

MQSeries Clustering
on Windows NT

Prepared by:
Scott Meridew – Senior Technical Consultant,
CGI Group Inc.

CGI Proprietary
The information contained herein is proprietary to one or more CGI Group of companies or other parties and shall not be
used, reproduced or disclosed to others except as specifically permitted in writing by the proprietor. The recipient of this
information, by its retention and use, agrees to protect the same from loss, theft or unauthorized use.

 MQSeries Clustering on WindowsNT

 2

TABLE OF CONTENTS

1 ABOUT THESE ARTICLES ... 3

1.1 CONVENTIONS USED IN THE ARTICLES ... 3
1.2 AUDIENCE ... 3

2 INTRODUCTION TO MQSERIES CLUSTERING... 4

2.1 WHAT IS A CLUSTER?.. 4
2.2 CLUSTERING VERSUS DISTRIBUTED QUEUING .. 5

2.2.1 Load Balancing and Performance ... 6
2.2.2 High Availability ... 9
2.2.3 Simplified Management ... 10
2.2.4 Dynamic Object Creation .. 11

2.3 MQSERIES CLUSTERING COMPONENTS ... 13
2.3.1 Repository Queue Managers.. 13
2.3.2 Cluster Channels (Sender-Receiver) .. 14
2.3.3 Cluster Queues (Local and Transmission).. 15
2.3.4 NameList ... 16
2.3.5 The default cluster objects summary .. 16

 MQSeries Clustering on WindowsNT

 3

1 About These Articles

With the introduction of MQSeries V5.1, (and V2.1 on OS/390) IBM has included the ability to logically
group or “cluster” queue managers together. This series of technical articles is broken down as follows:

• An introduction to MQSeries Clustering. This will define clustering, and how it applies to
MQSeries. Clustering versus distributed queuing, and the components of an MQSeries cluster
are discussed.

• Defining and managing an MQSeries Cluster. A step-by-step approach to building an MQSeries
cluster on Windows NT. Screen shots and instructions on how-to add/remove MQSeries objects
within the cluster. Trouble-shooting clustering problems.

• Advanced features in MQSeries Clustering. Customizing workload exits. Overlapping and cluster
to non-cluster communications. Securing your MQSeries cluster.

• Practical business applications for MQSeries Clustering. The provisioning model. The Web
storefront model.

1.1 Conventions used in the articles

Throughout this document formatting has been used to indicate the following to the reader:
• Important notes are in bold italics
• Definitions and specific new terms are in italics
• MQSeries MQSC commands, objects, and API calls are in BOLD UPPERCASE.
• URLs, FTP and email addresses are in blue when displayed from a monitor. For print, http:// always

proceeds a URL, ftp:// always proceeds an FTP address, and mailto: always proceeds an email
address.

1.2 Audience

This document will be useful for both MQSeries developers who are implementing an MQSeries cluster,
as well as system architects and designers.

 MQSeries Clustering on WindowsNT

 4

2 Introduction to MQSeries Clustering

2.1 What Is a Cluster?

Clustering is not a new concept. Clustering in its simplest form means logically grouping two or more
components and making them appear as one to a consumer of the components. Two forms of clustering
exist: shared and shared-nothing.

A shared cluster generally involves creating redundant, shareable components for the purpose of high
availability, fault tolerance and load balancing. Typically, system resources that can be shared include
disk storage and CPU/applications. When disk storage is clustered, the operating system must manage
locking conditions across the CPUs to maintain the integrity of the data being accessed. This is no simple
task, and is the reason many vendors provide only shared-nothing clustering solutions.

A shared-nothing cluster (such as Microsoft’s Cluster Server) does not share any components, but usually
involves replication of data (in a timely manner) that can be used by a hot standby system/application. In
this scenario, clustering provides fail-over capabilities, but not load-balancing.

Digital Equipment Corp. (DEC), now a division within Compaq, has produced shared cluster systems
since the mid-1980s. These systems typically provide redundant CPU, disk subsystem, operating system
and applications. The idea is that if any one of these components fail, an alternate path survives to provide
a relatively transparent fail over to the users. The two key components to this architecture are a high-
speed computer-interconnect bus that allows the processors to communicate very quickly with one
another, and hierarchical storage controllers with dual-ported disks to provide the concurrent access to
shared storage.

