on port 8082. You

have an application SERVICEX that accesses this queue manager, and wants to refer to the queue manager

as SERVICEXQM. This can be achieved using an alias for the queue manager as follows:

v Configure a connection on the SERVER23QM :

Connection Name/Target queue manager:

SERVICEXQM

Description:

Alias definition to enable SERVER23QM to receive messages sent to SERVICEXQM

Channel:

″null″

98 WebSphere MQ Everyplace V2.0.2

Network Adapter:

″null″

Network adapter options:

″null″
v Create a local queue on the SERVER23QM queue manager:

Queue Name:

SERVICEXQ

Queue Manager:

SERVER23QM

The server-side application takes messages from this queue, and process them, sending messages back

to the client.

an MQe application can now put messages to the SERVICEXQ on either the SERVER23QM queue manager, or

the SERVICEXQM queue manager. In either case, the message will arrive on the SERVICEXQ.

 If the SERVICEXQ queue is moved to another queue manager, the connection alias can be set up on the

new queue manager, and the applications do not need to be changed.

Different routings from one queue manager to another

Using the scenario in “Addressing a queue manager with several different names” on page 98, an MQe

queue manager on a mobile device (MOBILE0058QM) can now access the SERVICEXQ queue in a number of

different ways.

Aliasing on the sending side:

 Using this method of routing, the receiving queue manager does not know that the sending queue

manager has given it an alias name. The aliasing is confined to the sending queue manager only.

On the mobile device:

v Create a connection from MOBILE0058QM to the SERVER23QM queue manager:

Connection name

SERVER23QM

Network Adapter parameter

Network:SAMPLEHOST:8082

v Create an alias called SERVICEXQM for queue manager SERVER23QM

SERVER23QM queue manager

Connection
name=SERVICEQM

channel=null
adapter=null

adapter parameters=null

SERVICEX queue

PutMessage (”SERVICEQM”...)

PutMessage (”SERVICEX”...)

Both messages arrive at SERVICEX queue

Figure 65. Addressing a queue manager with two different names

Designing your real application 99

When a message is sent from the mobile device application to the SERVICEXQM queue manager, MQe maps

the SERVICEXQM name to SERVER23QM in the connection , and sends the message to the SERVER23QM queue

manager.

If the Mobile58QM then wished to send its messages to a different server queue manager, Server24QM, it

would remove the alias SERVICEXQM from the Server23QM connection, and add it to a Server24QM

connection. This has no impact on the receiving queue managers, or the sending applications.

Virtual queue manager on the receiving side:

 Using this method, the sending queue managers think that their messages are routed through an

intermediate queue manager before reaching the target queue manager. The target queue manager

doesn’t actually exist. The ’intermediate’ queue manager captures all the message traffic for this virtual

target queue manager.

On the mobile device:

v Create a connection from MOBILE0058QM to the SERVER23QM queue manager:

Connection name

SERVER23QM

Network Adapter parameter

Network:SAMPLEHOST:8082

v Create a second connection to the SERVICEXQM that routes messages through the first connection:

Connection name

SERVICEXQM

Network Adapter parameter

SERVER23QM

Note: This is not an alias. It is a via routing, indicating that messages headed for SERVICEXQM are to be

routed via the SERVER23QM queue manager on the receiving side.

Mobile58QM queue manager

Connection
name=”Server24QM”

channel=DefaultChannel
adapter=Network:server24:8081

Alias=”SERVICEXQM”

Server23QM queue manager

Queue

Server24QM queue manager

Queue

PutMessage(”SERVICEXQM)

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Alias=”SERVICEXQM”

The message goes to either Server23QM or Server24QM
depending on which connection the alias is attached to

Figure 66. Addressing a queue manager with two different names

100 WebSphere MQ Everyplace V2.0.2

The via routing on the mobile device causes any messages that are put to SERVICEXQM to be directed to

Server23QM. Server23QM gets the messages and notes that they are destined for the SERVICEXQM queue

manager. It resolves the SERVICEXQM name and finds that it is an alias which represents the Server23QM

queue manager (itself). The Server23QM queue manager then accepts the messages and puts them onto

the queue.

 As an alternative to the above, you can keep the SERVICEXQM in existence, but move it from its original

machine to the same machine (but a different JVM) as the Server23QM queue manager. SERVICEXQM needs

to listen on a different port, so the connection from Server23QM to SERVICEXQM needs to be changed as

well.

Using adapters

Describes the use of storage adapters and communications adapters in MQe applications, and explains

how to write your own adapters

This chapter describes how to implement adapters in an MQe application. You can use MQe adapters to

map MQe to storage or communications device interfaces. You can also write your own adapters.

This chapter contains the following sections:

v Storage adapters

v Communications adapters

v How to write adapters

Storage adapters

MQe provides the following storage adapters:

Storage adapters

MQeCaseInsensitiveDiskAdapter

Provides support for case insensitive matching when locating a specific file in permanent storage.

MQeDiskFieldsAdapter

Provides support for reading and writing to persistent storage.

Mobile58QM queue manager

Connection
name=”SERVICEXQM”

channel=DefaultChannel
adapter=Server23QM

Server23QM queue manager

Target
queue

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Connection
name=”Server23QM”

channel=null
adapter=null

Alias=”SERVICEXQM”

PutMessage(SERVICEXQM)
Queue manager SERVICEXQM
does not really exist

Figure 67. Addressing a queue manager with two different names

Designing your real application 101

MQeMappingAdapter

Provides support for mapping long file names to short file names.

MQeMemoryFieldsAdapter

Provides support for reading and writing to non-persistent storage.

MQeMidpFieldsAdapter

Provides support for reading and writing to permanent storage within a MIDP environment.

MQeReducedDiskFieldsAdapter

Provides support for high speed writing to permanent storage.

Note that you cannot alter the behavior of these adapters. For more information on the specific behavior

of each storage adapter, refer to the MQe Java Programming Reference and the MQe C Programming

Reference.

Communications adapters

MQe provides the following communications adapters:.

Communications adapters

MQeMidpHttpAdapter

Provides support for reading and writing to the network using the HTTP 1.0 protocol in a MIDP

environment.

MQeTcpipHistoryAdapter

Provides support for reading and writing to the network using the TCP protocol. This adapter

provides the best TCP performance by chaching recently used data. Therefore, we recommend

that you use this adapter.

MQeTcpipLengthAdapter

Provides support for reading and writing to the network using the TCP protocol.

MQeTcpipHttpAdapter

Provides support for reading and writing to the network using the HTTP 1.0 protocol. Also

provides support for passing HTTP requests through proxy servers.

Note: If using the Microsoft® JVM, the http:proxyHost and http:proxyPort properties are

automatically set by the JVM using the settings in the Internet Explorer. If the use of proxies is

not required for MQe, set the http.proxySet Java property to false.

MQeUdpipBasicAdapter

Provides support for reading and writing to the network using the UDP protocol. This adapter

uses only one port on the server. The behavior of this adapter is particularly sensitive to the

various Java property settings, as detailed in the MQe Java Programming Reference.

MQeWESAuthenticationAdapter

Provides support for passing HTTP requests through MQe authentication proxy servers and

transparent proxy servers.

You can modify the behavior of these adapters using Java properties. For more information on how to

use these properties and their effect on each communications adapter, refer to the MQe Java

Programming Reference.

You can also write your own adapters to tailor MQe for your own environment. The next section

describes some adapter examples that are supplied to help you with this task.

102 WebSphere MQ Everyplace V2.0.2

How to write adapters

You can also write your own adapters to tailor MQe for your own environment. This topic describes

some adapter examples that are supplied to help you with this task.

This example is not intended as a replacement for the adapters that are supplied with MQe, but as a

simple introduction on how to create a communications adapter.

To use your communications adapter, you must specify the correct class name when creating the listener

on the server queue manager, and specify the connection definition on the client queue manager.

All communications adapters must inherit from MQeCommunicationsAdapter and must implement the

required methods. In order to show how this might be done we shall use the example adapter,

examples.adapters.MQeTcpipLengthGUIAdapter. This is a simple example that accepts data to be written.

It also places the data length and the amount of data to be written to standard out, at the front of the

data. When the adapter reads data, the data length is written to standard out. Proper error checking and

recovery is not carried out. This must be added to any adapter written by a user.

MQe adapters use the default constructor. For this reason, an activate() method is used in order to set

up the adapter with an open() method used to prepare the adapter for communication.

The activate() method is called only once in the life cycle of an adapter and is, therefore, used to set up

the information from MQePropertyProvider. The MQePropertyProvider looks internally to verify that the

specified property is available. If it is not available, it checks the Java properties. In this way, it is possible

for a user to specify a property that may be set by the application or JVM command line. The

MQeCommunicationsAdapter provides two variables that allow the adapter to identify its role within the

communications conversation:

v If the adapter is being used by the MQeListener, the variable listeningAdapter is set to true.

v If the adapter has been created by the listening adapter in response to an incoming request, the

responderAdapter variable is set to true.

The following code, taken from the activate() method, shows how to obtain the information from the

MQePropertyProvider.

 if (!listeningAdapter) {

 // if we are not a listening adapter we need the

 address of the server

 address = info.getProperty

 (MQeCommunicationsAdapter.COMMS_ADAPTER_ADDRESS);

 }

The open() method is called before each conversation and must, therefore, be used to set information that

needs to be reset for each request or response. For example, an adapter that is not persistent needs to

create a socket each time it is opened. The following code shows the use of the variables that identify the

role of the adapter role within the conversation:

 if (listeningAdapter && null == serverSocket) {

 serverSocket = new ServerSocket(port);

 } else if (!responderAdapter && null == mySocket) {

 mySocket = new Socket(InetAddress.getByName(address), port);

 }

Once the activate() and open() methods have been called, the listening adapter waitForContact method

is called. This method must wait at named location. In an IP network, this will be a named port. When a

request is received, a new adapter is created.

Note: This method must set the listeningAdapter to false and the responderAdapter to true.

Designing your real application 103

Once the adapter has been set up correctly, you must must returned it to the caller. The following code

shows how to do this:

 MQeTcpipLengthGUIAdapter clientAdapter =

 (MQeTcpipLengthGUIAdapter)

 MQeCommunicationsAdapter.createNewAdapter(info);

 // set the boolean variables so the adapter

 // knows it is a responder. the listening

 // variable will have been set to true as

 // the MQePropertyProvider has the relevant

 // information to create

 // this listening adapter. We must therefore reset the

 // listeningAdapter variable to false and the

 //responderAdapter variable to true.

 clientAdapter.responderAdapter = true;

 clientAdapter.listeningAdapter = false;

 // Assign the new socket to this new adapter

 clientAdapter.setSocket(clientSocket);

 return clientAdapter;

The initiator adapter and responder adapter are responsible for the main part of the conversation. The

initiator starts the conversation. The responder is created by the listening adapter, reads the request that

is passed back to MQe, which then writes a response. The adapter determines how the read and the write

are undertaken. The example uses a BufferedInputStream and a BufferedOutputStream.

Note: Use a a non-blocking mode of reading and writing. This enables the adapter to respond to requests

to shutdown.

The following code, taken from the waitForContact() method, shows how the non-blocking read can be

written. As MQe supports all Java runtime environments we are unable to use Java version 1.4 specific

classes for our examples, although this version does contain new non-blocking classes

 do {

 try {

 clientSocket = serverSocket.accept();

 } catch (InterruptedIOException iioe) {

 if (MQeThread.getDemandStop()) {

 throw iioe;

 }

 }

 } while (null == clientSocket);

An example communications adapter

This example uses the standard Java classes to manipulate TCPIP and adds a protocol of its own on top.

This protocol has a header consisting of a four byte length of the data in the data packet followed by the

actual data. This is so that the receiving end knows how much data to expect.

This example is not meant as a replacement for the adapters that are supplied with MQe but rather as a

simple introduction into how to create communications adapters. In reality, much more care should be

taken with error handling, recovery, and parameter checking. Depending on the MQe configuration used,

the supplied adapters may be sufficient.

A new class file is constructed, inheriting from MQeAdapter. Some variables are defined to hold this

adapter’s instance information, that is the name of the host, port number and the output stream objects.

Note: With communications, ensure that the connection information is correct. For example, the http

connection in J2ME has no timeout implementation. In J2SE, the client times out with an IO Exception. In

Midp the server times out. If the default read-timeout has been increased for the J2SE client, the same

104 WebSphere MQ Everyplace V2.0.2

exception is thrown, that is com.ibm.mqe.MQeException: Data: (code=7). This is because the server writes

back the exception to the client and the client cannot restore this data.

The MQeAdapter constructor is used for the object, so no additional code needs to be added for the

constructor.

public class MyTcpipAdapter extends MQeAdapter

 {

 protected String host = "";

 protected int port = 80;

 protected Object readLock = new Object();

 protected ServerSocket serversocket = null;

 protected Socket socket = null;

 protected BufferedInputStream stream_in = null;

 protected BufferedOutputStream stream_out = null;

 protected Object writeLock = new Object();

Next the activate method is coded. This is the method that extracts from the file descriptor the name of

the target network address if a connector, or the listening port if a listener. The fileDesc parameter

contains the adapter class name or alias name, and any network address data for the adapter for example

MyTcpipAdapter:127.0.0.1:80. The thisParam parameter contains any parameter data that was set when

the connection was defined by administration, the normal value would be ″?Channel″. The thisOpt

parameter contains the adapter setup options that were set by administration, for example

MQe_Adapter_LISTEN if this adapter is to listen for incoming connections.

 public void activate(String fileDesc,

 Object thisParam,

 Object thisOpt,

 int thisValue1,

 int thisValue2) throws Exception

 {

 super.activate(fileDesc,

 thisParam,

 thisOpt,

 thisValue1,

 thisValue2);

 /* isolate the TCP/IP address -

 "MyTcpipAdapter:127.0.0.1:80" */

 host = fileId.substring(fileId.indexOf(’:’) + 1);

 i = host.indexOf(’:’);

 /* find delimiter */

 if (i > -1)

 /* find it ? */

 {

 port = (new Integer(host.substring(i + 1))).intValue();

 host = host.substring(0, i);

 }

 }

The close method needs to be defined to close the output streams and flush any remaining data from the

stream buffers. Close is called many time during a session between a client and a server, however, when

the channel has completely finished with the adapter it calls MQe with the option MQe_Adapter_FINAL. If

the adapter is to have one socket connection for the life of the channel then the call with

MQe_Adapter_FINAL set, is the one to use to actually close the socket, other calls should just flush the

buffers. If however a new socket is to be used on each request, then each call to MQe should close the

socket, subsequent open calls should allocate a new socket:

 public void close(Object opt) throws Exception

 {

 if (stream_out != null)

 /* output stream ? */

 {

 stream_out.flush();

 /* empty the buffers */

 stream_out.close();

Designing your real application 105

/* close it */

 stream_out = null;

 /* clear */

 }

 if (stream_in != null)

 /* input stream ? */

 {

 stream_in.close();

 /* close it */

 stream_in = null;

 /* clear */

 }

 if (socket != null)

 /* socket ? */

 {

 socket.close();

 /* close it */

 socket = null;

 /* clear */

 }

 if (serversocket != null)

 /* serversocket ? */

 {

 serversocket.close();

 /* close it */

 serversocket = null;

 /* clear */

 }

 host = "";

 port = 80;

 }

The control method needs to be coded to handle an MQe_Adapter_ACCEPT request, to accept an incoming

connect request. This is only allowed if the socket is a listener (a server socket). Any options that were

specified for the listen socket (excluding MQe_Adapter_LISTEN) are copied to the socket created as a result

of the accept. This is accomplished by the use of another control option MQe_Adapter_SETSOCKET this

allows a socket object to be passed to the adapter that was just instantiated.

public Object control(Object opt, Object ctrlObj) throws Exception

 {

 if (checkOption(opt, MQe.MQe_Adapter_LISTEN) &&

 checkOption(opt, MQe.MQe_Adapter_ACCEPT))

 {

 /* CtrlObj - is a string representing the

 file descriptor of the */

 /* MQeAdapter object to be returned e.g. "MyTcpip:" */

 Socket ClientSocket = serversocket.accept();

 /* wait connect */

 String Destination = (String) ctrlObj;

 /* re-type object*/

 int i = Destination.indexOf(’:’);

 if (i < 0)

 throw new MQeException(MQe.Except_Syntax,

 "Syntax:" + Destination);

 /* remove the Listen option */

 String NewOpt = (String) options;

 /* re-type to string */

 int j = NewOpt.indexOf(MQe.MQe_Adapter_LISTEN);

 NewOpt = NewOpt.substring(0, j) +

 NewOpt.substring

 (j + MQe.MQe_Adapter_LISTEN.length());

 MQeAdapter Adapter = MQe.newAdapter

 (Destination.substring(0,i+1),

 parameter,

 NewOpt + MQe_Adapter_ACCEPT,

 -1,

 -1);

106 WebSphere MQ Everyplace V2.0.2

/* assign the new socket to this new adapater */

 Adapter.control(MQe.MQe_Adapter_SETSOCKET, ClientSocket);

 return(Adapter);

 }

 else

 if (checkOption(opt, MQe.MQe_Adapter_SETSOCKET))

 {

 if (stream_out != null) stream_out.close();

 if (stream_in != null) stream_in .close();

 if (ctrlObj != null)

 /* socket supplied ?*/

 {

 socket = (Socket) ctrlObj;

 /* save the socket */

 stream_in = new BufferedInputStream (socket.getInputStream ());

 stream_out = new BufferedOutputStream(socket.getOutputStream());

 }

 else

 return(super.control(opt, ctrlObj));

 }

The open method needs to check for a listening socket or a connector socket and create the appropriate

socket object. Reinitialization of the input and output streams is achieved by using the control method,

passing it a new socket object. The opt parameter may be set to MQe_Adapter_RESET, this means that any

previous operations are now complete any new reads or writes constitute a new request.

 public void open(Object opt) throws Exception

 {

 if (checkOption(MQe.MQe_Adapter_LISTEN))

 serversocket = new ServerSocket(port, 32);

 else

 control(MQe.MQe_Adapter_SETSOCKET,

 new Socket(host, port));

 }

The read method can take a parameter specifying the maximum record size to be read.

