
IBM MQSeries Workflow for OS/390

Programming Guide
Version 3 Release 2

SC33-7031-03

���

IBM MQSeries Workflow for OS/390

Programming Guide
Version 3 Release 2

SC33-7031-03

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xiii.

Third Edition (February 2000)

This edition applies to Version 3, Release 2, Modification Level 1 of IBM MQSeries Workflow for OS/390 (product
number 5565-A96) and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has
been removed, address your comments to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

FAX (Germany): 07031+16-3456
FAX (Other Countries): (+49)+7031-16-3456

IBM Mail Exchange: DEIBMBM9 at IBMMAIL
Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who should read this book xi
How to get additional information xi
How to send your comments xi
How this book is organized xi
How to read the syntax diagrams xii
Notices xiii
Trademarks xv

Summary of changes xvii

Chapter 1. MQSeries Workflow
programming concepts 1
Understanding Workflow programming 1

The role of the programmer in modeling a process 1
Programming interfaces 2
Prerequisites for using a programming language API 3
Overview of the Runtime API 3
Building an MQSeries Workflow application 7

Overview 7
Handling errors 8

Object and memory management 11
The result object 12
Client/server communication and data access
models 16

Synchronous client/server communication . . . 16
Asynchronous client/server communication . . 16
The push data access model 16
Receiving information 17

An MQSeries Workflow session 19
Querying data 19

Persistent lists 20
Using filters, sort criteria, and thresholds . . . 20
Handling collections 20
C and COBOL vector accessor functions 21
Java arrays 30

Handling containers 30
Data structure/container type 30
Data member/container element 30
Predefined data members. 32
Determining the structure of an unknown
container 37
Analyzing a container element 41
Accessing a known container element 47
Accessing a value of a container 47
Accessing a value of a container element . . . 54
Setting a value of a container 60
Return codes/FmcException 65

Monitoring a process instance 65
Obtaining a process instance monitor 66

Ownership of monitors 67
Authorization considerations 67
Types of API calls 70

Basic API calls 70
Accessor API calls 85
Action API calls 122
Activity implementation API calls 122

Chapter 2. Language interfaces . . . 125
C and C++ interface 125

Coding an MQSeries Workflow client
application in C or C++ 125
Coding an MQSeries Workflow activity
implementation in C or C++ 126
Compiling and linking 127

Java interface 128
The Java CORBA Agent 129
The communication layer 129
The locator methods 130
The Java API Beans 130
Coding an MQSeries Workflow client
application in Java. 132
Coding an MQSeries Workflow activity
implementation in Java 133
Compiling 134
Object management 134
Garbage collection when using Java API Beans 135

COBOL interface 135
Calling the API 135
String handling. 136
Coding an MQSeries Workflow client
application in COBOL 136
Coding an MQSeries Workflow activity
implementation in COBOL 137
Compiling and linking 138
Mapping C to COBOL data types 139
Name changes between COBOL and C 140
Example of the use of strings 150

XML message interface 151
The MQSeries Workflow message 151
Sending requests to MQSeries Workflow . . . 154
Invoking an activity implementation 156
The MQSeries Workflow XML message format 160

Chapter 3. Interfacing with the
Program Execution Server. 167
CICS considerations 167
IMS considerations 167
Program mapping via the Program Execution
Server 167

Introduction 167
Program mapping definitions 169
Mapping algorithm 172
Supported program mapping definition element
types 177

© Copyright IBM Corp. 1999, 2000 iii

Grammar. 181
Usertype 192
Size of program mapping interface definition
elements 194
Activation of program mapping definitions . . 195
Troubleshooting 196
Additional mapping examples. 196

Program execution server exits 202
Introduction 202
Interfaces for all exits. 203
Special considerations for exit programming . . 205
Program mapping exit 206
Program invocation exit 209
Notification exit 217

Chapter 4. API classes and objects 227
Summary. 227
API calls by class 229

ActivityInstance 229
ActivityInstanceNotification 233
ActivityInstanceNotificationVector 235
ActivityInstanceVector 235
Agent 235
BlockInstanceMonitor 237
Container. 238
ContainerElement 241
ContainerElementVector 243
ControlConnectorInstance 243
ControlConnectorInstanceVector 244
Date and Time
(FmcDateTime/FmcjCDateTime/Calendar) . . 245
DllOptions 246
ExecutionAgent 246
ExecutionData 247
ExecutionService 248
ExeOptions 250
ExternalOptions 252
FmcError/FmcjError 253
FmcException 254
Global 255
ImplementationData 255
Item 256
ItemVector 258
Message 259
PersistentList 259
Person. 260
Point 264
PointVector 264
ProcessInstance 265
ProcessInstanceList 268
ProcessInstanceListVector 269
ProcessInstanceMonitor 269
ProcessInstanceNotification 269
ProcessInstanceNotificationVector. 270
ProcessInstanceVector 270
ProcessTemplate 271
ProcessTemplateList 273
ProcessTemplateListVector 274
ProcessTemplateVector 274
ProgramData 274
ProgramTemplate 275

ReadOnlyContainer 277
ReadWriteContainer 277
Result 279
Service 280
StringVector 280
SymbolLayout 281
WorkItem 282
WorkItemVector 284
Worklist 284
WorklistVector 285

Chapter 5. API action and activity
implementation calls 287
ActivityInstance actions 287

ObtainProcessInstanceMonitor() 287
SubProcessInstance() 289

ActivityInstanceNotification actions 291
PersistentObject() 292
StartTool() 294

BlockInstanceMonitor actions 296
ObtainBlockInstanceMonitor() 296
ObtainProcessInstanceMonitor() 298
Refresh() 301

Container activity implementation calls. 303
InContainer() 303
OutContainer() 305
RemoteInContainer() 307
RemoteOutContainer() 308
SetOutContainer() 310
SetRemoteOutContainer() 312

ExecutionService actions. 314
CreateProcessInstanceList() 315
CreateProcessTemplateList() 321
CreateWorklist() 326
Logoff() 333
Logon() 334
Passthrough() 339
QueryActivityInstanceNotifications() 341
QueryItems() 347
QueryProcessInstanceLists() 353
QueryProcessInstanceNotifications() 355
QueryProcessInstances() 361
QueryProcessTemplateLists() 366
QueryProcessTemplates() 368
QueryWorkitems() 372
QueryWorklists() 379
Receive() 381
RemotePassthrough() 384
TerminateReceive() 386

Item actions 387
Delete() 388
ObtainProcessInstanceMonitor() 390
ProcessInstance() 392
Refresh() 394
SetDescription() 396
SetName() 398
Transfer() 400

PersistentList actions 402
Delete() 403
Refresh() 404
SetDescription() 406

iv MQSeries Workflow for OS/390 Programming Guide

SetFilter(). 408
SetSortCriteria() 410
SetThreshold() 412

Person actions 414
Refresh() 414
SetAbsence(). 416
SetSubstitute() 417

ProcessInstance actions 419
Delete() 420
InContainer() 421
ObtainMonitor() 424
PersistentObject() 426
Refresh() 428
Restart() 430
Resume() 431
SetDescription() 433
SetName() 435
Start() 437
Suspend() 439
Terminate() 441

ProcessInstanceList actions 443
QueryProcessInstances() 443

ProcessInstanceNotification actions 446
PersistentObject() 446

ProcessTemplate actions 448
CreateAndStartInstance() 448
CreateInstance() 453
Delete() 456
ExecuteProcessInstance() 458
InitialInContainer() 465
PersistentObject() 467
ProgramTemplate() 469
Refresh() 471

ProcessTemplateList actions 473
QueryProcessTemplates() 473

ProgramTemplate actions 475
Execute() 476

Service actions 480
Refresh() 480
SetPassword() 481
UserSettings() 483

Workitem actions 485
CancelCheckOut() 487
CheckIn(). 489
CheckOut() 491
Finish() 495
ForceFinish() 497
ForceRestart() 499
InContainer() 501
OutContainer() 502
PersistentObject() 504
Restart() 506

Start() 508
StartTool() 509
Terminate() 511

Worklist actions 514
QueryActivityInstanceNotifications() 514
QueryItems() 517
QueryProcessInstanceNotifications() 519
QueryWorkitems() 521

Chapter 6. Examples 525
How to create persistent lists 525

Create a process instance list (C) 526
Create a process instance list (C++) 527
Create a process instance list (Java) 528
Create a process instance list (COBOL) 531

How to query persistent lists 535
Query worklists (C) 536
Query worklists (C++) 538
Query worklists (Java) 539
Query worklists (COBOL) 542

How to query a set of objects 549
Query process instances (C) 550
Query process instances (C++). 552
Query process instances (Java). 553
Query process instances (COBOL) 556
Query work items from a worklist (C) 560
Query work items from a worklist (C++) . . . 562
Query work items from a worklist (Java) . . . 564
Query work items from a worklist (COBOL) 567

How to code an activity implementation 572
Programming an activity implementation (C) 573
Programming an activity implementation (C++) 574
Programming an activity implementation
(COBOL) 575

Glossary 579

Bibliography. 585
MQSeries Workflow for OS/390 publications . . . 585
MQSeries Workflow publications 585
Workflow publications 585
MQSeries publications 585
Other useful publications 585
Licensed books 586

Index 587

Readers’ Comments — We’d Like to
Hear from You 595

Contents v

vi MQSeries Workflow for OS/390 Programming Guide

Figures

1. MQSeries Workflow Client API hierarchy 2
2. Setting up client/server communication . . . 3
3. Querying objects 4
4. Dealing with process instances and (work)

items 5
5. Monitoring a process instance 6
6. Handling data sent by an MQSeries Workflow

server 7
7. Accessing a result object in C 13
8. Accessing a result object in C++. 13
9. Accessing a result object in COBOL (via

PERFORM) 14
10. Accessing a result object in COBOL (via

CALL) 15
11. Handling data sent by an MQSeries Workflow

server 18
12. Reading a vector in C (using

First/NextElement() calls) 25
13. Reading a vector in C (using NextElement()

call only) 26
14. Reading a vector in COBOL (using

First/NextElement calls) 27
15. Reading a vector in COBOL (using

NextElement calls only) 29
16. Process instance monitors and block instance

monitors 66
17. C example using basic functions 78
18. C++ example using basic methods 80
19. COBOL example using basic calls (via

PERFORM) 81
20. COBOL example using basic calls (via CALL) 83
21. Accessing values in C 116
22. Accessing values in C++ 117
23. Accessing values in COBOL (via PERFORM) 118
24. Accessing values in COBOL (via CALL) 120
25. MQSeries Workflow message 151
26. Sending requests to MQSeries Workflow 155
27. Starting an activity implementation via XML 156
28. Sample activity implementation using XML 159
29. Document type definition (DTD) for

MQSeries Workflow XML messages 161
30. Program mapping illustration. 168
31. Program mapping control flow 168
32. How to create a program mapping. 169
33. Default forward/backward mapping 171
34. Usertype example 172
35. Default forward mapping illustration. 173
36. Forward2: Non-default forward mapping

illustration. 173
37. Non-default backward mapping Backward1

illustration. 174
38. Backward2: Explicit mapping illustration. 174
39. Forward mapping with constants.. 176

40. Backward mapping with constants. 176
41. Relationship between mapping elements. 181
42. Usertype exit 193
43. Process instance states 419
44. Work item states - process instance state

running 486
45. Work item states - process instance state

suspending or suspended 486
46. Work item states - process instance state

terminating or terminated 487
47. Sample C program to create a process

instance list 526
48. Sample C++ program to create a process

instance list 527
49. Sample Java program to create a process

instance list 528
50. Sample COBOL program to create a process

instance list (via PERFORM) 531
51. Sample COBOL program to create a process

instance list (via CALL) 533
52. Sample C program to query worklists 536
53. Sample C++ program to query worklists 538
54. Sample Java program to query worklists 539
55. Sample COBOL program to query worklists

(via PERFORM). 542
56. Sample COBOL program to query worklists

(via CALL) 545
57. Sample C program to query process instances 550
58. Sample C++ program to query process

instances 552
59. Sample Java program to query process

instances 553
60. Sample COBOL program to query process

instances (via PERFORM) 556
61. Sample COBOL program to query process

instances (via CALL) 558
62. Sample C program to query work items from

a worklist 560
63. Sample C++ program to query work items

from a worklist 562
64. Sample Java program to query work items

from a worklist 564
65. Sample COBOL program to query work items

from a worklist (via PERFORM) 567
66. Sample COBOL program to query work items

from a worklist (via CALL) 569
67. Sample activity implementation (C) 573
68. Sample activity implementation (C++) 574
69. Sample activity implementation (COBOL, via

PERFORM) 575
70. Sample activity implementation (COBOL, via

CALL) 577

© Copyright IBM Corp. 1999, 2000 vii

viii MQSeries Workflow for OS/390 Programming Guide

Tables

1. List of return codes 9
2. Authorization for persons 68
3. JCLs provided for C/C++ programs 128
4. Copybooks provided for COBOL programs 138
5. JCLs provided for COBOL programs 139
6. Mapping C to COBOL data types 139
7. Function name mapping 140
8. Class prefix abbreviations 146
9. Abbreviations for COBOL naming 147

10. Rule mapping with no constant definition 175

11. Mapping with constant definition 175
12. Mapping combinations 178
13. C/C++ data type mappings (legacy

application (C/C++) to FDL types (structure)) 179
14. COBOL data type mappings (legacy

application (COBOL) to FDL types
(structure)) 180

15. Interface element size 195
16. Context types 216

© Copyright IBM Corp. 1999, 2000 ix

x MQSeries Workflow for OS/390 Programming Guide

About this book

This book describes how to use the IBM MQSeries Workflow for OS/390 Runtime
(Client) Application Programming Interface (MQSeries Workflow API) and also to
invoke API requests by passing messages in Extensible Markup Language (XML)
to an MQSeries queue from an application. The first part of the book describes the
concepts underlying the API while the rest of the book provides a reference for the
API action calls. The book also describes the MQSeries Workflow predefined data
structures.

Note: The licensed books that were declassified in OS/390 Version 2 Release 4
appear on the OS/390 Online Library Collection, SK2T-6700. The remaining
licensed books for OS/390 Version 2 appear on the OS/390 Licensed
Product library, LK2T-2499, in unencrypted form.

Who should read this book
This book is intended for programmers who design and implement programs
using an MQSeries Workflow API and who may participate in designing an
MQSeries Workflow workflow model. It assumes that readers are experienced
OS/390 programmers and that they understand the process modeling concepts.

How to get additional information
Visit the MQSeries Workflow home page at
http://www.software.ibm.com/ts/mqseries/workflow

For a list of additional publications, refer to “MQSeries Workflow publications” on
page 585.

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
MQSeries Workflow documentation, choose one of the following methods:
v Send your comments by e-mail to: s390id@de.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of MQSeries Workflow, and, if applicable, the specific location of the text
you are commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

How this book is organized
“Notices” on page xiii describes some notices and trademarks.

“Chapter 1. MQSeries Workflow programming concepts” on page 1 provides an
overview of how to design applications to work with the MQSeries Workflow
workflow manager.

“Chapter 2. Language interfaces” on page 125 discusses the API from the
perspective of the language used: C, C++, Java, or COBOL.

© Copyright IBM Corp. 1999, 2000 xi

http://www.software.ibm.com/ts/mqseries/workflow

“Chapter 3. Interfacing with the Program Execution Server” on page 167 describes
the interface with the Program Execution Server, including the use of program
mappings to bring Workflow API containers into a format acceptable by legacy
applications and how to use exits.

“Chapter 4. API classes and objects” on page 227 provides an overview of the
classes supported by the API.

“Chapter 5. API action and activity implementation calls” on page 287 describes the
API calls that enable applications to manipulate worklists and work items, to work
with process instances and container data, and to log on to and log off from an
MQSeries Workflow server.

“Chapter 6. Examples” on page 525 provides some examples that show how to use
the API.

The back of the book includes a glossary that defines terms as they are used in this
book, a bibliography, and an index.

How to read the syntax diagrams
Throughout this book, syntax is described the following way; all spaces and other
characters are significant:
v Read the syntax diagrams from left to right, from top to bottom, following the

main path of the line.
The ��— symbol indicates the beginning of a statement.
The —� symbol indicates that the statement syntax is continued on the next line.
The �— symbol indicates that a statement is continued from the previous line.
The —�� symbol indicates the end of a statement.

v Diagrams can be broken into fragments. A fragment is indicated by vertical bars
with the name of the fragment between the bars. The fragment itself follows the
same syntactical rules as the main diagram.

�� a-fragment ��

v Required items appear on the horizontal line, the main path.

�� required-item ��

v Optional items appear below (or above) the main path.

�� required-item
optional-item

��

v If you can choose from one or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

xii MQSeries Workflow for OS/390 Programming Guide

�� required-item required-choice1
required-choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required-item
optional-choice1
optional-choice2

��

v An arrow returning to the left, above the main path, indicates an item that can
be repeated.

�� required-item � repeatable-item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required-item �

,

repeatable-item ��

v Keywords appear in uppercase, for example, NAME. They must be spelled
exactly as shown. Variables appear in lowercase italic letters, for example, string.
They represent user-supplied values.

Notices
This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

About this book xiii

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement. IBM accepts
no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples can include
the names of individuals, companies, brands, or products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information in an online form, the photographs and color
illustrations may not appear.

xiv MQSeries Workflow for OS/390 Programming Guide

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:
v AIX
v CICS
v DB2
v FlowMark
v IBM
v IMS
v Language Environment
v MQSeries
v MVS
v OS/2
v OS/390
v RISC System/6000

Lotus Notes is a registered trademark, and Domino and Lotus Go Webserver are
trademarks of Lotus Development Corporation.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc., in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

About this book xv

xvi MQSeries Workflow for OS/390 Programming Guide

Summary of changes

This edition reflects changes related to the following APARs:
v PQ34 776
v PQ34 802
v PQ34 803
v PQ34 805
v PQ34 806

In particular, a new PES exit has been introduced to provide event notification in
conjunction with program invocations. For details, see “Program execution server
exits” on page 202.

© Copyright IBM Corp. 1999, 2000 xvii

xviii MQSeries Workflow for OS/390 Programming Guide

Chapter 1. MQSeries Workflow programming concepts

This chapter provides you with a general introduction to the programming
concepts of MQSeries Workflow.

Understanding Workflow programming
This section introduces the concept of workflow modeling as it relates to the
design of application programs for use with IBM MQSeries Workflow.

MQSeries Workflow provides a way to model a process and assign applications to
activities in the resulting workflow model. This enables the workflow manager to
automate the control of activities and the flow of data.

Work can be routed to the person who performs the activity instance. An
application program required to perform an activity instance can be designed to
start when a user starts an activity instance.

The role of the programmer in modeling a process
As workflow models are defined, the applications and data structures needed to
support program activities are identified. Programmers can create new
applications, integrate existing applications, or reengineer existing applications to
support these program activities.

To reengineer existing applications with the workflow model, programmers must
determine if the applications used by the enterprise can be functionally
decomposed. The control and flow logic are separated from the application, the
start and exit conditions are moved into the workflow model, and the program is
divided into modules to be invoked by the workflow manager at the appropriate
points. The resulting modules are applications that are assigned to perform the
program activities defined in the workflow model.

Most applications include many diverse functions, and many can support several
different activities in different stages of a process. Output produced by one
function of a program can be used as input by another function of the same
program. Therefore, the same application can be used to support many different
program activities in a workflow model.

Your enterprise might also use Enterprise Resource Planning (ERP) or packaged
applications like word-processing or spreadsheet applications.

Decomposition of such applications may not be possible. However, a programmer
could write shell procedures that query the contents of containers, pass data from
an input container to the program when the activity instance is started, and direct
data into an output container when it finishes.

With MQSeries Workflow you will be able to use mappings so you can support
any legacy application with this tool. There may be old applications whose
interfaces you can’t change because other applications or programs have been
configured to work with these long time ago: if you changed one configuration of
an interface, you would have to change them all. This mapper enables you to use
all legacy applications with your Workflow applications via the mapping tool.

© Copyright IBM Corp. 1999, 2000 1

Return codes, provided by the assigned program, can then be used to evaluate exit
and transition conditions.

Programming interfaces
MQSeries Workflow provides application program interface (API) and Extensible
Markup Language (XML) message interface support, as well as a set of predefined
data structure members, to assist programmers who develop applications for use
with workflow models. In addition, several programming samples are provided.

In a programming-language-based programming model, the client application
makes an API call in order to execute a request. In a message-based programming
model, the request and information needed to execute the request are contained in
a message that is interchanged through a message queuing system between the
client application and a server.

The MQSeries Workflow predefined data structure members provide information
about the current process, activity, or block, and are associated with the operating
characteristics of a process instance or activity instance.

API interfaces in the following languages are described in this book:
v C
v C++
v COBOL
v Java
v MQSeries Workflow XML message interface

The basic interfaces for requesting Runtime services from MQSeries Workflow are
a C API and an XML message interface. Access can be gained to the C functions
from all languages that support C calls - see “Compiling and linking” on page 127
for more information. A C++ language API is provided on top of the C API. The
C++ API is a small layer of inline methods, that is, delivered as source code. The
Java API is implemented on top of the C++ layer, and the COBOL API on top of
the C layer.

MQSeries Workflow uses the XML 1.0 standard (see W3C Recommendation:
Extensible Markup Language (XML) 1.0) as the document description language.

The MQSeries Workflow API provides API calls:
v To execute process models, that is, to work with process instances and container

data and to manipulate worklists and work items
v To monitor the progress of execution
v To issue process administrator functions

Figure 1. MQSeries Workflow Client API hierarchy

Programming concepts

2 MQSeries Workflow for OS/390 Programming Guide

v To receive information sent by an MQSeries Workflow server
v To process container data associated with an activity implementation

Prerequisites for using a programming language API
MQSeries Workflow application development assumes that the appropriate
environment is established. This means that:
v MQSeries Workflow for OS/390 must be installed on the machine where you are

developing your applications.
v A compiler of one of the supported languages must be installed and configured.
v Buildtime must be installed on the machine where you are developing your

applications.

Refer to “Chapter 2. Language interfaces” on page 125 for more information.

Overview of the Runtime API
There are various tasks which you typically want to address by writing an
MQSeries Workflow application program:
v You can write a client application to:

– Manage process instances
– Handle worklists and/or work items
– Administer process instances or work items
– Monitor the progress of execution

v You can write a program that implements an activity in your workflow process.

These programs typically use only a subset of the MQSeries Workflow API. For
example, an activity implementation typically only accesses its containers, that is,
uses only the so-called Container API, which is a subset of the full API especially
configured for container-only processing. The MQSeries Workflow API, that is, its
header files and library structures or its import packages take this fact into
account. IMS programs must use the Container API.

In order to ask for Runtime services, communication must be established between
the client application and an MQSeries Workflow execution server.

As a first step, an ExecutionService object must be obtained
(constructed/allocated/located). An ExecutionService object represents a session

Figure 2. Setting up client/server communication. Legend: --� Inheritance (C++); —� provides
for access; — —� sends messages to

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 3

between a user and an MQSeries Workflow execution server. It essentially provides
the basic API calls to set up a communication path to the specified MQSeries
Workflow execution server and to establish the user session (Logon() or
Passthrough()), and finish it (Logoff()). To log on, not only the execution server but
also the administration server must be up and running so that authentication can
be done. This is, however, transparent to you.

When the session to an execution server has been established, you can:
v Query objects for which you are authorized: process templates, process

instances, items (work items, activity instance notifications, process instance
notifications), or lists containing such objects.

v Create persistent lists, that is, persistent views on objects contained in the
MQSeries Workflow database.

v Query information about the logged-on user or change that user’s password.

In C, C++, and COBOL, all API calls update a so-called result object. Detailed
information about an erroneous request can be obtained from there. See “Handling
errors” on page 8 for more information.

When the session to an execution server has been established, you can create or
query persistent lists (process template lists, process instance lists, worklists) or
query other objects for which you are authorized. At runtime, you can retrieve the
currently valid version of a process template only; you cannot see any future or
past versions.

A persistent list represents a set of objects the user is authorized for. It is a view of
those objects. All objects which are accessible through the list have the same
characteristics. These characteristics are specified by a filter. For example,
depending on the filter specified, a worklist can contain a set of work items only.
No activity instance notifications or process instance notifications are accessible
through that list. The worklist content, the work items, can be queried and their
attributes can be accessed. As soon as a work item has been read from the
execution server, further actions can be called, for example, starting a work item.

Figure 3. Querying objects. Legend: --� Inheritance (C++); —� provides for access

Programming concepts

4 MQSeries Workflow for OS/390 Programming Guide

When a valid version of a process template has been retrieved, a process instance
can be created and started. Starting a process instance can require input data. You
can use the Container API calls for reading and writing values. See “Handling
containers” on page 30 for more information.

Starting a process instance triggers the scheduling of activity instances and, as a
result of that, the creation of a set of work items and possibly activity instance
notifications or process instance notifications when they are not worked on in time.
A work item implemented by a program can then be executed either by MQSeries
Workflow-specific means or by user-specific means.

When executed by user-specific means, the work item is to be checked out.
Checking out provides for all information needed to execute the underlying
program, the program data and its description of the implementing options and
the input container data.

When executed by MQSeries Workflow-specific means, that program data is
automatically sent to the program execution server which starts the appropriate
activity implementation. The activity implementation can then access its input and
output containers via an appropriate request to the program execution server. The
same container accessor API calls are applicable whether called from a client
application program or from an activity implementation program.

When a work item and thus the associated activity instance has not been executed
successfully, the FmcjError or FmcError object provides for analyzing the cause of
the state InError.

Figure 4. Dealing with process instances and (work) items. Legend: --� Inheritance (C++); —�
provides for access; — —� data is passed to or results in

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 5

When a process instance or item, that is, a work item, an activity instance
notification, or a process instance notification, has been retrieved, you can obtain
the associated process instance monitor. The process instance monitor then allows
for analyzing the states of activity instances and control connector instances. The
path taken through the process instance can thus be determined. In case you want
to present this information graphically, the activity instance symbol layout and the
control connector instance positions and bend points offer support.

Once a process instance monitor has been obtained, you can iterate into the process
model by obtaining block instance monitors for activities of type Block or process
instance monitors for activities of type Process, that is, for subprocess instances.
See “Monitoring a process instance” on page 65 for more information.

Figure 5. Monitoring a process instance. Legend: --� Inheritance (C++); —� provides for
access

Programming concepts

6 MQSeries Workflow for OS/390 Programming Guide

When the process setting specifies a push refresh policy, then the MQSeries
Workflow execution server pushes changes on work items or notifications to a
present client. In this case, or when the application issues an asynchronous request,
the client application should set up a means in order to receive data or responses
sent by the server. Once received, the appropriate object can be updated, created,
or deleted depending on the information sent. See “Client/server communication
and data access models” on page 16 for more information.

Building an MQSeries Workflow application

Overview
There are essentially two different tasks which you can address by using the
MQSeries Workflow API:
v You can write your own client application . For example, you may want to:

– control the MQSeries Workflow functionality provided to your user.
– present the MQSeries Workflow functionality in a way that your user is

accustomed to.
– run selected MQSeries Workflow tasks in batch mode.

v You can write a program that implements an activity in your workflow process
model.

These two kinds of programs usually contain specific parts which are described in
the sections “Coding an MQSeries Workflow client application” and “Coding an
MQSeries Workflow activity implementation”. in the discussions of the respective
language interfaces in “Chapter 2. Language interfaces” on page 125.

The concepts underlying the MQSeries Workflow API are common to all programs
using the MQSeries Workflow API. They are summarized here and discussed in
more detail in the following chapters.

Figure 6. Handling data sent by an MQSeries Workflow server. Legend: --� Inheritance
(C++); —� provides for access

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 7

Concepts of the programming language API
All persistent objects such as work items and process instances are accessed
through transient objects which represent their state at the time they were queried
from a server. In C and COBOL, a so-called handle represents a pointer to such a
transient object.

In order to request an action on an object, a session must have been established
with an appropriate MQSeries Workflow server. The action itself can then be
executed synchronously. Some actions can also be executed asynchronously.

Only objects for which you are authorized are returned from the server to the
client.

Separate API calls (termed functions, methods, or subprograms, depending on the
language) in the C, C++, COBOL, or Java languages are available for each action
on an object or for accessing each property of an object. This approach allows API
call parameters to be checked by the compiler and best represents the object-action
paradigm supported by MQSeries Workflow.

In C, C++, and COBOL, detailed error information is provided by a so-called result
object. This object is available in addition to the return code set by action API calls.
See “The result object” on page 12 for detailed information on the result object.

Objects are managed by the application programmer but object memory is owned
by the MQSeries Workflow API. The application programmer determines the
lifetime of transient objects by using allocate, or query, and deallocate mechanisms.
The MQSeries Workflow API hides the internal structure of transient objects.

Concepts of the XML message interface
All persistent objects are accessed by their unique name, that is, the actual name
may need to be padded with the printable version of the object’s identifier in order
to achieve uniqueness.

In order to request an action, a session need not be established as in the
programming language API. You must, however, be authorized for the action itself.

All actions are executed asynchronously. Correlation data is part of the message so
that the application can correlate the request sent to MQSeries Workflow and the
execution server response.

Handling errors
All action, activity implementation, or program execution management API calls
messages show whether or not the call has been successfully executed by passing
back a return code. Java throws an appropriate FmcException when the method has
not been executed successfully. The XML message interface provides the return
code in the response message. The return code is one of a set of predefined codes
(see “List of return codes” on page 9). The exact return codes or exceptions for each
of those API calls are listed with the description of each call. You should design
your programs to handle all return codes or exceptions that can arise.

In addition to the return code, a so-called result object can be accessed in C, C++,
and COBOL, which describes the result of the call in more detail - see “The result
object” on page 12.

Basic and accessor API calls either do not return a value or return the value
queried. Since they are querying transient objects and are able to return default

Programming concepts

8 MQSeries Workflow for OS/390 Programming Guide

values, an error does normally not occur. It can, however, happen during
application development that a wrong handle or a buffer too small to hold a
character value is specified. To look for such erroneous situations, the result object
can be queried (besides checking the trace).

List of return codes
The following list shows the numeric values of the return codes that are issued by
the MQSeries Workflow API; it is strongly advised to use the symbolic names
instead of the integer values. For COBOL, the return code identifiers have a
maximum length of 30 characters. Additional words in the return codes are
separated by hyphens and not by underscores (as is common for C). In order to
avoid misunderstandings, the C version of the return codes is used in this book,
especially in descriptions of the API calls (“Chapter 5. API action and activity
implementation calls” on page 287).

Table 1. List of return codes
Numeric
value

Symbolic value (C/C++) Symbolic value (COBOL)

0 FMC_OK FMC-OK
1 FMC_ERROR FMC-ERROR
10 FMC_ERROR_USERID_UNKNOWN FMC-ERROR-USERID-UNKNOWN
11 FMC_ERROR_ALREADY_LOGGED_ON FMC-ERROR-ALR-LOGGED-ON
12 FMC_ERROR_PASSWORD FMC-ERROR-PASSWORD
13 FMC_ERROR_COMMUNICATION FMC-ERROR-COMMUNICATION
14 FMC_ERROR_TIMEOUT FMC-ERROR-TIMEOUT
100 FMC_ERROR_INTERNAL FMC-ERROR-INTERNAL
101 FMC_ERROR_SERVER FMC-ERROR-SERVER
102 FMC_ERROR_UNKNOWN FMC-ERROR-UNKNOWN
103 FMC_ERROR_MESSAGE_FORMAT FMC-ERROR-MESSAGE-FORMAT
104 FMC_ERROR_MESSAGE_DATA FMC-ERROR-MESSAGE-DATA
105 FMC_ERROR_RESOURCE FMC-ERROR-RESOURCE
106 FMC_ERROR_NOT_LOGGED_ON FMC-ERROR-NOT-LOGGED-ON
107 FMC_ERROR_NEW_OWNER_NOT_FOUND FMC-ERROR-NEW-OWNER-NOT-FOUND
108 FMC_ERROR_NO_OLD_OWNER FMC-ERROR-NO-OLD-OWNER
109 FMC_ERROR_OLD_OWNER_ABSENT FMC-ERROR-OLD-OWNER-ABSENT
110 FMC_ERROR_NEW_OWNER_ABSENT FMC-ERROR-NEW-OWNER-ABSENT
111 FMC_ERROR_ALREADY_STARTED FMC-ERROR-ALR-STRTD
112 FMC_ERROR_MEMBER_NOT_FOUND FMC-ERROR-MEMBER-NOT-FOUND
113 FMC_ERROR_MEMBER_NOT_SET FMC-ERROR-MEMBER-NOT-SET
114 FMC_ERROR_WRONG_TYPE FMC-ERROR-WRONG-TYPE
115 FMC_ERROR_MEMBER_CANNOT_BE_SET FMC-ERROR-MEMBER-CANNOT-BE-SET
116 FMC_ERROR_MEMBER_INVALID FMC-ERROR-MEMBER-INVAL
117 FMC_ERROR_FORMAT FMC-ERROR-FORMAT
118 FMC_ERROR_DOES_NOT_EXIST FMC-ERROR-DOES-NOT-EXIST
119 FMC_ERROR_NOT_AUTHORIZED FMC-ERROR-NOT-AUTH
120 FMC_ERROR_WRONG_STATE FMC-ERROR-WRONG-STATE
121 FMC_ERROR_NOT_UNIQUE FMC-ERROR-NOT-UNIQUE
122 FMC_ERROR_EMPTY FMC-ERROR-EMPTY
123 FMC_ERROR_NO_MANUAL_EXIT FMC-ERROR-NO-MANUAL-EXIT
124 FMC_ERROR_PROFILE FMC-ERROR-PROFILE
125 FMC_ERROR_INVALID_FILTER FMC-ERROR-INVAL-FILTER
126 FMC_ERROR_PROGRAM_EXECUTION FMC-ERROR-PROGRAM-EXECUTION
127 FMC_ERROR_PROTOCOL FMC-ERROR-PROTOCOL
128 FMC_ERROR_TOOL_FUNCTION FMC-ERROR-TOOL-FUNCTION
129 FMC_ERROR_INVALID_TOOL FMC-ERROR-INVAL-TOOL
130 FMC_ERROR_INVALID_HANDLE FMC-ERROR-INVAL-HANDLE

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 9

Table 1. List of return codes (continued)
Numeric
value

Symbolic value (C/C++) Symbolic value (COBOL)

131 FMC_ERROR_NOT_EMPTY FMC-ERROR-NOT-EMPTY
132 FMC_ERROR_INVALID_USER FMC-ERROR-INVAL-USER
133 FMC_ERROR_OWNER_ALREADY_ASSIGNED FMC-ERROR-OWNER-ALR-ASSIGNED
134 FMC_ERROR_INVALID_NAME FMC-ERROR-INVAL-NAME
135 FMC_ERROR_INVALID_PROGRAMID FMC-ERROR-INVAL-PROGRAMID
136 FMC_ERROR_SIZE_EXCEEDED FMC-ERROR-SIZE-EXCEEDED
406 FMC_ERROR_WRONG_ACT_IMPL_KIND FMC-ERROR-WRONG-ACT-IMPL-KIND
500 FMC_ERROR_NON_LOCAL_USER FMC-ERROR-NON-LOCAL-USER
501 FMC_ERROR_WRONG_KIND FMC-ERROR-WRONG-KIND
502 FMC_ERROR_INVALID_ACTIVITY FMC-ERROR-INVAL-ACT
503 FMC_ERROR_CHECKOUT_NOT_POSSIBLE FMC-ERROR-CHKOUT-NOT-POSSIBLE
504 FMC_BACK_LEVEL_VERSION FMC-BACK-LEVEL-VERSION
505 FMC_ERROR_NEWER_VERSION FMC-ERROR-NEWER-VERSION
506 FMC_ERROR_INVALID_CORRELATION_ID FMC-ERROR-INVAL-CORRELATION-ID
507 FMC_ERROR_NOT_ALLOWED FMC-ERROR-NOT-ALLOWED
508 FMC_ERROR_BACK_LEVEL_OBJECT FMC-ERROR-BACK-LEVEL-OBJ
509 FMC_ERROR_INVALID_CONTAINER FMC-ERROR-INVAL-CNTR
510 FMC_ERROR_UNEXPECTED_CONTAINER FMC-ERROR-UNEXPECTED-CNTR
511 FMC_ERROR_NO_PROGRAM_FOR_PLATFORM FMC-ERROR-NO-PROG-FOR-PLATF
800 FMC_ERROR_BUFFER FMC-ERROR-BUFFER
801 FMC_ERROR_INVALID_SESSION FMC-ERROR-INVAL-SESSION
802 FMC_ERROR_INVALID_TIME FMC-ERROR-INVAL-TIME
804 FMC_ERROR_NO_MORE_DATA FMC-ERROR-NO-MORE-DATA
805 FMC_ERROR_INVALID_OID FMC-ERROR-INVAL-OID
807 FMC_ERROR_INVALID_THRESHOLD FMC-ERROR-INVAL-THRESHOLD
808 FMC_ERROR_INVALID_SORT FMC-ERROR-INVAL-SORT
809 FMC_ERROR_OBJECT_IN_USE FMC-ERROR-OBJ-IN-USE
810 FMC_ERROR_INVALID_DESCRIPTION FMC-ERROR-INVAL-DESCRIPTION
811 FMC_ERROR_INVALID_INVOCATION_TYPE FMC-ERROR-INVAL-INV-TYPE
812 FMC_ERROR_OWNER_NOT_FOUND FMC-ERROR-OWNER-NOT-FOUND
813 FMC_ERROR_INVALID_LIST_TYPE FMC-ERROR-INVAL-LIST-TYPE
814 FMC_ERROR_INVALID_RESULT_HANDLE FMC-ERROR-INVAL-RESULT-HANDLE
815 FMC_ERROR_MESSAGE_CATALOG FMC-ERROR-MESSAGE-CATALOG
816 FMC_ERROR_INVALID_SPECIFICATION FMC-ERROR-INVAL-SPECIFICATION
817 FMC_ERROR_QRY_RESULT_TOO_LARGE FMC-ERROR-QRY-RESULT-TOO-LARGE
818 FMC_ERROR_NO_VERSION_2_FILTER FMC-ERROR-NO-VERSION-2-FILTER
819 FMC_ERROR_INVALID_USER_CONTEXT FMC-ERROR-INVAL-USER-CONTEXT
900 FMC_ERROR_NO_SYS_ADMIN FMC-ERROR-NO-SYS-ADMIN
901 FMC_ERROR_INVALID_SESSION_MODE FMC-ERROR-INVAL-SESSION-MODE
902 FMC_ERROR_PROGRAM_UNDEFINED FMC-ERROR-PROGRAM-UNDEFINED
903 FMC_ERROR_PEA_NOT_RUNNING FMC-ERROR-PEA-NOT-RUNNING
904 FMC_ERROR_PEA_NOT_LOCAL FMC-ERROR-PEA-NOT-LOCAL
905 FMC_ERROR_INVALID_ABSENCE_SPEC FMC-ERROR-INVAL-ABSENCE-SPEC
1000 FMC_ERROR_NOT_SUPPORTED FMC-ERROR-NOT-SUPPORTED
1012 FMC_ERROR_PROGRAM_NOT_DEFINED FMC-ERROR-PROGRAM-NOT-DEFINED
1014 FMC_ERROR_PEA_NOT_REACHABLE FMC-ERROR-PEA-NOT-REACHABLE
1015 FMC_ERROR_INVALID_PEA_FROM_CTNR FMC-ERROR-INVALID-PEA-FRM-CTNR
1016 FMC_ERROR_INVALID_PEA_FROM_MODEL FMC-ERROR-INVAL-PEA-FRM-MODEL
1017 FMC_ERROR_INVALID_SYSTEM_FROM_CTNR FMC-ERROR-INVAL-SYSTEM-FRM-CTNR
1018 FMC_ERROR_INVALID_SYSTEM_FROM_MODEL FMC-ERROR-INVAL-SYSTEM-FRM-MODEL
1019 FMC_ERROR_SUB_PROC_TERMINATED_BY_ERROR FMC-ERROR-SB-PRC-TERM-BY-ERROR
1020 FMC_ERROR_NO_PEA_FOUND_FOR_AUTO_START FMC-ERROR-NO-PEA-FND-FR-AUT-ST

Programming concepts

10 MQSeries Workflow for OS/390 Programming Guide

Table 1. List of return codes (continued)
Numeric
value

Symbolic value (C/C++) Symbolic value (COBOL)

1021 FMC_ERROR_NO_CTNR_ACCESS FMC-ERROR-NO-CTNR-ACCESS
1022 FMC_ERROR_INVALID_CONFIG_ID FMC-ERROR-INVAL-CONFIG_ID
1023 FMC_ERROR_MIG_OF_RUNNING_PROG FMC-ERROR-MIG-OF-RUNNING-PROG
1024 FMC_ERROR_MIG_OF_CHCKDOUT_SUSP FMC-ERROR-MIG-OF-CHCKDOUT-SUSP
1025 FMC_ERROR_MIGRATION_NO_SUBPROC FMC-ERROR-MIGRATION-NO-SUBPROC
1100 FMC_ERROR_XML_DOCUMENT_INVALID FMC-ERROR-XML-DOCUMENT-INVAL
1101 FMC_ERROR_XML_NO_MQSWF_DOCUMENT FMC-ERROR-XML-NO-MQSWF-DOC
1102 FMC_ERROR_XML_MESSAGE_NOT_SUPPORTED FMC-ERROR-XML-MSG-NOT-SUPP
1103 FMC_ERROR_XML_WRONG_DATA_STRUCTURE FMC-ERROR-XML-WRONG-DATA-STR
1104 FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND FMC-ERROR-XML-D-M-NOT-FOUND
1105 FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE FMC-ERROR-XML-D-M-WRONG-TYPE
2000 FMC_ERROR_INVALID_QUEUE_SCOPE FMC-ERROR-INVAL-QUEUE-SCOPE

Object and memory management
Workflow process models, their instances, and resulting work items are all objects
persistently stored in an MQSeries Workflow database. This means that they exist
independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects at the
time of the query. When multiple queries are issued, there can be multiple
transient objects representing the same persistent object, even representing different
states of that object.

The lifetime of transient objects and their memory is fully managed by you, because
you know best when those objects are no longer needed, that is, when objects are
to be deallocated (C, COBOL) or destructed (C++). Transient objects are, however,
no longer available when your application program ends.

Some transient objects are explicitly allocated by you. These support objects which
do not reflect persistent ones. Examples are FmcjStringVector when you specify a
set of persons to stand in for (C or COBOL) or ExecutionService object, which
allows services to be requested from an execution server.

Transient objects which reflect persistent objects are implicitly allocated by you when
you create or retrieve persistent objects, for example, by querying.

Although the lifetime of transient objects is fully managed by you, their actual
internal object structure is encapsulated by the MQSeries Workflow API. The
MQSeries Workflow API provides a handle (C, COBOL) to you so that you can
issue requests against the object. In the C++ API, that handle is the only data
member of your class. Therefore, you are independent of internal changes. It
further allows MQSeries Workflow to ″lazy read″ (read only on demand) a
collection of objects passed from the server and thus increases performance.

The MQSeries Workflow API follows the programming by contract concept. This
means that any handle passed to it which is not 0 (NULL) is assumed to be a valid
handle which can be used to access an object. This is especially important to be
considered for queries. Any nonzero vector handle is assumed to point to an

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 11

already existing vector of objects and is used in order to add newly qualifying
objects. In other words, you should initialize any new handle to 0.

As all resource memory is finally owned by the application process itself, you can
access all objects from different threads within that process. MQSeries Workflow
does not hinder you from using threads; it is coded reentrantly. On the other hand,
MQSeries Workflow does not explicitly support threads. If you want to access the
same transient object from within different threads, you have to synchronize the
access to that object. Objects are not thread-safe.

The result object
In general, a result object states the result of the last MQSeries Workflow API
request (in the affected thread). It especially allows for analyzing an erroneous
situation in more detail and contains the following information:
v The return code.
v The origin of the result, that is, the file that caused the result to be written, and

the line and function where the error or the completion of the request occurred.
v Parameters (up to five) which describe the objects involved.

The result can be retrieved as a formatted message text with all parameters added
to the text. The current locale is considered when building that message text so
that the message is provided in your selected language.

All results of API calls are written into the result object associated with the thread
the request executes in. It is sufficient to access the result object just once per
thread using the FmcjResultObjectOfCurrentThread() function or the
FmcjResult::ObjectOfCurrentThread() method. (As threads are not supported in
MQSeries Workflow for OS/390, ″OfCurrentThread″ is mentioned here for
compatibility reasons with versions that do support threads.) The result object is
automatically updated with each request.

A result object is automatically allocated by MQSeries Workflow when the first
MQSeries Workflow API call is issued in that thread. It can be accessed at any time
and as often as needed.

C example:

Programming concepts

12 MQSeries Workflow for OS/390 Programming Guide

Note: The NextResultParmElement() function is used on the string vector so that
the result object is not changed while reading the parameters.

C++ example:

Note: The transient C++ representation of your result object is destructed like any
other object. Each retrieval of the result object constructs a separate
representation.

COBOL examples:

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

FmcjResultHandle result = 0;
FmcjStringVectorHandle parms = 0;
char buffer[2000]= "";

result= FmcjResultObjectOfCurrentThread();
printf("Accessed result object of current thread\n");

printf("Return code: %i\n", FmcjResultRc(result));
printf("Text : %s\n", FmcjResultMessageText(result,buffer,2000));
printf("Origin : %s\n", FmcjResultOrigin(result,buffer,2000));
parms= FmcjResultParameters(result);
while (0 != FmcjStringVectorNextResultParmElement(parms, buffer, 2000))

printf("Parameter : %s\n", buffer);

return 0;
}

Figure 7. Accessing a result object in C

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{

vector<string> parms;
FmcjResult *pResult = FmcjResult::ObjectOfCurrentThread();

cout << "Accessed result object of current thread" << endl;
cout << "Return code: " << pResult->Rc() << endl;
cout << "Text : " << pResult->MessageText() ;
cout << "Origin : " << pResult->Origin() << endl;
pResult->Parameters(parms);
cout << "Parameter : ";

for (int i=0; i<parms.size(); i++)
{

cout << parms[i] << " ";
}

cout << endl;

delete pResult; // cleanup object from heap
return 0;

}

Figure 8. Accessing a result object in C++

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 13

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.

01 buffer PIC X(2000) VALUE SPACES.

PROCEDURE DIVISION.

PERFORM FmcjResultObjOfCurrentThread.
DISPLAY "Accessed result object of current thread".

SET hdlResult TO FmcjResultHandleReturnValue.
PERFORM FmcjResultRc.
DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.
CALL "SETADDR" USING buffer messageBuffer.
PERFORM FmcjResultMessageText.
DISPLAY "Text : " buffer.
CALL "SETADDR" USING buffer originBuffer.
PERFORM FmcjResultOrigin.
DISPLAY "Origin : " buffer.
PERFORM FmcjResultParms.
SET hdlVector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
PERFORM FmcjStrVNextResultParmElement.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
PERFORM FmcjStrVNextResultParmElement

END-PERFORM.

STOP RUN.

COPY fmcperf.

Figure 9. Accessing a result object in COBOL (via PERFORM)

Programming concepts

14 MQSeries Workflow for OS/390 Programming Guide

Note: The SETADDR routine is shown in “Example of the use of strings” on
page 150 .

IDENTIFICATION DIVISION.
PROGRAM-ID. "RESOBJ".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.

01 buffer PIC X(2000) VALUE SPACES.

PROCEDURE DIVISION.

CALL "FmcjResultObjectOfCurrentThread"
RETURNING FmcjResultHandleReturnValue.

DISPLAY "Accessed result object of current thread".

SET hdlResult TO FmcjResultHandleReturnValue.
CALL "FmcjResultRc"

USING BY VALUE hdlResult
RETURNING intReturnValue.

DISPLAY "Return code: " intReturnValue.
MOVE 2000 TO bufferlength.
CALL "SETADDR" USING buffer messageBuffer.
CALL "FmcjResultMessageText"

USING BY VALUE hdlResult
messageBuffer
bufferLength

RETURNING pointerReturnValue.
DISPLAY "Text : " buffer.
CALL "SETADDR" USING buffer originBuffer.
CALL "FmcjResultOrigin"

USING BY VALUE hdlResult
originBuffer
bufferLength

RETURNING pointerReturnValue.
DISPLAY "Origin : " buffer.
CALL "FmcjResultParameters"

USING BY VALUE hdlResult
RETURNING FmcjStrVHandleReturnValue.

SET hdlVector TO FmcjStrVHandleReturnValue.

CALL "SETADDR" USING buffer elementBuffer.
CALL "FmcjStringVectorNextResultParmElement"

USING BY VALUE hdlVector
elementBuffer
bufferLength

RETURNING pointerReturnValue.

PERFORM UNTIL pointerReturnValue = NULL
DISPLAY "Parameter : " buffer
CALL "FmcjStringVectorNextResultParmElement"

USING BY VALUE hdlVector
elementBuffer
bufferLength

RETURNING pointerReturnValue
END-PERFORM.

STOP RUN.

Figure 10. Accessing a result object in COBOL (via CALL)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 15

Client/server communication and data access models
When you request actions from an MQSeries Workflow server or when you want
to observe the result of actions, you can:
v Use a synchronous protocol to ask for an action and to view changes of the

object which you used to call the action.
v Use a synchronous protocol to pull for data created or changed.
v Receive unsolicited information on created or changed objects pushed by the

server.

For example, when you ask a process instance object to be started:
v As an immediate result, the state of the process instance is updated.
v You can query work items in order to view (pull for) new objects created.
v You can automatically receive new work items sent (pushed) to you.

Synchronous client/server communication
Applying a synchronous protocol means that you issue a request to an MQSeries
Workflow server and then wait until you receive a response. All action API calls
operate this way; your application (thread) is blocked until the response arrives or
until your timeout set on the execution service object exceeds.

Note: The synchronous mode of communication is not supported for the XML
message interface.

Asynchronous client/server communication
Applying an asynchronous protocol means that you issue a request to an MQSeries
Workflow server but you do not wait until you receive a response. The
ExecuteProcessInstanceAsync() API call operates this way; your application
(thread) is not blocked and you can receive the response at a later time.

When you issue an action asynchronously, you do, however, receive an
acknowledgement telling whether MQSeries Workflow accepted the request. You
can also receive a correlation identification which you can use in order to receive a
specific response. You can specify a user context in order to correlate a response
received.

For example, when you ask a process instance to be executed asynchronously:
v As an immediate result, you are informed whether the request is accepted.
v When you specify a buffer to hold a correlation ID, you get an ID which you

can use in the Receive() call to wait for that specific response.
v When you specify a user context, that context is returned to you as part of the

response. You can use it for user-specific correlation.

Note: The asynchronous mode of communication is only supported in C, C++, and
COBOL. All message-based requests are executed asynchronously.

The push data access model
Receiving unsolicited information pushed by an MQSeries Workflow server means
that you set up communication in a way that you are automatically informed
about new or changed objects.

Note: The push data access model is not supported in Java or the XML message
interface.

Programming concepts

16 MQSeries Workflow for OS/390 Programming Guide

In order to obtain information pushed by an MQSeries Workflow server:
1. The server must be asked to send data. This means that:

v The settings of the applicable process instance must specify
REFRESH_POLICY PUSH. This setting is inherited from the domain level,
through the system group to the system and down to the process template.
Each specification can be overwritten on a lower level.

v The users must be logged on with a Present or PresentHere session mode, that
is, they are enabled to receive information.

2. The application must use API calls in order to receive data pushed.

Provided that these prerequisites are fulfilled, the MQSeries Workflow execution
server pushes changes on work items or notifications to the owner of the item:
1. On creation of the item.
2. On deletion of the item.
3. Whenever a primary property of the item changes - see “Accessor API calls” on

page 85 for a definition of primary properties.

The caller of the action will, however, not receive such information because, as a
result of the action, the transient object has already been updated with relevant
data.

Changes to disabled work items are not pushed. Only the deletion of such work
items is pushed.

Examples:

When a process instance is suspended and when its refresh policy is push, the
MQSeries Workflow execution server notifies all owners of non-disabled items
which are currently logged on as present.

When the description of a process instance is changed and when the refresh policy
is push, the MQSeries Workflow execution server notifies all owners of process
instance notifications which are currently logged on as present.

When a work item is transferred to user N by the owner of the work item and
when the refresh policy of the associated process instance is push, the MQSeries
Workflow execution server notifies user N when he/she is currently logged on as
present. The owner of the work item as the requester of the action gets no
additional notification.

Note: Filtering and sorting is left to the application. No indication about affected
worklists is pushed to the client.

Receiving information
In C, C++, and COBOL, the ExecutionService object provides for a means to
receive information (execution data) pushed by an MQSeries Workflow execution
server at any time desired. The Receive() call blocks the calling application until
information is received or until the specified timeout value has been reached. That
is why an application, if possible, typically starts a separate thread for receiving
data, in order to prevent blocking the entire application.

A timeout value of -1 specifies an indefinite wait time interval. Note that in this
case you must ensure that you stop receiving data before your application ends.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 17

There is a TerminateReceive() API call which can be used to send a terminate
indication to the receiving part of the application in order to provide notification
that receiving data may end.

Notes:

1. A Receive() call survives a Logoff() call, which ends your session with an
execution server. The execution server, however, stops pushing information
when logoff has been executed. If you did not send a TerminateReceive() to the
receiving application thread, you have to end that thread because of other
knowledge. TerminateReceive() can only be called as long as a session exists.

2. If information is not received and therefore stays in the client input queue, the
MQSeries expiration mechanism applies in order to eliminate such "dead"
messages. The expiration time of client messages can be configured for
MQSeries Workflow.

When receiving data, a correlation identification can be specified to indicate which
information is to be read. If it is not specified or points to FMCJ_NO_CORRELID,
then any data arriving is received; the correlation identification is set as the result
of a successful receive.

Once execution data has been received, its type can be determined and the
appropriate action can be called. For example, when a work item creation is
indicated, a conversion from the execution data to a work item can be requested.
When a work item change is indicated, the persistent object ID of the work item
can be requested so that the appropriate work item can be updated.

When the response to an ExecuteProcessInstanceAsync() request is received, the
process instance created and executed can be analyzed. For example, its state can
be used to determine whether the process instance executed successfully. Its output
container can then be read. If an error occurs, the error description can be
examined.

Figure 11. Handling data sent by an MQSeries Workflow server. Legend: --� Inheritance
(C++); —� provides for access

Programming concepts

18 MQSeries Workflow for OS/390 Programming Guide

An MQSeries Workflow session
In order to communicate with an MQSeries Workflow server, a session must have
been established between the user and that server. The server is either identified
explicitly (system at system group) or taken from the user’s profile. If the
information is not found in the user’s profile, the configuration profile is read.

Note: Authentication is not required in order to use the XML message interface,
that is, a session need not be established.

The session is established by logging on. From then on services can be requested
from the server; the service object which represents the session between the user
logging on and the server, is set up accordingly.

Logon requires that the administration server be up and running on the selected
system, because the administration server manages sessions and checks the
authentication of the user. It additionally ensures that any severe errors are written
to the error log.

Any objects which are retrieved or created belong to the session where they have
been queried or created. They carry the session identification so that further
actions on those objects are executed in the same session with the authorization of
the logged-on user.

A single application program or multiple application programs can allocate
multiple service objects and log on with different users or the same user in
parallel. Sessions are kept separate by the service objects. A single service object
thus represents a single session. A second request to log on via a service object will
be rejected if it comes from a different user. Otherwise, it is accepted but not
repeated; the logon request has already been executed successfully.

A session can run in default mode or in present mode. When you are operating in
the present session mode, activity instances which are started automatically can be
scheduled on your behalf and you can receive information pushed by an MQSeries
Workflow server. There can only be a single present session per user.

The service object provides for a timeout value to be set. This is the time the
application waits for the answer from a server. The application is thus blocked
during this time at a maximum. The timeout is specified in milliseconds. A value
of -1 denotes an indefinite timeout value. The timeout value can be changed at any
time.

Note: MQSeries Workflow uses the communication mechanisms of IBM MQSeries.
If your application sets up its own signal handler, then you should refer to
the MQSeries Application Programming Guide, especially the chapter UNIX
signal handling, for restrictions imposed by MQSeries.

Querying data
There are essentially three means of querying data from an MQSeries Workflow
server:
v A query via a service object, which returns all authorized objects. The number of

objects returned to the client can be restricted by a filter and a threshold.
v A query using a persistent list definition, which returns all objects qualifying

through the list definition.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 19

v A specific request, like the request for user settings or a refresh request for a
specific object.

Note: Querying data is not supported by the XML message interface.

Persistent lists
A persistent list represents a set of objects of the same type. Moreover, all objects
which are accessible through the list have the same characteristics. A list can be for
public usage, that is, it is visible by all users, or for private usage, that is, it has an
owner and is only visible by that owner.

The characteristics of the objects contained in the list are given by so-called filter
criteria. The filter criteria specified and the authorization of the user issuing the
query determine the contents of the list. This means that the contents itself is not
stored persistently but determined when a query request is issued. This in
particular means that a public list can deliver different results depending on the
user who applies the query.

The number of objects transferred from the server to the client as the result of the
query can be restricted by specifying a threshold. The threshold is used after sort
criteria have been applied.

A list can be a process template list, a process instance list, or a worklist.

