
WebSphere MQ Everyplace V2.0.2 

   

���



ii WebSphere  MQ Everyplace  V2.0.2



Contents  

Developing a basic application . . . . . 1  

Introduction  to the  WebSphere  MQe  development  kit 1 

Setting  up your  development  environment   . . . . 1  

Java  development  . . . . . . . . . . . . 1 

C development   . . . . . . . . . . . . 3 

Walkthrough:  creating  a basic  application  . . . . . 9 

1. Create  a queue  manager  (QM1)   . . . . . . 9  

2. Start  the  queue  manager  (QM1)  . . . . . . 10  

3. Create  a local  queue  (Q1)   . . . . . . . . 10  

4. Create  a connection  definition   . . . . . . 10 

5. Create  a remote  queue  definition   . . . . . 11 

6. Create  a listener  (L1)   . . . . . . . . . 11 

7. Start  listener  (L1)  . . . . . . . . . . . 11 

8. Create  a second  queue  manager  (QM2)   . . . 11 

9. Start  QM2   . . . . . . . . . . . . . 12 

10. Create  a local  queue  (on QM2)  called  Q2   . . 12  

11. Create  a connection  definition  (on QM2)   . . 12  

12. Create  a remote  queue  definition  (on  QM2)  13 

13. Create  a listener  (on  QM2)  called  L2  . . . . 13  

14. Start  the  listener  L2 (on  QM2)   . . . . . . 13 

15. Send  (PUT)  a message  from  QM1  to QM2   . . 13  

16. Receive  (GET)  the  message  on QM2   . . . . 14 

17. Displaying  details  of MQe  objects  . . . . . 14  

An  example  MQe  application  (HelloWorld)  . . . . 14  

Java  ″HelloWorld″  . . . . . . . . . . . 14  

C ″HelloWorld″  . . . . . . . . . . . . 17  

Using  the  MQe  development  and  administration  

tools  . . . . . . . . . . . . . . . . . 21 

Index  . . . . . . . . . . . . . . . 23

 

  iii



iv WebSphere  MQ Everyplace  V2.0.2



Developing  a basic  application  

This  topic  contains  the  information  that  you  need  for  creating  a simple  MQe  application.  It introduces  the  

MQe  development  toolkit  and  explains  what  you  need  to  do  to  set  up  your  development  environment.  

The  walkthrough  then  gives  step-by-step  instructions  on  how  to create  a simple  MQe  application,  and  

verify  that  it  is working.  

A  simple  example  application  called  HelloWorld  is also  described.  This  simple  application  demonstrates  

how  to  use  some  of  the  features  of  MQe.  Finally,  the  topic  introduces  some  of  the  tools  that  you  can  use  

to  develop  and  administer  MQe  applications.  

Introduction to the WebSphere  MQe development kit 

This  topic  introduces  the  WebSphere® MQe  Development  Kit,  which  is a development  environment  for  

writing  messaging  and  queueing  applications  based  on  Java  and  C.  For  information  on  the  availability  of 

development  kits  for  environments  other  than  Java™ and  C,  see  the  WebSphere  MQ  web  site  at:  

http://www.ibm.com/software/ts/mqseries  

The  code  portion  of  the  Java  development  kit  comes  in  two  sections:  

Base  WebSphere  MQ  Everyplace® classes  

A set  of  Java  classes  that  provide  all  the  necessary  function  to build  messaging  and  queueing  

applications.  

Examples  

Java  source  code  and  classes  that  demonstrate  how  to  use  many  features  of MQe.

 The  code  portion  of  the  C  development  kit  also  comes  in  two  sections:  

Base  WebSphere  MQ  Everyplace  functions  

C code  that  provides  all  the  necessary  function  to  build  messaging  and  queuing  applications.  

Examples  

C source  code  that  demonstrates  how  to use  the  many  features  of MQe.

Setting up your development environment 

This  topic  provides  information  on  setting  up  your  development  environment  for  Java  and  C.  

Java development 

To develop  programs  in  Java  using  the  MQe  development  kit,  you  must  set  up  the  Java  environment  as  

follows:  

v   Set  the  CLASSPATH  so  that  the  Java  Development  Kit  (JDK)  can  locate  the  MQe  classes.  

Windows® 

 In  a Windows  environment,  using  a standard  JDK,  you  can  use  the  following:  

Set  CLASSPATH=<MQeInstallDir>\Java;%CLASSPATH%  

UNIX® 

In  a UNIX  environment  you  can  use  the  following:  

CLASSPATH=<MQeInstallDir>/Java:$CLASSPATH  

export  CLASSPATH  

 

  1



You can  use  many  different  Java  development  environments  and  Java  runtime  environments  with  MQe.  

The  system  configuration  for  both  development  and  runtime  is  dependent  on  the  environment  used.  

MQe  includes  a file  that  shows  how  to  set  up  a development  environment  for  different  Java  development  

kits.  On  Windows  systems  this  is  a batch  file  called  JavaEnv.bat,  for  UNIX  systems  it is a shell  script  

called  JavaEnv.  To use  this  file,  copy  the  file  and  modify  the  copy  to  match  the  environment  of  the  

machine  that  you  want  to  use  it  on.  

A set  of  batch  files  and  shell  scripts  that  run some  of  the  MQe  examples  use  the  environment  file  

described  above,  and,  if you  wish  to  use  the  example  batch  files,  you  must  modify  the  environment  file  

as  follows:  

v   Set  the  JDK  environment  variable  to  the  base  directory  of the  JDK.  

v   Set  the  JavaCmd  environment  variable  to  the  command  used  to  run Java  applications.  

v   If MQ  Classes  for  Java  is  installed,  set  the  MQDIR  environment  variable  to  the  base  directory  of  the  MQ  

Classes  for  Java.

Note:  Customized  versions  of  JavaEnv.bat  or  JavaEnv  may  be  overwritten  if you  reinstall  MQe.  

When  you  invoke  JavaEnv.bat  on  Windows  you  must  pass  a parameter  that  determines  the  type  of  Java  

development  kit  to  use.  

Possible  values  are:  

Sun  - Sun  

JB  - Borland  JBuilder  

MS  - Microsoft® 

IBM® - IBM

Note:  These  parameters  are  case  sensitive  and  must  be  entered  exactly  as shown.  

If you  do  not  pass  a parameter,  the  default  is IBM.  

The  JavaEnv  shell  script  on  UNIX  does  not  use  a corresponding  parameter.  

On  Windows,  by  default,  you  must  run JavaEnv.bat  from  the  <MQeInstallDir>\java\demo\Windows  

directory.  On  UNIX,  by  default,  you  must  run JavaEnv  from  the  <MQeInstallDir>/Java/demo/UNIX  

directory.  Both  files  can  be  modified  to  allow  them  to  be  run from  other  directories  or  to use  other  Java  

development  kits.  

J2ME environment 

There  are  two  distinct  J2ME  environments:  

 Connected  Device  Configuration  (CDC)  and  Profile  

An  example  is  Foundation  + Applications  in the  CDC  environment,  which  can  effectively  be  

developed  like  a normal  Java  2 Platform  Standard  Edition  (J2SE)  application.  The  only  change  

required  is modifying  the  bootclasspath  option  to  point  to the  relevent  CDC  jar  or  zip  class  file.  

Note:  The  ’bootclasspath’  option  may  not  be  available  on  all  JVM’s

Connected  Limited  Device  Configuration  (CLDC)  and  Mobile  Information  Device  Profile  (MIDP)   

Applications  developed  for  MIDP  can  also  be  compiled  using  a normal  J2SE  JVM  (again  using  

the  bootclasspath  to  point  to  the  required  Midp  class  library),  but  they  normally  have  to  be  run 

within  a Midp  Emulator.  Therefore,  we  recommend  developing  the  application  using  one  of  the  

MIDP  Toolkits  available  on  the  Web. MQe  provides  a MIDP  jar  that  should  be  used  within  this  

environment.  The  MQeMidp.jar  is in  the  <MQeInstallDir>\Java\Jars  directory.