This example calls internal routines to read the data bytes and do error recovery (if appropriate) then

return the correct length byte array for the number of bytes read. Ensure that only one read at a time

occurs on this socket. The opt parameter may be set to:

MQe_Adapter_CONTENT

read any message content

MQe_Adapter_HEADER

read any header information
{ public byte[] read(Object opt, int recordSize) throws Exception

 int Count = 0;

 /* number bytes read */

 synchronized (readLock)

 /* only one at a time */

 {

 if (checkOption(opt, MQe.MQe_Adapter_HEADER))

 {

 byte lreclBytes[] = new byte[4];

 /* for the data length */

 readBytes(lreclBytes, 0, 4);

 /* read the length */

 int recordSize = byteToInt(lreclBytes, 0, 4);

 }

 if (checkOption(opt, MQe.MQe_Adapter_CONTENT))

 {

 byte Temp[] = new byte[recordSize];

 /* allocate work array */

Designing your real application 107

Count = readBytes(Temp, 0, recordSize);/* read data */

 }

 }

 if (Count < Temp.length)

 /* read all length ? */

 Temp = MQe.sliceByteArray(Temp, 0, Count);

 return (Temp);

 /* Return the data */

 }

The readByte method is an internal routine designed to read a single byte of data from the socket and to

attempt to retry any errors a specific number of times, or throw an end of file exception if there is no

more data to be read.

 protected int readByte() throws Exception

 {

 int intChar = -1;

 /* input characater */

 int RetryValue = 3;

 /* error retry count */

 int Retry = RetryValue + 1;

 /* reset retry count */

 do{

 /* possible retry */

 try

 /* catch io errors */

 {

 intChar = stream_in.read();

 /* read a character */

 Retry = 0;

 /* dont retry */

 }

 catch (IOException e)

 /* IO error occured */

 {

 Retry = Retry - 1;

 /* decrement */

 if (Retry == 0) throw e;

 /* more attempts ? */

 }

 } while (Retry != 0);

 /* more attempts ? */

 if (intChar == -1)

 /* end of file ? */

 throw new EOFException();

 /* ... yes, EOF */

 return(intChar);

 /* return the byte */

 }

The readBytes method is an internal routine designed to read a number of bytes of data from the socket

and to attempt to retry any errors a specific number of times, or throw an end of file exception if there is

no more data to be read.

 protected int readBytes(byte buffer[],

 int offset, int recordSize)

 throws Exception

 {

 int RetryValue = 3;

 int i = 0;

 /* start index */

 while (i < recordSize)

 /* got it all in yet ? */

 {

 /* ... no */

 int NumBytes = 0;

 /* read count */

108 WebSphere MQ Everyplace V2.0.2

/* retry any errors based on the QoS Retry value */

 int Retry = RetryValue + 1;

 /* error retry count */

 do{

 /* possible retry */

 try

 /* catch io errors */

 {

 NumBytes = stream_in.read(buffer,

 offset + i, recordSize - i);

 Retry = 0;

 /* no retry */

 }

 catch (IOException e)

 /* IO error occured */

 {

 Retry = Retry - 1;

 /* decrement */

 if (Retry == 0) throw e;

 /* more attempts ? */

 }

 } while (Retry != 0);

 /* more attempts ? */

 /* check for possible end of file */

 if (NumBytes < 0)

 /* errors ? */

 throw new EOFException();

 /* ... yes */

 i = i + NumBytes;

 /* accumulate */

 } return (i);

 /* Return the count */

 }

The readln method reads a string of bytes terminated by a 0x0A character it will ignore 0x0D characters.

 {

 synchronized (readLock)

 /* only one at a time */

 {

 /* ignore the 4 byte length */

 byte lreclBytes[] = new byte[4]; /* for the data length */

 readBytes(lreclBytes, 0, 4);

/* read the length */

 int intChar = -1;

 /* input characater */

 StringBuffer Result = new StringBuffer(256);

 /* read Header from input stream */

 while (true)

 /* until "newline" */

 {

 intChar = readByte();

/* read a single byte */

 switch (intChar)

/* what character */

 {

 case -1:

/* ... no character */

 throw new EOFException();

/* ... yes, EOF */

 case 10:

/* eod of line */

 return(Result.toString());

/* all done */

 case 13:

/* ignore */

Designing your real application 109

break;

 default:

/* real data */

 Result.append((char) intChar);

/* append to string */

 }

/* end of line ? */

 }

 }

 }

The status method returns status information about the adapter. In this example it returns for the option

MQe_Adapter_NETWORK the network type (TCPIP), for the option MQe_Adapter_LOCALHOST it returns the tcpip

local host address.

public String status(Object opt) throws Exception

 {

 if (checkOption(opt, MQe.MQe_Adapter_NETWORK))

 return("TCPIP");

 else

 if (checkOption(opt, MQe.MQe_Adapter_LOCALHOST))

 return(InetAddress.getLocalHost().toString());

 else

 return(super.status(opt));

 }

The write method writes a block of data to the socket. It needs to ensure that only one write at a time

can be issued to the socket. In this example it calls an internal routine writeBytes to write the actual data

and perform any appropriate error recovery.

The opt parameter may be set to:

MQe_Adapter_FLUSH

flush any data in the buffers

MQe_Adapter_HEADER

write any header records

MQe_Adapter_HEADERRSP

write any header response records
 public void write(Object opt, int recordSize, byte data[])

 throws Exception

 {

 synchronized (writeLock)

 /* only one at a time */

 {

 if (checkOption(opt, MQe.MQe_Adapter_HEADER) ||

 checkOption(opt, MQe.MQe_Adapter_HEADERRSP))

 writeBytes(intToByte(recordSize), 0, 4);

 /* write length*/

 writeBytes(data, 0, recordSize);

 /* write the data */

 if (checkOption(opt, MQe.MQe_Adapter_FLUSH))

 stream_out.flush();

 /* make sure it is sent */

 }

 }

The writeBytes is an internal method that writes an array (or partial array) of bytes to a socket, and

attempt a simple error recovery if errors occur.

protected void writeBytes(byte buffer[], int offset, int recordSize)

 throws Exception

 {

110 WebSphere MQ Everyplace V2.0.2

if (buffer != null)

 /* any data ? */

 {

 /* break the data up into manageable chuncks */

 int i = 0;

 /* Data index */

 int j = recordSize;

 /* Data length */

 int MaxSize = 4096;

 /* small buffer */

 int RetryValue = 3;

 /* error retry count */

 do{

 /* as long as data */

 if (j < MaxSize)

 /* smallbuffer ? */

 MaxSize = j;

 int Retry = RetryValue + 1;

 /* error retry count */

 do{

 /* possible retry */

 try

 /* catch io errors */

 {

 stream_out.write(buffer, offset + i, MaxSize);

 Retry = 0;

 /* don’t retry */

 }

 catch (IOException e)

 /* IO error occured */

 {

 Retry = Retry - 1;

 /* decrement */

 if (Retry == 0) throw e;

 /* more attempts ? */

 }

 } while (Retry != 0);

 /* more attempts ? */

 i = i + MaxSize;

 /* update index */

 j = j - MaxSize;

 /* data left */

 } while (j > 0);

 /* till all data sent */

 }

 }

The writeLn method writes a string of characters to the socket, terminating with 0x0A and 0x0D

characters.

The opt parameter may be set to:

MQe_Adapter_FLUSH

flush any data in the buffers

MQe_Adapter_HEADER

write any header records

MQe_Adapter_HEADERRSP

write any header response records
 public void writeln(Object opt, String data) throws Exception

 {

 if (data == null)

 /* any data ? */

Designing your real application 111

data = "";

 write(opt, -1, MQe.asciiToByte(data + "\r\n"));

 /* write data */

 }

This is now a complete (though very simple) TCPIP adapter that will communicate to another copy of

itself, one of which was started as a listener and the other started as a connector.

An example message store adapter

This example creates an adapter for use as an interface to a message store. It uses the standard Java i/o

classes to manipulate files in the store.

This example is not meant as a replacement for the adapters that are supplied with MQe, but rather as a

simple introduction to creating a message store adapter.

A new class file is constructed, inheriting from MQeAdapter. Some variables are defined to hold this

adapter’s instance information, such as the name of the file/message and the location of the message

store.

The MQeAdapter constructor is used for the object, so no additional code needs to be added for the

constructor.

public class MyMsgStoreAdapter extends MQeAdapter

 implements FilenameFilter

 {

 protected String filter = "";

 /* file type filter */

 protected String fileName = "";

 /* disk file name */

 protected String filePath = "";

 /* drive and directory */

 protected boolean reading = false;

/* opened for reading */

 protected boolean writing = false;

Because this adapter implements FilenameFilter, the following method must be coded. This is the filtering

mechanism that is used to select files of a certain type within the message store.

 public boolean accept(File dir, String name)

 {

 return(name.endsWith(filter));

 }

Next the activate method is coded. This is the method that extracts, from the file descriptor, the name of

the directory to be used to hold all the messages.

The Object parameter on the method call may be an attribute object. If it is, this is the attribute that is

used to encode or decode the messages in the message store.

The Object options for this adapter are:

v MQe_Adapter_READ

v MQe_Adapter_WRITE

v MQe_Adapter_UPDATE

Any other options should be ignored.

public void activate(String fileDesc,

 Object param,

 Object options,

 int value1,

112 WebSphere MQ Everyplace V2.0.2

int value2) throws Exception

 {

 super.activate(fileDesc, param, options, lrecl, noRec);

 filePath = fileId.substring(fileId.indexOf(’:’) + 1);

 String Temp = filePath;

 /* copy the path data */

 if (filePath.endsWith(File.separator))

 /* ending separator ? */

 Temp = Temp.substring(0, Temp.length() -

 File.separator.length());

 else

 filePath = filePath + File.separator;

 /* add separator */

 File diskFile = new File(Temp);

 if (! diskFile.isDirectory())

 /* directory ? */

 if (! diskFile.mkdirs())

 /* does mkDirs work ? */

 throw new MQeException(MQe.Except_NotAllowed,

 "mkdirs ’" + filePath + "’ failed");

 filePath = diskFile.getAbsolutePath() + File.separator;

 this.open(null);

 }

The close method disallows reading or writing.

public void close(Object opt) throws Exception

 {

 reading = false;

/* not open for reading*/

 writing = false;

/* not open for writing*/

 }

The control method needs to be coded to handle an MQe_Adapter_LIST that is, a request to list all the

files in the directory that satisfy the filter. Also to handle an MQe_Adapter_FILTER that is a request to set a

filter to control how the files are listed.

public Object control(Object opt, Object ctrlObj) throws Exception

 {

 if (checkOption(opt, MQe.MQe_Adapter_LIST))

 return(new File(filePath).list(this));

 else

 if (checkOption(opt, MQe.MQe_Adapter_FILTER))

 {

 filter = (String) ctrlObj;

 /* set the filter */

 return(null);

 /* nothing to return */

 }

 else

 return(super.control(opt, ctrlObj));

 /* try ancestor */

 }

The erase method is used to remove a message from the message store.

 public void erase(Object opt) throws Exception

 {

 if (opt instanceof String)

 /* select file ? */

 {

 String FN = (String) opt;

 /* re-type the option */

 if (FN.indexOf(File.separator) > -1)

 /* directory ? */

 throw new MQeException(MQe.Except_Syntax,

Designing your real application 113

"Not allowed");

 if (! new File(filePath + FN).delete())

 throw new MQeException(MQe.Except_NotAllowed,

 "Erase failed");

 }

 else

 throw new MQeException(MQe.Except_NotSupported,

 "Not supported");

 }

The open method sets the Boolean values that permit either reading of messages or writing of messages.

public void open(Object opt) throws Exception

 {

 this.close(null);

 /* close any open file */

 fileName = null;

 /* clear the filename */

 if (opt instanceof String)

 /* select new file ? */

 fileName = (String) opt;

 /* retype the name */

 reading = checkOption(opt, MQe.MQe_Adapter_READ) ||

 checkOption(opt, MQe.MQe_Adapter_UPDATE);

 writing = checkOption(opt, MQe.MQe_Adapter_WRITE) ||

 checkOption(opt, MQe.MQe_Adapter_UPDATE);

 }

The readObject method reads a message from the message store and recreates an object of the correct

type. It also decrypts and decompresses the data if an attribute is supplied on the activate call. This is a

special function in that a request to read a file that satisfies the matching criteria specified in the

parameter of the read, returns the first message it encounters that satisfies the match.

public Object readObject(Object opt) throws Exception

 {

 if (reading)

 {

 if (opt instanceof MQeFields)

 {

 /* 1. list all files in the directory */

 /* 2. read each file in turn and restore as a Fields object */

 /* 3. try an equality check - if equal then return that object */

 String List[] = new File(filePath).list(this);

 MQeFields Fields = null;

 for (int i = 0; i < List.length; i = i + 1)

 try

 {

 fileName = List[i];

 /* remember the name */

 open(fileName);

 /* try this file */

 Fields = (MQeFields) readObject(null);

 if (Fields.equals((MQeFields) opt))

 /* match ? */

 return(Fields);

 }

 catch (Exception e)

 /* error occured */

 {

 }

 /* ignore error */

 throw new MQeException(Except_NotFound, "No match");

 }

 /* read the bytes from disk */

 File diskFile = new File(filePath + fileName);

 byte data[] = new byte[(int) diskFile.length()];

 FileInputStream InputFile = new FileInputStream(diskFile);

114 WebSphere MQ Everyplace V2.0.2

InputFile.read(data); /* read the file data */

 InputFile.close(); /* finish with file */

 /* possible Attribute decode of the data */

 if (parameter instanceof MQeAttribute)

 /* Attribute encoding ?*/

 data = ((MQeAttribute) parameter).decodeData(null,

 data,

 0,

 data.length);

 MQeFields FieldsObject = MQeFields.reMake(data, null);

 return(FieldsObject);

 }

 else

 throw new MQeException(MQe.Except_NotSupported,

 "Not supported");

 }

The status method returns status information about the adapter. In this examples it can return the filter

type or the file name.

public String status(Object opt) throws Exception

 {

 if (checkOption(opt, MQe.MQe_Adapter_FILTER))

 return(filter);

 if (checkOption(opt, MQe.MQe_Adapter_FILENAME))

 return(fileName);

 return(super.status(opt));

 }

The writeObject method writes a message to the message store. It compresses and encrypts the message

object if an attribute is supplied on the activate method call.

public void writeObject(Object opt,

 Object data) throws Exception

 {

 if (writing && (data instanceof MQeFields))

 {

 byte dump[] = ((MQeFields) data).dump();

 /* dump object */

 /* possible Attribute encode of the data */

 if (parameter instanceof MQeAttribute)

 dump = ((MQeAttribute) parameter).encodeData(null,

 dump,

 0,

 dump.length);

 /* write out the object bytes */

 File diskFile = new File(filePath + fileName);

 FileOutputStream OutputFile = new FileOutputStream(diskFile);

 OutputFile.write(dump); /* write the data */

 OutputFile.getFD().sync(); /* synchronize disk */

 OutputFile.close(); /* finish with file */

 }

 else

 throw new MQeException(MQe.Except_NotSupported, "Not supported");

 }

This is now a complete (though very simple) message store adapter that reads and writes message objects

to a message store.

Variations of this adapter could be coded for example to store messages in a database or in nonvolatile

memory.

Designing your real application 115

The WebSphere Everyplace Suite (WES) communications adapter

MQe provides sophisticated security that allows applications to run over HTTP, through the protection of

an Internet firewall. The purpose of the WebSphere® Everyplace® communications adapter is to allow

MQe applications to authenticate themselves with the WebSphere Everyplace authentication proxy and

thus allow messages to flow through it. The following diagram shows a basic scenario with two

applications communicating over the Internet through the WebSphere Everyplace authentication proxy.

 The MQe adapter acts as the Auth HTTP adapter on the sending application. The receiving application

could use either the same adapter or the standard HTTP adapter provided with MQe.

However, the real value of MQe is that it allows asynchronous messaging to occur in a typically

synchronous environment. It is possible to gather enqueued requests from the receiving application and

deal with them time-independently. The following diagram shows how incoming requests could be made

to reach MQ servers asynchronously.

 In each of these environments the WebSphere authentication proxy is adding the ability to control access

to the receiving applications. The adapter code supports this by adding (application-supplied) user ID

and password information to each outgoing HTTP request. The WebSphere authentication proxy accepts

these requests and verifies that the supplied credentials are valid for the current environment. If the

credentials are valid the proxy forwards the request to the receiving application.

The WebSphere Everyplace Suite (WES) adapter files

In a standard MQe installation the WebSphere Everyplace adapter consists of, and is supported by the

following files:

...\Java\com\ibm\mqe\adapters\MQeWESAuthenticationAdapter.class

- The WebSphere Everyplace adapter class.