Using filters, sort criteria, and thresholds
A filter is a character string specifying criteria which must follow the rules stated
by the filter syntax diagrams. Refer to the appropriate API calls for the exact
syntax. Some sample criteria are shown here:

A sort criterion is a character string that must follow the rules stated by the sort
criteria syntax diagrams. Refer to the appropriate API calls for the exact syntax.
Some sample criteria are shown here:

Objects are sorted on the server, that is, the code page of the server determines the
sort sequence.

A threshold specifies the maximum number of objects to be returned to the client.
That threshold is applied after the objects have been sorted.

Handling collections
The result of a query for a set of objects is a so-called vector of objects in C, C++,
or COBOL, or an array of objects in Java.

A vector is provided by the caller and filled by the MQSeries Workflow API. The
ownership of the vector elements, the objects, stays with the vector. They are
automatically deleted when the vector is deleted.

"NAME = 'MyProcessInstance'"
"NAME LIKE 'My*Ins?ance'"
"LAST_MODIFICATION_TIME > '1998-2-19 11:38:0'"
"STATE IN (READY,RUNNING)"

"NAME ASC"
"NAME ASC, LAST_MODIFICATION_TIME DESC"

Programming concepts

20 MQSeries Workflow for OS/390 Programming Guide

Any objects returned are appended to the supplied vector. If you want to read the
current objects only, you have to clear the vector before you call the query method.
This means that you should erase all elements of the vector in the C++ API. This
means that you should set the vector handle to 0 in C and COBOL.1 If the vector
handle is not initialized to 0, it must point to a vector of objects of the appropriate
kind so that newly queried objects can be appended. In other words, any nonzero
handle is used by C or COBOL in order to access a vector assumed to already
exist.

In C or COBOL, the result of the query is the vector handle initialized to the set of
objects, if a 0 handle was passed, otherwise the existing vector extended by the
new objects. Special vector accessor functions are provided to access the objects
(see below). When a vector element is read, it becomes an object of its own and
thus has to be deleted when no longer used. Any operations on that object refer to
the object only and do not have any impacts on the vector element from which the
object was copied. For example, a Refresh() changes the object only but not its
original copy within the vector. This means that a further iteration through the
vector finds any elements unchanged.

In C++, the result of the query is an instance of vector<class T>. Access to the
objects is gained via appropriate vector methods; refer to the STL documentation.
When a vector element is read, a (const or non-const) reference to the object is
returned. This means that a change of the object does actually change the vector
element. A further iteration through the vector finds the elements changed.

An array is provided and filled by the MQSeries Workflow API. The ownership of
the array elements, the objects, stays with the array.

C and COBOL vector accessor functions
Vector accessor functions are described below. This is because all these functions
are similar in appearance and have similar requirements, even for different objects.
They are all handled locally by the API, that is, they do not communicate with the
server. Neither a connection to a server nor specific authorizations are required to
execute.

Return codes
The C or COBOL functions or the result object can return the following codes. The
number in parentheses shows their integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NO_MORE_DATA(804)
The vector contains no or no more element.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

1. Declare a new vector handle or deallocate an existing vector object before reuse.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 21

Vector accessor functions allow for the operations listed below. ’Xxx’ denotes a
particular scope; for example, FmcjXxxVectorFirstElement() can stand for
FmcjProcessInstanceVectorFirstElement().

FmcjXxxVectorDeallocate()
Allows the application to deallocate the storage reserved for the specified transient
vector object. All elements contained are also deallocated.

The handle is set to 0 so that it can no longer be used.

C
APIRET FMC_APIENTRY FmcjXxxVectorDeallocate(

FmcjXxxVectorHandle * hdlVector)

COBOL
FmcjXxxVectorDeallocate.

CALL "FmcjXxxVectorDeallocate"
USING
BY REFERENCE

hdlVector
RETURNING

intReturnValue.

Parameters
hdlVector Input/Output. The address of the handle to the vector to be

deallocated.

FmcjXxxVectorFirstElement()
Returns the first element of the vector. That element becomes an object on its own
and has to be deallocated if no longer used. The vector is positioned to the next
element.

If the vector is empty or if an error occurred, 0 (zero) is returned.

C
FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorFirstElement(

FmcjXxxVectorHandle hdlVector)

COBOL
FmcjXxxVectorFirstElement.

CALL "FmcjXxxVectorFirstElement"
USING
BY VALUE

hdlVector
RETURNING

FmcjXxxHandleReturnValue.

Parameters
hdlVector Input. The handle of the vector to be queried.

Programming concepts

22 MQSeries Workflow for OS/390 Programming Guide

Return type
FmcjXxxHandle

The handle of the first element of the vector or 0.

FmcjXxxVectorNextElement()
Returns the vector element at the current vector position; the initial vector position
is the first element. That element becomes an object on its own and has to be
deallocated if no longer used. The vector is positioned to the next element.

If the vector is empty, if there are no more elements in the vector, or if an error
occurred, 0 (zero) is returned.

C
FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorNextElement(

FmcjXxxVectorHandle hdlVector)

COBOL
FmcjXxxVectorNextElement.

CALL "FmcjXxxVectorNextElement"
USING
BY VALUE

hdlVector
RETURNING

FmcjXxxHandleReturnValue.

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle

The handle of the vector element at the current position or 0.

FmcjXxxVectorSize()
Returns the number of elements in the vector.

C
unsigned long FMC_APIENTRY FmcjXxxVectorSize(

FmcjXxxVectorHandle hdlVector)

COBOL
FmcjXxxVectorSize.

CALL "FmcjXxxVectorSize"
USING
BY VALUE

hdlVector
RETURNING

ulongReturnValue.

Parameters

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 23

hdlVector Input. The handle of the vector to be queried.

Return type
unsigned long

The number of elements in the vector.

C examples
In the following, some C examples on how to read a vector are shown; note that
you can start with a first element call or a next element call.

Programming concepts

24 MQSeries Workflow for OS/390 Programming Guide

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
unsigned long i = 0;
unsigned long numElements = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

);
if (rc != FMC_OK)

return rc;
printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances(
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

hdlInstance= FmcjProcessInstanceVectorFirstElement(hdlVector);
numElements= FmcjProcessInstanceVectorSize(hdlVector);

printf("Instances in the vector:\n");
for(i=0; i< numElements; i++)
{
printf("- name: %s\n",

FmcjProcessInstanceName(hdlInstance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));

FmcjProcessInstanceDeallocate(&hdlInstance);
hdlInstance= FmcjProcessInstanceVectorNextElement(hdlVector) ;
}

FmcjProcessInstanceVectorDeallocate(&hdlVecor);

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 12. Reading a vector in C (using First/NextElement() calls)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 25

COBOL examples
In the following, some COBOL examples on how to read a vector are shown; note
that you can start with a FirstElement or NextElement call.

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

);
if (rc != FMC_OK)

return rc;
printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances(
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

printf("Instances in the vector:\n");
while (0 != (hdlInstance=FmcjProcessInstanceVectorNextElement(hdlVector)))
{

printf("- name: %s\n",
FmcjProcessInstanceName(hdlInstance,tInfo,

FMC_PROCESS_INSTANCE_NAME_LENGTH));
FmcjProcessInstanceDeallocate(&hdlInstance));

}
FmcjProcessInstanceVectorDeallocate(&hdlVector));

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 13. Reading a vector in C (using NextElement() call only)

Programming concepts

26 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"ADMIN".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numElements PIC 9(9) BINARY.
01 i PIC 9(9) BINARY.
01 buffer PIC X(64) VALUE SPACES.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESAllocate.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryProcInsts.

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Queried Process Instances".

PERFORM FmcjPIVFirstElement.
SET hdlInstance TO FmcjPIHandleReturnValue.
PERFORM FmcjPIVSize.
MOVE ulongReturnValue TO numElements.

DISPLAY "Instances in the vector:".
MOVE FMC-PROC-INST-NAME-LENGTH TO bufferLength.
CALL "SETADDR" USING buffer instanceNameBuffer.
PERFORM VARYING i FROM 0 BY 1 UNTIL i >= numElements

PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement
SET hdlInstance TO FmcjPIHandleReturnValue

END-PERFORM

Figure 14. Reading a vector in COBOL (using First/NextElement calls) (Part 1 of 2)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 27

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 14. Reading a vector in COBOL (using First/NextElement calls) (Part 2 of 2)

Programming concepts

28 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"ADMIN".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 buffer PIC X(64) VALUE SPACES.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
PERFORM FmcjESAllocate.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Logged on".

CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryProcInsts.

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK THEN GOBACK.
DISPLAY "Queried Process Instances".

DISPLAY "Instances in the vector:".
MOVE FMC-PROC-INST-NAME-LENGTH TO bufferLength.
CALL "SETADDR" USING buffer instanceNameBuffer.

PERFORM FmcjPIVNextElement.

PERFORM UNTIL FmcjPIHandleReturnValue = NULL
SET hdlInstance TO FmcjPIHandleReturnValue
PERFORM FmcjPIName
DISPLAY "- name: " buffer
PERFORM FmcjPIDeallocate
PERFORM FmcjPIVNextElement

END-PERFORM

Figure 15. Reading a vector in COBOL (using NextElement calls only) (Part 1 of 2)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 29

Java arrays
In Java, the result of a query for a set of objects is stored in arrays. The arrays are
declared by you as a variable of the respective type, for example:
ProcessInstance[] processInstances;

With each new query, all existing objects in the array are deleted and the new
objects are added.

The number of objects contained in an array is determined by accessing its length
variable, for example:
processInstances.length

All array indexes start with 0 (zero). That is, valid index numbers are 0 to length-1.
You access an object by providing its index number, for example,
processInstances[0]. You should not save the index number of an object for later
reuse, because the object can have a different index after each query, depending on
the sort criteria and the number of objects returned.

Handling containers
A container represents input or output data of a process template, process instance,
work item, or activity implementation at runtime. Each container is defined by a
data structure which declares the container to be of the type of that data structure.

Data structure/container type
A data structure is uniquely identified by its name and contains an ordered list of
data members. At runtime, it can become a stream of 32 KB passed between the
client and the server.

The data structures and their usage as input containers or output containers are
defined during modeling. A special data structure called
DEFAULT_DATA_STRUCTURE is provided by MQSeries Workflow and contains
no user-defined data members when installed. The DEFAULT_DATA_STRUCTURE
cannot be deleted, but it can be extended during modeling.

Data member/container element
A data member of a data structure has a name and a data type. Data types are
either basic and then STRING, LONG, BINARY, or FLOAT,or another data
structure. Using a data structure as the data type of a data member (nesting)
allows for recursive definitions of data members.

PERFORM FmcjPIVDeallocate.
PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 15. Reading a vector in COBOL (using NextElement calls only) (Part 2 of 2)

Programming concepts

30 MQSeries Workflow for OS/390 Programming Guide

A data member can represent a one-dimensional array. If a data member represents
an array, the number of elements in that array is shown in parentheses ().

A data structure can have up to 512 user-defined data members. A data member
that represents an array of data members counts with as many data members as it
has elements.

Data members are specified using their fully qualified name within the container.
The fully qualified name of a data member is a name in dot notation where the
hierarchy of nested data members is presented from left to right, and their names
are separated by a dot.

If a data member actually specifies an array of data members, the index number of
a specific data member is specified in brackets ([n]) or parentheses ((n)).

When a data structure denotes the type of a container, then its data members (first
level of any hierarchy) are also called container elements. They define the structural
members of the container. When the data type of a container element (n-th level of
any hierarchy) is a data structure (nesting), then that container element again has
container elements or structural members.

Container elements of a basic data type are also called the leaves of the container.
These are the members which can hold a value, that is, which can be asked for a
value and which can be set to a new value.

For example, assume that the data structure PERSON describes an input container
or output container and that PERSON has been defined as:

PERSON has two structural data members named Name and Addr. Name is of
basic data type STRING and Addr is of data type ADDRESS. That is the data
structure ADDRESS is nested within the data structure PERSON.

The input or output container described by PERSON then has two container
elements or structural members named Name and Addr, where Addr defines a
structure by itself. The container elements or structural members of the container
element Addr are Street and POBOX.

The leaves of the container, that is, the container elements which can carry a value,
and their fully qualified names within the container are:

Note that since the size of the POBOX array is 2, the valid index numbers are 0
and 1. This is because all array indexes start with 0 (zero).

Also note that the fully qualified names are not prefixed with the name of the data
structure PERSON. That data structure denotes the type of the container. There is

Name STRING
Addr ADDRESS

Street STRING
POBOX LONG(2)

Name
Addr.Street
Addr.POBOX[0]
Addr.POBOX[1]

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 31

only one exception to the rule, when the container itself is specified to be an array,
for example, an array of PERSONs. Then, to set the name of a specific person, the
fully qualified name is specified as

PERSON[i].Name

For detailed examples see “Chapter 6. Examples” on page 525.

In the XML message interface, arrays are depicted as a sequence of elements. Since
the structure is given explicitly, names are not prefixed. For example:
<Name>

<Addr>
<Street></Street>
<POBOX></POBOX>
<POBOX></POBOX>

</Addr>
</Name>

For more information refer to “XML message interface” on page 151.

Predefined data members
All containers automatically specify data members predefined by MQSeries
Workflow. They can hold values associated with the operational characteristics of
an activity or process. Predefined data members are data members that need not
be defined by the modeler but are automatically available. They can be accessed by
the container API. Their names start with the reserved character "_".

Predefined data member values can be:
v Used to evaluate activity exit criteria.
v Accessed by activity implementations.
v Dynamically set to change the operational characteristics of subsequent activities.

Predefined data members provide for the flexibility of modelers. The decision on
operational characteristics of a process or activity is taken at Runtime. They also
provide activity implementations and support tools a means to access the
operational characteristics through the use of API calls.

There are the following sets of predefined data members:
v Fixed data members
v Process information data members
v Activity information data members

Fixed data members provide information about the current activity instance. They
cannot be set using an API call. An exception is the _RC data member, which
should be set only if the program cannot otherwise define a return code (see the
following).

Process information and activity information data members are associated with the
operational characteristics of a process or activity. They operate the same way as
any user-defined data members. This means that the values for specific operational
characteristics of a process instance or activity instance can be accessed or changed
just like the values for any other user-defined data member.

The following provides the fully qualified name and a brief description of each of
the predefined data members.

There are no arrays of any predefined data member.

Programming concepts

32 MQSeries Workflow for OS/390 Programming Guide

Fixed data members
Fixed data members _ACTIVITY, _PROCESS, and _PROCESS_MODEL cannot be set
using API calls. Their values can be read using container API calls.

_ACTIVITY
This data member contains the fully-qualified name of the considered
activity instance. The value of this data member is automatically set when
the activity instance or an associated work item is started.

Data type: STRING

_PROCESS
This data member contains the name of the associated process instance.
The value of this data member is automatically set when the activity
instance or an associated work item is started.

Data type: STRING

_PROCESS_MODEL
This data member contains the name of the associated process model. The
value of this data member is automatically set when the activity instance
or an associated work item is started.

Data type: STRING

_RC This data member contains the return code of the activity implementation.
Typically it is used to evaluate exit and transition conditions. _RC is the
only way for a CICS- or IMS-based application to set a return code. If the
application does not set _RC explicitly (via the Container API), the field is
automatically set to the exit code when program execution is completed.

Data type: LONG

Process information data members
Process information data members serve to dynamically specify properties of a
process instance. In general, the process modeler can choose where values for
process instance properties are to be obtained.
v Values can be inherited from a top-level process instance.
v Values can be obtained from the process information data members in the input

container. They are then either set as default values or provided in the input
container when the process instance is started.

If specified via the DATA_FROM_INPUT_CONTAINER indicator, the values of the
process information data members are read by MQSeries Workflow when the
process instance is started. If a value for a process information data member is not
set, then a default value is used (see the detailed descriptions below).

_PROCESS_INFO.Role
A role that people assigned to an activity instance of the process instance
must fulfill.

Any role set becomes an additional criterion to roles set for the activity
instance. Only people who are members of all the specified roles are
eligible.

If no role is set and no roles are specified for the activity instance, then no
role criteria are applied.

Data type: STRING

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 33

_PROCESS_INFO.Organization
The organization to which people must belong to receive work items of the
process instance. This setting is only used if no organization is specified for
the activity instance.

If no organization is set and no organization is specified for the activity
instance, the default is the organization of the person who starts the
process instance.

Data type: STRING

_PROCESS_INFO.ProcessAdministrator
The user ID of the person notified if:
v The process instance is expired.
v No person meets the criteria to perform an activity instance.
v No valid person has been specified for notification.
v The person notified that an activity instance is overdue has exceeded the

time allowed for an action, that is, the second notification is sent.

If not set, the default process administrator is the person who starts the
process instance.

Data type: STRING

_PROCESS_INFO.Duration
Specifies how long the process instance is allowed to take. The value is
expressed in seconds.

If not set, the default is "Endless".

Data type: LONG

Activity information data members
Activity information data members serve to dynamically specify properties of an
activity instance. In general, the process modeler can choose where values for
activity instance properties are to be obtained.
v Values can be obtained from the activity information data members in the input

container. They are then either set as default values or provided in the input
container when an activity instance or associated work item is started.

If specified, the values of the activity information data members are read by
MQSeries Workflow when the activity instance is scheduled. If a value is not set,
then a default value is used (see the detailed descriptions below).

The following indicators specify that activity information data members are to be
read:
v DONE_BY STAFF DEFINED_IN INPUT_CONTAINER
v NOTIFICATION DEFINED_IN INPUT_CONTAINER
v PRIORITY DEFINED_IN INPUT_CONTAINER

_ACTIVITY_INFO.Priority
The numeric value assigned as the priority of an activity instance.
MQSeries Workflow does not deduce any meaning from this value; it is
just used for client purposes. Any integer value between 0 and 9 can be
specified. If the value specified is invalid or the data member is not set, a
default of 0 (zero) is used.

Data type: LONG

Programming concepts

34 MQSeries Workflow for OS/390 Programming Guide

_ACTIVITY_INFO.MembersOfRoles
The role or roles a person must fulfill to receive a work item for the
activity instance. Multiple roles may be specified and are then to be
separated by a semicolon (;).

Any role or roles set for this data member become an additional criterion
to the role set for the process instance. Only people who are members of
all the specified roles are eligible.

If not set, the role specified for the process instance is used. If no role is set
for the process instance and no roles are specified for the activity instance,
then no role criteria are applied.

Note: This specification is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.CoordinatorOfRole
The role or roles a person must coordinate to receive a work item for the
activity instance. Multiple roles to coordinate may be specified and are
then to be separated by a semicolon (;).

To receive a work item, the eligible person must be assigned as coordinator
of all the specified roles in addition to being a member of all roles
specified for the process instance and for the activity instance.

If not set, the roles specified by the process instance and the activity
instance are solely used. If no roles to be member of nor roles to coordinate
have been specified, no role criteria are applied.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.Organization
The organization to which people must belong to receive work items of the
activity instance.

If an organization is set using this data member, any organization set for
the process instance is ignored.

If not set, the organization specified by the process instance is used. If no
organization is set and no organization is specified for the process instance
properties, the default is the organization of the person who starts the
process instance.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.OrganizationType
This data member is used to indicate if a work item for the activity
instance should be assigned to persons in a child organization.

To make all persons in the specified organization and all of its child
organizations eligible, set the value of this data member to 0.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 35

To limit the persons who are eligible to the members of the specified
organization and the managers of the first level of child organizations, set
this data member to any nonzero value.

If not set, the default is 0. If no organization is set for the
_ACTIVITY_INFO.Organization data member, any value set here is ignored.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: long

_ACTIVITY_INFO.LowerLevel
The minimum level persons must have to receive work items of the
activity instance. A value between 0 and 9 can be set. The default value is
0 (zero).

If the level specified here is greater than the value specified for the upper
level, or if the level is not set, the default value of 0 (zero) is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.UpperLevel
The maximum level for persons to receive work items of the activity
instance. A value between 0 and 9 can be set. The default value is 9.

If the level specified here is less than the value specified for the lower
level, or the level is not set, the default value of 9 is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.People
This data member is used to specifically identify the people who should
receive a work item of the activity instance. Multiple entries are possible
and are then to be separated by a semicolon (;).

If any people are identified using this data member, any values set for data
members _ACTIVITY_INFO.MembersOfRoles,
_ACTIVITY_INFO.CoordinatorOfRole, _ACTIVITY_INFO.Organization,
_ACTIVITY_INFO.OrganizationType, _ACTIVITY_INFO.LowerLevel, and
_ACTIVITY_INFO.UpperLevel are ignored.

If no value is set, any values set for the above data members are used. If
no values have been set for those, the values set for staff definition for the
process instance are used.

If no values have been set for the process instance, the people in the
organization and all child organizations of the process starter receive a
work item for the activity instance.

Data type: STRING

_ACTIVITY_INFO.PersonToNotify
Used to identify the person to notify if the specified duration to complete
the activity instance expires before the activity instance is complete.

Programming concepts

36 MQSeries Workflow for OS/390 Programming Guide

If the user ID specified by the data member is invalid or the data member
is not set, the process administrator is notified.

Data type: LONG

_ACTIVITY_INFO.Duration
Used to specify the maximum number of seconds allowed to complete the
activity.

If the activity is not completed before the specified duration, the defined
person is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

_ACTIVITY_INFO.Duration2
Used to specify the maximum number of seconds allowed to act on an
activity instance notification.

If the notification is not acted on before the specified number of seconds
expires, the process administrator is notified.

If the value specified by the data member is invalid or the data member is
not set, no notification occurs.

Data type: LONG

Determining the structure of an unknown container
There are various API calls in order to determine the structure of an unknown
container and/or its leaves. Applied to a container, they return a collection of
container elements. Once the collection of container elements is available, similar
API calls can be recursively applied in order to step down through a nested
structure.

Note: In the XML message interface, a container is always completely described in
the message. An application can thus determine the structure of a container
by analyzing the container in the message.

Determining the leaves
The following API calls allow to determine the number of leaves in a container or
to retrieve the leaves themselves. When all leaves are requested, then not only the
user-defined leaves or their leaf count are provided, but also the MQSeries
Workflow predefined data members.

C
unsigned long FmcjContainerLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerLeaves(FmcjContainerHandle handle)

unsigned long FmcjContainerAllLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerAllLeaves(FmcjContainerHandle handle)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 37

C++
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const

unsigned long AllLeafCount()

void AllLeaves(vector<FmcjContainerElement> const & leaves) const

Java
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] leaves() throws FmcException

public abstract int allLeafCount() throws FmcException

public abstract ContainerElement[] allLeaves() throws FmcException

COBOL
FmcjCLeafCount.

CALL "FmcjContainerLeafCount"
USING
BY VALUE

hdlContainer
RETURNING

ulongReturnValue.

FmcjCLeaves.

CALL "FmcjContainerLeaves"
USING
BY VALUE

hdlContainer
RETURNING

FmcjCEVHandleReturnValue.

FmcjCAllLeafCount.

CALL "FmcjContainerAllLeafCount"
USING
BY VALUE

hdlContainer
RETURNING

ulongReturnValue.

FmcjCAllLeaves.

CALL "FmcjContainerAllLeaves"
USING
BY VALUE

hdlContainer
RETURNING

FmcjCEVHandleReturnValue.

Parameters

Programming concepts

38 MQSeries Workflow for OS/390 Programming Guide

handle Input. The handle of the container to be queried.
leaves Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are leaves.
unsigned long/int

The number of user-defined leaves or the number of all leaves,
user-defined and predefined.

Determining the structural members
The following API calls allow to determine the number of structural members in a
container or to retrieve the structural members themselves.

C
unsigned long FmcjContainerMemberCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerStructMembers(FmcjContainerHandle handle)

C++
unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

Java
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

COBOL
FmcjCMemberCount.

CALL "FmcjContainerMemberCount"
USING
BY VALUE

hdlContainer
RETURNING

ulongReturnValue.

FmcjCStructMembers.

CALL "FmcjContainerStructMembers"
USING
BY VALUE

hdlContainer
RETURNING

FmcjCEVHandleReturnValue.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 39

Parameters
handle Input. The handle of the container to be queried.
members Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the container.
unsigned long/int

The number of structural members in the container.

Determining the type
The following API calls provide the type of a container, that is, the name of the
associated data structure.

C
char * FmcjContainerType(FmcjContainerHandle handle,

char * containerTypeBuffer,
unsigned long bufferLength)

C++
string Type()

Java
public abstract String type() throws FmcException

COBOL
FmcjCType.

CALL "FmcjContainerType"
USING
BY VALUE

hdlContainer
containerTypeBuffer
bufferLength

RETURNING
pointerReturnValue.

Parameters
bufferLength Input. The length of the buffer to contain the container type; must

be at least FMC_CONTAINER_TYPE_LENGTH bytes.
containerTypeBuffer

Input/Output. The buffer to contain the container type.
handle Input. The handle of the container to be queried.

Return type
char*/string/String

The type of the container.

Programming concepts

40 MQSeries Workflow for OS/390 Programming Guide

Analyzing a container element
Once a container element has been accessed, it can be asked for its properties, its
name, whether it is a leaf and an array, or a structure itself. Calls to the container
can then be applied recursively in order to step down through a nested structure.

Determining the name or type of a container element
The following API calls allow to determine the name of a container element or its
type.

C
char* FmcjContainerElementName (FmcjContainerElementHandle handle,

char * buffer,
unsigned long bufferLength)

char* FmcjContainerElementFullName(FmcjContainerElementHandle handle,
char * buffer,
unsigned long bufferLength)

char* FmcjContainerElementType (FmcjContainerElementHandle handle,
char * buffer,
unsigned long bufferLength)

C++
string Name() const

string FullName() const

string Type() const

Java
public abstract String name() throws FmcException

public abstract String fullName() throws FmcException

public abstract String type() throws FmcException

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 41

COBOL
FmcjCEName.

CALL "FmcjContainerElementName"
USING
BY VALUE

hdlElement
elementNameBuffer
bufferLength

RETURNING
pointerReturnValue.

FmcjCEFullName.

CALL "FmcjContainerElementFullName"
USING
BY VALUE

hdlElement
elementNameBuffer
bufferLength

RETURNING
pointerReturnValue.

FmcjCEType.

CALL "FmcjContainerElementType"
USING
BY VALUE

hdlElement
containerTypeBuffer
bufferLength

RETURNING
pointerReturnValue.

Parameters
bufferLength Input. The length of the buffer to be filled.
buffer Input/Output. The buffer to contain the container element name or

type.
handle Input. The handle of the container element to be queried.

Return type
char*/string/String

The name or type of the container.

Determining the structural properties of a container element
The following API calls allow to determine whether the considered container
element is a leaf or a structure by itself and whether it is denoted to be an array.

C
bool FmcjContainerElementIsArray (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsLeaf (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsStruct(FmcjContainerElementHandle handle)

Programming concepts

42 MQSeries Workflow for OS/390 Programming Guide

C++
bool IsArray () const

bool IsLeaf () const

bool IsStruct() const

Java
public abstract boolean isArray () throws FmcException

public abstract boolean isLeaf () throws FmcException

public abstract boolean isStruct() throws FmcException

COBOL
FmcjCEIsArray.

CALL "FmcjContainerElementIsArray"
USING
BY VALUE

hdlElement
RETURNING

boolReturnValue.

FmcjCEIsLeaf.

CALL "FmcjContainerElementIsLeaf"
USING
BY VALUE

hdlElement
RETURNING

boolReturnValue.

FmcjCEIsStruct.

CALL "FmcjContainerElementIsStruct"
USING
BY VALUE

hdlElement
RETURNING

boolReturnValue.

Parameters
handle Input. The handle of the container element to be queried.

Return type
boolean/bool An indicator whether the container element is an array, a leaf, or a

structure.

Determining the leaves of a container element
The following API calls allow to determine the number of leaves of a container
element or to retrieve the leaves themselves.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 43

C
unsigned long
FmcjContainerElementLeafCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementLeaves(FmcjContainerElementHandle handle)

C++
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const

Java
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] leaves() throws FmcException

COBOL
FmcjCELeafCount.

CALL "FmcjContainerElementLeafCount"
USING
BY VALUE

hdlElement
RETURNING

ulongReturnValue.

FmcjCELeaves.

CALL "FmcjContainerElementLeaves"
USING
BY VALUE

hdlElement
RETURNING

FmcjCEVHandleReturnValue.

Parameters
handle Input. The handle of the container to be queried.
leaves Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are leaves.
unsigned long/int

The number of user-defined leaves.

Determining the structural members of a container element
The following API calls allow to determine the number of structural members of a
container element or to retrieve the structural members themselves.

Programming concepts

44 MQSeries Workflow for OS/390 Programming Guide

C
unsigned long
FmcjContainerElementMemberCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementStructMembers(FmcjContainerElementHandle handle)

C++
unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

Java
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

COBOL

FmcjCEMemberCount.

CALL "FmcjContainerElementMemberCount"
USING
BY VALUE

hdlElement
RETURNING

ulongReturnValue.

FmcjCEStructMembers.

CALL "FmcjContainerElementStructMembers"
USING
BY VALUE

hdlElement
RETURNING

FmcjCEVHandleReturnValue.

Parameters
handle Input. The handle of the container element to be queried.
members Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are structural members.
unsigned long/int

The number of structural members.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 45

Determining the elements of an array
The following API calls allow to determine the number of elements in an array or
to retrieve the elements themselves.

C
unsigned long
FmcjContainerElementCardinality(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementArrayElements(FmcjContainerElementHandle handle)

C++
unsigned long Cardinality() const

void ArrayMembers(vector<FmcjContainerElement> const & elements) const

Java
public abstract int cardinality() throws FmcException

public abstract ContainerElement[] arrayElements() throws FmcException

COBOL

FmcjCECardinality.

CALL "FmcjContainerElementCardinality"
USING
BY VALUE

hdlElement
RETURNING

ulongReturnValue.

FmcjCEArrayElements.

CALL "FmcjContainerElementArrayElements"
USING
BY VALUE

hdlElement
RETURNING

FmcjCEVHandleReturnValue.

Parameters
handle Input. The handle of the container element to be queried.
elements Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the queried array
container element.

Programming concepts

46 MQSeries Workflow for OS/390 Programming Guide

unsigned long
The cardinality of the array described by the container element.

Accessing a known container element
When you know the (dotted) name of a container element, that name can be used
in order to directly access the container element without iterating and searching
through the whole container structure.

C
APIRET FMC_APIENTRY FmcjContainerGetElement(

FmcjContainerHandle handle,
char const * qualifiedName,
FmcjContainerElementHandle * element)

C++
APIRET GetElement(string const & qualifiedName,

FmcjContainerElement & element) const

Java
public abstract
ContainerElement getElement(String qualifiedName) throws FmcException

COBOL
FmcjCGetElement.

CALL "FmcjContainerGetElement"
USING
BY VALUE

hdlContainer
qualifiedName

BY REFERENCE
element

RETURNING
intReturnValue.

Parameters
element Output. The container element.
handle Input. The handle of the container to be queried.
qualifiedName Input. The fully qualified name of the container element.

Return type
APIRET The return code from this API call.

Accessing a value of a container
The following API calls return the value of a container leaf.
FMC_ERROR_MEMBER_NOT_SET is returned if no information is available.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 47

When the leaf is an array of values, an index must be specified. Since an index is
to be specified, the fully qualified name must be given without the index or its
brackets.

C
unsigned long

FMC_APIENTRY FmcjContainerArrayBinaryLength(
FmcjContainerHandle handle,
char const * qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerBinaryLength(

FmcjContainerHandle handle,
char const * qualified name)

APIRET FMC_APIENTRY FmcjContainerBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
FmcjBinary * value,
unsigned long bufferLength)

C
APIRET FMC_APIENTRY FmcjContainerArrayFloatValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
double * value)

APIRET FMC_APIENTRY FmcjContainerFloatValue(
FmcjContainerHandle handle,
char const * qualifiedName,
double * value)
unsigned long bufferLength)

C
APIRET FMC_APIENTRY FmcjContainerArrayLongValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
long * value)

APIRET FMC_APIENTRY FmcjContainerLongValue(
FmcjContainerHandle handle,
long * value)

Programming concepts

48 MQSeries Workflow for OS/390 Programming Guide

C
unsigned long

FMC_APIENTRY FmcjContainerArrayStringLength(
FmcjContainerHandle handle,
char const * qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
char * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerStringLength(

FmcjContainerHandle handle,
char const * qualified name)

APIRET FMC_APIENTRY FmcjContainerStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
char * value,
unsigned long bufferLength)

C++
unsigned long BinaryLength(unsigned long index)

APIRET Value(string const & qualifiedName,
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength) const

unsigned long BinaryLength()

C++
APIRET Value(string const & qualifiedName,

unsigned long index,
long & value) const

APIRET Value(string const a qualifiedName,
long & value) const

C++
APIRET Value(string const & qualifiedName,

unsigned long index,
double & value) const

APIRET Value(string const a qualifiedName,
double & value) const

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 49

C++
APIRET Value(string const & qualifiedName,

unsigned long index,
string & value) const

APIRET Value(string const a qualifiedName,
string & value) const

Java
public abstract
byte[] getBuffer2(String qualifiedName,

int index) throws FmcException

public abstract
byte[] getBuffer(String qualifiedName) throws FmcException

Java
public abstract
double getDouble2(String qualifiedName,

int index) throws FmcException

public abstract
double getDouble(String qualifiedName) throws FmcException

Java
public abstract
int getLong2(String qualifiedName,

int index) throws FmcException

public abstract
int getLong(String qualifiedName) throws FmcException

Java
public abstract
String getString2(String qualifiedName,

int index) throws FmcException
public abstract
String getString(String qualifiedName) throws FmcException

Programming concepts

50 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjCArrayBinaryLength.

CALL "FmcjContainerArrayBinaryLength"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue

RETURNING
ulongReturnValue.

FmcjCArrayBinaryValue.

CALL "FmcjContainerArrayBinaryValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue
pointerValue
dataLength

RETURNING
intReturnValue.

FmcjCBinaryLength.

CALL "FmcjContainerBinaryLength"
USING
BY VALUE

hdlContainer
qualifiedName

RETURNING
ulongReturnValue.

FmcjCBinaryValue.

CALL "FmcjContainerBinaryValue"
USING
BY VALUE

hdlContainer
qualifiedName
pointerValue
dataLength

RETURNING
intReturnValue.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 51

COBOL
FmcjCArrayFloatValue.

CALL "FmcjContainerArrayFloatValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue

BY REFERENCE
doubleValue

RETURNING
intReturnValue.

FmcjCFloatValue.

CALL "FmcjContainerFloatValue"
USING
BY VALUE

hdlContainer
qualifiedName

BY REFERENCE
doubleValue

RETURNING
intReturnValue.

COBOL
FmcjCArrayLongValue.

CALL "FmcjContainerArrayLongValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue

BY REFERENCE
intValue

RETURNING
intReturnValue.

FmcjCLongValue.

CALL "FmcjContainerLongValue"
USING
BY VALUE

hdlContainer
qualifiedName

BY REFERENCE
intValue

RETURNING
intReturnValue.

Programming concepts

52 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjCArrayStringLength.

CALL "FmcjContainerArrayStringLength"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue

RETURNING
ulongReturnValue.

FmcjCArrayStringValue.

CALL "FmcjContainerArrayStringValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue
valueBuffer
bufferLength

RETURNING
intReturnValue.

FmcjCStringLength.

CALL "FmcjContainerStringLength"
USING
BY VALUE

hdlContainer
qualifiedName

RETURNING
ulongReturnValue.

FmcjCStringValue.

CALL "FmcjContainerStringValue"
USING
BY VALUE

hdlContainer
qualifiedName
valueBuffer
bufferLength

RETURNING
intReturnValue.

Parameters
bufferLength Input. The length of the buffer available for passing the value;

must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.

handle Input. The handle of the container to be queried.
index Input. When the leaf is an array, the index of the array element to

be queried.
isArray Input. If set to True, an array is to be queried and the index is

used.
qualifiedName Input. The fully qualified name of the leaf within the container.
value Output. The value of the leaf.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 53

Return type
byte[]/double/int/String

The leaf value.
unsigned long

The minimum required buffer length for reading the value.
APIRET The return code from this API call.

Accessing a value of a container element
The following API calls return the value of a container element leaf. When the leaf
is an array of values, an index must be specified.
FMC_ERROR_MEMBER_NOT_SET is returned if no information is available. Note
that, in contrast to querying container leaves, the name of the leaf need not be
specified because the container element itself is the leaf queried.

C
unsigned long

FMC_APIENTRY FmcjContainerElementArrayBinaryLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayBinaryValue(
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerElementBinaryLength(

FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementBinaryValue(
FmcjContainerElementHandle handle,
FmcjBinary * value,
unsigned long bufferLength)

C
APIRET FMC_APIENTRY FmcjContainerElementArrayFloatValue(

FmcjContainerElementHandle handle,
unsigned long index,
double * value)

APIRET FMC_APIENTRY FmcjContainerElementFloatValue(
FmcjContainerElementHandle handle,
double * value)

C
APIRET FMC_APIENTRY FmcjContainerElementArrayLongValue(

FmcjContainerElementHandle handle,
unsigned long index,
long * value)

APIRET FMC_APIENTRY FmcjContainerElementLongValue(
FmcjContainerElementHandle handle,
long * value)

Programming concepts

54 MQSeries Workflow for OS/390 Programming Guide

C
unsigned long

FMC_APIENTRY FmcjContainerElementArrayStringLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayStringValue(
FmcjContainerElementHandle handle,
unsigned long index,
char * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerElementStringLength(

FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementStringValue(
FmcjContainerElementHandle handle,
char * value,
unsigned long bufferLength)

C++
unsigned long BinaryLength(unsigned long index)

APIRET Value(unsigned long index,
FmcjBinary * value,
unsigned long bufferLength) const

unsigned long BinaryLength()

APIRET Value(FmcjBinary * value,
unsigned long bufferLength) const

C++
APIRET Value(unsigned long index,

long & value) const

APIRET Value(long & value) const

APIRET Value(unsigned long index,
double & value) const

APIRET Value(double & value) const

APIRET Value(unsigned long index,
string & value) const

APIRET Value(string & value) const

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 55

Java
public abstract
byte[] getBuffer2(int index) throws FmcException

public abstract
byte[] getBuffer() throws FmcException

public abstract
double getDouble2(int index) throws FmcException

public abstract
double getDouble() throws FmcException

public abstract
int getLong2(int index) throws FmcException

public abstract
int getLong() throws FmcException

public abstract
String getString2(int index) throws FmcException

public abstract
String getString() throws FmcException

Programming concepts

56 MQSeries Workflow for OS/390 Programming Guide

COBOL

FmcjCEArrayBinaryLength.

CALL "FmcjContainerElementArrayBinaryLength"
USING
BY VALUE

hdlElement
indexValue

RETURNING
ulongReturnValue.

FmcjCEArrayBinaryValue.

CALL "FmcjContainerElementArrayBinaryValue"
USING
BY VALUE

hdlElement
indexValue
pointerValue
dataLength

RETURNING
intReturnValue

FmcjCEBinaryLength.

CALL "FmcjContainerElementBinaryLength"
USING
BY VALUE

hdlElement
RETURNING

ulongReturnValue.

FmcjCEBinaryValue.

CALL "FmcjContainerElementBinaryValue"
USING
BY VALUE

hdlElement
pointerValue
dataLength

RETURNING
intReturnValue.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 57

COBOL

FmcjCEArrayFloatValue.

CALL "FmcjContainerElementArrayFloatValue"
USING
BY VALUE

hdlElement
indexValue

BY REFERENCE
doubleValue

RETURNING
intReturnValue.

FmcjCEFloatValue.

CALL "FmcjContainerElementFloatValue"
USING
BY VALUE

hdlElement
BY REFERENCE

doubleValue
RETURNING

intReturnValue.

COBOL
FmcjCEArrayLongValue.

CALL "FmcjContainerElementArrayLongValue"
USING
BY VALUE

hdlElement
indexValue

BY REFERENCE
intValue

RETURNING
intReturnValue.

FmcjCELongValue.

CALL "FmcjContainerElementLongValue"
USING
BY VALUE

hdlElement
BY REFERENCE

intValue
RETURNING

intReturnValue.

Programming concepts

58 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjCEArrayStringLength.

CALL "FmcjContainerElementArrayStringLength"
USING
BY VALUE

hdlElement
indexValue

RETURNING
ulongReturnValue.

FmcjCEArrayStringValue.

CALL "FmcjContainerElementArrayStringValue"
USING
BY VALUE

hdlElement
indexValue
valueBuffer
bufferLength

RETURNING
intReturnValue.

FmcjCEStringLength.

CALL "FmcjContainerElementStringLength"
USING
BY VALUE

hdlElement
RETURNING

ulongReturnValue.

FmcjCEStringValue.

CALL "FmcjContainerElementStringValue"
USING
BY VALUE

hdlElement
valueBuffer
bufferLength

RETURNING
intReturnValue.

Parameters
bufferLength Input. The length of the buffer available for passing the value;

must be greater than or equal to the actual length. Use the
appropriate Length() API calls to determine the actual length.

handle Input. The handle of the container element to be queried.
index Input. When the leaf is an array, the index of the array element to

be queried.
value Output. The value of the leaf.

Return type
byte[]/double/int/String

The leaf value.
unsigned long

The minimum required buffer length for reading the value.
APIRET The return code from this API call.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 59

Setting a value of a container
The following API calls allow to set the value of a container leaf.

When the leaf is an array of values, an index must be specified. Since an index is
to be specified, the fully qualified name must be given without the index and its
parentheses.

C
APIRET FMC_APIENTRY FmcjContainerSetArrayBinaryValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
FmcjBinary const * value,
unsigned long dataLength)

APIRET FMC_APIENTRY FmcjContainerSetBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
FmcjBinary const * value,
unsigned long dataLength)

C
APIRET FMC_APIENTRY FmcjContainerSetArrayFloatValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
double value)

APIRET FMC_APIENTRY FmcjContainerSetFloatValue(
FmcjContainerHandle handle,
char const * qualifiedName,
double value)

C
APIRET FMC_APIENTRY FmcjContainerSetArrayLongValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
long value)

APIRET FMC_APIENTRY FmcjContainerSetLongValue(
FmcjContainerHandle handle,
long value)

Programming concepts

60 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjContainerSetArrayStringValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
char const * value)

APIRET FMC_APIENTRY FmcjContainerSetStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
char const * value)

C++
APIRET Value(string const & qualifiedName,

unsigned long index,
FmcjBinary const * value,
unsigned long dataLength) const

APIRET Value(string const & qualifiedName,
FmcjBinary const * value,
unsigned long dataLength) const

C++
APIRET Value(string const & qualifiedName,

unsigned long index,
long value) const

APIRET Value(string const a qualifiedName,
long value) const

C++
APIRET Value(string const & qualifiedName,

unsigned long index,
double value) const

APIRET Value(string const a qualifiedName,
double value) const

C++
APIRET Value(string const & qualifiedName,

unsigned long index,
string const & value) const

APIRET Value(string const & qualifiedName,
string const & value) const

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 61

Java
public abstract
void setBuffer2(String qualifiedName,

int index,
byte value []) throws FmcException

public abstract
void setBuffer(String qualifiedName,

byte value[]) throws FmcException

Java
public abstract
void setDouble2(String qualifiedName,

int index,
double value) throws FmcException

public abstract
void setDouble(String qualifiedName,

double value) throws FmcException

Java
public abstract
void setLong2(String qualifiedName,

int index,
long value) throws FmcException

public abstract
void setLong(String qualifiedName,

long value) throws FmcException

Java
public abstract
void setString2(String qualifiedName,

int index,
String value) throws FmcException

public abstract
void setString(String qualifiedName,

String value) throws FmcException

Programming concepts

62 MQSeries Workflow for OS/390 Programming Guide

COBOL

FmcjRWCSetArrayBinaryValue.

CALL "FmcjReadWriteContainerSetArrayBinaryValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue
pointerValue
dataLength

RETURNING
intReturnValue.

FmcjRWCSetBinaryValue.

CALL "FmcjReadWriteContainerSetBinaryValue"
USING
BY VALUE

hdlContainer
qualifiedName
pointerValue
dataLength

RETURNING
intReturnValue.

COBOL
FmcjRWCSetArrayFloatValue.

CALL "FmcjReadWriteContainerSetArrayFloatValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue
doubleValue

RETURNING
intReturnValue.

FmcjRWCSetFloatValue.

CALL "FmcjReadWriteContainerSetFloatValue"
USING
BY VALUE

hdlContainer
qualifiedName
doubleValue

RETURNING
intReturnValue.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 63

COBOL
FmcjRWCSetArrayLongValue.

CALL "FmcjReadWriteContainerSetArrayLongValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue
intValue

RETURNING
intReturnValue.

FmcjRWCSetLongValue.

CALL "FmcjReadWriteContainerSetLongValue"
USING
BY VALUE

hdlContainer
qualifiedName
intValue

RETURNING
intReturnValue.

COBOL
FmcjRWCSetArrayStringValue.

CALL "FmcjReadWriteContainerSetArrayStringValue"
USING
BY VALUE

hdlContainer
qualifiedName
indexValue
pointerValue

RETURNING
intReturnValue.

FmcjRWCSetStringValue.

CALL "FmcjReadWriteContainerSetStringValue"
USING
BY VALUE

hdlContainer
qualifiedName
pointerValue

RETURNING
intReturnValue.

Parameters
dataLength Input. The length of the binary value.
handle Input. The handle of the container to be set.
index Input. When the leaf is an array, the index of the array element to

be set.
isArray Input. If set to True, an array element is to be set and the index is

used.
qualifiedName Input. The fully qualified name of the leaf within the container.
value Input. The value of the leaf. Note that values for leaves of type

Programming concepts

64 MQSeries Workflow for OS/390 Programming Guide

BINARY must be specified as a sequence of two-digit hexadecimal
numbers. For example, the string ’abc<cr><lf>’’ would be
represented as ’6162630d0a’ (where <cr> denotes the ASCII
’carriage return’ character and <lf> denotes the ASCII line-feed
character).

Return type
APIRET The return code from this API call.

Return codes/FmcException
The following return codes can be issued or described by the result object, or the
following exceptions can be thrown. The number in parentheses indicates the
integer value:
FMC_OK(0) The API call completed successfully.
FMC_ERROR_BUFFER(800)

The provided buffer is too small.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the server.

FMC_ERROR_FORMAT(117)
The qualified name does not conform to the syntax rules.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_MEMBER_CANNOT_BE_SET(115)
The specified member is an MQSeries Workflow predefined fixed
data member; it is for information only.

FMC_ERROR_MEMBER_NOT_FOUND(112)
The specified member is not part of the container or container
element.

FMC_ERROR_MEMBER_NOT_SET(113)
The specified member has no value.

Monitoring a process instance
MQSeries Workflow allows for obtaining a monitor for a specified process instance.
A process instance monitor typically allows for:
v Observing the progress of a process instance execution.
v Determining the state of execution, that is, to determine which activity instance

is currently in progress, is waiting to be executed by whom, is InError and
waiting for some action. It allows to determine whether notifications occurred
because the maximum work time was exceeded.

v Viewing the history of execution, that is, what path has been taken through the
process instance and why. It allows to determine where the bottlenecks of
execution are or where the most time-consuming parts are.

Note: Monitoring a process instance is not supported in the XML message
interface.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 65

Obtaining a process instance monitor
Once a process instance2 has been accessed, a process instance monitor can be
obtained. The transient process instance monitor object then represents all
information about activity instances directly contained in the described process
instance as well as all information on control connector instances connecting those
activity instances.

For example, the illustrated process instance monitor describes three program
activities, Program Activity 1, Program Activity 2, and Program Activity 9, and an
activity of type Block, Block Activity 3. There are three control connectors between
these activities.

The process instance monitor can then be asked for the activity instances and the
control connector instances described and their properties can be determined, for
example, the state of the activity and its graphical layout, or the result of control
connector instance evaluation and activities to connect or bend points to be drawn.

When an activity of type Block is encountered, it is possible to obtain its block
instance monitor. Similar to a process instance monitor, a block instance monitor
object represents all information about activity instances directly contained in the
described block activity instance as well as all information on control connector
instances connecting those activity instances. For example, the block instance
monitor of Block Activity 3 describes Block Activity 4, Program Activity 5, and Process
Activity 6. There is a control connector between Block Activity 4 and Process Activity
6.

2. or activity instance or a (work) item

Figure 16. Process instance monitors and block instance monitors

Programming concepts

66 MQSeries Workflow for OS/390 Programming Guide

When an activity of type Process is encountered, it is again possible to obtain its
process instance monitor, either via the embracing monitor object or by retrieving
the implementing (sub)process instance of the activity and then obtaining the
associated process instance monitor. The process instance monitor obtained is a
monitor which is completely separate from any other process instance monitor.

When obtaining a process instance monitor, it is possible to use the deep option in
order to specify that all monitors for activities of kind Block are to be returned
from the MQSeries Workflow execution server in the same step. The block instance
monitors then all show the state of the process instance at this retrieval time. This
means, when a block instance monitor is obtained via an API call, the API finds
this monitor in its cache and provides it to the caller. When the deep option is not
used, it can happen that a block instance monitor is not available. The API then
automatically fetches the requested monitor from the execution server; it then
represents a newer state than the ones previously retrieved.

Note: The deep option is not yet supported.

Ownership of monitors
As any other transient object, a process instance monitor is owned by the caller of
the API. When a process instance monitor is no longer needed, you should
delete/deallocate the object.

A block instance monitor, however, is considered to be part of a process instance
monitor. It is cached by the API as part of the process instance monitor. It cannot
be deallocated in C or COBOL. Deletion in C++ only deletes the C++
representation but not the block instance monitor itself in the API cache. Block
instance monitors are automatically deleted when the owning process instance
monitor is deleted/deallocated. This means that block instance monitor objects or
handles can only be used as long as the containing process instance monitor exists.
When the process instance monitor no longer exists, using a block instance monitor
object or handle will return unexpected results; your program can even abend
since the usage of a nonexisting object or handle violates the MQSeries Workflow
programming by contract concept.

Authorization considerations
In general, authorization is granted to persons, either explicitly or implicitly.
Implicitly means that the authority has been given as the result of performing
some MQSeries Workflow action; performing that action can itself request some
specific authority. See also MQSeries Workflow for OS/390: Customization and
Administration.

Special authority is granted to a person playing the role of a system administrator.
The system administrator has all privileges except on (work) items. Only the
owner of a (work) item can issue any actions; the system administrator can,
however, transfer the (work) item to himself. The system administrator role must
be assigned to a single person at any time.

When a process instance is started, its process administrator is determined. The
person determined to be the process administrator receives process administration
rights for that process instance.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 67

The person who is to become the process administrator of a process instance is
specified when the process model is defined. Identification of the process
administrator can be done in the following ways:
v Specification of a user identification for the PROCESS_ADMINISTRATOR

keyword. In this case, the process administrator is already known when the
process model is defined.

v Specification of a member in the process input container via the
PROCESS_ADMINISTRATOR TAKEN_FROM specification.

v Specification of DATA FROM INPUT_CONTAINER. The process administrator is
then taken from the process information member
_PROCESS_INFO.ProcessAdministrator field in the input container (see “Process
information data members” on page 33 for details).

The following table shows the authorizations and the MQSeries Workflow
functions which can be called when that authority has been granted. The E/I
(Explicit/Implicit) column indicates how the authorization is granted to persons.

Note: For the programming language APIs, once a user has been authenticated to
MQSeries Workflow (logged on), he can retrieve all objects he is authorized
to see without any further special authorization. These are all objects he has
created and all objects which are not specially secured or which are for
public usage.

Table 2. Authorization for persons

Name E/I Authorized Functions

Authorization
definition
authorization

E Create, update, and delete authorization information.

Retrieve and update passwords.

The appropriate FDL authorization keyword is
AUTHORIZATION.

Operation
administration
authorization

E Can perform all operation administration functions.
The appropriate FDL authorization keyword is
OPERATION.

Staff definition
authorization

E Create, retrieve, update, and delete staff information.
As such, it includes authorization definition
authorization.

Create, retrieve, update, and delete public and
private process instance lists, process template lists,
and worklists.

The appropriate FDL authorization keyword is
STAFF.

Topology
definition
authorization

E Create, retrieve, update, and delete topology
information. The appropriate FDL authorization
keyword is TOPOLOGY.

Process modeling
authorization

E Create, retrieve, update, and delete process models
and process templates. The appropriate FDL
authorization keyword is PROCESS_MODELING.

Programming concepts

68 MQSeries Workflow for OS/390 Programming Guide

Table 2. Authorization for persons (continued)

Name E/I Authorized Functions

Process
authorization

E Can perform the following process instance
functions if the process instance does not belong to
any category. If the process instance does belong to a
category, you must be authorized for all categories
or for that specific category:
v Create
v Start
v Create and start
v Set process instance name
v Query
v Refresh

Can perform the following process template
functions if the process template does not belong to
any category. If the process template does belong to
a category, you must be authorized for all categories
or for that specific category:
v Query
v Refresh

The appropriate FDL authorization keyword is
PROCESS_CATEGORY.

Process
administration
authorization

E Has process authorization and can perform the
following additional process instance functions if the
process instance does not belong to any category. If
the process instance does belong to a category, you
must be authorized with administration rights for all
categories or for that specific category:
v Delete
v Restart
v Resume
v Suspend
v Terminate

Can perform the following work item functions on
the assigned work item for all process instances if
the process instance does not belong to any category.
If the process instance does belong to a category, you
must be authorized for all categories or for that
specific category:
v Force-finish
v Force-restart

The appropriate FDL authorization keyword is
PROCESS_CATEGORY AS ADMINISTRATOR.

Process
administrator

I Has process administration authority for the
appropriate process instance.

Process creator I Can perform the following process instance
functions:
v Set process instance name
v Delete, if not yet started
v Query
v Refresh
v Start

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 69

Table 2. Authorization for persons (continued)

Name E/I Authorized Functions

Work item
authority

E Can perform the following functions on (work)
items for all persons if you are authorized for all
persons or for selected persons:
v Query
v Refresh
v Transfer

The appropriate FDL authorization keyword is
WORKITEMS_OF.

Workitem owner I Can perform all functions on the assigned (work)
item except:
v Force Finish
v Force Restart

Types of API calls
MQSeries Workflow API calls can be divided into several categories which
characterize the kind and behavior of the request to be executed.

Basic Manage transient objects

Accessor/mutator Read and update properties of transient objects

Action Read or manipulate persistent objects

Activity implementation Deal with containers from within an activity
implementation

Basic and accessor API calls are described in some detail, but still generally, in the
following paragraphs. This is because all these API calls are similar in appearance
and have similar requirements, even for different objects. They are all handled
locally by the API, that is, they do not communicate with the server. The API calls
of the other categories are described separately in “Chapter 5. API action and
activity implementation calls” on page 287. These API calls require client/server
communication or communication with the program execution server.

Basic API calls
Basic API calls are provided primarily to allow transient objects to be allocated or
constructed and deallocated or destructed. They allow for the construction of
supporting objects like service objects. They allow for the destruction of such
objects as well as for the destruction of transient representations of persistent
objects allocated implicitly by the MQSeries Workflow API. Refer also to “Object
and memory management” on page 11.

Basic API calls are only provided in the various APIs as far as needed. For
example, the Java language supports only IsComplete(), IsEmpty(), and the Agent
constructor.

Because of the nature of transient objects, neither a connection to a server nor some
specific authorization is required to execute.

Return codes
The C and COBOL calls and the MQSeries Workflow result object can return the
following codes, the number in parentheses shows their integer value:

Programming concepts

70 MQSeries Workflow for OS/390 Programming Guide

FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_NAME(134)
The name provided is invalid; it is a null pointer or it does not
conform to the syntax rules.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

Basic API calls allow for the basic operations listed below; Xxx and Yyy denote a
particular class or scope, for example, FmcjXxxEqual() can stand for
FmcjProcessInstanceEqual().

Allocation
The following API calls allow the application to set up the respective object. This is
needed for supporting objects like string vectors. Transient objects representing
persistent objects are allocated implicitly by the MQSeries Workflow API when
persistent objects are created or queried from an MQSeries Workflow server.

In the C++ API, constructors are made public for all classes so that their instances
can be put into collections. When they are called by the application, empty objects
of the appropriate class are created; they do not yet represent a persistent object.

All constructed objects are transient.

C
APIRET FMC_APIENTRY
FmcjExecutionServiceAllocate(FmcjExecutionServiceHandle * service)

APIRET FMC_APIENTRY FmcjExecutionServiceAllocateForGroup(
char const * systemGroup,
FmcjExecutionServiceHandle * service)

APIRET FMC_APIENTRY FmcjExecutionServiceAllocateForSystem(
char const * system,
char const * systemGroup,
FmcjExecutionServiceHandle * service)

APIRET FMC_APIENTRY
FmcjStringVectorAllocate(FmcjStringVectorHandle * hdlVector)

C++
FmcjXxx()

FmcjDateTime(bool initWithCurrentDateTime= false)

FmcjDateTime(unsigned short year, unsigned short month,
unsigned short day, unsigned short hour,
unsigned short minute, unsigned short second)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 71

Java
Agent()

COBOL
FmcjESAllocate.

CALL "FmcjExecutionServiceAllocate"
USING
BY REFERENCE

serviceValue
RETURNING

intReturnValue.

FmcjESAllocateForGroup.

CALL "FmcjExecutionServiceAllocateForGroup"
USING
BY VALUE

systemGroup
BY REFERENCE

serviceValue
RETURNING

intReturnValue.

