
WebSphere MQ Everyplace V2.0.2

���

ii WebSphere MQ Everyplace V2.0.2

Contents

Working with WebSphere Message

Broker 1

Scenarios 1

Bridge configuration 4

MQe bridge transformer classes 5

MQe message object classes 6

Writing MQe applications to drive MQ applications . 8

Writing MQe pub/sub applications 9

Examples 9

Migrating MQe applications that use the MQe node

on the broker 10

Using the MQePubMsgObject 11

 iii

iv WebSphere MQ Everyplace V2.0.2

Working with WebSphere Message Broker

Scenarios

MQe applications on different MQe queue managers communicate with each through the exchange of

messages. In the simplest case, the source and target queue managers are either directly connected to

each other through MQe channels, or indirectly connected with the messages between them passing

through intermediate MQe queue managers. In all of these cases, the standard MQe message object class

com.ibm.mqe.MQeMsgObject is used to create these messages or some appropriate subclass (as in the

case of administrative messages). The situation becomes more complicated when the intermediate queue

managers are not MQe queue managers but are WebSphere® MQ managers. In this case, the messages

can be regarded as tunnelling across a MQ network; with the passage across the MQ network having no

affect on either the sending or receiving application. Tunnelling requires the following configuration:

The MQe queue manager that passes the messages to an MQ queue manager is configured as a bridge

queue manager. Likewise, the MQe queue manager that receives messages from an MQ queue manager is

also configured as a bridge queue manager. Bridge queue managers are sometimes referred to as gateway

queue managers. The details of bridge configuration as described elsewhere; it is sufficient here to

understand that a single configured bridge can handle messages travelling in both directions (for

example, to and from MQ) and that the important determinants in its behavior are: (a) the transformer

class property value (set in the bridge configuration), and (b) for messages passing from MQe to MQ, the

class of the MQe message. In many cases the requirement is not to transport messages across a MQ

network, but to use messages from a MQe source application to drive a target MQ application, typically

returning the results in a reply message. The configuration involved is of the form shown below, though

the target application can run on any MQ queue manager, including the one immediately connected to

the MQe bridge:

Figure 1. MQe message tunnelling

 1

As before, the important determinants in the behavior of the bridge are:

v The transformer class property value (set in the bridge configuration)

v For messages passing from MQe to MQ, the class of the MQe message

The class of message used by the source must allow complete control over the generated MQ message

being received by the MQ application. Typically the com.ibm.mqe.mqemqmessage.MQeMQMsgObject

class is used for this purpose; however, if JMS is being used as the messaging model at both the source

and the target, then the com.ibm.mqe.MQeMsgObject message class is used, although with very specific

content present.

An additional requirement is to support the needs of publish and subscribe applications, where an IBM®

broker is the destination MQ application and manages both the subscriptions and the publications. The

MQe source is liable to be just one of many sources inputting to the broker. There are two configurations

possible to implement a publish/subscribe network, however only one is now recommended. This is:

Figure 2. Driving MQ applications

2 WebSphere MQ Everyplace V2.0.2

Yet again, the important determinants in the behavior of the bridge are: (a) the transformer class property

value (set in the bridge configuration), and (b) for messages passing from MQe to MQ, the class of the

MQe message. Here, the choice of message used by the source, must allow a publish/subscribe MQ

message to be output by the bridge and subsequently received by the broker. The

com.ibm.mqe.mqemqmessage.MQePubSubMsgObject class is used for this purpose. For responses back

from the broker, the bridge transformer class detects from the MQ message content that it is a

publish/subscribe response and therefore returns a com.ibm.mqe.mqemqmessage.MQePubSubMsgObject

class message back to the source.

In previous versions of MQe the following configuration was supported:

The source sent a class com.ibm.broker.mqimqe.wrapper.MQeMbMsgObject or a

com.ibm.mqe.MQeMsgObject message to the MQe input node on the broker. This configuration is no

longer recommended; migration scenarios from earlier implementations are discussed later in this section.