 

2 WebSphere  MQ Everyplace  V2.0.2



C development 

To develop  programs  in  C  using  the  MQe  Development  Kit,  you  need  the  following  tools:  

Microsoft  eMbedded  Visual  C++  (EVC)  Version  3.0.   

This  is  included  in  Microsoft  eMbedded  Visual  Tools 3.0,  which  is available  as  a free  download  

from  the  Microsoft  web  page:  

http://msdn.microsoft.com/mobile/  

You must  use  version  3.0  as  version  4.0  does  not  support  PocketPC.  

An  SDK  for  your  chosen  platform  

Microsoft  eMbedded  Visual  Tools 3.0  includes  an  SDK  for  PocketPC  2000.  You can  also  download  

an  SDK  for  PocketPC  2002  from  Microsoft:  

http://msdn.microsoft.com/mobile/  

C Bindings 

For  the  C Bindings  code  base,  see  the  C Bindings  Programming  Reference.  

Native C 

For  general  information  see  C Programming  Reference,  in  particular  the  page  Compilation  Information. 

However,  that  page  is now  slightly  out  of  date  and  this  topic  provides  an  update.  

For  the  native  C  code  base,  support  is  provided  for  four  platforms:  

v   PocketPC2000  

v   PocketPC2002  

v   PocketPC2003  

v   Windows  32bit.

For  PocketPC,  binaries  are  provided  for  both  the  device  and  the  emulator  that  is available  in  the  

Integrated  Development  Environment  Microsoft  eMbedded  Visual  C++.  The  binaries  provided  for  the  

devices  are  compiled  for  ARM  processors.  

Binary  files  

 The  root  of  the  binary  files,  as  well  as  the  documentation  and  examples,  is the  C directory  below  

the  directory  where  you  choose  to  install  MQe.  

 Then  in  the  C  directory,  the  files  are  located  as  follows:  

PocketPC2000  

ARM  

DLLs  C\PocketPc2000\arm\bin  

LIBs  C\PocketPc2000\arm\lib

Emulator  

DLLs  C\PocketPc2000\x86emulator\bin  

LIBs  C\PocketPc2000\x86emulator\lib

PocketPC2002  

ARM  

DLLs  C\PocketPc2002\arm\bin  

 

Developing  a basic application  3



LIBs  C\PocketPc2002\arm\lib

Emulator  

DLLs  C\PocketPc2002\x86emulator\bin  

LIBs  C\PocketPc2002\x86emulator\lib

PocketPC2003  

ARM  

DLLs  C\PocketPc2003\arm\bin  

LIBs  C\PocketPc2003\arm\lib

Emulator  

DLLs  C\PocketPc2003\x86emulator\bin  

LIBs  C\PocketPc2003\x86emulator\lib

Windows  32bit  

DLLs  C\Win32\Native\bin  

LIBs  C\Win32\Native\lib

Header  files  

 The  header  files  are  common  to  all  the  Native  platforms,  and  can  be  found  in  the  include  

directory  below  the  installation  directory.  

MQe_API.h  

 This  is  the  ″root″ header  file.  If this  is included  all  relevant  header  files  included  for  you.  

 In  order  to  ensure  the  correct  files  and  definitions  are  included  you  must  indicate  that  

you  are  running  the  Native  code  base  as  follows:  

#define    NATIVE                    //  or specify  this  as an option  to the  compiler  

#include   <published/MQe_API.h>  

Linking  

 You need  to  link  against  the  following  two  libraries:  

HMQ_nativeAPI.lib  

//  the  API  library  

HMQ_nativeCnst.lib  

//  the  static  constant  MQeString  library

You  need  to  include  both  these  files.  Then  an  optimizing  linker  removes  links  to  any  functions  

and  constants  that  you  have  not  used.  

 The  other  MQe  libraries  are  statically  and  dynamically  linked  with  the  main  API  library  and  are  

included  as  required.

Using embedded Visual C++ 

You can  compile  applications  using  the  EVC  Integrated  Development  Environment  (IDE),  or  optionally,  

from  the  command  line.  However,  you  must  consider  the  following:  

v   Set  the  appropriate  ″Active  WCE  Configuration″,  using  the  WCE  Configuration  toolbar.  To do  this,  

under  Target  Operating  System  select  either  PocketPC  or  PocketPC  2002.  Also,  under  Target  Processor  

, select  one  of the  following:  

–   Win32  (WCE  x86em)  Debug  

–   Win32  (WCE  x86em)  Release  

 

4 WebSphere  MQ Everyplace  V2.0.2



–   Win32  (WCE  ARM)  Debug  

–   Win32  (WCE  ARM)  Release

Note:  Some  of  the  Target  Processor  or  Target  Operating  System  options  may  not  be  available,  

depending  on  which  SDKs  you  have  installed.  

v   Include  the  header  files  for  the  native  C code  base.  These  are  shared  between  the  two  versions  of 

PocketPC  and  by  the  C Bindings.  The  header  file  location  is in  the  installation  directory  under  include. 

If you  include  the  root  header  file,  MQe_API.h,  you  include  all  the  functions  that  you  may  require.  As  

header  files  are  shared,  you  need  to  define  which  version  of  the  code  base  you  are  using,  as shown  in 

the  following  example:  

#define  NATIVE  

#define  MQE_PLATFORM   PLATFORM_WINCE  

  

/*Alternatively,  you  should  add  this  to the Preprocessor  Definitions  

in the  Project  Settings  Dialog.   Add  the  following  to the  start  

of the  list*/  

NATIVE,MQE_PLATFORM=PLATFORM_WINCE  

  

#include  <published\MQe_API.h>  

v   Include  an  entry  for  the  top  level  MQe  include  directory  in ″Additional  include  directories″. This  varies  

according  to  where  you  install  the  product.  

v   Insert  the  following  .lib  file  names  in  the  ″Project  Settings″  dialog,  under  Link  → Input: 

–   HMQ_nativeAPI.lib  

–   HMQ_nativeCnst.lib

Note:  There  are  variations  of  these  files  for  each  supported  release,  for  example  one  for  PocketPC  2000  

ARM,  one  for  PocketPC  2000  x86em,  and  so on.  To ensure  that  you  use  the  correct  version,  qualify  the  

filename  fully  for  each  target  build.

It  is recommended  that  you  develop  applications  using  the  PocketPC  or  PocketPC2002  emulator  as  this  

typically  provides  a faster  compilation  and  debug  environment.  However,  current  emulators  are  API  

emulators,  meaning  that  they  do  not  emulate  ARM  hardware.  They  emulate  PocketPC  API  calls,  but  the  

code  is still  x86,  that  is  running  in an  x86  virtual  machine  in  the  PocketPC  2002  emulator  case.  Therefore,  

we  recommend  that  you  regularly  test  the  application  on  the  real  target  device,  as many  problems  such  

as  byte-alignment  only  becomes  apparent  on  the  real  device.  

Note:   MQe  emulator  binaries  are  provided  only  for  development  purposes  and  are  not  suitable  for  

deployment  into  a production  environment.  

Threading 

The  native  code  base  is  designed  to  be  re-entrant.  The  actual  code  base  does  not  use  threads,  but  this  

does  not  preclude  the  use  of  multiple  threads  in the  application.  For  example,  you  can  create  an  

application  thread  to  repeatedly  call  mqeQueueManager_triggerTransmission(). If you  want  to use  

multiple  threads,  you  do  not  need  to  call  any  specific  APIs.  