FmcjESAllocateForSyst.

CALL "FmcjExecutionServiceAllocateForSystem"
USING
BY VALUE

system
systemGroup

BY REFERENCE
serviceValue

RETURNING
intReturnValue.

FmcjStrVAllocate.

CALL "FmcjStringVectorAllocate"
USING
BY REFERENCE

hdlVector
RETURNING

intReturnValue.

Parameters
service Input/Output. The address of the handle to the object to be set when the

object has been constructed. Ensure that the handle passed is not pointing
to a still valid object, since that object is not automatically deallocated
before the new object’s handle is set.

initWithCurrentTime
Input. An indicator whether the date/time should be initialized with the
current date/time.

system Input. The specific system where the execution server runs.

Programming concepts

72 MQSeries Workflow for OS/390 Programming Guide

systemGroup
Input. The system group where the execution server resides. Specifying
only the system group allows for exploiting the MQSeries clustering
capabilities.

year/month/day
Input. The date part of the date/time.

hour/minute/second
Input. The time part of the date/time.

Return type
APIRET

The return code set by the allocation.
Object*

The newly constructed object.

Assignment
In the C++ API, the assignment operator allows the application to assign the
contents of the specified object to the target object, and returns the target object.
The assignment is achieved by deleting the target object before the contents are
assigned from the specified object.

C++
FmcjXxx & operator=(FmcjXxx const & anObject)

Parameters
anObject Input. The object from which the contents are to be assigned.

Comparison/equality
The following API calls allow an application to compare two transient objects in
order to determine whether they represent the same persistent or API object.

Normally, comparison is done on the basis of the object identifiers. True is returned
if both transient objects represent the same persistent object. The contents of the
transient objects to be compared are not further checked, that is, it is not checked
whether both transient objects carry the same states of the persistent object.

Exceptions:
v Service objects are equal when they represent the same session.
v Error objects are equal when they report the same error, that is, when they

contain the same return code and the same parameters.
v Program data objects are equal when they belong to the same work item.
v Control connector instance objects are equal when they have the same source

and target activity instances.
v Point and symbol layout objects are equal when their properties are equal.

In C and COBOL, the return code of the result object is set to invalid handle if one
of the handles passed is invalid. True is returned if both are invalid, else false.

C
bool FMC_APIENTRY FmcjXxxEqual(FmcjXxxHandle handle1,

FmcjXxxHandle handle2)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 73

C++
bool operator==(FmcjXxx const & anObject) const

COBOL
FmcjXxxEqual.

CALL "FmcjXxxEqual"
USING
BY VALUE

handle1
handle2

RETURNING
boolReturnValue.

Parameters
anObject Input. The object to be compared with this one.
handle1 Input. The first object to be compared.
handle2 Input. The other object to be compared.

Copy
The following API calls allow the application to make a copy of a particular
transient object. That copy becomes a separate object and thus carries its own state.

An exception is the execution service where a copy points to the same session
established by the original object. This especially means, when you request to log
off on either object, then the (common) session is closed.

C
APIRET FMC_APIENTRY FmcjXxxCopy(FmcjXxxHandle handle,

FmcjXxxHandle * newHandle)

C++
FmcjXxx(FmcjXxx const & anObject)

COBOL
FmcjXxxCopy.

CALL "FmcjXxxCopy"
USING
BY VALUE

handle
BY REFERENCE

newHandle
RETURNING

intReturnValue.

Parameters
anObject Input. The object to be copied.
handle Input. The handle of the object to be copied.
newHandle Input/Output. The address of a handle to be set when the object

Programming concepts

74 MQSeries Workflow for OS/390 Programming Guide

has been constructed. Ensure that the handle passed is not pointing
to a still valid object since that object is not automatically
deallocated before the new object’s handle is set.

Deallocation
The following API calls allow the application to delete the specified transient
object. Deletion of a transient object has no impact on the represented persistent
object, if any.

The C or COBOL handle is set to 0 so that it can no longer be used. The C++
destructor is automatically called when an instance of FmcjXxx is deleted.

C
APIRET FMC_APIENTRY FmcjXxxDeallocate(FmcjXxxHandle * handle)

C++
virtual FmcjXxx()

COBOL
FmcjXxxDeallocate.

CALL "FmcjXxxDeallocate"
USING
BY REFERENCE

handle
RETURNING

intReturnValue.

Parameters
handle Input/Output. The address of the handle to the object to be deallocated.

IsComplete()
Returns true when the object has been completely read from an MQSeries
Workflow server, that is, both primary and secondary properties are available (see
also “Accessor API calls” on page 85).

C
bool FMC_APIENTRY FmcjXxxIsComplete(FmcjXxxHandle handle)

C++
bool IsComplete()

Java
public abstract boolean IsComplete() throws FmcException

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 75

COBOL
FmcjXxxIsComplete.

CALL "FmcjXxxIsComplete"
USING
BY VALUE

handle
RETURNING

boolReturnValue.

Parameters
handle Input. The handle of the object to be queried.

Return type
bool/boolean

True if the object has been completely read from the server, otherwise false.

IsEmpty()
Returns whether the transient object contains no actual data values yet. The
transient object has just been created and still contains default values. It does not
yet reflect a persistent object.

C++
bool IsEmpty()

Java
public abstract boolean IsEmpty() throws FmcException

Return type
bool/boolean

True if the object has not yet been read from the server, otherwise false.

Kind()
Returns the kind of the queried object.

C
enum FmcjXxxEnum FMC_APIENTRY FmcjXxxKind(FmcjXxxHandle handle)

C++
FmcjXxx::Enum Kind() const

Java
public abstract Enum kind() throws FmcException

Programming concepts

76 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjXxxKind.

CALL "FmcjXxxKind"
USING
BY VALUE

handle
RETURNING

intReturnValue.

Parameters
handle Input. The handle of the object to be queried.

Return type
FmcjXxxEnum/Enum

The kind of the object; some element of an enumeration - see also
“Accessing an enumerated value” on page 88.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 77

C example using basic functions

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemVectorHandle wList = 0;
FmcjWorkitemHandle workitem1 = 0;
FmcjWorkitemHandle workitem2 = 0;
FmcjWorkitemHandle workitem3 = 0;

FmcjGlobalConnect();

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);
/* Query Workitems */
rc= FmcjExecutionServiceQueryWorkitems(service,

FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&wList);

printf("\nQuery workitems returns rc : %u\n", rc);
fflush(stdout);

if (rc == FMC_OK && FmcjWorkitemVectorSize(wList) >= 2)
{ /* access first element */

workitem1= FmcjWorkitemVectorFirstElement(wList);
if (FmcjWorkitemIsComplete(workitem1))

printf("Surprise - more than primary data available\n");
else

printf("Primary data of first workitem available\n");
fflush(stdout);

/* access next element */
workitem2= FmcjWorkitemVectorNextElement(wList) ;
if (FmcjWorkitemEqual(workitem1,workitem2))

printf("Surprise - workitems are equal\n");
else

printf("Workitems represent different objects\n");
fflush(stdout);

/* copy workitem */
FmcjWorkitemCopy(workitem1,&workitem3);
if (FmcjWorkitemEqual(workitem1,workitem3))

printf("Workitems represent same persistent object\n");
else

printf("Surprise - workitems are not equal\n");
fflush(stdout);

/* cleanup */
FmcjWorkitemDeallocate(&workitem1);
FmcjWorkitemDeallocate(&workitem2);
FmcjWorkitemDeallocate(&workitem3);

}
FmcjWorkitemVectorDeallocate(&wList);

Figure 17. C example using basic functions (Part 1 of 2)

Programming concepts

78 MQSeries Workflow for OS/390 Programming Guide

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 17. C example using basic functions (Part 2 of 2)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 79

C++ example using basic methods

COBOL example using basic calls

Note: The SETADDR routine, which sets a pointer item to the address of a given
string, is listed in “Example of the use of strings” on page 150.

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{

FmcjGlobal::Connect();
// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");

FmcjWorkitem workitem1;
if (workitem1.IsEmpty())

cout << "Transient workitem object has been created" << endl;
else

cout << "Surprise - workitem contains actual data" << endl;

// Query Workitems
vector<FmcjWorkitem> wList;
rc= service.QueryWorkitems(FmcjNoFilter,

FmcjNoSortCriteria,
FmcjNoThreshold,
wList);

cout << "Query workitems returns rc : " << rc << endl ;

if (rc == FMC_OK && wList.size() >= 2)
{

workitem1= wList[0]; // assign first element
if (workitem1.IsComplete())

cout << "Surprise - more than primary data available" << endl;
else

cout << "Primary data of first workitem available" << endl;

FmcjWorkitem workitem2= wList[1]; // access next element
if (workitem1 == workitem2)

cout << "Surprise - workitems are equal" << endl;
else

cout << "Workitems represent different objects" << endl;

// copy workitem
FmcjWorkitem workitem3(workitem1);
if (workitem1 == workitem3)

cout << "Workitems represent same persistent object" << endl;
else

cout << "Surprise - workitems are not equal" << endl;
} // destructors called automatically

// logoff
rc = service.Logoff();

FmcjGlobal::Disconnect();
return FMC_OK;

} // destructors called automatically

Figure 18. C++ example using basic methods

Programming concepts

80 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "BASIC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 workitem1 USAGE IS POINTER VALUE NULL.
01 workitem2 USAGE IS POINTER VALUE NULL.
01 workitem3 USAGE IS POINTER VALUE NULL.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
* logon

PERFORM FmcjESAllocate.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

* Query Workitems
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryWorkitems.
SET hdlVector TO workitems.
MOVE intReturnValue TO retCode.
DISPLAY "Query Workitems returns rc : " retCode.

IF retCode = FMC-OK
PERFORM FmcjWIVSize
IF ulongReturnValue >= 2

* access first element
PERFORM FmcjWIVFirstElement
SET workitem1 TO FmcjWIHandleReturnValue
SET hdlItem TO workitem1
PERFORM FmcjWIIsComplete
IF boolReturnValue = 1

DISPLAY "Surprise - more than primary data"
DISPLAY "available"

ELSE
DISPLAY "Primary data of first workitem"
DISPLAY "available"

END-IF

Figure 19. COBOL example using basic calls (via PERFORM) (Part 1 of 2)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 81

* access next element
PERFORM FmcjWIVNextElement
SET workitem2 TO FmcjWIHandleReturnValue
SET hdlItem2 TO workitem2
PERFORM FmcjWIEqual
IF boolReturnValue = 1

DISPLAY "Surprise - workitems are equal"
ELSE

DISPLAY "Workitems represent different objects"
END-IF

* copy workitem
SET hdlWorkitem TO workitem1
PERFORM FmcjWICopy
SET workitem3 TO newWorkItem
SET hdlItem2 TO workitem3
PERFORM FmcjWIEqual
IF boolReturnValue = 0

DISPLAY "Surprise - workitems are not equal"
ELSE

DISPLAY "Workitems represent same persistent"
DISPLAY "objects"

END-IF

* cleanup
SET hdlWorkitem TO workitem1
PERFORM FmcjWIDeallocate
SET hdlWorkitem TO workitem2
PERFORM FmcjWIDeallocate
SET hdlWorkitem TO workitem3
PERFORM FmcjWIDeallocate

END-IF
END-IF

PERFORM FmcjWIVDeallocate.

* logoff
PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 19. COBOL example using basic calls (via PERFORM) (Part 2 of 2)

Programming concepts

82 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "BASIC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 workitem1 USAGE IS POINTER VALUE NULL.
01 workitem2 USAGE IS POINTER VALUE NULL.
01 workitem3 USAGE IS POINTER VALUE NULL.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
CALL "FmcjExecutionServiceAllocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue.

* logon
CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.
* Query Workitems

CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
CALL "FmcjExecutionServiceQueryWorkitems"

USING BY VALUE serviceValue
filter
sortCriteria
FmcjNoThreshold

BY REFERENCE workitems
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Query Workitems returns rc : " retCode.

IF retCode = FMC-OK
CALL "FmcjWorkitemVectorSize"

USING BY VALUE workitems
RETURNING ulongReturnValue

IF ulongReturnValue >= 2

* access first element
CALL "FmcjWorkitemVectorFirstElement"

USING BY VALUE workitems

Figure 20. COBOL example using basic calls (via CALL) (Part 1 of 3)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 83

RETURNING FmcjWIHandleReturnValue
SET workitem1 TO FmcjWIHandleReturnValue
CALL "FmcjItemIsComplete"

USING BY VALUE workitem1
RETURNING boolReturnValue

IF boolReturnValue = 1
DISPLAY "Surprise - more than primary data"
DISPLAY "available"

ELSE
DISPLAY "Primary data of first workitem"
DISPLAY "available"

END-IF

* access next element
CALL "FmcjWorkitemVectorNextElement"

USING BY VALUE workitems
RETURNING FmcjWIHandleReturnValue

SET workitem2 TO FmcjWIHandleReturnValue
CALL "FmcjItemEqual"

USING BY VALUE workitem1
workitem2

RETURNING boolReturnValue
IF boolReturnValue = 1

DISPLAY "Surprise - workitems are equal"
ELSE

DISPLAY "Workitems represent different objects"
END-IF

* copy workitem
CALL "FmcjWorkitemCopy"

USING BY VALUE workitem1
BY REFERENCE workitem3

RETURNING intReturnValue
CALL "FmcjItemEqual"

USING BY VALUE workitem1
workitem3

RETURNING boolReturnValue
IF boolReturnValue = 0

DISPLAY "Surprise - workitems are not equal"
ELSE

DISPLAY "Workitems represent same persistent"
DISPLAY "objects"

END-IF

* cleanup
CALL "FmcjWorkitemDeallocate"

USING BY REFERENCE workitem1
RETURNING intReturnValue

CALL "FmcjWorkitemDeallocate"
USING BY REFERENCE workitem2
RETURNING intReturnValue

CALL "FmcjWorkitemDeallocate"
USING BY REFERENCE workitem2
RETURNING intReturnValue

END-IF
END-IF
CALL "FmcjWorkitemVectorDeallocate"

USING BY REFERENCE workitems
RETURNING intReturnValue.

Figure 20. COBOL example using basic calls (via CALL) (Part 2 of 3)

Programming concepts

84 MQSeries Workflow for OS/390 Programming Guide

Accessor API calls
Accessor API calls are provided so that properties of transient objects can be read
or changed. If the transient object represents a persistent one, then the values that
are returned reflect the state of the persistent object when it was retrieved and
used to set the transient object or when it was created or updated. Retrieval is
done from an MQSeries Workflow server using the appropriate create, query, or
refresh API calls. Creation or update can be done on the client when the MQSeries
Workflow server sends new information (pushes information).

Default values are provided to you as long as the transient object is empty or not
complete, or when the accessed property is optional and not set.

Default values are: an empty string or buffer for character-valued properties, 0
(zero) for integer-valued properties, false for boolean-valued properties, a
timestamp with all members set to 0 (zero) for time-valued properties, "NotSet" for
enumeration-valued properties, and an empty vector for multi-valued properties.

A transient object just constructed in C++ or Java is called empty because it does
not yet reflect any persistent object. You can use the IsEmpty() method to determine
whether the transient object still contains the default values only. Note that no
action API call can be executed on an empty object.

By default, the MQSeries Workflow API provides for two views of persistent
objects. They divide the persistent object into so-called primary properties and
so-called secondary properties. Primary properties are considered “more important”
from an access point of view. They are immediately returned when objects are
queried. Secondary properties, and a refresh of the primary properties, are only
returned on an explicit Refresh() request; on a per-object basis. You can use the
IsComplete() API call to determine whether both primary and secondary object
values have been read from the server.

Besides being primary or secondary, properties of a persistent object can be
optional. This means that they can carry a value or not. When a default value is
returned to you, you can use the corresponding IsNull() API call to determine
whether that value is a value explicitly set or whether that value actually denotes
that no value has been set. For example, when Threshold() returns 0 (zero), the
threshold can have been set to zero, that is, no object is returned to you, or the
threshold can have been set to have no value, that is, all qualifying objects are
returned to you. Java is able to return null objects so that an IsNull() method is not
needed.

* logoff
CALL "FmcjExecutionServiceLogoff"

USING BY VALUE serviceValue
RETURNING intReturnValue.

DISPLAY "Logged off".
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Figure 20. COBOL example using basic calls (via CALL) (Part 3 of 3)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 85

Note that ″null″ is a concept orthogonal to being completely read. As long as the
object is not complete, IsNull() will return true for a secondary, optional property
because nothing is known yet about the actual value and whether it has been set
or not. For example, the documentation is a secondary and optional property of an
object. When the object has been queried, then only the primary properties have
been retrieved from the server. The Documentation() API call returns an empty
string or buffer. To determine whether a documentation has been set at all, you can
use the DocumentationIsNull() API call. The result will be “true” independent
from the actual documentation setting as long as IsComplete() returns false. The
documentation is assumed to be not set as long as the secondary data has not been
retrieved.

Data values are accessible as long as the transient objects exist, regardless of the
state of the persistent objects or of the current logon or logoff state. In general, you
decide about the lifetime of your transient objects.

Because of the nature of transient objects, neither a connection to a server nor some
specific authorization is required to access object properties or to update object
properties of the transient object.

Return codes
Accessor API calls provide the value asked for as their return value. Default values
are returned when an error occurred during the execution of the accessor API call.
In C, C++, or COBOL, you can query the MQSeries Workflow result object for any
errors encountered. Java throws an FmcException. The following codes can occur
(the number in parentheses shows the integer value):
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is expected, but 0 is passed.

FMC_ERROR_BUFFER(800)
The buffer provided is too small to hold the largest possible value.
See the appropriate header file or copybook for required lengths.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, default
values are returned.

FMC_ERROR_DOES_NOT_EXIST(118)
The object does not exist. For example, the message was not found
in the message catalog.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_INVALID_CONFIGURATION_ID(1022)
The configuration provided is invalid; it is 0 or does not conform
to its syntax rules.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_RESULT_HANDLE(814)
The handle of the result object provided is invalid; it is 0 or is not
pointing to a result object.

FMC_ERROR_INVALID_TIME(802)
The time passed is invalid.

FMC_ERROR_MESSAGE_CATALOG(815)
The message catalog cannot be found..

Programming concepts

86 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_PROFILE(124)
The profile cannot be found or opened.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call is not called from within an activity implementation,
for example, ProgramID(), or it is not valid from within an activity
implementation, for example, SetConfiguration().

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call. For example, the activity
implementation is not trusted and thus cannot receive its program
ID.

FMC_ERROR_WRONG_STATE(120)
The API call cannot be executed because the object is in the wrong
state. For example, the configuration cannot be changed after
logon.

Accessor API calls allow for the operations listed below; Xxx denotes a particular
class or scope, and ″Property″ denotes the property queried. For example,
FmcjXxxProperty() can stand for FmcjItemDescription().

Accessing a value of type bool
Returns the value of a property of type bool. A default of false is returned if no
information is available.

C
bool FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++
bool Property() const

Java
public abstract boolean property() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

boolReturnValue.

Parameters
handle Input. The handle of the object to be queried.

Return type
bool/ boolean The property value.

Declaration examples

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 87

C bool FMC_APIENTRY FmcjWorkitemManualStartMode(
FmcjWorkitemHandle handle);

C++ bool ManualStartMode() const;

Java public abstract boolean manualStartMode() throws FmcException;

Accessing a value of type date/time
Returns the value of a date/time property. A zero timestamp is returned if no
information is available.

C
FmcjCDateTime FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++
FmcjDateTime Property() const

Java
public abstract Calendar property() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

dateTimeReturnValue.

Parameters
handle Input. The handle of the object to be queried.
time Input/Output. The date/time object to be set.

Return type
FmcjCDateTime/ FmcjDateTime/Calendar

The property value.

Declaration examples

C FmcjCDateTime FMC_APIENTRY FmcjWorkitemEndTime(
FmcjWorkitemHandle handle);

C++ FmcjDateTime EndTime() const;

Java public abstract Calendar endTime() throws FmcException;

Accessing an enumerated value
Returns an enumerating value of a property. It is strongly advised to use the
symbolic names in order to determine the actual value instead of the
corresponding integer values. It is not guaranteed that integer values always stay
the same. For COBOL programs, the symbolic values are defined in file
fmcconst.cpy.

Programming concepts

88 MQSeries Workflow for OS/390 Programming Guide

"NotSet" or a similar indicator is returned if no information is available.

C
enum FmcjXxxEnum FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++
FmcjXxx::Enum Property() const

Java
public abstract Enum property() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcXxxProperty"
USING
BY VALUE

handle
RETURNING

intReturnValue.

Parameters
handle Input. The handle of the object to be queried.

Return type
FmcjXxxEnum/Enum

The property value, some element of an enumeration.

Declaration examples

C FmcjItemAssignReason FMC_APIENTRY
FmcjWorkitemReceivedAs(FmcjWorkitemHandle handle);

C++ FmcjItem::AssignReason ReceivedAs() const;

Java public abstract AssignReason receivedAs() throws FmcException;

The following enumeration types and constants are defined. Numbers in
parentheses are the corresponding integer values. You are strongly advised to use
the symbolic names only.
v FmcjItemAssignReason/ FmcjItem::AssignReason/

com.ibm.workflow.api.ItemPackage.AssignReason

NotSet(0) Indicates that nothing is known about the assign reason.

C Fmc_IR_NotSet

C++ FmcjItem::NotSpecified

Java AssignReason.NOT_SPECIFIED

COBOL Fmc-IR-NotSet

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 89

Normal(1) Indicates that the work item or notification has been assigned to
the user because the user qualified to receive the item.

C Fmc_IR_Normal

C++ FmcjItem::Normal

Java AssignReason.NORMAL

COBOL Fmc-IR-Normal

Substitute(2) Indicates that the work item or notification has been assigned
because the user is the substitute for the person who should
have received the item.

C Fmc_IR_Substitute

C++ FmcjItem::Substitute

Java AssignReason.Substitute

COBOL Fmc-IR-Substitute

ProcessAdministrator(3)
Indicates that the work item or notification has been assigned
because the user is the process administrator.

C Fmc_IR_ProcessAdministrator

C++ FmcjItem::ProcessAdministrator

Java AssignReason.PROCESS_ADMINISTRATOR

COBOL Fmc-IR-ProcAdministrator

SystemAdministrator(4)
Indicates that the work item or notification has been assigned
because the user is the system administrator.

C Fmc_IR_SystemAdministrator

C++ FmcjItem::SystemAdministrator

Java AssignReason.SYSTEM_ADMINISTRATOR

COBOL Fmc-IR-SystAdministrator

ByTransfer(5) Indicates that the work item or notification has been transferred
to the user.

C Fmc_IR_ByTransfer

C++ FmcjItem::ByTransfer

Java AssignReason.BY_TRANSFER

COBOL Fmc-IR-ByTransfer
v FmcjProcessTemplateAuditSetting/ FmcjProcessTemplate::AuditSetting/

com.ibm.workflow.api.ProcessTemplatePackage.AuditSetting

NotSet(0) Indicates that nothing is known about the audit setting.

C Fmc_TA_NotSet

C++ FmcjProcessTemplate::NotSet

Java AuditSetting.NOT_SET

COBOL Fmc-TA-NotSet

NoAudit(1) Indicates that auditing is not to be performed.

Programming concepts

90 MQSeries Workflow for OS/390 Programming Guide

C Fmc_TA_NoAudit

C++ FmcjProcessTemplate::NoAudit

Java AuditSetting.NO_AUDIT

COBOL Fmc-TA-NoAudit

Condensed(2) Indicates that condensed auditing is to be performed.

C Fmc_TA_Condensed

C++ FmcjProcessTemplate::Condensed

Java AuditSetting.CONDENSED

COBOL Fmc-TA-Condensed

Full(3) Indicates that full auditing is to be performed.

C Fmc_TA_Full

C++ FmcjProcessTemplate::Full

Java AuditSetting.FULL

COBOL Fmc-TA-Full
v FmcjActivityInstanceEscalation/ FmcjActivityInstance::Escalation/

com.ibm.workflow.api.ActivityInstancePackage.Escalation

NotSet(0) Indicates that it is not known whether there is a notification on
the activity instance.

C Fmc_AE_NotSet

C++ FmcjActivityInstance::NotSpecified

Java Escalation.NOT_SPECIFIED

COBOL Fmc-AE-NotSet

NoNotification(1)
Indicates that no notification occurred so far on the activity
instance.

C Fmc_AE_NoNotification

C++ FmcjActivityInstance::NoNotification

Java Escalation.NO_NOTIFICATION

COBOL Fmc-AE-NoNotif

FirstNotification
Indicates that the first notification occurred.

C(4) Fmc_AE_FirstNotification

C++(4) FmcjActivityInstance::FirstNotification

Java(2) Escalation.FIRST_NOTIFICATION

COBOL(4) Fmc-AE-FirstNotif

SecondNotification
Indicates that the second notification occurred.

C(5) Fmc_AE_SecondNotification

C++(5) FmcjActivityInstance::SecondNotification

Java(3) Escalation.SECOND_NOTIFICATION

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 91

COBOL(5) Fmc-AE-SecNotif
v FmcjActivityInstanceStateValue/ FmcjActivityInstance::state/

com.ibm.workflow.api.ActivityInstancePackage.ExecutionState

NotSet(0) Indicates that nothing is known about the state of the activity
instance.

C Fmc_AS_NotSet

C++ FmcjActivityInstance::undefined

Java ExecutionState.UNDEFINED

COBOL Fmc-AS-NotSet

Ready(1) Indicates that the activity instance is in the ready state.

C Fmc_AS_Ready

C++ FmcjActivityInstance::ready

Java ExecutionState.READY

COBOL Fmc-AS-Ready

Running(2) Indicates that the activity instance is in the running state.

C Fmc_AS_Running

C++ FmcjActivityInstance::running

Java ExecutionState.RUNNING

COBOL Fmc-AS-Running

Finished Indicates that the activity instance is in the finished state.

C(4) Fmc_AS_Finished

C++(4) FmcjActivityInstance::finished

Java(3) ExecutionState.FINISHED

COBOL(4) Fmc-AS-Finished

Terminated Indicates that the activity instance is in the terminated state.

C(8) Fmc_AS_Terminated

C++(8) FmcjActivityInstance::terminated

Java(4) ExecutionState.TERMINATED

COBOL(8) Fmc-AS-Term

Suspended Indicates that the activity instance is in the suspended state.

C(16) Fmc_AS_Suspended

C++(16) FmcjActivityInstance::suspended

Java(5) ExecutionState.SUSPENDED

COBOL(16) Fmc-AS-Suspended

Inactive Indicates that the activity instance is still inactive.

C(32) Fmc_AS_Inactive

C++(32) FmcjActivityInstance::inactive

Java(6) ExecutionState.INACTIVE

Programming concepts

92 MQSeries Workflow for OS/390 Programming Guide

COBOL(32) Fmc-AS-Inactive

CheckedOut Indicates that the activity instance has been checked out.

C(64) Fmc_AS_CheckedOut

C++(64) FmcjActivityInstance::checkedOut

Java(7) ExecutionState.CHECKED_OUT

COBOL(64) Fmc-AS-CheckedOut

InError Indicates that the activity instance has not been executed
successfully.

C(128) Fmc_AS_InError

C++(128) FmcjActivityInstance::inError

Java(8) ExecutionState.IN_ERROR

COBOL(128) Fmc-AS-InError

Executed Indicates that the activity instance has been executed.

C(256) Fmc_AS_Executed

C++(256) FmcjActivityInstance::executed

Java(9) ExecutionState.EXECUTED

COBOL(256) Fmc-AS-Executed

Planning Indicates that the activity instance is in the planning state.

C(512) Fmc_AS_Planning

C++(512) FmcjActivityInstance::planning

Java(10) ExecutionState.PLANNING

COBOL(512) Fmc-AS-Planning

ForceFinished Indicates that the activity instance is in the force-finished state.

C(1024) Fmc_AS_ForceFinished

C++(1024) FmcjActivityInstance::forceFinished

Java(11) ExecutionState.FORCE_FINISHED

COBOL(1024) Fmc-AS-Force-Finished

Skipped Indicates that the activity instance has not been executed but
skipped.

C(2048) Fmc_AS_Skipped

C++(2048) FmcjActivityInstance::skipped

Java(12) ExecutionState.SKIPPED

COBOL(2048) Fmc-AS-Skipped

Deleted Indicates that the activity instance has been deleted.

C(4096) Fmc_AS_Deleted

C++(4096) FmcjActivityInstance::deleted

Java(13) ExecutionState.DELETED

COBOL(4096) Fmc-AS-Deleted

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 93

Terminating Indicates that the activity instance is in the terminating state.

C(8192) Fmc_AS_Terminating

C++(8192) FmcjActivityInstance::terminating

Java(14) ExecutionState.TERMINATING

COBOL(8192) Fmc-AS-Terminating

Suspending Indicates that the activity instance is in the suspending state.

C(16384) Fmc_AS_Suspending

C++(16384) FmcjActivityInstance::suspendting

Java(15) ExecutionState.SUSPENDING

COBOL(16384)
Fmc-AS-Suspending

v FmcjActivityInstanceType/ FmcjActivityInstance::Type/
com.ibm.workflow.api.ActivityInstancePackage.Type

NotSet(0) Indicates that nothing is known about the type of the activity
instance.

C Fmc_AT_NotSet

C++ FmcjActivityInstance::NotSet

Java Type.NOT_SET

COBOL Fmc-AT-NotSet

Process(1) Indicates that the activity instance is implemented by a process.

C Fmc_AT_Process

C++ FmcjActivityInstance::Process

Java Type.PROCESS

COBOL Fmc-AT-Proc

Program(2) Indicates that the activity instance is implemented by a program.

C Fmc_AT_Program

C++ FmcjActivityInstance::Program

Java Type.PROGRAM

COBOL Fmc-AT-Program

Block Indicates that the activity instance is implemented by a block.

C(16) Fmc_AT_Block

C++(16) FmcjActivityInstance::Block

Java(3) Type.BLOCK

COBOL(16) Fmc-AT-Block
v FmcjControlConnectorInstanceStateValue/ FmcjControlConnectorInstance::state/

com.ibm.workflow.api.ControlConnectorInstancePackage.EvaluationState

False(0) Indicates that evaluation of the control connector resulted in
False.

C Fmc_CS_False

Programming concepts

94 MQSeries Workflow for OS/390 Programming Guide

C++ FmcjControlConnectorInstance::False

Java EvaluationState.IS_FALSE

COBOL Fmc-CS-False

True(1) Indicates that evaluation of the control connector resulted in
True.

C Fmc_CS_True

C++ FmcjControlConnectorInstance::True

Java EvaluationState.IS_TRUE

COBOL Fmc-CS-True

NotEvaluated(2)
Indicates that the control connector has not yet been evaluated.

C Fmc_CS_NotEvaluated

C++ FmcjControlConnectorInstance::NotEvaluated

Java EvaluationState.NOT_EVALUATED

COBOL Fmc-CS-NotEvaluated

NotSet(3) Indicates that nothing is known about the evaluation of the
control connector.

C Fmc_CS_NotSet

C++ FmcjControlConnectorInstance::NotSet

Java EvaluationState.NOT_SET

COBOL Fmc-CS-NotSet
v FmcjControlConnectorInstanceType/ FmcjControlConnectorInstance::Type/

com.ibm.workflow.api.ControlConnectorInstancePackage.Type

NotSet(0) Indicates that nothing is known about the type of the control
connector instance.

C Fmc_CT_NotSet

C++ FmcjControlConnectorInstance::Undefined

Java Type.UNDEFINED

COBOL Fmc-CT-NotSet

Condition(1) Indicates that the control connector instance is a connector which
can have a transition condition.

C Fmc_CT_Condition

C++ FmcjControlConnectorInstance::Condition

Java Type.CONDITION

COBOL Fmc-CT-Condition

Otherwise(2) Indicates that the control connector instance is the “otherwise”
connector.

C Fmc_CT_Otherwise

C++ FmcjControlConnectorInstance::Otherwise

Java Type.OTHERWISE

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 95

COBOL Fmc-CT-Otherwise
v FmcjProgramTemplateExeMode/ FmcjProgramTemplate::ExeMode

NotSet(0) Indicates that nothing is known about the execution mode.

C Fmc_GM_NotSet

C++ FmcjProgramTemplate::NotSet

COBOL Fmc-GM-NotSet

Normal(1) Indicates that the program does not participate in global
transactions.

C Fmc_GM_Normal

C++ FmcjProgramTemplate::Normal

COBOL Fmc-GM-Normal

Safe(2) Indicates that the program participates in global transactions.

C Fmc_GM_Safe

C++ FmcjProgramTemplate::Safe

COBOL Fmc-GM-Safe
v FmcjExeOptionsStyle/ FmcjExeOptions::Style/

com.ibm.workflow.api.ProgramDataPackage.Style

NotSet(0) Indicates that nothing is known about the style of the EXE.

C Fmc_EO_NotSet

C++ FmcjExeOptions::NotSet

Java Style.NOT_SET

COBOL Fmc-EO-NotSet

Visible(1) Indicates that the EXE should start visibly.

C Fmc_EO_Visible

C++ FmcjExeOptions::Visible

Java Style.VISIBLE

COBOL Fmc-EO-Visible

Invisible(2) Indicates that the EXE should start invisibly.

C Fmc_EO_Invisible

C++ FmcjExeOptions::Invisible

Java Style.INVISIBLE

COBOL Fmc-EO-Invisible

Minimized(3) Indicates that the EXE should start minimized.

C Fmc_EO_Minimized

C++ FmcjExeOptions::Minimized

Java Style.MINIMIZED

COBOL Fmc-EO-Minimized

Maximized(4) Indicates that the EXE should start maximized.

Programming concepts

96 MQSeries Workflow for OS/390 Programming Guide

C Fmc_EO_Maximized

C++ FmcjExeOptions::Maximized

Java Style.MAXIMIZED

COBOL Fmc-EO-Maximized
v FmcjProgramTemplateExeUser/ FmcjProgramTemplate::ExeUser

NotSet(0) Indicates that nothing is known about the execution user.

C Fmc_GU_NotSet

C++ FmcjProgramTemplate::NotSpecified

COBOL Fmc-GU-NotSet

Agent(1) Indicates that the program executes under the identifier of the
program execution server.

C Fmc_GU_Agent

C++ FmcjProgramTemplate::Agent

COBOL Fmc-GU-Agent

Starter(2) Indicates that the program executes under the user ID of the
starter of the program.

C Fmc_GU_Starter

C++ FmcjProgramTemplate::Starter

COBOL Fmc-GU-Starter
v FmcjExternalOptionsTimePeriod/ FmcjExternalOptions::TimePeriod/

com.ibm.workflow.api.ProgramDataPackage.TimePeriod

NotSet(0) Indicates that nothing is known about an external service
timeout.

C Fmc_EX_NotSet

C++ FmcjExternalOptions::NotSet

Java TimePeriod.NOT_SET

COBOL Fmc-EX-NotSet

TimeInterval(1)
Indicates that the program execution server should wait a
specified time interval for the answer of the started external
service.

C Fmc_EX_TimeInterval

C++ FmcjExternalOptions::TimeInterval

Java TimePeriod.TIME_INTERVAL

COBOL Fmc-EX-TimeInterval

Forever(2) Indicates that the program execution server should wait forever
for the answer of the started external service, that is, whatever
time it takes.

C Fmc_EX_Forever

C++ FmcjExternalOptions::Forever

Java TimePeriod.FOREVER

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 97

COBOL Fmc-EX-Forever

Never(3) Indicates that the program execution server should not wait for
an answer of the started external service.

C Fmc_EX_Never

C++ FmcjExternalOptions::Never

Java TimePeriod.NEVER

COBOL Fmc-EX-Never
v FmcjExecutionDataKindEnum/ FmcjExecutionData::KindEnum

NotSet(0) Indicates that nothing is known about the type of the execution
data.

C Fmc_DART_NotSet

C++ FmcjExecutionData::NotSet

Java not supported

COBOL Fmc-DART-NotSet

Error(1) Indicates that execution of an asynchronous call returns an error.

C Fmc_DART_Error

C++ FmcjExecutionData::Error

Java not supported

COBOL Fmc-DART-Error

Terminate(2) Indicates that receiving execution data can end.

C Fmc_DART_Terminate

C++ FmcjExecutionData::Terminate

Java not supported

COBOL Fmc-DART-Terminate

ItemDeleted(1000)
Indicates that the execution data describes the deletion of a work
item or notification.

C Fmc_DART_ItemDeleted

C++ FmcjExecutionData::ItemDeleted

Java not supported

COBOL Fmc-DART-ItemDeleted

Workitem(1002)
Indicates that the execution data describes the creation or update
of a work item.

C Fmc_DART_Workitem

C++ FmcjExecutionData::Workitem

Java not supported

COBOL Fmc-DART-Workitem

Programming concepts

98 MQSeries Workflow for OS/390 Programming Guide

ActivityInstanceNotification(1003)
Indicates that the execution data describes the creation or update
of an activity instance notification.

C Fmc_DART_ActivityInstanceNotification

C++ FmcjExecutionData::ActivityInstanceNotification

Java not supported

COBOL Fmc-DART-ActInstNotif

ProcessInstanceNotification(1004)
Indicates that the execution data describes the creation or update
of a process instance notification.

C Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification

Java not supported

COBOL Fmc-DART-ProcInstNotif

ExecuteInstanceResponse(1100)
Indicates that the execution data describes the answer to an
asynchronous request which asked for the creation and
execution of a process instance.

C Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification

Java not supported

COBOL Fmc-DART-ExecuteInstResponse

ExecuteProgramResponse(1101)
Indicates that the execution data describes the answer to an
asynchronous request which asked for the execution of a
program.

C Fmc_DART_ExecuteProgramResponse

C++ FmcjExecutionData::ExecuteProgramResponse

Java not supported

COBOL Fmc-DART-ExecuteProgResponse
v FmcjImplementationDataBasis/ FmcjImplementationData::Basis/

com.ibm.workflow.api.ProgramDataPackage.Basis

NotSet(0) Indicates that nothing is known about the operating system
platform of the implementing program.

C Fmc_DP_NotSet

C++ FmcjImplementationData::NotSpecified

Java Basis.NOT_SET

COBOL Fmc-DP-NotSet

OS2(1) Indicates that the program is an OS/2 program.

C Fmc_DP_OS2

C++ FmcjImplementationData::OS2

Java Basis.OS2

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 99

COBOL Fmc-DP-OS2

AIX(2) Indicates that the program is an AIX program.

C Fmc_DP_AIX

C++ FmcjImplementationData::AIX

Java Basis.AIX

COBOL Fmc-DP-AIX

HPUX(3) Indicates that the program is an HP-UX program.

C Fmc_DP_HPUX

C++ FmcjImplementationData::HPUX

Java Basis.HPUX

COBOL Fmc-DP-HPUX

Windows95(4) Indicates that the program is a Windows 95 program.

C Fmc_DP_Windows95

C++ FmcjImplementationData::Windows95

Java Basis.WINDOWS_95

COBOL Fmc-DP-Windows95

WindowsNT(5)
Indicates that the program is a Windows NT program.

C Fmc_DP_WindowsNT

C++ FmcjImplementationData::WindowsNT

Java Basis.WINDOWS_NT

COBOL Fmc-DP-WindowsNT

OS/390(6) Indicates that the program is an OS/390 program.

C Fmc_DP_OS390

C++ FmcjImplementationData::OS390

Java Basis.OS390

COBOL Fmc-DP-OS390

Solaris(7) Indicates that the program is a Solaris program.

C Fmc_DP_Solaris

C++ FmcjImplementationData::Solaris

Java Basis.SOLARIS

COBOL Fmc-DP-SOLARIS
v FmcjImplementationDataType/ FmcjImplementationData::Type/

com.ibm.workflow.api.ProgramDataPackage.Type

NotSet(0) Indicates that nothing is known about the implementation.

C Fmc_DT_NotSet

C++ FmcjImplementationData::NotSet

Java ImplementationData.NOT_SET

Programming concepts

100 MQSeries Workflow for OS/390 Programming Guide

COBOL Fmc-DT-NotSet

EXE(1) Indicates that the program is an executable.

C Fmc_DT_EXE

C++ FmcjImplementationData::EXE

Java ImplementationData.EXE

COBOL Fmc-DT-EXE

DLL(2) Indicates that the program is implemented by a dynamic link
library.

C Fmc_DT_DLL

C++ FmcjImplementationData::DLL

Java ImplementationData.DLL

COBOL Fmc-DT-DLL

External Indicates that the program is some external service.

C(4) Fmc_DT_External

C++(4) FmcjImplementationData::External

Java(3) ImplementationData.EXTERNAL

COBOL(4) Fmc-DT-External
v FmcjItemType/ FmcjItem::ItemType/

com.ibm.workflow.api.ItemPackage.ItemType

NotSet(0) Indicates that nothing is known about the item type.

C Fmc_IT_NotSet

C++ FmcjItem::unknown

Java ItemType.UNKNOWN

COBOL Fmc-IT-NotSet

Workitem(1) Indicates that the item is a work item.

C Fmc_IT_Workitem

C++ FmcjItem::Workitem

Java ItemType.WORK_ITEM

COBOL Fmc-IT-Workitem

ProcessInstanceNotification
Indicates that the item is a process instance notification.

C(3) Fmc_IT_ProcessInstanceNotification

C++(3) FmcjItem::ProcessInstanceNotification

Java(2) ItemType.PROCESS_INSTANCE_NOTIFICATION

COBOL(3) Fmc-IT-ProcInstNotif

FirstActivityInstanceNotification
Indicates that the item is the first activity instance notification.

C(4) Fmc_IT_FirstActivityInstanceNotification

C++(4) FmcjItem::FirstActivityInstanceNotification

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 101

Java(3) ItemType.FIRST_ACTIVITY_INSTANCE_
NOTIFICATION

COBOL(4) Fmc-IT-FirstActInstNotif

SecondActivityInstanceNotification
Indicates that the item is the second activity instance notification.

C(5) Fmc_IT_SecondActivityInstanceNotification

C++(5) FmcjItem::SecondActivityInstanceNotification

Java(4) ItemType.SECOND_ACTIVITY_INSTANCE_
NOTIFICATION

COBOL(5) Fmc-IT-SecActInstNotif
v FmcjProcessInstanceEscalation/ FmcjProcessInstance::Escalation/

com.ibm.workflow.api.ProcessInstancePackage.Escalation

NotSet(0) Indicates that it is not known whether there is a notification on
the process instance.

C Fmc_PE_NotSet

C++ FmcjProcessInstance::NotSet

Java Escalation.NOT_SET

COBOL Fmc-PE-NotSet

NoNotification(1)
Indicates that no notification occurred so far on the process
instance.

C Fmc_PE_NoNotification

C++ FmcjProcessInstance::NoNotification

Java Escalation.NO_NOTIFICATION

COBOL Fmc-PE-NoNotif

ProcessInstanceNotification
Indicates that a process instance notification occurred.

C(3) Fmc_PE_ProcessNotification

C++(3) FmcjProcessInstance::ProcessNotification

Java(2) Escalation.PROCESS_NOTIFICATION

COBOL(3) Fmc-PE-ProcNotif
v FmcjProcessInstanceStateValue/ FmcjProcessInstance::state/

com.ibm.workflow.api.ProcessInstancePackage.ExecutionState

NotSet(0) Indicates that nothing is known about the state of the process
instance.

C Fmc_PS_NotSet

C++ FmcjProcessInstance::undefined

Java ExecutionState.UNDEFINED

COBOL Fmc-PS-NotSet

Ready(1) Indicates that the process instance is in the ready state.

C Fmc_PS_Ready

Programming concepts

102 MQSeries Workflow for OS/390 Programming Guide

C++ FmcjProcessInstance::ready

Java ExecutionState.READY

COBOL Fmc-PS-Ready

Running(2) Indicates that the process instance is in the running state.

C Fmc_PS_Running

C++ FmcjProcessInstance::running

Java ExecutionState.RUNNING

COBOL Fmc-PS-Running

Finished Indicates that the process instance is in the finished state.

C(4) Fmc_PS_Finished

C++(4) FmcjProcessInstance::finished

Java(3) ExecutionState.FINISHED

COBOL(4) Fmc-PS-Finished

Terminated Indicates that the process instance is in the terminated state.

C(8) Fmc_PS_Terminated

C++(8) FmcjProcessInstance::terminated

Java(4) ExecutionState.TERMINATED

COBOL(8) Fmc-PS-Term

Suspended Indicates that the process instance is in the suspended state.

C(16) Fmc_PS_Suspended

C++(16) FmcjProcessInstance::suspended

Java(5) ExecutionState.SUSPENDED

COBOL(16) Fmc-PS-Suspended

Terminating Indicates that the process instance is in the terminating state.

C(32) Fmc_PS_Terminating

C++(32) FmcjProcessInstance::terminating

Java(6) ExecutionState.TERMINATING

COBOL(32) Fmc-PS-Terminating

Suspending Indicates that the process instance is in the suspending state.

C(64) Fmc_PS_Suspending

C++(64) FmcjProcessInstance::suspending

Java(7) ExecutionState.SUSPENDING

COBOL(64) Fmc-PS-Suspending

Deleted Indicates that the process instance is in the deleted state.

C(128) Fmc_PS_Deleted

C++(128) FmcjProcessInstance::deleted

Java(8) ExecutionState.DELETED

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 103

COBOL(128) Fmc-PS-Deleted
v State/ FmcjItemStateValue/ FmcjItem::state/

com.ibm.workflow.api.ItemPackage.ExecutionState

NotSet(0) Indicates that nothing is known about the state of the item.

C Fmc_IS_NotSet

C++ FmcjItem::undefined

Java ExecutionState.UNDEFINED

COBOL Fmc-IS-NotSet

Ready(1) Indicates that the item is in the ready state.

C Fmc_IS_Ready

C++ FmcjItem::ready

Java ExecutionState.READY

COBOL Fmc-IS-Ready

Running(2) Indicates that the item is in the running state.

C Fmc_IS_Running

C++ FmcjItem::running

Java ExecutionState.RUNNING

COBOL Fmc-IS-Running

Finished Indicates that the item is in the finished state.

C(4) Fmc_IS_Finished

C++(4) FmcjItem::finished

Java(3) ExecutionState.FINISHED

COBOL(4) Fmc-IS-Finished

Terminated Indicates that the item is in the terminated state.

C(8) Fmc_IS_Terminated

C++(8) FmcjItem::terminated

Java(4) ExecutionState.TERMINATED

COBOL(8) Fmc-IS-Term

Suspended Indicates that the item is in the suspended state.

C(16) Fmc_IS_Suspended

C++(16) FmcjItem::suspended

Java(5) ExecutionState.SUSPENDED

COBOL(16) Fmc-IS-Suspended

Disabled Indicates that the item is disabled.

C(32) Fmc_IS_Disabled

C++(32) FmcjItem::disabled

Java(6) ExecutionState.DISABLED

COBOL(32) Fmc-IS-Disabled

Programming concepts

104 MQSeries Workflow for OS/390 Programming Guide

CheckedOut Indicates that the item is checked out.

C(64) Fmc_IS_CheckedOut

C++(64) FmcjItem::checkedOut

Java(7) ExecutionState.CHECKED_OUT

COBOL(64) Fmc-IS-CheckedOut

InError Indicates that the item is in the InError state.

C(128) Fmc_IS_InError

C++(128) FmcjItem::inError

Java(8) ExecutionState.IN_ERROR

COBOL(128) Fmc-IS-InError

Executed Indicates that the item has been executed.

C(256) Fmc_IS_Executed

C++(256) FmcjItem::Executed

Java(9) ExecutionState.EXECUTED

COBOL(256) Fmc-IS-Executed

Planning Indicates that the item is in the planning state.

C(512) Fmc_IS_Planning

C++(512) FmcjItem::Planning

Java(10) ExecutionState.PLANNING

COBOL(512) Fmc-IS-Planning

ForceFinished Indicates that the item has been force-finished.

C(1024) Fmc_IS_ForceFinished

C++(1024) FmcjItem::ForceFinished

Java(11) ExecutionState.FORCE_FINISHED

COBOL(1024) Fmc-IS-ForceFinished

Deleted Indicates that the item has been deleted.

C(4096) Fmc_IS_Deleted

C++(4096) FmcjItem::Deleted

Java(12) ExecutionState.DELETED

COBOL(4096) Fmc-IS-Deleted

Terminating Indicates that the item is in the terminating state.

C(8192) Fmc_IS_Terminating

C++(8192) FmcjItem::Terminating

Java(13) ExecutionState.TERMINATING

COBOL(8192) Fmc-IS-Terminating

Suspending Indicates that the item is in the suspending state.

C(16384) Fmc_IS_Suspending

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 105

C++(16384) FmcjItem::Suspending

Java(14) ExecutionState.SUSPENDING

COBOL(16384)
Fmc-IS-Suspending

v FmcjWorkitemProgramRetrieval/ FmcjWorkitem::ProgramRetrieval/
com.ibm.workflow.api.WorkItemPackage.ProgramRetrieval

NotSet(0) Indicates that nothing is said about which program definitions to
retrieve.

C Fmc_WS_NotSet

C++ FmcjWorkitem::NotSet

Java ProgramRetrieval.NOT_SET

COBOL Fmc-WS-NotSet

CommonDataOnly(1)
Indicates that the common parts of program definitions are to be
retrieved.

C Fmc_WS_CommonDataOnly

C++ FmcjWorkitem::CommonDataOnly

Java ProgramRetrieval.COMMON_DATA_ONLY

COBOL Fmc-WS-CommonDataOnly

SpecifiedDefinitions(2)
Indicates that the specified program definitions are to be
retrieved.

C Fmc_WS_SpecifiedDefinitions

C++ FmcjWorkitem::SpecifiedDefinitions

Java ProgramRetrieval.SPECIFIED_DEFINITIONS

COBOL Fmc-WS-SpecifiedDefs

AllDefinitions
Indicates that all program definitions are to be retrieved.

C(4) Fmc_WS_AllDefinitions

C++(4) FmcjWorkitem::AllDefinitions

Java(3) ProgramRetrieval.ALL_DEFINITIONS

COBOL(4) Fmc-WS-AllDefs
v FmcjPersistentListTypeOfList/ FmcjPersistentList::TypeOfList/

com.ibm.workflow.api.PersistentListPackage.TypeOfList

NotSet(0) Indicates that nothing is known about the list type.

C Fmc_LT_NotSet

C++ FmcjPersistentList::NotSet

Java TypeOfList.NOT_SET

COBOL Fmc-LT-NotSet

Public(1) Indicates that the list definition is for public usage.

C Fmc_LT_Public

Programming concepts

106 MQSeries Workflow for OS/390 Programming Guide

C++ FmcjPersistentList::Public

Java TypeOfList.PUBLIC

COBOL Fmc-LT-Public

Private Indicates that the list definition is for private usage.

C(3) Fmc_LT_Private

C++(3) FmcjPersistentList::Private

Java(2) TypeOfList.PRIVATE

COBOL(3) Fmc-LT-Private

Accessing a value of type integer
Returns the value of a property of type long, unsigned long, or int. Zero (0) is
returned if no information is available. The following examples illustrate return of
a long value.

C
long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

unsigned long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++
long Property() const

unsigned long Property() const

Java
public abstract int property() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

longReturnValue.

Parameters
handle Input. The handle of the object to be queried.

Return type
long/unsigned long/int

The property value.

Declaration examples

C unsigned long FMC_APIENTRY FmcjWorkitemPriority(
FmcjWorkitemHandle handle);

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 107

C++ unsigned long Priority() const;

Java public abstract int priority() throws FmcException;

Accessing a value of type string
Returns the value of a property of type string. An empty string or buffer is
returned if no information is available.

C
char * FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle,

char * buffer,
unsigned long bufferLength)

C++
string Property() const

Java
public abstract String property() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
buffer
bufferLength

RETURNING
pointerReturnValue.

Parameters
handle Input. The handle of the object to be queried.
buffer Input/Output. A pointer to a buffer to contain the property value.
bufferLength Input. The length of the buffer; must be big enough to hold the

largest possible value (see file fmcmxcon.h for the minimum
required lengths). You can use a single buffer for retrieving all your
character values.

Return type
char*/string/String

The property value.

Declaration examples

C char* FMC_APIENTRY FmcjWorkitemDescription(
FmcjWorkitemHandle handle);

C++ string Description() const;

Java public abstract String Description() throws FmcException;

Programming concepts

108 MQSeries Workflow for OS/390 Programming Guide

Accessing a multi-valued property
Returns the value of a multi-valued property by providing a collection of values.
The collection is represented as a vector in C, C++, and COBOL, and as an array in
Java. In C++, the collection object to be filled has to be provided by the caller. Use
the appropriate accessor API calls to read a single value (refer to “C and COBOL
vector accessor functions” on page 21).

An unchanged vector or an empty array is returned if no information is available.

Any existing array elements are overwritten. Vector elements in C++ are, however,
appended to the supplied vector. If you want to read the current values only, you
have to erase all elements of the vector.

C
FmcjYyyVectorHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++
void Property(vector<ValueType> & value) const

Java
public abstract ValueType[] property() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

FmcjYyyVectorHandleReturnValue.

Parameters
handle Input. The handle of the object to be queried.
value Input/Output. The vector or array to contain the values of the property.

Return type
FmcjValueTypeVectorHandle/ValueType[]

The vector or array of values of the property.

Declaration examples

C FmcjStringVectorHandle FMC_APIENTRY FmcjWorkitemStaff(
FmcjWorkitemHandle handle);

C++ void Staff(vector<string> & staff) const;

Java public abstract String[] staff() throws FmcException;

Accessing an object valued property
Returns the value of a property which is itself described by an object.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 109

C
FmcjObjectHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++
FmcjObject Property() const

Java
public abstract Object property() throws FmcException

public abstract ExecutionService
locate(String systemGroup, String system) throws FmcException

public abstract
ExecutionAgent getExecutionAgent() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

FmcjObjectHandleReturnValue.

Parameters
handle Input. The handle of the object to be queried.
system Input. The system where the execution server runs.
systemGroup

Input. The system group where the execution server runs.

Return type
ExecutionAgent

The program execution agent which provides for the context of an activity
implementation.

ExecutionService
The execution service which provides for the interface to the execution
server.

Object/Handle/FmcjObject
The property value.

Declaration examples

C FmcjErrorHandle FMC_APIENTRY FmcjWorkitemErrorReason(
FmcjWorkitemHandle handle);

C++ FmcjError ErrorReason() const;

Java public abstract FmcError errorReason() throws FmcException;

Programming concepts

110 MQSeries Workflow for OS/390 Programming Guide

Accessing a pointer valued property
Returns the value of a property which is a pointer to some object.

C
FmcjObjectHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++
FmcjObject * Property() const

Java
public abstract Object property() throws FmcException

COBOL
FmcjXxxProperty.

CALL "FmcjXxxProperty"
USING
BY VALUE

handle
RETURNING

FmcjObjectHandleReturnValue.

Parameters
handle Input. The handle of the object to be queried.

Return type
Object*/Handle/FmcjObject*

A pointer or handle to the object or the object itself.

Declaration examples

C FmcjReadOnlyContainerHandle FMC_APIENTRY
FmcjProgramDataInContainer(FmcjProgramDataHandle handle);

C++ FmcjReadOnlyContainer* InContainer() const;

Java public abstract ReadOnlyContainer inContainer() throws
FmcException;

Determining whether an optional property is set
This API call states whether an optional property is set.

When the property is a secondary property and the object queried is not yet
completely read, it is unknown whether the property is set or not so that a default
value of true is returned.

Note: Java does not expose IsNull() methods since it is able to return null objects.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 111

C
bool FMC_APIENTRY FmcjXxxPropertyIsNull(FmcjXxxHandle handle)

C++
bool PropertyIsNull() const

COBOL
FmcjXxxPropertyIsNull.

CALL "FmcjXxxPropertyIsNull"
USING
BY VALUE

handle
RETURNING

boolReturnValue.

Parameters
handle Input. The handle of the object to be queried.

Return type
bool/boolean True if the property is not set, otherwise false.

Declaration examples

C bool FMC_APIENTRY FmcjWorkitemDescriptionIsNull(
FmcjWorkitemHandle handle);

C++ bool DescriptionIsNull() const;

Setting a value of type integer
This API call sets the specified property to the specified value.

C
void FMC_APIENTRY FmcjXxxSetProperty(FmcjXxxHandle handle,

long newValue);

C++
void SetProperty(long newValue);

Java
public abstract void setProperty(int newValue) throws FmcException

Programming concepts

112 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjXxxSetProperty.

CALL "FmcjXxxSetProperty"
USING
BY VALUE

handle
newValue.

Parameters
handle Input. The handle of the object to be queried.
newValue Input. The new value of the property.

Declaration examples

C void FMC_APIENTRY FmcjExecutionServiceSetTimeout(
FmcjExecutionServiceHandle handle, long newValue);

C++ void SetTimeout(long newValue) const;

Java public abstract void SetTimeout(int newValue) throws
FmcException;

An example is the FmcjService::SetTimeout API call which sets the timeout value
for requests issued by the client to an MQSeries Workflow server via this
FmcjService object. In other words, it sets the time the client is willing to wait for
an answer.

When set, the new timeout value is used for all API calls requiring communication
between the client and the server. It can be set (changed) as often as desired. It is
to be provided as milliseconds. A negative value is interpreted as -1, that is, an
indefinite timeout.

The default timeout value is taken from the user’s profile, from the APITimeOut
value; if not found, from the configuration profile. If it is also not found there, the
default is 180000 ms (3 minutes).