Clustered applications in a shared-nothing environment are a little different than their shared cluster
counterparts. Since no common data is shared among the applications, each instance of the application
has access to a replicated copy of configuration and/or production data. MQSeries clustering works on this
concept of replicated data. MQSeries object definitions are stored in a repository queue and replicated,
either in full or partially, to replication partners known as repository queue managers. We’ll discuss the
components later.

 MQSeries Clustering on WindowsNT

 5

2.2 Clustering Versus Distributed Queuing

Clustering offers several benefits over distributed queuing. By clustering and sharing data, the MQSeries
network becomes more dynamic and more manageable. As your MQSeries network grows, the risk of
errors increases, and the flexibility decreases. With clustering however, the risk of errors can be greatly
reduced, while maintaining the flexibility to modify your configuration on the fly.

Clustering also provides a simple way to provide fault-tolerance and high availability. The product
provides built-in, customizable logic for routing messages to destination queues. You can use the default
method for message distribution, or create customized ‘workload exits’ for advanced routing algorithms.

In a distributed queuing architecture, this logic has to be coded into the applications that are sending the
messages. In addition, error-handling routines need to be developed to manage the condition where one or
more queue managers become unavailable. Furthermore, additional code is needed to recognize when
these unavailable queue managers become available once again.

MQSeries clustering will dynamically create and destroy certain objects as needed, further increasing the
ease of management. Specifically, the channel definitions to/from cluster queue managers are created
automatically--however, the first channel pair must be defined manually. These are known as Cluster
Sender (CLUSSDR) and Cluster Receiver (CLUSRCVR) channels. As with all MQSeries
implementations, all channels are uni-directional and therefore require this pairing.

Perhaps the best feature of MQSeries clustering is that existing applications do not need to be modified in
order to benefit from the features of clustering. The entire cluster configuration is handled at the
administration layer – entirely transparent from users and applications.

 MQSeries Clustering on WindowsNT

 6

2.2.1 Load Balancing and Performance

MQSeries clustering provides essential load-balancing features by providing a default method for
identifying target queues. Consider the following diagram:

QM1

QM2

QM3

Q1

Q1

Q1

Diagram 1

Cluster Workload Management Algorithm

An application running on QM1 needs to put a message to Q1. But which queue will be the target? In
this case, Q1 on QM1 will always be used.

MQSeries clustering uses a workload management algorithm, which operates according to the
following rules:

• If a local queue exists, the message will always be sent to the local queue. That is, a queue
managed by the same queue manager that is putting the message

• If multiple instances of the queue are available, but only on non-local queue managers, then a
round robin approach is used. The state of each sender channel, as well as the priority
associated with the channel (NETPRTY channel attribute) is used in determining which
queue is selected first

• If an attempt fails to put the message to the selected target queue, each alternate target is
attempted in succession

• If all target queues fail, then the message is sent to the deal letter queue

 MQSeries Clustering on WindowsNT

 7

Cluster Workload Exits

In addition to the workload management algorithm, you can customize how workload is distributed
using cluster workload exits. There are many reasons you may need to customize. For example:

• If you need to determine which channels use a high-speed connection in order to favor that
channel

• Perhaps application performance is your primary concern and you want to send messages to
the least busy processor

• What if your data is partitioned? You may have the same application running on QM1 and
QM2, but each instance is responsible for a certain range of data, like customer identifier.
Your workload exit could examine the message data first, and then route to the application
that handles that specific customer

• Perhaps the previous applications are designated by a quality of service (QOS) and high-
value customer requests need to be routed to the system running the more reliable or faster
instance of the application

Cluster workload exits are called at open or put time. That is, when the sending application calls
MQPUT, MQPUT1 or MQOPEN. Note: Only one cluster workload exit can be defined for a
given queue manager.

 MQSeries Clustering on WindowsNT

 8

To define a workload exit, go to the properties sheet of the queue manager from MQSeries Explorer
as shown in Figure 1. Enter the cluster workload exit name, the cluster workload data (user data
contained in a maximum 32-character field) and the cluster workload length (this is the maximum
length of the message data passed to the cluster workload exit. The actual length of data passed to the
exit is the minimum of: the length of the message, the queue-manager's MaxMsgLength attribute, and
the cluster workload length).