Although  it is not  a requirement.  we  recommend  that  you  have  an  exception  block  per  thread.  If you  use  

one  exception  block  shared  across  threads,  an  exception  block  for  a thread  that  fails  can  be  overwritten  by  

the  exception  block  for  a thread  that  succeeds.  

Note:  You must  call  mqeSession_initialize  or  mqeSession_terminate  once  only,  before  any  threads  use  

an  MQe  API  call.  To ensure  this,  call  it in  the  main  thread  before  any  application  threads  are  created.  For  

example,  do  not  use  the  following:  

 

Developing  a basic application  5



mqeSession_initialize();  

mqeSession_initialize();  

mqeSession_terminate();  

mqeSession_terminate();  

Calling conventions 

The  calling  convention  for  all  of the  APIs  has  been  explicitly  set  at _cdec1. However,  you  can  use  a 

different  default  calling  convention  in your  application.  

Handles and items 

An  application  needs  a mechanism  for  accessing  MQe  items  such  as  the  queue  manager,  fields,  strings,  

and  so  on.  Handles  use  MQe  items.  The  handle  points  to an  area  of  memory  used  to store  the  specific  

information  for  that  instance  of  the  item.  Type  information  is held  for  each  item.  Therefore,  you  must  take  

care  to  initialize  the  handle  correctly.  

To use  a handle,  you  must  initialize  it.  You can  do  this  by  calling  the  new  function  of the  associated  item  

to  be  used.  For  example,  to  create  an  MQeString,  you  must  first  call  the  mqeString_new()  function  and  

pass  a pointer  to  MQeStringHndl  to  that  function.  The  mqeString_new()  function  allocates  memory  for  the  

internal  structure  and  sets  the  required  default  values  by  MQeString.  Once  completed  successfully,  the  

function  returns  the  handle,  which  can  now  be  used  in subsequent  calls  to  MQeString  functions.  

Once  an  item  has  been  finished  with,  it is important  to  call  the  free()  function  of  the  item  with  which  

the  handle  is associated.  The  free()  functions  release  all  the  systems  resources  used  by  that  item.  Setting  

the  handle  to  NULL  introduces  a memory  leak  to  the  application  and  the  system  may  run out  of  resources.  

To avoid  this,  set  the  handle  to  NULL  after  it has  been  freed.  

Note:  We recommend  that  you  do  not  attempt  to  free  a handle  more  than  once,  as  this  can  cause  

unpredictable  results.  

You must  use  handles  only  with  their  associated  items.  You must  also  initialize  and  free  them  in the  

correct  manner.  The  only  instances  where  the  application  is not  responsible  for  initializing  the  handle  is 

when  a pointer  to  a handle  is  passed  as an  input  parameter  to an  MQe  API.  In  such  instances,  a fully  

initialized  handle  is returned  to  the  application  without  the  user  having  to invoke  the  relevant  new()  

function.  An  example  of  this  is  mqeQueueManager_BrowseMessages(), which  has  a pointer  to  an  

MQeVectorHndl  as an  input  parameter.  However,  in instances  like  this,  the  application  is still  responsible  

for  freeing  the  handle.  

MQe memory functions 

MQe  provides  the  following  functions  for  memory  management:  

v   mqeMemory_allocate  

v   mqeMemory_free  

v   mqeMemory_reallocate

These  functions  use  the  same  memory  management  routines  that  are  used  within  the  MQe  code  base.  

These  are  available  for  use  by  application  programs.  An  application  can  generally  use  its  own  choice  of  

memory  management.  However,  some  API  calls,  for  example  mqeAdministrator_QueueManager_inquire, 

need  to  return  blocks  of  memory  containing  information.  In  this  case,  the  memory  must  be  freed  using  

the  mqeMemory_free  function. 

An  additional  advantage  of  using  the  mqeMemory  functions  is that  their  use  gets  traced  along  with  MQe  

processing.  However,  never  mix  the  memory  allocation  calls.  For  example,  do  not  free  memory  allocation  

with  mqeMemory_allocate  with  the  C runtime  free()  call,  as  the  application  can  become  unstable.  

 

6 WebSphere  MQ Everyplace  V2.0.2



MQeString 

The  MQeString  class  contains  user  defined  and  system  strings.  It is an  abstraction  of  character  strings  

used  throughout  the  C  API  where  a string  is  required.  MQeString  allows  you  to  create  a string  in a 

number  of  formats,  such  as  arrays  containing  Unicode  code  points,  with  each  code  point  stored  in  a 1,  2, 

or  4 byte  memory  space,  and  UTF-8.  The  current  implementation  of  MQeString  supports  external  formats  

only.  

Note:  Although  they  are  passed  using  an  MQeString,  some  API  calls  require  the  actual  string  to  lie  

within  the  valid  ASCII  range.  

Constant  Strings  

 A number  of  constant  strings  are  provided.  These  are  defined  in  the  following  header  files:  

v   MQe_Admin_Constants.h  

v   MQe_Adapter_Constants.h  

v   MQe_Attribute_Constants.h  

v   MQe_Connection_Constants.h  

v   MQe_MQe_Constants.h  

v   MQe_MQeMessage_Constants.h  

v   MQe_Queue_Constants.h  

v   MQe_Registry_Constants.h

Constructor  

MQERETURN  osaMQeString_new(MQeExceptBlock*  pExceptBlock,  

                     MQEVOID*         pInputBuffer,  

                     MQETYPEOFSTRING  type,  

                     MQeStringHndl  * phNewString  

                          ); 

This  function  creates  a new  MQeString  object  from  a buffer  containing  character  data.  The  data  

can  be  in  a number  of  supported  formats  including,  null  terminated  single  byte  character  arrays  

(i.e.  normal  C char*  strings),  null  terminated  double-byte  Unicode  character  arrays,  null  

terminated  quad-byte  Unicode  character  arrays,  and  null  terminated  UTF-8  arrays.  The  type  

parameter  tells  the  function  what  format  the  input  buffer  is in.  

Destructor  

  MQERETURN  osaMQeString_delete(MQeExceptBlock*  pExceptBlock,  

                                MQeString_*      pString  

                               ); 

This  function  destroys  an  MQeString  object  that  was  created  using  osaMQeString_new,  or  

MQeString_duplicate,  or  MQeString_getMQeSubstring  

Getter  

   MQERETURN  osaMQeString_get(MQeExceptBlock*       pExceptBlock,  

                         MQEVOID*              pOutputBuffer,  

                         MQEINT32*             pBufferLength,  

                         MQETYPEOFSTRING       requiredType,  

                         MQECONST  MQeStringHndl  hString  

                         ); 

This  function  populates  a character  buffer  with  the  contents  of  an  MQeString  performing  

conversion  wherever  necessary.  Only  simple  conversions  are  carried  out.  No  code  page  

conversion  is attempted.  For  example,  if an  SBCS  string  has  been  put  into  the  string,  then  trying  

to  get  the  data  out  as  DBCS  (Unicode)  data  works  correctly.  If  the  data  was  put  in  as  DBCS  

however,  and  you  try  to  get  the  data  out  as  SBCS,  this  only  works  if the  data  does  not  have  any  

 

Developing  a basic application  7



values  that  cannot  be  represented  with  a single  byte.  When  get()  is used  for  SBCS,  DBCS,  or  

QBCS,  each  character  is  represented  by  its  Unicode  code  point  value.  

   MQERETURN  osaMQeString_getSubstring(MQeExceptBlock*  pExceptBlock,  

                     MQEVOID*         pOutputBuffer,  

                     MQEINT32*        pBufferLength,  

                     MQETYPEOFSTRING  requiredType,  

                     MQECONST  MQeStringHndl  hString,  

                     MQEINT32  from,  

                     MQEINT32  to 

                     ); 

This  function  is very  similar  to  osaMQeString_get  except  that  it only  gets  a substring  (from  from  

to  to  inclusive).  