...\Java\examples\application\Example7.class

- Compiled example application that uses the adapter

WebSphere MQ
Everyplace
application
(sending)

WebSphere MQ
Everyplace
application
(receiving)

Auth
HTTP

HTTPWebsphere
authentication

proxy

Internet

Figure 68. Applications communicating through the WebSphere authentication proxy

WebSphere MQ
Everyplace
application
(sending)

WebSphere MQ
Everyplace
application
(receiving)

Auth
HTTP

HTTPWebsphere
authentication

proxy
Internet

WebSphere
MQ

Everyplace
application

(dequeuing)

WebSphere
MQ

WebSphere
MQ

bridge

Figure 69. Applications communicating asynchronously through the WebSphere Authentication Proxy

116 WebSphere MQ Everyplace V2.0.2

...\Java\examples\application\Example7.java

- Source for the example application

...\Java\examples\adapters\WESAuthenticationGUIAdapter.class

- Compiled example adapter that adds a user interface to the WebSphere Everyplace adapter. As

with other example classes, this class is not meant as a replacement for the base WES adapter

class, but rather as a demonstration of how to tailor the WES adapter to suit your requirements.

...\Java\examples\adapters\WESAuthenticationGUIAdapter.java

- Source for the example adapter

If your environment CLASSPATH variable is set to find all classes within the MQe Java folder, the

WebSphere Everyplace adapter class files will be accessible from within the Java environment. If the files

are not accessible, issue a command such as:

set CLASSPATH=%CLASSPATH%;c:\mqe\java

This makes the new classes visible to Java. (The exact format of this command may vary from system to

system.) Once this is complete you should be able to use the WebSphere Everyplace adapter classes in the

same way as any other MQe classes.

Using the WebSphere Everyplace Suite (WES) adapter

This section provides information on how to use the WebSphere Everyplace adapter. The information is

divided into three parts:

General operation

This describes in detail, how to use the adapter in your applications

Using the Authentication Dialog Example

This describes how to use an example class, examples.adapters.WESAuthenticationGUIAdapter.

This class is derived from the base WES adapter class and provides a small user interface to

collect the ID and password of the user.

Using the Application Example

This describes how to use the supplied example file examples.application.Example7 which is

configured to use the base WES adapter.

The information in this section assumes that both the WebSphere Everyplace authentication proxy and

MQe have been installed and configured correctly. It is also assumed that an MQe server queue manager

and an MQe client queue manager have been configured.

General operation:

1. Configure the client queue manager to send messages using the new adapter by modifying the client

queue manager’s configuration .ini file so that the Network alias points to

com.ibm.mqe.adapters.MQeWESAuthenticationAdapter. Use the following command:

(ascii)Network=com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

2. Configure the server queue manager to decode the stream of data that the Client Adapter supplies

using either the new adapter or the standard HTTP adapter. Do this by changing the line in the server

queue manager’s configuration .ini file so that the Network alias points to either

com.ibm.mqe.adapters.MQeWESAuthenticationAdapter or

com.ibm.mqe.adapters.MQeTcpipHttpAdapter. Use one of the following commands:

(ascii)Network=com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter

3. Modify the client queue manager code so that the required user ID and password are set before the

first network operation is started. For example, insert the following line near the top of your code:

com.ibm.mqe.adapters.MQeWESAuthenticationAdapter.

setBasicAuthorization("myUserId@myRealm", "myPassword");

Designing your real application 117

Replace the parameters with a valid WES Server user ID and password.

You also need to add code to catch the new MQeException Except_Authenticate after each network

operation, in case the supplied credentials were invalid.

4. Check that the client queue manager can still send messages to the server queue manager without

going through the proxy.

5. Configure the client machine to send HTTP requests through the proxy. Depending on how WES has

been configured, the adapter will need to work with either a transparent proxy or an authentication

proxy.

As a transparent proxy

In this mode, the WES server acts as a simple HTTP proxy. In this case, you need to set the

following Java application system properties that relate to proxy information:

http.proxyHost

Must be set to the host name of the WES proxy

http.proxyPort

Must be set to the name of the port that the proxy is listening on

http.proxySet

Must be set to true, which tells the adapter to use transparent proxy mode

The above parameters can be set by adding the following to your Java application:

System.getProperties().put("http.proxySet", "true");

System.getProperties().put("http.proxyHost", "wes.hursley.ibm.com");

System.getProperties().put("http.proxyPort", "8082");

The client queue manager’s connection to the target MQe server is similar to a connection that

doesn’t use the WES proxy.

 You need to restart the server and client queue managers for the new settings to take effect.

The client should then be able to send messages to the server through the proxy.

As an Authentication Proxy

In this mode, the WES server forwards requests to services, based on the URL that you

supply. For example, you may want requests for http://wes.hursley.ibm.com/mqe to be

forwarded to an MQe queue manager running on mqe.hursley.ibm.com:8082.

 To set this up from MQe you need to update the client’s connection reference to the server.

Target network adapter

Should point to the Authentication Proxy machine and port

Figure 70. Administration interface panel

118 WebSphere MQ Everyplace V2.0.2

Network adapter parameters

Should contain the pathname to the required service

 If you are using the MQe Example Administration tool, select Connection and then Update to

configure this.

Note: The reference to the WES Server is entered in the Network adapter field, and the

pathname is entered in the Network adapter parms field.
You need to restart the server and client queue managers for the new settings to take effect.

The client should then be able to send messages to the server through the proxy.

Using the authentication dialog example:

 The following information describes the use of the example class file,

examples.adapters.WESAuthenticationGUIAdapter. This class adds a small user interface to the base WES

adapter function.

1. Follow steps (1) and (2) of the “General operation” on page 117 procedures, but substitute

’WESAuthenticationGUIAdapter’ for ’WESAuthenticationAdapter’ in step (1).

2. Configure the client’s TCP/IP settings as in step (5) of ’General operation’.

 The client should now able to send messages to the server using the WESAuthenticationGUIAdapter.

This adapter intercepts write calls to the WES adapter, and on the first request it pops up a dialog box

that prompts for user ID and password information.

When the user clicks on OK or presses the Enter key, the setBasicAuthorization() method is called with

the values from the userid and password fields. The write() is then forwarded on to the underlying WES

adapter. The dialog box also has a Cancel button which, when selected, cancels the current write

operation by not forwarding the request to the WES adapter. This causes an MQeException

(Except_Stopped) to be thrown.

Figure 71. Administration interface panel

Figure 72. WebSphere Everyplace Suite adapter user dialog

Designing your real application 119

If authentication fails, the dialog box is redisplayed on the next write() along with any information

provided by the server. In order to learn of an authentication failure, the example adapter intercepts

read() calls and catches any Except_Authenticate MQeExceptions coming from the adapter.

Note: Web browsers do not generally send authentication information on the first flow. This typically

results in a 401 or 407 response that contains the realm information. Only then does the browser send the

authenticated request. User clients may wish to follow this convention.

Using the application example:

 The following information describes the use of the example application file,

examples.application.Example7. This example behaves in a similar way to the MQSeries® Everyplace

programming example examples.application.Example1 and uses the basic WES adapter for

communications.

1. Follow steps (1) and (2) of the “General operation” on page 117 procedures.

2. Configure the client’s TCP/IP settings as in step (5) of “General operation” on page 117.

3. Edit the example file ...\Java\examples\application\Example7.java inserting a valid user ID and

password, and then recompile the application.

4. Restart the server.

5. Run the Example7 program using the following command:

java examples.application.Example7 Server client.ini

where

Server

is the name of the remote queue manager (that the client already knows how to reach)

client.ini

points to the client’s .ini configuration file.

The application starts the client queue manager, authenticates with the proxy, puts a message to

server and then gets a message from the server.

Using rules

Introduction to using MQe rules

MQe uses rules (which are essentially user exits) to allow applications to monitor and modify the

behavior of some of its major components. Rules take the form of methods on Java classes or functions in

C methods that are loaded when MQe components are initialized.

A component’s rules are invoked at certain points during its execution cycle. Rules methods with

particular signatures are expected to be available, so when providing implementations of rules, ensure

that you use the correct signatures.

Default or example rules are provided for all relevant MQe components. You can customize these to

satisfy particular user requirements. Within the Java code base, the MQeQueueProxy interface provides the

user with accessor methods for queues, allowing the user to interact with queues in certain rule methods.

Rules may be grouped into the following categories:

v Queue manager rules.

v Queue rules.

v Attribute rules.

v Bridge rules.

120 WebSphere MQ Everyplace V2.0.2

Rules may also be categorized into two groups depending upon whether they can affect application

behavior (modification rules) or are intended for notification purposes only (notification rules).

Queue manager rules

Queue manager rules are invoked when:

v The queue manager is activated

v The queue manager is closed

v A queue is added to the queue manager (Java code base only)

v A queue is removed from the queue manager (Java code base only)

v A put message operation occurs

v A get message operation occurs

v A delete message operation occurs

v An undo message operation occurs

v The queue manager is triggered to transmit any pending messages, as described in Transmission rules

Loading and activating queue manager rules

This topic describes how to load and activate queue manager rules in Java and C.

Java example queue manager rule:

 Queue manager rules are loaded, or changed whenever a queue manager administration message

containing a request to update the queue manager rule class is received.

If a queue manager rule has already been applied to the queue manager, the existing rule is asked

whether it may be replaced with a different rule. If the answer is yes, the new rule is loaded and

activated. A restart of the queue manager is not required.

The QueueManagerUpdater command-line tool in the package examples.administration.commandline

shows how to create such an administration message.

C example queue manager rule:

 The user’s rules module is loaded and initialized when the queue manager is loaded into memory. This

occurs as a result of calls either to mqeAdministrator_QueueManager_create() or to

mqeQueueManager_new(). The setup steps are as follows:

v The application must register a rules alias, linking the rules alias to the rules module name and entry

point, by using mqeClassAlias_add(), for example:

#define RULES_ALIAS "myAlias"

 #define MODULE_NAME "myRulesModule.dll"

 #define ENTRY_POINT "myRules_new"

 ...

 mqeString_newUtf8(pExceptBlock,

 &rulesAlias, RULES_ALIAS);

 mqeString_newUtf8(pExceptBlock,

 &moduleName, MODULE_NAME);

 mqeString_newUtf8(pExceptBlock,

 &entryPoint, ENTRY_POINT);

 mqeClassAlias_add(pExceptBlock,

 rulesAlias, moduleName, entryPoint);

v The rules alias must be included in the queue manager start-up parameters passed to either

mqeAdministrator_QueueManager_create() or mqeQueueManager_new(), for example.:

Designing your real application 121

MQeQueueManagerParms qmParams;

 qmParams.hQueueStore = msgStore; /* String parameters for the*/

 /*location of the msg store */

 qmParams.hQueueManagerRules = rulesAlias; /* add in rules alias */

 /* Indicate what parts of the structure have been set */

 qmParams.opFlags = QMGR_Q_STORE_OP | QMGR_RULES_OP;

 ...

 rc = mqeAdministrator_QueueManager_create(hAdmin,pExceptBlock,

 &hQM,qmName, &qmParms, ®Parms);

v An initialization function or entry point must be supplied by the user. The following is an example of

an initialization function for a rules implementation. The members of the parameter structures are

documented in the MQe C Programming Reference.

MQERETURN myRules_new(MQeRulesNew_in_ * pInput,MQeRulesNew_out_ * pOutput) {

 MQERETURN rc = MQERETURN_OK;

 /* declare an instance of the private data */

 /*structure passed around between rules invocations. */

 /*This holds user data which is ’global’ between rules. */

 myRules * myData = NULL;

 /* allocate the memory for the structure */

 myData = malloc(sizeof(myRules));

 if(myData != NULL) {

 /* map user rules implementations to

 function pointers in output parameter structure */

 pOutput->fPtrActivateQMgr = myRules_ActivateQMgr;

 pOutput->fPtrCloseQMgr = myRules_CloseQMgr;

 pOutput->fPtrDeleteMessage = unitTestRules_DeleteMessage;

 pOutput->fPtrGetMessage = myRules_getMessage;

 pOutput->fPtrPutMessage = myRules_putMessage;

 pOutput->fPtrTransmitQueue = myRules_TransmitQueue;

 pOutput->fPtrTransmitQMgr = myRules_TransmitQMgr;

 pOutput->fPtrActivateQueue = myRules_activateQueue;

 pOutput->fPtrCloseQueue = myRules_CloseQueue;

 pOutput->fPtrMessageExpired = myRules_messageExpired;

 /* initialize data in the private data structure */

 mydata->carryOn = MQE_TRUE;

 mydata->hAdmin = NULL;

 mydata->hThread = NULL;

 mydata->ifp = NULL;

 mydata->triggerInterval = 15000;

 /* now assign the private data structure to */

 /*the output parameter structure variable */

 pOutput->pPrivateData = (MQEVOID *)mydata;

 }

 else {

 /* We had a problem so clear up any strings in the structure -

 none in this case */

 }

 return rc;

}

The rules module is unloaded when the queue manager is freed. Note that, unlike the Java code base, the

rules implementation is linked to the execution life cycle of a single queue manager and may not be

replaced during the course of this life cycle.

122 WebSphere MQ Everyplace V2.0.2

Using queue manager rules

This topic describes some examples of the use of queue manager rules.

In the Java code base, a user provides an implementation of a rule method by subclassing the

MQeQueueManagerRule class.

In the C code base, a user maps rules functions to relevant rules function pointers. These pointers are

passed into the rules initialization function, which is also the entry point to the user’s rules module.

For a description of all parameters passed to rules functions in the C code base, see the MQe C

Programming Reference.

Example put message rule: This first example shows a put message rule that insists that any message

being put to a queue using this queue manager must contain an MQe message ID field:

 Java code base

 /* Only allow msgs containing an ID field to be placed on the Queue */

 public void putMessage(String destQMgr, String destQ, MQeMsgObject msg,

 MQeAttribute attribute, long confirmId) {

 if (!(msg.Contains(MQe.Msg_MsgId))) {

 throw new MQeException(Except_Rule, "Msg must contain an ID");

 }

 }

C code base

 MQERETURN myRules_putMessage(MQeRulesPutMessage_in_ * pInput,

 MQeRulesPutMessage_out_ * pOutput) {

 // Only allow msgs containing an ID field to be placed on the Queue

 MQERETURN rc = MQERETURN_OK;

 MQEBOOL contains = MQE_FALSE;

 MQeExceptBlock * pExceptBlock=(MQeExceptBlock*)(pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 rc = mqeFields_contains(pInput->hMsg,pExceptBlock,

 &contains, MQE_MSG_MSGID);

 if(MQERETURN_OK == rc && !contains) {

 SET_EXCEPT_BLOCK(pExceptBlock,

 MQERETURN_RULES_DISALLOWED_BY_RULE,

 MQEREASON_NA);

 }

}

Notice the manner in which the exception block instance is retrieved from the output parameter structure

and then set with the appropriate return and reason codes. This is the way in which the rule function

communicates with the application, thus modifying application behavior.

Example get message rule:

 The next example rule is a get message rule that insists that a password must be supplied before

allowing a get message request to be processed on the queue called OutboundQueue. The password is

included as a field in the message filter passed into the getMessage() method.

Java code base

/* This rule only allows GETs from ’OutboundQueue’,

 if a password is */

/* supplied as part of the filter */

public void getMessage(String destQMgr,

 String destQ, MQeFields filter,

Designing your real application 123

MQeAttribute attr, long confirmId) {

 super.getMessage(destQMgr, destQ, filter, attr, confirmId);

 if (destQMgr.equals(Owner.GetName()

 && destQ.equals("OutboundQueue")) {

 if (!(filter.Contains("Password")) {

 throw new MQeException(Except_Rule,

 "Password not supplied");

 }

 else {

 String pwd = filter.getAscii("Password");

 if (!(pwd.equals("1234"))) {

 throw new MQeException(Except_Rule,

 "Incorrect password");

 }

 }

 }

}

C code base

MQERETURN myRules_getMessage(MQeRulesGetMessage_in_ * pInput,

 MQeRulesGetMessage_out_ * pOutput) {

 MQeStringHndl hQueueManagerName, hCompareString, hCompareString2,

 hFieldName, hFieldValue;

 MQEBOOL isEqual = MQE_FALSE;

 MQEBOOL contains = MQE_FALSE;

 MQeQueueManagerHndl hQueueManager;

 MQERETURN rc = MQERETURN_OK;

 MQeExceptBlock * pExceptBlock =

 (MQeExceptBlock *)

 (pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 /* get the current queue manager */

 rc = mqeQueueManager_getCurrentQueueManager(pExceptBlock,

 &hQueueManager);

 if(MQERETURN_OK == rc) {

 // if the destination queue manager is the local queue manager

 rc = mqeQueueManager_getName(hQueueManager,

 pExceptBlock,

 &hQueueManagerName);

 if(MQERETURN_OK == rc) {

 rc = mqeString_equalTo(pInput->hQueue_QueueManagerName,

 pExceptBlock,

 &isEqual,

 hQueueManagerName);

 if(MQERETURN_OK == rc && isEqual) {

 // if the destination queue name is "OutboundQueue"

 rc = mqeString_newUtf8(pExceptBlock,

 &hCompareString,

 "OutboundQueue");

 rc = mqeString_equalTo(pInput->hQueueName,

 pExceptBlock,

 &isEqual,

 hCompareString);

 if(MQERETURN_OK == rc && isEqual) {

 // password required for this queue

 MQEBOOL contains = MQE_FALSE;

 rc = mqeString_newUtf8(pExceptBlock,

 &hFieldName,

 "Password");

 rc = mqeFields_contains(pInput->hFilter,

 pExceptBlock,

 &contains,

 hFieldName);

 if(MQERETURN_OK == rc && contains == MQE_FALSE) {

 SET_EXCEPT_BLOCK(pExceptBlock,

124 WebSphere MQ Everyplace V2.0.2

MQERETURN_RULES_DISALLOWED_BY_RULE,

 MQEREASON_NA);

 }

 else {

 // parse password, etc.

 }

 }

 }

 }

 }

}

This previous rule is a simple example of protecting a queue. However, for more comprehensive security,

you are recommended to use an authenticator. An authenticator allows an application to create access

control lists, and to determine who is able to get messages from queues.