Figure 1

 MQSeries Clustering on WindowsNT

 9

2.2.2 High Availability

By implementing an architecture with multiple instances of a cluster queue, higher availability can be
realized. As previously mentioned, the cluster workload algorithm contains built-in recovery
mechanisms to accommodate situations where messages cannot be routed to a specific target cluster
queue. The default mechanism will successively attempt to route the message to any available target
queue based on channel priority (NETPRTY channel attribute) and status. Of course, you can write
your own cluster workload exits to handle this scenario as well.

In a distributed queuing environment, these types of failures would result in the message being routed
to the dead letter queue, where some cleanup application would need to take some form of corrective
action. The cluster workload algorithm thus provides high availability by having messages processed
by alternate means. It is recommended that the redundant target cluster queues be placed on separate
nodes, in order to increase the availability. This will ensure that messages will continue to be
processed, even in the event that a destination queue manager fails. Placing all of your target queues
on a single node would not provide high availability in the event of a queue manager or system
failure, but only that of a queue failure.

Duplication of the cluster repository also provides for high availability. IBM recommends that at least
two queue managers in the cluster are designated as full cluster repository queue managers. As we’ll
see in later articles, the management of the cluster repositories is critical in ensuring high availability
of your cluster.

 MQSeries Clustering on WindowsNT

 10

2.2.3 Simplified Management

Any MQSeries administrator will agree that managing MQ objects in a complex network can be very
cumbersome, especially without a third-party management tool such as Candle Command Center or
Tivoli’s MQ. The fewer the objects, the easier it is to manage both a static MQ network and a growing
one.

Including remote queue definitions, a simple MQSeries network with four Queue Managers with two
local queues would require a minimum of 68 objects to be defined, broken down as:

• 3 sender channels per queue manager (12 total)
• 3 receiver channels per queue manager (12 total)
• 3 transmission queues per queue manager (12 total)
• 2 local queue definitions per queue manager (8 total)
• 6 remote queue definitions per queue manager (24 total)

 In a clustered environment, the number of objects to be defined is reduced to 16. This is because only
one cluster sender and cluster receiver channel is needed, and no transmission queues or remote queue
definitions are necessary. Therefore the only objects required are:

• 1 cluster sender channel per queue manager (4 total)
• 1 cluster receiver channel per queue manager (4 total)
• 2 local queue definitions per queue manager (8 total)

 With this type of configuration, the risk of making errors in defining transmission queues and remote
queue definitions is eliminated.

 MQSeries Clustering on WindowsNT

 11

2.2.4 Dynamic Object Creation

 MQSeries clustering will automatically create and destroy certain objects, as they are needed for
clustering. The two types of objects created are cluster channels and cluster queues.

 Channels

 MQSeries clustering relieves some of the burden of managing channels. In studies performed by IBM,
channels were the number-one cause of administrative frustration. To reduce the level of aggravation
and the risk of errors through incorrect channel declaration, clustering requires only two channels to
be defined on each queue manager:

• 1 cluster receiver channel (CLUSRCVR);
• 1 cluster sender channel (CLUSSDR)

Once these channels are defined, MQSeries will automatically create any subsequent channels to other
queue managers in the cluster. For instance, in our diagram, if QM1 needed to send a message to
QM3/Q1, but had only been defined with sender/receiver channels to QM2, the sender/receiver
channels to QM3 would automatically be created. The attributes of these channels are taken from the
cluster sender/receiver channels on the destination queue manager (QM3 in this case).

Remote Queues

Queues defined as cluster queues are automatically made available to all queue managers in the
cluster. What happens locally is that MQSeries dynamically creates a remote queue definition on the
local queue manager. These queues can be displayed using MQSeries Explorer and will appear as
“local cluster queues.” The queue clq_test in Figure 2 is a local cluster queue on
QM_cgilab72.on.bell.ca that is hosted by the QM_cgilab71.on.bell.ca queue manager.

Figure 2

 MQSeries Clustering on WindowsNT

 12

Removal of Dynamic Objects

These objects will automatically be destroyed after a period of inactivity. However, you can refresh the
local queue manager repository information using MQSeries Explorer as shown in Figure 3. This will
destroy and recreate the automatically defined cluster channels and cluster queue definitions on the
local machine. You can also see the local shared cluster queues in Figure 2 (clq_test and
clq_default_cgilab71) that have been manually created on QM_cgilab71.on.bell.ca.