   MQERETURN  osaMQeString_getMQeSubstring(MQeExceptBlock*  pExceptBlock,  

                     MQeStringHndl  *      phOutput,  

                     MQECONST  MQeStringHndl    hString,  

                     MQEINT32  from,  

                     MQEINT32  to 

                     ); 

This  function  is very  similar  to  osaMQeString_getSubstring  except  it returns  its  result  as  an  

MQeString.  

   MQERETURN  osaMQeString_duplicate(MQeExceptBlock   * pExceptBlock,  

                     MQeStringHndl  * phNewString,  

                     MQECONST  MQeStringHndl    hString  

                     ); 

This  function  duplicates  an  MQeString.  

   MQERETURN  osaMQeString_codePointSize(MQeExceptBlock*  pExceptBlock,  

                     MQEINT32  * pSize,  

                     MQECONST  MQeStringHndl    hString  

                     ); 

This  function  finds  the  memory  size  (in  bytes)  required  for  the  largest  character  in the  string.  

   MQERETURN  osaMQeString_getCharLocation(  MQeExceptBlock*  pExceptBlock,  

                     MQEINT32*        pOutIndex,  

                     MQECONST  MQeStringHndl     hString,  

                     MQECHAR32        charToFind,  

                     MQEINT32         startFrom,  

                     MQEBOOL          searchForward  

                     ); 

This  function  returns  the  location  index  (starting  from  0)  of the  first  appearance  of a specified  

character,  specified  as  its  Unicode  code  point  value.  You can  specify  the  starting  point  of your  

search  and  the  direction  of  the  search.  

Tester  

   MQERETURN  osaMQeString_isAsciiOnly(MQeExceptBlock*      pExceptBlock,  

                          MQEBOOL*             pIsAsciiOnly,  

                          MQECONST  MQeString_*  pString  

                          ); 

This  function  determines  whether  the  string  contains  any  non-invariant  ASCII  characters.  

   MQERETURN  osaMQeString_equalTo(MQeExceptBlock*    pExceptBlock,  

                          MQEBOOL*           pIsEqual,  

                          MQECONST  MQeString_*  pString,  

                          MQECONST  MQeString_*  pEqualToString  

                          ); 

This  function  determines  whether  two  strings  are  equivalent.  

 

8 WebSphere  MQ Everyplace  V2.0.2



MQERETURN  osaMQeString_isNull(MQeExceptBlock   * pExceptBlock,  

                          MQEBOOL  * pIsNull,  

                          MQECONST  MQeStringHndl   hString  

                          ); 

This  function  determines  if a string  is a null  string.  A a NULL  handle  is considered  as  a null  

string  as  well.

 The  Single  Byte  Character  Set  (SBCS)  is  the  standard  mode  of  operating  with  C on  an  ASCII  code  page.  

Java  works  in  Unicode  only  and  there  may  be  platforms  to  support,  that  do  not  load  an  SBCS  code  page,  

for  example  in  some  countries  languages  are  represented  in  DBCS.  As  it does  not  include  the  character  

pointer,  the  string  item  allows  you  to  create  strings  on  an  ASCII  machine  without  considering  Unicode  

requirements.  MQe  carries  out  any  necessary  conversions.  Use  the  UTF-8  representation  of  the  string  as  

this  can  cope  with  any  character  representation  and  does  the  conversion  for  you.  Once  created,  an  

MQeString  cannot  be  altered.  However,  a number  of functions  facilitate  the  use  of  the  MQeString  type.  

You can  also  create  constant  MQeStrings  in  a similar  manner  to  using  #define  NAME  "mystring". Using  

MQeString  ensures  portability  of  the  application.  

Walkthrough: creating a basic application 

This  topic  contains  step-by-step  instructions  for  creating  a simple  MQe  application.  It describes  the  steps  

you  need  to  perform  to create  and  configure  your  first  queue  manager,  and  then  to verify  that  it  can  send  

and  receive  messages  from  another  queue  manager.  

As  well  as  describing  what  you  need  to  do,  it also  tells  you  which  MQe_Script  commands  you  can  use  to  

perform  each  task  simply.  MQe_Script  uses  defaults  for  many  attributes,  which  you  would  otherwise  

have  to  specify  if you  were  writing  equivalent  code.  

MQe_Script  is available  as part  of  the  Server  Support  SupportPac™ from  the  IBM  Web site.  This  

SupportPac  includes  full  documentation  on  the  use  of all  MQe_Script  commands,  including  details  of the  

defaults  and  explanations  of how  to  change  them  if necessary.  

You can  also  perform  many  of  the  steps  involved  in  this  process  using  the  MQe_Explorer,  which  is 

included  in  the  same  SupportPac.  

Finally,  the  walkthrough  provides  links  to  pieces  of example  code  that  show  you  how  to perform  many  

of  the  steps  programmatically.  

Once  a queue  manager  has  been  created  and  started,  all  of  the  configuration  (including  the  creation  of  

queues,  connection  definitions,  remote  queue  definitions,  and  listeners)  is  performed  using  administration  

messages.  

1. Create a queue manager (QM1) 

When  you  create  a queue  manager,  you  need  to  define  the  following  attributes:  

v   Queue  manager  name  

v   Public  or  private  registry  

v   Registry  location  

v   Message  store  adapter  

v   Default  queues  

–   AdminQ  

–   AdminReplyQ  

–   DeadLetterQ  

 

Developing  a basic application  9



–   System.default.local.Q

You can  also  set  other  (optional)  attributes  at  this  time,  including  a description,  channel  timeout,  channel  

attribute  rule name,  and  queue  manager  rule, but  these  are  not  included  in this  walkthrough.  

Creating QM1 using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a queue  manager  called  QM1:  

mqe_script_qm  -create  -qmname  QM1  

This  command  creates  a queue  manager  called  QM1,  with  the  following  characteristics:  

v   Public  registry  

v   A base  location  of  C:\program  files\mqe\java\mqe_script.  The  default  registry  and  queue  directories  

are  in  subdirectories  in  this  path  

v   Uses  the  default  message  store  and  saves  the  information  to disk  

v   Contains  4 default  queues

An  ini  file  is also  created  so  that  the  queue  manager  information  is saved  and  can  be  started  again  by  

passing  the  location  of  this  file  to  an  appropriate  method.  

2. Start the queue manager (QM1) 

When  you  have  created  the  queue  manager  called  QM1,  you  need  to  start  it.  

Starting QM1 using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  start  the  queue  manager  called  QM1:  

mqe_script_qm  -load  

When  no  name  is  supplied,  this  command  starts  the  queue  manager  that  has  just  been  created.  If  you  

want  to  know  how  to  load  a queue  manager  and  specify  the  INI  file,  see  the  documentation  supplied  

with  MQe_Script.  

3. Create a local queue (Q1) 

When  you  have  started  the  QM1  queue  manager,  you  can  create  a local  queue  called  Q1:  

Creating Q1 using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a local  queue  called  Q1:  

mqe_script_appq  -create  -qname  Q1  

This  command  creates  a basic  local  queue  (also  know  as application  queues) called  Q1,  on  the  QM1  queue  

manager.  

4. Create a connection definition 

When  you  have  created  your  local  queue  (Q1),  you  need  to create  a connection  definition,  specifying  the  

following:  

v   The  name  of  the  queue  manager  that  you  want  to  connect  to (the  remote  queue  manager)  

v   The  port  on  which  the  remote  queue  manager  will  be  listening  

v   The  communications  adapter.