Note: It is possible that, even though FMC_ERROR_TIMEOUT is returned when
you issue a client-server call, the MQSeries Workflow server has successfully
processed the request. However, the server could not send back FMC_OK
because communication reported a timeout in the meantime. If the request
has not been processed, increase the value set for the timeout and retry the
call.

Setting an object valued property
This API call sets the specified property for the specified object.

Java
public abstract void addProperty(Object value)

public abstract
void setContext(String args[], Properties properties)

public abstract
void setContext(Applet applet, Properties properties)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 113

Parameters
applet Input. The applet which instantiated the agent. If IIOP is used as

the communication protocol, this information is required.
args Input. The command line arguments passed to the application

which instantiated the agent bean.
properties Input. The environmental properties passed to the application or

applet when it was instantiated.
value Input. The value of the property.

Declaration examples

Java public abstract void addPropertyChangeListener(
PropertyChangeListener value);

Updating an object
This API call updates the specified object with information sent from an MQSeries
Workflow server. The update information must have been provided for the
specified object.

The server pushes update information for work items (as long as they are not
disabled), activity instance notifications, and process instance notifications. The
process setting of the associated process instance must specify REFRESH_POLICY
PUSH for that process instance itself or as a process default. Logon must have
been performed with a present session mode.

C
APIRET FMC_APIENTRY FmcjXxxUpdate(FmcjXxxHandle handle,

FmcjExecutionDataHandle data);

C++
APIRET Update(FmcjExecutionData const & data);

COBOL
FmcjXxxUpdate.

CALL "FmcjXxxUpdate"
USING
BY VALUE

handle
dataValue

RETURNING
intReturnValue.

Parameters
handle Input. The handle of the object to be updated.
data/dataValue Input. The data which is to be used for the update.

Return codes

The C and COBOL calls and the MQSeries Workflow result object can return the
following codes; the number in parentheses shows their integer value:
FMC_OK(0) The API call completed successfully.

Programming concepts

114 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR(1)
A parameter references an undefined location. For example, the
address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, it does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_OID(805)
The execution data is no data to update the specified object; it does
not belong to the specified object.

FMC_ERROR_WRONG_KIND(501)
The execution data is no data to update the specified object; it is
no update data.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 115

C example: accessing values

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemHandle workitem = 0;
FmcjStringVectorHandle sList = 0;
char category[FMC_CATEGORY_NAME_LENGTH+1];
char generalBuffer[200];
unsigned long priority = 0;
int enumValue = 0;
FmcjCDateTime startTime;
unsigned long i = 0;

FmcjGlobalConnect();

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);

/* set the timeout for requests */
FmcjExecutionServiceSetTimeout(service, 60000);

/* assumption: workitem has been queried from the server */
/* access a value of type bool */

if (FmcjWorkitemCategoryIsNull(workitem))
printf("Category is not set\n");

else /* access a value of type char */
{ /* use a buffer which fits */

FmcjWorkitemCategory(workitem, category, FMC_CATEGORY_NAME_LENGTH+1);
printf("Category : %s\n", category);

}

/* access a date/time value */
startTime= FmcjWorkitemStartTime(workitem);
printf("Start time : %s\n",

FmcjDateTimeAsString(&startTime, generalBuffer, 200));

/* access a value of type long */
priority = FmcjWorkitemPriority(workitem);
printf("Priority : %u\n", priority);

/* access an enumerated value */
enumValue= FmcjWorkitemReceivedAs(workitem);
if (enumValue == Fmc_IR_Normal)

printf("Received as: %s\n","qualified user");
...

/* access a multi-valued field */
sList= FmcjWorkitemSupportTools(workitem);
printf("Support tools: ");
for(i=0; i< FmcjStringVectorSize(sList); i++)
{ /* use a large buffer */

printf("%s ", FmcjStringVectorNextElement(sList, generalBuffer, 200));
}

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);
FmcjGlobalDisconnect();
return FMC_OK;

}

Figure 21. Accessing values in C

Programming concepts

116 MQSeries Workflow for OS/390 Programming Guide

C++ example: accessing values

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{

FmcjGlobal::Connect();
// logon
FmcjExecutionService service; APIRET rc = service.Logon("USERID", "password");

// set the timeout for requests
service.SetTimeout(60000);

// assumption: workitem has been queried from the server
// access a value of type bool

if (workitem.CategoryIsNull())
cout << "Category is not set" << endl;

else // access a value of type char
{ // use a buffer which fits

cout << "Category : " << workitem.Category()<< endl;
}

// access a value of type date/time
cout << "Start time : " << workitem.StartTime()<< endl;

// access a value of type long
cout << "Priority : " << workitem.Priority()<< endl;

// access an enumerated value
FmcjItem::AssignReason reason= workitem.ReceivedAs();
cout << "Received as: " <<

((reason == FmcjItem::Normal) ? "normal user" : "...")
<< endl;

vector<string> tools; int j; // access a multi-valued field
workitem.SupportTools(tools);
cout << "Support tools: " ;
while (j < tools.size())

cout << tools[j++] << " ";
// logoff
rc = service.Logoff();
FmcjGlobal::Disconnect();
return FMC_OK;

} // destructors called automatically

Figure 22. Accessing values in C++

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 117

COBOL example: accessing values

IDENTIFICATION DIVISION.
PROGRAM-ID. "VALUES".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 categBuffer PIC X(34).
01 generalBuffer PIC X(200).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.
* logon

PERFORM FmcjESAllocate.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

* set the timeout for requests
MOVE 60000 TO newTimeOutValue.
PERFORM FmcjESSetTimeout.

* assumption: workitem has been queried from the server
* and hdlItem points to this workitem

* access a value of type bool (PIC 9 BINARY)
PERFORM FmcjWICategIsNull.
IF boolReturnValue = 1

DISPLAY "Category is not set"
ELSE

* access a value of type char (POINTER to a PIC X(n))
* use a buffer which fits

CALL "SETADDR" USING categBuffer categoryNameBuffer
MOVE FMC-CATEG-NAME-LENGTH TO bufferLength
PERFORM FmcjWICateg
DISPLAY "Category : " categBuffer

END-IF
* access a date/time value

PERFORM FmcjWIStartTime.
MOVE dateTimeReturnValue TO timeValue.
CALL "SETADDR" USING generalBuffer dateTimeBuffer.
MOVE 200 TO bufferLength.
PERFORM FmcjDateTimeAsString.
DISPLAY "Start time : " generalBuffer.

* access a value of type unsigned long (PIC 9(9) BINARY)
SET hdlWorkitem TO hdlItem.
PERFORM FmcjWIPriority.
DISPLAY "Priority : " ulongReturnValue.

Figure 23. Accessing values in COBOL (via PERFORM) (Part 1 of 2)

Programming concepts

118 MQSeries Workflow for OS/390 Programming Guide

* access an enumerated value (PIC S9(9) BINARY)
PERFORM FmcjWIReceivedAs.
IF intReturnValue = Fmc-IR-Normal
DISPLAY "Received as: qualified user"
END-IF

* access a multi-valued field
PERFORM FmcjWISupportTools.
SET hdlVector TO FmcjStrVHandleReturnValue.
PERFORM FmcjStrVSize.
DISPLAY "Support tools: ".

* use a large buffer
CALL "SETADDR" USING generalBuffer elementBuffer
PERFORM VARYING i FROM 0 BY 1 UNTIL i >= ulongReturnValue

PERFORM FmcjStrVNextElement
DISPLAY generalBuffer

END-PERFORM
* logoff

PERFORM FmcjESLogoff.
DISPLAY "Logged off".
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 23. Accessing values in COBOL (via PERFORM) (Part 2 of 2)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 119

IDENTIFICATION DIVISION.
PROGRAM-ID. "VALUES".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 categBuffer PIC X(34).
01 generalBuffer PIC X(200).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

* set the timeout for requests
MOVE 60000 TO newTimeOutValue.
CALL "FmcjServiceSetTimeout"

USING BY VALUE serviceValue
newTimeoutValue.

* assumption: workitem has been queried from the server
* and hdlItem points to this workitem

* access a value of type bool (PIC 9 BINARY)
CALL "FmcjItemCategoryIsNull"

USING BY VALUE hdlItem
RETURNING boolReturnValue.

IF boolReturnValue = 1
DISPLAY "Category is not set"

ELSE
* access a value of type char (POINTER to a PIC X(n))
* use a buffer which fits

CALL "SETADDR" USING categBuffer categoryNameBuffer
MOVE FMC-CATEG-NAME-LENGTH TO bufferLength
CALL "FmcjItemCategory"

Figure 24. Accessing values in COBOL (via CALL) (Part 1 of 3)

Programming concepts

120 MQSeries Workflow for OS/390 Programming Guide

USING BY VALUE hdlItem
categoryNameBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY "Category : " categBuffer

END-IF

* access a date/time value
CALL "FmcjItemStartTime"

USING BY VALUE hdlItem
RETURNING dateTimeReturnValue.

CALL "SETADDR" USING generalBuffer dateTimeBuffer.
MOVE 200 TO bufferLength.
CALL "FmcjDateTimeAsString"

USING BY REFERENCE dateTimeReturnValue
BY VALUE dateTimeBuffer

bufferLength
RETURNING pointerReturnValue.

DISPLAY "Start time : " generalBuffer.
* access a value of type unsigned long (PIC 9(9) BINARY)

SET hdlWorkitem TO hdlItem.
CALL "FmcjWorkitemPriority"

USING BY VALUE hdlItem
RETURNING ulongReturnValue.

DISPLAY "Priority : " ulongReturnValue.
* access an enumerated value (PIC S9(9) BINARY)

CALL "FmcjItemReceivedAs"
USING BY VALUE hdlItem
RETURNING intReturnValue.

IF intReturnValue = Fmc-IR-Normal
DISPLAY "Received as: qualified user"

END-IF
* access a multi-valued field

CALL "FmcjWorkitemSupportTools"
USING BY VALUE hdlItem
RETURNING FmcjStrVHandleReturnValue.

SET hdlVector TO FmcjStrVHandleReturnValue.
CALL "FmcjStringVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue.

DISPLAY "Support tools: ".
* use a large buffer

CALL "SETADDR" USING generalBuffer elementBuffer
PERFORM VARYING i FROM 0 BY 1 UNTIL i >= ulongReturnValue
CALL "FmcjStringVectorNextElement"

USING BY VALUE hdlVector
elementBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY generalBuffer

END-PERFORM
* logoff

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

DISPLAY "Logged off".
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".

Figure 24. Accessing values in COBOL (via CALL) (Part 2 of 3)

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 121

Action API calls
Action API calls are client-server calls involving communication with an MQSeries
Workflow server. As such, they require the client to be logged on.

Action API calls can be issued on service objects and on transient objects
representing persistent ones. These objects remember the context of a user session
so that a communication path to an MQSeries Workflow server can be established.
As a consequence, empty objects cannot be used in order to issue action calls.

Action API calls are either synchronous requests waiting for the server’s reply,
asynchronous requests expecting the server’s reply at some other point in time, or
API calls receiving information from an MQSeries Workflow server.

All action API calls are described separately in “Chapter 5. API action and activity
implementation calls” on page 287. You can find examples in “Chapter 6.
Examples” on page 525.

Activity implementation API calls
An activity can be implemented by a program which uses the MQSeries Workflow
API. In this case, the activity implementation API calls provide access to the input
and output containers of the activity instance or work item. They also allow the
program implementing an activity to return the updated output container to
MQSeries Workflow so that navigation can continue on the basis of those values.

A program implementing an activity is usually executed under the control of an
MQSeries Workflow program execution server on request from an MQSeries
Workflow execution server. When an MQSeries Workflow execution server receives
a request to start a work item, it determines the implementing program to be
started and sends an appropriate request together with the input and output
containers, if needed, to the program execution server or the logged-on user’s
program execution agent. Since containers are sent to the program execution
server, input and output containers are requested from and passed to an MQSeries
Workflow program execution server by the implementing program. You do not
have to create an execution service object and log on to an MQSeries Workflow
execution server to handle containers from within an activity implementation.

However, if you want not only to access containers but also to query information
about the process instance the work item is a part of, you have to log on to the
MQSeries Workflow execution server that requested that your program be started.
You can use the Passthrough() API call of the execution service to begin a session
with the execution server from within the activity implementation program or
support tool. In this way, you can use the environment of the work item, that is,
you do not need any other user ID, password, system group, or system
information.

If the activity implementation does not handle all work by itself but distributes
work by starting subprograms that run as separate operating system processes, and

MOVE FMC-OK TO retCode.
GOBACK.

Figure 24. Accessing values in COBOL (via CALL) (Part 3 of 3)

Programming concepts

122 MQSeries Workflow for OS/390 Programming Guide

when those subprograms request containers, then the program execution server
cannot know which is the calling program. For that purpose, the program calling
the program execution server must provide the program identification of the actual
activity implementation, that is, it must use the remote container or passthrough
calls. This requires that the activity implementation has retrieved its program
identification and passed it to the started program. Note that the program
execution server only provides the program identification to trusted programs.

Programming concepts

Chapter 1. MQSeries Workflow programming concepts 123

124 MQSeries Workflow for OS/390 Programming Guide

Chapter 2. Language interfaces

This chapter discusses language-specific considerations for using the API. It also
describes the XML message interface in detail.

C and C++ interface
This section provides an overview of the concepts which are specific to the
MQSeries Workflow C and C++ APIs.

Coding an MQSeries Workflow client application in C or C++
An MQSeries Workflow C or C++ client application typically contains the
following parts (which may not be delimited this clearly, however):

To set up your program, you typically declare the program variables or objects you
are going to use and you include the MQSeries Workflow API header files you
need for your actions. When using the C++ API, definitions of bool, string, and
vector are needed. Include the respective files before the MQSeries Workflow API
headers.

You should then initialize the MQSeries Workflow API by calling Connect() so that
resources held by the API are allocated correctly. Connect() and Disconnect() are to
be called at the beginning and end of each thread, respectively.

You then need to allocate a service object which represents the server you are
going to ask services from. Once the service object is allocated, you can log on.
Logon establishes a session between the user logging on and the server
represented by your service object. All subsequent calls requiring client/server
communication run through this session.

┌──
│ #include <MQ Workflow API prerequisites (C++)>
│ #include <MQ Workflow API>
│ int main()
│ {

Setup │ Declare objects
│ :
│ Connect
│ Allocate service object
│ Logon()
└──
┌──
│
│
│

Actions │ MQSeries Workflow API calls
│
│
│
└──
┌──
│ Logoff()
│ Deallocate service object

Cleanup │ Disconnect
│ return 0;
│ }
└──

© Copyright IBM Corp. 1999, 2000 125

After a successful logon, you can issue action or program execution management
API calls in order to query or manage MQSeries Workflow objects you are
authorized for.

At the end of your program, you log off in order to close the session to the server
and you deallocate any resources held by your program, especially the service
object.

As a last step, you disconnect from the MQSeries Workflow API so that resources
held by the API are deallocated correctly.

Coding an MQSeries Workflow activity implementation in C or
C++

An MQSeries Workflow C or C++ activity implementation typically contains the
following parts:

To set up your program, you typically declare the program variables or objects you
are going to use and you include the MQSeries Workflow API header files you
need for your actions. When using the C++ API, definitions of bool, string, and
vector are needed. Include the respective files before the MQSeries Workflow API
headers.

You should then initialize the MQSeries Workflow API by calling Connect() so that
resources held by the API are allocated correctly. Connect() and Disconnect() are to
be called at the beginning and end of each thread, respectively.

On platforms other than OS/390, an activity implementation can then retrieve the
activity’s input and output containers from the MQSeries Workflow program
execution agent that started this program. On OS/390, the activity implementation
in CICS or IMS gets input and output containers when it is started by the PES.

┌──
│ #include <MQ Workflow API prerequisites (C++)>
│ #include <MQ Workflow API>
│ int main()
│ {

Setup │ Declare objects
│ :
│ Connect
│ InContainer()
│ OutContainer()
└──
┌──
│
│
│

Actions │ read values
│ set values
│
│
└──
┌──
│ SetOutContainer()
│ Deallocate objects

Cleanup │ Disconnect
│ return rc;
│ }
└──

C and C++ interface

126 MQSeries Workflow for OS/390 Programming Guide

Having access to the containers, you can read and set values according to your
programming logic.

At the end of your program, the activity implementation returns the final output
container to the MQSeries Workflow program execution server. Any resources held
by your program are deallocated. The return value of your program tells the
program execution server about the overall outcome of your program.

The output container as well as the return code of your program are passed back
to the MQSeries Workflow server which requested the execution of the activity
implementation. The return code (_RC) can be used in exit or transition conditions
in order to guide MQSeries Workflow navigation. 3

As a last step, you disconnect from the MQSeries Workflow API so that resources
held by the API are deallocated correctly.

Your activity implementation can also behave like a client application and request
services from an MQSeries Workflow server, normally the server from where its
execution had been triggered. The Passthrough() API call is then used instead of
the Logon() API call in order to log on to the server which caused the program
execution with the user identification and authority known to the server from the
work item start request.

Compiling and linking
C and C++ programs for MQSeries Workflow for OS/390 must be compiled with
IBM C/C++ for OS/390 Version 2 Release 4 or later.

All C and C++ programs developed for use with MQSeries Workflow must include
header files provided by MQSeries Workflow and link the corresponding library
files.

When using the MQ Workflow C++ API, definitions for bool, string, and vector
must be provided. MQ Workflow delivers some files to be included: bool.h, which
provides for the bool definition and must be included first, fmcjstr.hxx, which
provides for the string definition, and vector.h, which provides for the vector
definition.

Note that bool.h and vector.h are part of the Standard Template Library delivered
with MQ Workflow and copyrighted by the Hewlett-Packard Company.
Documentation of this library is provided on the MQ Workflow CD-ROM (non-390
version) in a file named STLDOC.PS. It is installed in the stl subdirectory of the
API.

The MQSeries Workflow features you use determine which header files to include
and the compilers you use which library files to link with. Depending on the
feature used, the following header files must be included:

Feature C header C++ header

Runtime client fmcjcrun.h fmcjprun.hxx
Runtime activity implementation:
- container access only (Container API) fmcjccon.h fmcjpcon.hxx

3. For compilers which do not support an exit code of an application, it is possible to set the _RC data member of the output
container.

C and C++ interface

Chapter 2. Language interfaces 127

Feature C header C++ header

- container and server access (Full API) fmcjcrun.h fmcjprun.hxx

Table 3. JCLs provided for C/C++ programs

Job Sample

Native OS/390 C/C++ Full API compile job FMCHJ1CF

Native OS/390 C/C++ API run job FMCHJ1CR

CICS C/C++ Full API compile job FMCHJ2CF

CICS C/C++ Container API compile job FMCHJ2CC

IMS C/C++ Container API compile job FMCHJ3CC

For more information about CICS/IMS specifics like stubs or precompiler, refer to
the documentation for these components.

The compilers given as prerequisites or newer versions can be used to compile and
link your applications accessing the MQSeries Workflow API. Your compile and
link options must ensure that the MQSeries Workflow API is called with the calling
convention that is defined in the FMC_APIENTRY macro (see file fmcjcglo.h).
FMC_APIENTRY has been defined to the standard C calling convention and will
be automatically be applied when you use the header files provided by MQSeries
Workflow.

Access can be gained to C functions using calls from all languages that support C
calls.

Java interface

Note: The following section describes the general Java environment supported by
the LAN version of MQSeries Workflow. Only selected components of this
environment, namely the local bindings and the Java agent, are currently
implemented in the OS/390 version.

The MQSeries Workflow Java API consists of:
v An agent that connects an MQSeries Workflow domain to the Java world.
v A set of API Beans that provide MQSeries Workflow API functionality to Java

based applications.

C and C++ interface

128 MQSeries Workflow for OS/390 Programming Guide

The Java CORBA Agent

In order to support thin clients, a Java agent approach has been chosen. The Java
CORBA Agent serves as a proxy for the MQSeries Workflow domain.

The Java CORBA Agent is implemented in Java and wraps the MQSeries Workflow
C++ API into a form that is accessible from the Java environment. On the one
hand, the Java CORBA Agent thus wraps the native product API and on the other
hand it publishes a Java form of the API on the network.

The communication layer
The Java CORBA Agent runs on an MQSeries Workflow machine and Java clients
run somewhere on the network. MQSeries Workflow supports CORBA, RMI, and
Local environments so that clients can access the agent.
v CORBA is the Object Management Group (OMG) standard for distributed

computing. It is very easy to publish existing objects on a network using ORBs.
The currently supported ORB is Inprise’s VisiBroker Java 3.3.

v Java Remote Method Invocation (RMI) is an approach that is completely Java
based and does not require additional software. RMI is included in most Java
environments.

Note: Java RMI agents should only be used for prototyping. They are currently
not suited for production purposes.

v Local bindings offer a special mechanism which imbeds the Java CORBA Agent.
They bypass the communication layer and use procedure calls. If client
applications use local bindings, then they have to consider the trade-off that they
become MQSeries clients. It follows that local bindings are best suited for agent
side applications, for example, servlets and Java-based non-GUI activity
implementations.

Java interface

Chapter 2. Language interfaces 129

The locator methods

In theory, there are a number of methods available to clients for finding their
agent. These different methods are listed below.

Note: The only method currently supported by OS/390 is LOC naming.
v OSA naming: a VisiBroker specific naming facility (Smart Agent) that is very

easy to use. It only requires one OSAgent running on the subnetwork that keeps
track of all the objects and their name in the network. As smart agents
synchronize their information via UDP, the only thing that has to be known is
the name of the object the client program is looking for.

v IOR naming: Via InterOrbReferences a vendor-independent naming service for
CORBA applications exists. The identity of a specific object (its IOR) is published
in a file on a Web server. This file can be accessed from clients via a published
URL to obtain the actual reference of an object.

v COS naming: CORBA Naming Service is the native CORBA directory service.
Objects can use COS to publish their identity to the CORBA system.

v RMI registry: The RMI registry comes with every Java development kit. It can be
run as a stand-alone program where object implementations register or it can be
embedded into the application. Embedding has the big advantage that no
separate program is necessary to provide naming functions. To locate objects via
the RMI registry, the host which runs the RMI registry has to be known.

Note: Java RMI agents should only be used for prototyping. They are currently
not suited for production purposes.

v LOC naming: This approach can be used to connect the Java API to an MQSeries
Workflow C++ API that is located on the same physical machine. This approach
can be useful if a client is to be written on a platform that offers the API but
does not offer a native client, for example, on AIX. It can also be used to access
the MQSeries Workflow API from a Web server through servlet technology
without the additional communication overhead, because local bindings use
procedure calls.

Note: This method is the only method currently supported on OS/390.

The Java API Beans
Both the client-side communication layer and the API Beans layer are implemented
in Java. This makes it possible to run applications developed with the MQSeries
Workflow Java API on any machine that provides a Java Virtual Machine (JVM).

Java interface

130 MQSeries Workflow for OS/390 Programming Guide

The API Beans provide functionality equivalent to the other MQSeries Workflow
APIs. Due to the introduction of an agent, its name, context, and locator policy
must be specified, however.

Following are some usage scenarios of the Java API.

Java in the intranet

In this case, a non-LOC locator policy must be used and an external agent must be
specified. The API Beans and, for a non-RMI protocol, the VisiBroker ORB
(COS,IOR,OSA) must have been installed.

Java as a programming language

In this case, the LOC_LOCATOR policy of the Java CORBA Agent is used. The
Java API Beans must have been installed.

Java in the Internet (servlet)

In this case, a LOC_LOCATOR policy must be used. The API Beans must have
been installed.

Java interface

Chapter 2. Language interfaces 131

Java in the Internet (applet/RMI)

In this case, an RMI_LOCATOR policy must be used and an RMI agent must be
specified. An RMI Agent and the Java API Beans must have been installed. The
applet must be specified in the context of the agent object.

Coding an MQSeries Workflow client application in Java
Coding an MQSeries Workflow Java client application typically contains the
following parts (which may not be delimited this clearly, however):

To set up your program, you typically declare the program variables or objects you
are going to use and you import the MQSeries Workflow Java API packages you
need for your actions.

You then need to access a service object which represents the server you are going
to ask services from. You do this by locating it via an appropriate agent. Once the
service object is allocated, you can log on. Logon establishes a session between the
user logging on and the server represented by your service object. All subsequent
calls requiring client/server communication run through this session.

After a successful logon, you can issue action or program execution management
methods in order to query or manage MQSeries Workflow objects you are
authorized for.

At the end of your program, you log off in order to close the session to the server.

┌── import java packages
│ void main()
│ {
│ Declare objects

Setup │ :
│ Allocate agent
│ Set Locator or Configuration / set Name
│ Locate service object
└── Logon()
┌──
│
│
│

Actions │ MQSeries Workflow API calls
│
│
│
└──
┌──

Cleanup │ Logoff()
│ }
└──

Java interface

132 MQSeries Workflow for OS/390 Programming Guide

Coding an MQSeries Workflow activity implementation in Java
An MQSeries Workflow Java activity implementation typically contains the
following parts:

To set up your program, you typically declare the program variables or objects you
are going to use and you import the MQSeries Workflow Java API packages you
need for your actions.

You then need to locate your execution agent object. You do this by allocating and
asking the appropriate agent.

On platforms other than OS/390, an activity implementation can then retrieve the
activity’s input and output containers from the MQSeries Workflow program
execution agent that started this program. On OS/390, the activity implementation
in CICS or IMS gets input and output containers when it is started by the PES.

Having access to the containers, you can read and set values according to your
programming logic.

At the end of your program, the activity implementation returns the final output
container to the MQSeries Workflow program execution server. The return value
tells the program execution server about the overall outcome of your program.

The output container is passed back to the MQSeries Workflow server which
requested the execution of the activity implementation. The return code (_RC) can
be used in exit or transition conditions in order to guide MQSeries Workflow
navigation.

Your activity implementation can as well behave like a client application (see
“Coding an MQSeries Workflow client application in C or C++” on page 125) and
request services from an MQSeries Workflow server, normally the server from
where its execution had been triggered. The Passthrough() method is then used

┌── import java packages
│ void main()
│ {
│ Declare objects
│ :

Setup │ Allocate agent
│ set Locator / set Name
│ get execution agent
│ InContainer()
│ OutContainer()
└──
┌──
│
│
│ read values

Actions │ set values
│
│
│
└──
┌──

Cleanup │ SetOutContainer()
│ System.exit(rc)
│ }
└──

Java interface

Chapter 2. Language interfaces 133

instead of the Logon() method in order to log on to the server which caused the
program execution with the user identification and authority known to the server
from the work item start request.

Note: An activity implementation currently supports the LOC_LOCATOR policy
only.

Compiling
All programs developed for use with the MQSeries Workflow Java API Beans must
import the packages provided by MQSeries Workflow. These files have been
installed on your system.

JDK 1.1.x (x=6 or higher) can be used to compile and run your applications
accessing the MQSeries Workflow Java API. A sample compile statement is:
javac -O <java file>.java

-O is an optional parameter denoting an optimized build. The CLASSPATH must
point to fmcojapi.jar.

See MQSeries Workflow for OS/390: Customization and Administration for information
on how to set up your system to use Java for OS/390.

Object management
Workflow process models, their instances, and resulting work items are all objects
persistently stored in an MQSeries Workflow database. This means that they exist
independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects at the
time of the query. When multiple queries are issued, there can be multiple
transient objects representing the same persistent object, even representing different
states of that object.

The lifetime of transient objects is fully managed by you, because you know best
when those objects are no longer needed, that is, when objects are unreferenced.
Transient objects are, however, no longer available when your application program
ends.

Some transient objects are explicitly allocated by you. These support objects that do
not reflect persistent ones. Examples are the Agent or the ExecutionService object,
which allows services to be requested from an execution server.

Transient objects, which do reflect persistent objects, are implicitly allocated by you
when you create or retrieve persistent objects, for example, by querying.

Although the lifetime of transient objects is fully managed by you, their actual
internal object structure is encapsulated by the MQSeries Workflow API.

As all resource memory is, in the end, owned by the application process itself, you
can access all objects from different threads within that process. MQSeries
Workflow does not hinder you from using threads, if they are supported; it is
coded reentrantly. On the other hand, MQSeries Workflow does not explicitly
support threads. If you want to access the same transient object from within
different threads, you must synchronize the access to that object. Objects are not
thread-safe.

Java interface

134 MQSeries Workflow for OS/390 Programming Guide

Garbage collection when using Java API Beans
Garbage collection normally runs in the background without intervention by the
Java programmer. This is also true in a distributed Java environment when objects
communicate via the RMI transmission protocol. However, for other protocols, like
CORBA’s IIOP, provisions to remove unreferenced objects on the agent side have
to be made. When CORBA is used, then the memory management implicitly run
by a Java Virtual Machine does not synchronize object removal on a client and the
agent. Agent-side counterparts of unreferenced client objects are not automatically
marked for removal. The Object Request Broker (ORB) cannot determine if any
client is holding or not holding references to objects that it has registered (some
ORBs can in fact do that, but they are using proprietary CORBA extensions to
achieve this). Agent-side counterparts of client objects registered with an ORB by
using a connect method have to be disconnected explicitly. When using MQSeries
Workflow Java API Beans, the user is provided with a build-in garbage collection
mechanism, the MQSeries Workflow Java API Beans Reaper, which does
housekeeping when the transmission of data is done by a CORBA Object Request
Broker (ORB). Before starting the MQSeries Workflow Java API Beans Agent a set
of parameters controlling the reaper have to be set. These control parameters are:
v The reaper cycle time value, defined in milliseconds, is valid for both the client’s

reaper and the server’s reaper. The default value is 300000 ms (5 minutes).
v The reaper threshold value is set to determine a maximum count for

accumulated objects that are no longer referenced. The threshold takes
precedence over the cycle time. Default value is 1000.

v The reaper ratio defines the relation between cycle times of both, client side
reaper and server side reaper. The ratio is used as a multiplier for the server’s
reaper cycle, to calculate the cycle time for the client’s reaper. The default value
is 90, that means in fact 90% of the server’s reaper cycle time. This ensures that
the client side reaper actions always precede the server’s side reaper actions.

The parameters are initially set at configuration time.

COBOL interface
The COBOL API runs as a layer on top of the C API, i.e., the COBOL CALL
statements are effectively translated into the C functions with the same name. For
this reason, what is said about the C API in this book generally applies to COBOL
as well.

There are two ways to use the COBOL API:
1. directly through the Language Environment (LE) ″CALL″ mechanism.
2. by using the FMCPERF copybook and the COBOL ″PERFORM″ mechanism,

which in turn uses the ″CALL″ mechanism.

Note: The COBOL calling sequences illustrated in the individual API
descriptions are excerpts from FMCPERF.CPY. The paragraph name
shown in each case is the name to be used as the PERFORM operand.

Calling the API
The COBOL API uses Language Environment (LE) interlanguage calls (ILCs) to call
the C API. Therefore the compiler option PGMNAME(LM) must be used to allow

a) calls to functions with names longer than 30 characters
b) case sensitivity in function names

Java interface

Chapter 2. Language interfaces 135

String handling
Since C strings (char *) are null-terminated, the COBOL programmer must provide
null-terminated string parameters. String output parameters must be checked for
the first occurrence of X’00’ to get the correct value. A function cannot be called
with String/PIC X(n) constants but rather must use a pointer referencing such a
null-terminated PIC X(n).

Coding an MQSeries Workflow client application in COBOL
An MQSeries Workflow client application typically contains the following parts
(which may not be delimited this clearly, however):

To set up your program, you typically declare the program variables or objects you
are going to use and copy the MQSeries Workflow API copybooks you need for
your actions.

You should then initialize the MQSeries Workflow API via the Connect API call so
that resources held by the API are allocated correctly. Connect and Disconnect are
to be called at the beginning and end of each thread, respectively.

You then need to allocate a service object which represents the server you are
going to ask services from. Once the service object is allocated, you can log on.

┌──
│ IDENTIFICATION DIVISION.
│ PROGRAM-ID. "SAMPAPPL".
│ :
│ ENVIRONMENT DIVISION.
│ :
│ DATA DIVISION.
│ WORKING-STORAGE SECTION.
│
│ copy fmcrcs.

Setup │ copy fmcvars.
│ copy fmcconst.
│
│ Declare objects
│
│ PROCEDURE DIVISION.
│ Connect
│ Allocate service object
│ Logon
└──
┌──
│
│
│

Actions │ MQSeries Workflow API calls
│
│
│
└──
┌──
│ Logoff
│ Deallocate service object
│ Disconnect

Cleanup │ GOBACK.
│
│ copy fmcperf.
│ END PROGRAM "SAMPAPPL"
└──

COBOL interface

136 MQSeries Workflow for OS/390 Programming Guide

Logon establishes a session between the user logging on and the server
represented by your service object. All subsequent calls requiring client/server
communication run through this session.

After a successful logon, you can issue action or program execution management
API calls in order to query or manage MQSeries Workflow objects you are
authorized for.

At the end of your program, you log off in order to close the session to the server
and you deallocate any resources held by your program, especially the service
object.

As a last step, you disconnect from the MQSeries Workflow API so that resources
held by the API are deallocated correctly.

Coding an MQSeries Workflow activity implementation in
COBOL

An MQSeries Workflow or activity implementation typically contains the following
parts:

┌──
│ IDENTIFICATION DIVISION.
│ PROGRAM-ID. "SAMPAI".
│ :
│ ENVIRONMENT DIVISION.
│ :
│ DATA DIVISION.
│ WORKING-STORAGE SECTION.
│
│ copy fmcrcs.

Setup │ copy fmcvars.
│ copy fmcconst.
│
│ Declare objects
│
│ PROCEDURE DIVISION.
│ Connect
│ InContainer
│ OutContainer
└──
┌──
│
│
│

Actions │ read values
│ set values
│
│
│
└──
┌──
│ SetOutContainer
│ Deallocate objects
│ Disconnect

Cleanup │ GOBACK.
│
│ copy fmcperf.
│ END PROGRAM "SAMPAI"
└──

COBOL interface

Chapter 2. Language interfaces 137

To set up your program, you typically declare the program variables or objects you
are going to use and copy the MQSeries Workflow API copybooks you need for
your actions.

You should then initialize the MQSeries Workflow API via the Connect API call so
that resources held by the API are allocated correctly. Connect and Disconnect are
to be called at the beginning and end of each thread, respectively.

An activity implementation can then retrieve the activity’s input and output
containers from the MQSeries Workflow program execution server that started this
program.

Having access to the containers, you can read and set values according to your
programming logic.

At the end of your program, the activity implementation returns the final output
container to the MQSeries Workflow program execution server. Any resources held
by your program are deallocated. The return value tells the program execution
server about the overall outcome of your program.

The output container as well as the return code of your program are passed back
to the MQSeries Workflow server which requested the execution of the activity
implementation. The return code (_RC) can be used in exit or transition conditions
in order to guide MQSeries Workflow navigation.

As a last step, you disconnect from the MQSeries Workflow API so that resources
held by the API are deallocated correctly.

Your activity implementation can also act like a client application (see “Coding an
MQSeries Workflow client application in C or C++” on page 125) and request
services from an MQSeries Workflow server, normally the server from where its
execution was triggered. The Passthrough API call is then used instead of Logon in
order to log on to the server which initiated program execution, with the user
identification and authority known to the server from the work item start request.

Compiling and linking
COBOL programs must be compiled using IBM COBOL for OS/390 and VM,
Version 2 Release 4 or higher.

The following copybooks are delivered with MQSeries Workflow for OS/390:

Table 4. Copybooks provided for COBOL programs

Copybook Contents

FMCCONST Constants

FMCRCS Return codes

FMCPERF Subprograms of full API

FMCPERFL Subprograms of the Container API

FMCVARS Variables

If you use the PERFORM mechanism, you must include FMCCONST, FMCRCS,
FMCVARS, and either FMCPERF (if your program is using the full API) or
FMCPERFL (if your program is an activity implementation using only the
Container API).

COBOL interface

138 MQSeries Workflow for OS/390 Programming Guide

If you use the CALL mechanism, you need not include any copybooks, but using
FMCCONST and FMCRCS will provide you with all the values that MQSeries
Workflow defines. FMCVARS can spare you some effort in declaring variables.
FMCPERF and FMCPERFL are not useful in this case.

The following JCLs are provided as samples for the development and execution of
MQSeries Workflow applications. They are located in the SFMCCNTL library
delivered with MQSeries Workflow.

Table 5. JCLs provided for COBOL programs

Job Sample

Native OS/390 COBOL Full API compile job FMCHJ1BF

Native OS/390 COBOL API run job FMCHJ1BR

CICS COBOL Full API compile job FMCHJ2BF

CICS COBOL Container API Compile Job FMCHJ2BC

IMS COBOL Container API Compile Job FMCHJ3BC

For more information about CICS/IMS specifics like stubs or precompiler, refer to
the documentation of these components.

The compiler given as a prerequisite or newer versions can be used to compile and
link your applications accessing the MQSeries Workflow API.

Mapping C to COBOL data types
Table 6 shows how to map C to COBOL data types:

Table 6. Mapping C to COBOL data types

Type in C Type in COBOL BY VALUE / BY REFERENCE

XxxHandle 01 ptr USAGE IS POINTER.

(pointing to an object)

BY VALUE

XxxHandle * 01 ptr USAGE IS POINTER.

(pointing to a pointer to an object)

BY REFERENCE

char *, char const * 01 ptr USAGE IS POINTER.

(pointing to a PIC X(n))

BY VALUE

FmcjCorrelID * 01 ptr USAGE IS POINTER.

(pointing to a PIC X(24))

BY VALUE

FmcjBinary * 01 ptr USAGE IS POINTER. BY VALUE

FmcjCDateTime const * 01 FmcjCDateTime.

05 the-year PIC 9(4) BINARY.

05 the-month PIC 9(4) BINARY.

05 the-day PIC 9(4) BINARY.

05 the-hour PIC 9(4) BINARY.

05 the-minute PIC 9(4) BINARY.

05 the-second PIC 9(4) BINARY.

BY REFERENCE

COBOL interface

Chapter 2. Language interfaces 139

Table 6. Mapping C to COBOL data types (continued)

Type in C Type in COBOL BY VALUE / BY REFERENCE

int, long, signed long,
enum

01 int PIC S9(9) BINARY. BY VALUE

APIRET 01 int PIC S9(9) BINARY. n/a (not used as parameters)

unsigned long 01 ulong PIC 9(9) BINARY. BY VALUE

unsigned short 01 ushort PIC 9(4) BINARY. BY VALUE

double 01 double COMP-2. BY VALUE

bool (1=true 0=false) 01 bool PIC 9 BINARY. BY VALUE

long * 01 int PIC S9(9) BINARY. BY REFERENCE

double * 01 double COMP-2. BY REFERENCE

unsigned long const * 01 ulong PIC 9(9) BINARY. BY VALUE4

Name changes between COBOL and C
For some of the C functions, synonyms are declared in the form of
#define functionA functionB

This is to reflect the fact that routines belonging to a superclass are already
available to perform the desired function.

In these cases, if you want to call functionA directly via CALL in COBOL, you
must use functionB instead. All functions belonging to this category are listed in
the table below.

Note: If you use the PERFORM statement with the FMCPERF copybook, you must
perform a paragraph whose name is an abbreviated version (see Table 8 on
page 146) of the name shown in the left-hand column of the following table.
This paragraph then contains a call to the proper COBOL subprogram. For
example, to call ″FmcjActivityInstanceNotificationSetDescription″ via
PERFORM, you would code:
PERFORM FmcjAINSetDescription

which contains
CALL FmcjItemSetDescription

.

Table 7. Function name mapping

C function Corresponding COBOL subprogram

FmcjActivityInstanceNotificationCategory FmcjItemCategory

FmcjActivityInstanceNotificationCategoryIsNull FmcjItemCategoryIsNull

FmcjActivityInstanceNotificationCreationTime FmcjItemCreationTime

FmcjActivityInstanceNotificationDelete FmcjItemDelete

FmcjActivityInstanceNotificationDescription FmcjItemDescription

FmcjActivityInstanceNotificationDescriptionIsNull FmcjItemDescriptionIsNull

4. The respective C routine expects the actual value to be passed rather than a pointer thereto. This is apparently the result of
internal optimization when the C routine is compiled.

COBOL interface

140 MQSeries Workflow for OS/390 Programming Guide

Table 7. Function name mapping (continued)

C function Corresponding COBOL subprogram

FmcjActivityInstanceNotificationDocumentation FmcjItemDocumentation

FmcjActivityInstanceNotificationDocumentationIsNull FmcjItemDocumentationIsNull

FmcjActivityInstanceNotificationEndTime FmcjItemEndTime

FmcjActivityInstanceNotificationEndTimeIsNull FmcjItemEndTimeIsNull

FmcjActivityInstanceNotificationEqual FmcjItemEqual

FmcjActivityInstanceNotificationIcon FmcjItemIcon

FmcjActivityInstanceNotificationInContainerName FmcjItemInContainerName

FmcjActivityInstanceNotificationIsComplete FmcjItemIsComplete

FmcjActivityInstanceNotificationKind FmcjItemKind

FmcjActivityInstanceNotificationLastModificationTime FmcjItemLastModificationTime

FmcjActivityInstanceNotificationName FmcjItemName

FmcjActivityInstanceNotificationObtainProcessInstanceMonitor FmcjItemObtainProcessInstanceMonitor

FmcjActivityInstanceNotificationOutContainerName FmcjItemOutContainerName

FmcjActivityInstanceNotificationOwner FmcjItemOwner

FmcjActivityInstanceNotificationPersistentOid FmcjItemPersistentOid

FmcjActivityInstanceNotificationProcessAdmin FmcjItemProcessAdmin

FmcjActivityInstanceNotificationProcessInstance FmcjItemProcessInstance

FmcjActivityInstanceNotificationProcessInstanceName FmcjItemProcessInstanceName

FmcjActivityInstanceNotificationProcessInstanceState FmcjItemProcessInstanceState

FmcjActivityInstanceNotificationProcessInstanceSystemGroupName FmcjItemProcessInstanceSystemGroupName

FmcjActivityInstanceNotificationProcessInstanceSystemName FmcjItemProcessInstanceSystemName

FmcjActivityInstanceNotificationReceivedAs FmcjItemReceivedAs

FmcjActivityInstanceNotificationReceivedTime FmcjItemReceivedTime

FmcjActivityInstanceNotificationRefresh FmcjItemRefresh

FmcjActivityInstanceNotificationSetDescription FmcjItemSetDescription

FmcjActivityInstanceNotificationSetName FmcjItemSetName

FmcjActivityInstanceNotificationStartTime FmcjItemStartTime

FmcjActivityInstanceNotificationStartTimeIsNull FmcjItemStartTimeIsNull

FmcjActivityInstanceNotificationTransfer FmcjItemTransfer

FmcjActivityInstanceNotificationUpdate FmcjItemUpdate

FmcjExecutionServiceIsLoggedOn FmcjServiceIsLoggedOn

FmcjExecutionServiceRefresh FmcjServiceRefresh

FmcjExecutionServiceSetPassword FmcjServiceSetPassword

FmcjExecutionServiceSetTimeout FmcjServiceSetTimeout

FmcjExecutionServiceSystemGroupName FmcjServiceSystemGroupName

FmcjExecutionServiceSystemName FmcjServiceSystemName

FmcjExecutionServiceTimeout FmcjServiceTimeout

FmcjExecutionServiceUserID FmcjServiceUserID

FmcjExecutionServiceUserSettings FmcjServiceUserSettings

FmcjProcessInstanceListDelete FmcjPersistentListDelete

COBOL interface

Chapter 2. Language interfaces 141

Table 7. Function name mapping (continued)

C function Corresponding COBOL subprogram

FmcjProcessInstanceListDescription FmcjPersistentListDescription

FmcjProcessInstanceListDescriptionIsNull FmcjPersistentListDescriptionIsNull

FmcjProcessInstanceListFilter FmcjPersistentListFilter

FmcjProcessInstanceListFilterIsNull FmcjPersistentListFilterIsNull

FmcjProcessInstanceListName FmcjPersistentListName

FmcjProcessInstanceListOwnerOfList FmcjPersistentListOwnerOfList

FmcjProcessInstanceListOwnerOfListIsNull FmcjPersistentListOwnerOfListIsNull

FmcjProcessInstanceListRefresh FmcjPersistentListRefresh

FmcjProcessInstanceListSetDescription FmcjPersistentListSetDescription

FmcjProcessInstanceListSetFilter FmcjPersistentListSetFilter

FmcjProcessInstanceListSetSortCriteria FmcjPersistentListSetSortCriteria

FmcjProcessInstanceListSetThreshold FmcjPersistentListSetThreshold

FmcjProcessInstanceListSortCriteria FmcjPersistentListSortCriteria

FmcjProcessInstanceListSortCriteriaIsNull FmcjPersistentListSortCriteriaIsNull

FmcjProcessInstanceListThreshold FmcjPersistentListThreshold

FmcjProcessInstanceListThresholdIsNull FmcjPersistentListThresholdIsNull

FmcjProcessInstanceListType FmcjPersistentListType

FmcjProcessInstanceMonitorActivityInstances FmcjBlockInstanceMonitorActivityInstances

FmcjProcessInstanceMonitorControlConnectorInstances FmcjBlockInstanceMonitor
ControlConnectorInstances

FmcjProcessInstanceMonitorObtainBlockInstanceMonitor FmcjBlockInstanceMonitor
ObtainBlockInstanceMonitor

FmcjProcessInstanceMonitorObtainProcessInstanceMonitor FmcjBlockInstanceMonitor
ObtainProcessInstanceMonitor

FmcjProcessInstanceMonitorRefresh FmcjBlockInstanceMonitorRefresh

FmcjProcessInstanceNotificationCategory FmcjItemCategory

FmcjProcessInstanceNotificationCategoryIsNull FmcjItemCategoryIsNull

FmcjProcessInstanceNotificationCreationTime FmcjItemCreationTime

FmcjProcessInstanceNotificationDelete FmcjItemDelete

FmcjProcessInstanceNotificationDescription FmcjItemDescription

FmcjProcessInstanceNotificationDescriptionIsNull FmcjItemDescriptionIsNull

FmcjProcessInstanceNotificationDocumentation FmcjItemDocumentation

FmcjProcessInstanceNotificationDocumentationIsNull FmcjItemDocumentationIsNull

FmcjProcessInstanceNotificationEndTime FmcjItemEndTime

FmcjProcessInstanceNotificationEndTimeIsNull FmcjItemEndTimeIsNull

FmcjProcessInstanceNotificationEqual FmcjItemEqual

FmcjProcessInstanceNotificationIcon FmcjItemIcon

FmcjProcessInstanceNotificationInContainerName FmcjItemInContainerName

FmcjProcessInstanceNotificationIsComplete FmcjItemIsComplete

FmcjProcessInstanceNotificationKind FmcjItemKind

FmcjProcessInstanceNotificationLastModificationTime FmcjItemLastModificationTime

COBOL interface

142 MQSeries Workflow for OS/390 Programming Guide

Table 7. Function name mapping (continued)

C function Corresponding COBOL subprogram

FmcjProcessInstanceNotificationName FmcjItemName

FmcjProcessInstanceNotificationObtainProcessInstanceMonitor FmcjItemObtainProcessInstanceMonitor

FmcjProcessInstanceNotificationOutContainerName FmcjItemOutContainerName

FmcjProcessInstanceNotificationOwner FmcjItemOwner

FmcjProcessInstanceNotificationPersistentOid FmcjItemPersistentOid

FmcjProcessInstanceNotificationProcessAdmin FmcjItemProcessAdmin

FmcjProcessInstanceNotificationProcessInstance FmcjItemProcessInstance

FmcjProcessInstanceNotificationProcessInstanceName FmcjItemProcessInstanceName

FmcjProcessInstanceNotificationProcessInstanceState FmcjItemProcessInstanceState

FmcjProcessInstanceNotificationProcessInstanceSystemGroupName FmcjItemProcessInstanceSystemGroupName

FmcjProcessInstanceNotificationProcessInstanceSystemName FmcjItemProcessInstanceSystemName

FmcjProcessInstanceNotificationReceivedAs FmcjItemReceivedAs

FmcjProcessInstanceNotificationReceivedTime FmcjItemReceivedTime

FmcjProcessInstanceNotificationRefresh FmcjItemRefresh

FmcjProcessInstanceNotificationSetDescription FmcjItemSetDescription

FmcjProcessInstanceNotificationSetName FmcjItemSetName

FmcjProcessInstanceNotificationStartTime FmcjItemStartTime

FmcjProcessInstanceNotificationStartTimeIsNull FmcjItemStartTimeIsNull

FmcjProcessInstanceNotificationTransfer FmcjItemTransfer

FmcjProcessInstanceNotificationUpdate FmcjItemUpdate

FmcjProcessTemplateInContainer FmcjProcessTemplateInitialInContainer

FmcjProcessTemplateListDelete FmcjPersistentListDelete

FmcjProcessTemplateListDescription FmcjPersistentListDescription

FmcjProcessTemplateListDescriptionIsNull FmcjPersistentListDescriptionIsNull

FmcjProcessTemplateListFilter FmcjPersistentListFilter

FmcjProcessTemplateListFilterIsNull FmcjPersistentListFilterIsNull

FmcjProcessTemplateListName FmcjPersistentListName

FmcjProcessTemplateListOwnerOfList FmcjPersistentListOwnerOfList

FmcjProcessTemplateListOwnerOfListIsNull FmcjPersistentListOwnerOfListIsNull

FmcjProcessTemplateListRefresh FmcjPersistentListRefresh

FmcjProcessTemplateListSetDescription FmcjPersistentListSetDescription

FmcjProcessTemplateListSetFilter FmcjPersistentListSetFilter

FmcjProcessTemplateListSetSortCriteria FmcjPersistentListSetSortCriteria

FmcjProcessTemplateListSetThreshold FmcjPersistentListSetThreshold

FmcjProcessTemplateListSortCriteria FmcjPersistentListSortCriteria

FmcjProcessTemplateListSortCriteriaIsNull FmcjPersistentListSortCriteriaIsNull

FmcjProcessTemplateListThreshold FmcjPersistentListThreshold

FmcjProcessTemplateListThresholdIsNull FmcjPersistentListThresholdIsNull

FmcjProcessTemplateListType FmcjPersistentListType

FmcjProgramDataExecutionMode FmcjProgramTemplateExecutionMode

COBOL interface

Chapter 2. Language interfaces 143

Table 7. Function name mapping (continued)

C function Corresponding COBOL subprogram

FmcjProgramDataExecutionUser FmcjProgramTemplateExecutionUser

FmcjProgramDataProgramTrusted FmcjProgramTemplateProgramTrusted

FmcjReadOnlyContainerAllLeafCount FmcjContainerAllLeafCount

FmcjReadOnlyContainerAllLeaves FmcjContainerAllLeaves

FmcjReadOnlyContainerArrayBinaryLength FmcjContainerArrayBinaryLength

FmcjReadOnlyContainerArrayBinaryValue FmcjContainerArrayBinaryValue

FmcjReadOnlyContainerArrayFloatValue FmcjContainerArrayFloatValue

FmcjReadOnlyContainerArrayLongValue FmcjContainerArrayLongValue

FmcjReadOnlyContainerArrayStringLength FmcjContainerArrayStringLength

FmcjReadOnlyContainerArrayStringValue FmcjContainerArrayStringValue

FmcjReadOnlyContainerBinaryLength FmcjContainerBinaryLength

FmcjReadOnlyContainerBinaryValue FmcjContainerBinaryValue

FmcjReadOnlyContainerFloatValue FmcjContainerFloatValue

FmcjReadOnlyContainerGetElement FmcjContainerGetElement

FmcjReadOnlyContainerLeafCount FmcjContainerLeafCount

FmcjReadOnlyContainerLeaves FmcjContainerLeaves

FmcjReadOnlyContainerLongValue FmcjContainerLongValue

FmcjReadOnlyContainerMemberCount FmcjContainerMemberCount

FmcjReadOnlyContainerStringLength FmcjContainerStringLength

FmcjReadOnlyContainerStringValue FmcjContainerStringValue

FmcjReadOnlyContainerStructMembers FmcjContainerStructMembers

FmcjReadOnlyContainerType FmcjContainerType

FmcjReadWriteContainerAllLeafCount FmcjContainerAllLeafCount

FmcjReadWriteContainerAllLeaves FmcjContainerAllLeaves

FmcjReadWriteContainerArrayBinaryLength FmcjContainerArrayBinaryLength

FmcjReadWriteContainerArrayBinaryValue FmcjContainerArrayBinaryValue

FmcjReadWriteContainerArrayFloatValue FmcjContainerArrayFloatValue

FmcjReadWriteContainerArrayLongValue FmcjContainerArrayLongValue

FmcjReadWriteContainerArrayStringLength FmcjContainerArrayStringLength

FmcjReadWriteContainerArrayStringValue FmcjContainerArrayStringValue

FmcjReadWriteContainerBinaryLength FmcjContainerBinaryLength

FmcjReadWriteContainerBinaryValue FmcjContainerBinaryValue

FmcjReadWriteContainerFloatValue FmcjContainerFloatValue

FmcjReadWriteContainerGetElement FmcjContainerGetElement

FmcjReadWriteContainerLeafCount FmcjContainerLeafCount

FmcjReadWriteContainerLeaves FmcjContainerLeaves

FmcjReadWriteContainerLongValue FmcjContainerLongValue

FmcjReadWriteContainerMemberCount FmcjContainerMemberCount

FmcjReadWriteContainerStringLength FmcjContainerStringLength

FmcjReadWriteContainerStringValue FmcjContainerStringValue

COBOL interface

144 MQSeries Workflow for OS/390 Programming Guide

Table 7. Function name mapping (continued)

C function Corresponding COBOL subprogram

FmcjReadWriteContainerStructMembers FmcjContainerStructMembers

FmcjReadWriteContainerType FmcjContainerType

FmcjWorkitemCategory FmcjItemCategory

FmcjWorkitemCategoryIsNull FmcjItemCategoryIsNull

FmcjWorkitemCreationTime FmcjItemCreationTime

FmcjWorkitemDelete FmcjItemDelete

FmcjWorkitemDescription FmcjItemDescription

FmcjWorkitemDescriptionIsNull FmcjItemDescriptionIsNull

FmcjWorkitemDocumentation FmcjItemDocumentation

FmcjWorkitemDocumentationIsNull FmcjItemDocumentationIsNull

FmcjWorkitemEndTime FmcjItemEndTime

FmcjWorkitemEndTimeIsNull FmcjItemEndTimeIsNull

FmcjWorkitemEqual FmcjItemEqual

FmcjWorkitemIcon FmcjItemIcon

FmcjWorkitemInContainerName FmcjItemInContainerName

FmcjWorkitemIsComplete FmcjItemIsComplete

FmcjWorkitemKind FmcjItemKind

FmcjWorkitemLastModificationTime FmcjItemLastModificationTime

FmcjWorkitemName FmcjItemName

FmcjWorkitemObtainProcessInstanceMonitor FmcjItemObtainProcessInstanceMonitor

FmcjWorkitemOutContainerName FmcjItemOutContainerName

FmcjWorkitemOwner FmcjItemOwner

FmcjWorkitemPersistentOid FmcjItemPersistentOid

FmcjWorkitemProcessAdmin FmcjItemProcessAdmin

FmcjWorkitemProcessInstance FmcjItemProcessInstance

FmcjWorkitemProcessInstanceName FmcjItemProcessInstanceName

FmcjWorkitemProcessInstanceState FmcjItemProcessInstanceState

FmcjWorkitemProcessInstanceSystemGroupName FmcjItemProcessInstanceSystemGroupName

FmcjWorkitemProcessInstanceSystemName FmcjItemProcessInstanceSystemName

FmcjWorkitemReceivedAs FmcjItemReceivedAs

FmcjWorkitemReceivedTime FmcjItemReceivedTime

FmcjWorkitemRefresh FmcjItemRefresh

FmcjWorkitemSetDescription FmcjItemSetDescription

FmcjWorkitemSetName FmcjItemSetName

FmcjWorkitemStartTime FmcjItemStartTime

FmcjWorkitemStartTimeIsNull FmcjItemStartTimeIsNull

FmcjWorkitemTransfer FmcjItemTransfer

FmcjWorkitemUpdate FmcjItemUpdate

FmcjWorklistDelete FmcjPersistentListDelete

FmcjWorklistDescription FmcjPersistentListDescription

COBOL interface

Chapter 2. Language interfaces 145

Table 7. Function name mapping (continued)

C function Corresponding COBOL subprogram

FmcjWorklistDescriptionIsNull FmcjPersistentListDescriptionIsNull

FmcjWorklistFilter FmcjPersistentListFilter

FmcjWorklistFilterIsNull FmcjPersistentListFilterIsNull

FmcjWorklistName FmcjPersistentListName

FmcjWorklistOwnerOfList FmcjPersistentListOwnerOfList

FmcjWorklistOwnerOfListIsNull FmcjPersistentListOwnerOfListIsNull

FmcjWorklistRefresh FmcjPersistentListRefresh

FmcjWorklistSetDescription FmcjPersistentListSetDescription

FmcjWorklistSetFilter FmcjPersistentListSetFilter

FmcjWorklistSetSortCriteria FmcjPersistentListSetSortCriteria

FmcjWorklistSetThreshold FmcjPersistentListSetThreshold

FmcjWorklistSortCriteria FmcjPersistentListSortCriteria

FmcjWorklistSortCriteriaIsNull FmcjPersistentListSortCriteriaIsNull

FmcjWorklistThreshold FmcjPersistentListThreshold

FmcjWorklistThresholdIsNull FmcjPersistentListThresholdIsNull

FmcjWorklistType FmcjPersistentListType

To cope with the COBOL restriction of 30 characters per COBOL word, some class
name prefixes and function and constant names have been abbreviated. The
abbreviations for the class name prefixes are listed in the table below.