Example remove queue rule:

 The next example rule is called when a queue manager administration request tries to remove a queue.

The rule is passed an object reference to the proxy for the queue in question. In this example, the rule

checks the name of the queue that is passed, and if the queue is named PayrollQueue, the request to

remove the queue is refused.

 Java code base

/* This rule prevents the removal of the Payroll Queue */

public void removeQueue(MQeQueueProxy queue)

throws Exception {

 if (queue.getQueueName().equals("PayrollQueue")) {

 throw new MQeException(Except_Rule,

 "Can’t delete this queue");

 }

}

C code base

This rule is not implemented in the C code base.

Transmission rules

A message that is put to a remote queue that is defined as synchronous is transmitted immediately.

Messages put to remote queues defined as asynchronous are stored within the local queue manager until

the queue manager is triggered into transmitting them. The queue manager can be triggered directly by

an application. The process can be modified or monitored using the queue manager’s transmission rules.

The transmission rules are a subset of the queue manager rules. The two rules that allow control over

message transmission are:

 triggerTransmission()

This rule determines whether to allow message transmission at the time when the rule is called.

This can be used to veto or allow the transmission of all messages, that is, either all or none are

allowed to be transmitted.

transmit()

This rule makes a decision to allow transmission on a per queue basis for asynchronous remote

queues. For example, this makes it possible only to transmit the messages from queues deemed

to be high priority. The transmit() rule is only called if the triggerTransmission() rule returns

successfully.

Trigger transmission rule example

MQe calls the triggerTransmission rule when transmission is triggered. This occurs when the queue

manager triggerTransmission method or function is explicitly called from an application or a rule.

Designing your real application 125

Additionally, in the Java code base, the rule may be invoked when a message is put onto a remote

asynchronous queue. The default rule behavior in both Java and C allows the attempt to transmit

pending messages to proceed. For example, this is the default Java rule in

com.ibm.mqe.MQeQueueManagerRule:

/* default trigger transmission rule -

 always allow transmission */

public boolean triggerTransmission(int noOfMsgs,

 MQeFields msgFields){

 return true;

}

The return code from this rule tells the queue manager whether or not to transmit any pending messages.

A return code of true means ″transmit″, while a return code of false means ″do not transmit at this time″.

The user may override the default behavior by implementing their own triggerTransmission() rule. A

more complex rule can decide whether or not to transmit immediately based on the number of messages

awaiting transmission on asynchronous remote queues. The following example shows a rule that only

allows transmission to continue if there are more than 10 messages pending transmission.

 Java code base

/* Decide to transmit based on number of pending messages */

public boolean triggerTransmission(int noOfMsgs, MQeFields msgFields) {

 if(noOfMsgs > 10) {

 return true; /* then transmit */

 }

 else {

 return false; /* else do not transmit */

 }

}

C code base

/* The following function is mapped to the

 fPtrTransmitQMgr function pointer */

/* in the user’s initialization function output parameter structure. */

MQERETURN myRules_TransmitQMgr(MQeRulesTransmitQMgr_in_ * pInput,

 MQeRulesTransmitQMgr_out_ * pOutput) {

 MQeExceptBlock * pExceptBlock =

 (MQeExceptBlock*)(pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 /* allow transmission to be triggered only

 if the number of pending messages > 10 */

 if(pInput->msgsPendingTransmission <= 10) {

 SET_EXCEPT_BLOCK(pExceptBlock,

 MQERETURN_RULES_DISALLOWED_BY_RULE,

 MQEREASON_NA);

 }

}

Transmit rule

The transmit() rule is only called if the triggerTransmission() rule allows transmission. It returns a

value of true or MQERETURN_OK. The transmit() rule is called for every remote queue definition that holds

messages awaiting transmission. This means that the rule can decide which messages should be

transmitted on a queue by queue basis.

A sensible extension to this rule can allow all messages to be transmitted at ’off-peak’ time. This allows

only messages from high-priority queues to be transmitted during peak periods.

Transmit rule - Java example 1:

126 WebSphere MQ Everyplace V2.0.2

The example rule below only allows message transmission from a queue if the queue has a default

priority greater than 5. If a message has not been assigned a priority before being placed on a queue, it is

given the queue’s default priority.

public boolean transmit(MQeQueueProxy queue) {

 if (queue.getDefaultPriority() > 5) {

 return (true);

 }

 else {

 return (false);

 }

}

Transmit rule - C example 1:

 The example rule below only allows message transmission from a queue if the queue has a default

priority greater than 5. If a message has not been assigned a priority before being placed on a queue, it is

given the queue’s default priority.

/* The following function is mapped to the fPtrTransmitQueue function*/

/* pointer in the user’s initialization

/* function output parameter structure. */

MQERETURN myRules_TransmitQueue(MQeRulesTransmitQueue_in_ * pInput,

 MQeRulesTransmitQueue_out_ * pOutput) {

 MQERETURN rc = MQERETURN_OK;

 MQEBYTE queuePriority;

 MQeRemoteAsyncQParms queueParms = REMOTE_ASYNC_Q_INIT_VAL;

 myRules * myData = (myRules *)(pInput->pPrivateData);

 MQeExceptBlock * pExceptBlock =

 (MQeExceptBlock *)(pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 /* inquire upon the default priority of the queue*/

 /* specify the subject of the inquire

 in the queue parameter structure*/

 queueParms.baseParms.opFlags = QUEUE_PRIORITY_OP ;

 rc = mqeAdministrator_AsyncRemoteQueue_inquire(myData->hAdmin,

 pExceptBlock,

 pInput->hQueueName,

 pInput->hQueue_QueueManagerName,

 &queueParms);

 // if the default priority is less than 6, disallow the operation

 if(MQERETURN_OK == rc

 && queueParms.baseParms.queuePriority < 6) {

 SET_EXCEPT_BLOCK(pExceptBlock,

 MQERETURN_RULES_DISALLOWED_BY_RULE,

 MQEREASON_NA);

 }

}

A more complex transmit rule example

The following example (in Java and in C) assumes that the transmission of the messages takes place over

a communications network that charges for the time taken for transmission. It also assumes that there is a

cheap-rate period when the unit-time cost is lower. The rules block any transmission of messages until

the cheap-rate period. During the cheap-rate period, the queue manager is triggered at regular intervals.

Transmit rule - Java example 2:

 The following example assumes that the transmission of the messages takes place over a communications

network that charges for the time taken for transmission. It also assumes that there is a cheap-rate period

Designing your real application 127

when the unit-time cost is lower. The rules block any transmission of messages until the cheap-rate

period. During the cheap-rate period, the queue manager is triggered at regular intervals.

import com.ibm.mqe.*;

import java.util.*;

/**

* Example set of queue manager

 rules which trigger the transmission

* of any messages waiting to be sent.

*

* These rules only trigger the

 transmission of messages if the current

* time is between the values defined

 in the variables cheapRatePeriodStart

* and cheapRatePeriodEnd

* (This example assumes that transmission

 will take place over a

* communication network which charges

 for the time taken to transmit)

*/

public class ExampleQueueManagerRules extends MQeQueueManagerRule

implements Runnable

{

 // default interval between triggers is 15 seconds

 private static final long

 MILLISECS_BETWEEN_TRIGGER_TRANSMITS = 15000;

 // interval between which we c

 heck whether the queue manager is closing down.

 private static final long

 MILLISECS_BETWEEN_CLOSE_CHECKS = 1000 ;

 // Max wait of ten seconds to kil off

 the background thread when

 // the queue manager is closing down.

 private static final long

 MAX_WAIT_FOR_BACKGROUND_THREAD_MILLISECONDS = 10000;

 // Reference to the control block used to

 communicate with the background thread

 // which does a sleep-trigger-sleep-trigger loop.

 // Note that freeing such blocks for garbage

 collection will not stop the thread

 // to which it refers.

 private Thread th = null;

 // Flag which is set when shutdown of

 the background thread is required.

 // Volatile because the thread using the

 flag and the thread setting it to true

 // are different threads, and it is

 important that the flag is not held in

 // CPU registers, or one thread will

 see a different value to the other.

 private volatile boolean toldToStop = false;

 //cheap rate transmission period start and end times

 protected int cheapRatePeriodStart = 18; /*18:00 hrs */

 protected int cheapRatePeriodEnd = 9; /*09:00 hrs */

}

The cheapRatePeriodStart and cheapRatePeriodEnd functions define the extent of this cheap rate period.

In this example, the cheap-rate period is defined as being between 18:00 hours in the evening until 09:00

hours the following morning.

The constant MILLISECS_BETWEEN_TRIGGER_TRANSMITS defines the period of time, in milliseconds, between

each triggering of the queue manager. In this example, the trigger interval is defined to be 15 seconds.

128 WebSphere MQ Everyplace V2.0.2

The triggering of the queue manager is handled by a background thread that wakes up at the end of the

triggerInterval period. If the current time is inside the cheap rate period, it calls the

MQeQueueManager.triggerTransmission() method to initiate an attempt to transmit all messages awaiting

transmission. The background thread is created in the queueManagerActivate() rule and stopped in the

queueManagerClose() rule. The queue manager calls these rules when it is activated and closed

respectively.

/**

* Overrides MQeQueueManagerRule.queueManagerActivate()

* Starts a timer thread

*/

public void queueManagerActivate()throws Exception {

 super.queueManagerActivate();

 // background thread which triggers transmission

 th = new Thread(this, "TriggerThread");

 toldToStop = false;

 th.start(); // start timer thread

}

/**

* Overrides MQeQueueManagerRule.queueManagerClose()

* Stops the timer thread

*/

 public void queueManagerClose()throws Exception {

 super.queueManagerClose();

 // Tell the background thread to stop,

 as the queue manager is closing now.

 toldToStop = true ;

 // Now wait for the background thread,

 if it’s not already stopped.

 if (th != null) {

 try {

 // Only wait for a certain time before

 giving up and timing out.

 th.join(MAX_WAIT_FOR_BACKGROUND_THREAD_MILLISECONDS);

 // Free up the thread control block for garbage collection.

 th = null ;

 } catch (InterruptedException e) {

 // Don’t propogate the exception.

 // Assume that the thread will stop shortly anyway.

 }

 }

}

The code to handle the background thread looks like this:

/**

* Timer thread

* Triggers queue manager every interval until thread is stopped

*/

public void run() {

 /* Do a sleep-trigger-sleep-trigger loop until the */

 /* queue manager closes or we get an exception.*/

 while (!toldToStop) {

 try {

 // Count down until we’ve waited enough

 // We do a tight loop with a smaller granularity because

 // otherwise we would stop a queue manager from closing quickly

 long timeToWait = MILLISECS_BETWEEN_TRIGGER_TRANSMITS ;

 while(timeToWait > 0 && !toldToStop) {

 // sleep for specified interval

Designing your real application 129

Thread.sleep(MILLISECS_BETWEEN_CLOSE_CHECKS);

 // We’ve waited for some time.

 Account for this in the overall wait.

 timeToWait -= MILLISECS_BETWEEN_CLOSE_CHECKS ;

 }

 if(!toldToStop && timeToTransmit()) {

 // trigger transmission on QMgr (which is rule owner)

 ((MQeQueueManager)owner).triggerTransmission();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

}

The variable owner is defined by the class MQeRule, which is the ancestor of MQeQueueManagerRule. As part

of its startup process, the queue manager activates the queue manager rules and passes a reference to

itself to the rules object. This reference is stored in the variable owner.

The thread loops indefinitely, as it is stopped by the queueManagerClose() rule, and it sleeps until the end

of the MILLISECS_BETWEEN_TRIGGER_TRANSMITS interval period. At the end of this interval, if it has not been

told to stop, it calls the timeToTransmit() method to check if the current time is in the cheap-rate

transmission period. If this method succeeds, the queue manager’s triggerTransmission() rule is called.

The timeToTransmit method is shown in the following code:

protected boolean timeToTransmit() {

 /* get current time */

 Calendar calendar = Calendar.getInstance();

 calendar.setTime(new Date());

 /* get hour */

 int hour = calendar.get(Calendar.HOUR_OF_DAY);

 if (hour >= cheapRatePeriodStart || hour

 < cheapRatePeriodEnd) {

 return true; /* cheap rate */

 }

 else {

 return false; /* not cheap rate */

 }

}

Transmit rule - C example 2:

 The C example emulates the Java example. While the native C code base is entirely single-threaded, it is

possible to write platform-specific code in which threads are created. In this example of a user-written

queue manager activate rule, a thread is spawned which loops, sleeping for a period of time defined in a

triggerInterval variable and then, providing it has not been asked to stop, checking that we are in a

cheap rate period prior to attempting to trigger transmission. Data, which is required between rules

invocations, is stored in the rule’s private data structure. The queue manager’s close rule function is used

to provide the thread’s terminating condition, setting a boolean switch, carryOn to MQE_FALSE. This switch

can be initialized to MQE_TRUE in the rules initialization function. This function waits until the thread is

suspended before passing control back to the application.

The private data structure passed between rule invocations is as follows:

struct myRules_st_ {

// rules instance structure

 MQeAdministratorHndl hAdmin;

// administrator handle to carry around between

// rules functions

 MQEBOOL carryOn;

// used for trigger transmission thread

130 WebSphere MQ Everyplace V2.0.2

MQEINT32 triggerInterval;

// used for trigger transmission thread

 HANDLE hThread;

// handle for the trigger transmission thread

};

typedef struct myRules_st_ myRules;

The queue manager activate rule:

MQEVOID myRules_activateQueueManager(MQeRulesActivateQMgr_in_ * pInput,

 MQeRulesActivateQMgr_out_ * pOutput) {

 // retrieve exception block - passed from application

 MQeExceptBlock * pExceptBlock = (MQeExceptBlock *)

 (pOutput->pExceptBlock);

 // retrieve private data structure passed

 between user’s rules invocations

 myRules * myData = (myRules *)(pInput->pPrivateData);

 MQeQueueManagerHndl hQueueManager;

 MQERETURN rc = MQERETURN_OK;

 rc = mqeQueueManager_getCurrentQueueManager(pExceptBlock,

 &queueManager);

 if(MQERETURN_OK == rc) {

 // set up the private data administrator

 handle using the retrieved

 // application queue manager handle.

 This is done here rather than in

 // the rules initialization function as the

 queue manager has not yet been

 // activated fully when the rules

 //initialization function is invoked.

 rc = mqeAdministrator_new(pExceptBlock,

 &myData>hAdmin,hQueueManager);

 }

 if(MQERETURN_OK == rc) {

 DWORD tid;

 // Launch thread to govern calls to trigger transmission

 myData->hThread = (HANDLE) CreateThread(NULL,

 0,

 timeToTrigger,

 (MQEVOID *)myData,

 0,

 &tId);

 if(myData>hThread == NULL) {

 // thread creation failed

 SET_EXCEPT_BLOCK(pExceptBlock,

 MQERETURN_RULES_ERROR,

 MQEREASON_NA);

 }

 }

}

The timeToTrigger function provides the equivalent functionality of the run() method in the Java

example. Notice the use of the private data variable carryOn, type MQEBOOL, as one of the conditions for

the while loop to continue. Once this variable has a value of MQE_FALSE, the while loop will terminate,

causing the thread to terminate when the function is exited.

DWORD _stdcall timeToTrigger(myRules * rulesStruct) {

 MQERETURN rc = MQERETURN_OK;

 MQeQueueManagerHndl hQueueManager;

 MQeExceptBlock exceptBlock;

 myRules * myData = (myRules *)rulesStruct;

 SET_EXCEPT_BLOCK_TO_DEFAULT(&exceptBlock);

Designing your real application 131

/* retrieve the current queue manager */

 rc = mqeQueueManager_getCurrentQueueManager(&exceptBlock,

 &hQueueManager);

 if(MQERETURN_OK == rc) {

 /* so long as there is not a grave

 internal error and the termination

 condition has not been set */

 while(!(EC(&exceptBlock) ==

 MQERETURN_QUEUE_MANAGER_ERROR &&

 ERC(&exceptBlock) ==

 MQEREASON_INTERNAL_ERROR) &&

 myData->carryOn == MQE_TRUE) {

 /* Are we in a cheap rate transmission period? */

 if(timeToTransmit()) {

 /* if so, attempt to trigger transmission */

 rc = mqeQueueManager_triggerTransmission(hQueueManager,

 &exceptBlock);

 /* wait for the duration of the trigger interval */

 Sleep(myData->triggerInterval);

 }

 }

 }

 return 0;

}

The timeToTransmit() function returns a boolean to indicate whether or not we are in a cheap

transmission period:

MQEBOOL timeToTransmit() {

 SYSTEMTIME timeInfo;

 GetLocalTime(&timeInfo);

 if (timeInfo.wHour >= 18 || timeInfo.wHour < 9) {

 return MQE_TRUE;

 } else {

 return MQE_FALSE;

 }

}

It would probably be a better idea to define constants for the cheap rate interval boundary times and

carry these around in the rules private data structure also but that has been not been done here for

reasons of clarity.

The function returns MQE_TRUE to suggest that we are in a cheap rate period, that is between the hours of

18:00 and 09:00. A return value of MQE_TRUE is one of the prerequisites for transmission to be triggered in

timeToTrigger(). Finally, the queue manager close rule is used to terminate the thread. Notice that one of

the conditions for termination of the timeToTrigger() function is for the boolean variable carryOn to

have a value of MQE_FALSE. In the close function, the value of carryOn is set to false. But, there may still

be a considerable lapse of time between when this value is set to MQE_FALSE and when the

timeToTrigger() function is exited. The value of triggerInterval + the time taken to perform a

triggerTransmission operation. Also, we wait for the thread to terminate in this function. We also call

triggerTransmission() one more time in case there are still some pending messages.