 

10 WebSphere  MQ Everyplace  V2.0.2



Creating a connection definition using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a connection  definition:  

mqe_script_condef  -create  -cdname  QM2  -port  1881  

This  command  creates  a connection  definition  to  a queue  manager  called  QM2,  which  is listening  on  port  

1881.  It is not  necessary  for  QM2  to  exist  when  the  connection  is  created,  but  it must  exist  when  you  try  

to  send  a message  to  a remote  queue  on  that  queue  manager.  As  no  adapter  is  specified,  the  Http  adapter  

is  used  by  default.  

5. Create a remote queue definition 

When  you  have  created  a connection  definition,  you  need  to  create  a remote  definition  of  a local  queue  

on  queue  manager  QM2.  

Creating a remote queue definition using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a remote  queue  definition:  

mqe_script_sproxyq  -create  -qname  Q2 -destination  QM2  

This  command  creates  a synchronous  proxy  queue,  which  is a remote  definition  of  a local  queue  on  QM2.  

It  is not  necessary  for  QM2  to  exist  when  the  remote  queue  definition  is created.  However,  you  must  

create  a connection  definition  (see  “4.  Create  a connection  definition”  on  page  10)  before  you  can  create  

this  remote  queue  definition.  

6. Create a listener (L1) 

When  you  have  created  a remote  queue  definition,  you  need  to create  a listener.  

Creating a listener using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a listener  called  L1  (on  queue  manager  QM1):  

mqe_script_listen  -create  -listenname  L1 -port  1882  

Creates  a listener  for  queue  manager  QM1  and  listens  on  port  1882.  The  default  communications  adapter  

is  used,  which  is  the  Http  adapter.  

7. Start listener (L1) 

When  you  have  created  a listener,  you  need  to  start  it.  

Starting a listener using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  start  the  listener  L1:  

mqe_script_listen  -start  -listenname  L1 

8. Create a second queue manager (QM2) 

When  you  have  finished  configuring  QM1  (as  shown  in  the  previous  steps  in  this  walkthrough),  you  

need  to  create  a second  queue  manager  called  QM2:  

 

Developing  a basic application  11



Creating QM2 using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a queue  manager  called  QM2:  

mqe_script_qm  -create  -qmname  QM2  

This  command  creates  a queue  manager  called  QM2,  with  the  following  characteristics:  

v   Public  registry  

v   A base  location  of  C:\program  files\mqe\java\mqe_script.  The  default  registry  and  queue  directories  

are  in  subdirectories  in  this  path  

v   Uses  the  default  message  store  and  saves  the  information  to disk  

v   Contains  4 default  queues

An  ini  file  is also  created  so  that  the  queue  manager  information  is saved  and  can  be  started  again  by  

passing  the  location  of  this  file  to  an  appropriate  method.  

9. Start QM2 

When  you  have  created  the  queue  manager  called  QM2,  you  need  to  start  it.  

Starting QM2 using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  start  the  queue  manager  called  QM2:  

mqe_script_qm  -load  

When  no  name  is  supplied,  this  command  starts  the  queue  manager  that  has  just  been  created.  If  you  

want  to  know  how  to  load  a queue  manager  and  specify  the  INI  file,  see  the  documentation  supplied  

with  MQe_Script.  

10. Create a local queue (on QM2) called Q2 

When  you  have  started  the  QM2  queue  manager,  you  can  create  a local  queue  called  Q2.  

Creating Q2 using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a local  queue  called  Q2:  

mqe_script_appq  -create  -qname  Q2  

This  command  creates  a basic  local  queue  called  Q2,  on  the  QM2  queue  manager.  

11. Create a connection definition (on QM2) 

When  you  have  created  your  local  queue  (Q2),  you  need  to create  a connection  definition,  specifying  the  

following:  

v   The  name  of  the  queue  manager  that  you  want  to  connect  to (the  remote  queue  manager)  

v   The  port  on  which  the  remote  queue  manager  will  be  listening  

v   The  communications  adapter.

Creating a connection definition using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a connection  definition:  

mqe_script_condef  -create  -cdname  QM1  -port  1882  

 

12 WebSphere  MQ Everyplace  V2.0.2



This  command  creates  a connection  definition  to  a queue  manager  called  QM1,  which  is listening  on  port  

1882.  It is not  necessary  for  QM1  to  exist  when  the  connection  is  created,  but  it must  exist  when  you  try  

to  send  a message  to  a remote  queue  on  that  queue  manager.  As  no  adapter  is  specified,  the  Http  adapter  

is  used  by  default.  

12. Create a remote queue definition (on QM2) 

When  you  have  created  a connection  definition,  you  need  to  create  a remote  definition  of  a local  queue  

on  queue  manager  QM1.  

Creating a remote queue definition using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a remote  queue  definition:  

mqe_script_sproxyq  -create  -qname  Q1 -destination  QM1  

This  command  creates  a synchronous  proxy  queue,  which  is a remote  definition  of  a local  queue  on  QM1.  

It  is not  necessary  for  QM1  to  exist  when  the  remote  queue  definition  is created,  but  it  must  exist  before  

a message  is put  to  it.  

13. Create a listener (on QM2) called L2 

When  you  have  created  a remote  queue  definition,  you  need  to create  a listener.  

Creating a listener using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  create  a listener  called  L2  (on  queue  manager  QM2):  

mqe_script_listen  -create  -listenname  L2 -port  1881  

Creates  a listener  for  queue  manager  QM2  and  listens  on  port  1881.  The  default  communications  adapter  

is  used,  which  is  the  Http  adapter.  

14. Start the listener L2 (on QM2) 

When  you  have  created  a listener,  you  need  to  start  it.  

Starting a listener using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  start  the  listener  L2:  

mqe_script_listen  -start  -listenname  L2 

15. Send (PUT) a message from QM1 to QM2 

Now  that  you  have  created  and  started  the  two  queue  managers,  created  your  queues  and  connection  

definitions,  and  created  and  started  your  listeners,  you  are  in  a position  to  send  messages  between  the  

two  queue  managers.  

Sending a message using MQe_Script: 

On  QM1,  you  can  use  the  following  MQe_Script  command  to  send  a message  from  QM1  to QM2:  

mqe_script_msg  -put  -qname  Q2 -qmname  QM2  

This  command  puts  a message  to  queue  Q2  on  queue  manager  QM2.  

 

Developing  a basic application  13



16. Receive (GET) the message on QM2 

Now  that  a message  has  been  put  to  the  queue  from  QM1,  you  can  get  the  message  from  QM2.  

Receiving a message using MQe_Script: 

You can  use  the  following  MQe_Script  command  to  get  the  message  from  the  queue:  

mqe_script_msg  -get  -qname  Q2 -qmname  QM2  

17. Displaying details of MQe objects 

You can  display  details  of the  MQe  objects  that  you  have  created  by  issuing  the  inquireall  MQe_Script  

command.  For  example,  to  see  information  about  the  local  queue  manager,  use  the  following  command:  

mqe_script_qm  -inquireall  

This  displays  all  the  information  about  the  local  queue  manager,  and  shows  you  any  defaults  that  

MQe_Script  has  used.  

You can  also  display  information  about  other  objects,  by  specifying  the  object  name.  For  example:  

mqe_script_condef  -inquireall  -cdname  QM2  

An example MQe application (HelloWorld)  

This  topic  describes  how  to  create  a basic  application  (called  HelloWorld)  using  the  MQe  Java  and  C 

APIs.  It contains  information  on  designing,  developing,  deploying,  and  running  the  application.  

Java ″HelloWorld″  

This  section  describes  how  to  design,  develop,  deploy,  and  run a basic  ″HelloWorld″  application  in  Java.  

Designing the Java application 

This  application  aims  to  create  and  use  a single  queue  manager  with  a local  queue.  It involves  putting  a 

message  to  the  local  queue  and  then  removing  it.  

You can  create  queue  managers  for  use  by  one  program.  Once  this  program  has  completed,  you  can  run a 

second  program  that  reinstates  the  previous  queue  manager  configuration.  