Table 8. Class prefix abbreviations

Class Name Abbreviation

FmcjActivityInstance FmcjAI

FmcjActivityInstanceList FmcjAIL

FmcjActivityInstanceNotification FmcjAIN

FmcjActivityInstanceNotificationVector FmcjAINV

FmcjActivityInstanceVector FmcjAIV

FmcjBlockInstanceMonitor FmcjBIM

FmcjContainer FmcjC

FmcjContainerElement FmcjCE

FmcjContainerElementVector FmcjCEV

FmcjControlConnectorInstance FmcjCCI

FmcjControlConnectorInstanceVector FmcjCCIV

FmcjDllOptions FmcjDO

FmcjExecutionData FmcjED

FmcjExecutionService FmcjES

FmcjExeOptions FmcjExeO

FmcjExternalOptions FmcjExtO

FmcjImplementationData FmcjID

FmcjImplementationDataVector FmcjIDV

COBOL interface

146 MQSeries Workflow for OS/390 Programming Guide

Table 8. Class prefix abbreviations (continued)

Class Name Abbreviation

FmcjPersistentList FmcjPL

FmcjPerson FmcjP

FmcjPoint FmcjPnt

FmcjPointVector FmcjPntV

FmcjProcessInstance FmcjPI

FmcjProcessInstanceList FmcjPIL

FmcjProcessInstanceListVector FmcjPILV

FmcjProcessInstanceMonitor FmcjPIM

FmcjProcessInstanceNotification FmcjPIN

FmcjProcessInstanceNotificationVector FmcjPINV

FmcjProcessInstanceVector FmcjPIV

FmcjProcessTemplate FmcjPT

FmcjProcessTemplateList FmcjPTL

FmcjProcessTemplateListVector FmcjPTLV

FmcjProcessTemplateVector FmcjPTV

FmcjProgramData FmcjPD

FmcjProgramTemplate FmcjPgT

FmcjReadOnlyContainer FmcjROC

FmcjReadWriteContainer FmcjRWC

FmcjService FmcjSrv

FmcjStringVector FmcjStrV

FmcjSymbolLayout FmcjSL

FmcjWorkitem FmcjWI

FmcjWorkitemVector FmcjWIV

FmcjWorklist FmcjWL

The abbreviations for function, constant, and error code names are listed in the
table below (note that these abbreviations apply after the class name prefix
abbreviations). Instead of constructing the names with the help of this table you
can also search the FMCPERF copybook for the C function name to get the
corresponding COBOL function and variable names.

Table 9. Abbreviations for COBOL naming

Original String Abbreviation

Activity Act

ACTIVITY ACT

Administration Admin

ADMINSTRATION ADMIN

Already Alr

ALREADY ALR

Authorization Auth

COBOL interface

Chapter 2. Language interfaces 147

Table 9. Abbreviations for COBOL naming (continued)

Original String Abbreviation

AUTHORIZATION AUTH

Authorized Auth

AUTHORIZED AUTH

Backward Backw

BACKWARD BACKW

Categories Categs

CATEGORIES CATEGS

Category Categ

CATEGORY CATEG

CHECKOUT CHKOUT

Container Ctnr

CONTAINER CTNR

ControlConnector ContrConn

CONTROLCONNECTOR CONTRCONN

DATA-MEMBER D-M

Definition Def

DEFINITION DEF

Directory Dir

DIRECTORY DIR

DOCUMENT DOC

Executable Exec

EXECUTABLE EXEC

EXTERNAL EXT

ForeGround ForeGr

FOREGROUND FOREGR

Forward Forw

FORWARD FORW

FOUND-FOR-AUTO-START FND-FR-AUT-ST

FROM FRM

IMPLEMENTATION IMPL

Instance Inst

INSTANCE INST

INVALID INVAL

Invocation Inv

INVOCATION INV

Location Loc

LOCATION LOC

Mapping Map

MAPPING MAP

MESSAGE MSG

COBOL interface

148 MQSeries Workflow for OS/390 Programming Guide

Table 9. Abbreviations for COBOL naming (continued)

Original String Abbreviation

Monitor Mon

MONITOR MON

Notification Notif

NOTIFICATION NOTIF

Notified Notif

NOTIFIED NOTIF

Object Obj

OBJECT OBJ

Organization Org

ORGANIZATION ORG

Parameter Parm

PARAMETER PARM

PersistentOidOf PersOidOf

PERSISTENTOIDOF PERSOIDOF

Persons Pers

PERSON PERS

Process Proc

PROCESS PROC

Program Prog

PROGRAM PROG

Second Sec

SECOND SEC

Service Serv

SERVICE SERV

Started Strtd

STARTED STRTD

STRUCTURE STR

SUB-PROC SB-PRC

SUPPORTED SUPP

Suspension Susp

SUSPENSION SUSP

System Syst

SYSTEM SYST

Template Templ

TEMPLATE TEMPL

Terminated Term

TERMINATED TERM

Transition Trans

TRANSITION TRANS

COBOL interface

Chapter 2. Language interfaces 149

The C API uses some variable names that are reserved words in COBOL. These
variable names were changed in the COBOL API by appending ″Value″ to the
variable name. All variables belonging to this category are listed below.
year month day hour minute second data
file function index input line output owner
password program service time type timeout

Finally, the variable name ″value″ is used in the C API with different types. In
COBOL this variable is renamed according to its type:

intValue, doubleValue, pointerValue

Example of the use of strings
The following code calls a C function with the signature char* cfunc(char* x).

Note: The SETADDR routine sets a pointer variable to the address of a local string.
The GETADDR routine copies a string referred to by a pointer variable to a
local string.
IDENTIFICATION DIVISION.
PROGRAM-ID. "STRTEST".
DATA DIVISION.

WORKING-STORAGE SECTION.
01 PTR1 USAGE IS POINTER VALUE NULL.
01 PTR2 USAGE IS POINTER VALUE NULL.
01 STRING-STRUCT1.

05 X PIC X(20).
01 STRING-STRUCT2.

05 Y PIC X(20).
01 STRLEN PIC 99 VALUE 0.

PROCEDURE DIVISION.
MOVE z"Initial String" TO X.
CALL "SETADDR" USING STRING-STRUCT1 PTR1.
CALL "cfunc" USING BY VALUE PTR1

RETURNING PTR2.
CALL "GETADDR" USING STRING-STRUCT2 PTR2.
INSPECT Y TALLYING STRLEN FOR CHARACTERS

BEFORE INITIAL X"00".
DISPLAY "Y is " Y(1:STRLEN).
STOP RUN.

END PROGRAM "STRTEST".

IDENTIFICATION DIVISION.
PROGRAM-ID. "SETADDR".
DATA DIVISION.

LINKAGE SECTION.
01 PTR3 USAGE IS POINTER.
01 STRING-STRUCT3.

05 Z PIC X(20).
PROCEDURE DIVISION USING BY REFERENCE STRING-STRUCT3 PTR3.

SET PTR3 TO ADDRESS OF Z.
GOBACK.

END PROGRAM "SETADDR".

IDENTIFICATION DIVISION.
PROGRAM-ID. "GETADDR".
DATA DIVISION.

LINKAGE SECTION.
01 PTR4 USAGE IS POINTER.
01 STRING-STRUCT4.

05 Z PIC X(20).
01 DUMMY-STRUCT.

05 W PIC X(20).
PROCEDURE DIVISION USING BY REFERENCE STRING-STRUCT4 PTR4.

COBOL interface

150 MQSeries Workflow for OS/390 Programming Guide

SET ADDRESS OF DUMMY-STRUCT TO PTR4.
MOVE W TO Z.
GOBACK.

END PROGRAM "GETADDR".

XML message interface
The following sections provide a description of the MQSeries Workflow XML
message-based interface. It explains the format of a message and how XML can be
used for:
v Sending requests to MQSeries Workflow

An action can be started on the execution server by sending a message to the
MQSeries Workflow XML input queue.
This allows any application that supports the MQSeries Workflow XML message
format to request an action from MQSeries Workflow.

v Invoking an activity implementation
An activity implementation is invoked by MQSeries Workflow by sending an
appropriate message to a user-defined MQSeries queue.
This allows you to start any application listening on an MQSeries queue. The
queue can be input to any MQSeries application that can handle XML messages.
This can be your own application or a commercial program, such as MQSeries
Integrator V2.

The MQSeries Workflow message
MQSeries Workflow uses MQSeries to exchange messages. An MQSeries message
consists of two parts:
1. The MQSeries message descriptor (MQMD), which contains structured data

describing the message
2. The application data, which contains the MQSeries Workflow XML message

itself

Refer to ″MQSeries messages″ in the IBM MQSeries Application Programming Guide.

Relevant MQSeries Message Descriptor (MQMD) fields
The following fields of the MQSeries message descriptor are used by MQSeries
Workflow:
v UserIdentifier

The user who sent the message. For request messages sent to MQSeries
Workflow, this information is used as the MQSeries Workflow user on whose
behalf the request is performed. Also, authorization checks are performed using

Figure 25. MQSeries Workflow message

COBOL interface

Chapter 2. Language interfaces 151

this user ID. For invoke messages sent by MQSeries Workflow, this field contains
the user on whose behalf the activity implementation is to be started.

v MsgId
A fixed string indicating that this message contains an MQSeries Workflow XML
message. Its value is ″FMCXML″.

v ReplyToQ/ReplyToQMgr
Specifies the queue and queue manager the response should be sent to.

v Persistence
Specifies whether the message is persistent or transient. For requests sent to
MQSeries Workflow, the MQSeries Workflow response has the same persistence
as the request. XML requests sent by MQSeries Workflow are persistent and
responses sent by invoked activity implementations should also be persistent.

v Expiration
Can be set to a period of time expressed in tenths of a second for transient
messages; should be set to unlimited (MQEI_UNLIMITED) for persistent
messages. For requests sent to MQSeries Workflow, the expiration of the
MQSeries Workflow response is set to the expiration value in the request minus
the time spent on execution. XML requests sent by MQSeries Workflow have an
unlimited expiration time.

v CorrelID
Data that can be used to relate a response message to a request message. For
requests sent to MQSeries Workflow, the MQSeries Workflow response contains
the same correlation ID as the request. XML requests sent by MQSeries
Workflow contain a correlation ID and responses sent by an application should
return that correlation ID.

For detailed information, refer to the MQSeries System Administration.

The application data
MQSeries Workflow uses the XML 1.0 standard for message description. Refer to
http://www.w3.org/TR/REC-xml

for the XML Reference.

In general, an MQSeries Workflow XML message contains the following
information:
v An MQSeries Workflow XML message header, that is, information that is

common for all messages, for example, the user context
v The request or response, for example, a ″ProcessTemplateExecute″ request
v The parameters needed to execute the request or to analyze the response, for

example, an input container.

When processing an MQSeries Workflow XML message, MQSeries Workflow
checks if the message has the correct format.

The XML message header: The MQSeries Workflow XML message header
contains the following information:
v If a response should be sent.

With a message-based interface, both synchronous and asynchronous
request/response scenarios can occur. That is why the creation of a response to a

XML message interface

152 MQSeries Workflow for OS/390 Programming Guide

http://www.w3.org/TR/REC-xml

given request is made optional. However, even if responses are generally not
desired, an exceptional response to report an error can still be required. Such
options are provided to request:
– No (″No″)
– Only error (″IfError″)
– All (″Yes″)

responses which are sent to the response queue specified in the MQMD of the
request message.

v The user context
In this field, you can specify up to 254 bytes of context data that can be used for
correlating a request and a response. The user context data specified in a request
to MQSeries Workflow is returned in the associated response.
Therefore, the necessity to keep state information in the component sending the
message is avoided. For example, when a message is routed through an
intermediary like MQSeries Integrator V2, it can be desirable to route the
response back through the intermediary, which then in turn will send the
message back to the original requester. The user context data can contain
information in order to keep the original requester, or even an entire route,
without requiring the intermediary to maintain state information.

Container data: For a general introduction on containers, refer to “Handling
containers” on page 30. The following example shows a container with two data
structures and one data member that is an array:
<!-- Note: The container structure represented here has the following layout:

CreditData
Customer: CustomerData
Amount: Integer
Currency: String

End CreditData

CustomerData
Name: String
Account[2]:Integer

End CustomerData
-->
<CreditData>

<Customer>
<Name>User1</Name>
<Account>4711</Account>
<Account>0007</Account>

</Customer>
<Amount>100000</Amount>
<Currency>CurrencyX</Currency>

</CreditData>

The following rules apply to containers in the message-based interface:
v A container is identified by its type, that is, the name of the associated data

structure. Container elements are specified by their name; their type is not part
of the XML message.

v There are both atomic and complex data structures. Atomic data is mapped to
parsed character data (PCDATA) elements, while complex data structures are
decomposed into elements according to their structure.

v The structure of XML elements representing a container reflects the associated
data structure. Therefore, data member names are not prefixed; there is no need
for a dotted name representation.

XML message interface

Chapter 2. Language interfaces 153

Note that the context-free nature of XML does not allow for data structures
having the same names as data members. Also, two data members with the
same name must be of the same type even if they are contained in different data
structures. When the MQSeries Workflow Buildtime Verification encounters one
of these situations, it issues a warning.

v Atomic elements containing strings and numbers can be coded directly.
v For boolean types, values ″false″ and ″true″ (case insensitive) should be used.

Values 0 and 1 are also supported.
v Binary data must be encoded into its printable version (Base 64 encoding). Note

that this encoding preserves length information.
v Arrays are represented as a sequence of elements.

The following example shows an XML message that requests the execution of a
process instance:
<?xml version="1.0" standalone="yes"?>
<WfMessage>

<WfHeader>
<ResponseRequired>Yes</ResponseRequired>
<UserContext>This data is sent back in response</UserContext>

</WfHeader>
<ProcessTemplateExecute>

<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<ProcInstName>Credit Request #658321</ProcInstName>
<KeepName>true</KeepName>
<ProcInstInputData>

<CreditData>
<Customer>

<Name>User1</Name>
<Account>4711</Account>
<Account>0007</Account>

</Customer>
<Amount>100000</Amount>
<Currency>CurrencyX</Currency>
</CreditData>

</ProcInstInputData>
</ProcessTemplateExecute>

</WfMessage

Code page support
XML allows for the specification of messages in Unicode, as well as in ISO-defined
character sets. XML messages sent to MQSeries Workflow are converted from their
format as specified in the encoding keyword to the MQSeries Workflow code page
as necessary. XML messages sent by MQSeries Workflow (responses and activity
implementation invocation requests) are always encoded in Unicode.

Sending requests to MQSeries Workflow
The MQSeries Workflow message-based interface is used to request services from
MQSeries Workflow. This is depicted in the following figure:

XML message interface

154 MQSeries Workflow for OS/390 Programming Guide

1. An application creates an MQSeries Workflow XML message and puts it into
the MQSeries Workflow XML input queue.

2. The MQSeries Workflow execution server reads the XML message out of the
XML input queue and processes the request.

3. The MQSeries Workflow execution server creates an XML message response
and puts it into the response queue. The response queue information is part of
the MQMD of the incoming XML message.

4. The application reads the incoming message and processes the response.

Supported functions
The following requests are supported by the XML message interface:
v “CreateAndStartInstance()” on page 448.
v “ExecuteProcessInstance()” on page 458.

XML input queue
The XML input queue
<prefix>.<SystemGroupName>.<SystemName>.EXE.XML

or
<prefix>.<SystemGroupName>.EXE.XML

is an MQSeries queue to which the MQSeries Workflow execution server is
listening.

Only XML messages are accepted as input to this queue. The XML message must
conform to the MQSeries Workflow XML message format. If it does not conform, a
GeneralError XML message is put into the response queue.

Refer to MQSeries Installation for more information about the XML input queue.

Authentication and authorization
For authentication, MQSeries Workflow’s message-based interface relies on
MQSeries. MQSeries Workflow does not perform any additional authentication. For
setting up MQSeries security, refer to ″Protecting MQSeries Objects″ in MQSeries
System Administration.

The user ID from the MQMD is used as the MQSeries Workflow user on whose
behalf the request is to be performed. Authorization checks for that user are
performed as usual.

Figure 26. Sending requests to MQSeries Workflow

XML message interface

Chapter 2. Language interfaces 155

Note: MQSeries user ID constraints differ from the ones defined for the MQSeries
Workflow system. Since authorization is checked by MQSeries Workflow, the
user ID in the MQMD of an XML message must be a valid MQSeries
Workflow user. This has to be ensured by the application programmer and
MQSeries Workflow administrator.

Invoking an activity implementation
Activity implementations are usually started by MQSeries Workflow by sending an
internal invocation request message to a program execution agent or program
execution server. They, in turn, invoke the program that was modeled to
implement the activity. Using the message-based interface, it is also possible for
MQSeries Workflow to send that invocation request message in XML format to a
user-defined MQSeries queue.

From the point of view of MQ Workflow, the MQSeries application listening on
that queue has to act like a program execution server. All the necessary
information is passed to invoke the activity implementation. The MQSeries
application must return with an appropriate response, if requested by MQSeries
Workflow.

Therefore, such an application is called a user-defined program execution server
(UPES). A user-defined program execution server can be any application you write,
provided it can deal with the MQSeries Workflow XML message format, or a
program such as MQSeries Integrator V2.

MQSeries Workflow can send an invocation request in XML format to a
user-defined program execution server if the program activity is modeled to be
performed by that UPES. This is done in MQSeries Workflow Buildtime, using the
activity property sheet.

Two invocation modes for the activity implementation can also be modeled:
v Synchronous invocation (the standard case), where MQSeries Workflow waits for

a completion message containing result data from the UPES before the activity
instance is considered to be complete.

v Asynchronous invocation, where no completion message is required and the
activity instance is considered to be complete immediately after the invocation
message has been sent. No result data can be returned in this case.

The following figure depicts the invocation of an activity implementation:

Figure 27. Starting an activity implementation via XML

XML message interface

156 MQSeries Workflow for OS/390 Programming Guide

1. A UPES must have been defined using MQSeries Workflow Buildtime.
2. When an activity implementation is to be started, the MQSeries Workflow

execution server sends a program invocation message to the UPES.
3. An application listening to the UPES queue reads the XML message and

performs the appropriate action. Possible actions are:
v Transform the message into another format and route it to another recipient,

for example, send an EDI message to another company.
v Perform a transaction that involves the get of the request from the queue, the

update of one or more DBMS or other resource managers, and the put of the
response, in a single unit of work.

v Invoke the specified activity implementation, for example, call a program on
a platform not yet supported by MQSeries Workflow.

4. When the activity implementation has finished, the application creates a
response MQSeries Workflow XML message, if required, and puts it into the
response queue. Note that the response queue information is part of the
MQMD of the incoming XML invocation message.

5. The MQSeries Workflow execution server reads the response message,
processes it, and changes the state of the activity accordingly.

User-defined program execution server (UPES)
A UPES is defined and configured for an MQSeries Workflow system by modeling
it in MQSeries Workflow Buildtime. Essential attributes are the name and queue it
represents. For more information, refer to the online help of MQSeries Workflow
Buildtime.

The application that is listening to the UPES queue is not managed by MQSeries
Workflow. A system administrator is responsible for administering the application.
From an MQSeries Workflow point of view, the invocation of an activity
implementation is successful when the invocation message is successfully put into
the UPES queue.

Depending on the nature of the activity instance, the activity implementation may
only need to be triggered and then runs asynchronously to the MQSeries Workflow
process instance, or the process instance navigation has to be synchronized with its
completion. In the latter case, a completion message has to be sent to MQSeries
Workflow to inform it about the result of execution. In the former case, the activity
instance is considered finished as soon as the invocation request is successfully
sent. The indication of whether an implementation is to be started synchronously
or asynchronously is modeled in Buildtime:
v Synchronous

The activity implementation is started and the activity instance put into state
Running. When the activity implementation ends and the MQSeries Workflow
execution server receives a completion message, the activity instance is set into
the appropriate state, for example, Finished.
Correlation between the request and the response is done by means of the
activity implementation correlation ID, which is passed in the invocation request
by MQSeries Workflow, and must be passed back in the response

v Asynchronous
The activity implementation is started and the activity instance is put into the
appropriate state, for example, Finished. No information on the completion of the
activity implementation is expected. If a completion message is received, it is
ignored.

XML message interface

Chapter 2. Language interfaces 157

Completion message
If the activity implementation is specified to run asynchronously, no completion
message is expected. In that case, the successful put of the outgoing start activity
implementation message is considered to be the complete invocation.

If the activity implementation is specified to run synchronously, a completion
message is expected by the MQSeries Workflow execution server. This message can
either report the successful execution of the activity implementation, passing the
return code and output container, or it can report a failure passing the error and
reason code. The error and reason codes must be understood by MQSeries
Workflow. See fmcmretc.h or fmcrcs.cpy for a list of valid codes.

Authorization
For invocation messages sent by MQSeries Workflow, the message header contains
the user ID of the user on whose behalf the invocation is to be started. The UPES
applications can use this information to implement their own authorization
schemes.

XML message interface

158 MQSeries Workflow for OS/390 Programming Guide

Example

<ActivityImplInvoke>
<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<Starter>user@systemGroup</Starter>
<ProgramID>

<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProgramName>PerformOrder</ProgramName>
<ImplementationData>

<ImplementationPlatform>AIX</ImplementationPlatform>
<ProgramParameters>/custNo=1234</ProgramParameters>
<ExeOptions>

<PathAndFileName>/usr/local/bin/perforder</PathAndFileName>
<WorkingDirectoryName>/usr/local/data</WorkingDirectoryName>
<InheritEnvironment>true</InheritEnvironment>
<StartInForeGround>true</StartInForeGround>
<AutomaticClose>true</AutomaticClose>
<WindowStyleVisible>true</Visible>
<RunInXTerm>true</RunInXTerm>

</ExeOptions>
</ImplementationData>
<ImplementationData>

<ImplementationPlatform>OS390</ImplementationPlatform>
<ProgramParameters>/custNo=1234</ProgramParameters>
<ExternalOptions>

<ServiceName>CICS42</ServiceName>
<ServiceType>CICS</ServiceType>
<InvocationType>EXCI</InvocationType>
<ExecutableName>ORDR</ExecutableName>
<ExecutableType>REG1</ExecutableType>
<IsLocalUser>true</IsLocalUser>
<IsSecurityRoutineCall>true</IsSecurityRoutineCall>
<CodePage>850</CodePage>
<TimeoutPeriod>TimeInterval</TimeoutPeriod>
<TimeoutInterval>60</TimeoutInterval>
<IsMappingRoutineCall>false</IsMappingRoutineCall>

</ExternalOptions>
</ImplementationData>
<ProgramInputData>

<!-- Another container goes here... -->
</ProgramInputData>
<ProgramOutputDataDefaults>

<!-- And yet another container ... -->
</ProgramOutputDataDefaults>

</ActivityImplInvoke>

<ActivityImplInvokeResponse>
<ActImplCorrelID>FFABCEDF0123456789FF</ActImplCorrelID>
<ProgramRC>0</ProgramRC>
<ProgramOutputData>

<!-- Another container comes here... -->
</ProgramOutputData>

</ActivityImplInvokeResponse>

Figure 28. Sample activity implementation using XML

XML message interface

Chapter 2. Language interfaces 159

The MQSeries Workflow XML message format
The following XML syntax is a document type definition (DTD) used to describe the
format of MQSeries Workflow messages. Note that the following format of a
container only contains a suggestion, because the format can vary depending on
your setup. Therefore, you cannot use this DTD description to validate your XML
message without adding the appropriate specifications for the data structures you
use.

You do not have to specify your containers. You are, however, encouraged to do so
for future use or to validate them by any other XML application.

XML message interface

160 MQSeries Workflow for OS/390 Programming Guide

<!-- FmcXMLIF.dtd == DTD for MQSeries Workflow messages -->
<!-- Message == -->
<!ELEMENT WfMessage

(WfMessageHeader?,
(ProcessTemplateCreateAndStartInstance
| ProcessTemplateCreateAndStartInstanceResponse
| ProcessTemplateExecute
| ProcessTemplateExecuteResponse
| ActivityImplInvoke
| ActivityImplInvokeResponse
| GeneralError)) >

<!-- ==
Workflow Message Header

== -->
<!ELEMENT WfMessageHeader (ResponseRequired?,UserContext?)>
<!-- Opaque -->
<!ELEMENT UserContext (#PCDATA) >
<!-- Enumerated type -->
<!ELEMENT ResponseRequired (#PCDATA)>

<!-- Expected values: {No,IfError,Yes} -->

<!-- ==
Specific Messages

== -->
<!-- ProcessTemplateCreateAndStart =================== -->
<!ELEMENT ProcessTemplateCreateAndStartInstance

(ProcTemplName,
ProcInstName,
KeepName,
ProcInstInputData) >

<!ELEMENT ProcessTemplateCreateAndStartInstanceResponse
(ProcessInstance
| Exception) >

<!-- ProcessTemplateExecute ========================== -->
<!ELEMENT ProcessTemplateExecute

(ProcTemplName,
ProcInstName,
KeepName,
ProcInstInputData) >

<!ELEMENT ProcessTemplateExecuteResponse
((ProcessInstance,

ProcInstOutputData)
| Exception) >

<!-- ActivityImplInvoke ============================== -->
<!ELEMENT ActivityImplInvoke

(ActImplCorrelID,
Starter,
ProgramID,
(ImplementationData)*,
ProgramInputData,
ProgramOutputDataDefaults) >

<!ELEMENT ActivityImplInvokeResponse
(ActImplCorrelID,

(ProgramRC,
ProgramOutputData)

Figure 29. Document type definition (DTD) for MQSeries Workflow XML messages (Part 1 of
5)

XML message interface

Chapter 2. Language interfaces 161

| Exception) >

<!-- GeneralError ===================================== -->
<!ELEMENT GeneralError (Exception) >

<!-- ==
Data Structures

== -->
<!-- Named Entities =================================== -->
<!ENTITY %CONTAINER "CreditData | InsuranceData | Address | Customer|...">
<!ELEMENT ProcInstInputData (%CONTAINER;) >
<!ELEMENT ProcInstOutputData (%CONTAINER;) >
<!ELEMENT ProgramInputData (%CONTAINER;) >
<!ELEMENT ProgramOutputData (%CONTAINER;) >
<!ELEMENT ProgramOutputDataDefaults (%CONTAINER;) >

<!-- Process Instance ================================= -->
<!ELEMENT ProcessInstance

(ProcInstID,
ProcInstName,
ProcInstParentName?,
ProcInstTopLevelName,
ProcInstDescription?,
ProcInstState,
LastStateChangeTime,
LastModificationTime,
ProcTemplID,
ProcTemplName,
Icon,
Category?) >

<!-- Program ID ======================================= -->
<!ELEMENT ProgramID

(ProcTemplID,
ProgramName) >

<!-- Implementation Data ============================== -->
<!ELEMENT ImplementationData

(ImplementationPlatform ,
ProgramParameters,
(ExeOptions
| DllOptions
| ExternalOptions)) >

<!ELEMENT ExeOptions
(PathAndFileName,

WorkingDirectoryName?,
Environment?,
InheritEnvironment,
StartInForeGround,
AutomaticClose,
WindowStyle?,
RunInXTerm) >

<!ELEMENT DllOptions
(PathAndFileName,

Figure 29. Document type definition (DTD) for MQSeries Workflow XML messages (Part 2 of
5)

XML message interface

162 MQSeries Workflow for OS/390 Programming Guide

EntryPointName,
ExecuteFenced,
KeepLoaded)

<!ELEMENT ExternalOptions
(ServiceName,

ServiceType,
InvocationType,
ExecutableName,
ExecutableType,
IsLocalUser,

IsSecurityRoutineCall,
CodePage,
TimeoutPeriod,
TimeoutInterval?,
IsMappingRoutineCall,
MappingType?,
ForwardMappingFormat?,
ForwardMappingParameters?,
BackwardMappingFormat?,
BackwardMappingParameters?) >

<!-- Exception == -->
<!ELEMENT Exception

(Rc, Parameters, MessageText?, Origin) >
<!-- Message text is optional, as it will be ignored

in messages being sent *to* the Wf server. -->
<!ELEMENT Parameters

(Parameter*) >

<!-- Data Elements ==================================== -->
<!-- Booleans -->
<!ELEMENT AutomaticClose (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT DllV2Compatible (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT ExecuteFenced (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT InheritEnvironment (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT IsLocalUser (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT IsMappingRoutineCall (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT IsSecurityRoutineCall (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT KeepLoaded (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT KeepName (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT RunInXTerm (#PCDATA) > <!-- Expected values: {true, false} -->
<!ELEMENT StartInForeGround (#PCDATA) > <!-- Expected values: {true, false} -->

<!-- Strings -->
<!ELEMENT BackwardMappingFormat (#PCDATA) >
<!ELEMENT BackwardMappingParameters (#PCDATA) >
<!ELEMENT Category (#PCDATA) >
<!ELEMENT EntryPointName (#PCDATA) >
<!ELEMENT Environment (#PCDATA) >
<!ELEMENT ExecutableName (#PCDATA) >
<!ELEMENT ExecutableType (#PCDATA) >
<!ELEMENT ForwardMappingFormat (#PCDATA) >
<!ELEMENT ForwardMappingParameters (#PCDATA) >
<!ELEMENT Icon (#PCDATA) >
<!ELEMENT InvocationType (#PCDATA) >

Figure 29. Document type definition (DTD) for MQSeries Workflow XML messages (Part 3 of
5)

XML message interface

Chapter 2. Language interfaces 163

<!ELEMENT MappingType (#PCDATA) >
<!ELEMENT MessageText (#PCDATA) >
<!ELEMENT Origin (#PCDATA) >
<!ELEMENT Parameter (#PCDATA) >
<!ELEMENT PathAndFileName (#PCDATA) >
<!ELEMENT ProcInstDescription (#PCDATA) >
<!ELEMENT ProcInstName (#PCDATA) >
<!ELEMENT ProcInstParentName (#PCDATA) >
<!ELEMENT ProcInstTopLevelName (#PCDATA) >
<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT ProgramName (#PCDATA) >
<!ELEMENT ProgramParameters (#PCDATA) >
<!ELEMENT ServiceName (#PCDATA) >
<!ELEMENT ServiceType (#PCDATA) >
<!ELEMENT Starter (#PCDATA) >
<!ELEMENT WorkingDirectoryName (#PCDATA) >

<!-- Opaque -->
<!ELEMENT ActImplCorrelID (#PCDATA) >
<!ELEMENT ProcInstID (#PCDATA) >
<!ELEMENT ProcTemplID (#PCDATA) >

<!-- Numbers -->
<!ELEMENT CodePage (#PCDATA) >
<!ELEMENT ProgramRC (#PCDATA) >
<!ELEMENT Rc (#PCDATA) >
<!ELEMENT TimeoutInterval (#PCDATA) >

<!-- Timestamps YYYY-MM-DD-hh.mm.ss.000000 (000000 milliseconds) -->
<!ELEMENT LastModificationTime (#PCDATA) >
<!ELEMENT LastStateChangeTime (#PCDATA) >

<!-- Enumerated types -->
<!ELEMENT ImplementationPlatform (#PCDATA) > <!-- Expected values:

{ OS2, AIX,
HPUX, Windows95,
WindowsNT, OS390,
Solaris } -->

<!ELEMENT ProcInstState (#PCDATA) > <!-- Expected values:
{ Ready, Running,

Finished, Terminated,
Suspended, Terminating,
Suspending,Deleted } -->

<!ELEMENT WindowStyle (#PCDATA) > <!-- Expected values:
{ Visible, Invisible,

Minimized, Maximized } -->

<!ELEMENT TimeoutPeriod (#PCDATA) > <!-- Expected values:
{ TimeInterval

Forever Never } -->

<!-- Container == -->

Figure 29. Document type definition (DTD) for MQSeries Workflow XML messages (Part 4 of
5)

XML message interface

164 MQSeries Workflow for OS/390 Programming Guide

<!ELEMENT CreditData (...) >
<!ELEMENT OrderData (...) >
<!ELEMENT InsuranceData (...) >
<!ELEMENT Address (...) >
<!ELEMENT Customer (...) >

Figure 29. Document type definition (DTD) for MQSeries Workflow XML messages (Part 5 of
5)

XML message interface

Chapter 2. Language interfaces 165

XML message interface

166 MQSeries Workflow for OS/390 Programming Guide

Chapter 3. Interfacing with the Program Execution Server

This chapter describes how to write exit routines to interface with the Program
Execution Server to map data for legacy applications and to invoke programs.

CICS considerations
In CICS activity implementations, input/output container data is not retrieved
from the PEA as in the LAN version but rather sent with the invocation and stored
in the COMMAREA. If the user changes the COMMAREA without using the IBM
MQSeries Workflow for OS/390 API or once the output container has been set, this
data can no longer be retrieved.

For information on how to enable CICS to work with IBM MQSeries Workflow for
OS/390, see IBM MQSeries Workflow: Concepts and Architecture.

IMS considerations
In IMS activity implementations, input/output container data is not retrieved from
the PEA as in the LAN version but rather sent with the invocation and stored in
the I/O AREA. If the user changes the I/O AREA without using the IBM MQSeries
Workflow for OS/390 API, or once the output container has been set, this data can
no longer be retrieved.

IMS programs can use only the Container API, which is a subset of the full
MQSeries Workflow API. The Container API is defined in header files fmcjccon.h
and fmcjpcon.hxx and COBOL copybook fmcperfl.cpy.

For information on how to enable IMS to work with IBM MQSeries Workflow for
OS/390 see MQSeries Workflow for OS/390: Customization and Administration.

Notes:

1. An IMS program using the MQSeries Workflow for OS/390 API must issue at
least one of the following calls:
v FmcjContainerInContainer
v FmcjContainerOutContainer
v FmcjContainerRemoteInContainer
v FmcjContainerRemoteOutContainer

2. An IMS program using the MQSeries Workflow for OS/390 API must issue
exactly one of the following calls to return control to the Workflow system:
v FmcjContainerSetOutContainer
v FmcjContainerSetRemoteOutContainer

Program mapping via the Program Execution Server

Introduction
Whenever legacy applications are to be invoked by MQSeries Workflow, a
mapping of the MQSeries container data into a format acceptable by the legacy
application is needed.

© Copyright IBM Corp. 1999, 2000 167

MQSeries Workflow offers a default program mapper with basic functionality. This
section gives a brief overview of the program mapping component of the program
execution server (PES). This component does the mapping of MQSeries Workflow
containers into a format acceptable by legacy applications. This is a basic mapper
so that legacy applications like IMS and CICS are supported. If more complicated
mappings are to be done, other mapping tools can be used.

In order to make the format of workflow containers acceptable to legacy
applications, the content of the workflow containers is put to an interface called
structure. The input/output interface for the legacy application is called the
interface. The task for the program mapper is to convert the data between the
structure and interface. Mapping from MQSeries Workflow to the legacy
application (a to A, b to B...) is called forward mapping, and mapping from legacy
applications to MQSeries Workflow (A to a, B to b...) backward mapping. If special
conversion between structure and interface elements is needed, a usertype exit
(which will be explained later) can be used.

Mapping is not necessary if the called application uses Workflow API calls to
extract data from the containers.

The way the mapping should be done between structures and interfaces is defined
with a mapping definition language (MDL).

MQSeries
Workflow
Container

Legacy
Application

Program
Mapper

Figure 30. Program mapping illustration.

Request

Container

Reply

a

A

B

C

D

E

F

Interface

Backward
Mapping

Forward
Mapping

Legacy
Application

(CICS or IMS)

a

a

b
c

d
e

fUser

Program Mapper

Program
Mapping
Database

OS/390
Execution

Server
PES

Structure

Figure 31. Program mapping control flow

Program mapping

168 MQSeries Workflow for OS/390 Programming Guide

To create a mapping, you must first write the definition of the structure and
interface elements. You then connect these structures and interfaces with
forward/backward mapping definitions, compile the MDL with a parser, and load
it into the mapping database. The elements of the mapper are explained in detail
in the MQSeries Workflow for OS/390: Customization and Administration. The
following graphic illustrates the process:

Program mapping definitions
In this section, the mapping definitions will be explained in more detail. For each
definition, a simple example is also given.

Structure definition
A structure defines the MQSeries Workflow container structure that is passed into
the program execution server (PES). The structure definition syntax is identical to
the structure definition syntax used in the Flowmark definition language (FDL).
This allows exporting container definitions from Buildtime into a flat file and
copying these structure definitions into the mapping definition language (MDL). A
structure mainly consists of a collection of members (structure elements) with a
type and cardinality.

Example: This example shows a container in MQSeries Workflow representing an
account representative structure. The structure contains the name of the holder of
the account (first name and last name defined as a string), the corresponding ZIP
(postal) code (defined as long), salary, and tax. The last part of the container is to
be filled with the data of customers belonging to the holder of the account. The
example for the definition of the CustomerStructure is given later. In order to
define the structure you must define each element of the MQSeries Workflow
container which is to be passed to the legacy application (the code for a sample
legacy application is given in “Additional mapping examples” on page 196).
STRUCTURE AccountRepStructure

LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;
Customers: CustomerStructure(3);

END AccountRepStructure

You will find a more detailed example under “Simple data structure with default
name mapping” on page 198 and the structure definition grammar under
“Structure definition” on page 184.

Interface definition
An interface defines the layout and type of the data accepted by a legacy
application. Each interface element has a fixed size and location (offset) and will be
filled with converted container elements. There is no way to verify whether the
size, location, and type of the elements actually match the size, location, and type
expected by the legacy application. This means that the interface definitions must
be created carefully. Otherwise, conversion results are unpredictable and runtime
mapping errors can occur because of invalid data. Each element of an interface is

Figure 32. How to create a program mapping.

Program mapping

Chapter 3. Interfacing with the Program Execution Server 169

mapped to a structure element with the same name. If there is no element with the
same name, the interface element is skipped and the container element is
unaffected. It is also possible to define a constant for an interface element. See
“Constants” on page 175 for more details.

Example:This example shows an interface of a legacy application representing an
account representative structure. In this case the name of the holder of the account
(first name and last name, defined as a string with a maximum of 50 characters,
terminated by hex zero and left-justified with pad character ″ ″), the corresponding
ZIP (defined as an unsigned integer with 16 bits), salary, and tax (defined as float
with 32 bits). The last part of the container is to be filled with the data of selected
customers belonging to the holder of the account. The example for the definition of
the CustomerStructure (array for 3 customers using another structure
″CustomerInterfaceForCpp″) is given later. In order to define the interface, you
must define each individual element of the container used by the legacy
application. The definition of the interface should be as follows:
INTERFACE AccountRepInterfaceForCpp

LastName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
FirstName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
Zip: UNSIGNED INTEGER 16;
Salary: FLOAT 32;
Tax: FLOAT 32;
Customers: ARRAY(3) CustomerInterfaceForCpp;

END AccountRepInterfaceForCpp

You will find a more detailed example under “Simple data structure with default
name mapping” on page 198 and the interface definition grammar under “Interface
definition” on page 185. If you have an interface element and no corresponding
structure element, no mapping will be done by the default mapper. If it is required
to have some constants on the legacy application side, each interface element can
optionally have a constant statement that defines the constant to create for the
legacy application. The constant is converted in forward mapping, whether there is
a matching structure element or not. If backward mapping occurs, a structure
element is set to this constant only if there is an element with the same name or a
mapping rule between the structure and the interface with a constant. See
“Constants” on page 175 for more information.

Forward/backward mapping definition
The connection between a structure and an interface is done via a forward and
backward mapping definitions. Forward mapping is used to map a structure into a
format accepted by a legacy application, and backward mapping is used to map
legacy application data into a structure. Mapping done for structure and interface
elements with identical names is called default mapping. In addition, it is possible,
by using rules, to do explicit mapping of elements which have different names.
Structures are mapped as a whole into interfaces, and arrays are mapped as a
whole if both the structure and interface array have the same size. It is not possible
to map array elements individually. If more powerful mappings are required, use
container mapping (see IBM MQSeries Workflow: Getting Started with Buildtime).

Program mapping

170 MQSeries Workflow for OS/390 Programming Guide

To create a forward mapping, you must define which structure is to be mapped to
which interface. To create a backward mapping, you must define which interface is
to be mapped to which structure. Optionally, you can use rules to map elements
with different names. See “Mapping algorithm” on page 172 for more detailed
information about default and explicit mapping.

The coding for the mapping according to the diagram would therefore be:
/* Mapping from MQSeries Workflow (structure) to legacy appl.(interface) */
FORWARDMAPPING Forward

FROM AccountRepStructure TO AccountRepInterfaceForCpp
END
/* Mapping from legacy appl. (interface) to MQSeries Workflow (structure) */
BACKWARDMAPPING Backward

FROM AccountRepInterfaceForCpp TO AccountRepStructure
END

Note: All structure and interface elements are mapped because they have identical
names (default mapping).

You will find a complete mapping in “Example” on page 176.

Usertype definition
A usertype can be used by the program mapper whenever the interface types
provided by a default mapper do not offer the required conversion. In this case the
actual data conversion must be done by a usertype exit, which must reside in a
DLL. See “Usertype” on page 192.

Example: In order to assign a number to a currency with the corresponding
symbol, you need to define a usertype (any mapping type would map the number
to the exact number in a different format but not assign it to a special currency). It
is also possible to define a usertype that calculates a value of currency A used in
the structure to a currency B used in the interface (for example U.S. dollars to
British pounds or the new European currency, the euro).
USERTYPE SampleUsertype LENGTH(4)

DLL "SAMPUTY","SampleUsertypeExit"
END

Figure 33. Default forward/backward mapping

Program mapping

Chapter 3. Interfacing with the Program Execution Server 171

INTERFACE SampleUsertypeInterface
DESCRIPTION "Sample Usertype Interface"
SampleElement: USERTYPE SampleUsertype PARMS "$";

END

This example shows the functionality of a usertype. An interface element (defined
as C long) is mapped to a structure element (defined as a string). In backward
mapping, the C long ″4711″ is converted to a string and prefixed with ″$″. In
forward mapping the string ″$4711″ is truncated to ″4711″ and then converted to a
C long.

Mapping algorithm
All elements in an MQSeries Workflow container have names. The interface
elements must also have names. Mapping is done per default on a name-by-name
basis if elements have the same name. If element names are different, mapping
rules can be used to do explicit mapping.

Structures are mapped as a unit to interfaces if their names are identical. Arrays
are also mapped as a unit. It is also possible to define constants that are inserted
on the legacy application or container side.

If structure or interface elements are not mapped, the data in the structure element
or interface element is not modified.

Note: Each structure element can only be mapped to one interface element and
vice versa.

In this example, there are 4 structure and interface elements which are to be
mapped by the default mapper.

Figure 34. Usertype example

Program mapping

172 MQSeries Workflow for OS/390 Programming Guide

FORWARDMAPPING Forward
FROM Structure1 TO Interface1

END

The default mapper maps structure element A to interface element A and structure
element C to interface element C. It does not map structure element b to interface
element B or structure element d to interface element E, because of the different
names. See also “Simple data structure with default name mapping” on page 198
for a more detailed example.

If the corresponding structure and interface elements do not have identical names,
the mapping must be defined explicitly. In this case you must define an additional
mapping rule for the mapping. The mapping definition language (MDL) and the
corresponding grammar are explained in “Grammar” on page 181. The following
graphic displays a simple forward mapping with some non-identical names of the
structure and interface elements.

The mapping rules would follow as:
FORWARDMAPPING Forward2 FROM Structure1 TO Interface1

MAP b TO B;
MAP d TO E;

END

Structure1 Interface1

b
C

d

default mapping

A
B
C

E

A

Figure 35. Default forward mapping illustration.

Figure 36. Forward2: Non-default forward mapping illustration.

Program mapping

Chapter 3. Interfacing with the Program Execution Server 173

Structure elements A and C do not have to be mapped to interface elements A and
C explicitly; this will be done be the default mapper automatically. Refer to
“Complex data structure with non-default name mapping” on page 199 for a more
detailed example.

If you would like a backward mapping according to the above diagram the
mapping rules would be:
BACKWARDMAPPING Backward1 FROM Interface1 TO Structure1

MAP B TO b;
MAP E TO d;

END

How you map elements to each other only depends on the definition as long as
you do not violate any conversion rules (see “Valid conversions between MQSeries
Workflow container program mapping element types and program mapping
interface types” on page 178). For example. it is not permissible to map an integer
to a binary.

In this case the interface element A will not be mapped to structure element A
because there is a rule from interface element E to structure element A. Interface
element B is mapped because of the explicit rule. Interface element C is mapped to
structure element C because they have the same name (default mapping) and

Figure 37. Non-default backward mapping Backward1 illustration.

Figure 38. Backward2: Explicit mapping illustration.

Program mapping

174 MQSeries Workflow for OS/390 Programming Guide

because no explicit mapping for interface element C is defined. Interface element E
will be mapped to structure element A because of a mapping rule for interface
element E.
BACKWARDMAPPING Backward2 FROM Interface1 TO Structure1

MAP B TO b;
MAP E TO A;

END

Table 10. Rule mapping with no constant definition

BACKWARDMAPPING FORWARDMAPPING

There is a definition rule for
forward/backward mapping

Map interface element to
structure element

Map structure element to
interface element

There is no definition rule for
forward/ backward mapping

Interface element not
mapped to structure element

Interface element undefined

Notes:

1. If the mapping rules use invalid or nonexistent interface element names, these
rules are ignored during actual mapping. Make sure you use the right names in
forward mapping and backward mapping. By contrast, structure element
names used in definition rules must exist. Otherwise, runtime errors will occur.

2. Do not map structure elements to interface elements which are used in other
arrays. The structure element will contain the interface elements with the
largest dimension.

Constants
If it is required to have constants on the legacy application or structure side, each
interface element can optionally have a constant statement that defines the constant
to create for the legacy application or structure element. The constant is converted
in forward mapping whether there is a matching structure element or not. If a
backward mapping occurs, the structure element is set to this constant only if there
is an element with the same name or a rule is defined for this structure element.

Table 11. Mapping with constant definition

Backward mapping Forward mapping

There is a definition rule for
forward/ backward mapping

Structure element set to
constant

Interface element set to
constant

There is no definition rule for
forward/ backward mapping

Structure element not set to
constant

Interface element set to
constant

Example for non-default forward mapping with constant definitions:

Program mapping

Chapter 3. Interfacing with the Program Execution Server 175

Because structure elements A, C and b are mapped to interface elements A, C and
E (which all have a constant definition), the interface elements A, C and E are set
to Aconst, Cconst and Econst, respectively. The interface element B is set to Bconst
because no structure element was mapped to B. So all interface elements are set to
their corresponding constant values. In forward mapping, all interface elements
with a constant definition are set to their constant whether there is a mapping to
this element or not. Only if the interface element has no constant definition can a
mapping change the value. Refer to “Simple data structure with all interface types
with CONSTANTS and usertypes” on page 201 for a more complex example.

Example for default backward mapping with constant definitions:

Because interface elements B and E are not mapped to structure elements b and d,
b and d are not set to the constant values of Bconst and Econst. Because interface
element A is mapped to structure element A and interface element A has a constant
Aconst, the structure element A is set to Aconst (same as structure element C is set
to Cconst). Assuming there would be no constant definition for C on the legacy
application side, interface element C would have been mapped to structure
element C as usual.

Example
In this example, the structure elements and interface elements do not have the
same names. Therefore they must be mapped explicitly in the forward/backward
mapping definition. If they were not mapped explicitly, no mapping would be
done at all, because all structure and interface elements have different names.

Figure 39. Forward mapping with constants.

A
b

C

d

A

B
C

E

Structure1 Interface1 Constants

Aconst

Bconst

Cconst

Econst

default mapping

Figure 40. Backward mapping with constants.

Program mapping

176 MQSeries Workflow for OS/390 Programming Guide

STRUCTURE AccountRepStructure
LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;
Customers: CustomerStructure(3);

END AccountRepStructure
INTERFACE AccountRepInterfaceForCpp

L: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
F: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
Z: UNSIGNED INTEGER 16;
S: FLOAT 32;
T: FLOAT 32;
C: ARRAY(3) CustomerInterfaceForCpp;

END AccountRepInterfaceForCpp
/* Mapping from MQSeries Workflow (structure) to legacy application (interface) */
FORWARDMAPPING Forward FROM AccountRepStructure TO AccountRepInterfaceForCpp

MAP LastName TO L;
MAP FirstName TO F;
MAP Zip TO Z;
MAP Salary TO S;
MAP Tax TO T;
MAP Customers TO C;

END
/* Mapping from legacy appl. (interface) to MQSeries Workflow (structure) */
BACKWARDMAPPING Backward FROM AccountRepInterfaceForCpp TO AccountRepStructure

MAP L TO LastName;
MAP F TO FirstName;
MAP Z TO Zip;
MAP S TO Salary;
MAP T To Tax;
MAP C TO Customers;

END

Supported program mapping definition element types

Program mapping structure definition element types
All MQSeries Workflow element types are supported:
v LONG
v FLOAT
v STRING
v BINARY

Program mapping interface definition element types

Characters: Characters have a size in bytes, an optional termination character (hex
0), and justification and padding.

Integer numbers: Integers are either signed or unsigned and have a size in bits.
Supported sizes are 16 and 32 bits.

Float numbers: Floats have a size in bits. Supported sizes are 32 and 64 bits.

Packed numbers: Packed numbers have a size, are either signed, with a character
for plus and a character for minus, or unsigned with an unsigned character, and
have a scale.

Zoned numbers: Zoned numbers have a size, are either signed, with a character
for plus and a character for minus, or unsigned with an unsigned character, and
have a scale.

Program mapping

Chapter 3. Interfacing with the Program Execution Server 177

Interface: Interfaces have only a name and define another interface used as an
interface element. In this way, it is possible to structure the interface in the same
way structures can be defined to contain other structures.

Usertypes: Whenever the previous interface types do not match the required
types, it is possible to define a usertype. For details see “Grammar” on page 181.
Usertypes have a name and an optional parameter string, which can be used to
pass additional information to the usertype exit. In order to use a usertype, it must
be defined and a usertype DLL with a usertype exit must be provided. (See
“Usertype” on page 192 for more details):

Valid conversions between MQSeries Workflow container program mapping
element types and program mapping interface types: The following table lists all
possible combinations of structure elements and interface elements. If they are
arrays, they must have the same size. There is one exception: a character of size 1
can be mapped to an MQSeries Workflow LONG. If an invalid combination is
used, a runtime error will be generated (see MQSeries Workflow for OS/390:
Messages and Codes for detailed information).

Table 12. Mapping combinations

Workflow Type
Interface Type

String Binary Long Float

CHAR * * *

INTEGER * *

FLOAT *

PACKED * * *

ZONED * * *

USERTYPE *1 *1 *1 *1

Note: 1Only available if this type of combination is supported by the usertype exit

Program mapping

178 MQSeries Workflow for OS/390 Programming Guide

Table 13. C/C++ data type mappings (legacy application (C/C++) to FDL types (structure))

C/C++ type Interface Structure Comment

char CHAR(1) JUSTIFY LEFT PAD ″ ″ STRING No imbedded
x’00’

char [5] CHAR(5) JUSTIFY LEFT PAD ″ ″ or
CHAR(5) TERMINATEDBY ″<h00>″
JUSTIFY LEFT PAD ″ ″

STRING No imbedded
x’00’

char CHAR(1) JUSTIFY LEFT PAD ″ ″ BINARY

char [5] CHAR(5) JUSTIFY LEFT PAD ″ ″ or
CHAR(5) TERMINATEDBY ″<h00>″
JUSTIFY LEFT PAD ″<h00>″

BINARY

char CHAR(1) JUSTIFY LEFT PAD ″<h00>″ LONG

short SIGNED INTEGER 16 LONG, STRING

unsigned short UNSIGNED INTEGER 16 LONG, STRING

int SIGNED INTEGER 32 LONG, STRING

unsigned int UNSIGNED INTEGER 32 LONG, STRING

long SIGNED INTEGER 32 LONG, STRING

unsigned long UNSIGNED INTEGER 32 LONG, STRING

float FLOAT 32 FLOAT

double FLOAT 64 FLOAT

P
ro

g
ram

m
ap

p
in

g

C
hapter

3.Interfacing
w

ith
the

Program
E

xecution
Server

179

Table 14. COBOL data type mappings (legacy application (COBOL) to FDL types (structure))

COBOL Interface Structure Comment

PIC X(n) CHAR(n) JUSTIFY LEFT PAD ″ ″ STRING No imbedded
x’00’

PIC X(n) CHAR(n) JUSTIFY LEFT PAD ″<h00>″ BINARY

PIC X(1) CHAR(1) JUSTIFY LEFT PAD ″<h00>″ LONG

PIC S999 PACKED-DECIMAL
or COMP-3

PACKED(3) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 0 LONG, STRING,
FLOAT

PIC S999PP
PACKED-DECIMAL or
COMP-3

PACKED(3) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 2 LONG, STRING,
FLOAT

PIC S99V9
PACKED-DECIMAL or
COMP-3

PACKED(3) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE -1 LONG, STRING,
FLOAT

PIC S9999 BINARY or
COMP-4

SIGNED INTEGER 16 LONG, STRING,
FLOAT

Up to 4 digits1

PIC S9(6) BINARY or
COMP-4

SIGNED INTEGER 32 LONG, STRING,
FLOAT

Between 5 and 9
digits1

COMP-1 FLOAT 32 FLOAT

COMP-2 FLOAT 64 FLOAT

PIC S9(n)V9(m) DISPLAY ZONED(n+m) SIGNED LAST MINUS ″-″ PLUS ″+″ SCALE -m LONG, STRING,
FLOAT

PIC S9(n)V9(m) DISPLAY
SIGN LEADING

ZONED(n+m) SIGNED FIRST MINUS ″-″ PLUS ″+″ SCALE -m LONG, STRING,
FLOAT

PIC S9(n)V9(m) DISPLAY
SIGN TRAILING SEPARATE

ZONED(n+m) SIGNED LAST MINUS ″-″ PLUS ″+″ SEPARATE SCALE -m LONG, STRING,
FLOAT

PIC 9(n)V9(m) DISPLAY ZONED(n) UNSIGNED SCALE -m LONG, STRING,
FLOAT

Note: 1 8-byte BINARY with 10-18 digits is not supported.

P
ro

g
ram

m
ap

p
in

g

180
M

Q
Series

W
orkflow

for
O

S/
390

Program
m

ing
G

uid
e

Grammar
This section describes the program mapper grammar. Base elements of the
grammar are tokens, keywords in uppercase, constants and comments. By
combining the base elements, you can define mapping elements:
forward/backward mapping (FM/BM) and structure/interface definitions (IF, ST).
The forward/backward mapping consists of rules (RL) which combine the
structure and interface elements (IFE, STE). The following graphic is intended to
illustrate the relationship between all these elements.

Grammar elements

Comments: Comments should be used to document the mapping definition.
There are two types of comments: C style, for example /* ’comment’ */ and C++
style, for example // ’comment’ at the end of a line.

Comments starting with ’/*’ and ending with ’*/’ can be located anywhere
between syntax tokens. Comments starting with // can be at the end of any line.
Nesting of ’/* ... */’ is not allowed.

Tokens: Tokens are the base element of the grammar, and each token is therefore
explained in detail. For each token, at least a syntax diagram and an example is
given.

FLOAT_TOKEN:

MDL consists of ...

IF

IFE

ST

STE

FM/BM

RL

combines ...
default mapping

Figure 41. Relationship between mapping elements.

Program mapping

Chapter 3. Interfacing with the Program Execution Server 181

��
-
+

� 0
1
2
3
4
5
6
7
8
9

.

�

0
1
2
3
4
5
6
7
8
9

�E 0
e - 1

+ 2
3
4
5
6
7
8
9

��

Example: -7.42E-4, which equals -0.000742.

Note: In order to keep the diagrams simple, the possibility of choosing a single
number from 0 to 9 will be displayed with

�� 0 ... 9 ��

from now on.

Hex_digit:

�� 0 ... 9
A ... F
a ... f

��

Examples: 3, F.

Hex_token:

�� < H
h

0 ... 9
A ... F
a ... f

0 ... 9
A ... F
a ... f

> ��

Example: <H4F>

IDENTIFIER:

�� a ... z
A ... Z
_

� a ... z
A ... Z
_
0 ... 9

��

Program mapping

182 MQSeries Workflow for OS/390 Programming Guide

Examples: a_b4_h4, _Z97_bfsd

INT_TOKEN:

��
-
+

� 0 ... 9 ��

Examples: -89432, 412

PACKED_TOKEN:

�� p
P

-
+

� 0 ... 9 .

� 0 ... 9

��

Examples: p+212.2 equals 212.2, p-142.8 equals -142.8

STRING_TOKEN:

�� �

�

″ \n ″
<<
>>
hex_token
″″
Any character

’ \n ’
<<
>>
hex_token
’’
Any character

��

Example: ″AlbertEinstein″, ″xyz’a″, ’xyz″a’, ’other_example<h15><h12>’

ZONED_TOKEN:

�� z
Z

-
+

� 0 ... 9 .