 MQEVOID myRules_CloseQMgr(MQeRulesCloseQMgr_in_ * pInput,

 MQeRulesCloseQMgr_out_ * pOutput) {

 MQERETURN rc = MQERETURN_OK;

 MQeQueueManagerHndl hQueueManager;

 myRules * myData = (myRules *)pInput->pPrivateData;

 DWORD result;

 MQeExceptBlock exceptBlock =

 *((MQeExceptBlock *)pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(&exceptBlock);

132 WebSphere MQ Everyplace V2.0.2

// Effect the ending of the thread by

 setting the MQEBOOL continue to MQE_FALSE

 // This leads to a return from timeToTrigger()

 and hence the implicit call

 // to _endthread

 myData->carryOn = MQE_FALSE;

 /* wait for the thread in any case */

 result = WaitForSingleObject(myData->hThread, INFINITE);

 /* retrieve the current queue manager */

 rc = mqeQueueManager_getCurrentQueueManager(&exceptBlock,

 &hQueueManager);

 if(MQERETURN_OK == rc) {

 /* attempt to trigger transmission one

 /* last time to clean up queue */

 rc = mqeQueueManager_triggerTransmission(hQueueManager,

 &exceptBlock);

 }

}

Activating asynchronous remote queue definitions

The queue manager can activate its asynchronous remote queue definitions and home server queues at

startup time. In the Java code base, activating asynchronous remote queue definitions results in an

attempt to transmit any messages they contain, while activating home server queues results in an attempt

to get any messages that are waiting on their assigned store-and-forward queue. The activateQueues()

rule allows this behavior to be configured.

The default rule just returns true.

public boolean activateQueues() {

 return true; /* activate queues on queue manager start-up */

}

/*As with other rules examples above,

 a check can be made to see if the current */

/* time is inside the cheap-rate transmission period.

 This information can then */

/* be used to determine whether queues should be activated or not.

public boolean activateQueues() {

 if (timeToTransmit()) {

 return true;

 }

 else {

 return false;

 }

}

If activateQueues() returns false, the remote queue definitions are only activated when a message is put

onto them. Home server queues can be activated by calling the queue manager’s triggerTransmission()

method.

In the C code base, activation of home server queues and asynchronous queues does not result in any

attempts to transmit or pull down pending messages. Only explicit calls to the queue manager’s

triggerTransmission() function have this result. There is no implementation of an activateQueues rule in

the C code base. Activation of queues occurs at queue manager startup.

Queue rules

In the Java code base, each queue has its own set of rules. A solution can extend the behavior of these

rules. All queue rules should descend from class com.ibm.mqe.MQeQueueRule.

Designing your real application 133

In the C code base, only a single set of rules is loaded. A user can implement different rules for different

queues by loading other rules modules from the ’master’ module. The master rules functions can then

invoke the corresponding functions in any other modules as required.

Queue rules are called when:

v The queue is activated.

v The queue is closed.

v A message is placed on the queue using a put operation (Java code base only).

v A message is removed from the queue using a get operation.

v A message is deleted from the queue using a delete operation (Java code base only).

v The queue is browsed.

v An undo operation is performed on a message on the queue.

v A message listener is added to the queue (Java code base only).

v A message listener is removed from the queue (Java code base only).

v A message expires.

v An attempt is made to change a queue’s attributes, that is authenticator, cryptor, compressor (Java code

base only).

v A duplicate message is put onto a queue.

v A message is being transmitted from a remote asynchronous queue.

Using queue rules

This section describes some examples of the use of queue rules.

The first example shows a possible use of the message expired rule, putting a copy of the message onto a

Dead Letter Queue. Both queues and messages can have an expiry interval set. If this interval is

exceeded, the message is flagged as being expired. At this point the messageExpired() rule is called. On

return from this rule, the expired message is deleted.

The first example sends any expired messages to the queue manager’s dead-letter queue, the name of

which is defined by the constant MQe.DeadLetter_Queue_Name in the Java code base

and MQE_DEADLETTER_QUEUE_NAME in the C code base. The queue manager rejects a put of a message that

has previously been put onto another queue. This protects against a duplicate message being introduced

into the MQe network. So, before moving the message to the dead-letter queue, the rule must set the

resend flag. This is done by adding the Java MQe.Msg_Resend or C MQE_MSG_RESEND field to the message.

The message expiry time field must be deleted before moving the message to the dead-letter queue.

Queue rules - Java example 1:

 This example shows a possible use of the message expired rule, and a copy of the message is put onto a

Dead Letter Queue. Both queues and messages can have an expiry interval set. If this interval is

exceeded, the message is flagged as being expired. At this point the messageExpired() rule is called. On

return from this rule, the expired message is deleted.

/* This rule puts a copy of any expired messages to a Dead Letter Queue */

public boolean messageExpired(MQeFields entry, MQeMsgObject msg)

 throws Exception {

 /* Get the reference to the Queue Manager */

 MQeQueueManager qmgr = MQeQueueManager.getReference(

 ((MQeQueueProxy)owner).getQueueManagerName());

 /* need to set re-send flag so that put of message

 to new queue isn’t rejected */

 msg.putBoolean(MQe.Msg_Resend, true);

134 WebSphere MQ Everyplace V2.0.2

/* if the message contains an expiry

 interval field - remove it */

 if (msg.contains(MQe.Msg_ExpireTime) {

 msg.delete(MQe.Msg_ExpireTime);

 }

 /* put message onto dead letter queue */

 qmgr.putMessage(null, MQe.DeadLetter_Queue_Name,

 msg, null, 0);

 /* Return true. Note that no use is made

 of this return value - the message is

 always deleted but the return value is kept

 for backward compatibility */

 return (true);

}

Queue rules - C example 1:

 This example shows a possible use of the message expired rule, and a copy of the message is put onto a

Dead Letter Queue. Both queues and messages can have an expiry interval set. If this interval is

exceeded, the message is flagged as being expired. At this point the messageExpired() rule is called. On

return from this rule, the expired message is deleted.

MQEVOID myRules_messageExpired(MQeRulesMessageExpired_in_ * pInput,

 MQeRulesMessageExpired_out_ * pOutput) {

 MQERETURN rc = MQERETURN_OK;

 MQeExceptBlock * pExceptBlock =

 (MQeExceptBlock *)(pOutput->pExceptBlock);

 MQEBOOL contains = MQE_FALSE;

 MQeFieldsHndl hMsg;

 MQeQueueManagerHndl hQueueManager;

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 /* Set re-send flag so that attempt to put

 message to new queue isn’t rejected */

 // First, clone the message as the

 //input parameter is read-only

 rc = mqeFields_clone(pInput->hMsg, pExceptBlock,

 &hMsg);

 if(MQERETURN_OK == rc) {

 rc = mqeFields_putBoolean(hMsg, pExceptBlock,

 MQE_MSG_RESEND, MQE_TRUE);

 if(MQERETURN_OK == rc) {

 // if the message contains an expiry

 interval field - remove it

 rc = mqeFields_contains(hMsg, pExceptBlock,

 &contains,

 MQE_MSG_EXPIRETIME);

 if(MQERETURN_OK == rc && contains) {

 rc = mqeFields_delete(hMsg, pExceptBlock,

 MQE_MSG_EXPIRETIME);

 }

if(MQERETURN_OK == rc) {

 // put message onto dead letter queue

 MQeStringHndl hQueueManagerName;

 rc = mqeQueueManager_getCurrentQueueManager(pExceptBlock,

 &hQueueManager);

 if(MQERETURN_OK == rc) {

 rc = mqeQueueManager_getName(hQueueManager,

 pExceptBlock,

 &hQueueManagerName);

 if(MQERETURN_OK == rc) {

 // use a temporary exception block as don’t care

 // if dead letter queue does not exist

 MQeExceptBlock tempExceptBlock;

 SET_EXCEPT_BLOCK_TO_DEFAULT(&tempExceptBlock);

Designing your real application 135

rc = mqeQueueManager_putMessage(hQueueManager,

 &tempExceptBlock,

 hQueueManagerName,

 MQE_DEADLETTER_QUEUE_NAME,

 hMsg, NULL, 0);

 (MQEVOID)mqeString_free(hQueueManagerName,

 &tempExceptBlock);

 }

 }

 }

 }

 }

}

Queue rules - Java example 2:

 The following example shows how to log an event that occurs on the queue. The event that occurs is the

creation of a message listener.

In the example, the queue has its own log file, but it is equally as valid to have a central log file that is

used by all queues. The queue needs to open the log file when it is activated, and close the log file when

the queue is closed. The queue rules, queueActivate and queueClose can be used to do this. The variable

logFile needs to be a class variable so that both rules can access the log file.

/* This rule logs the activation of the queue */

public void queueActivate() {

 try {

 logFile = new LogToDiskFile(\\log.txt);

 log(MQe_Log_Information, Event_Activate, "Queue " +

 ((MQeQueueProxy)owner).getQueueManagerName() + " + " +

 ((MQeQueueProxy)owner).getQueueName() + " active");

 }

 catch(Exception e) {

 e.printStackTrace(System.err);

 }

}

/* This rule logs the closure of the queue */

public void queueClose() {

 try {

 log(MQe_Log_Information, Event_Closed, "Queue " +

 ((MQeQueueProxy)owner).getQueueManagerName() + " + " +

 ((MQeQueueProxy)owner).getQueueName() + " closed");

 /* close log file */

 logFile.close();

 }

 catch (Exception e) {

 e.printStackTrace(System.err);

 }

}

The addListener rule is shown in the following code. It uses the MQe.log method to add an

Event_Queue_AddMsgListener event.

/* This rule logs the addition of a message listener */

public void addListener(MQeMessageListenerInterface listener,

 MQeFields filter) throws Exception

 {

 log(MQe_Log_Information, Event_Queue_AddMsgListener,

 "Added listener on queue "

 + ((MQeQueueProxy)owner).getQueueManagerName() + "+"

 + ((MQeQueueProxy)owner).getQueueName());

}

Queue rules - C example 2:

136 WebSphere MQ Everyplace V2.0.2

The following example shows how to log an event that occurs on the queue. The event that occurs is a

put message request.

In this example, a central log is set up for all queues using the queue activate and close rules. This log is

then used to keep track of all putMessage operations. Because the log is shared between rules

invocations, the information needed to access the log is stored in the rules private data structure. In this

case, the private data structure contains a file handle for passing between rules invocations:

struct myRulesData_ {

// rules instance structure

 MQeAdministratorHndl hAdmin; /

 administrator handle to carry around between

// rules functions

 FILE * ifp;

// file handle for logging rules

};

typedef struct myRulesData_ myRules;

In the rules queue activate function, the file is opened and the activation of the queue logged:

MQEVOID myRules_activateQueue(MQeRulesActivateQueue_in_ * pInput,

 MQeRulesActivateQueue_out_ * pOutput) {

 MQERETURN rc = MQERETURN_OK;

 MQECHAR * qName;

 MQEINT32 size;

 // recover the private data from the input

 structure parameter pInput

 myRules * myData = (myRules *)(pInput->pPrivateData);

 MQeExceptBlock * pExceptBlock =

 (MQeExceptBlock *)(pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 if(myData->ifp == NULL) {

 // initialized to NULL in the rules initialization function

 myData->ifp = fopen("traceFile.txt","w");

 rc = mqeString_getUtf8(pInput->hQueueName,

 pExceptBlock, NULL, &size);

 if(MQERETURN_OK == rc) {

 qName = malloc(size);

 rc = mqeString_getUtf8(pInput->hQueueName,

 pExceptBlock, qName, &size);

 if(MQERETURN_OK ==

 rc && myData->ifp != NULL) {

 fprintf(myData->ifp,

 "Activating queue %s \n", qName);

 }

 }

 }

}

In the rules queue close function, the file is closed after the closure of the queue is logged:

MQEVOID myRules_closeQueue(MQeRulesCloseQueue_in_ * pInput,

 MQeRulesCloseQueue_out_ * pOutput) {

 MQERETURN rc = MQERETURN_OK;

 MQECHAR * qName;

 MQEINT32 size;

 // recover the private data from the

 input structure parameter pInput

 myRules * myData = (myRules *)(pInput->pPrivateData);

 MQeExceptBlock * pExceptBlock =

 (MQeExceptBlock *)(pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

Designing your real application 137

if(myData->ifp != NULL) {

 rc = mqeString_getUtf8(pInput->hQueueName,

 pExceptBlock, NULL, &size);

 if(MQERETURN_OK == rc) {

 qName = malloc(size);

 rc = mqeString_getUtf8(pInput->hQueueName,

 pExceptBlock, qName, &size);

 if(MQERETURN_OK == rc) {

 fprintf(myData->ifp,

 "Closing queue %s \n", qName);

 }

 }

 fclose(myData->ifp);

 MyData->ifp = NULL;

 }

}

The rules put message function ensures that each put message operation is logged:

MQERETURN myRules_putMessage(MQeRulesPutMessage_in_ * pInput,

 MQeRulesPutMessage_out_ * pOutput) {

 MQERETURN rc = MQERETURN_OK;

 MQECHAR * qName, * qMgrName;

 MQEINT32 size;

 // recover the private data from the input structure parameter pInput

 myRules * myData = (myRules *)(pInput->pPrivateData);

 MQeExceptBlock * pExceptBlock =

(MQeExceptBlock *)(pOutput->pExceptBlock);

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 if(myData->ifp != NULL) {

 rc = mqeString_getUtf8(pInput->hQueueName,

 pExceptBlock, NULL, &size);

 if(MQERETURN_OK == rc) {

 qName = malloc(size);

 rc = mqeString_getUtf8(pInput->hQueueName,

 pExceptBlock, qName,&size);

 }

 if(MQERETURN_OK == rc) {

 rc = mqeString_getUtf8(pInput->hQueue_QueueManagerName,

 pExceptBlock,

 NULL, &size);

 if(MQERETURN_OK == rc) {

 qMgrName = malloc(size);

 rc = mqeString_getUtf8(pInput->hQueue_QueueManagerName,

 pExceptBlock,

 qMgrName, &size);

 }

 }

if(MQERETURN_OK == rc) {

 fprintf(myData->ifp, "Putting a message

 onto queue %s on queue

 manager %s\n",qName, qMgrName);

 }

 }

 /* allow the operation to proceed regardless of what

 went wrong in this rule */

 SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

 return EC(pExceptBlock);

}

138 WebSphere MQ Everyplace V2.0.2

Bridge rules

Whilst Queue Rules can also be applied to Bridge Queues, you can also apply the following other types

of rules to the Bridge:

UndeliveredMessageRules

These rules can be applied to the Bridge Listener and can be used to determine what action is to

be performed when an MQ Message can’t be delivered to the MQe Gateway. The default rule

used by MQe will stop the Bridge Listener after a set number of attempts to deliver the message.

Two example rules are provided:

examples.mqbridge.rules.MQeUndeliveredMessageRule

Copy of the default rule

examples.mqbridge.rules.UndeliveredMQMessageToDLQRule

Will either discard the message or move it to MQ’s Dead Letter Queue depending on the

report field of the original MQ Message

StartUp Rules

These rules can be used to control startup of the objects held in the bridge so that, for example,

the bridge is in a stopped state when the MQe Gateway is started. An example is provided:

examples.mqbridge.rules.MQeStartupRule.

SyncQueuePurger Rules

These rules can be used for administrative purposes to clear up old records that can sometimes

be left on the MQ Queue manager. However, this typically only occurs if the corresponding MQe

message has been deleted. Two examples are provided:

examples.mqbridge.rules.MQeSyncQueuePurgerRule

Calls trace with an info statement when it discovers messages older than a specified time

examples.mqbridge.rules.DestructiveMQSyncQueuePurgerRule

Deletes any message that is older than a specified time

Java Message Service (JMS)

The MQe classes for Java Message Service (JMS) are a set of Java classes that implement the Sun JMS

interfaces to enable JMS programs to access MQe systems. This topic describes how to use the MQe

classes for JMS.

The initial release of JMS classes for MQe Version 2.1, supports the point-to-point model of JMS, but does

not support the publish or subscribe model.

The use of JMS as the API to write MQe applications has a number of benefits, because JMS is open

standard:

v The protection of investment, both in skills and application code

v The availability of people skilled in JMS application programming

v The ability to write messaging applications that are independent of the JMS implementations

More information about the benefits of the JMS API is on Sun’s Web site at http://java.sun.com.

Using JMS with MQe

This section describes how to set up your system to run the example programs, including the Installation

Verification Test (IVT) example which verifies your MQe JMS installation.

To use JMS with MQe you must have the following jar files, in addition to MQeBase.jar, on your class

path:

Designing your real application 139

jms.jar

This is Sun’s interface definition for the JMS classes

MQeJMS.jar

This is the MQe implementation of JMS

Obtaining jar files

MQe does not ship with Sun’s JMS interface definition, which is contained in jms.jar, and this must be

downloaded before JMS can be used. At the time of writing, this can be freely downloaded

fromhttp://java.sun.com/products/jms/docs.htmlThe JMS Version 1.0.2b jar file is required.