Typically,  configuring  new  entities  is a separate  process  from  their  actual  use.  Once  configured,  

administering  these  entities  also  requires  a different  process  than  using  them.  This  section  concentrates  on  

usage  rather  than  administration.  

Assuming  that  the  queue  manager  entity  has  already  been  configured,  the  HelloWorld  application  has  the  

following  flow  for  both  the  C  and  Java  code  bases:  

1.   Start  the  queue  manager  This  starts  the  queue  manager  based  on  information  already  created  

2.   Create  a message  Creates  a structure  that  you  can  use  to  send  a message  from  one  queue  manager  to  

another  

3.   Put  to  a local  queue  Puts  the  message  on  the  local  queue  

4.   Get  from  a local  queue  Retrieves  the  message  from  the  local  queue  and  checks  that  the  message  is  

valid  

5.   Shutdown  Clears  and  stops  the  queue  manager

 

14 WebSphere  MQ Everyplace  V2.0.2



Developing the Java application 

The  following  code  is  in  the  examples.helloworld.Run  class  in  its  complete  state.  Solutions  using  MQe  

classes  are  often  separated  into  several  separate  tasks:  

v   Installation  of  the  solution  

v   Configuration  of  the  queue  manager,  leaving  the  configuration  information  on  the  local  hard  disk  

v   Use  of  the  queue  manager  

v   Removal  of  the  queue  manager  

v   Un-install  of  the  solution

Before  reading  the  information  in  this  chapter,  you  need  to  configure  a queue  manager.  The  

examples.helloworld.Configure  program  demonstrates  the  configuration  of  the  queue  manager.  The  

examples.helloworld.Unconfigure  program  demonstrates  the  removal  of the  queue  manager.  This  section  

of  the  documentation  describes  how  to  use  the  queue  manager.  

Overview  of  examples.helloworld.run:   

 The  main  method  controls  the  flow  of  the  hello  world  application.  From  this  code,  you  can  see  that  the  

queue  manager  is  started,  a message  is  put  to a queue,  a message  is got  from  a queue,  and  the  queue  

manager  is stopped.  

Trace  information  can  be  redirected  to  the  standard  output  stream  if the  MQE_TRACE_ON  symbolic  constant  

has  its’  value  changed  to  ’true’. 

  public  static  void  main(String[]  args)  { 

          try  { 

              Run  me = new  Run();  

  

              if (MQE_TRACE_ON)  { 

                me.traceOn();  

              } 

              me.start();  

              me.put();  

              me.get();  

              me.stop();  

                if (MQE_TRACE_ON)  { 

                  me.traceOff();  

              } 

          } catch  (Exception  error)  { 

              System.err.println("Error:  " + error.toString());  

              error.printStackTrace();  

          } 

      } 

Start  the  queue  manager:   

 The  examples.helloworld.Configure  program  creates  an  image  of  the  HelloWorldQM  queue  manager  on  

disk.  

Before  a queue  manager  can  be  used,  it  must  be  instantiated  in  memory,  and  started.  The  start  method  in 

the  example  program  does  this.  

  public  void  start()  throws  Exception  { 

  

        System.out.println("Starting  the  queue  manager.");  

  

          String  queueManagerName  = "HelloWorldQM";  

          String  baseDirectoryName  = 

            "./QueueManagers/"  + queueManagerName;  

  

          // Create  all  the  configuration

 

Developing  a basic application  15



information  needed  to construct  the  

          // queue  manager  in memory.  

          MQeFields  config  = new  MQeFields();  

  

         // Construct  the  queue  manager  section  parameters.  

          MQeFields  queueManagerSection  = new  MQeFields();  

  

          queueManagerSection.putAscii(MQeQueueManager.Name,  

                queueManagerName);  

          config.putFields(MQeQueueManager.QueueManager,  

                queueManagerSection);  

  

           // Construct  the  registry  section  parameters.  

           // In  this  examples,  we use  a public  registry.  

          MQeFields  registrySection  = new  MQeFields();  

  

         registrySection.putAscii(MQeRegistry.Adapter,  

            "com.ibm.mqe.adapters.MQeDiskFieldsAdapter");  

          registrySection.putAscii(MQeRegistry.DirName,  

                baseDirectoryName  + "/Registry");  

  

          config.putFields("Registry",  registrySection);  

  

          System.out.println("Starting  the  queue  manager");  

          myQueueManager  = new  MQeQueueManager();  

          myQueueManager.activate(config);  

          System.out.println("Queue  manager  started.");  

      } 

To start  the  queue  manager,  at  a minimum  you  must  know  its  name,  location,  and  the  adapter  which  

should  be  used  to  read  the  queue  manager’s  configuration  information  from  its  registry.  

Activating  the  queue  manager  causes  the  configuration  data  from  the  disk  to be  read  using  the  disk  fields  

adapter,  and  the  queue  manager  is  then  started  and  running,  available  for  use.  

Create  a message  and  put  to  a local  queue:   

 The  following  code  constructs  a message,  adds  a Unicode  field  with  a value  of  ″Hello  World!″ and  the  

message  is  then  put  to  the  SYSTEM.DEFAULT.LOCAL.QUEUE  on  the  local  HelloWorldQM  queue  manager.  

  public  void  put()  throws  Exception  { 

          System.out.println("Putting  the  test  message");  

          MQeMsgObject  msg  = new  MQeMsgObject();  

  

      // Add  my hello  world  text  to the  message.  

          msg.putUnicode("myFieldName"  , "Hello  World!");  

  

          myQueueManager.putMessage(queueManagerName,  

          MQe.System_Default_Queue_Name,  msg,  null,  0L);  

          System.out.println("Put  the  test  message");  

      } 

Get  message  from  a local  queue:    The  following  code  gets  the  ″top″ message  from  the  local  queue,  

SYSTEM.DEFAULT.LOCAL.QUEUE, checks  that  a message  with  the  field  myFieldName  was  obtained,  and  

displays  the  text  held  in  the  Unicode  field.  

  public  void  get()  throws  Exception  { 

          System.out.println("Getting  the  test  message.");  

          MQeMsgObject  msg  = myQueueManager.getMessage(  queueManagerName,  

                                                        MQe.System_Default_Queue_Name,  

                                                        null,  null,  0L ); 

  

          if (msg  != null)  { 

              System.out.println("Got  the  test  message.");  

  

              if (msg.contains("myFieldName"))  {

 

16 WebSphere  MQ Everyplace  V2.0.2



String  textGot  = msg.getUnicode("myFieldName");  

  

                  System.out.println("Message  contained  the  text  ’" + textGot  + "’");  

              } 

          } 

      } 

Stopping  and  deleting  the  queue  manager:   

 This  section  describes  how  to  stop  a queue  manager  and  delete  the  definition  of  the  queue  manager.  

Stopping the queue manager 

You can  stop  the  queue  manager  using  a controlled  shutdown.  

   public  void  stop()  throws  Exception  { 

          System.out.println("Stopping  the  queue  manager.");  

          myQueueManager.closeQuiesce(QUIESCE_TIME);  

          myQueueManager  = null;  

          System.out.println("Queue  manager  stopped.");  

      } 

Deleting the definition of the queue manager from the disk 

You can  use  the  examples.helloworld.Unconfigure  program  to  remove  the  queue  manager  from  disk.  

Running the Java application 

From  a command  prompt,  set  up  your  classpath  to  refer  to the  MQe  class  files.  These  are  available  in the  

Java  directory,  in  which  you  installed  the  MQe  product.  

Ensure  that  your  shell  has  the  ability  to  create  and  modify  the  ./QueueManagers  directory  on  your  

system.  If it  does  not  have  this  ability,  change  the  source  of  the  examples.helloworld  programs, such  that  

they  refer  to  an  accessible  directory,  and  re-compile  the  java  code.  