� 0 ... 9

��

Example: z+412.8

Program mapping

Chapter 3. Interfacing with the Program Execution Server 183

Keywords: Listed below are all available keywords. Do not name variables with
these reserved keywords, because this would cause problems when mapping (for
example, do not name a structure element ’STRUCTURE’).
ARRAY BACKWARDMAPPING BINARY CHAR
CONSTANT DESCRIPTION DLL DOCUMENTATION
END FIRST FLOAT FORWARDMAPPING
FROM IGNORE INTEGER INTERFACE
JUSTIFY LAST LEFT LENGTH
LONG MAP MAPPING MINUS
PACKED PAD PARMS PLUS
RIGHT SCALE SEPARATE SIGNED
STRING STRUCTURE TERMINATEDBY TO
UNSIGNED USERTYPE ZONED

Note: All keywords must be in uppercase!

Structure definition:

Structure:

�� STRUCTURE Name �

StructureSetting

�

MemberDeclaration
�

� END
Name

��

StructureSetting:

�� DESCRIPTION STRING_TOKEN
DOCUMENTATION STRING_TOKEN

��

MemberDeclaration:

�� Name �

, Name
: MemberType

MemberCardinality
�

� �

MemberSetting
; ��

Program mapping

184 MQSeries Workflow for OS/390 Programming Guide

MemberType:

�� FLOAT
LONG
Name
STRING
BINARY

��

MemberCardinality:

�� (INT_TOKEN) ��

MemberSetting:

�� DESCRIPTION STRING_TOKEN
DOCUMENTATION STRING_TOKEN

��

Note:
v Same syntax as structure definitions in FDL.

Interface definition:

Interface:

�� Interface Name �

InterfaceSetting
�

� �

InterfaceDeclaration
END

Name
��

InterfaceSetting:

�� MemberSetting ��

InterfaceDeclaration:

�� Name �

, Name
:

InterfaceCardinality
InterfaceType �

Program mapping

Chapter 3. Interfacing with the Program Execution Server 185

� MemberSetting ; ��

InterfaceType:

�� CharInterfaceType
CharInterfaceType CONSTANT STRING_TOKEN
IntegerInterfaceType
IntegerInterfaceType CONSTANT INT_TOKEN
FloatInterfaceType
FloatInterfaceType CONSTANT FLOAT_TOKEN
PackedInterfaceType
PackedInterfaceType CONSTANT PACKED_TOKEN
ZonedInterfaceType
ZonedInterfaceType CONSTANT ZONED_TOKEN
Name
UserInterfaceType
UserInterfaceType CONSTANT STRING_TOKEN

��

InterfaceCardinality:

�� ARRAY (INT_TOKEN) ��

Note:
v The sequence of elements is significant and defines the sequence of the elements

in the data area used for forward and backward mapping. Each element has a
fixed offset from the start of the data area. Make sure the interface elements
have the size and type of the data the legacy application expects (See “Valid
conversions between MQSeries Workflow container program mapping element
types and program mapping interface types” on page 178 for size information).

v The sequence of member definitions in the structure is not relevant for the
mapping. Mapping is done by name from interface elements to structure
elements.

Interface types:

PackedInterfaceType:

�� PACKED (INT_TOKEN) PackedAttributeList ��

PackedAttributeList:

�� SIGNED MINUS STRING_TOKEN PLUS STRING_TOKEN
UNSIGNED STRING_TOKEN

SCALE INT_TOKEN ��

Examples: p+212.2 equals 212.2, p-142.8 equals -142.8

Program mapping

186 MQSeries Workflow for OS/390 Programming Guide

Scale is used to define the decimal point of the packed number and the factor used
by conversion. The packed number is multiplied by 10scale in
BACKWARDMAPPING and divided by 10scale in FORWARDMAPPING. Of the
plus character, minus character and unsigned character, only the lowermost 4 bits
are used, which means that the value has to be <= x’0f’.

Example:
Packed number is 4711, scale is 0. Decimal number is 4711.
Packed number is 4711, scale is 2. Decimal number is 471100.
Packed number is 4711, scale is -2. Decimal number is 47.11.

Format: PACKED(5) SIGNED MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 1;

Byte0 Byte1 Byte2

DD DD DS

where D is a digit 0-9 and S is the positive or negative sign

Note:
v The size in bytes used by the packed number is (packed number size + 1) / 2,

rounded up to the next integer.
v Packed numbers can create runtime conversion errors if the digits are > 9 or the

sign does not match the sign defined for the interface element.

ZonedInterfaceType:

�� ZONED (INT_TOKEN) PackedAttributeList ��

ZonedAttributeList:

�� SIGNED FIRST MINUS STRING_TOKEN PLUS STRING_TOKEN
LAST SEPARATE

UNSIGNED

�

� SCALE ��

Examples: z+471.1 equals 471.1, z-142.8 equals -142.8.

The size defines the number of significant digits used by the zoned number. Scale
is used to define the decimal point of the zoned number and defines the factor
used by conversion. The zoned number is multiplied by 10scale in backward
mapping and divided by 10scale in forward mapping. FIRST and LAST define
where the sign is located in the number. Of the plus character, minus character and
unsigned character, only the lowermost 4 bits are used if the sign is not separate,
which means the value has to be <= x’0f’. If the sign is separate, all 8 bits of the
first character are used, which means the character has to be <= x’ff’. FIRST and
LAST define the location of the sign (see examples below).

Example:
Zoned number is 4711, scale is 0. Decimal number is 4711.

Program mapping

Chapter 3. Interfacing with the Program Execution Server 187

Zoned number is 4711, scale is 2. Decimal number is 471100.
Zoned number is 4711, scale is -2. Decimal number is 47.11.
Format:
ZONED(3) SIGNED LAST LAST MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 2
Byte0 Byte1 Byte2
FD FD SD

where D is a digit 0-9 and S is the positive, negative or unsigned sign
and F are the zoned bits.
Format:
ZONED(3) SIGNED FIRST LAST MINUS ″<h0d>″ PLUS ″<h0c>″ SCALE 2
Byte0 Byte1 Byte2
SD FD FD

where D is a digit 0-9 and S is the positive, negative or unsigned sign
and F are the zoned bits.
Format:
ZONED(3) SIGNED LAST SEPARATE MINUS ″-″ PLUS ″+″ SCALE 2
Byte0 Byte1 Byte2 Byte3
FD FD FD XX

where D is a digit 0-9 and S is the positive, negative or unsigned sign
and F are the zoned bits and XX is the sign (either x’4E’ or x’60’).

Note:
v The size in bytes used by the zoned number is the zoned number size. If the

sign is separate, one additional byte is used.
v Zoned numbers can create runtime conversion errors if the digits are > 9 and the

zone does not contain x’f’ or the sign does not match the sign defined for the
interface element.

v FIRST and LAST define where to append the sign.

IntegerInterfaceType:

�� SIGNED
UNSIGNED

INTEGER 16
32

��

FloatInterfaceType:

�� FLOAT 32
64

��

CharacterInterfaceType:

�� CHAR (INT_TOKEN)
TERMINATEDBY STRING_TOKEN

�

�
CharInterfaceAttributeList

��

CharInterfaceAttributeList:

Program mapping

188 MQSeries Workflow for OS/390 Programming Guide

�� JUSTIFY LEFT
RIGHT

PAD STRING_TOKEN ��

The termination character is inserted in forward mapping and stripped off in
backward mapping. Padding, alignment and truncation occurs in forward
mapping. The data is not modified in backward mapping. The character size in
bytes must include the termination character and the number of bytes converted is
one less than the specified character size.

Examples for justification:
Length Content Length JUSTIFY(Left) JUSTIFY(RIGHT)

3 'ABC' 4 'ABC ' ' ABC'
3 'AB ' 4 'AB ' ' AB '
3 ' BC' 4 ' BC ' ' BC'
4 'ABCD' 4 'ABCD' 'ABCD'
4 ' BCD' 4 ' BCD' ' BCD'
4 'ABC ' 4 'ABC ' 'ABC '
5 'ABCDE' 4 'ABCD' 'BCDE'
5 ' BCDE' 4 ' BCD' 'BCDE'
5 'ABCD ' 4 'ABCD' 'BCD '

UserInterfaceType:

�� USERTYPE Name
PARMS STRING_TOKEN

��

Note: STRING_TOKEN is passed to the usertype exit.

Mapping elements: This section illustrates the formal definition and grammar for
the MDL. For each mapping element (structure, interface, forward/backward
mapping etc.), there is a syntax diagram which explains how to use the elements
correctly. Examples: “Example” on page 176ff and “MDL examples” on page 198ff.

MappingElement:

�� Structure
Interface
Usertype
Mapping

��

Mapping:

�� Forwardmapping
Backwardmapping

��

Backward mapping:

�� BACKWARDMAPPING Name �

BackwardSetting
FromToMapping �

Program mapping

Chapter 3. Interfacing with the Program Execution Server 189

� �

MappingRule
END

Name
��

FromToMapping:

�� FROM Name TO Name ��

BackwardSetting:

�� MemberSetting ��

Forward mapping:

�� FORWARDMAPPING Name �

Forwardsetting
FromToMapping �

� �

MappingRule
END

Name
��

ForwardSetting:

�� MemberSetting ��

MappingRule:

�� MAP First Name TO Second Name ; ��

Note: The first name must be the interface name in backward mapping and the
structure element name in forward mapping. The second name must be the
interface name in forward mapping and the structure element name in
backward mapping (see “Mapping algorithm” on page 172

Usertype definition:

UserType:

Program mapping

190 MQSeries Workflow for OS/390 Programming Guide

�� UserType Name �

UserTypeSetting
UserTypeLength �

� UserTypeDeclaration END
Name

��

UserTypeLength:

�� LENGTH (INT_TOKEN) ��

Note: The usertype length defines the size of the usertype in bytes.

UserTypeSetting:

�� DESCRIPTION STRING_TOKEN
DOCUMENTATION STRING_TOKEN

��

UserTypeDeclaration:

�� DLL STRING_TOKEN , STRING_TOKEN ��

Note: The first string_token in the usertype declaration defines the DLL name, and
the second defines the exit entry name. It is therefore possible to use one
DLL for multiple usertypes.

Sample MDL for C/C++ and COBOL: In this example, each definition is shown in
detail and the variables used have the same name (interface and structure).
Therefore the forward and backward mapping definitions are as simple as possible
and an explicit mapping as in the previous example is unnecessary.
/*

--- Structure definition ---
*/
STRUCTURE AccountRepStructureBackw

LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;
Customers: CustomerStructure [3];

END AccountRepStructureBackw
STRUCTURE AccountRepStructureForw

LastName: STRING;
FirstName: STRING;
Zip: LONG;
Salary: FLOAT;
Tax: FLOAT;

END AccountRepStructureForw
/* In this example the CustomerStructure contains 3 elements

(last name, first name and telephone number which are defined as

Program mapping

Chapter 3. Interfacing with the Program Execution Server 191

string) */
STRUCTURE CustomerStructure

LastName: STRING;
FirstName: STRING;
PhoneNumber: STRING;

END CustomerStructure
/*

--- Interface definition for COBOL ---
*/
INTERFACE AccountRepInterfaceForCOBOL

LastName: CHAR(50) JUSTIFY LEFT PAD ' ';
FirstName: CHAR(50) JUSTIFY LEFT PAD ' ';
Zip: UNSIGNED INTEGER 16;
Salary: PACKED(8) UNSIGNED '<h0c>' SCALE -2;
Tax: PACKED(2) UNSIGNED '<h0c>' SCALE -2;
CustomersOpt: ARRAY(3) CustomerInterfaceForCOBOL;

END AccountRepInterfaceForCOBOL

INTERFACE CustomerInterfaceForCOBOL
LastName: CHAR(50) JUSTIFY LEFT PAD ' ';
FirstName: CHAR(50) JUSTIFY LEFT PAD ' ';
PhoneNumber: CHAR(10) JUSTIFY LEFT PAD ' ';

END CustomerInterfaceForCOBOL
/*

--- Interface definition for C++ ---
*/
INTERFACE AccountRepInterfaceForCpp

LastName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
FirstName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
Zip: UNSIGNED INTEGER 16;
Salary: FLOAT 32;
Tax: FLOAT 32;
Customers: ARRAY(3) CustomerInterfaceForCpp;

END AccountRepInterfaceForCpp
INTERFACE CustomerInterfaceForCpp

LastName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
FirstName: CHAR(50) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";
PhoneNumber: CHAR(10) TERMINATEDBY "<H00>" JUSTIFY LEFT PAD " ";

END CustomerInterfaceForCpp
/*

-- Forward/backward mapping definition for COBOL ---
*/
FORWARDMAPPING ForwardSampleForCOBOL

FROM AccountRepStructure TO AccountRepInterfaceForCOBOL
END ForwardSampleForCOBOL
BACKWARDMAPPING BackwardSampleForCOBOL

FROM AccountRepInterfaceForCOBOL TO AccountRepStructure
END BackwardSampleForCOBOL
/*
--- Forward/backward mapping definition for C++ ---
*/
FORWARDMAPPING ForwardSampleForCpp

FROM AccountRepStructure TO AccountRepInterfaceForCpp
END ForwardSampleForCpp
BACKWARDMAPPING BackwardSampleForCpp

FROM AccountRepInterfaceForCpp TO AccountRepStructure
END BackwardSampleForCpp

Note: This sample is distributed as FMCEMDL in SFMCDATA.

Usertype
A usertype allows converting MQSeries Workflow program mapping structure
definition elements if the available interface types do not fulfill the required
conversion. The program mapper will call a user exit each time a conversion for a
usertype is required. It is possible to pass up to 256 characters to the user exit,

Program mapping

192 MQSeries Workflow for OS/390 Programming Guide

which must be defined where the interface element is mapped to the usertype.
This allows using the same usertype for different conversions and controlling the
functionality of the exit via passed parameters. In addition, it is possible to define
parameters at the same time the forward and backward mapping formats are
defined at buildtime. These are designated as ’forward mapping parameters’ and
’backward mapping parameters’, and the user exit has access to these parameters.
Usertypes must have a fixed length.

Exit interface
The exit interface and data structures passed are defined in file fmcxmeut.h.

Note: The exit’s entry point must have C linkage.

The following parameters are passed:
1. Direction of mapping required by PES

Use defined constants to check whether forward or backward mapping should
be done.
#define FMC_PROGRAMMAPPING_USERTYPE_BACKWARDMAPPING 0

#define FMC_PROGRAMMAPPING_USERTYPE_FORWARDMAPPING 1

2. InterfaceDescriptor
Allows accessing the interface element data via a pointer to the data buffer. In
addition the length of the usertype in bytes is passed.
typedef struct {

char* elementData; // pointer to raw data
unsigned long elementDataLength; // length of usertype in bytes

} FmcProgrammMappingInterfaceDescriptor;

Warning: Make sure that the data written into the data buffer during forward
mapping is not longer than the size of the usertype in bytes. Otherwise the
results can be unpredictable.

3. StructureDescriptor

Figure 42. Usertype exit

Program mapping

Chapter 3. Interfacing with the Program Execution Server 193

Allows accessing the structure element. The element name and length are
passed in addition to a handle to the MQSeries Workflow container. The
element can be accessed with the MQSeries Workflow Container API by
passing the element name.
typedef struct {

const char* elementName;
//container element name (zero terminated)

unsigned long elementNameLength;
// container element name length in bytes

FmcjContainerHandle containerHandle;
// container handle

} FmcProgrammMappingStructureDescriptor;

The element name contains the qualified element name and can be used to get
or set the container element with the container API. The name is zero
terminated.

4. BuildTimeParameter, buildTimeParameterLength
At buildtime, it is possible to insert forward and backward mapping
parameters. The length in bytes is passed via buildTimeParameterLength. The
name is zero terminated.

5. InterfaceParameter, interfaceParameterLength
It is possible to insert a parameter in the interface where the usertype is used.
The length in bytes is passed via interfaceParameterLength. The name is zero
terminated.
Example:
INTERFACE SampleUsertypeInterface

SampleElement: USERTYPE SampleUsertype PARMS "$";
END

6. Return value
A nonzero return value signals an error to the program mapper and the return
code is set for the activity implementation.
For a sample, see sample usertype exit FMCHSMUT in SFMCDATA.

Creation of DLL
The usertype exit must be available at PES runtime. Any entry name and DLL
name can be used, but these names must be identical to the names used in the
usertype definition (See below). Sample JCL FMCHJMUT in SFMCDATA builds the
sample usertype DLL. It is possible to have multiple usertype exits in one DLL if
they use different function names.

Usertype definition
The usertype definition defines the name of a usertype and the length of the
usertype in bytes. In addition the DLL name and exit function name have to be
specified.
USERTYPE SampleUsertype LENGTH(4)

DLL "SAMPUTY","SampleUsertypeExit"
END

See FMCHEMUT in SMFCDATA for a sample usertype definition.

Size of program mapping interface definition elements
The interface definition must match exactly the layout of the data the legacy
application expects. If there is a mismatch of even one byte, the results are
unpredictable!

Program mapping

194 MQSeries Workflow for OS/390 Programming Guide

The following list summarizes which number of bytes are used by the interface
definition element types.

Table 15. Interface element size

Type Length Example

Char Size equals length in bytes. Char(2) has a length of 2 bytes.

Integer 2 bytes for INTEGER 16 and 4 bytes for INTEGER 32. -

Float 4 bytes for FLOAT 32 and 8 bytes for FLOAT 64. -

Packed Size used to define the (packed number + 1) divided
by 2 and rounded up

Packed(2) equals 2 bytes, Packed(3) equals 2
bytes and Packed(4) equals 3 bytes.

Zoned Size used to define the zoned number if a separate
sign is not defined. Otherwise, it is one larger than
the size used to define the zoned number.

Zoned(4) equals 4 bytes as Zoned(4)
SEPARATE equals 5 bytes.

UserType Size of usertype. USERTYPE SampleUsertype LENGTH(4)
equals 4 bytes.

Note: If there is any alignment done by the compiler used to compile the legacy
application, this alignment also must be done in the interface definition.

Example: A C structure defined as follows:
struct S {

int x;
char y;
int z;
};

might be aligned on 4-byte boundary so that
x x x x y z z z z
0 1 2 3 4 5 6 7 8 9 10 11 Byte

and therefore needs following interface definition
INTERFACE i

x: SIGNED INTEGER 32;
y: CHAR(1) JUSTIFY LEFT PAD " ";
pad: CHAR(3) JUSTIFY LEFT PAD "<h00>";
z: SIGNED INTEGER 32;

END

Activation of program mapping definitions
The activation of a program mapping definition is described in detail in
″Administering program mapping″ in MQSeries Workflow for OS/390: Customization
and Administration. The following contains a short summary about how to activate
a program mapping definition:
1. Copy sample job to FMCHJMPR.
2. Create an MDL.
3. Update control statements for the input utility.
4. Run and compile MDL and insert MDL into mapping database.
5. If existing MDL elements were modified, restart the PES to activate the

modifications. For new elements, no PES restart is needed.

Program mapping

Chapter 3. Interfacing with the Program Execution Server 195

Troubleshooting
In order to provide as much help to you as possible, this section lists usual
problems and typical solutions. For a detailed list of error messages refer to
MQSeries Workflow for OS/390: Messages and Codes.

Common errors

Element data mapped is incorrect: Most commonly, this is due to a mismatch
between the legacy application data layout and the interface definition.

There is no way for the program mapper to check whether the interface maps
correctly to the data format and layout the legacy application expects. Each
interface should be carefully created and double checked. Runtime conversion
errors (for packed and zoned interface types), are usually caused by this. In
addition, reflect alignment on the legacy side in the interface (see “Size of program
mapping interface definition elements” on page 194 for more details). If the size of
one interface element is incorrect (for example integer 16 instead of integer 32) all
the following data will be incorrect.

Elements not mapped: Either the element names are different and no mapping
rule was specified or a mapping rule uses the wrong element names.

Note: If a mapping rule is used in both directions, the mapping rule arguments
have to be switched.

Modified mapping definition is not activated: Mapping definitions are reloaded
whenever the PES is restarted. It is not sufficient to import the definition into the
program mapping database. New definitions will be used without a PES restart.

Additional mapping examples

Application examples

CICS C++ Application: This C++ application under CICS displays the data,
creates new customers and increases the salary by 8 percent. It corresponds to the
forward/backward mapping example in “Forward/backward mapping definition”
on page 170.
#pragma XOPTS(SP)
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
/* --- CustomerStructure --- */
#pragma pack(1)
struct CustomerStructure {

char LastName[50];
char FirstName[50];
char PhoneNumber[10];

};
/* --- AccountRepStructure --- */
struct AccountRepStructure {

char LastName[50];
char FirstName[50];
short Zip;
float Salary;
float Tax;
struct CustomerStructure Customers[3];

};
#pragma pack(1)
int main()

Program mapping

196 MQSeries Workflow for OS/390 Programming Guide

{
struct AccountRepStructure *commarea;
EXEC CICS ADDRESS COMMAREA(commarea) EIB(dfheiptr);
if (dfheiptr->eibcalen <= 0) {

cout << "??? Empty commarea ???" << endl;
EXEC CICS RETURN;

}
// Display all data

cout << "LastName: " << commarea->LastName << endl;
cout << "FirstName: " << commarea->FirstName << endl;
cout << "Zip: " << commarea->Zip << endl;
cout << "Salary: " << commarea->Salary << endl;
cout << "Tax: " << commarea->Tax << endl;

// Create customers
strcpy(commarea->Customers[0].LastName,"EINSTEIN");
strcpy(commarea->Customers[0].FirstName,"ALBERT");
strcpy(commarea->Customers[0].PhoneNumber,"3048");
strcpy(commarea->Customers[1].LastName,"NEWTON");
strcpy(commarea->Customers[1].FirstName,"ISAAC");
strcpy(commarea->Customers[1].PhoneNumber,"4041");
strcpy(commarea->Customers[2].LastName,"HAWKING");
strcpy(commarea->Customers[2].FirstName,"STEVEN");
strcpy(commarea->Customers[2].PhoneNumber,"5154");
for (int i=0; i<3; i++) {

cout << "Customer LastName : "
<< commarea->Customers[i].LastName << endl;

cout << "Customer FirstName : "
<< commarea->Customers[i].FirstName << endl;

cout << "Customer PhoneNumber : "
<< commarea->Customers[i].PhoneNumber << endl;

}
// Increase salary by 8%

commarea->Salary *= 1.08;
cout << "New Salary: " << commarea->Salary << endl;
EXEC CICS RETURN;

}

CICS COBOL Application: This COBOL application under CICS does the same
thing as “CICS C++ Application” on page 196 (displays the data, creates new
customers and increases the salary by 8 percent). It corresponds to the
forward/backward mapping example in “Forward/backward mapping definition”
on page 170.

IDENTIFICATION DIVISION.
PROGRAM-ID. "SAMPCBL".
DATA DIVISION.

WORKING-STORAGE SECTION.
01 PRINT-SALARY PIC Z(5)9.9(2).
01 PRINT-TAX PIC Z9.99.
LINKAGE SECTION.
01 DFHCOMMAREA.

*
* AccountRepStructure
*

02 LASTNAME PIC X(50).
02 FIRSTNAME PIC X(50).
02 ZIP PIC 9999 COMP-4.
02 SALARY PIC 9(6)V9(2) COMP-3.
02 TAX PIC V99 COMP-3.

*
* CustomerStructure
*

02 CUSTOMERS OCCURS 3 TIMES
INDEXED BY CUSTOMER-INDEX.

03 LAST-NAME PIC X(50).
03 FIRST-NAME PIC X(50).
03 PHONE-NUMBER PIC X(10).

Program mapping

Chapter 3. Interfacing with the Program Execution Server 197

PROCEDURE DIVISION.
IF EIBCALEN <= 0

DISPLAY "??? EMPTY COMMMAREA ???"
EXEC CICS RETURN
END-EXEC

END-IF
*
* Display all data
*

DISPLAY "Lastname: " LASTNAME
DISPLAY "Firstname: " FIRSTNAME
DISPLAY "Zip: " ZIP
MOVE TAX TO PRINT-TAX
MOVE SALARY TO PRINT-SALARY
DISPLAY "Salary: " PRINT-SALARY
DISPLAY "Tax: " PRINT-TAX

*
* Create some customers
*

MOVE "EINSTEIN" TO LAST-NAME(1)
MOVE "ALBERT" TO FIRST-NAME(1)
MOVE "3048" TO PHONE-NUMBER(1)
MOVE "NEWTON" TO LAST-NAME(2)
MOVE "ISAAC" TO FIRST-NAME(2)
MOVE "4041" TO PHONE-NUMBER(2)
MOVE "HAWKING" TO LAST-NAME(3)
MOVE "STEPHEN" TO FIRST-NAME(3)
MOVE "5154" TO PHONE-NUMBER(3)
PERFORM

VARYING CUSTOMER-INDEX FROM 1 BY 1
UNTIL CUSTOMER-INDEX > 3

DISPLAY "Customer LastName : "
LAST-NAME(CUSTOMER-INDEX)

DISPLAY "Customer FirstName: "
FIRST-NAME(CUSTOMER-INDEX)

DISPLAY "Customer PhoneNumber: "
PHONE-NUMBER(CUSTOMER-INDEX)

END-PERFORM
* Increase salary by 8%

COMPUTE SALARY = SALARY * 1.08
MOVE SALARY TO PRINT-SALARY
DISPLAY "New Salary: " PRINT-SALARY
EXEC CICS RETURN
END-EXEC
GOBACK.

MDL examples
This section illustrates some examples of how to use the mapper. There are
examples coded in C, COBOL and for simple and complex data structures.

Simple data structure with default name mapping: In this example the mapping
is defined for a simple data structure and the mapping used is the default one
(which means that each element of a container is mapped to the element with the
same name in the other container).
STRUCTURE SimpleDataStructure

element1: STRING;
element2: STRING;
element3: LONG;
element4: FLOAT;
element5: BINARY;
element6: BINARY;
element7: LONG(20);
END SimpleDataStructure

INTERFACE SimpleDataInterface
DESCRIPTION 'This is an example of a simple interface mapping'

Program mapping

198 MQSeries Workflow for OS/390 Programming Guide

element1: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
element2: CHAR(20) JUSTIFY LEFT PAD "<h00>";
element3: SIGNED INTEGER 16;
element4: FLOAT IBM 32;
element5: CHAR(500);
element6: CHAR(200);
element7: ARRAY (10) SIGNED INTEGER 8;
END SimpleDataInterface

BACKWARDMAPPING SimpleMapping
FROM SimpleDataInterface
TO SimpleDataStructure
END SimpleMapping

FORWARDMAPPING SimpleMapping
FROM SimpleDataStructure
TO SimpleDataInterface
END SimpleMapping

Complex data structure with default name mapping: In this example, the
mapping is defined for a complex data structure and the mapping used is the
default one (which means that each element of a container is mapped to the
element with the same name in the other container).
STRUCTURE ComplexDataStructure1

element1: STRING (10);
element2: FLOAT;
END ComplexDataStructure1

STRUCTURE ComplexDataStructure2
element1: STRING (20);
element2: ComplexDataStructure (5);
END ComplexDataStructure2

INTERFACE ComplexDataInterface1
element1: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
element2: FLOAT IBM 32";
END ComplexDataInterface1

INTERFACE ComplexDataInterface2
element1: CHAR(20) JUSTIFY RIGHT PAD ' ';
element2: ARRAY(5) ComplexDataInterface1;
END ComplexDataInterface2

BACKWARDMAPPING ComplexMapping
FROM ComplexDataInterface2
TO ComplexDataStructure2

/*
* Element1 and element2 are mapped implicitly
*/

END ComplexMapping
FORWARDMAPPING ComplexMapping

FROM ComplexDataStructure2
TO ComplexDataInterface2

/*
* element1 and element2 are mapped implicitly
*/

END ComplexMapping

Complex data structure with non-default name mapping: In this example the
mapping is defined for a complex data structure and the mapping used is not the
default one (which means that the structure elements of ComplexDataStructure1 do
not have identical names in the interface ComplexStructure1 and are mapped
explicitly).
STRUCTURE ComplexDataStructure1

strs: STRING (10);
flts: FLOAT;
END ComplexDataStructure1

INTERFACE ComplexDataInterface1
stri: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
flti: FLOAT IBM 32;

Program mapping

Chapter 3. Interfacing with the Program Execution Server 199

END ComplexDataInterface1
BACKWARDMAPPING ComplexMapping

FROM ComplexDataInterface1
TO ComplexDataStructure1

MAP stri TO strs;
MAP flti TO flts;

END ComplexMapping
FORWARDMAPPING ComplexMapping

FROM ComplexDataStructure1
TO ComplexDataInterface1

MAP strs TO stri;
MAP flts TO flti;

END ComplexMapping

Complex data structure with non-default name mapping with arrays and
structures: In this example, the mapping is defined for a complex data structure
and the mapping used is not the default one (which means that the elements (in
this case arrays) of structure ComplexDataStructure1 do not have identical names
in the Interface ComplexStructure1 and are mapped explicitly).
STRUCTURE ComplexDataStructure1

element1: STRING (10);
element2: FLOAT;
END ComplexDataStructure1

STRUCTURE ComplexDataStructure2
element1: STRING (20);
element2: ComplexDataStructure1 (5);
specials: FLOAT;
END ComplexDataStructure2

STRUCTURE ComplexDataStructure3
element1: STRING (5);
element2: ComplexDataStructure2 (4);
element3: ComplexDataStructure1 (4);
END ComplexDataStructure3

INTERFACE ComplexDataInterface1
element1: CHAR(10) TERMINATEDBY "<h00>" JUSTIFY LEFT PAD ' ';
element2: FLOAT IBM 32;
END ComplexDataInterface1

INTERFACE ComplexDataInterface2
element1: CHAR(20) TERMINATEDBY "<h00>" JUSTIFY RIGHT PAD '*';
element2: ARRAY (5) ComplexDataInterface1;
speciali: FLOAT IBM 32
END ComplexDataInterface2

INTERFACE ComplexDataInterface3
element1: CHAR(5) JUSTIFY RIGHT PAD '*';
element2: ARRAY (4) ComplexDataInterface1;
elementx: ARRAY (4) ComplexDataInterface2;
END ComplexDataInterface3

BACKWARDMAPPING ComplexMapping
FROM ComplexDataInterface3
TO ComplexDataStructure3
/* Interface element elementx is explicitly mapped to structure

element element2. All structure and interface elements of this
structure are mapped per default; interface element element2 is
also explicitly mapped with all its subelements. */
MAP 'elementx' to 'element2';
MAP 'element2' to 'element3';
/* element speciali is not mapped per default and an explicit rule

for this element is required */
MAP 'elementx.speciali' to 'element2.specials';
/* Per default mapping element1 with all subelements is mapped */

END ComplexMapping
FORWARDMAPPING ComplexMapping

FROM ComplexDataStructure1
TO ComplexDataInterface1
/* Structure element element2 is explicitly mapped to interface

element elementx. All structure and interface elements of this

Program mapping

200 MQSeries Workflow for OS/390 Programming Guide

structure are mapped per default; structure element element3 is
also explicitly mapped with all its subelements. */
MAP 'element2' to 'elementx';
MAP 'element3' to 'element2';
/* element specials is not mapped per default and an explicit rule

for this element is required */
MAP 'element2.specials' to 'elementx.speciali';
/* Per default mapping element1 with all subelements is mapped */

END ComplexMapping

Simple data structure with all interface types with CONSTANTS and usertypes:
In this example the mapping is defined for a simple data structure and the
mapping used is not the default one (which means that the elements of structure
ComplexDataStructure1 do not have identical names in the interface
ComplexStructure1 and are mapped explicitly). Additionally, there is a usertype
defined, which converts a 4 byte integer into a Workflow string, separates every
three digits by a comma and prefixes the string with a currency symbol, for
example $1,234,567.
/* A usertype which converts a 4 byte integer into a Workflow string, separates
* every three digits by a comma and prefixes the string with a currency
* symbol, for example $1,234,567 */
USERTYPE user1 LENGTH(4)

DLL "dlluser","user2Inbound"
END user1

STRUCTURE SimpleDataStructure
element1: LONG;
element2: STRING;
element3: LONG;
element7: LONG(20);
element8: STRING;
END SimpleDataStructure

INTERFACE SimpleDataInterface
DESCRIPTION 'This is an example of a simple interface mapping'
/* The following integer constant is inserted in forward mapping
* and removed in backward mapping */
insert: SIGNED INTEGER 16

CONSTANT 4711
element3: SIGNED INTEGER 16;
element7: ARRAY (100) SIGNED INTEGER 8;
element1: USERTYPE user1 PARMS 'DM'; /* three digits */
element8: USERTYPE user1 PARMS '$'; /* for example $12,345 */
element9: CHAR(5) CONSTANT "This is a string constant with some

hex chars <h47><h11>" JUSTIFY RIGHT PAD '*'
element10: PACKED (10) CONSTANT p47.11

SIGNED FIRST MINUS "<h0d>" PLUS "<h0c>" UNSIGNED "<h0c>"
SCALE 5

element11: ZONED (10) CONSTANT z47.11
SIGNED FIRST MINUS "<h0d>" PLUS "<h0c>" SCALE 5

element12: FLOAT IBM 8
CONSTANT +47E11

END SimpleDataInterface
BACKWARDMAPPING SimpleMapping

FROM SimpleDataInterface
TO SimpleDataStructure
END SimpleMapping

FORWARDMAPPING SimpleMapping
FROM SimpleDataStructure
TO SimpleDataInterface
END SimpleMapping

Program mapping

Chapter 3. Interfacing with the Program Execution Server 201

Program execution server exits

Introduction
For extensibility of MQSeries Workflow for OS/390, the PES uses exits in the
following areas:
v Application invocation
v Legacy application program mapping
v Event notification

Whenever new exits are needed, these exits can be used instead of, or in parallel
with, the IBM supplied exits.

The exits have a defined interface, to which every user written exit must conform.

Each exit type must provide an Init() function, which is called from the PES when
the exit is needed the first time. Later, the exit-specific functions are called (see the
specific exit descriptions for more details). A shutdown request for the PES triggers
a call to the Deinit() function of the exits.

Usually the Init() function does all the initialization needed for the exit. If
information is needed further on in subsequent calls, a handle can be filled in the
initialization call, which is then passed to all subsequent functions (for example,
DB handles, connection information, states, etc.). Deinit(), which is called last,
normally deallocates and frees all resources allocated during Init().

The exit DLL is loaded by the PES when the exit is needed the first time and
unloaded when the PES terminates.

The main difference between the exit types is the following:
v Mapping exits do a data conversion between MQSeries Workflow for OS/390

containers and data acceptable by legacy applications.
v Invocation exits invoke applications on the application side.
v Notification exits react to specific events reported by the PES in conjunction

with program invocation requests.

Notes:

1. Whenever you modify an exit, you must shutdown and reboot the PES in order
to make your changes effective.

2. All PES exits must be reentrant.

Return codes and error messages
All exits use a return code to signal availability of error information from the exit
functions to the PES. If the return code is not OK, 4 parameters used in each
function contain more detailed error information. The possibility exists to classify
errors as recoverable or non-recoverable. The PES no longer distinguishes between
these two types of errors. Both are handled the same way: by passing the error to
the execution server for a Workflow request or in the case of an Execute Program
request issued by a Workflow client.

Parameters:

char * errorIdBuffer

v 4-character buffer provided by the PES and used to pass an error
number. Must be set accordingly if the ID is shorter than 4 characters.

Program mapping

202 MQSeries Workflow for OS/390 Programming Guide

v Input/output parameter

long * errorIdBufferLength

v Length of the message number in errorIdBuffer, which must be set by
the exit. The maximum available number of characters is specified. Valid
lengths are between 0 and the value passed in errorIdBufferLength.

v Input/output parameter

char * errorDescriptionBuffer

v Character buffer provided by the PES, which is 512 characters long and
is used for an error message. Has to be set accordingly if the message is
shorter than 512 characters.

v Input/output parameter

long * errorDescriptionBufferLength

v Length of the description in errorDescriptionBuffer, which must be set
by the exit. The maximum available number of characters is passed.
Valid lengths are between 0 and the value passed in
errorDescriptionBufferLength.

v Input/output parameter

The error ID can consist of up to 4 digits. The PES prefixes it with a character
identifying the exit type (I for invocation, M for mapping, N for notification). In
addition the errorDescription is prefixed by the PES with the DLL name of the exit
so that each exit can use the message numbers and the DLL name is the identifier
of the exit.

Return codes:

FMC_EXIT_OK
The function was successful.

FMC_EXIT_RECOVERABLE_ERROR
The function was unsuccessful but recoverable. The PES will return
message FMC32204 (see MQSeries Workflow for OS/390: Messages and Codes)
with the passed error information. The PES continues processing.
errorIdBuffer, errorIdBufferLength, errorDescriptionBuffer, and
errorDescriptionBufferLength must be set accordingly .

FMC_EXIT_NONRECOVERABLE_ERROR
The function was unsuccessful and unrecoverable. The PES handles this
error similar to recoverable errors.

Interfaces for all exits

Note: All interfaces must have C linkage!

Init()

Header files: FMCXMIF.H (program mapping exit), FMCXIEP.H (invocation exit),
FMCXNEIF.H (notification exit).

Function:

v Initialize exit.
v It is called once when the exit is used the first time.

Interface:

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 203

long Init
(void ** exitHandle,

void * initializationParameter,
long initializationParameterLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters:

void ** exitHandle

v Pointer passed to the Init() function, which is not used by the PES but
passed to any function called at a later time. Used to pass exit
environment data between the PES and all exit functions.

v Input/output parameter

void * initializationParameter

v Parameters defined in the PES directory entry for the exit, which can be
used to customize the exit initialization. The parameter is terminated by
zero.

v Input parameter

long initializationParameterLength

v Length of the initializationParameter in bytes.
v Input parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

Return codes: See “Return codes and error messages” on page 202 for the return
codes.

Deinit()

Header files: FMCXMIF.H (program mapping exit), FMCXIEP.H (invocation exit),
FMCXNEIF.H (notification exit).

Function:

v Deinitialize exit.
v It is called once when the PES terminates.

Interface:

Program execution server exits

204 MQSeries Workflow for OS/390 Programming Guide

long Deinit
(void ** exitHandle,

char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters:

void ** exitHandle

v Pointer passed to the Init() function, which is not used by the PES but
passed to any function called later on. Used to pass exit environment
data between the PES and all exit functions.

v Input/output parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

Return codes: See “Return codes and error messages” on page 202 for the return
codes.

Special considerations for exit programming

Use of RRS commit and rollback
PES exits are called in the context of an MQSeries Workflow transaction by the
program execution server (PES). Changes made by the exits can be made persistent
(RRS commit) or rescinded (RRS rollback). However, these actions also terminate
the transaction itself. Since PES exits can be called at any point during the
transaction, RRS commit or rollback would terminate the transaction prematurely
and lead to unpredictable results. In particular, a ″safe application″ would no
longer be ″safe″.

Consequently, RRS commit and rollback calls srrcmit and srrback must never be
issued in a PES exit. Furthermore, any functions performing these calls must not be
used in PES exits; otherwise, units of work are terminated by these calls before the
PES can complete them.

Buffer allocation
Both invocation and mapping exits use buffers to receive data from the PES and
pass data to the PES. In some situations, the buffers are owned by the PES and
must not be deleted by the exit. In other situations, the buffers must be created
and deleted by the exit. For specific requirements, see the descriptions of the
individual buffer parameters.

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 205

Program mapping exit
The IBM-supplied program mapping exit can be used to convert and translate data
between legacy applications and MQSeries Workflow for OS/390. Any other
mapping exit that conforms to the mapping exit interface can be used in parallel
with, or in place of, the IBM supplied mapping exit.

The program mapping exit must be available in a DLL which is loaded by the PES
and used to translate the MQSeries Workflow for OS/390 container data into data
accepted by a legacy application.

A mapping exit must follow the general rules for PES exits as described in
“Interfaces for all exits” on page 203. The DLL must have two exit functions: Init()
and Deinit() and one exit specific function Translate(). The latter is used to do the
actual conversion and translation for forward and backward mappings every time
a legacy application is called. The raw buffer for the legacy application is available,
and the container can be accessed via MQSeries Workflow for OS/390 Container
API calls.

In forward mapping calls, the program mapping exit must extract the data from
the container and translate the data into a raw buffer which is passed to the legacy
application. In backward mapping calls the program mapping exit must translate
the raw buffer and assign the data to the container.

Additional interfaces specific to the program mapping exit
The program mapping exit must define the Translate() function as follows.

Translate()

Header files: FMCXMIF.H (program mapping exit).

Function:

v Translate() is called each time by the PES in the direction
FMC_PROGRAMMAPPING_BACKWARDMAPPING when backward mapping
is to be done and in the direction
FMC_PROGRAMMAPPING_FORWARDMAPPING when forward mapping is to
be done.

Interface:
long Translate

(void * exitHandle,
short direction,
char * mappingName,
long mappingNameLength,
char * buildTimeParameter,
long buildTimeParameterLength,
void * containerHandle,
char ** buffer,
long * bufferLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters:

void * exitHandle

Program execution server exits

206 MQSeries Workflow for OS/390 Programming Guide

v Pointer passed to the Init() function, which is not used by the PES but
passed to any function called at a later time. Used to pass exit
environment data between the PES and all exit functions.

v Input/output parameter

short direction

v Used to identify the translation direction. Either
FMC_PROGRAMMAPPING_BACKWARDMAPPING or
FMC_PROGRAMMAPPING_FORWARDMAPPING

v Input parameter

char * mappingName

v Forward mapping format or backward mapping format defined in the
OS/390 program properties. The name is zero terminated.

v Input parameter

long mappingNameLength

v Length of the mappingNameLength in bytes.
v Input parameter

char * buildTimeParameter

v Forward mapping parameter or backward mapping parameter defined
in the OS/390 program properties. Can be used to customize the
translation process. The parameter is zero terminated.

v Input parameter

long buildTimeParameterLength

v Length of the buildTimeParameter in bytes.
v Input parameter

void * containerHandle

v Handle to the MQSeries Workflow for OS/390 container used for
translation. Argument in MQSeries Workflow for OS/390 Container API
calls to access the container.

v Input parameter

char ** buffer

v Pointer to a valid buffer address for forward mapping calls. It must be
set by the program mapping exit to point to a valid buffer address in
backward mapping calls. This buffer is passed by the PES to the legacy
application in forward mapping calls and to the program mapping exit
for data conversion and setting of container elements in backward
mapping calls.

v Input parameter for forward mapping. The buffer is created and owned
by the exit and passed to the PES.

v Output parameter for backward mapping. The buffer is created and
owned by the PES and passed to the exit.

long * bufferLength

v Pointer to the length of the buffer in bytes. This is already set in forward
mapping calls and must be set in backward mapping calls by the
program mapping exit.

v Input parameter for forward mapping
v Output parameter for backward mapping

char * errorIdBuffer

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 207

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

Return codes: See “Return codes and error messages” on page 202 for the return
codes.

See the program mapping sample “Program mapping exit example” for more
details.

Enabling the PES to use a program mapping exit
In order to use a program mapping exit, the exit must reside in a DLL which must
be available in a link library used by the PES. Customize the sample JCL
FMCHJMEX in InstHLQ.SFMCCNTL and submit the job.

You must then notify the PES of the program mapping exit by defining it in the
PES directory. See MQSeries Workflow for OS/390: Customization and Administration
for more information.

Program mapping exit example
A C sample program mapping exit (FMCHSMEX in InstHLQ.SFMCSRC) with a
corresponding JCL to compile and link the exit (FMCHJMEX in
InstHLQ.SFMCCNTL).

The sample exit gives an example how a program mapping exit should work in
general. It also shows how the exit can use all the different parameters passed (exit
initialization parameter, forward/backward mapping format and
forward/backward mapping parameters), how error messages can be created and
how the container elements can be accessed.

The exit can convert MQSeries Workflow for OS/390 container elements of type
LONG and FLOAT into C types long and double. The elements are converted in
the same sequence that the elements are defined in the container structure.

The type of the element is derived from the first character of the element name
and must be defined in the PES directory entry for the mapping exit
(exitParameters).

ExitParameter syntax: LONG=x FLOAT=y

where x is the character used to identify LONG container elements and y is the
character to identify FLOAT container elements. All elements starting with an
undefined character are ignored.

In addition TRACE=YES can be defined during initialization to enable trace
printouts.

Program execution server exits

208 MQSeries Workflow for OS/390 Programming Guide

Mapping example:
STRUCTURE S

LE1: LONG(2);
FE1: FLOAT;
LE2: LONG;

END;

will be converted so that the following structure is filled with conversion data:
struct S {

long LE1[2];
double FE1;
long LE2;

};

The following three different mapping formats are available:
1. DEFAULT
2. INCREASE_INCOME
3. DECREASE_INCOME

The first format does normal conversion of the values. The second one increases all
values by 8% (default), while the third format decreases all values by 8% (default).
If other percentages are needed, they can be defined as forward mapping
parameters or backward mapping parameters using the Buildtime tool when the
program properties for OS/390 are defined.

To use the mapping sample, you must
1. Compile and link the mapping sample (See JCL FMCHJMEX in

InstHLQSFMCCNTL).
2. Update the PES directory with following definition (see ″Importing a PES

directory source file″ in MQSeries Workflow for OS/390: Customization and
Administration).
(KEYTOMAPPING2)
type =SAMPLE
exitName =SAMPEXT
exitParameters =LONG=L FLOAT=F

3. Define a program in BuildTime that uses the sample mapping type SAMPLE
and optionally provides a different increase/decrease amount for
forward/backward mapping parameters.

Program invocation exit
A program invocation exit is used by the program execution server to run a
requested application on a service system like CICS or IMS. The corresponding
invocation request is issued to the program execution server by an MQSeries
Workflow for OS/390 execution server.

To handle an invocation request, the program execution server uses an exit
containing the implementation of an invocation type such as EXCI. This allows
application developers using MQSeries Workflow for OS/390 to attach their own
invocation types to MQSeries Workflow for OS/390. An invocation exit must
follow the general rules for program execution server exits as described in
“Program execution server exits” on page 202 in this book. As for all program
execution server exits, invocation exits are available as dynamic link libraries
providing entry points.

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 209

Synchronous and asynchronous invocation exits
MQSeries Workflow for OS/390 supports synchronous and asynchronous
invocation exits. They are characterized by the following. Asynchronous
invocations must be based on MQSeries queues.

Synchronous invocation exit: A synchronous invocation exit
v establishes the connection to the service where the request should run.
v runs the requested application on that service by use of the invocation protocol.
v removes the connection to the service after the application has terminated.
v passes back the output data from the application, or an error message if the

invocation failed, to the program execution server.
v if, depending on the invocation protocol, connections can be reused by

subsequent calls, the connections are cached after being used a first time and
removed at deinitialization of the invocation exit.

The program execution server ″waits″ for the output from a synchronous
invocation exit.

Asynchronous invocation exit: When processing a request, the program execution
server calls an asynchronous invocation exit twice. First to handle a request, and
second to handle a reply. If an asynchronous invocation exit is called by the
program execution server with parameters describing a request, it does not execute
a request from the program execution server directly on the target service system.
It only creates a message consisting of an invocation specific header followed by
the data for the requested application and passes it back to the program execution
server. It also creates a message descriptor (which is an MQSeries message
descriptor MQMD since only MQSeries based invocations are supported) and
passes it back also.

The program execution server then uses the message descriptor and message
together with the connection parameters to put the message to the input queue as
specified by the connection parameters. The program execution server does not
wait until the requested application has finished but rather continues with the next
request.

When the program execution server gets the reply message consisting of message
descriptor and message data, it calls the respective invocation exit to recognize the
reply message. It is recommended that only asynchronous invocation protocols be
used for which the message contains protocol-specific data at the beginning, for
example CICS bridge header MQCIH or IMS bridge header MQIIH, so that the
reply can be correctly handled by the invocation exit. Also, it is recommended to
reflect that format in the message descriptor (by the Format field in the MQMD
structure).

If an exit recognizes the reply, it is called to handle it and passes the application
output data, or an error message, back to the program execution server.

Note: An asynchronous invocation exit does not connect itself to a service. The
MQSeries queues to and from the service are always served by the PES.

Additional interfaces specific to the invocation exit
Each asynchronous and synchronous invocation exit must provide the following
additional entry points beside the interfaces provided by all program execution
server exits:

Program execution server exits

210 MQSeries Workflow for OS/390 Programming Guide

HdlRequ()

Header files: FMCXIEP.H (invocation exit).

Function:

v For a synchronous invocation, this method executes an application program
passed as executableName on a service to which it connects as defined by
connectionParameters. If no error occurs, this function returns the output from the
application in a buffer passed back by the programOutput parameter.

v For an asynchronous invocation this method either creates a request message or
treats the passed parameters as a reply message. The parameters represent a
request message if an application name is passed as executableName. If zero is
passed as executableName, the parameters represent a reply message whose
data is passed as executableParameters and executableParametersLength
together with a message descriptor MQMD as messageDescriptor and
messageDescriptorLength.

Interface:
long HdlRequ

(void * exitHandle,
void * invocationContext,
char * serviceName,
long serviceNameLength,
char * connectionParameters,
long connectionParametersLength,
char * executableName,
long executableNameLength,
char * executableType,
long executableTypeLength,
char * executionParameters,
long executionParametersLength,
char ** programOutput,
long * programOutputLength,
char ** messageDescriptor,
char * messageDescriptorLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters:

void * exitHandle

v Reference to the invocation environment for this exit
v Input parameter

void * invocationContext

v Address of data describing the context in which the invocation of the
request is to be done.

v For the context information provided by MQSeries Workflow for
OS/390, see “Invocation context” on page 215

v input parameter

char * serviceName

v Name of service as known to MQSeries Workflow for OS/390 where the
requested application is to be performed.

v Input parameter

long serviceNameLength

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 211

v Length of serviceName character string
v Input parameter

char * connectionParameters

v Character string providing the parameters needed by the invocation to
connect to the service where the requested program should run. These
parameters are defined for the respective service in the PES directory.

v Input parameter
v See also “Connection parameters” on page 216

long connectionParametersLength

v Length of connectionParameters
v Input parameter

char * executableName

v Address of buffer containing the name of the executable of the request
v For asynchronous invocations only: the program execution server passes

zero to indicate that this function is called to handle a reply message
from an asynchronously invoked program execution request.

v Input parameter

long executableNameLength

v Length of executableName
v Input parameter

char * executableType

v Type of the program specified by the executableName
v Input parameter

long executableTypeLength

v Length of executableType
v Input parameter

char * executionParameters

v Parameters for the program specified by the executable name
v Reply from an asynchronously performed execution request
v Input parameter

long executionParametersLength

v Length of executionParameters or the asynchronous reply
v Input parameter

char ** programOutput

v Pointer to the address of return buffer containing the output of the
executable

v Asynchronous invocations also use this parameter to return the protocol-
conforming message to the program execution server corresponding to
the execution request passed in executableName and
executionParameters.

v This buffer is created and owned by the exit and passed to the PES.
v Input/output parameter

long * programOutputLength

v Pointer to length of output data or the protocol-conforming message

Program execution server exits

212 MQSeries Workflow for OS/390 Programming Guide

v Input/output parameter

char ** messageDescriptor

v Pointer to the address of a buffer containing a message descriptor
v For asynchronous invocations only
v If the executable name is passed (request message has been constructed),

the buffer is created and owned by the exit and passed to the PES. If a
reply message is being handled, the buffer is created and owned by the
PES and passed to the exit.

v Input/output parameter

long * messageDescriptorLength

v Pointer to length of the message descriptor
v For asynchronous invocations only
v Input/output parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

Return codes:

FMC_EXIT_OK

v See “Return codes and error messages” on page 202 for detailed
information.

FMC_EXIT_RECOVERABLE_ERROR

v See “Return codes and error messages” on page 202 for detailed
information.

FMC_EXIT_NONRECOVERABLE_ERROR

v See “Return codes and error messages” on page 202 for detailed
information.

Recogn()

Header files: FMCXIEP.H (invocation exit).

Function:

v Checks whether the reply message passed as message descriptor and message
data is recognized by the invocation type this exit represents.

v This method applies to exits for asynchronous invocations. However, this entry
point must also be provided by synchronous invocation exits. For these exits,
FMC_INV_NOT_RECOGNIZED must always be returned.

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 213

v This function is called for all asynchronous invocation exits when an invocation
reply message is received. It is assumed that there are no ambiguities, so that the
first invocation exit where this function recognizes this message is the correct
one to handle it.

Interface:
long Recogn

(void * exitHandle
char * messageDescriptor,
long messageDescriptorLength,
char * messageData,
long messageDataLength)

Parameters:

void * exitHandle

v Reference to the invocation environment for this exit
v Input parameter

char * messageDescriptor

v Descriptor of the reply message
v Input parameter

long messageDescriptorLength

v Length of messageDescriptor
v Input parameter

char * messageData

v The data of the reply message
v Input parameter

long messageDataLength

v Length of messageData
v Input parameter

Return codes:

FMC_INV_NOT_RECOGNIZED
The message is not recognized

FMC_INV_RECOGNIZED
The message is recognized

IsAsync()

Header files: FMCXIEP.H (invocation exit).

Function:

v Returns whether the exit represents an asynchronous invocation.

Interface:
long IsAsync

(void* exitHandle)

Parameters:

void * exitHandle

v Reference to the invocation environment for this exit

Program execution server exits

214 MQSeries Workflow for OS/390 Programming Guide

v Input parameter

Return codes:

FMC_INV_SYNCHRONOUS
The invocation is synchronous.

FMC_INV_ASYNCHRONOUS
The invocation is asynchronous.

Invocation context
The PES passes an invocation context to the invocation exit for HdlRequ(). It
contains information about the context in which the request should be executed.
There are four different context types: Workflow, Security, Transaction, and
Performance. The context is created by the PES. The content depends on server
and program settings. The workflow context is passed for internal reasons and is
not intended to be used by an invocation exit. The security context is either set to
the PES user ID or the execution user ID resolved for the request. The transaction
context is set to a nonzero value if the request is to be executed as a safe
application. The performance context is set to the WLM enclave token if the PES is
running WLM-managed.

An invocation accesses the context by using a C-type interface defined in the
included file fmcxiinv.h.

GetContext()

Header files: FMCXIINV.H (invocation context).

Function:

v Extracts the value of the context type as specified by a passed context name.

Interface:
int GetContext

(void * invContext,
char * invContextName,
char ** invContextValue,
long * invContextValueLength)

Parameters:

void * invContext

v Address of the complete invocation context containing all context types
v Input parameter

char * invContextName

v Name of the requested context type
v Can be one of the character string constants as listed in the Name

column in the Context types table below.
v Input parameter

char ** invContextValue

v Address to which this function puts the pointer to the value of the
requested context type

v Input/output parameter

long * invContextValueLength

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 215

v Address to which this function puts the length of the value of the
requested context type

v Input/output parameter

Return codes:

FMC_INV_CTX_ON
Context successfully retrieved

FMC_INV_CTX_NOT_SET
Context has not been set

FMC_INV_CTX_NOT_DEFINED
Context not found

Table 16. Context types

Type Meaning Used by Name

Workflow Contains the Workflow
context

Internal use
only

FMC_WORKFLOW_CTX

Security Contains the user
identification the request
should be executed for

Invocation exit FMC_SECURITY_CTX

Transaction Contains an indication that
the request should be
executed in a transactional
context

Invocation exit FMC_TRANSACT_CTX

Performance Contains the WLM enclave
token, if the PES is running
WLM managed

Invocation exit FMC_PERFMGMT_CTX

To link your exit correctly, you must include definition side deck FMCH0XIC from
InstHLQ.SFMCDSD.

Connection parameters
The parameter connectionParameters of the entry point HdlRequ() represents a
character string of up to 254 printable characters. This string contains the
parameters needed by the invocation to connect to the service system in order to
execute an application there.

Connection parameters for synchronous invocations: For synchronous
invocations, these parameters and the syntax how to specify them must be defined
by the developer of an invocation exit. In most cases it is recommended to use the
following syntax:
<keyword_1>=<value_1>;<keyword_2>=<value_2>;...;<keyword_n>=<value_n>

where the parameters are represented by key-value pairs separated by semicolons.
Nevertheless, you can define the syntax of the connection parameters for your
invocation exit. Connection parameters and the syntax how to specify them must
be part of the documentation of your invocation exit, since an MQSeries Workflow
for OS/390 administrator must specify this string when defining this exit to the
PES directory.

Connection parameters for asynchronous invocation: Because only asynchronous
invocations based on MQSeries queues are supported, the connection parameters
for asynchronous invocations and the syntax how to specify them must be

Program execution server exits

216 MQSeries Workflow for OS/390 Programming Guide

[QUEUEMANAGER=<queuemanagername>;]INPUTQUEUE=<inputqueuename>

where <queuemanagername> and <inputqueuename> represent the MQSeries
queue manager or MQSeries queue, respectively, and must follow the
corresponding MQSeries naming rules. These parameters define the MQSeries
queue to which the request message created by an asynchronous invocation exit
must be put. QUEUEMANAGER is optional and should be omitted when the
target queue manager is part of a queue manager cluster. When work distribution
is required, INPUTQUEUE should specify a cluster queue defined with the
attribute DEFBIND=<NOTFIXED>. At least two queues with this name should
exist within the cluster.

Enabling MQSeries Workflow for OS/390 to use an invocation
exit
In order to use a program invocation exit, the exit must reside in a DLL which
must be available in a link library used by the PES.

Note:
If more than one asynchronous invocation exit recognizes the same kind of
reply messages, it is unpredictable which of the exits will handle a reply
message. This may lead to incorrect results, the cause of which may be
difficult to determine.