In addition, if JMS administered objects are to be stored and retrieved using the Java Naming and

Directory Interface (JNDI), the javax.naming.* classes must be on the classpath. If Java 1 is being used, for

example, a 1.1.8 JRE, jndi.jar must be obtained and added to the classpath. If Java 2 is being used, a 1.2

or later JRE, the JRE might contain these classes. You can use MQe without JNDI, but at the cost of a

small degree of provider dependence.MQe-specific classes must be used for the ConnectionFactory and

Destination objects. You can download JNDI jar files from http://java.sun.com/products/jndi

Testing the JMS class path

You can use the example program examples.jms.MQeJMSIVT to test your JMS installation. Before you run

this program, you need an MQe queue manager that has a SYSTEM.DEFAULT.LOCAL.QUEUE. In addition to

the JMS jar files mentioned above, you also need the following or equivalent jar files on your class path

to run examples.jms.MQeJMSIVT:

v MQeBase.jar

v MQeExamples.jar

You can run the example from the command line by typing:

 java examples.jms.MQeJMSIVT -i

 <ini file name>

where <ini file name> is the name of the initialization (ini) file for the MQe queue manager. You can

optionally add a ″-t″ flag to turn tracing on:

java examples.jms.MQeJMSIVT -t -i

 <ini file name>

The example program checks that the required jar files are on the class path by checking for classes that

they contain. It creates a QueueConnectionFactory and configures it using the ini file name that you passed

in on the command line. It starts a connection, which:

1. Starts the MQe queue manager

2. Creates a JMS Queue representing the queue SYSTEM.DEFAULT.LOCAL.QUEUE on the queue manager

3. Sends a message to the JMS Queue

4. Reads the message back and compares it to the message it sent

The SYSTEM.DEFAULT.LOCAL.QUEUE should not contain any messages before running the program,

otherwise the message read back will not be the one that the program sent. The output from the program

should look like this:

using ini file ’<.ini file name>’

 to configure the connection

checking classpath

found JMS interface classes

found MQe JMS classes

found MQe base classes

Creating and configuring QueueConnectionFactory

Creating connection

From the connection data, JMS

140 WebSphere MQ Everyplace V2.0.2

provider is IBM MQe Version 2.0.0.0

Creating session

Creating queue

Creating sender

Creating receiver

Creating message

Sending message

Receiving message

HEADER FIELDS

--

 JMSType: jms_text

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:00000009524cf094000000f052fc06ca

 JMSTimestamp: 1032184399562

 JMSCorrelationID: null

 JMSDestination: null:SYSTEM.DEFAULT.LOCAL.QUEUE

 JMSReplyTo: null

 JMSRedelivered: false

 PROPERTY FIELDS (read only)

 JMSXRcvTimestamp : 1032184400133

 MESSAGE BODY (read only)

A simple text message from the MQeJMSIVT program

Retrieved message is a TextMessage; now checking

for equality with the sent message

Messages are equal. Great!

Closing connection

connection closed

IVT finished

Running other MQe JMS example programs

MQe provides two other example programs for the JMS classes. The program examples.jms.PTPSample01

is similar to the IVT examples described above, but there is a command line argument to tell it not to use

the Java Naming and Directory Interface (JNDI) and it does not have the same checks on the class path. The

program requires the same JMS and MQe jar files on the class path as examples.jms.MQeJMSIVT, that is

jms.jar, MQeJMS.jar, MQeBase.jar, and MQeExamples.jar. It also requires the jndi.jar file, even if it does

not use JNDI, because the program imports javax.naming. The section on Using JNDI provides more

information on the jndi.jar file. You can run the example from the command line by typing:

 java examples.jms.PTPSample01 -nojndi -i <ini file name>

where <ini file name > is the name of the initialization (ini) file for the MQe queue manager. By default,

the program will use the SYSTEM.DEFAULT.LOCAL.QUEUE on this queue manager. You can specify a different

queue by using the -q flag:

java examples.jms.PTPSample01 -i <ini file name> -q <queue name>

You can also turn tracing on by adding the -t flag:

java examples.jms.PTPSample01 -t -i <ini file name> -q <queue name>

The examples.jms.PTPSample02 program uses message listeners and filters. This program creates a

QueueReceiver with a ″blue″ filter and creates a message listener for it. It creates a second QueueReceiver

with a ″red″ filter and message listener. It then sends four messages to a queue, two with the filter

Designing your real application 141

property colour set to blue and two with the filter property colour set to red, and checks that the message

listeners receive the correct messages. The program has the same command line parameters as

examples.jms.PTPSample01.

Writing JMS programs

Introduces the JMS model and provides information on writing MQe JMS applications

This section provides information on writing MQe JMS applications. It provides a brief introduction to

the JMS model and information on programming some common tasks that application programs may

need to perform.

The JMS model

JMS defines a generic view of a message service. It is important to understand this view, and how it

maps onto the underlying MQe system. The generic JMS model is based around the following interfaces

that are defined in Sun’s javax.jms package:

 Connection

This provides a connection to the underlying messaging service and is used to create Sessions.

Session

This provides a context for producing and consuming messages, including the methods used to

create MessageProducers and MessageConsumers.

MessageProducer

This is used to send messages.

MessageConsumer

This is used to receive messages.

Destination

This represents a message destination.

Note: A connection is thread safe, but sessions, message producers, and message consumers are not.

While the JMS specification allows a Session to be used by more than one thread, it is up to the user to

ensure that Session resources are not concurrently used by multiple threads. The recommended strategy

is to use one Session per application thread.

Therefore, in MQe terms:

 Connection

This provides a connection to an MQe queue manager. All the Connections in a JVM must

connect to the same queue manager, because MQe supports a single queue manager per JVM.

The first connection created by an application will try and connect to an already running queue

manager, and if that fails will attempt to start a queue manager itself. Subsequent connections

will connect to the same queue manager as the first connection.

Session

This does not have an equivalent in MQe

Message producer and message consumer

These do not have direct equivalents in MQe. The MessageProducer invokes the putMessage()

method on the queue manager. The MessageConsumer invokes the getMessage() method on the

queue manager.

Destination

This represents an MQe queue.

142 WebSphere MQ Everyplace V2.0.2

MQe JMS can put messages to a local queue or an asynchronous remote queue and it can receive

messages from a local queue. It cannot put messages to or receive messages from a synchronous remote

queue.

The generic JMS interfaces are subclassed into more specific versions for Point-to-point and Publish or

Subscribe behavior. MQe implements the Point-to-point subclasses of JMS. The Point-to-point subclasses

are:

 QueueConnection

Extends Connection

QueueSession

Extends Session

QueueSender

Extends MessageProducer

QueueReceiver

Extends MessageConsumer

Queue

Extends destination

It is recommended that you write application programs that use only references to the interfaces in

javax.jms. All vendor-specific information is encapsulated in implementations of:

v QueueConnectionFactory

v Queue

These are known as ″administered objects″, that is, objects that can be administered and stored in a JNDI

namespace. A JMS application can retrieve these objects from the namespace and use them without

needing to know which vendor provided the implementation. However, on small devices looking up

objects in a JNDI namespace may be impractical or represent an unnecessary overhead. We, therefore,

provide two versions of the QueueConnectionFactory and Queue classes.

The parent classes, MQeQueueConnectionFactory.class, MQeJMSQueue.class, provide the base JMS

functionality but cannot be stored in JNDI, while subclasses, MQeJNDIQueueConnectionFactory.class, and

the MQeJMSJNDIQueue.class, add the necessary functionality for them to be stored and retrieved from

JNDI.

Building a connection:

 You normally build connections indirectly using a connection factory. A JNDI namespace can store a

configured factory, therefore insulating the JMS application from provider-specific information. See the

section Using JNDI, below, for details on how to store and retrieve objects using JNDI.

If a JNDI namespace is not available, you can create factory objects at runtime. However, this reduces the

portability of the JMS application because it requires references to MQe specific classes. The following

code creates a QueueConnectionFactory. The factory uses an MQe queue manager that is configured with

an initialisation (ini) file:

QueueConnectionFactory factory;

factory = new com.ibm.mqe.jms.MQeJNDIQueueConnectionFactory();

((com.ibm.mqe.jms.MQeJNDIQueueConnectionFactory)factory).

setIniFileName(<initialisation file>)

Using the factory to create a connection:

 Use the createQueueConnection() to create a QueueConnection:

Designing your real application 143

QueueConnection connection;

connection = factory.createQueueConnection();

Starting the connection:

 Under the JMS specification, connections are not active upon creation. Until the connection starts,

MessageConsumers that are associated with the connection cannot receive any messages. Use the

following command to start the connection:

connection.start();

Obtaining a session:

 Once a connection has been created, you can use the createQueueSession() method on the

QueueConnection to obtain a session. The method takes two parameters:

1. A boolean that determines whether the session is ″transacted″ or ″non-transacted″.

2. A parameter that determines the ″acknowledge″ mode. This is used when the session is

″non-transacted″.

The simplest case is that where acknowledgements are used and are handled by JMS itself with

AUTO_ACKNOWLEDGE, as shown in the following code fragment:

QueueSession session;

boolean transacted = false;

session = connection.createQueueSession(transacted, Session.AUTO_ACKNOWLEDGE);

Sending a message:

 Messages are sent using a MessageProducer. For point-to-point this is a QueueSender that is created

using the createSender() method on QueueSession. A QueueSender is normally created for a specific

Queue, so that all messages sent using that sender are sent to the same destination. Queue objects can be

either created at runtime, or built and stored in a JNDI namespace. Refer to “Using Java Naming and

Directory Interface (JNDI)” on page 149, for details on how to store and retrieve objects using JNDI.

JMS provides a mechanism to create a Queue at runtime that minimizes the implementation-specific code

in the application. This mechanism uses the QueueSession.createQueue() method, which takes a string

parameter describing the destination. The string itself is still in an implementation-specific format, but

this is a more flexible approach than directly referencing the implementation classes.

QueueSender

QueueReceiver
Queue

QueueConnectionFactory

createQueueConnection()

QueueSession

createReceiver()

createSender()

QueueConnection

createQueueSession()

Figure 73. Obtaining a session once a connection is created

144 WebSphere MQ Everyplace V2.0.2

For MQe JMS the string is the name of the MQe queue. This can optionally contain the queue manager

name. If the queue manager name is included, the queue name is separated from it by a plus sign ’+’, for

example:

ioQueue = session.createQueue("myQM+myQueue");

This will create a JMS Queue representing the MQe queue ″myQueue″ on queue manager ″myQM″. If no

queue manager name is specified the local queue manager is used, i.e. the one that JMS is connected to.

For example:

String queueName = "SYSTEM.DEFAULT.LOCAL.QUEUE";

...

ioQueue = session.createQueue(queueName);

This will create a JMS Queue representing the MQe queue SYSTEM.DEFAULT.LOCAL.QUEUE on the queue

manager that the JMS Connection is using.

Message types:

 JMS provides several message types, each of which embodies some knowledge of its content. To avoid

referencing the implementation-specific class names for the message types, methods are provided on the

Session object for message creation. In the sample program, a text message is created in the following

manner:

System.out.println("Creating a TextMessage");

TextMessage outMessage = session.createTextMessage();

System.out.println("Adding Text");

outMessage.setText(outString);

The message types that can be used are:

v BytesMessage

v ObjectMessage

v TextMessage

Receiving a message:

 Messages are received by using a QueueReceiver. This is created from a Session by using the

createReceiver() method. This method takes a Queue parameter that defines where the messages are

received from. See ″Sending a message″ above for details of how to create a Queue object. The sample

program creates a receiver and reads back the test message with the following code:

QueueReceiver queueReceiver = session.createReceiver(ioQueue);

Message inMessage = queueReceiver.receive(1000);

The parameter in the receive call is a timeout in milliseconds. This parameter defines how long the

method should wait if there is no message available immediately. You can omit this parameter, in which

case the call blocks indefinitely. If you do not want any delay, use the receiveNoWait() method. The

receive methods return a message of the appropriate type. For example, if a TextMessage is put on a

queue, when the message is received the object that is returned is an instance of TextMessage . To extract

the content from the body of the message, it is necessary to cast from the generic Message class, which is

the declared return type of the receive methods, to the more specific subclass, such as TextMessage . If

the received message type is not known, you can use the ″instanceof″ operator to determine which type it

is. It is good practice always to test the message class before casting, so that unexpected errors can be

handled gracefully. The following code illustrates the use of ″instanceof″, and extraction of the content

from a TextMessage:

if (inMessage instanceof TextMessage){

 String replyString = ((TextMessage)inMessage).getText();

 ...

Designing your real application 145

} else {

 //Print error message if Message was not a TextMessage.

 System.out.println("Reply message was not a TextMessage");

}

Handling errors:

 Any runtime errors in a JMS application are reported by exceptions. The majority of methods in JMS

throw JMSExceptions to indicate errors. It is good programming practice to catch these exceptions and

handle them appropriately. Unlike normal Java Exceptions, a JMSException may contain a further

exception embedded in it. For JMS, this can be a valuable way to pass important detail from the

underlying transport. When a JMSException is thrown as a result of MQe raising an exception, the

exception is usually included as the embedded exception in the JMSException. The standard

implementation of JMSException does not include the embedded exception in the output of its

toString() method. Therefore, it is necessary to check explicitly for an embedded exception and print it

out, as shown in the following fragment:

try {

 ...code which may throw a JMSException

} catch (JMSException je) {

 System.err.println("caught "+je);

 Exception e = je.getLinkedException();

 if (e != null) {

 System.err.println("linked exception:"+e);

 }

}

Exception listener:

 For asynchronous message delivery, the application code cannot catch exceptions raised by failures to

receive messages. This is because the application code does not make explicit calls to receive() methods.

To cope with this situation, it is possible to register an ExceptionListener, which is an instance of a class

that implements the onException() method. When a serious error occurs, this method is called with the

JMSException passed as its only parameter. Further details are in Sun’s JMS documentation.

JMS messages:

 JMS messages are composed of the following parts:

 Header

All messages support the same set of header fields. Header fields contain values that are used by

both clients and providers to identify and route messages.

Properties

Each message contains a built-in facility to support application-defined property values.

Properties provide an efficient mechanism to filter application-defined messages.

Body JMS defines several types of message body which cover the majority of messaging styles

currently in use. JMS defines five types of message body:

 Text A message containing a java.lang.String

Object

A message that contains a Serializable java object

Bytes A stream of uninterpreted bytes for encoding a body to match an existing message format

Stream

A stream of Java primitive values filled and read sequentially, not supported in this

version of MQe JMS

Map A set of name-value pairs, where names are Strings and values are Java primitive types.

146 WebSphere MQ Everyplace V2.0.2

The entries can be accessed sequentially or randomly by name. The order of the entries is

undefined. Map is not supported in this version of MQe JMS.

The JMSCorrelationID header field is used to link one message with another. It typically links a reply

message with its requesting message.

Message selectors:

 A message contains a built-in facility to support application-defined property values. In effect, this

provides a mechanism to add application-specific header fields to a message. Properties allow an

application, via message selectors, to have a JMS provider select or filter messages on its behalf, using

application-specific criteria. Application-defined properties must obey the following rules:

v Property names must obey the rules for a message selector identifier.

v Property values can be boolean, byte, short, int, long, float, double, and String.

v The JMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a message, the message

properties are read-only. If a client attempts to set properties at this point, a

MessageNotWriteableException is thrown. If clearProperties() is called, the properties can then be both

read from, and written to.

A property value may duplicate a value in a message’s body, or it may not. JMS does not define a policy

for what should or should not be made into a property. However, for best performance, applications

should only use message properties when they need to customize a message’s header. The primary

reason for doing this is to support customized message selection. A JMS message selector allows a client

to specify the messages that it is interested in by using the message header. Only messages whose

headers match the selector are delivered. Message selectors cannot reference message body values. A

message selector matches a message when the selector evaluates to true when the message’s header field

and property values are substituted for their corresponding identifiers in the selector.

A message selector is a String, which can contain:

 Literals

v A string literal is enclosed in single quotes. A doubled single quote represents a single quote.

Examples are ’literal’ and ’literal’’s’. Like Java string literals, these use the Unicode character

encoding.

v An exact numeric literal is a numeric value without a decimal point, such as 57, -957, +62.

Numbers in the range of Java long are supported.

v An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2,

or a numeric value with a decimal, such as 7., -95.7, or +6.2. Numbers in the range of Java

double are supported. Note that rounding errors may affect the operation of message selectors

including approximate numeric literals.

v The boolean literals TRUE and FALSE.

Identifiers

v An identifier is an unlimited length sequence of Java letters and Java digits, the first of which

must be a Java letter. A letter is any character for which the method Character.isJavaLetter

returns true. This includes ″_″ and ″$″. A letter or digit is any character for which the method

Character.isJavaLetterOrDigit returns true.

v Identifiers cannot be the names NULL, TRUE, or FALSE.

v Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, and IS.

v Identifiers are either header field references or property references.

v Identifiers are case-sensitive.

v Message header field references are restricted to:

Designing your real application 147

– JMSDeliveryMode

– JMSPriority

– JMSMessageID

– JMSTimestamp

– JMSCorrelationID

– JMSType

JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType values may be null, and if so,

are treated as a NULL value.

v Any name beginning with ″JMSX″ is a JMS-defined property name

v Any name beginning with ″JMS_″ is a provider-specific property name

v Any name that does not begin with ″JMS″ is an application-specific property name

v If there is a reference to a property that does not exist in a message, its value is NULL. If it

does exist, its value is the corresponding property value.

White space

This is the same as is defined for Java, space, horizontal tab, form feed, and line terminator.

Logical operators

Currently supports AND only.

Comparison operators

v Only equals (’=’) is currently supported.

v Only values of the same type can be compared.

v If there is an attempt to compare different types, the selector is always false.

v Two strings are equal if they contain the same sequence of characters.

v The IS NULL comparison operator tests for a null header field value, or a missing property

value. The IS NOT NULL comparison operator is not supported.

Note that Arithmetic operators are not currently supported.

The following message selector selects messages with a message type of car and a colour of blue:

"JMSType =’car ’AND colour =’blue’"

When selecting Header fields MQe will interpret exact numeric literals so that they match the type of the

field in question, that is a selector testing the JMSPriority or JMSDeliveryMode Header fields will

interpret an exact numeric literal as an int, whereas a selector testing JMSExpiration or JMSTimestamp

will interpret an exact numeric literal as a long. However, when selecting message properties MQe will

always interpret an exact numeric literal as a long and an approximate numeric literal as a double.