Figure 3. Publish/subscribe via the MQe bridge

Figure 4. Publish/subscribe via the MQe broker input node

Working with WebSphere Message Broker 3

Bridge configuration

The following summary of the MQe bridge is provided to aid understanding of the configurations and

tasks described in this document.

The MQe bridge (or gateway) is a specially configured MQe queue manager that acts as a link between

an MQe network and an MQ network. For these purposes, a WebSphere Message Broker queue manager

is regarded as just another MQ queue manager in the MQ network. A bridge comprises the following

elements linked together in a hierarchical, tree-like relationship:

v Bridge

v MQ proxy

v Client connection

v Listener

The following diagram shows both MQe and MQ objects required for a bridge and the flow of the

messages.

At each level in the hierarchy, multiple elements can exist (e.g. multiple MQ proxies per bridge, multiple

client connections per MQ proxy, etc). The bridge object reflects the overall hierarchy and establishes

some default behavior. The MQ proxy identifies the target MQ queue manager; the client connection

describes the details of the mechanisms through which the MQe and MQ communicate. Finally, the

listener provides the additional information needed to move messages from MQ to MQe. The bridge can

thus be regarded as providing the queue manager-level addressability between the two networks.

One element of the bridge configuration involves the specification of the transformer class to be used;

this transformer will be invoked whenever an MQe message is to be sent to MQ, or whenever a MQ

message is to be sent to MQe.

4 WebSphere MQ Everyplace V2.0.2

Once a bridge has been configured it is necessary, on that same MQe queue manager, to add details of

the MQ queues that are to be accessible from MQe. This involves the definition of bridge queues, each

definition identifies one target queue on MQ. Bridge queues thus provide the queue-level addressability

between the two networks.

MQe bridge transformer classes

The bridge transformer class controls the conversion of messages in the bridge, i.e. messages being

received from an MQe queue manager and sent to an MQ queue manager, and the movement of

messages in the reverse direction. A number of transformers are provided, however some of these are

historic and are now deprecated. The recommended transformers are given below, together with their

class relationship:

Recommended transformers by task are shown in bold in the table below; other transformers that can be

used (and produce identical results) are shown in normal type:

 Table 1. MQe bridge transformers by task

Task Transformer

MQe message tunnelling com.ibm.mqe.mqbridge.MQeJMSRFHTransformer

com.ibm.mqe.mqbridge.MQeBaseTransformer

com.ibm.mqe.mqbridge.MQeGeneralRFHTransformer

JMS usage with MQe/MQ com.ibm.mqe.mqbridge.MQeJMSRFHTransformer

Driving MQ applications com.ibm.mqe.mqbridge.MQeJMSRFHTransformer

com.ibm.mqe.mqbridge.MQeBaseTransformer

com.ibm.mqe.mqbridge.MQeGeneralRFHTransformer

Publish/subscribe (via

MQePubSubMsgObject)

com.ibm.mqe.mqbridge.MQeJMSRFHTransformer

Publish/subscribe (via

MQeMbMsgObject)

com.ibm.mqe.mqbridge.MQeMbTransformer

Figure 5. Bridge transformer class hierarchy

Working with WebSphere Message Broker 5

The features of the recommended transformer classes are:

 Table 2. Bridge transformer class features

Transformer class Features (MQe to MQ conversion)

com.ibm.mqe.mqbridge.

MQeJMSRFHTransformer

Incoming MQe messages of class MQePubSubMsgObject are converted as

pub/sub messages if they contain pub/sub data, in order to drive the broker;

otherwise they are treated as MQeMQMsgObject messages.

Messages of class MQeMQMsgObject are processed to set the MQMD and

payload of the output MQ message, such that they can drive MQ

applications.

All other messages are inspected to see if they contain JMS content and, if so,

they are converted accordingly; otherwise they are tunnelled through the MQ

network.

com.ibm.mqe.mqbridge.

MQeMbTransformer

Adds support for the MQeMbMsgObject.

Any incoming message of MQeMbMsgObject class is converted to the

equivalent MQePubSubMsgObject and then passed to the super-class

transformer. All other input message classes are not affected.

Transformer class Features (MQ to MQe conversion)

com.ibm.mqe.mqbridge.