See also ″Program execution″ in MQSeries Workflow for OS/390: Customization and
Administration.

Invocation exit coding example
Since an invocation exit assumes there is a special kind of service system available
where an application should run, there are no compiling sources provided as
samples but rather a skeleton for synchronous invocations FMCHSIVS and one for
asynchronous invocations FMCHSIVA, both in InstHLQ.SFMCSRC and written in
C.

Notification exit
The PES supports an exit that provides notification whenever one of the following
events happens in the PES:
v The PES is about to invoke a program
v The PES has successfully invoked a program
v A failure occurs when the PES tries to invoke a program.

The exit can be used for various purposes, such as to write journal records. It can
perform its operation in either transaction or non-transaction mode. If in
transaction mode, the exit must participate in the global transactions that are
controlled by the PES. In particular, this means that the exit must not issue commit
or rollback requests and that it must use resource managers that are coordinated
by OS390/RRS (see “Use of RRS commit and rollback” on page 205).
Non-transaction mode implies that the exit does not record its persistent data via
resource managers but rather directly in data sets, for example.

It is strongly recommended that the exit work in transaction mode, since it is
otherwise not possible to synchronize PES actions with those of the exit.

The notification exit must be available in a DLL that is loaded by the PES and used
to call the exit. This DLL must have the name FMCXNEXT. IBM does not supply

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 217

an executable for this exit, and it must therefore be provided by the customer. To
activate the notification exit, the variable PesNotificationExit must be set to 1 in
the configuration profile. If this variable is set, the PES tries to load and initialize
the notification exit at PES startup time. If the variable is set and the exit cannot be
loaded or initialized correctly, the PES will not start properly.

The notification exit must have the two exit functions Init() and Deinit() common
to all PES exits (see “Interfaces for all exits” on page 203).

When the Init() function is called, the initializationParameters buffer has two
key=value pairs in the following format:

ASID=<asid>;TCBID=<tcbid>

where <asid> and <tcbid> are the address space and task control block IDs,
respectively, of the corresponding PES instance.

Additional interfaces specific to the notification exit
The entry points specific to the notification exit are:
v Notification of a ’before invocation’ event (EVB4INV())
v Notification of a ’successful invocation’ event (EVIVSUCC())
v Notification of an ’invocation failure’ event (EVIVFAIL())

When the PES receives a request to start a program, it performs the following
steps:
1. Phase Ia processing

v Validate message parameters
v Look up connection parameters in directory
v Retrieve local user ID and check user authorization if required

2. Phase Ib processing
v Retrieve invocation exit information
v Load and initialize invocation exit if not already done
v Retrieve mapping exit information
v Load and initialize mapping exit if not already done
v Map forward if desired

3. Phase II processing
v Invoke the program
v Map backward if desired
v Send reply message to originator of the request

The notification exit function EVB4INV() is called immediately after Phase Ia
processing is complete. If an error occurs during Phase Ia, an error message is
returned to the originator of the request, but the notification exit is not called.

If an error occurs during Phases Ib or II, the notification exit function EVIVFAIL()
is called, and an error message is returned to the originator of the request.

The PES passes to the notification exit functions all data required to identify the
workflow request that is currently being processed. In particular, this means that
the program’s containers are passed to the exit. The exit functions can use the
Container API to access the contents of the containers.

Program execution server exits

218 MQSeries Workflow for OS/390 Programming Guide

In order to enable correlation between EVB4INV() and EVIVSUCC()/EVIVFAIL()
calls, the PES passes the MQ MessageID of the received InvokeProgram request
message to all notification entry points. This ID can be used as a correlation ID
that is unique for each program invocation request processed by the PES (called
program invocation instance).

The exit behavior differs depending on whether the program invocation is
synchronous or asynchronous:

Synchronous invocation: When the PES cannot invoke a program correctly (i.e.,
as soon as it detects an error after calling EVB4INV(), which can be a mapping,
invocation, or directory error), it calls EVIVFAIL(). It passes EVIVFAIL() the same
MQ Message ID buffer that was passed to EVB4INV() as well as the available
error information.

If the invocation is successful, the PES calls EVIVSUCC() as soon as the output
containers of the program are available, i.e., after calling the mapping exit for
BACKWARD_MAPPING if MAPPING is specified in the definition of the external
program, or after the invocation exit returns and the PES has constructed the
output container if NO MAPPING is specified in the definition of the external
program.

The PES passes EVIVSUCC() the same MQ Message ID buffer that was passed to
EVB4INV(), as well as the program’s output container.

Asynchronous invocation: If the invocation is asynchronous, the processing of the
program’s reply data takes place in a second transaction. If program invocation is
successful, the PES calls EVIVSUCC() in this second transaction after HdlRequ()
returns from handling the program’s reply and the output containers are available
(either by direct action in the PES or by calling the mapping exit for
BACKWARD_MAPPING).

If an error occurs in the process (e.g. Recogn(), HdlRequ(), or the mapping exit
returns an error), the PES will call EVIVFAIL() as soon as it detects the error
condition.

Regardless of the invocation type, there are two calls to the notification exit for
each program invocation: EVB4INV() and EVIVSUCC() if the invocation is
successful, or EVB4INV() and EVIVFAIL() otherwise.

EVB4INV()

Header file: FMCXNEIF.H (notification exit).

Function:

v This exit function is called when the PES is about to invoke a program. It is
called by the PES before it prepares the program’s input buffer. If forward
mapping is desired, EVB4INV() is called before the mapping exit for forward
mapping is called.

Interface:
long EVB4INV

(void * exitHandle,
void * inputContainerHandle,
void * invocationContext,
char * userName,
long userNameLength,

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 219

void * workFlowCorrelId,
long workFlowCorrelIdLength,
char * serviceName,
long serviceNameLength,
char * connectionParameters,
long connectionParametersLength,
char * executableName,
long executableNameLength,
char * executableType,
long executableTypeLength,
void * rqMQMessageID,
long rqMQMessageIDLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters:

void * exitHandle

v Pointer passed to the Init() function, which is not used by the PES but
passed to any function called subsequently. Used to pass exit
environment data between the PES and all exit functions.

v Input/output parameter

void * inputContainerHandle

v Handle of the MQSeries Workflow for OS/390 input container.
Argument in MQSeries Workflow for OS/390 Container API calls to
access the container.

v Input parameter

void * invocationContext

v Address of the data describing the context in which the invocation of the
request is to be done.

v For the context information provided by MQSeries Workflow for
OS/390, see “Invocation context” on page 215.

v Input parameter

char * userName

v String containing the name of the user on whose behalf the program is
started.

v Input parameter

long userNameLength

v Length of the userName string.
v Input parameter

void * workFlowCorrelId

v Binary buffer containing the workflow correlation ID. This field can be
used to correlate the current program invocation instance with the state
of the workflow’s process instance. The field contains either an
ActImplCorrelID structure or an FmcCorrelationID structure, depending
on the originator of the start program request:
– an FmcActImplCorrelID structure if the program start request comes

from MQ Workflow’s execution server
– an FmcCorrelationID structure if the program start request comes

from a client application that issued an ExecuteProgram API call
(FmcjProgramTemplateExecute() function).

Program execution server exits

220 MQSeries Workflow for OS/390 Programming Guide

The field can also be empty, i.e., the parameter can have the value NULL
or the length can be 0.

v Input parameter

long workFlowCorrelIdLength

v Length of the workFlowCorrelId buffer. If 0, the buffer is considered
empty.

v Input parameter

char * serviceName

v Name of the service, as known to MQSeries Workflow for OS/390, on
which the application is to be performed.

v Input parameter

long serviceNameLength

v Length of the serviceName character string.
v Input parameter

char * connectionParameters

v Character string providing the parameters needed by the invocation to
connect to the service under which the requested program is to run.
These parameters are defined for the respective service in the PES
directory.

v Input parameter
v See also “Connection parameters” on page 216.

long connectionParametersLength

v Length of connectionParameters
v Input parameter

char * executableName

v Address of buffer containing the name of the executable of the request
v Input parameter

long executableNameLength

v Length of executableName
v Input parameter

char * executableType

v Type of the program specified by the executableName
v Input parameter

long executableTypeLength

v Length of executableType
v Input parameter

void * rqMQMessageID

v Buffer that contains the MQ Message ID of the InvokeProgram request.
This ID uniquely identifies the current program invocation instance. The
same ID will be passed to EVIVSUCC()/EVIVFAIL() in order to enable
correlation.

v Input parameter

long rqMQMessageIDLength

v Length of the rqMQMessageID buffer

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 221

v Input parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

EVIVSUCC()

Header files: FMCXNEIF.H (notification exit).

Function:

v Notifies the exit that a program invocation has been successfully completed.

Invocations: EVIVSUCC() is invoked:
v For synchronous invocations: after the invocation exit function HdlRequ()

returns to the PES with a return code of 0 and the output container is available
(either by calling the mapping exit or by internal actions).

v For asynchronous invocations: when the PES has received the program’s reply
data from the MQ bridge, successfully called Recogn() and the HdlRequ()
function of the appropriate invocation exit, and constructed the output container
(either by calling the mapping exit or by internal actions).

Interface:
long EVIVSUCC

(void * exitHandle,
void * outputContainerHandle,
void * rqMQMessageID,
long rqMQMessageIDLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters:

void * exitHandle

v Pointer passed to the Init() function, which is not used by the PES but
passed to any function called subsequently. Used to pass exit
environment data between the PES and all exit functions.

v Input/output parameter

void * outputContainerHandle

v Handle of the MQSeries Workflow for OS/390 output container.
Argument in MQSeries Workflow for OS/390 Container API calls to
access the container.

Program execution server exits

222 MQSeries Workflow for OS/390 Programming Guide

v Input parameter

void * rqMQMessageID

v Buffer that contains the MQ Message ID of the InvokeProgram request.
This ID uniquely identifies the current program invocation instance. The
same ID was passed to EVB4INV().

v Input parameter

long rqMQMessageIDLength

v Length of the rqMQMessageID buffer
v Input parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

EVIVFAIL()

Header files: FMCXNEIF.H (notification exit).

Function:

v Notifies the exit that an attempt to invoke a program has failed.

Invocations: The PES will call EVIVFAIL() as soon as it detects an error after
calling EVB4INV().
v For synchronous invocations, this can be one of the following situations:

– EVB4INV() returns an error to the PES.
– The PES cannot retrieve the information for the invocation exit from the

directory.
– The invocation exit cannot be loaded and initialized correctly.
– The PES cannot retrieve the information for the mapping exit from the

directory.
– The mapping exit cannot be loaded and initialized correctly.
– The PES is unable to prepare the program’s input buffer.
– The mapping exit for FORWARD_MAPPING returns an error.
– The HdlRequ() call of the invocation exit returns an error.
– The mapping exit for BACKWARD_MAPPING returns an error.
– The PES is not able to construct the output container of the program.

v For asynchronous invocations, this can be one of the following situations:
– EVB4INV() returns an error to the PES.
– The PES cannot retrieve the information for the invocation exit from the

directory.

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 223

– The invocation exit cannot be loaded and initialized correctly.
– The PES cannot retrieve the information for the mapping exit from the

directory.
– The mapping exit cannot be loaded and initialized correctly.
– The PES is unable to prepare the program’s input buffer.
– The mapping exit for FORWARD_MAPPING returns an error.
– The HdlRequ() call of the PES transaction that processes the program

invocation returns an error.
– The program is invoked, but an error occurs in the transaction that processes

the program’s reply data. Possible errors are:
- Recogn() returns an error.
- HdlRequ() returns an error.
- The mapping exit for BACKWARD_MAPPING returns an error.
- The PES is not able to construct the output container of the program.

Interface:
long EVIVFAIL

(void * exitHandle,
void * rqMQMessageID,
long rqMQMessageIDLength,
char * processingErrorId,
long processingErrorIdLength,
char * processingErrorDescription,
long processingErrorDescriptionLength,
char * errorIdBuffer,
long * errorIdBufferLength,
char * errorDescriptionBuffer,
long * errorDescriptionBufferLength)

Parameters:

void * exitHandle

v Pointer passed to the Init() function, which is not used by the PES but
passed to any function called subsequently. Used to pass exit
environment data between the PES and all exit functions.

v Input/output parameter

void * rqMQMessageID

v Buffer that contains the MQ Message ID of the InvokeProgram request.
This ID uniquely identifies the current program invocation instance. The
same ID was passed to EVB4INV().

v Input parameter

long rqMQMessageIDLength

v Length of thg rqMQMessageID buffer
v Input parameter

char * processingErrorId

v Character buffer that contains the ID of the error that occurred in the
processing of the current program invocation instance since the call to
EVB4INV(). This error ID may have been set by the directory,
invocation, or mapping exit, or by the PES.

v Input parameter

long processingErrorIdLength

v Length of the processingErrorId buffer.

Program execution server exits

224 MQSeries Workflow for OS/390 Programming Guide

v Input parameter

char * processingErrorDescription

v Character buffer that contains the description of the error that occurred
in the processing of the current program invocation instance since the
call to EVB4INV(). This error description may have been set by the
directory, invocation, or mapping exit, or by the PES.

v Input parameter

long processingErrorDescriptionLength

v Length of the processingErrorDescription buffer.
v Input parameter

char * errorIdBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorIdBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

char * errorDescriptionBuffer

v See “Return codes and error messages” on page 202 for detailed
information.

long * errorDescriptionBufferLength

v See “Return codes and error messages” on page 202 for detailed
information.

Return codes: See “Return codes and error messages” on page 202 for the return
codes. If EVIVFAIL() returns FMC_EXIT_OK, the PES sends the original error back
to the originator of the request, i.e., in
processingErrorID/processingErrorDescription. If EVIVFAIL() returns
FMC_EXIT_RECOVERABLE_ERROR or FMC_EXIT_NONRECOVERABLE_ERROR,
the PES sends the error from EVIVFAIL() back to the originator of the request, i.e.,
the error that is returned in errorIDBuffer and errorDescriptionBuffer.

Program execution server exits

Chapter 3. Interfacing with the Program Execution Server 225

226 MQSeries Workflow for OS/390 Programming Guide

Chapter 4. API classes and objects

This chapter lists the individual classes and objects in the API and their component
API calls.

Summary
An alphabetical list of API classes and objects follows. Unless otherwise stated,
indicated names are valid Java classes. To become valid C++ classes, a prefix of
″Fmcj″ must be added. To become valid C or COBOL calls, the class name must be
prefixed with ″Fmcj″ and extended by the actual function name. For example, if
the C++ class is ″FmcjWorkitem″, all functions in C or COBOL start with
″FmcjWorkitem″; ″FmcjWorkitemStart″, for example, is a valid C function and
COBOL subprogram name.

Note: In the following discussions, use of the listed class names should be
understood as a generic designation that also applies to C, C++, and
COBOL.

To adhere to language requirements, the paragraph names in copybook
fmcperf.cpy are usually abbreviated versions of the C function names. For more
information concerning COBOL naming conventions, see “COBOL interface” on
page 135.

Class/Object Description

ActivityInstance An instance of a workflow process template
activity.

ActivityInstanceNotification A notification associated with an activity instance.

ActivityInstanceNotificationVector The C or COBOL result of a query for activity
instance notifications.

ActivityInstanceVector The C or COBOL result of a query for activity
instances.

Agent An agent in the Java API to access an MQSeries
Workflow domain.

BlockInstanceMonitor The monitor for an activity instance of kind Block.

Calendar The date/time object for Java. See ″Date and
Time″.

Container The data container of a work item or a process
instance.

ContainerElement An element of a data container.

ContainerElementVector The C or COBOL result of a query for container
elements.

ControlConnectorInstance The instance of a control connector between two
activity instances.

ControlConnectorInstanceVector The C or COBOL result of a query for control
connector instances.

© Copyright IBM Corp. 1999, 2000 227

Class/Object Description

Date and Time The corresponding C++ object is FmcjDateTime.
FmcjCDateTime is the equivalent structure in C
and COBOL.
Note: Java uses the Calendar object.

DllOptions The program implementation definitions for a
dynamic link library.

ExecutionData Information pushed by an MQSeries Workflow
execution server or the response to an
asynchronous request.

ExecutionAgent The Java representation of an MQSeries Workflow
program execution agent.

ExecutionService The representation of a session between a user and
an MQSeries Workflow execution server so that
services can be requested.

ExeOptions The program implementation definitions for an
executable.

ExternalOptions The program implementation definitions for an
external service.

FmcError Describes the cause of a state InError in Java. The
C++ class is called FmcjError.

FmcException The Java representation of an exception.

Global A means to group API calls which are global API
calls in C, C++, and COBOL.

ImplementationData The program implementation definitions.

Item An item associated with a user; can be a work
item or notification.

ItemVector The C or COBOL result of a query for items.

Message A means to request a formatted message (in the
local language, if applicable) for a known message
ID; only C, COBOL, and C++.

PersistentList A list definition stored persistently.

Person User-specific settings for the user logged on to an
MQSeries Workflow execution server.

Point Describes the bend points of a control connector
instance.

PointVector The C or COBOL result of a query for bend
points.

ProcessInstance An instance of a workflow process template.

ProcessInstanceList A list to group process instances.

ProcessInstanceListVector The C or COBOL result of a query for process
instance lists.

ProcessInstanceMonitor The monitor for a process instance.

ProcessInstanceNotification A notification associated with a process instance.

ProcessInstanceNotificationVector The C or COBOL result of a query for process
instance notifications.

ProcessInstanceVector The C or COBOL result of a query for process
instances.

API classes and objects

228 MQSeries Workflow for OS/390 Programming Guide

Class/Object Description

ProcessTemplate A workflow process template consisting of
activities and containers and their control and data
flow.

ProcessTemplateList A list to group process templates.

ProcessTemplateListVector The C or COBOL result of a query for process
template lists.

ProcessTemplateVector The C or COBOL result of a query for process
templates.

ProgramData The program definitions of an activity
implementation.

ProgramTemplate A program definition contained in a process
template.

ReadOnlyContainer A data container that can only be read.

ReadWriteContainer A data container that can be read and written to.

Result The detailed result of a request; only C, COBOL,
and C++.

Service Provides for common aspects of MQSeries
Workflow services.

StringVector The C or COBOL result of a query resulting in a
list of strings or the C or COBOL means of
providing a list of strings.

SymbolLayout Describes the graphical layout of an activity
instance.

Workitem A user-assigned activity instance to be worked on.

WorkitemVector The C or COBOL result of a query for work items.

Worklist A list to group work items or notifications.

WorklistVector The C or COBOL result of a query for worklists.

API calls by class

Note: In the following descriptions, the basic methods listed are not differentiated
by language. Not all of these methods are available in each language.

ActivityInstance
An activity instance represents an instance of a process template activity. It is part
of a process instance.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an activity instance object. 71

Copy() Allocates and initializes the storage for an activity instance
object by copying.

74

Deallocate() Deallocates the storage for an activity instance object. 75

destructor() Destructs an activity instance object. 75

Equal() Compares two activity instances. 73

API classes and objects

Chapter 4. API classes and objects 229

Basic methods Description Page

IsComplete() Indicates whether the complete activity instance information
is available.

75

IsEmpty() Indicates whether activity instance information is not
available.

76

Kind() States the kind of the activity instance, whether it is a
program, a process, or a block.

76

operator=() Assigns an activity instance to this one. 73

operator==() Compares two activity instances. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when activity instances are queried or if this attribute is
a secondary attribute (S) and set only after the refresh of a specific activity
instance. Note that the activity instances returned by the (process or block)
instance monitor contain both primary and secondary values.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to
some object (P), or an object itself (O). The API call declaration can be found
in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

ActivationTime() P/D Returns the activation time of the
activity instance.

88

ActivationTimeIsNull() P/B Indicates whether an activation
time is set.

111

Category() P/C Returns the process category of the
activity instance.

108

CategoryIsNull() P/B Indicates whether a category is set. 111

Description() P/C Returns the description of the
activity instance.

108

DescriptionIsNull() P/B Indicates whether a description is
set.

111

Documentation() S/C Returns the documentation of the
activity instance.

108

DocumentationIsNull() S/B Indicates whether a documentation
is set.

111

EndTime() S/D Returns the ending time of the
activity instance.

88

EndTimeIsNull() S/B Indicates whether an end time is
set.

111

ErrorReason() S/O Returns an error object describing
the reason why the activity
instance is in the state InError.

109

API classes and objects

230 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Set/
Type

Description Page

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

111

ExitCondition() S/C Returns the exit condition of the
activity instance.

108

FirstNotificationTime() S/D Returns the time the first
notification for the activity instance
is to occur or has occurred.

88

FirstNotificationTimeIsNull() S/B Indicates whether a first
notification time is set.

111

FirstNotifiedPersons() S/M Returns the persons who received
a first notification for the activity
instance.

109

FullName() P/C Returns the fully qualified name of
the activity instance (dot notation).

108

Icon() P/C Returns the icon associated with
the activity instance.

108

Implementation() P/C Returns the name of the
implementing program of the
activity instance.

108

ImplementationIsNull() P/B Indicates whether an
implementation is set.

111

InContainerName() S/C Returns the name of the input
container of the activity instance.

108

LastModificationTime() P/D Returns the last time a primary
attribute of the activity instance
was changed.

88

LastStateChangeTime() P/D Returns the last time the state of
the activity instance changed.

88

ManualExitMode() S/B Returns whether the exit mode of
the activity instance is manual.

87

ManualStartMode() S/B Returns whether the start mode of
the activity instance is manual.

87

Name() P/C Returns the name of the activity
instance.

108

OutContainerName() S/C Returns the name of the output
container of the activity instance.

108

PersistentOid() P/C Returns a representation of the
object identification of the activity
instance.

108

Priority() P/I Returns the priority of the activity
instance.

107

PriorityIsNull() P/B Indicates whether a priority is set. 111

ProcessAdmin() S/C Returns the process administrator
of the activity instance.

108

ProcessAdminIsNull() S/B Indicates whether a process
administrator is set.

111

API classes and objects

Chapter 4. API classes and objects 231

Accessor methods Set/
Type

Description Page

ProcessInstanceName() P/C Returns the name of the process
instance the activity instance is
part of.

108

ProcessInstanceState() P/E Returns the state of the process
instance the activity instance is
part of.

88

ProcessInstanceSystemGroupName() S/C Returns the name of the system
group of the process instance the
item is part of.

108

ProcessInstanceSystemName() S/C Returns the name of the system of
the process instance the activity
instance is part of.

108

SecondNotificationTime() S/D Returns the time the second
notification for the activity instance
is to occur or has occurred.

88

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

111

SecondNotifiedPersons() S/M Returns the persons who received
a second notification for the
activity instance.

109

Staff() S/M Returns all persons a work item
for the activity instance has been
assigned to.

109

StartCondition() S/C Returns the start condition of the
activity instance.

108

Starter() P/C Returns the starter of the activity
instance.

108

StarterIsNull() P/B Indicates whether a starter is set. 111

StartTime() P/D Returns the start time of the
activity instance.

88

StartTimeIsNull() P/B Indicates whether a start time is
set.

111

State P/E Returns the state of the activity
instance.

88

StateOfNotification() S/E Returns the notification state of the
activity instance.

88

SupportTools() P/M Returns the support tools
associated with the activity
instance.

109

SupportToolsIsNull() P/B Indicates whether support tools are
set.

111

SymbolLayout() S/O Returns the symbol layout of the
activity instance.

109

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

API classes and objects

232 MQSeries Workflow for OS/390 Programming Guide

Action methods Description Page

ObtainProcessInstanceMonitor() Retrieves the process instance monitor for
the process instance the activity instance is
part of.

287

SubProcessInstance() Retrieves the process instance implementing
the activity instance of type Process.

289

ActivityInstanceNotification
An activity instance notification represents a notification for an activity instance.

Note: All API calls of FmcjItem are also applicable to activity instance
notifications.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an activity instance notification object. 71

Copy() Allocates and initializes the storage for an activity instance
notification object by copying.

74

Deallocate() Deallocates the storage for an activity instance notification
object.

75

destructor() Destructs an activity instance notification object. 75

Kind() In C++, states that the object is an activity instance
notification.

76

operator=() Assigns an activity instance notification to this one. 73

operator==() Compares two activity instance notifications. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when activity instance notifications are queried or if
this attribute is a secondary attribute (S) and set only after the refresh of a
specific activity instance notification.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to
some object (P), or an object itself (O). The API call declaration can be found
in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

ActivityKind() P/E Returns the kind of the associated
activity instance, whether it is a
program or process and so on.

88

ErrorReason() S/O Returns an error object describing
the reason why the associated
activity instance is in state InError.

109

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

111

API classes and objects

Chapter 4. API classes and objects 233

Accessor methods Set/
Type

Description Page

ExitCondition() S/C Returns the exit condition of the
associated activity instance.

108

Expired() P/B Returns whether the associated
activity instance has been started
and is expired now.

87

FirstNotificationTime() S/D Returns the first notification time
of the activity instance, that is, the
time when this notification has
been created.

88

Implementation() P/C Returns the implementing program
or process name of the associated
activity instance.

108

ImplementationIsNull() P/B Indicates whether an
implementation is set.

111

ManualExitMode() S/B Returns whether the exit mode of
the associated activity instance is
manual.

87

ManualStartMode() S/B Returns whether the start mode of
the associated activity instance is
manual.

87

Priority() P/I Returns the priority of the
associated activity instance.

107

SecondNotificationTime() S/D Returns the second notification
time of the associated activity
instance.

88

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

111

Staff() S/M Returns all persons owning a work
item for the associated activity
instance.

109

StartCondition() S/C Returns the start condition of the
associated activity instance.

108

StartOverdue() P/B Returns whether the start of the
associated activity instance is
overdue.

87

State P/E Returns the state of the associated
activity instance.

88

StateOfNotification() S/E Returns the notification state of the
associated activity instance.

88

SupportTools() P/M Returns the support tools
associated with the activity
instance.

109

SupportToolsIsNull() P/B Indicates whether support tools are
set.

111

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

API classes and objects

234 MQSeries Workflow for OS/390 Programming Guide

Action methods Description Page

PersistentObject() Retrieves the specified activity instance notification. 292

StartTool() Starts the specified support tool. 294

ActivityInstanceNotificationVector
An activity instance notification vector represents the result of a query for activity
instance notifications in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector functions.

Vector methods Description

Deallocate() Deallocates an activity instance notification vector
object.

FirstElement() Returns the first element of the activity instance
notification vector.

NextElement() Returns the next element of the activity instance
notification vector.

Size() Returns the number of elements in the activity
instance notification vector.

ActivityInstanceVector
An activity instance vector represents the result of a query for activity instances in
C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates an activity instance vector object.

FirstElement() Returns the first element of the activity instance vector.

NextElement() Returns the next element of the activity instance vector.

Size() Returns the number of elements in the activity instance
vector.

Agent
An agent object represents an MQSeries Workflow instance in Java.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an agent object. Initially an agent has no context,
locator policy, or name.

71

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

API classes and objects

Chapter 4. API classes and objects 235

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

addPropertyChangeListener() O Adds the specified listener to the
set of listeners to be notified of
property changes.

113

addVetoableChangeListener() O Adds the specified listener to the
set of listeners to be notified of
vetoable property changes.

113

getConfigurationID() C Returns the configuration to be
used for profile accesses.

108

getExecutionAgent() O Returns a program execution agent
to the calling activity
implementation provided that the
LOC_LOCATOR policy was used.
Otherwise, null is returned.

109

getLocator() I Returns the locator policy; can be
COS_LOCATOR, IOR_LOCATOR,
LOC_LOCATOR, OSA_LOCATOR,
RMI_LOCATOR.

107

getName() C Returns the name of the Java
Agent. If the agent is not bound,
an empty string is returned.

108

isBound() B Indicates whether the agent bean is
bound to a Java CORBA agent.

87

locate() O Locates the execution service in the
provided system group and
system.

109

removePropertyChangeListener() O Removes the specified listener
from the set of listeners.

113

removeVetoableChangeListener() O Removes the specified listener
from the set of listeners.

113

setConfigurationID() C Sets the configuration ID to be
used for profile access. A locator
policy of LOC_LOCATOR is
automatically assumed.

108

setContext() O Sets the context of the agent. An
applet must set the context by
issuing a agent.setContext(this,null);

109

API classes and objects

236 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Type Description Page

setLocator() I Sets the locator policy; can be
COS_LOCATOR, IOR_LOCATOR,
LOC_LOCATOR, OSA_LOCATOR,
RMI_LOCATOR. This call must
precede the Agent.setName(). If
LOC_LOCATOR is set, the default
configuration ID for profile access
is automatically used.
Note: Java RMI agents should
only be used for prototyping. They
are currently not suited for
production purposes.

112

setName() C Sets the name of the Java Agent. 108

toString() C Returns the name of the agent. 108

BlockInstanceMonitor
A block instance monitor object represents a monitor of an activity instance of type
Block.

Note: All API calls of a block instance monitor are also applicable to process
instance monitors.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

destructor() Destructs a block instance monitor object, that is, the
transient representation in the C++ interface. The internal
block instance monitor object is, however, not deallocated
since it is part of the process instance monitor. It is
deallocated when the process instance monitor is
destructed/deallocated.

75

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary because a block instance monitor is a part of a
process instance monitor.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

ActivityInstances() M Returns the activity instances which
are represented by the block instance
monitor, that is, which are part of the
activity instance of type Block. The
activity instances contain both primary
and secondary values.

109

API classes and objects

Chapter 4. API classes and objects 237

Accessor methods Type Description Page

ControlConnectorInstances() M Returns the control connector
instances which are represented by the
block instance monitor, that is, which
are part of the activity instance of type
Block.

109

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

ObtainBlockInstanceMonitor() Returns the block instance monitor for an
activity instance of type Block. The activity
instance is part of the set of activity
instances represented by the block instance
monitor.

296

ObtainProcessInstanceMonitor() Returns the process instance monitor for an
activity instance of type Process. The activity
instance is part of the set of activity
instances represented by the block instance
monitor.

298

Refresh() Refreshes the block instance monitor from
the MQSeries Workflow execution server.

301

Container
A container represents an input or output data container of a process instance or
work item.

Note: All API calls of a container are applicable to read-only and read/write
containers.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

IsEmpty() Indicates whether container information is not available. 76

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

AllLeafCount() I Returns the number of leaf elements of the
container including the MQSeries Workflow
predefined members.

37

AllLeaves() M Returns all leaf elements of the container
including the MQSeries Workflow
predefined members.

37

API classes and objects

238 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Type Description Page

ArrayBinaryLength() I Returns the length of the value of the
specified container leaf element in C or
COBOL. The leaf is part of an array and of
type BINARY.

47

ArrayBinaryValue() C Returns the value of the specified container
leaf element in C or COBOL. The leaf is
part of an array and of type BINARY.

47

ArrayFloatValue() F Returns the value of the specified container
leaf element in C or COBOL. The leaf is
part of an array and of type FLOAT.

47

ArrayLongValue() I Returns the value of the specified container
leaf element in C or COBOL. The leaf is
part of an array and of type LONG.

47

ArrayStringLength() I Returns the length of the value of the
specified container leaf element in C or
COBOL. The leaf is part of an array and of
type STRING.

47

ArrayStringValue() C Returns the value of the specified container
leaf element in C or COBOL. The leaf is
part of an array and of type STRING.

47

BinaryLength() I Returns the length of the value of the
specified container leaf element. The leaf is
of type BINARY.

47

BinaryValue() C Returns the value of the specified container
leaf element in C or COBOL. The leaf is of
type BINARY.

47

FloatValue() F Returns the value of the specified container
leaf element in C or COBOL. The leaf is of
type FLOAT.

47

getBuffer() C Returns the value of the specified container
leaf element in Java. The leaf is of type
BINARY.

47

getBuffer2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type BINARY.

47

getDouble() F Returns the value of the specified container
leaf element in Java. The leaf is of type
FLOAT.

47

getDouble2() F Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type FLOAT.

47

GetElement() O Provides access to a container element. 47

getLong() I Returns the value of the specified container
leaf element in Java. The leaf is of type
LONG.

47

getLong2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type LONG.

47

getString() C Returns the value of the specified container
leaf element in Java. The leaf is of type
STRING.

47

API classes and objects

Chapter 4. API classes and objects 239

Accessor methods Type Description Page

getString2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type STRING.

47

LeafCount() I Returns the number of user-defined leaf
elements of the container.

47

Leaves() M Returns all user-defined leaf elements of the
container.

47

LongValue() I Returns the value of the specified container
leaf element in C or COBOL. The leaf is of
type LONG.

47

MemberCount() I Returns the number of structural members
in the container.

47

StringLength() I Returns the length of the value of the
specified container leaf element in C or
COBOL. The leaf is of type STRING.

47

StringValue() C Returns the value of the specified container
leaf element in C or COBOL. The leaf is of
type STRING.

47

StructMembers() M Returns the structural members of the
container.

37

Type() C Returns the type of the container, that is,
the data structure name.

37

Value() C/I/F/N Returns the value of the specified container
leaf element in C++.

47

Refer to “Activity implementation API calls” on page 122 for detailed descriptions
of activity implementation API calls.

Activity implementation methods Description Page

InContainer() Accesses the input container from within an
activity implementation; for Java, see
ExecutionAgent.

303

OutContainer() Accesses the output container from within
an activity implementation; for Java, see
ExecutionAgent.

305

RemoteInContainer() Accesses the input container from within a
program started by an activity
implementation; for Java, see
ExecutionAgent.

307

RemoteOutContainer() Accesses the output container from within a
program started by an activity
implementation; for Java, see
ExecutionAgent.

308

SetOutContainer() Sets the output container from within an
activity implementation; for Java, see
ExecutionAgent.

310

SetRemoteOutContainer() Sets the output container from within a
program started by an activity
implementation; for Java, see
ExecutionAgent.

312

API classes and objects

240 MQSeries Workflow for OS/390 Programming Guide

ContainerElement
A container element represents an arbitrary element of a container.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a container element object. 71

Copy() Allocates and initializes the storage for a container element
object by copying.

74

Deallocate() Deallocates the storage for a container element object. 75

destructor() Destructs a container element object. 75

Equal() Compares two container elements. 73

operator=() Assigns a container element to another one. 73

operator==() Compares two container elements. 73

IsEmpty() Indicates whether container element information is not
available.

76

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties because a container element describes a
part of a container.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

ArrayBinaryLength() I Returns the length of the value of the
specified container element leaf element in
C or COBOL. The leaf is part of an array
and of type BINARY.

54

ArrayBinaryValue() C Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is part of an array and of type BINARY.

54

ArrayElements() M Returns the array elements of the container
element.

41

ArrayFloatValue() F Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is part of an array and of type FLOAT.

54

ArrayLongValue() I Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is part of an array and of type LONG.

54

ArrayStringLength() I Returns the length of the value of the
specified container element leaf element in
C or COBOL. The leaf is part of an array
and of type STRING.

54

ArrayStringValue() C Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is part of an array and of type STRING.

54

API classes and objects

Chapter 4. API classes and objects 241

Accessor methods Type Description Page

BinaryLength() I Returns the length of the value of the
specified container element leaf element.
The leaf is of type BINARY.

54

BinaryValue() C Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is of type BINARY.

54

Cardinality() I Returns the number of array elements of
the container element.

41

FloatValue() ? Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is of type FLOAT.

54

FullName() C Returns the fully-qualified dotted name of
the container element.

41

getBuffer() C Returns the value of the specified container
element leaf element in Java. The leaf is of
type BINARY.

47

getBuffer2() C Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type BINARY.

47

getDouble() F Returns the value of the specified container
element leaf element in Java. The leaf is of
type FLOAT.

47

getDouble2() F Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type FLOAT.

47

GetElement() O Provides access to an element of the
container element.

47

getLong() I Returns the value of the specified container
element leaf element in Java. The leaf is of
type LONG.

47

getLong2() I Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type LONG.

47

getString() C Returns the value of the specified container
element leaf element in Java. The leaf is of
type STRING.

47

getString2() C Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type STRING.

47

IsArray() B Indicates whether the container element is
an array.

41

IsLeaf() B Indicates whether the container element is a
leaf.

41

IsStruct() B Indicates whether the container element is a
structure itself.

41

LeafCount() I Returns the number of leaf elements of the
container element.

41

Leaves() M Returns all leaf elements of the container
element.

41

API classes and objects

242 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Type Description Page

LongValue() I Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is of type LONG.

54

MemberCount() I Returns the number of structural members
in the container element.

41

Name() C Returns the name of the container element. 41

StringLength() I Returns the length of the value of the
specified container element leaf element in
C or COBOL. The leaf is of type STRING.

54

StringValue() C Returns the value of the specified container
element leaf element in C or COBOL. The
leaf is of type STRING..

54

StructMembers() M Returns the structural members of the
container element.

41

Type() C Returns the type of the container element,
that is, the data structure name.

41

Value() C/I/F/N Returns the value of the specified container
element leaf element in C++.

54

ContainerElementVector
A container element vector represents the result of a query for container elements
in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector functions.

Vector methods Description

Deallocate() Deallocates a container element vector object.

FirstElement() Returns the first element of the container element
vector.

NextElement() Returns the next element of the container element
vector.

Size() Returns the number of elements in the container
element vector.

ControlConnectorInstance
A control connector instance object represents a control connector between two
activity instances and its state.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a control connector instance object. 71

Copy() Allocates and initializes the storage for a control connector
instance object by copying.

74

Deallocate() Deallocates the storage for a control connector instance object. 75

destructor() Destructs a control connector instance object. 75

API classes and objects

Chapter 4. API classes and objects 243

Basic methods Description Page

Equal() Compares two control connector instance objects on the basis
of their source and target activity instances.

73

IsEmpty() Indicates whether control connector instance information is
not available.

76

Kind() States the kind of the control connector instance, whether it is
a transition condition or the "otherwise" connector.

76

operator=() Assigns a control connector instance object to this one. 73

operator==() Compares two control connector instance objects on the basis
of their source and target activity instances.

73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

BendPoints() M Returns the bend points of the control
connector instance.

109

Name() C Returns the name associated with the
control connector instance.

108

NameIsNull() B Indicates whether a name is set. 111

PersistentOidOfSourceActivity() C Returns the object ID of the activity
instance which is the source of this
control connector instance.

108

PersistentOidOfTargetActivity() C Returns the object ID of the activity
instance which is the target of this
control connector instance.

108

State() E Returns the state of the control
connector instance, whether it is
evaluated, and the result of
evaluation.

88

TransitionCondition() C Returns the transition condition of the
control connector instance.

108

TransitionConditionIsNull() B Indicates whether a transition
condition is set.

111

ControlConnectorInstanceVector
A control connector instance vector represents the result of a query for control
connector instances in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates a control connector instance vector object.

API classes and objects

244 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Description

FirstElement() Returns the first element of the control connector
instance vector.

NextElement() Returns the next element of the control connector
instance vector.

Size() Returns the number of elements in the control
connector instance vector.

Date and Time (FmcDateTime/FmcjCDateTime/Calendar)
An FmcjDateTime object represents date and time values in C++. An
FmcjCDateTime structure represents date and time values in C or COBOL. Java
uses a Calendar object.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.
The following methods are only available in C++.

Basic methods Description Page

constructor() Constructs a date/time object. 71

destructor() Destructs a date/time object. 75

operator=() Assigns a date/time object to another one. 73

operator==() Compares two date/time objects. 73

operator string() Returns the string representation of the date/time object. 108

IsEmpty() Indicates whether date/time information is not available. 76

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. Because a date/time object represents a supporting object on the client only,
the distinction between primary and secondary attributes is not applicable.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

The following methods are only available in C++.

Accessor methods Type Description Page

Day() I Returns the day of the date/time object. 107

Hour() I Returns the hours of the date/time object. 107

Minute() I Returns the minutes of the date/time object. 107

Month() I Returns the month of the date/time object. 107

Second() I Returns the seconds of the date/time object. 107

Year() I Returns the year of the date/time object. 107

API classes and objects

Chapter 4. API classes and objects 245

The following functions are only available in C and COBOL.

Accessor functions Type Description Page

FmcjDateTimeAsString() C Returns the string representation of the
date/time structure.

108

FmcjDateTimeCurrentTime() D Returns the current date/time. 88

FmcjDateTimeIsValid() B Indicates whether the passed date/time is a
valid date/time; must be greater than or
equal to 1970-1-1 12:00 (yyyy-mm-dd
hh:mm).

87

DllOptions
A DllOptions object represents the program implementation definitions for a
dynamic link library.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a DLL options object. 71

Copy() Allocates and initializes the storage for a DLL options object
by copying.

74

Deallocate() Deallocates the storage for a DLL options object. 75

destructor() Destructs a DLL options object. 75

IsEmpty() Indicates whether DLL options information is not available. 76

operator=() Assigns a DLL options object to this one. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

EntryPointName() C Returns the name of the entry point of the
DLL.

108

ExecuteFenced() B States whether the DLL should run in a
separate address space.

87

ExecuteFencedIsNull() B Indicates whether execute fended is set. 111

KeepLoaded() B States whether the DLL should stay loaded. 87

KeepLoadedIsNull() B Indicates whether keep loaded is set. 111

PathAndFileName() C Returns the path and file name of the DLL. 108

ExecutionAgent
An ExecutionAgent object (Java) represents an MQSeries Workflow program
execution agent.

API classes and objects

246 MQSeries Workflow for OS/390 Programming Guide

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. Because the following information is retrieved from the program execution
agent, a distinction between primary and secondary properties is not applicable.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

ProgramID() C Returns the program identification by
which the invoked activity implementation
is known to the program execution agent.

108

RemoteUserID() C Returns the user identification on whose
behalf the activity implementation which
started this program was originally started.

108

UserID() C Returns the user identification on whose
behalf the activity implementation was
started.

108

Refer to “Activity implementation API calls” on page 122 for detailed descriptions
of activity implementation API calls.

Activity implementation methods Description Page

InContainer() Accesses the input container from within an
activity implementation in Java.

303

OutContainer() Accesses the output container from within
an activity implementation in Java.

305

RemoteInContainer() Accesses the input container from within a
program started by an activity
implementation in Java.

307

RemoteOutContainer() Accesses the output container from within a
program started by an activity
implementation in Java.

308

SetOutContainer() Sets the output container from within an
activity implementation in Java.

310

SetRemoteOutContainer() Sets the output container from within a
program started by an activity
implementation in Java.

312

ExecutionData
An Execution data object represents data sent from an MQSeries Workflow
execution server.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an Execution data object. 71

Copy() Allocates and initializes the storage for an Execution data
object by copying.

74

Deallocate() Deallocates the storage for an execution data object. 75

API classes and objects

Chapter 4. API classes and objects 247

Basic methods Description Page

destructor() Destructs an execution data object. 75

IsEmpty() Indicates whether execution data information is not available. 76

Kind() Returns the kind of the data, whether it is describing a work
item creation, deletion, and so on.

76

operator=() Assigns an execution data object to this one. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

ActivityInstanceNotificationFromData() P Creates an activity instance
notification from the execution
data.

111

ErrorFromData() P Creates an error description
object from the execution data.

111

IsError() B States whether the execution
data describes an erroneous
situation.

87

PersistentOid() C Returns a representation of the
object ID of the object
described by the execution
data.

108

ProcessInstanceNotificationFromData() P Creates a process instance
notification from the execution
data.

111

ReadOnlyContainerFromData() P Creates a container object from
the execution data.

111

WorkitemFromData() P Creates a work item from the
execution data.

111

UserContext() C Returns the user context. 108

UserContextIsNull() B States whether a user context
had been specified.

111

ExecutionService
An ExecutionService object represents a user session to an execution server.

Note: All API calls provided by FmcjService are also applicable.

API classes and objects

248 MQSeries Workflow for OS/390 Programming Guide

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

Allocate() Allocates the storage for an execution service
object. The execution server to connect to is
taken from the MQSeries Workflow user’s or
configuration profile in the currently set
configuration.

71

AllocateForSystem() Allocates the storage for the specified execution
service object. The execution server to connect
to is taken from the specified parameters in the
currently set configuration.

71

AllocateForGroup() Allocates the storage for the specified execution
service object. The execution server to connect
to can be any system within the specified
system group in the currently set configuration.

71

constructor() Constructs an execution service object. 71

Copy() Allocates and initializes the storage for an
execution service object by copying.

74

Deallocate() Deallocates the storage for an execution service
object.

75

destructor() Destructs an execution service object. 75

Equal() Compares two execution service objects if they
represent the same session.

73

operator=() Assigns an execution service object to this one. 73

operator==() Compares two execution service objects if they
represent the same session.

73

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

CreateProcessInstanceList() Creates a new process instance list on
the execution server.

315

CreateProcessTemplateList() Creates a new process template list on
the execution server.

321

CreateWorklist() Creates a new worklist on the execution
server.

326

Logoff() Logs off from the connected execution
server.

333

Logon() Logs on to the execution server. 334

Logon2() Logs on to the execution server in Java
and provides additional parameters.

334

persistentActivityInstance
Notification()

Retrieves the activity instance
notification specified by the passed
object identification in the Java API.

292

persistentProcessInstance() Retrieves the process instance specified
by the passed object identification in the
Java API.

426

API classes and objects

Chapter 4. API classes and objects 249

Action methods Description Page

persistentProcessInstance Notification() Retrieves the process instance
notification specified by the passed
object identification in the Java API.

446

persistentProcessTemplate() Retrieves the process template specified
by the passed object identification in the
Java API.

467

persistentWorkItem() Retrieves the work item specified by the
passed object identification in the Java
API.

504

QueryActivityInstance Notifications() Retrieves the activity instance
notifications the logged-on user has
access to.

341

QueryItems() Retrieves the work items or notifications
the logged-on user has access to.

347

QueryProcessInstanceLists() Retrieves the process instance lists the
logged-on user has access to.

353

QueryProcessInstance Notifications() Retrieves the process instance
notifications the logged-on user has
access to.

355

QueryProcessInstances() Retrieves the process instances the
logged-on user has access to.

361

QueryProcessTemplateLists() Retrieves the process template lists the
logged-on user has access to.

366

QueryProcessTemplates() Retrieves the process templates the
logged-on user has access to.

368

QueryWorkitems() Retrieves the work items the logged-on
user has access to.

372

QueryWorklists() Retrieves the worklists the logged-on
user has access to.

379

Receive() Receives execution data sent by an
MQSeries Workflow execution server.

381

TerminateReceive() Places information in the client input
queue to indicate that receiving
execution data sent by an MQSeries
Workflow execution server can end.

386

Refer to “Activity implementation API calls” on page 122 for detailed descriptions
of activity implementation API calls.

Activity implementation methods Description Page

Passthrough() Establishes a session between an activity
implementation and an execution server.

339

RemotePassthrough() Establishes a session between a program
started by an activity implementation and
an execution server.

384

ExeOptions
An ExeOptions object represents the program implementation definitions for an
executable.

API classes and objects

250 MQSeries Workflow for OS/390 Programming Guide

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an EXE options object. 71

Copy() Allocates and initializes the storage for an EXE options object
by copying.

74

Deallocate() Deallocates the storage for an EXE options object. 75

destructor() Destructs an EXE options object. 75

operator=() Assigns an EXE options object to this one. 73

IsEmpty() Indicates whether EXE options information is not available. 76

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

AutomaticClose() B States whether the window in which
the EXE starts should close when the
EXE ends.

87

AutomaticCloseIsNull() B Indicates whether automatic close is
set.

111

Environment() C States the environment settings for the
EXE.

108

EnvironmentIsNull() B Indicates whether an environment is
set.

111

InheritEnvironment() B States whether the environment
settings should be merged with the
operating system environment
settings.

87

PathAndFileName() C Returns the path and file name of the
EXE.

108

RunInXTerm() B States whether the EXE should start in
a separate xterm.

87

RunInXTermIsNull() B Indicates whether run in xterm is set. 111

StartInForeGround() B States whether the EXE should start in
the foreground.

87

StartInForeGroundIsNull() B Indicates whether start in foreground
is set.

111

WindowStyle() O States the initial window style. 109

WindowStyleIsNull() B Indicates whether a window style is
set.

111

WorkingDirectoryName() C States the working directory for the
EXE.

108

WorkingDirectoryNameIsNull() B Indicates whether a working directory
is set.

111

API classes and objects

Chapter 4. API classes and objects 251

ExternalOptions
An ExternalOptions object represents the program implementation definitions for
an external service.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an External options object. 71

Copy() Allocates and initializes the storage for an External options
object by copying.

74

Deallocate() Deallocates the storage for an External options object. 75

destructor() Destructs an External options object. 75

operator=() Assigns an External options object to this one. 73

IsEmpty() Indicates whether External options information is not
available.

76

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

BackwardMappingFormat() C Specifies the format of the
mapping from the structure the
executable uses to an MQSeries
Workflow container.

108

BackwardMappingFormatIsNull() B Indicates whether a backward
mapping format is set.

111

BackwardMappingParameters() M Returns backward mapping
parameters, if any.

109

BackwardMappingParametersIsNull() B Indicates whether backward
mapping parameters are set.

111

CodePage() I Specifies the code page of the
service.

107

CodePageIsNull() B Indicates whether a code page
is set.

111

ExecutableName() C Specifies the executable to be
invoked by the invocation type
and service.

108

ExecutableType() C Identifes the type of the
executable.

108

ForwardMappingFormat() C Specifies the format for the
mapping from an MQSeries
Workflow container to the
structure the executable uses.

108

API classes and objects

252 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Type Description Page

ForwardMappingFormatIsNull() B Indicates whether a forward
mapping format is set.

111

ForwardMappingParameters() M Returns forward mapping
parameters, if any.

109

ForwardMappingParametersIsNull() B Indicates whether forward
mapping parameters are set.

111

InvocationType() C Specifies the invocation
mechanism to invoke the
executable on the service.

108

IsLocalUser() B Returns whether a local user is
to be resolved instead of using
the MQSeries Workflow user
ID.

87

IsMappingRoutineCall() B Specifies whether forward and
backward mapping routines are
to be called.

87

IsSecurityRoutineCall() B Specifies whether a security
routine is to be called.

87

MappingType() C Identifies the type of mapping
that should occur.

108

MappingTypeIsNull() B Indicates whether a mapping
type is set.

111

ServiceName() C Identifies the service that is to
be called.

108

ServiceType() C Identifies the type of service to
be called, for example, CICS(R)
or IMS(TM).

108

TimeoutPeriod() E Specifies how long the program
execution server should wait
for a response from the started
service: forever, a time period,
or never.

88

TimeoutInterval() I Specifies the timeout interval. 107

TimeoutIntervalIsNull() B Indicates whether a timeout
interval is set.

111

FmcError/FmcjError
An FmcError or FmcjError object represents a description of the reason why a
work item or activity instance is in state InError. It also describes an error returned
as an asynchronous response.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an Error object. 71

Copy() Allocates and initializes the storage for an Error object by
copying.

74

Deallocate() Deallocates the storage for an Error object. 75

destructor() Destructs an Error object. 75

API classes and objects

Chapter 4. API classes and objects 253

Basic methods Description Page

Equal() Compares two Error objects on the basis of their return codes
and parameters.

73

IsEmpty() Indicates whether Error information is not available. 76

operator=() Assigns an Error object to this one. 73

operator==() Compares two Error objects on the basis of their return codes
and parameters.

73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

MessageText() C Returns the error as a formatted message
(in the local language if applicable).

108

Parameters() M Returns the parameters of the error; these
are to be incorporated into the message
text.

109

Rc() I Returns the return code remembered in the
error object.

107

FmcException
An FmcException object represents a description of an exception thrown by Java.

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor
methods

Type Description Page

MessageText() C Returns the exception as a formatted message (in the
local language if applicable).

108

nestedException() - Returns an exception thrown by the communication
layer.
Note: The nested exception can be inspected by
(down-)casting to either
org.omg.CORBA.SystemException or to
java.rmi.RemoteException depending on the
communication protocol used. However, doing so
will make the client code protocol-dependent (unless
it deals with both cases). When using local bindings
the nested exception will always be null.

108

API classes and objects

254 MQSeries Workflow for OS/390 Programming Guide

Accessor
methods

Type Description Page

origin() C Returns the module that threw the exception. 108

Parameters() M Returns the parameters of the error; these are
already incorporated into the message text.

109

Rc() I Returns the return code remembered in the error
object.

107

Global
A Global object serves to group global MQSeries Workflow API calls.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description

Connect() Initializes the API in the current thread.

Disconnect() Deinitializes the API in the current thread.

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

ConfigurationID() C Returns the configuration ID to be
used for profile access.

108

SetConfigurationID() C Sets the configuration ID to be used
for profile access. Can only be set
before the first profile usage.

108

ImplementationData
An ImplementationData object represents the program implementation definitions.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an implementation data object. 71

Copy() Allocates and initializes the storage for an implementation
data object by copying.

74

Deallocate() Deallocates the storage for an implementation data object. 75

destructor() Destructs an implementation data object. 75

operator=() Assigns an implementation data object to this one. 73

IsEmpty() Indicates whether implementation data information is not
available.

76

Kind() States the actual kind of the implementation data, whether it
is a DLL or an EXE.

76

API classes and objects

Chapter 4. API classes and objects 255

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

CommandLineParameters() M Returns the command line
parameters to be passed to the
invoked program.

109

CommandLineParametersIsNull() B Indicates whether command line
parameters are set.

111

DllOptions() P Returns the description of a DLL,
if the implementation is a DLL.

111

ExeOptions() P Returns the description of an EXE,
if the implementation is an EXE.

111

ExternalOptions() P Returns the description of external
options, if the implementation is
an external service.

111

options() P Returns the description of an EXE,
a DLL, or an external service in
Java.

111

Platform() E Returns the operating system
platform this implementation data
describes.

88

Item
An item represents a work item, an activity instance notification, or a process
instance notification.

Note: This means that all API calls of an item are also applicable to work items,
activity instance notifications, and process instance notifications.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs an item object. 71

Copy() Allocates and initializes the storage for an item object by
copying.

74

Deallocate() Deallocates the storage for an item object. 75

destructor() Destructs an item object. 75

Equal() Compares two items. 73

IsComplete() Indicates whether the complete item information is available. 75

IsEmpty() Indicates whether item information is not available. 76

Kind() States the actual kind of the item, whether it is a work item
or some kind of notification.

76

API classes and objects

256 MQSeries Workflow for OS/390 Programming Guide

Basic methods Description Page

operator=() Assigns an item to this one. 73

operator==() Compares two items. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor and
mutator API calls.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when items are queried or if this attribute is a
secondary attribute (S) and set only after the refresh of a specific item.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to
some object (P), or an object itself (O). The API call declaration can be found
in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

Category() P/C Returns the process category of the
item.

108

CategoryIsNull() P/B Indicates whether a category is set. 111

CreationTime() P/D Returns the creation time of the
item.

88

Description() P/C Returns the description of the item. 108

DescriptionIsNull() P/B Indicates whether a description is
set.

111

Documentation() S/C Returns the documentation of the
item.

108

DocumentationIsNull() S/B Indicates whether a documentation
is set.

111

EndTime() S/D Returns the ending time of the
item.

88

EndTimeIsNull() S/B Indicates whether an end time is
set.

111

Icon() P/C Returns the icon associated with
the item.

108

InContainerName() S/C Returns the name of the input
container of the item.

108

LastModificationTime() P/D Returns the last time a primary
attribute of the item was changed.

88

Name() P/C Returns the name of the item. in C
or COBOL, a work item or activity
instance notification requires a
buffer of at least 33 bytes, a
process instance notification a
buffer of at least 64 bytes.

108

OutContainerName() S/C Returns the name of the output
container of the item.

108

Owner() P/C Returns the user ID of the owner
of the item.

108

API classes and objects

Chapter 4. API classes and objects 257

Accessor methods Set/
Type

Description Page

PersistentOid() P/C Returns a representation of the
object identification of the item.

108

ProcessAdmin() S/C Returns the user ID of the process
administrator of the item.

108

ProcessInstanceName() P/C Returns the name of the process
instance the item is part of.

108

ProcessInstanceState() P/E Returns the state of the process
instance the item is part of.

88

ProcessInstanceSystemGroupName() S/C Returns the name of the system
group of the process instance the
item is part of.

108

ProcessInstanceSystemName() S/C Returns the name of the system of
the process instance the item is
part of.

108

ReceivedAs() P/E Returns the reason why the item
was received.

88

ReceivedTime() P/D Returns the time when the item
was received.

88

StartTime() P/D Returns the start time of the item. 88

StartTimeIsNull() P/B Indicates whether a start time is
set.

111

Mutator methods Description Page

Update() Updates the item with the execution data sent by an
MQSeries Workflow execution server. The object IDs
of the item and of the object described by the
execution data must match.

114

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

Delete() Deletes an item. 388

ObtainProcessInstanceMonitor() Retrieves the process instance monitor for
the process instance the item is part of.

390

ProcessInstance() Retrieves the process instance the item is
part of.

392

Refresh() Retrieves the complete information of the
item.

394

SetDescription() Sets the description of the item. 396

SetName() Sets the name of the item. 398

Transfer() Transfers an item to the specified user. 400

ItemVector
An item vector represents the result of a query for items in C or COBOL.

API classes and objects

258 MQSeries Workflow for OS/390 Programming Guide

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates an item vector object.

FirstElement() Returns the first element of the item vector.

NextElement() Returns the next element of the item vector.

Size() Returns the number of elements in the item vector.

Message
A message object serves to access the MQSeries Workflow provided message
catalog.

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself. The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

MessageText() C Returns a formatted message (in the local
language if applicable) based on the message
ID. Any parameters passed will be
incorporated.