Application specific properties intended to be used for message selection should therefore be set using

the setLongProperty and setDoubleProperty methods respectively.

Restrictions in this version of MQe

This version of MQe JMS implements the Point-to-Point subset of JMS with a few restrictions. It does not

implement any of the optional classes:

v The application server classes ConnectionConsumer, ServerSession, and ServerSessionPool

v The XA classes:

– XAConnection

– XAConnectionFactory

– XAQueueConnection

– XAQueueConnectionFactory

148 WebSphere MQ Everyplace V2.0.2

– XAQueueSession

– XASession

– XATopicConnection

– XATopicConnectionFactory

– XATopicSession

It does not implement the TemporaryQueue class, which means that the QueueRequestor class will not

work or the MapMessage and StreamMessage classes.

In the QueueConnectionFactory, the createQueueConnection() method that takes a username and

password as parameters is not implemented, MQe does not have the concept of a user. The method with

no parameters is implemented.

When a message is read from a queue but not acknowledged, the message is returned to the queue for

redelivery. In this case the JMSRedelivered header field should be set in the message. MQe JMS does not

set this header field.

MQe JMS can put messages to a local queue or an asynchronous remote queue and it can receive

messages from a local queue. It cannot put to or receive messages from a synchronous remote queue.

Using Java Naming and Directory Interface (JNDI)

One of the advantages of using JMS is the ability to write applications which are independent of the JMS

implementations, allowing you to plug in a JMS implementation which is appropriate for your

environment. However, certain JMS objects must be configured in a way which is specific to the JMS

implementation you have chosen. These objects are the connection factories and destinations, queues, and

they are often referred to as ″administered objects″. In order to keep the application programs

independent of the JMS implementation, these objects must be configured outside of the application

programs. They would typically be configured and stored in a JNDI namespace. The application would

lookup the objects in the namespace and would be able to use them straight away, because they have

already been configured.

There may be situations, such as on a small device, where it would not be desirable to use JNDI. In these

cases the objects could be configured directly in the application. The cost of not using JNDI would be a

small degree of implementation-dependence in the application.

Storing and retrieving objects with JNDI

Before using JNDI to either store or retrieve objects, an ″initial context″ must be set up, as shown in this

fragment taken from the MQeJMSIVT_JNDI example program:

import javax.jms.*;

import javax.naming.*;

import javax.naming.directory.*;

...

java.util.Hashtable environment =new java.util.Hashtable();

environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);

environment.put(Context.PROVIDER_URL, url);

Context ctx = new InitialContext(environment);

where:

 icf defines a factory class for the JNDI context. This depends upon the JNDI provider that you are

using. The documentation supplied by the JNDI provider should tell you what value to use for

this. See also the examples below.

url defines the location of the namespace. This will depend on the type of namespace you are using.

Designing your real application 149

If you are using the file system, this will be a file url that identifies a directory in your file

system. If you are using LDAP this will be a ldap url that identifies a LDAP server and location

in the directory tree of that server. The documentation supplied by the JNDI provider should

describe the correct format for the url.

For more details about JNDI usage, see Sun’s JNDI documentation.

Note: Some combinations of the JNDI packages and LDAP service providers can result in an LDAP error

84. To resolve the problem, insert the following line before the call to InitialContext.

 environment.put(Context.REFERRAL,"throw");

Once an initial context is obtained, objects can be stored in and retrieved from the namespace. To store an

object, use the bind() method:

 ctx.bind(entryName, object);

where ’entryName’ is the name under which you want the object stored, and ’object’ is the object to be

stored, for example to store a factory under the name ″ivtQCF″:

 ctx.bind("ivtQCF", factory);

To store an object in a JNDI namespace, the object must satisfy either the javax.naming.Referenceable

interface or the java.io.Serializable interface, depending on the JNDI provider you use. The

MQeJNDIQueueConnectionFactory and MQeJMSJNDIQueueclasses implement both of these interfaces. To

retrieve an object from the namespace, use thelookup() method:

 object = ctx.lookup(entryName);

where entryName is the name under which you want the object stored , for example, to retrieve a

QueueConnectionFactory stored under the name ″ivtQCF″:

 QueueConnectionFactory factory;

 factory = (QueueConnectionFactory)ctx.lookup("ivtQCF");

Using the sample programs with JNDI

The example program examples.jms.MQeJMSIVT_JNDI can be used to test your installation using JNDI.

This is very similar to the examples.jms.MQeJMSIVT program, except that it uses JNDI to retrieve the

connection factory and the queue that it uses. Before you can run this program you must store these two

administered objects in a JNDI namespace:

 Table 4. Administered objects for a JNDI namespace

Entry name Java class Description

ivtQCF MQeJNDIQueueConnectionFactory A QueueConnectionFactory configured to

use an MQe queue manager

ivtQ MQeJMSJNDIQueue A Queue configured to represent an MQe

queue which is local to the queue

manager used by the ivtQCF entry

The program examples.jms.CreateJNDIEntry or the MQeJMSAdmin tool , explained in the following

section, can be used to create these entries. Larger installations may have a Lightweight Directory Access

Protocol (LDAP) directory available, but for smaller installations a file system namespace may be more

appropriate. When you have decided on a namespace you must obtain the corresponding JNDI class files

to support the namespace and add these to your classpath. These will vary depending on your choice of

namespace and the version of Java you are using.

150 WebSphere MQ Everyplace V2.0.2

You must always have the javax.naming.* classes on your classpath. If you are using Java 1 (for example

a 1.1.8 JRE) you must obtain a copy of the jndi.jar file and add it to your classpath. If you are using Java

2 (a 1.2 or later JRE) the JRE may contain these classes itself.

If you want to use an LDAP directory, you must obtain JNDI classes that support LDAP, for example

Sun’s ldap.jar or IBM’s ibmjndi.jar, and add these to your classpath. Some Java 2 JREs may already

contain Sun’s classes for LDAP. See also the section below about LDAP support for Java classes.

If you want to use a file system directory, you must obtain JNDI classes that support the file system, for

example Sun’s fscontext.jar (which requires providerutil.jar as well) and add these to your classpath. The

CreateJNDIEntry example program requires the MQeJMS.jar file on your classpath, in addition to the

JNDI jar files. It takes the following command line arguments:

java examples.jms.CreateJNDIEntry -url<providerURL>

 [-icf<initialContextFactory>][-ldap]

 [-qcf<entry name><MQe queue manager ini file>]

 [-q<entry name><MQe queue name>]

An alternative argument to use is:

java examples.jms.CreateJNDIEntry -h

In the previous two examples:

 -url<providerURL>

The URL of the JNDI initial context (obligatory parameter)

-icf<initialContextFactory>

The initialContextFactory for JNDI that defaults to the file system:

com.sun.jndi.fscontext.RefFSContextFactory

-ldap This should be specified if you are using an LDAP directory

-qcf<entry name><MQe queue manager ini file>

The name of a JNDI entry to be created for a JMS QueueConnectionFactory and the name of an

initialisation (ini) file for an MQe queue manager to be used to configure it

-h Displays a help message

The url, -url, must be specified and either a QueueConnectionFactory (-qcf) or a Queue (-q), or both,

must be specified. The context factory, -icf, is optional and defaults to a file system directory. The LDAP

flag, -ldap, should be specified if an LDAP directory is being used, this prefixes the entry name with

″cn=″, which is required by LDAP.

For example, if a queue manager with the initialization file d:\MQe\exampleQM\exampleQM.ini exists,

and you are using a JNDI directory based in the file system at d:\MQe\data\jndi\, type (all on one line):

 java examples.jms.CreateJNDIEntry -url file://d:/MQe/data/jndi -qcf ivtQCF

 d:\MQe\exampleQM\exampleQM.ini

Note that forward slashes are used in the url, even if the file system itself uses back slashes. The url

directory must already exist. To add an entry for the queue you would type (all on one line):

 java examples.jms.CreateJNDIEntry -url file://

 d:/MQe/data/jndi -q ivtQ SYSTEM.DEFAULT.LOCAL.QUEUE

You could use another local queue instead of the SYSTEM.DEFAULT.LOCAL.QUEUE.

You could also specify the queue name as exampleQM+SYSTEM.DEFAULT.LOCAL.QUEUE, where exampleQM is

the name of the queue manager. If the name of the queue manager is not specified, the local queue

manager is used.

Designing your real application 151

Both entries could be added at the same time by typing:

 java examples.jms.CreateJNDIEntry

 -url file://d:/MQe/data/jndi -qcf ivtQCF

 d:\MQe\exampleQM\exampleQM.ini -q ivtQ

 SYSTEM.DEFAULT.LOCAL.QUEUE

Again, you should type all of this command on one line. A maximum of one connection factory and one

queue can be added at a time.

When the JNDI entries have been created, you can run the example .jms.MQeJMSIVT_JNDI program. This

requires the same jar files on the classpath as the MQeJMSIVT program, that is:

v jms.jar, Sun’s interface definition for the JMS classes

v MQeJMS.jar, the MQe implementation of JMS

v MQeBase.jar

v MQeExamples.jar

It also requires the JNDI jar files, as used for the CreateJNDIEntry example program. The example can be

run from the command line by typing:

 java examples.jms.MQeJMSIVT_JNDI

 -url<providerURL>

where <providerURL> is the specified URL of the JNDI initial context. By default the program uses the

file system context for JNDI:

 com.sun.jndi.fscontext.RefFSContextFactory

If necessary you can specify an alternative context:

 java examples.jms.MQeJMSIVT_JNDI -url<providerURL>

 -icf<initialContextFactory>

You can optionally add a -t flag to turn tracing on:

 java examples.jms.MQeJMSIVT_JNDI -url<providerURL>

 -icf<initialContextFactory> -t

To use the entries in the file system directory created in the CreateJNDIEntry example above, type:

 java examples.jms.MQeJMSIVT_JNDI -url file://d:/MQe/data/jndi

The example program checks that the required jar files are on the classpath by checking for classes that

they contain. It looks up the QueueConnectionFactory and the Queue in the JNDI directory. It starts a

connection, which starts the MQe queue manager, sends a message to the Queue, reads the message back

and compares it to the message it sent. The queue should not contain any messages before running the

program, otherwise the message read back will not be the one that the program sent. The first lines of

output from the program should look like this:

using context factory

 ’com.sun.jndi.fscontext.RefFSContextFactory’ for the directory

using directory url ’file://d:/MQe/data/jndi’

checking classpath

found JMS interface classes

found MQe JMS classes

found MQe base classes

found jndi.jar classes

found com.sun.jndi.fscontext.RefFSContextFactory classes

Looking up connection factory in jndi

Looking up queue in jndi

Creating connection

152 WebSphere MQ Everyplace V2.0.2

The rest of the output should be similar to that from the example without JNDI. You can also run the two

other example programs, examples.jms.PTPSample01 and example .jms.PTPSample02, using JNDI. These

programs requires the same JMS and MQe jar files on the classpath as the MQeJMSIVT_JNDI program, that

is:

v jms.jar

v MQeJMS.jar

v MQeBase.jar

v MQeExamples.jar

They also require the jndi.jar file and the jar files for the JNDI provider you are using, for example, file

system or LDAP. The examples can be run from the command line by typing:

 java examples.jms.PTPSsample01 -url<providerURL>

As in the previous example, providerURL is the URL of the JNDI initial context. By default, the program

uses the file system context for JNDI, that is com.sun.jndi.fscontext.RefFSContextFactory. If necessary

you can specify an alternative context:

java examples.jms.PTPSsample01 -url<providerURL>

 -icf<initialContextFactory>

You can optionally add a ″-t″ flag to turn tracing on: java examples.jms. PTPSsample01 -url

<providerURL><-icf initialContextFactory> -t . To use the entries in the file system directory created in

the CreateJNDIEntry example above, you would type:

java examples.jms.PTPSample01 -url file://d:/MQe/data/jndi

The program examples.jms.PTPSample02 uses message listeners and filters. It creates a QueueReceiver

with a filter ″colour=’blue’″ and creates a message listener for it. It creates a second QueueReceiver with a

filter ″colour=’red’″ and also creates a message listener. It sends four messages to a queue, two with the

property ″colour″ set to ″red″ and two with the property ″colour″ set to ″blue″, and checks that the

message listeners receive the correct messages. The program has the same command line parameters as

the PTPSample01 program and can be run in the same way. Simply substitute PTPSample02 for

PTPSample01.

Mapping JMS messages to MQe messages

This section describes how the JMS message structure is mapped to an MQe message. It is of interest to

programmers who wish to transmit messages between JMS and traditional MQe applications.

As described earlier, the JMS specification defines a structured message format consisting of a header,

three types of property and five types of message body, while MQe defines a single free-format message

object, MQeMsgObject. MQe defines some constant field names that messaging applications require, for

example UniqueID, MessageID, and Priority, while applications can put data into an MQe message as

<name, value> pairs.

To send JMS messages using MQe, we define a constant format for storing the information contained in a

JMS message within an MQeMsgObject. This adds three top-level fields and four MQeFields objects to an

MQeMsgObject, as shown in the following example.

Designing your real application 153

The following sections describe the contents of these fields:

Naming MQeMsgObject fields

An MQeMsgObject stores data as a <name, value> pair. The field names used to map JMS message data to

the MQeMsgObject are defined in com.ibm.mqe.MQe and com.ibm.mqe.jms.MQeJMSMsgFieldNames:

 MQeJMS field names

MQe.MQe_JMS_VERSION

MQeJMSMsgFieldNames.MQe_JMS_CLASS

JMS message field names

MQeJMSMsgFieldNames.MQe_JMS_HEADER

MQeJMSMsgFieldNames.MQe_JMS_PROPERTIES

MQeJMSMsgFieldNames.MQe_JMS_PS_PROPERTIES

MQeJMSMsgFieldNames.MQe_JMSX_PROPERTIES

MQeJMSMsgFieldNames.MQe_JMS_BODY

JMS header field names

MQeJMSMsgFieldNames.MQe_JMS_DESTINATION

MQeJMSMsgFieldNames.MQe_JMS_DELIVERYMODE

MQeJMSMsgFieldNames.MQe_JMS_MESSAGEID

MQeJMSMsgFieldNames.MQe_JMS_TIMESTAMP

MQeJMSMsgFieldNames.MQe_JMS_CORRELATIONID

MQeJMSMsgFieldNames.MQe_JMS_REPLYTO

MQeJMSMsgFieldNames.MQe_JMS_REDELIVERED

MQeJMSMsgFieldNames.MQe_JMS_TYPE

MQeJMSMsgFieldNames.MQe_JMS_EXPIRATION

MQeJMSMsgFieldNames.MQe_JMS_PRIORITY

MQe JMS information

Two <name, value> pairs holding information required for MQe to recreate the JMS message are added

directly to the MQeMsgObject:

 MQe.MQe_JMS_VERSION

This contains a short describing the version number of the MQe JMS implementation used to

store the message. The current version number is 1. The presence or absence of a field named

MQe.MQe_JMS_VERSION is used to determine if an MQeMsgObject contains an MQe JMS message.

MQeMsgObjectJMS message

Header

Properties

Body

WebSphere MQ
Everyplace/

JMS information

Map

MQeFields object

MQeFields object

MQeFields object

MQeFields object

Copy

Figure 74. Mapping a JMS message to an MQeMQeMsgObject

154 WebSphere MQ Everyplace V2.0.2

MQeJMSMsgFieldNames.MQe_JMS_CLASS

This contains a String describing the type of JMS message body stored in the MQeMsgObject. It

defines the strings in the following table:

 Table 5. Strings in MQeJMSMsgFieldNames.MQe_JMS_CLASS

JMS message type MQe.MQe_JMS_CLASS

Bytes message jms_bytes

Map message jms_map

Null message jms_null

Object message jms_object

Stream message jms_stream

Text message jms_text

JMS header files

JMS Header fields are stored within an MQeMsgObject using the following rules:

1. If a JMS header field is identical to a defined MQeMsgObject field then the header value is mapped

directly to the appropriate field in the MQeMsgObject.

2. If a JMS header field does not map directly to a defined field but can be represented using existing

fields defined by MQe then the JMS header value is converted as appropriate and then set in the

MQeMsgObject.

3. If MQe has not defined an equivalent field by then, the header field is stored within an MQeFields

object, which is then embedded in the MQeMsgObject. This ensures that the JMS header field in

question can be restored when the JMS message is recreated.

The header fields that map directly to MQeMsgObject fields are:

 Table 6. Header fields that map directly to MQeMsgObject fields

JMS header field MQeMsgObject defined field

JMSTimestamp MQe.Msg_Time

JMSCorrelationID MQe.Msg_CorrelID

JMSExpiration MQe.Msg_ExpireTime

JMSPriority MQe.Msg_Priority

Two JMS header fields, JMSReplyTo and JMSMessageID, are converted prior to being stored in

MQeMsgObject fields.

JMSReplyTo is split between MQe.Msg_ReplyToQMgr and MQe.Msg_ReplyToQ, while JMSMessageID is the

String "ID:" followed by a 24-byte hashcode generated from a combination of MQe.Msg_OriginQMgr and

MQe.Msg_Time.

The remaining four JMS header fields, JMSDeliveryMode, JMSRedelivered, and JMSType have no

equivalents in MQe. These fields are stored within an MQeFields object in the following manner:

v As an int field named MQe.MQe_JMS_DELIVERYMODE

v As a boolean field named MQe.MQe_JMS_REDELIVERED

v As a String field named MQe.MQe_JMS_JMSTYPE

This MQeFields object is then stored within the MQeMsgObject as MQe.MQe_JMS_HEADER. Finally,

JMSDestination is recreated when the message is received and, therefore does not need to be stored in the

MQeMsgObject.