MQeJMSRFHTransformer

Incoming MQ messages containing a tunnelled MQe messages are converted

to a message of class MQeMsgObject.

MQ messages containing JMS data are converted into MQeMsgObject

messages with JMS data.

MQ messages containing replies from a pub/sub broker are converted into

MQePubSubMsgObject messages.

All other messages are converted into MQeMQMsgObject messages.

com.ibm.mqe.mqbridge.

MQeMbTransformer

Adds support for the MQeMbMsgObject.

Any MQe message output of class MQePubSubMsgObject, generated by the

super-class transformer, is converted to the equivalent MQeMbMsgObject

message. All output message of other classes are not affected

MQe message object classes

Messages from the MQe source to the bridge (or to the MQe input node on the broker) are processed

according to the message class. The class hierarchy of the message classes provided by MQe is shown by

the shaded boxes in the diagram below. Note that all message classes inherit from the

com.ibm.mqe.MQeFields class, which provides a generic ability to get/put data values into the message

objects.

6 WebSphere MQ Everyplace V2.0.2

The features of the various classes are:

 Table 3. MQe message class features

Message object class Features

com.ibm.mqe.MQeMsgObject Base MQe message class. MQeFields methods used to get/put user

data.

com.ibm.mqe.mqemqmessage.

MQeMQMsgObject

Adds the ability to set the contents of the MQMD and the payload of

the MQ message that will be generated by the bridge.

com.ibm.mqe.mqemqmessage.

MQePubSubMsgObject

Adds specific pub/sub methods to drive the behavior of the broker.

com.ibm.broker.mqimqe.wrapper.

MQeMbMsgObject

Adds the ability to set the equivalent data to that held in the MQMD

of an MQ message. MQeFields methods using defined constants are

used to implement pub/sub functionality.

The recommended message classes appropriate to various tasks are shown in the table below:

 Table 4. MQe message classes by task

Task Message object class

MQe message tunnelling com.ibm.mqe.MQeMsgObject (or any subclass appropriate to the

application)

JMS usage with MQe/MQ com.ibm.mqe.MQeMsgObject (with specifically formatted content)

Figure 6. Message class hierarchy

Working with WebSphere Message Broker 7

Table 4. MQe message classes by task (continued)

Task Message object class

Driving MQ applications com.ibm.mqe.mqemqmessage.MQeMQMsgObject (or any subclass

appropriate to the application)

Note: The default character set for MQeMQMsgObject is 1200. When

used with the Websphere Message Broker, this should be altered to

1208.

com.ibm.mqe.mqemqmessage.MQePubSubMsgObject (or any

subclass appropriate to the application)

Publish/subscribe (via

MQePubSubMsgObject)

com.ibm.mqe.mqemqmessage.MQePubSubMsgObject (or any

subclass appropriate to the application)

Publish/subscribe (via MQeMbMsgObject) com.ibm.broker.mqimqe.wrapper.MQeMbMsgObject

Writing MQe applications to drive MQ applications

There are two aspects to writing an MQe application to drive an MQ application. These are:

Configuration

1. Configure a bridge to provide access to the target MQ queue manager from the MQe network,

specifying the transformer class com.ibm.mqe.mqbridge.MQeJMSRFHTransformer. Also on the

bridge queue manager, configure two bridge queues:

v One to act as a proxy for the broker’s control queue SYSTEM.BROKER.CONTROL.QUEUE.

v One to act as a proxy for the input queue of the appropriate message flow.
2. On the source MQe queue manager, configure connections to the MQe bridge queue manager

and the target MQ application queue manager (this latter connection being via the bridge

queue manager).

3. On the source MQe queue manager, configure a remote proxy queue to the target MQ

application queue.

v One to act as a proxy for the broker’s control queue SYSTEM.BROKER.CONTROL.QUEUE.

v One to act as a proxy for the input queue of the appropriate message flow.

Application development

1. Construct an MQe message that will be transformed by the bridge into an MQ message

suitable for the broker. This message will have a standard MQMD header and an RFH2

header, as well as a suitable payload.