Invoke  the  Configure  program  to  create  the  queue  manager.  The  syntax  depends  on  the  Java  Virtual  

Machine  (JVM)  you  use.  The  IBM  JVM  is invoked  using  the  ″java″ command,  for  example  java  

examples.helloworld.Configure. This  creates  the  queue  manager  on  disk.  

Run  the  java  examples.helloworld.Run  hello  world  program.  This  puts  a message  to  a local  queue,  gets  

the  message  back  and  displays  part  of  it.  

You can  now  destroy  the  queue  manager  on  the  disk  using  java  examples.helloworld.Unconfigure. 

C ″HelloWorld″  

This  section  describes  how  to  design,  develop,  deploy  and  run a ″HelloWorld″  application  in  C.  

Designing the C application 

This  application  aims  to  create  and  use  a single  queue  manager  with  a local  queue.  It involves  putting  a 

message  to  the  local  queue  and  then  removing  it.  

You can  create  queue  managers  for  use  by  one  program.  Once  this  program  has  completed,  you  can  run a 

second  program  that  reinstates  the  previous  queue  manager  configuration.  

Typically,  configuring  new  entities  is a separate  process  from  their  actual  use.  Once  configured,  

administering  these  entities  also  requires  a different  process  than  using  them.  This  section  concentrates  on  

usage  rather  than  administration.  

 

Developing  a basic application  17



Assuming  that  the  queue  manager  entity  has  already  been  configured,  the  HelloWorld  application  has  the  

following  flow  for  both  the  C  and  Java  code  bases:  

1.   Start  the  queue  manager  This  starts  the  queue  manager  based  on  information  already  created  

2.   Create  a message  Creates  a structure  that  you  can  use  to  send  a message  from  one  queue  manager  to  

another  

3.   Put  to  a local  queuePuts  the  message  on  the  local  queue  

4.   Get  from  a local  queueRetrieves  the  message  from  the  local  queue  and  checks  that  the  message  is 

valid  

5.   ShutdownClears  and  stops  the  queue  manager

Note:  The  C code  base  does  not  have  an  equivalent  of  the  Java  Garbage  Collection  function.  Therefore,  

clearing  the  queue  manager  features  more  strongly  in  C.  

Developing the C application 

This  section  covers  the  high  level  coding  required  for  the  ″HelloWorld″  application  in C.  

The  code  in  the  following  examples  is  in  the  example  HelloWorld_Runtime.c  in  its  complete  state.  The  

example  contains  code  to  handle  the  specifics  of  running  a program  on  a PocketPC,  which  mainly  

involves  writing  to  a file  to  cope  with  the  lack  of command  line  options.  Use  the  display  function  to 

write  to  a file,  as  shown  in  the  examples  contained  in  the  following  sections.  

Overview  of  HelloWorld_Runtime.c:   

 You need  to  include  just  one  header  file  to  access  the  APIs.  You must  include  the  NATIVE  definition  to  

indicate  that  this  is  not  the  CBindings.  You must  also  define  the  MQE_PLATFORM  upon  which  you  

intend  to  run the  application.  

  #define    NATIVE  

  #define   MQE_PLATFORM  = PLATFORM_WINCE  

  #include<published/MQe_API.h>  

All  of  the  code,  including  variable  declarations,  is  inside  the  main  method.  You require  structures  for  

error  checking.  The  MQeExceptBlock  structure  is passed  into  all  functions  to get  the  error  information  

back.  In  addition,  all  functions  return  a code  indicating  success  or  failure,  which  is cached  in a local  

variable:  

    /* ...  Local  return  flag  */ 

     MQERETURN             rc;  

     MQeExceptBlock        exceptBlock;  

You must  create  a number  of  strings,  for  example  for  the  queue  manager  name:  

    MQeStringHndl      hLocalQMName;  

  

           ...  

  

     if ( MQERETURN_OK  == rc ) { 

        rc = mqeString_newUtf8(&exceptBlock,  

                &hLocalQMName,  

                "LocalQM");  

    } 

The  first  API  call  made  is  session  initialize:  

    /* ...  Initialize  the  session  */ 

    rc = mqeSession_initialize(&exceptBlock);  

Start  the  queue  manager:   

 This  process  involves  two  steps:  

 

18 WebSphere  MQ Everyplace  V2.0.2



1.   Create  the  queue  manager  item.  

2.   Start  the  queue  manager.

Creating  the  queue  manager  requires  two  sets  of  parameters,  one  set  for  the  queue  manager  and  one  for  

the  registry.  Both  sets  of  parameters  are  initialized.  The  queue  store  and  the  registry  require  directories.  

Note:  All  calls  require  a pointer  to  ExceptBlock  and  a pointer  to the  queue  manager  handle.  

     if (MQERETURN_OK  ==  rc)  { 

  

    MQeQueueManagerParms  qmParams   = QMGR_INIT_VAL;  

    MQeRegistryParms      regParams  = REGISTRY_INIT_VAL;  

    qmParams.hQueueStore            = hQueueStore;  

    qmParams.opFlags                = QMGR_Q_STORE_OP;  

  

    /* ...  create  the  registry  parameters  - 

        minimum  that  are  required  */ 

    regParams.hBaseLocationName      =  hRegistryDir;  

    display("Loading  Queue  Manager  from  registry  \n");  

    rc = mqeQueueManager_new(   &exceptBlock,  

                            &hQueueManager,  

                             hLocalQMName,  

                             &qmParams,  

                             &regParams);  

} 

You can  now  start  the  queue  manager  and  carry  out  messaging  operations:  

     /* Start  the  queue  manager   */ 

  

    if ( MQERETURN_OK  == rc ) { 

       display("Starting  the  Queue  Manager\n");  

       rc = mqeQueueManager_start(hQueueManager,  

              &exceptBlock);  

    } 

Create  a message:   

 To create  a message,  firstly  create  a new  fields  object.  The  following  example  adds  a single  field.  Note  

that  the  field  label  strings  are  passed  in:  

  MQeFieldsHndl  hMsg;  

  

  display("Creating  a new  message\n");  

  rc = mqeFields_new(&exceptBlock,&hMsg);  

  if ( MQERETURN_OK  == rc ) { 

    rc = mqeFields_putInt32(hMsg,&exceptBlk,  

          hFieldLabel,42);  

  } 

Put  message  to  a local  queue:   

 Once  you  have  created  the  message,  you  can  put  it  to  a local  queue  using  the  putMessage  function.  Note  

that  the  queue  and  queue  manager  names  are  passed  in.  NULL  and  0 are  passed  in  for  the  security  and  

assured  delivery  parameters,  as  they  are  not  required  in this  example.  Once  the  message  has  been  put,  

you  can  free  the  MQeFields  object:  

    if ( MQERETURN_OK  == rc ) { 

          display("Putting  a message  \n");  

           rc = mqeQueueManager_putMessage(hQueueManager,  

                                         &exceptBlock,  

                                          hLocalQMName,  

                                          hLocalQueueName,  

                                         hMsg,  

                                          NULL,

 

Developing  a basic application  19



0);  

  

         (void)  mqeFields_free(hMsg,NULL);  

      } 

Get  message  from  a local  queue:   

 Once  the  message  has  been  put  to  a queue,  you  can  retrieve  and  check  it. Similar  options  are  passed  to  

the  getMessage  function.  The  difference  is that  a pointer  to  a field’s  handle  is passed  in.  A new  Fields  

object  is  created,  removing  the  message  from  the  queue:  

    MQeFieldsHndl  hReturnedMessage;  

    display("Getting  the  message  back  \n");  

  

    rc = mqeQueueManager_getMessage(hQueueManager,  

                          &exceptBlock,  

                          &hReturnedMessage,  

                          hLocalQMName,  

                          hLocalQueueName,  

                                NULL,  

                                NULL,  

                                0);  