Figure 3

 MQSeries Clustering on WindowsNT

 13

2.3 MQSeries Clustering Components

2.3.1 Repository Queue Managers

Repository queue managers are the keepers of cluster information. At least two repository queue
managers should be defined in a cluster for availability purposes. A cluster queue manager can be
designated as either a FULL or PARTIAL repository. A FULL repository contains information about
all the queue managers in a cluster, including the queue manager names, locations, their channels,
what queues they host, etc. A PARTIAL repository is held by all non-FULL repository queue
managers in a cluster, and contains only information about queue managers that the local system
needs to exchange messages with.

Cluster repository information is retained and managed within a local system queue known as the
SYSTEM.CLUSTER.REPOSITORY.QUEUE. The cluster repository information is replicated as it
changes. The SYSTEM.CLUSTER.COMMAND.QUEUE is used to send/receive repository updates
from repository queue managers. This information can be refreshed, as in Figure 3.

To define a queue manager as a repository queue manager, open MQSeries Explorer and right click
on the Queue Manager. Then select Properties, and choose the Repository tab. Select the radio button
“Repository for a cluster” and enter the name of the cluster, as shown in Figure 4.

Figure 4

 MQSeries Clustering on WindowsNT

 14

2.3.2 Cluster Channels (Sender-Receiver)

Cluster channels are used by cluster queue managers to exchange messages between one another. A
minimum of two channels are needed, a cluster sender (CLUSSDR) and a cluster receiver
(CLUSRCVR). It is important to note that the channel pair names must match. That is, the
CLUSSDR channel name on QM1 must match the corresponding CLUSRCVR channel name on
QM2.

To define a cluster channel, use the MQSeries Explorer and right click on Channels/New as shown in
Figure 5.

Figure 5

At a minimum, you must supply the channel name, the connection name and the transport type. Valid
transport types for Windows NT are TCP/IP, NetBIOS, IPX or LU6.2. On the “New cluster sender
channel” Properties sheet, select the “Cluster” tab to share the channel in the cluster, and to set the
priority (NETPRTY).

MQSeries will automatically define any additional cluster channels needed. This is the default, unlike
other channels that MQSeries can create automatically (i.e. Server Connection channels).

 MQSeries Clustering on WindowsNT

 15

2.3.3 Cluster Queues (Local and Transmission)

Cluster queues are either defined by users, as in the case of local cluster queues, or automatically in
the case of cluster transmission queues.

To create a cluster queue, you must first create a local queue on the queue manager that will host the
queue. By selecting “Share in Cluster” or “Share in a list of clusters” (and selecting the cluster name
or namelist) as shown in Figure 6, you can share this queue in the cluster(s).

Figure 6

To view cluster queues within MQSeries Explorer, you must first click the Show/Hide Cluster Queues
toggle button on the toolbar, shown below as the fifth icon from the left.

Figure 6a

In addition, a system default “cluster transmission queue” called
SYSTEM.CLUSTER.TRANSMIT.QUEUE is automatically created when you create a new queue

 MQSeries Clustering on WindowsNT

 16

manager. This queue is similar to the user-defined default transmission queue, but takes precedence
over it in cases where the target queue is resolved via the repository.

2.3.4 NameList

A namelist can be used to define a group of clusters. This would typically be used when defining a
queue manager that will host repositories for multiple clusters. In order to specify that the queue
manager will be a repository queue manager for a list of clusters, use the properties sheet for the
queue manager and select the “Repository for a list of clusters” radio button as shown in Figure 4.
Additionally, queues can be shared in a list of clusters also, as shown in Figure 6.

 To create a namelist, right click the Namelist folder in MQSeries Explorer as shown in Figure 7.

Figure 7

2.3.5 The default cluster objects summary

As with any MQSeries installation, several default objects are created when you create the queue
manager. Most of these have previously been discussed. Here is a synopsis of the system cluster
objects:

SYSTEM.CLUSTER.REPOSITORY.QUEUE – the queue that holds repository information;
SYSTEM.CLUSTER.COMMAND.QUEUE – the queue used to send repository update messages;
SYSTEM.CLUSTER.TRANSMIT.QUEUE – the default cluster transmission queue;
SYSTEM.DEF.CLUSSDR – the default definition for a cluster sender channel;
SYSTEM.DEF.CLUSRCVR – the default definition for a cluster receiver channel

In order to display the system objects within MQSeries Explorer, you must click on the Display
System Objects Icon on the toolbar, shown below as the second icon from the right.

 MQSeries Clustering on WindowsNT

 17

Figure 7a