2. Send the subscription and un-subscription messages to the broker’s control queue. Send

publication messages to the input queue of the appropriate message flow.

 The message should be of the com.ibm.mqe.mqemqmessage.MQePubSubMsgObject class. Should it be

necessary to use a bespoke MQ MQMD, then values e message object (such as setCorrelationId,

setMessageId, setExpiry, setFeedback, setReport, setUserId). The publish/subscribe operations are

invoked through the methods publish, subscribe and unsubscribe.

Responses from the broker will be received as messages of the same class. The overall success of an

operation is given by the getCompletionCode method; more detailed information is provided by

getResponses. The broker never returns the publication data, but information on the nature of the original

request is available through getActionType, getDestQueueMgr, getDestQueueName, getRetention and

getTopics.

For messages that have been constructed, the following methods can be used to return information about

the request: getMessage and getMessageData.

8 WebSphere MQ Everyplace V2.0.2

More information on the configuration details appropriate to a bridge is provided in the MQe

publications, including the handling of replies back from the target MQ application.

Writing MQe pub/sub applications

There are two aspects to writing an MQe application to drive an MQ broker application. These are:

Configuration

1. Configure a bridge to provide access to the target MQ queue manager from the MQe network

specifying the transformer class com.ibm.mqe.mqbridge.MQeJMSRFHTransformer. Also on the

bridge queue manager, configure two bridge queues:

v One to act as a proxy for the broker’s control queue SYSTEM.BROKER.CONTROL.QUEUE.

v One to act as a proxy for the input queue of the appropriate message flow.
2. On the source MQe queue manager, configure connections to the MQe bridge queue manager

and the target broker queue manager (this latter connection being via the bridge queue

manager).

3. On the source MQe queue manager, configure two remote proxy queues:

v One to act as a proxy for the broker’s control queue SYSTEM.BROKER.CONTROL.QUEUE.

v One to act as a proxy for the input queue of the appropriate message flow.

Application development

1. Construct an MQe message that will be transformed by the bridge into an MQ message

suitable for the broker. This message will have a standard MQMD header and an RFH2

header, as well as a suitable payload.

2. Send the subscription and un-subscription messages to the broker’s control queue. Send

publication messages to the input queue of the appropriate message flow.

 The message should be of the com.ibm.mqe.mqemqmessage.MQePubSubMsgObject class. Should it be

necessary to use a bespoke WMQ MQMD, then values e message object, (for example, setCorrelationId,

setMessageId, setExpiry, setFeedback, setReport, setUserId, and so on). The publish/subscribe operations

are invoked through the methods publish, subscribe and unsubscribe.

Responses from the broker will be received as messages of the same class. The overall success of an

operation is given by the getCompletionCode method; more detailed information is provided by

getResponses. The broker never returns the publication data, but information on the nature of the original

request is available through getActionType, getDestQueueMgr, getDestQueueName, getRetention and

getTopics.

For messages that have been constructed, the following methods can be used to return information about

the request: getMessage and getMessageData.

More information on the configuration details appropriate to a bridge is provided in the MQe

publications, including the handling of replies back from the target MQ application.

Examples

All examples below are based on those in the MQI Programming Guide in Appendix C, ″MQSeries®

Everyplace® Nodes″. An example of a publish application:

try

{

 System.out.println("local QM name: " + myQMgr.getName());

 MQePubSubMsgObject mqeMsg = new MQePubSubMsgObject();

 mqeMsg.publish("Weather", true, "Hello");

 System.out.println("..Put message to QM/queue: " +

Working with WebSphere Message Broker 9

brokerQueueManager + "/" + flowInputQueue);

 myQM.putMessage(brokerQueueManager, flowInputQueue, mqeMsg, null, 0);

 System.out.println("Finished");

}

catch (Exception e)

{

 e.printStackTrace();

 System.out.println("Failed! + e);

}

An example of a subscribe application:

try

{

 System.out.println("local QM name: " + myQMgr.getName());

 MQePubSubMsgObject mqeMsg = new MQePubSubMsgObject();