   } 

Once  the  message  has  been  obtained,  you  can  check  it for  the  value  that  was  entered.  Obtain  this  by  

using  the  getInt32  function.  If the  result  is  valid,  you  can  print  it out:  

    if (MQERETURN_OK  == rc)  { 

      MQEINT32  answer;  

       rc  = mqeFields_getInt32(hReturnedMessage,  

                                &exceptBlock,  

                                &answer,  

                                hFieldLabel);  

  

    if (MQERETURN_OK  == rc)  { 

      display("Answer  is %d\n",answer);  

    } 

    else  { 

       display("\n\n  %s (0x%X)  %s  (0x%X)\n",  

           mapReturnCodeName(EC(&exceptBlock)),  

           EC(&exceptBlock),  

           mapReasonCodeName(ERC(&exceptBlock)),  

           ERC(&exceptBlock)   ); 

      } 

  

    } 

Shutdown:   

 Following  the  removal  of  the  message  from  the  queue,  you  can  stop  and  free  the  queue  manager.  You can  

also  free  the  strings  that  were  created.  Finally,  terminate  the  session:  

    (void)mqeQueueManager_stop(hQueueManager,&exceptBlock);  

    (void)mqeQueueManager_free(hQueueManager,&exceptBlock);  

  

    /* Lets  do some  clean  up */ 

    (void)mqeString_free(hFieldLabel,&exceptBlock);  

    (void)mqeString_free(hLocalQMName,&exceptBlock);  

    (void)mqeString_free(hLocalQueueName,&exceptBlock);  

    (void)mqeString_free(hQueueStore,&exceptBlock);  

    (void)mqeString_free(hRegistryDir,&exceptBlock);  

  

  

    (void)mqeSession_terminate(&exceptBlock);  

Compiling:   

 

20 WebSphere  MQ Everyplace  V2.0.2



To simplify  the  process  of  compiling,  the  examples  directory  includes  a makefile.  This  is the  makefile  

exported  from  eMbedded  Visual  C (EVC).  A batch  file  runs this  makefile.  This  batch  file  will  setup  the  

paths  to  the  EVC  directories,  along  with  the  paths  to  the  MQe  installation.  You might  need  to edit  the  

batch  file,  depending  on  how  you  want  to  install  MQe.  

Running  the  batch  file  compiles  the  example.  Bye  default,  the  batch  file  compiles  for  Debug  PocketPC  

2000  (either  Emulator  or  ARM  processor).  

Deploying the C application 

In  order  to  deploy  the  ″HelloWorld″  application,  you  need  to  create  a queue  manager.  There  are  various  

ways  to  do  this,  which  are  covered  elsewhere  in  this  information  center.  In  this  case,  the  

HelloWorld_Admin  program  is used.  Run  this  as  described  below.  

The  following  instructions  are  applicable  to  both  the  emulator  and  an  actual  device:  

1.   Copy  across  all  the  DLLs  to  the  root  of  the  device.  Take these  from  either  the  arm  or  x86  emulator  

directories.  

2.   Build  the  example  code  using  the  supplied  makefile.  

Note:  You need  to  compile  the  HelloWorld_Admin.c  and  HelloWorld_Runtime.c  files.  

3.   Copy  across  these  binaries  to  the  device  or  emulator  that  is running  PocketPC  or  Emulator.

Running the C application 

This  section  describes  how  to  run the  ″HelloWorld″  application  in  Java  and  C,  on  the  PocketPC  or  

emulator.  

This  example  involves  two  steps:  

1.   Create  the  queue  manager.  To do  this,  run the  HelloWorld_Admin  program.Running  this  creates  the  

persistent  disk  representation  of  the  QueueManager.  

2.   Run  the  HelloWorld_Runtime  program.  This  starts  a QueueManager  based  upon  the  established  

registry.  To check  the  program  has  worked  correctly,  look  at the  log  file  that  has  been  generated.  By  

default,  this  is  in  the  root  of  the  device.

Using the MQe development and administration tools 

The  following  are  some  of  the  tools  that  you  can  use  to  develop  or  administer  MQe  applications:  

MQe_Explorer  

The  MQe_Explorer  provides  a graphical  user  interface  for  the  management  of  an  MQe  network  

and  its  interconnection  with  MQ.  It allows  MQe  queue  managers  and  their  associated  objects,  

such  as  queues,  connections,  and  bridges,  to be  locally  or  remotely  configured.  MQe_Explorer  

also  provides  a simple  way  of  creating  local  queue  managers,  which  can  then  be  further  

configured  to  meet  the  needs  of  applications.  It also  offers  a launch  and  debug  environment  for  

MQe  applications.  MQe_Explorer  is available  as  part  of the  Server  Support  SupportPac.

MQe_Script  

MQe_Script  is  a command-line  based  tool  for  MQe,  and  is platform  independent.  It allows  MQe  

queue  managers  and  their  associated  objects,  such  as  queues,  connections,  listeners,  and  bridge  

objects  to  be  locally  or  remotely  configured.  Test messages  can  also  be  sent  to  the  queues  to  

validate  the  operation  of  the  network.  Like  the  MQe_Explorer,  MQe_Script  provides  a simple  way  

of creating  local  queue  managers,  which  you  can  then  configure  and  extend  for  use  by  your  

application.  MQe_Script  is  available  as  part  of  the  Server  Support  SupportPac.

MQe_Service  

MQe_Service  is  a wizard-based  tool  for  MQe  local  queue  manager  creation  and  operation.  

 

Developing  a basic application  21



Additionally,  it enables  the  automated  set  up  of  MQe  gateway  and  MQ  queue  managers,  where  

messages  are  required  to  pass  between  MQe  and  MQ  networks.

Rational® Software  Development  Platform  

Eclipse  

Eclipse  is  an  open  industry-supported  platform  for  software  development  tools.  It provides  a 

plug-in  based  framework  that  facilitates  the  creation,  integration,  and  use  of software  tools.  For  

more  information  on  Eclipse,  see:  

http://www.eclipse.org  

 

22 WebSphere  MQ Everyplace  V2.0.2



Index  

D
deploying

HelloWorld  application  21 

designing
HelloWorld  application  14, 17 

developing
HelloWorld  application  18 

H
HelloWorld  application

deploying 14, 17 

designing  14, 17 

developing  14, 17 

running 14, 17 

J
Java development  kit (JDK) 1 

JDK 1 

R
running

HelloWorld  application  21

 

  23


	Contents
	Developing a basic application
	Introduction to the WebSphere MQe development kit
	Setting up your development environment
	Java development
	J2ME environment

	C development
	Using embedded Visual C++
	Threading
	Calling conventions
	Handles and items
	MQe memory functions
	MQeString


	Walkthrough: creating a basic application
	1. Create a queue manager (QM1)
	2. Start the queue manager (QM1)
	3. Create a local queue (Q1)
	4. Create a connection definition
	5. Create a remote queue definition
	6. Create a listener (L1)
	7. Start listener (L1)
	8. Create a second queue manager (QM2)
	9. Start QM2
	10. Create a local queue (on QM2) called Q2
	11. Create a connection definition (on QM2)
	12. Create a remote queue definition (on QM2)
	13. Create a listener (on QM2) called L2
	14. Start the listener L2 (on QM2)
	15. Send (PUT) a message from QM1 to QM2
	16. Receive (GET) the message on QM2
	17. Displaying details of MQe objects

	An example MQe application (HelloWorld)
	Java "HelloWorld"
	Designing the Java application
	Developing the Java application
	Running the Java application

	C "HelloWorld"
	Designing the C application
	Developing the C application
	Deploying the C application
	Running the C application


	Using the MQe development and administration tools

	Index