Designing your real application 155

JMS properties

When storing JMS property fields in an MQeMsgObject, the <name, value> format used by the JMS

properties corresponds very closely to the format of data in an MQeFields object:

 Table 7. JMS property fields and the MQeFields object

Property type Corresponding MQeFields object

Application-specific MQe.MQe_JMS_PROPERTIES

Standard (JMSX_name) MQe.MQe_JMSX_PROPERTIES

Provider-specific (JMS_provider_name) MQe.MQe_JMS_PS_PROPERTIES

Three MQeFields objects, corresponding to the three types of JMS property, application-specific, standard,

and provider-specific are used to store the <name, value> pairs stored as JMS message properties.

These three MQeFields objects are then embedded in the MQeMsgObject with the following names:

v MQe.MQe_JMS_PROPERTIES, application-specific

v MQe_MQe_JMSX_PROPERTIES, standard properties

v MQe.MQe_JMS_PS_PROPERTIES, provider-specific

Note that MQe does not currently set any provider specific properties. However, this field is used to

enable MQe to handle JMS messages from other providers, for example MQ.

The following code fragment creates an MQe JMS text message by adding the required fields to an

MQeMsgObject:

// create an MQeMsgObject

 MQeMsgObject msg = new MQeMsgObject();

 // set the JMS version number

 msg.putShort(MQe.MQe_JMS_VERSION, (short)1);

 // and set the type of JMS message this MQeMsgObject contains

 msg.putAscii(MQeJMSMsgFieldNames.MQe_JMS_CLASS, "jms_text");

 // set message priority and exipry time - these are mapped to

 JMSPriority and JMSExpiration

 msg.putByte(MQe.Msg_Priority, (byte)7);

 msg.putLong(MQe.Msg_ExpireTime, (long)0);

 // store JMS header fields with no MQe

 equivalents in an MQeFields object

 MQeFields headerFields = new MQeFields();

 headerFields.putBoolean(MQeJMSMsgFieldNames.MQe_JMS_REDELIVERED,

 false);

 headerFields.putAscii(MQeJMSMsgFieldNames.MQe_JMS_TYPE,

 "testMsg");

 headerFields.putInt(MQeJMSMsgFieldNames.MQe_JMS_DELIVERYMODE,

 Message.DEFAULT_DELIVERY_MODE);

 msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_HEADER,

 headerFields);

 // add an integer application-specific property

 MQeFields propField = new MQeFields();

 propField.putInt("anInt", 12345);

 msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_PROPERTIES,

 propField);

 // the provider-specific and JMSX properties are blank

 msg.putFields(MQeJMSMsgFieldNames.MQe_JMSX_PROPERTIES,

 new MQeFields());

 msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_PS_PROPERTIES,

156 WebSphere MQ Everyplace V2.0.2

new MQeFields());

 // finally add a text message body

 String msgText =

 "A test message to MQe JMS";

 byte[] msgBody = msgText.getBytes("UTF8");

 msg.putArrayOfByte(MQeJMSMsgFieldNames.MQe_JMS_BODY,

 msgBody);

 // send the message to an MQe Queue

 queueManager.putMessage(null,

 "SYSTEM.DEFAULT.LOCAL.QUEUE",

 msg, null, 0);

Now, you use JMS to receive the message and print it:

// first set up a QueueSession, then...

 Queue queue = session.createQueue

 ("SYSTEM.DEFAULT.LOCAL.QUEUE");

 QueueReceiver receiver = session.createReceiver(queue);

 // receive a message

 Message rcvMsg = receiver.receive(1000);

 // and print it out

 System.out.println(rcvMsg.toString());

This gives:

 HEADER FIELDS

 JMSType: testMsg

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 7

 JMSMessageID: ID:00000009524cf094000000f07c3d2266

 JMSTimestamp: 1032876532326

 JMSCorrelationID: null

 JMSDestination: null:SYSTEM.DEFAULT.LOCAL.QUEUE

 JMSReplyTo: null

 JMSRedelivered: false

 PROPERTY FIELDS (read only)

 JMSXRcvTimestamp : 1032876532537

 anInt : 12345

 MESSAGE BODY (read only)

--

 A test message to MQe JMS

Note that JMS sets some of the JMS message fields, for example JMSMessageID, JMSXRcvTimestamp

internally.

JMS message body:

 Regardless of the JMS message type, MQe stores the JMS message body internally as an array of bytes.

For the currently supported message types, this byte array is created as follows:

 Table 8. JMS message body

JMS message type Conversion

Bytes message ByteArrayOutputStream.toByteArray();

Object message <serialized object>.toByteArray();

Designing your real application 157

Table 8. JMS message body (continued)

JMS message type Conversion

Text message String.getBytes(″UTF-8″);

When the JMS message body is stored in an MQeMsgObject, this byte array is added directly to the

MQeMsgObject with the name MQe.MQe_JMS_BODY.

MQe JMS classes

MQe classes for Java Message Service consist of a number of Java classes and interfaces that are based on

the Sun javax.jms package of interfaces and classes. They are contained in the com.ibm.mqe.jms package.

The following classes are provided:

 Table 9. MQe JMS classes

Class Implements

MQeBytesMessage BytesMessage

MQeConnection Connection

MQeConnectionFactory ConnectionFactory

MQeConnectionMetaData ConnectionMetaData

MQeDestination Destination

MQeJMSEnumeration Java.util.Enumeration from QueueBrowser

MQeJMSJNDIQueue Queue

MQeJMSQueue Queue

MQeMessage Message

MQeMessageConsumer MessageConsumer

MQeMessageProducer MessageProducer

MQeObjectMessage ObjectMessage

MQeQueueBrowser QueueBrowser

MQeQueueConnection QueueConnection

MQeJNDIQueueConnectionFactory QueueConnectionFactory

MQeQueueConnectionFactory QueueConnectionFactory

MQeQueueReceiver QueueReceiver

MQeQueueSender QueueSender

MQeQueueSession QueueSession

MQeSession Session

MQeTextMessage TextMessage

Note that MessageListener and ExceptionListener are implemented by applications.

Errors and error handling

Overview of errors and error handling in Java and C

This chapter describes what happens if an error occurs within the Java and C code bases.

158 WebSphere MQ Everyplace V2.0.2

Error handling in Java

Errors within the Java code base are handled using exceptions. The MQe Java Programming Reference

documents all of the exception codes that the MQe Java code can return in the following classes:

v com.ibm.mqe.MQeExceptionCodes

v com.ibm.mqe.mqbridge.MQeBridge.ExceptionCodes

Error handling in C

The C code base indicates errors using Return and Reason codes. The C code does not have any exception

handling mechanism, as in C++. MQe does not use the operating system error handling functions. An

MQeExceptBlock handles errors and returns values from the functions. An application is free to install any

operating system exception handlers that it requires.

The specific nature of an error condition is returned using two values, MQERETURN and MQEREASON.

MQERETURN determines the general area in which the application failed, and distinguishes between

warnings and errors. You can ignore warnings, but you must not ignore errors. With errors, your

application needs to solve the problem in order to continue safely.

MQERETURN and MQEREASON are both returned in the MQeExceptBlock. The MQERETURN value is also the return

value from the function.

Code structure

The MQe_nativeReturnCodes.h header file lists all of the return and reason codes. They are divided into

function area and then by error or warning. For example, MQERETURN_QUEUE_MANAGER_ERROR and

MQERETURN_QUEUE_MANAGER_WARNING. Warnings indicate that a situation can be ignored.

Exception block

The MQeExceptBlock structure is used to pass the return code and reason code, generated by a function

call, back to the user. If a function call does not return MQERETURN_OK, use the ERC macro to get the reason

code.

MQe ships two macros:

 EC This macro resolves to the return code in the exception block structure.

ERC This macro resolves to the reason code in the exception block structure.

The convention within MQe is that a pointer to an exception block is passed first on a new function. A

pointer to the object handle is passed second, followed by any additional parameters. On subsequent

calls, the object handle is the first parameter passed, and the pointer to the exception block is second,

followed by any additional parameters.

The structure of the exception block, as shown in the following example, is MQeExceptBlock_st.

struct MQeExceptBlock_st

 {

 MQERETURN ec;

 /* return code*/

 MQEREASON erc;

 /* reason code*/

 MQEVOID* reserved;

 /* reserved for internal use only*/

 }

Designing your real application 159

It is recommended that you allocate the Exception Block on the stack, rather than the heap. This

simplifies possible memory allocations, although there are no restrictions on allocating space on the heap.

The following code demonstrates how to do this:

MQERETURN rc

MQeExceptBlock exceptBlock;

/*.....initialisation*/

rc = mqeFunction_anyFunction(&exceptBlock,

/*parameters go here*/);

if (MQERETURN_OK ! = rc) {

printf("An error has occured, return code =

 %d, reason code =%d \n",

 exceptBlock.ec exceptBlock.erc);

}else {

}

All API calls need to take exception blocks. The C Bindings code base permits NULL to be passed to an

API call. However, this feature is deprecated in the C code base and, therefore, not recommended.

You should use a different exception block for each thread in the application.

Note: If an error is not corrected, subsequent API calls can put the system in an unpredictable state.

Useful macros

A number of macros help to access the exception block:

 SET_EXCEPT_BLOCK

Sets the return and reason codes to specific values, for exampe:

 MQeExceptBlock exceptBlock;

 SET_EXCEPT_BLOCK(&exceptBlock,

 MQERETURN_OK,

 MQEREASON_NA);

SET_EXCEPT_BLOCK_TO_DEFAULT

Sets return and reason codes to non-error values, for example:

 MQeExceptBlock exceptBlock;

 SET_EXCEPT_BLOCK_TO_DEFAULT(&exceptBlock);

EC Accesses the return code, for example:

 MQeExceptBlock exceptBlk;

 /*MQe API call */

 MQERETURN returncode;

 returnCode = EC(&exceptBlock);

ERC Accesses the reason code, for example:

 MQeExceptBlock exceptBlk;

 /*MQe API call*/

 MQEREASON reasoncode;

 MQEREASON reasonCode = ERC(&exceptBlock);

NEW_EXCEPT_BLOCK

Can create a temporary exception block. This is useful for temporary clean-up operations.

160 WebSphere MQ Everyplace V2.0.2

Index

A
adapter

communications 116

communications, example 104

message store, example 112

adapters 101

communications 102

how to write adapters 103

storage 101

alias 98

assured delivery of synchronous

messages 51, 52, 53, 54

asynchronous messaging 49

B
Browse and Lock

browse and lock 43, 44

C
client

MQSeries Everyplace 28

closing MQeQueueManagerConfigure

instance 22

common registry parameters 27

communications adapter 116

example 104

communications adapters 102

connections
MQes Everyplace 15

creating
default queue definitions 21

queue manager definitions 20

queue managers 19

D
dead-letter queues 12

default queues, creating definitions
default, creating definitions 21

definition
default queues, creating 21

definition, creating 20

queue manager, creating 20

deleting
queue manager definitions 34

queue managers 34

standard queue definitions 34

delivery of messages 49

detecting queue events 44

E
example

communications adapter 104

message store adapter 112

MQePrivateClient 31

MQeServer 31

expiry of messages 5

F
file registry parameters 27

filters, message 4

G
get message 54, 55, 56, 57, 58

reading all on queue 42

H
home-server

queues 13

I
index fields, message

message
index fields 39

L
life cycle, message 36

listeners, message 44

local queue 11

lock ID 43

locking messages
locking 43, 44

M
message

expiry 5

filters 4

listeners 44

polling 45

Message
Create 1, 2, 3

expiry 1, 2, 3

filters 1, 2, 3

What are MQe messages? 1, 2, 3

message delivery 49

message life cycle 36

message states 37

message store adapter
example 112

messaging
MQeFields 1

MQeMsgObject 1

queue aliases 1

messaging, asynchronous 49

messaging, synchronous 50

MQeFields 6, 7

MQePrivateClient example 31

MQeQueueManagerConfigure 19

MQeQueueManagerConfigure instance,

closing 22

MQeRegistry parameters for queue

manager
registry parameters 28

MQeRegistry.DirName 27

MQeRegistry.LocalRegType
types 27

MQeRegistry.Separator 27

MQeServer, example 31

MQSeries Everyplace
client 28

server 31

N
naming

queue managers 18

queues 8, 9

O
objects

storing and retrieving 7

operations, messages
messaging, operations 39, 40, 41

ordering queues
queue

ordering 42

P
parameters

file registry 27

polling messages 45

properties, queue manager, setting 20

Q
queue

administration 12

events, detecting 44

naming 8, 9

queue manager 17

creating, queue managers 18

definitions, deleting 34

naming 18

queue manager, registry 18

queues 11

dead-letter 12

home-server 13

local 11

remote 11

store-and-forward 11

R
reading

all messages on a queue 42

 161

registry
queue manager parameters 28

remote queue 11

retrieving objects 7

rules
transmit 126, 127

S
server

MQe 31

servlet queue manager
servlet 46, 47, 48, 49

setting queue manager properties
properties, setting 20

standard queue definitions, deleting 34

storage adapters 101

store-and-forward queue 11

storing objects 7

synchronous assured message

delivery 51, 52, 53, 54

synchronous messaging 50

SYSTEM.DEFAULT.LOCAL.QUEUE 21

T
transmit rule 126, 127

W
Web server, running a queue manager

running in a Web server 46, 47, 48,

49

WebSphere communications adapter 116

162 WebSphere MQ Everyplace V2.0.2

	Contents
	Designing your real application
	Messaging
	What are MQe messages?
	Message properties
	Message filters
	Message expiry

	MQeFields
	Storage and retrieval of values in MQeFields
	Embedding MQeFields items

	Queues
	What are MQe queues?
	Queue names
	Queue properties
	Queue types
	Local queue
	Remote queue
	Store-and-forward queue
	Dead-letter queue
	Administration queue
	Home-server queue
	MQ bridge queue

	Queue persistent storage
	Using queue aliases
	Examples of queue aliasing

	MQe connection definitions
	Queue manager operations
	What is an MQe queue manager
	The queue manager life cycle
	Creating queue managers
	Queue manager names
	Creating a queue manager - step by step
	Persistent configuration data
	Creating simple queue managers

	Starting queue managers
	Starting queue managers in Java
	Starting queue managers in C
	Queue manager parameters
	Registry parameters for a queue manager
	Registry type
	Client queue managers
	Server queue managers
	Environment relationship
	Java code
	C code

	Stopping queue managers
	Stopping a queue manager in Java
	Stopping a queue manager in C

	Deleting queue managers
	Java
	1. Delete any definitions
	2. Create and activate an instance of MQeQueueManagerConfigure
	3. Delete the standard queue and queue manager definitions
	4. Close the MQeQueueManagerConfigure instance
	C

	Messaging life cycle
	Message states
	Message events
	Message index fields

	Messaging operations
	Put
	Get
	Browse
	Delete
	confirmPut
	confirmGet
	Listen
	Wait

	Queue ordering
	Reading messages on a queue
	Java
	C
	Browse and Lock
	Message listeners
	Message polling
	Trigger transmission
	Trigger transmission rules

	Servlet
	Example - configuring a connection on a servlet
	Example - configuring a connection on a servlet using aliases
	Differences between server and servlet startup
	Example - starting a servlet
	Example - handling incoming requests
	Running multiple servlets on a web server

	Message delivery
	Asynchronous message delivery
	Synchronous message delivery
	Assured and non-assured message delivery
	Assured message delivery
	Non-assured message delivery

	Synchronous assured message delivery
	Put message - assured put
	Get message - assured get

	Network topologies and message resolution
	Overview
	Introduction
	Local queue resolution
	Local queue alias
	Queue manager alias

	Remote queue resolution
	Aliases on remote queues
	Parallel routes
	Chaining remote queue references

	Pushing store and forward queues
	S&F queues and remote queue references
	Chaining S&F queues

	Home server queues
	Via connections
	Rerouting with queue manager aliases
	MQe-MQ bridge message resolution
	Pulling messages from MQ
	Pushing messages to MQ
	Connecting a client to MQ via a bridge
	Pushing messages to MQ with a via connection

	Security considerations
	Resolution rules
	Rule 1: Resolve queue manager aliases
	Queue resolution
	'Exact' match
	Queue Alias Match
	S&F queue
	Queue Discovery
	Failure
	Push across network
	Normal
	Via
	Home server pulling

	Using aliases
	Using queue aliases
	Using queue manager aliases
	Addressing a queue manager with several different names
	Different routings from one queue manager to another

	Using adapters
	Storage adapters
	Communications adapters
	How to write adapters
	An example communications adapter
	An example message store adapter
	The WebSphere Everyplace Suite (WES) communications adapter
	The WebSphere Everyplace Suite (WES) adapter files
	Using the WebSphere Everyplace Suite (WES) adapter

	Using rules
	Queue manager rules
	Loading and activating queue manager rules
	Using queue manager rules

	Transmission rules
	Trigger transmission rule example
	Transmit rule
	A more complex transmit rule example

	Activating asynchronous remote queue definitions
	Queue rules
	Using queue rules

	Bridge rules

	Java Message Service (JMS)
	Using JMS with MQe
	Obtaining jar files
	Testing the JMS class path
	Running other MQe JMS example programs

	Writing JMS programs
	The JMS model

	Restrictions in this version of MQe
	Using Java Naming and Directory Interface (JNDI)
	Storing and retrieving objects with JNDI
	Using the sample programs with JNDI

	Mapping JMS messages to MQe messages
	Naming MQeMsgObject fields
	MQe JMS information
	JMS header files
	JMS properties
	MQe JMS classes

	Errors and error handling
	Error handling in Java
	Error handling in C
	Code structure
	Exception block
	Useful macros

	Index