 String[] topics = new String[]{"Topic1", "Topic2", "Topic3"};

 mqeMsg.subscribe(topics, "ServerQM1", "Inbox");

 System.out.println("..Put message to QM/queue: " +

 brokerQueueManager + "/" + controlQueue);

 myQM.putMessage(brokerQueueManager, "SYSTEM.BROKER.ADMIN.QUEUE", mqeMsg, null, 0);

 System.out.println("Finished");

}

catch (Exception e)

{

 e.printStackTrace();

 System.out.println("Failed! + e);

}

An example of a un-subscribe application:

try

{

 System.out.println("local QM name: " + myQMgr.getName());

 MQePubSubMsgObject mqeMsg = new MQePubSubMsgObject();

 String[] topics = new String[]{"Topic1", "Topic2", "Topic3"};

 mqeMsg.unsubscribe(topics, "ServerQM1", "Inbox");

 System.out.println("..Put message to QM/queue: " +

 brokerQueueManager + "/" + controlQueue);

 myQM.putMessage(brokerQueueManager, "SYSTEM.BROKER.ADMIN.QUEUE", mqeMsg, null, 0);

 System.out.println("Finished");

}

catch (Exception e)

{

 e.printStackTrace();

 System.out.println("Failed! + e);

}

Migrating MQe applications that use the MQe node on the broker

The use of the MQe node on the broker is no longer recommended. Applications should be migrated to

use the MQe bridge instead; the broker then receives an MQ message rather than an MQe message. There

are three migration scenarios shown below; they are listed in order, with the most desirable first –

however the effort required may be seen to be inversely proportional to the desirability. It is

recommended that you read all scenarios carefully and decide on the your approach. As all the scenarios

require a MQe bridge, you should download the MQe Server Support SupportPac™ as this will greatly

assist in the configuration of the bridge. The MQe Server Support SupportPac is available from:

http://www-306.ibm.com/software/integration/support/supportpacs/product.html

10 WebSphere MQ Everyplace V2.0.2

http://www-306.ibm.com/software/integration/support/supportpacs/product.html

Using the MQePubMsgObject

This migration uses the MQe bridge instead of the MQe broker node and avoids the use of any

deprecated MQe classes.

The following work is required:

1. Modify the message flow on the broker such that MQ input/output nodes are used instead of MQe

input/output nodes.

2. Modify the client application such that all references to the MQeMbMsgObject class are removed and

replaced by use of the MQePubSubMsgObject class. The mapping between these two classes and their

respective methods is fairly obvious; the MQePubSubMsgObject is easier to use for pub/sub

operations because it contains explicit methods for these functions. Setting of any MQ MQMD

parameters is very similar in both objects, with minor differences in method names and return types.

One key difference is that the client application will have sent all its messages to the same queue (i.e.

the broker MQe input node); intelligence in the node then determined the correct destination. The

application must now send any subscribe and unsubscribe messages to the broker’s control queue

SYSTEM.BROKER.CONTROL.QUEUE, whilst publication messages must now be sent to the input

queue of the appropriate message flow (this flow will contain a Publication node).

For an example of the application conversion, compare the examples in the MQI Programming Guide in

Appendix C, ″MQSeries Everyplace Nodes″, with the converted equivalents in the section “Writing

MQe pub/sub applications” on page 9.

Note: There is a simpler way of modifying the application so that it generates only

MQePubSubMsgObject class messages – but it has the disadvantage of perpetuating the use of the

deprecated MQeMbMsgObject class in the application. Leave the logic unchanged until the point at

which the message is about to be sent. Then use the new method

MQeMbMsgObject.toMQePubSubMsgObject which generates the equivalent message object in the

preferred class. This object must of course, be sent to the appropriate target queue according to its

pub/sub function.

Likewise for messages being received – an MQePubSubMsgObject class object can be converted to its

equivalent MQeMbMsgObject object with the constructor MQeMbMsgObject(MQePubSubMsgObject).

3. Configure an MQe bridge to transfer and transform MQe messages from the MQe network to the MQ

network underlying the broker topology. The bridge transformer class must be configured to be

com.ibm.mqe.mqbridge.MQeJMSRFHTransformer. Note that two bridge queues must also be

configured: one to direct messages to the broker’s control queue

SYSTEM.BROKER.CONTROL.QUEUE; the other to direct messages to the input queue of the

appropriate message flow.

Using the MQeMbMsgObject with the bridge, retaining an efficient message flow

This migration makes minimal changes to the application, yet still uses the MQe bridge instead of the

MQe broker node. The downside is that it requires the use of deprecated MQe classes.

The following work is required:

1. Modify the message flow on the broker such that MQ input nodes are used instead of MQe input

nodes.

2. Modify the client application such that messages are sent via the MQe bridge. Any subscribe and

un-subscription messages are sent to the broker’s control queue

SYSTEM.BROKER.CONTROL.QUEUE, whilst publication messages must now be sent to the input

queue of the appropriate message flow (this flow will contain a Publication node). In all cases the

com.ibm.broker.mqimqe.wrapper.MQeMbMsgObject continues to be used.

3. Configure an MQe bridge to transfer and transform MQe messages from the MQe network to the MQ

network underlying the broker topology. The bridge transformer class must be configured to be

com.ibm.mqe.mqbridge.MQeMbTransformer. Note that two bridge queues must also be configured:

Working with WebSphere Message Broker 11

one to direct messages to the broker’s control queue SYSTEM.BROKER.CONTROL.QUEUE; the other

to direct messages to the input queue of the appropriate message flow.

Using the MQeMbMsgObject with the bridge and without application change

This migration makes no changes to the application, but still uses the MQe bridge instead of the MQe

broker node. The disadvantages are that it requires the use of deprecated MQe classes and may also

result in excessive processing within the broker message flow.

The following work is required:

1. Modify the message flow on the broker such that MQ input nodes are used instead of MQe input

nodes. Add a filter node into the flow such that (a) any subscribe and un-subscription messages are

sent to the broker’s control queue SYSTEM.BROKER.CONTROL.QUEUE, and (b) publication

messages are sent to the input queue of the appropriate message flow.

An example of the ESQL needed for the filter node:

BEGIN

 IF InputRoot.MQRFH2.psc.Command = ’RegSub’ OR

 InputRoot.MQRFH2.psc.Command = ’DeregSub’ OR

 InputRoot.MQRFH2.psc.Command = ’ReqUpdate’ THEN

 RETURN TRUE;

 END IF;

 IF InputRoot.MQRFH2.psc.Command = ’Publish’ OR

 InputRoot.MQRFH2.psc.Command = ’DeletePub’ THEN

 RETURN FALSE;

 END IF;

 RETURN UNKNOWN;

END;

2. Configure an MQe bridge to transfer and transform MQe messages from the MQe network to the MQ

network underlying the broker topology. The bridge transformer class must be configured to be

com.ibm.mqe.mqbridge.MQeMbTransformer. One bridge queue only must also be configured, such

that it directs all messages to the input queue of the appropriate message flow.

3. If the node’s destination mode was set to Reply To Queue and your destination queue manager and

destination queue are different than your reply to queue manager and reply to queue, you will need

to set a Java™ system property to prevent the destination fields from being copied into the reply to

fields in the MD of the MQ message. The system property

″com.ibm.mqe.mqbridge.MQeMbTransformer.keepReplyTo can be set to any value. To set using a Java

program, add the -Dproperty=value VM argument. If you are using the MQeExplorer or MQeScript

executables from the MQeServerSupport SupportPac, you will need to create a .sp file. Refer to the

MQeServerSupport Installation Guide for more information.

12 WebSphere MQ Everyplace V2.0.2

	Contents
	Working with WebSphere Message Broker
	Scenarios
	Bridge configuration
	MQe bridge transformer classes
	MQe message object classes
	Writing MQe applications to drive MQ applications
	Writing MQe pub/sub applications
	Examples

	Migrating MQe applications that use the MQe node on the broker
	Using the MQePubMsgObject
	Using the MQeMbMsgObject with the bridge, retaining an efficient message flow
	Using the MQeMbMsgObject with the bridge and without application change