108

PersistentList
A persistent list object represents a persistent list definition.

Note: All API calls of a persistent list are also applicable to process instance lists,
process template lists, and worklists.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

IsEmpty() Indicates whether persistent list information is not available. 76

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

Description() C Returns the description of the persistent list. 108

DescriptionIsNull() B Indicates whether a description is set. 111

API classes and objects

Chapter 4. API classes and objects 259

Accessor methods Type Description Page

Filter() C Returns the filter of the persistent list. 108

FilterIsNull() B Indicates whether a filter is set. 111

Name() C Returns the name of the persistent list. 108

OwnerOfList() C Returns the user ID of the owner of the
persistent list.

108

OwnerOfListIsNull() B Indicates whether an owner is set; a public
list does not have an owner.

111

SortCriteria() C Returns the sort criteria of the persistent
list.

108

SortCriteriaIsNull() B Indicates whether sort criteria are set. 111

Threshold() I Returns the threshold of the persistent list. 107

ThresholdIsNull() B Indicates whether a threshold is set. 111

Type() C Returns the type of the persistent list,
whether it is a public or private list.

108

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

Delete() Deletes the persistent list. 403

Refresh() Refreshes the persistent list. 404

SetDescription() Sets the description of the persistent list. 406

SetFilter() Sets the filter of the persistent list. 408

SetSortCriteria() Sets the sort criteria of the persistent list. 410

SetThreshold() Sets the threshold of the persistent list. 412

Person
A person object represents the settings of the logged-on user.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a person object. 71

Copy() Allocates and initializes the storage for a person object by
copying.

74

Deallocate() Deallocates the storage for a person object. 75

destructor() Destructs a person object. 75

Equal() Compares two persons. 73

operator=() Assigns a person to this one. 73

operator==() Compares two persons. 73

IsComplete() Indicates whether the complete person information is
available.

75

IsEmpty() Indicates whether person information is not available. 76

API classes and objects

260 MQSeries Workflow for OS/390 Programming Guide

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when persons are queried or if this attribute is a
secondary attribute (S) and set only after the refresh of a specific person.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to
some object (P), or an object (O). The API call declaration can be found in a
general format at the indicated page.

Accessor methods Set/
Type

Description Page

CategoriesAuthorizedFor() P/M Returns the categories the
person is authorized for
with basic or with
administration rights. If the
person is authorized for all
categories as administrator,
no category is returned
here. If the person is
authorized for all categories
with basic rights, categories
authorized with
administration rights are
returned here.

109

CategoriesAuthorizedForAsAdmin() P/M Returns the categories the
person is authorized for
with administration rights.
If the person is authorized
for all categories with
administration rights, no
category is returned here.

109

Description() P/C Returns the description of
the person.

108

DescriptionIsNull() P/B Indicates whether a
description is set.

111

FirstName() P/C Returns the first name of
the person.

108

FirstNameIsNull() P/B Indicates whether a first
name is set.

111

IsAbsent() P/B Indicates whether the
person is absent.

87

IsAdminForCategory() P/B Indicates whether the
person has administrator
rights for the specified
category. Returns false if the
category does not exist. If
the person is authorized for
all categories as
administrator, then true is
returned independent of the
category existence.

87

API classes and objects

Chapter 4. API classes and objects 261

Accessor methods Set/
Type

Description Page

IsAdministrator() S/B Indicates whether the
person is an administrator.

87

IsAuthorizedForAllCategories() P/B Indicates whether the
person is said to be
authorized for all categories
either with basic and/or
administration rights.

87

IsAuthorizedForAllCategoriesAsAdmin() P/B Indicates whether the
person is said to be
authorized for all categories
as administrator.

87

IsAuthorizedForAllPersons() P/B Indicates whether the
person is authorized to see
the items of all persons.

87

IsAuthorizedForAuthorizationDefinition() P/B Indicates whether the
person is authorized to
define authorizations.

87

IsAuthorizedForOperationAdministration() P/B Indicates whether the
person is authorized for
operational administrations.

87

IsAuthorizedForProcessDefinition() P/B Indicates whether the
person is authorized to
define process models.

87

IsAuthorizedForStaffDefinition() P/B Indicates whether the
person is authorized to
define persons.

87

IsAuthorizedForTopologyDefinition() P/B Indicates whether the
person is authorized to
define topological data.

87

IsManager() S/B Indicates whether the
person is a manager.

87

IsResetAbsence() P/B Indicates whether the
absence flag should be reset
when the person logs on.

87

LastName() P/C Returns the last name of the
person.

108

LastNameIsNull() P/B Indicates whether a last
name is set.

111

Level() P/I Returns the level of the
person.

107

Manager() S/C Returns the user
identification of the
person’s manager.

108

ManagerIsNull() S/B Indicates whether the
person’s manager is set.

111

MiddleName() P/C Returns the middle name of
the person.

108

MiddleNameIsNull() P/B Indicates whether a middle
name is set.

111

API classes and objects

262 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Set/
Type

Description Page

NamesOfManagedOrganizations() S/M Returns the names of
organizations the person
manages.

109

NamesOfRoles() P/M Returns the names of roles
the person belongs to.

109

NamesOfRolesToCoordinate() S/M Returns the names of roles
the person can coordinate.

109

OrganizationName() P/C Returns the name of the
organization the person
belongs to.

108

OrganizationNameIsNull() P/B Indicates whether an
organization name is set.

111

PersonID() P/C Returns the person ID of
the person.

108

PersonIDIsNull() P/B Indicates whether a person
ID is set.

111

PersonsAuthorizedFor() P/M Returns the persons for
whom this person is
authorized either explicitly
or by being a substitute. If
the person is authorized for
all other persons, then no
person is returned here.

109

PersonsAuthorizedForMe() S/M Returns the persons who
are authorized for this
person.

109

PersonsToStandInFor() S/M Returns the persons for
whom this person stands in.

109

Phone() P/C Returns the phone number
of the person.

108

PhoneIsNull() P/B Indicates whether a phone
is set.

111

SecondPhone() P/C Returns the alternate phone
number of the person.

108

SecondPhoneIsNull() P/B Indicates whether an
alternate phone is set.

111

Substitute() P/C Returns the substitute of the
person.

108

SubstituteIsNull() P/B Indicates whether a
substitute is set.

111

SystemName() P/C Returns the home system of
the person.

108

UserID() P/C Returns the user
identification of the person.

108

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

API classes and objects

Chapter 4. API classes and objects 263

Action methods Description Page

Refresh() Retrieves the complete person information
from the server.

414

SetAbsence() Sets the absent flag of the logged-on user to
the specified value.

416

SetSubstitute() Sets the substitute of the logged-on user to
the specified value.

417

Point
A point object represents a bend point of a control connector.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a point object. 71

Copy() Allocates and initializes the storage for a point object by
copying.

74

Deallocate() Deallocates the storage for a point object. 75

destructor() Destructs a point object. 75

Equal() Compares two point objects on the basis of their contents. 73

IsEmpty() Indicates whether point information is not available. 76

operator=() Assigns a point object to this one. 73

operator==() Compares two point objects on the basis of their contents. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

XPosition() I Returns the x-coordinate of the point. 107

YPosition() I Returns the y-coordinate of the point. 107

PointVector
A point vector represents the result of a query for points in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates a point vector object.

FirstElement() Returns the first element of the point vector.

NextElement() Returns the next element of the point vector.

API classes and objects

264 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Description

Size() Returns the number of elements in the point vector.

ProcessInstance
A process instance object represents an instance of a workflow process template.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a process instance object. 71

Copy() Allocates and initializes the storage for a process instance
object by copying.

74

Deallocate() Deallocates the storage for a process instance object. 75

destructor() Destructs a process instance object. 75

Equal() Compares two process instances. 73

IsComplete() Indicates whether the complete process instance information
is available.

75

IsEmpty() Indicates whether process instance information is not
available.

76

operator=() Assigns a process instance to this one. 73

operator==() Compares two process instances. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when process instances are queried or if this attribute is
a secondary attribute (S) and set only after the refresh of a specific process
instance.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to
some object (P), or an object itself (O). The API call declaration can be found
in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

AuditMode() S/E Returns the audit mode of the
process instance.

88

Category() P/C Returns the category of the process
instance.

108

CategoryIsNull() P/B Indicates whether a category is set. 111

CreationTime() S/D Returns the creation time of the
process instance.

88

Creator() S/C Returns the creator of the process
instance.

108

Description() P/C Returns the description of the
process instance.

108

API classes and objects

Chapter 4. API classes and objects 265

Accessor methods Set/
Type

Description Page

DescriptionIsNull() P/B Indicates whether a description is
set.

111

Documentation() S/C Returns the documentation of the
process instance.

108

DocumentationIsNull() S/B Indicates whether a documentation
is set.

111

EndTime() S/D Returns the end time of the
process instance.

88

EndTimeIsNull() S/B Indicates whether an end time is
set.

111

Icon() P/C Returns the icon associated with
the process instance.

108

InContainerName() S/C Returns the name of the input
container of the process instance.

108

InContainerNeeded() P/B Indicates whether an input
container is needed to start the
process instance. An input
container is needed when

v There is a mapping to some
other container.

v Staff assignment data is taken
from it.

v Notification related data is taken
from it.

v A transaction or exit condition
refers to a container element.

v A description refers to a
container element.

v Prompt for data at process start is
set for the process model.

87

LastModificationTime() P/D Returns the last time a primary
attribute of the process instance
was changed.

88

LastStateChangeTime() P/D Returns the last time the state of
the process instance was changed.

88

Name() P/C Returns the name of the process
instance.

108

NotificationTime() S/D Returns the notification time of the
process instance.

88

NotificationTimeIsNull() S/B Indicates whether a notification
time is set.

111

NotifiedPerson() S/C Returns the person who received
the notification.

108

NotifiedPersonIsNull() S/B Indicates whether a notified person
is set.

111

OrganizationName() S/C Returns the name of the
organization of the process
instance.

108

API classes and objects

266 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Set/
Type

Description Page

OrganizationNameIsNull() S/B Indicates whether an organization
name is set.

111

OutContainerName() S/C Returns the name of the output
container of the process instance.

108

ParentName() P/C Returns the name of the parent
process instance of this process
instance.

108

ParentNameIsNull() P/B Indicates whether a parent name is
set.

111

PersistentOid() P/C Returns a representation of the
object identification of the process
instance.

108

ProcessAdmin() S/C Returns the user ID of the process
administrator of the process
instance.

108

ProcessAdminIsNull() S/B Indicates whether a process
administrator is set.

111

ProcessTemplateName() P/C Returns the name of the process
template the process instance is
derived from.

108

RoleName() S/C Returns the name of the role of the
process instance.

108

RoleNameIsNull() S/B Indicates whether a role is set. 111

Starter() S/C Returns the starter of the process
instance.

108

StarterIsNull() S/B Indicates whether a starter is set. 111

StartTime() S/D Returns the start time of the
process instance.

88

StartTimeIsNull() S/B Indicates whether a start time is
set.

111

State() P/E Returns the state of the process
instance.

88

StateOfNotification() S/E Returns the notification state of the
process instance.

88

SuspensionExpirationTime() P/D Returns the suspension expiration
time of the process instance.

88

SuspensionExpirationTimeIsNull() P/B Indicates whether the suspension
expiration time is set.

111

SuspensionTime() P/D Returns the time the process
instance was suspended.

88

SuspensionTimeIsNull() P/B Indicates whether the suspension
time is set.

111

SystemGroupName() P/C Returns the name of the system
group where the process instance
runs.

108

SystemName() P/C Returns the name of the system
where the process instance runs.

108

API classes and objects

Chapter 4. API classes and objects 267

Accessor methods Set/
Type

Description Page

TopLevelName() P/C Returns the name of the top level
process instance of this process
instance.

108

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

Delete() Deletes the process instance. 420

InContainer() Retrieves the input container of the process
instance.

421

ObtainMonitor() Retrieves the process instance monitor for
the process instance.

424

PersistentObject() Retrieves the process instance specified by
the passed object identification.

426

Refresh() Retrieves the complete information of the
process instance.

428

Restart() Restarts the process instance. 430

Resume() Resumes the execution of a suspended
process instance.

431

SetDescription() Sets the description of the process instance. 433

SetName() Sets the name of the process instance. 435

Start() Starts the process instance. 437

Start2() Starts the process instance in Java and
provides an input container.

437

Suspend() Suspends the process instance. 439

Suspend2() Suspends the process instance in Java until
the specified calendar date.

439

SuspendUntil() Suspends the process instance until the
specified time.

439

Terminate() Terminates the process instance. 441

ProcessInstanceList
A process instance list represents a group of process instances.

Note: All API calls of a persistent list are also applicable to process instance lists.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a process instance list object. 71

Copy() Allocates and initializes the storage for a process instance list
object by copying.

74

Deallocate() Deallocates the storage for a process instance list object. 75

destructor() Destructs a process instance list object. 75

Equal() Compares two process instance lists. 73

API classes and objects

268 MQSeries Workflow for OS/390 Programming Guide

Basic methods Description Page

operator=() Assigns a process instance list to this one. 73

operator==() Compares two process instance lists. 73

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

QueryProcessInstances() Retrieves the process instances qualifying
via the process instance list.

443

ProcessInstanceListVector
A process instance list vector represents the result of a query for process instance
lists in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates a process instance list vector object.

FirstElement() Returns the first element of the process instance list
vector.

NextElement() Returns the next element of the process instance list
vector.

Size() Returns the number of elements in the process instance
list vector.

ProcessInstanceMonitor
A process instance monitor object represents a monitor of a process instance.

Note: All API calls of FmcjBlockInstanceMonitor are also applicable to process
instance monitors.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

Deallocate() Deallocates the storage for a process instance monitor object.
All block instance monitors contained are also deallocated.

75

destructor() Destructs a process instance monitor object. All block instance
monitors contained are also destructed.

75

ProcessInstanceNotification
A process instance notification represents a notification raised for a process
instance.

Note: All API calls for FmcjItem are also applicable to process instance
notifications.

API classes and objects

Chapter 4. API classes and objects 269

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a process instance notification object. 71

Copy() Allocates and initializes the storage for a process instance
notification object by copying.

74

Deallocate() Deallocates the storage for a process instance notification
object.

75

destructor() Destructs a process instance notification object. 75

Kind() In C++, states that the object is a process instance notification. 76

operator=() Assigns a process instance notification to this one. 73

operator==() Compares two process instance notifications. 73

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

PersistentObject() Retrieves the specified process instance
notification.

446

ProcessInstanceNotificationVector
A process instance notification vector represents the result of a query for process
instance notifications in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates a process instance notification vector
object.

FirstElement() Returns the first element of the process instance
notification vector.

NextElement() Returns the next element of the process instance
notification vector.

Size() Returns the number of elements in the process
instance notification vector.

ProcessInstanceVector
A process instance vector represents the result of a query for process instances in C
or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a process instance vector
object.

FirstElement() Returns the first element of the process instance
vector.

API classes and objects

270 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Description

NextElement() Returns the next element of the process instance
vector.

Size() Returns the number of elements in the process
instance vector.

ProcessTemplate
A process template object represents the Runtime equivalent of a Buildtime
workflow process model.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a process template object. 71

Copy() Allocates and initializes the storage for a process template
object by copying.

74

Deallocate() Deallocates the storage for a process template object. 75

destructor() Destructs a process template object. 75

Equal() Compares two process templates. 73

IsComplete() Indicates whether the complete process template information
is available.

75

IsEmpty() Indicates whether process template information is not
available.

76

operator=() Assigns a process template to this one. 73

operator==() Compares two process templates. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when process templates are queried or if this attribute
is a secondary attribute (S) and set only after the refresh of a specific process
template.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to
some object (P), or an object itself (O). The API call declaration can be found
in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

AuditMode() S/E Returns the audit mode of the process
template.

88

Category() P/C Returns the category of the process
template.

108

CategoryIsNull() P/B Indicates whether a category is set. 111

CreationTime() P/D Returns the creation time of the process
template.

88

API classes and objects

Chapter 4. API classes and objects 271

Accessor methods Set/
Type

Description Page

Description() P/C Returns the description of the process
template.

108

DescriptionIsNull() P/B Indicates whether a description is set. 111

Documentation() S/C Returns the documentation of the process
template.

108

DocumentationIsNull() S/B Indicates whether a documentation is set. 111

Icon() P/C Returns the icon associated with the process
template.

108

InContainerName() S/C Returns the name of the input container of
the process template.

108

InContainerNeeded() P/B Indicates whether an input container is
needed to start an instance of the process
template. An input container is needed
when

v There is a mapping to some other
container.

v Staff assignment data is taken from it.

v Notification related data is taken from it.

v A transaction or exit condition refers to a
container element.

v A description refers to a container
element.

v Prompt for data at process start is set for
the process model.

87

LastModificationTime() P/D Returns the last time a primary attribute of
the process template was changed.

88

Name() P/C Returns the name of the process template. 108

OrganizationName() S/C Returns the name of the organization of the
process template.

108

OrganizationNameIsNull() S/B Indicates whether an organization name is
set.

111

OutContainerName() S/C Returns the name of the output container of
the process template.

108

PersistentOid() P/C Returns a representation of the object
identification of the process template.

108

ProcessAdmin() S/C Returns the user ID of the process
administrator of an instance of the process
template.

108

ProcessAdminIsNull() S/B Indicates whether a process administrator is
set.

111

RoleName() S/C Returns the name of the role of the process
template.

108

RoleNameIsNull() S/B Indicates whether a role is set. 111

ValidFromTime() P/D Returns the time when the process template
becomes valid.

88

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

API classes and objects

272 MQSeries Workflow for OS/390 Programming Guide

Action methods Description Page

CreateAndStartInstance() Creates and starts an instance of the process
template.

448

CreateAndStartInstance2() Creates and starts an instance of the process
template in Java and provides an input
container.

448

CreateInstance() Creates an instance of the process template. 453

Delete() Deletes the specified process template. 456

Delete2() Deletes the specified process template
versions in Java.

456

ExecuteProcessInstance() Creates and executes an instance from the
specified process template.

458

ExecuteProcessInstanceAsync() Creates and executes an instance from the
specified process template without waiting
for an answer.

458

InitialInContainer() Retrieves the initially defined input
container of the process template.

465

PersistentObject() Retrieves the process template specified by
the passed object identification.

467

ProgramTemplate() Retrieves the program template specified by
the passed name.

469

Refresh() Retrieves the complete information of the
process template.

471

ProcessTemplateList
A process template list represents a group of process templates.

Note: All API calls of a persistent list are also applicable to process template lists.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a process template list object. 71

Copy() Allocates and initializes the storage for a process template list
object by copying.

74

Deallocate() Deallocates the storage for a process template list object. 75

Equal() Compares two process template lists. 73

destructor() Destructs a process template list object. 75

operator=() Assigns a process template list to this one. 73

operator==() Compares two process template lists. 73

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

QueryProcessTemplates() Retrieves the process templates qualifying
via the process template list.

473

API classes and objects

Chapter 4. API classes and objects 273

ProcessTemplateListVector
A process template list vector represents the result of a query for process template
lists in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates a process template list vector object.

FirstElement() Returns the first element of the process template list
vector.

NextElement() Returns the next element of the process template list
vector.

Size() Returns the number of elements in the process
template list vector.

ProcessTemplateVector
A process template vector represents the result of a query for process templates in
C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a process template vector
object.

FirstElement() Returns the first element of the process template
vector.

NextElement() Returns the next element of the process template
vector.

Size() Returns the number of elements in the process
template vector.

ProgramData
A program data object represents the program implementation definitions. In C++,
it privately inherits from ProgramTemplate.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a program data object. 71

Copy() Allocates and initializes the storage for a program data object
by copying.

74

Deallocate() Deallocates the storage for a program data object. 75

destructor() Destructs a program data object. 75

Equal() Compares two program data objects if they belong to the
same work item.

73

IsEmpty() Indicates whether program data information is not yet
available.

76

API classes and objects

274 MQSeries Workflow for OS/390 Programming Guide

Basic methods Description Page

operator=() Assigns a program data object to this one. 73

operator==() Compares two program data objects if they belong to the
same work item.

73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

Description() C Returns the description of the implementing
program.

108

DescriptionIsNull() B Indicates whether a description is set. 111

ExecutionMode() E States whether the program can participate
in global transactions or not.

88

ExecutionUser() C Returns the user on whose behalf the
program is to be executed.

108

Icon() C Returns the icon associated with the
implementing program.

108

Implementations() M Returns the implementation definitions of
the program.

109

InContainer() P Returns the input container of the program. 111

IsUnattended() B States whether the program can run
unattended.

87

OutContainer() P Returns the output container of the
program.

111

ProgramTrusted() B States whether the program can be trusted.
Only a trusted program can receive its
program ID.

87

ProgramTemplate
A program template object represents the program implementation definitions.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a program template object. 71

Copy() Allocates and initializes the storage for a program template
object by copying.

74

Deallocate() Deallocates the storage for a program template object. 75

destructor() Destructs a program template object. 75

Equal() Compares two program template objects on the basis of their
names and the process template they belong to.

73

API classes and objects

Chapter 4. API classes and objects 275

Basic methods Description Page

IsEmpty() Indicates whether program template information is not yet
available.

76

operator=() Assigns a program template object to this one. 73

operator==() Compares two program template objects on the basis of their
names and the process template they belong to.

73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

Description() C Returns the description of the implementing
program.

108

DescriptionIsNull() B Indicates whether a description is set. 111

ExecutionMode() E States whether the program can participate
in global transactions or not.

88

ExecutionUser() C Returns the user on whose behalf the
program is to be executed.

108

Icon() C Returns the icon associated with the
implementing program.

108

Implementations() M Returns the implementation definitions of
the program.

109

InitialInContainer() P Returns the initially defined input container
of the program.

111

InContainerAccess() B States whether the input container is
accessed by the program.

87

IsUnattended() B States whether the program can run
unattended.

87

InitialOutContainer() P Returns the initially defined output
container of the program.

111

OutContainerAccess() B States whether the output container is
accessed by the program.

87

ProgramTrusted() B States whether the program can be trusted.
Only a trusted program can receive its
program ID.

87

StructuresFromActivity() B States whether the program can handle any
container passed to it.

87

ValidFromTime() P/D Returns the time when the process template
and thus the program template becomes
valid.

88

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

API classes and objects

276 MQSeries Workflow for OS/390 Programming Guide

Action methods Description Page

Execute() Requests the execution of the program by
the system’s program execution server.

476

Execute2() Requests the execution of the program by
the system’s program execution server.

476

ExecuteWithOptions() Requests the execution of the program by
the system’s program execution server. The
priority of the program can be specified.

476

ExecuteAsync() Requests the execution of the program by
the system’s program execution server
without waiting for an answer.

476

ExecuteAsync2() Requests the execution of the program by
the system’s program execution server
without waiting for an answer.

476

ExecuteAsyncWithOptions() Requests the execution of the program by
the system’s program execution server
without waiting for an answer. The priority
of the program can be specified.

476

ReadOnlyContainer
A read-only container represents an input data container of a work item.

Note: All API calls of a container are applicable to read-only containers.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a read-only container object. 71

Copy() Allocates and initializes the storage for a read-only container
object by copying.

74

Deallocate() Deallocates the storage for a read-only container object. 75

Equal() Compares two read-only containers. 73

destructor() Destructs a read-only container object. 75

operator=() Assigns a read-only container to this one. 73

operator==() Compares two read-only containers. 73

ReadWriteContainer
A read/write container represents an input container of a process instance or an
output container of a work item.

Note: All API calls of a container are applicable to read/write containers.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a read/write container object. 71

Copy() Allocates and initializes the storage for a read/write
container object by copying.

74

Deallocate() Deallocates the storage for a read/write container object. 75

API classes and objects

Chapter 4. API classes and objects 277

Basic methods Description Page

Equal() Compares two read/write containers. 73

destructor() Destructs a read/write container object. 75

operator=() Assigns a read/write container to another one. 73

operator==() Compares two read/write containers. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

The value in the Type column states the type of the property set, whether it is a
binary (N), a character string (C), a float (F), or an integer (I). The API call
declaration can be found at the indicated page.

Accessor methods Type Description Page

SetArrayBinaryValue() N Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
part of an array and of type BINARY.

60

SetArrayFloatValue() F Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
part of an array and of type FLOAT.

60

SetArrayLongValue() I Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
part of an array and of type LONG.

60

SetArrayStringValue() C Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
part of an array and of type STRING.

60

SetBinaryValue() N Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
of type BINARY.

60

SetBuffer() N Sets the value of the specified container leaf
element in Java. The leaf element is of type
BINARY.

60

SetBuffer2() N Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type BINARY.

60

SetDouble() F Sets the value of the specified container leaf
element in Java. The leaf element is of type
FLOAT.

60

SetDouble2() F Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type FLOAT.

60

SetFloatValue() F Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
of type FLOAT.

60

SetLong() I Sets the value of the specified container leaf
element in Java. The leaf element is of type
LONG.

60

SetLong2() I Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type LONG.

60

API classes and objects

278 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Type Description Page

SetLongValue() I Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
of type LONG.

60

SetString() N Sets the value of the specified container leaf
element in Java. The leaf element is of type
STRING.

60

SetString2() N Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type STRING.

60

SetStringValue() C Sets the value of the specified container leaf
element in C or COBOL. The leaf element is
of type STRING.

60

SetValue() N/F/C/I Sets the value of the specified container leaf
element in C++.

60

Result
A result object represents the result of an API call in C++, C, or COBOL.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

destructor Destructs the C++ representation of the result object. 75

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. Because a result object represents a supporting object on the client only, the
distinction between primary and secondary attributes is not applicable.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

MessageText() C Returns the result as a formatted message
(in the local language if applicable).

108

ObjectOfCurrentThread() P Returns the result object associated with the
thread from where this API call is called.

Origin() C Returns the origin of the result, that is, file,
line, function.

108

Parameters() M Returns the parameters of the result; these
are already incorporated in the message
text.

109

Rc() I Returns the return code remembered in the
result object.

107

API classes and objects

Chapter 4. API classes and objects 279

Service
A service object represents common aspects of MQSeries Workflow service objects.

Note: All API calls of a service object are also applicable to execution services.

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. Because a service object represents a supporting object on the client only, the
distinction between primary and secondary attributes is not applicable.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), multi-valued property (M), a pointer to some object (P), or an object
itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

IsLoggedOn() B Indicates whether a user is logged on via
this service object.

87

SetTimeout() I Sets the time the client will wait for a
server to answer. The time is to be specified
in milliseconds.

112

SystemGroupName() C Returns the name of the system group
where the server resides.

108

SystemName() C Returns the name of the system where the
server resides.

108

Timeout() I Returns the time the client will wait for a
server to answer.

107

UserID() C Returns the user identification of the
logged-on user.

108

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

Refresh() Refreshes information from the server,
especially the logged-on status.

480

SetPassword() Sets the password of the logged-on user. 481

UserSettings() Retrieves the user settings of the logged-on
user.

483

StringVector
in C or COBOL, a string vector serves to represents a set of string information. For
example, a string vector is returned to show the categories the logged-on user is
authorized for. Or, a string vector must be used to specify the persons to stand in
for.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

AddElement() Adds a string to the string vector.

API classes and objects

280 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Description

Allocate() Allocates the storage for a string vector.

Deallocate() Deallocates the storage for a string vector.

FirstElement() Returns the first element of the string
vector.

FirstResultParmElement() Returns the first element of a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

NextElement() Returns the next element of the string
vector.

NextResultParmElement() Returns the next element of a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

RemoveElement() Removes a string from the string vector.

ResultParmDeallocate() Deallocates the storage for a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

ResultParmSize() Returns the number of elements in a string
vector representing the parameters of a
result object; calling this function does not
change the result object and thus allows for
a consistent read.

Size() Returns the number of elements in the
string vector.

SymbolLayout
A symbol layout object represents graphical information of a named icon.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a symbol layout object. 71

Copy() Allocates and initializes the storage for a symbol layout
object by copying.

74

Deallocate() Deallocates the storage for a symbol layout object. 75

destructor() Destructs a symbol layout object. 75

Equal() Compares two symbol layout objects on the basis of their
contents.

73

IsEmpty() Indicates whether symbol layout information is not available. 76

operator=() Assigns a symbol layout object to this one. 73

operator==() Compares two symbol layout objects on the basis of their
contents.

73

API classes and objects

Chapter 4. API classes and objects 281

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

XPosition() I Returns the x-coordinate of the named icon. 107

XPositionOfName() I Returns the x-coordinate of the name
associated with the icon.

107

YPosition() I Returns the y-coordinate of the named icon. 107

YPositionOfName() I Returns the y-coordinate of the name
associated with the icon.

107

WorkItem
A work item represents an activity instance assigned to a user in order to be
worked on.

Note: All API calls of an Item are also applicable to work items.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a work item object. 71

Copy() Allocates and initializes the storage for a work item object by
copying.

74

Deallocate() Deallocates the storage for a work item object. 75

destructor() Destructs a work item object. 75

Kind() In C++, states that the object is a work item. 76

operator=() Assigns a work item to this one. 73

operator==() Compares two work items. 73

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls.

Note: The value in the Set column shows if this attribute is a primary attribute (P)
and set immediately when work items are queried or if this attribute is a
secondary attribute (S) and set only after the refresh of a specific work item.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), multi-valued property (M), a pointer to some
object (P), or an object itself (O). The API call declaration can be found in a
general format at the indicated page.

API classes and objects

282 MQSeries Workflow for OS/390 Programming Guide

Accessor methods Set/
Type

Description Page

ActivityKind() P/E Returns the kind of the associated
activity instance, whether it is a
program or process and so on.

88

ErrorReason() S/O Returns an error object describing
the reason why the associated
activity instance is in state InError.

109

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

111

ExitCondition() S/C Returns the exit condition of the
work item.

108

FirstNotificationTime() S/D Returns the time the first
notification for the work item is to
occur or has occurred.

88

FirstNotificationTimeIsNull() S/B Indicates whether a first
notification time is set.

111

Implementation() P/C Returns the name of the
implementing program of the
associated activity instance.

108

ImplementationIsNull() P/B Indicates whether an
implementation is set.

111

ManualExitMode() S/B Returns whether the exit mode of
the work item is manual.

87

ManualStartMode() S/B Returns whether the start mode of
the work item is manual.

87

Priority() P/I Returns the priority of the work
item.

107

SecondNotificationTime() S/D Returns the time the second
notification for the work item is to
occur or has occurred.

88

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

111

Staff() S/M Returns all persons owning a work
item for the associated activity
instance.

109

StartCondition() S/C Returns the start condition of the
work item.

108

State P/E Returns the state of the work item. 88

StateOfNotification() S/E Returns the notification state of the
work item.

88

SupportTools() P/M Returns the support tools
associated with the work item.

109

SupportToolsIsNull() P/B Indicates whether support tools are
set.

111

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

API classes and objects

Chapter 4. API classes and objects 283

Action methods Description Page

CancelCheckOut() Cancels the checkout of the work item. 487

CheckIn() Checks in the work item. 489

CheckOut() Checks out the work item. 491

Finish() Finishes a manual exit work item. 495

ForceFinish() Force finishes the work item. 497

ForceRestart() Force restarts the work item. 499

InContainer() Retrieves the input container of the work item. 501

OutContainer() Retrieves the output container of the work item. 502

PersistentObject() Retrieves the specified work item. 504

Restart() Restarts the work item. 506

Start() Starts the work item. 508

StartTool() Starts the specified support tool. 509

Terminate() Terminates the work item. 511

WorkItemVector
A work item vector represents the result of a query for work items in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a work item vector
object.

FirstElement() Returns the first element of the work item vector.

NextElement() Returns the next element of the work item vector.

Size() Returns the number of elements in the work item
vector.

Worklist
A worklist represents a group of items.

Note: All API calls of a persistent list are also applicable to worklists.

Refer to “Basic API calls” on page 70 for detailed descriptions of basic API calls.

Basic methods Description Page

constructor() Constructs a worklist object. 71

Copy() Allocates and initializes the storage for a worklist object by
copying.

74

Deallocate() Deallocates the storage for a worklist object. 75

destructor() Destructs a worklist object. 75

Equal() Compares two worklists. 73

operator=() Assigns a worklist to another one. 73

operator==() Compares two worklists. 73

API classes and objects

284 MQSeries Workflow for OS/390 Programming Guide

Refer to “Accessor API calls” on page 85 for detailed descriptions of accessor API
calls. All properties are primary properties.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), a multi-valued property (M), a pointer to some object (P), or an
object itself. The API call declaration can be found in a general format at the
indicated page.

Accessor methods Type Description Page

BeepOption() B Indicates whether a beep should sound
when the contents of the worklist changes.

87

Refer to “Action API calls” on page 122 for detailed descriptions of action API
calls.

Action methods Description Page

QueryActivityInstance
Notifications()

Retrieves the activity instance notifications
qualifying via the worklist.

514

QueryItems() Retrieves all items qualifying via the
worklist.

517

QueryProcessInstanceNotifications() Retrieves the process instance notifications
qualifying via the worklist.

519

QueryWorkitems() Retrieves the work items qualifying via the
worklist.

521

WorklistVector
A worklist vector represents the result of a query for worklists in C or COBOL.

Refer to “C and COBOL vector accessor functions” on page 21 for detailed
descriptions of vector access functions.

The value in the Type column states the type of the property returned, whether it
is a boolean (B), a character string (C), a date/time value (D), an enumeration (E),
an integer (I), or a multi-valued property (M), a pointer to some object (P), or an
object itself (O). The API call declaration can be found in a general format at the
indicated page.

Accessor methods Description

Deallocate() Deallocates a worklist vector object.

FirstElement() Returns the first element of the worklist vector.

NextElement() Returns the next element of the worklist vector.

Size() Returns the number of elements in the worklist
vector.

API classes and objects

Chapter 4. API classes and objects 285

API classes and objects

286 MQSeries Workflow for OS/390 Programming Guide

Chapter 5. API action and activity implementation calls

The following chapter describes the MQSeries Workflow action and activity
implementation API calls in alphabetical order by class.

Each entry contains a functional description of the API call followed by
subsections:
Usage notes Points to general information about the nature of this call.
Authorization States the authority required to have the API call executed.
Required connection

States the MQSeries Workflow server a session must have been
established with.

API interface declarations
Shows the required file declarations and calling sequences.

Parameters Describes each of the parameters together with an indication of
whether the parameter is an input or output parameter.

Return type Describes the type of value returned by the call.
Return codes/ FmcException

Lists all possible return codes or exceptions which may issued or
raised by this call.

Examples Points to an example of the call.

ActivityInstance actions
An ActivityInstance object represents an instance of an activity of a process
instance. An activity instance is uniquely identified by its object identifier or by its
fully qualified name within the process instance. The fully qualified name of an
activity instance is a name in dot notation where the hierarchy of nested activities
of type Block is presented from left to right, and their names are separated by a
dot.

The following sections describe the actions which can be applied on an activity
instance. See “ActivityInstance” on page 229 for a complete list of API calls.

ObtainProcessInstanceMonitor()
This API call retrieves the process instance monitor for the process instance the
activity instance is part of from the MQSeries Workflow execution server (action
call).

When the deep option is specified, all activity instances of type Block are resolved,
that is, their block instance monitors are also fetched from the server.

Note: Deep is not yet supported.

In C++, when the process instance monitor object to be initialized is not empty,
that object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process instance monitor handle already points to some object.

Usage notes
v See “Action API calls” on page 122 for general information.

© Copyright IBM Corp. 1999, 2000 287

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ActivityInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjActivityInstanceObtainProcessInstanceMonitor(

FmcjActivityInstanceHandle hdlInstance,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

C++
APIRET ObtainProcessInstanceMonitor(

FmcjProcessInstanceMonitor & monitor,
bool deep= false) const

Java
public abstract
ProcessInstanceMonitor obtainProcessInstanceMonitor(boolean deep)
throws FmcException

COBOL

FmcjAINObtainProcInstMon.
CALL "FmcjItemObtainProcessInstanceMonitor"

USING
BY VALUE

hdlItem
deep

BY REFERENCE
monitor

RETURNING
intReturnValue.

ActivityInstance

288 MQSeries Workflow for OS/390 Programming Guide

Parameters
deep Input. An indicator whether activity instances of type Block are to

be resolved, that is, their monitor is also to be provided. Note:
deep is not yet supported.

hdlInstance Input. The activity instance whose process instance monitor is to be
retrieved.

monitor Input/Output. The address of the handle to the process instance
monitor or the process instance monitor object to be set.

returnCode Input/Output. The result of calling this method - see return codes
below.

Return type
APIRET The result of calling this method - see return codes below.
InstanceMonitor*/ProcessInstanceMonitor*/ ProcessInstanceMonitor

A pointer to the process instance monitor or the process instance
monitor.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SubProcessInstance()
This API call retrieves the process instance which implements the activity instance
from the MQSeries Workflow execution server (action call).

All information about the process instance, primary and secondary, is retrieved.

In C++, when the process instance object to be initialized is not empty, then that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, no check is made
whether the process instance handle already points to an object.

ActivityInstance

Chapter 5. API action and activity implementation calls 289

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ActivityInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjActivityInstanceSubProcessInstance(

FmcjActivityInstanceHandle hdlInstance,
FmcjProcessInstanceHandle * instance)

C++
APIRET SubProcessInstance(FmcjProcessInstance & instance) const

Java
public abstract
ProcessInstance subProcessInstance() throws FmcException

COBOL

FmcjAISubProcInst.

CALL "FmcjActivityInstanceSubProcessInstance"
USING
BY VALUE

hdlInstance
BY REFERENCE

instance
RETURNING

intReturnValue.

Parameters

ActivityInstance

290 MQSeries Workflow for OS/390 Programming Guide

hdlInstance Input. The handle of the activity instance object to be queried.
instance Input/Output. The subprocess instance object to be retrieved

(initialized).
returnCode Input/Output. The result of calling this method - see return codes

below.

Return type
APIRET

The result of calling this method - see return codes below.
ProcessInstance*/ ProcessInstance

A pointer to the subprocess instance or the subprocess instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ActivityInstanceNotification actions
An ActivityInstanceNotification object represents a notification on an activity
instance assigned to a user.

Other items assigned to users are process instance notifications and work items.
FmcjItem or Item represents the common properties of all items.

In C++, FmcjActivityInstanceNotification is thus a subclass of the FmcjItem class
and inherits all properties and methods. In Java, ActivityInstanceNotification is
thus a subclass of the Item class and inherits all properties and methods. Similarly,
in C or COBOL, common implementations of functions are taken from FmcjItem.
That is, common functions start with the prefix FmcjItem; they are also defined
starting with the prefix FmcjActivityInstanceNotification.

An activity instance notification is uniquely identified by its object identifier.

ActivityInstance

Chapter 5. API action and activity implementation calls 291

The following sections describe the actions which can be applied on an activity
instance notification. See “ActivityInstanceNotification” on page 233 for a complete
list of API calls.

PersistentObject()
This API call retrieves the activity instance notification identified by the passed
object identifier from the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the activity instance
notification is to be retrieved is identified by the execution service object. The
transient object is then created or updated with all information (primary and
secondary) of the activity instance notification.

In C++, when the activity instance notification object to be initialized is not empty,
that object is destructed before the new one is assigned. In C or COBOL, the
application is completely responsible for the ownership of objects, that is, no check
is made whether the activity instance notification handle already points to some
object. In Java, an activity instance notification is newly created; the execution
service acts as a factory.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the item owner
v Work item authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjActivityInstanceNotificationPersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjActivityInstanceNotificationHandle * hdlItem)

C++
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

ActivityInstanceNotification

292 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract

ActivityInstanceNotification
ExecutionService.persistentActivityInstanceNotification(String oid)

throws FmcException

COBOL

FmcjAINPersistentObj.

CALL "FmcjActivityInstanceNotificationPersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlItem

RETURNING
intReturnValue.

Parameters
hdlItem Input/Output. The address of the handle to the activity instance

notification object to be set.
oid Input. The object identifier of the activity instance notification to be

retrieved.
service Input. The service object representing the session with the

execution server.

Return type
ActivityInstanceNotification

The activity instance notification retrieved.
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance notification no longer exists.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

ActivityInstanceNotification

Chapter 5. API action and activity implementation calls 293

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

StartTool()
This API call starts the specified support tool (action call) for a user in a LAN
environment.

The support tool must be one of the tools associated with the activity instance the
notification has been created for. It is then started via the program execution agent
associated with the logged-on user.

Note: A support tool can be started only via a program execution agent in the
LAN environment; starting via a program execution server (in either
environment) is currently not supported. Since there are only unattended
processes under MQSeries Workflow for OS/390, it is not meaningful to
start a support tool in this environment. The PES will simply ignore such an
attempt.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the activity instance notification owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ActivityInstanceNotification

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjActivityInstanceNotificationStartTool(

FmcjActivityInstanceNotificationHandle hdlItem,
char const * toolName)

C++
APIRET StartTool(string const & toolName) const

ActivityInstanceNotification

294 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
void startTool(String toolName) throws FmcException

COBOL

FmcjAINStartTool.

CALL "FmcjActivityInstanceNotificationStartTool"
USING
BY VALUE

hdlItem
toolName

RETURNING
intReturnValue.

Parameters
hdlItem Input. The handle of the activity instance notification to be dealt

with.
toolName Input. The support tool to be started.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_INVALID_TOOL(129)
No tool name is provided or the specified tool is not defined for
the activity instance notification.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

ActivityInstanceNotification

Chapter 5. API action and activity implementation calls 295

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

BlockInstanceMonitor actions
A BlockInstanceMonitor object represents a monitor for an activity instance of type
Block.

Note: The ownership of a block instance monitor stays with the embracing process
instance monitor. A block instance monitor is automatically deleted when
the process instance monitor is deleted. After that action, using the block
instance monitor handle or object is invalid.

An FmcjBlockInstanceMonitor or a BlockInstanceMonitor object represents the
common aspects of monitors. In C++, FmcjBlockInstanceMonitor is thus the
superclass of the FmcjProcessInstanceMonitor class and provides for all common
properties and methods. In Java, BlockInstanceMonitor is thus a superclass of the
ProcessInstanceMonitor class and provides for all common properties and
methods. Similarly, in C or COBOL, common implementations of functions are
taken from FmcjBlockInstanceMonitor. That is, common functions start with the
prefix FmcjBlockInstanceMonitor; they are also defined starting with the prefix
FmcjProcessInstanceMonitor.

The following sections describe the actions which can be applied on a block
instance monitor. See “BlockInstanceMonitor” on page 237 for a complete list of
API calls.

ObtainBlockInstanceMonitor()
This API call retrieves the block instance monitor for the specified activity instance
from the MQSeries Workflow execution server (action call). If the block instance
monitor has already been retrieved, then that monitor is returned to the caller.

The specified activity instance must be of type Block and be part of this block
instance monitor.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

ActivityInstanceNotification

296 MQSeries Workflow for OS/390 Programming Guide

C++ fmcjprun.hxx

Java com.ibm.workflow.api.BlockInstanceMonitor

COBOL fmcvars.cpy, fmcperf.cpy

C
FmcjBlockInstanceMonitorHandle

FMC_APIENTRY FmcjBlockInstanceMonitorObtainBlockInstanceMonitor(
FmcjBlockInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity)

C++
FmcjBlockInstanceMonitor *
ObtainBlockInstanceMonitor(FmcjActivityInstance const & activity) const

APIRET
ObtainBlockInstanceMonitor(FmcjActivityInstance const & activity,

FmcjBlockInstanceMonitor & monitor) const

Java
public abstract

BlockInstanceMonitor obtainBlockInstanceMonitor(
ActivityInstance activity) throws FmcException

COBOL

FmcjBIMObtainBlockInstMon.

CALL
"FmcjBlockInstanceMonitorObtainBlockInstanceMonitor"

USING
BY VALUE

hdlMonitor
activity

RETURNING
FmcjBIMHandleReturnValue.

Parameters
activity Input. The activity instance of type Block whose block instance

monitor is to be retrieved.
hdlMonitor Input. The block instance monitor containing the activity instance

of type Block.
monitor Input/Output. The block instance monitor retrieved.

Return type
APIRET The result returned by this API call - see return codes below.
FmcjBlockInstanceMonitor*/ Handle/ BlockInstanceMonitor

The block instance monitor or a pointer or handle to the block
instance monitor.

BlockInstanceMonitor

Chapter 5. API action and activity implementation calls 297

APIRET or the MQSeries Workflow result object can return the following codes or
the following FmcExceptions can be thrown:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the block
instance monitor.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The specified activity instance is not of type Block.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ObtainProcessInstanceMonitor()
This API call retrieves the process instance monitor for the specified activity
instance from the MQSeries Workflow execution server (action call). If the process
instance monitor has already been retrieved, then that monitor is returned to the
caller.

The specified activity instance must be of type Process and be part of this block
instance monitor.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the server.

Note: Deep is not yet supported.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator

BlockInstanceMonitor

298 MQSeries Workflow for OS/390 Programming Guide

v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.BlockInstanceMonitor

COBOL fmcvars.cpy, fmcperf.cpy

C
FmcjProcessInstanceMonitorHandle

FMC_APIENTRY FmcjBlockInstanceMonitorObtainProcessInstanceMonitor(
FmcjBlockInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity,
bool deep)

C++
FmcjProcessInstanceMonitor *

ObtainProcessInstanceMonitor(
FmcjActivityInstance const & activity,
bool deep= false) const

APIRET ObtainProcessInstanceMonitor(
FmcjActivityInstance const & activity,
FmcjProcessInstanceMonitor & monitor,
bool deep= false) const

Java
public abstract

ProcessInstanceMonitor
obtainProcessBlockInstanceMonitor(ActivityInstance activity,

boolean deep)
throws FmcException

BlockInstanceMonitor

Chapter 5. API action and activity implementation calls 299

COBOL

FmcjBIMObtainProcInstMon.

CALL
"FmcjBlockInstanceMonitorObtainProcessInstanceMonitor"

USING
BY VALUE

hdlMonitor
activity
deep

RETURNING
FmcjPIMHandleReturnValue.

Parameters
activity Input. The activity instance of type Process whose process instance

monitor is to be retrieved.
deep Input. An indicator whether activity instances of type Block are to

be resolved, that is, their monitor is also to be provided. Note,
deep is not yet supported.

hdlMonitor Input. The block instance monitor containing the activity instance
of type Process.

monitor Output. The process instance monitor retrieved.

Return type
APIRET The result returned by this API call - see return codes below.
FmcjProcessInstanceMonitor*/ Handle/ ProcessInstanceMonitor

The process instance monitor or a pointer or handle to the process
instance monitor.

APIRET or the MQSeries Workflow result object can return the following codes or
the following FmcExceptions can be thrown:
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the block
instance monitor.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The specified activity instance is not of type Process.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

BlockInstanceMonitor

300 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()
This API call refreshes the block instance monitor from the MQSeries Workflow
execution server (action call).

All information about the block instance monitor is retrieved.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also refreshed from the server.

Note: Deep is not yet supported.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.BlockInstanceMonitor

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjBlockInstanceMonitorRefresh(

FmcjBlockInstanceMonitorHandle hdlMonitor,
bool deep)

C++
APIRET Refresh(bool deep= false)

BlockInstanceMonitor

Chapter 5. API action and activity implementation calls 301

Java
public abstract
void refresh(boolean deep) throws FmcException

COBOL

FmcjBIMRefresh.

CALL "FmcjBlockInstanceMonitorRefresh"
USING
BY VALUE

hdlMonitor
deep

RETURNING
intReturnValue.

Parameters
deep Input. An indicator whether activity instances of type Block are to

be resolved, that is, their monitor is also to be provided. Note,
deep is not yet supported.

hdlMonitor Input. The handle of the block instance monitor to be refreshed.

Return type
APIRET The result returned by this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1) A parameter references an undefined location. For

example, the address of a handle is 0.
FMC_ERROR_EMPTY(122) The object has not yet been read from the database,

that is, does not yet represent a persistent one.
FMC_ERROR_INVALID_HANDLE(130)

The handle provided is incorrect; it is 0 or it is not
pointing to an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server
to which the connection should be established is
not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred.
Contact your IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your
IBM representative.

FMC_ERROR_TIMEOUT(14) Timeout has occurred.

BlockInstanceMonitor

302 MQSeries Workflow for OS/390 Programming Guide

Container activity implementation calls
A Container object represents a data container of a process template, process
instance, work item, or activity implementation . A container can be a read-only
input container or a read/write input or output container.

The API calls defined for the container allow to access the values of data members
of a basic type (container leaves), or to get a substructure of a container, a
container element.

A Container object represents the common aspects of read-only or read/write
containers. In C++, FmcjContainer is thus the superclass of the
FmcjReadOnlyContainer and FmcjReadWriteContainer classes and provides for all
common properties and methods. In Java, Container is thus a superclass of the
ReadOnlyContainer and ReadWriteContainer classes and provides for all common
properties and methods. Similarly, in C or COBOL, common implementations of
functions are taken from FmcjContainer. That is, common functions start with the
prefix FmcjContainer; they are also defined starting with the prefixes
FmcjReadOnlyContainer and FmcjReadWriteContainer.

The following sections describe the activity implementation functions which are
used for communication between an activity implementation and a program
execution server. See “Container” on page 238 for a complete list of API calls on
containers.

InContainer()
This API call retrieves the input container from the CICS COMMAREA or IMS I/O
Area (activity implementation call).

It can be used only from within an activity implementation.

Note: This call will fail if the COMMAREA or I/O Area has been changed with
SetOutContainer() or SetRemoteOutContainer().

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Be an activity implementation.

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjccon.h or fmcjcrun.h

C++ fmcjpcon.hxx or fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionAgent

COBOL fmcvars.cpy, fmcperf.cpy (or fmcperfl.cpy)

Container

Chapter 5. API action and activity implementation calls 303

C
APIRET FMC_APIENTRY FmcjContainerInContainer(

FmcjReadOnlyContainerHandle * input)

C++
static APIRET InContainer(FmcjReadOnlyContainer & input)

Java
public abstract

ReadOnlyContainer ExecutionAgent.inContainer()
throws FmcException

COBOL

FmcjCInCtnr.

CALL "FmcjContainerInContainer"
USING
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
input Input/Output. The address of the input container handle or the input

container of the activity implementation to be set.

Return type
long/ APIRET

The return code from this API call - see return codes below.
ReadOnlyContainer

The input container of the activity implementation.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

Container

304 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not issued from within an activity
implementation or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

Examples
v For a C example, see “Programming an activity implementation (C)” on page 573
v For a C++ example, see “Programming an activity implementation (C++)” on

page 574
v For a COBOL example, see “Programming an activity implementation (COBOL)”

on page 575

OutContainer()
This API call retrieves the output container from the CICS COMMAREA or IMS
I/O Area (activity implementation call).

It can be used only from within an activity implementation.

Note: This call will fail if the COMMAREA or I/O Area has been changed with
SetOutContainer() or SetRemoteOutContainer().

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Be an activity implementation.

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjccon.h or fmcjcrun.h

C++ fmcjpcon.hxx or fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionAgent

COBOL fmcvars.cpy, fmcperf.cpy (or fmcperfl.cpy)

C
APIRET FMC_APIENTRY FmcjContainerOutContainer(

FmcjReadWriteContainerHandle * output)

C++
static APIRET OutContainer(FmcjReadWriteContainer & output)

Container

Chapter 5. API action and activity implementation calls 305

Java
public abstract

ReadWriteContainer ExecutionAgent.outContainer()
throws FmcException

COBOL

FmcjCOutCtnr.

CALL "FmcjContainerOutContainer"
USING
BY REFERENCE

outputValue
RETURNING

intReturnValue.

Parameters
output Input/Output. The address of the output container handle or the

output container of the activity implementation to be set.

Return type
long/ APIRET The return code from this API call - see return codes below.
ReadWriteContainer

The output container of the activity implementation.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not issued from within an activity
implementation, or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

Examples
v For a C example, see “Programming an activity implementation (C)” on page 573

Container

306 MQSeries Workflow for OS/390 Programming Guide

v For a C++ example, see “Programming an activity implementation (C++)” on
page 574

v For a COBOL example, see “Programming an activity implementation (COBOL)”
on page 575

RemoteInContainer()
This API call retrieves the input container from the CICS COMMAREA or IMS I/O
Area (activity implementation call).

It can be used only from within a program started by an activity implementation,
if the COMMAREA or I/O Area was passed to the program.

Note: This call will fail if the COMMAREA or I/O Area has been changed with
SetOutContainer() or SetRemoteOutContainer().

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Be a program started by an activity implementation.

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjccon.h or fmcjcrun.h

C++ fmcjpcon.hxx or fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionAgent

COBOL fmcvars.cpy, fmcperf.cpy (or fmcperfl.cpy)

C
APIRET FMC_APIENTRY FmcjContainerRemoteInContainer(

char const * programID,
FmcjReadOnlyContainerHandle * input)

C++
static APIRET RemoteInContainer(

string const & programID,
FmcjReadOnlyContainer & input)

Java
public abstract

ReadOnlyContainer ExecutionAgent.remoteInContainer(String programID)
throws FmcException

Container

Chapter 5. API action and activity implementation calls 307

COBOL

FmcjCRemoteInCtnr.

CALL "FmcjContainerRemoteInContainer"
USING
BY REFERENCE

programID
inputValue

RETURNING
intReturnValue.

Parameters
input Input/Output. The address of the input container handle or the

input container of the activity implementation to be set.
programID Input. The program identification by which the activity

implementation is known to the program execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.
ReadOnlyContainer

The input container of the activity implementation>.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not issued from within an activity
implementation, or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

RemoteOutContainer()
This API call retrieves the output container from the CICS COMMAREA or IMS
I/O Area (activity implementation call).

Container

308 MQSeries Workflow for OS/390 Programming Guide

It can be used only from within a program started by an activity implementation if
the COMMAREA or I/O Area was passed to the program.

Note: This call will fail if the COMMAREA or I/O Area has been changed with
SetOutContainer() or SetRemoteOutContainer().

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Be a program started by an activity implementation.

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjccon.h or fmcjcrun.h

C++ fmcjpcon.hxx or fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionAgent

COBOL fmcvars.cpy, fmcperf.cpy (or fmcperfl.cpy)

C
APIRET FMC_APIENTRY FmcjContainerRemoteOutContainer(

char const * programID,
FmcjReadWriteContainerHandle * output)

C++
static APIRET RemoteOutContainer(

string const & programID,
FmcjReadWriteContainer & output)

Java
public abstract

ReadWriteContainer ExecutionAgent.remoteOutContainer(String programID)
throws FmcException

Container

Chapter 5. API action and activity implementation calls 309

COBOL

FmcjCRemoteOutCtnr.

CALL "FmcjContainerRemoteOutContainer"
USING
BY REFERENCE

programID
outputValue

RETURNING
intReturnValue.

Parameters
output Input/Output. The address of the output container handle or the

output container of the activity implementation to be set.
programID Input. The program identification by which the activity

implementation is known to the program execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.
ReadWriteContainer

The output container of the activity implementation.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not issued from within an activity
implementation, or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

SetOutContainer()
This API call returns the output container to the MQSeries Workflow program
execution server (activity implementation call).

Container

310 MQSeries Workflow for OS/390 Programming Guide

It can be used from within an activity implementation as often as required. Note,
however, that the output container is not returned to the MQSeries Workflow
execution server until the activity implementation ends. It is kept transiently in the
CICS COMMAREA or IMS I/O Area.

Note: The calls InContainer(), OutContainer(), ServicePassthrough(), and their
″remote″ counterparts will fail after this function is called, due to an altered
COMMAREA or I/O Area.

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Be an activity implementation.

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjccon.h or fmcjcrun.h

C++ fmcjpcon.hxx or fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionAgent

COBOL fmcvars.cpy, fmcperf.cpy (or fmcperfl.cpy)

C
APIRET FMC_APIENTRY FmcjContainerSetOutContainer(

FmcjReadWriteContainerHandle const output)

C++
static APIRET SetOutContainer(FmcjReadWriteContainer const & output)

Java
public abstract

void ExecutionAgent.setOutContainer(ReadWriteContainer output)
throws FmcException

COBOL

FmcjCSetOutCtnr.

CALL "FmcjContainerSetOutContainer"
USING
BY VALUE

outputValue
RETURNING

intReturnValue.

Container

Chapter 5. API action and activity implementation calls 311

Parameters
output Input. The output container handle or the output container of the

activity implementation to be passed.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not issued from within an activity
implementation, or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

Examples
v For a C example, see “Programming an activity implementation (C)” on page 573
v For a C++ example, see “Programming an activity implementation (C++)” on

page 574

SetRemoteOutContainer()
This API call returns the output container to the MQSeries Workflow program
execution server (activity implementation call).

It can be used from within a program started by an activity implementation as
often as required. Note, however, that the output container is not returned to the
MQSeries Workflow execution server until the activity implementation ends. It is
kept transiently in the CICS COMMAREA or IMS I/O Area.

Note: The calls InContainer(), OutContainer(), ServicePassthrough(), and their
″remote″ counterparts will fail after this function is called, due to an altered
COMMAREA or I/O Area.

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Container

312 MQSeries Workflow for OS/390 Programming Guide

Be a program started bz an activity implementation.

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjccon.h or fmcjcrun.h

C++ fmcjpcon.hxx or fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionAgent

COBOL fmcvars.cpy, fmcperf.cpy (or fmcperfl.cpy)

C
APIRET FMC_APIENTRY FmcjContainerSetRemoteOutContainer(

char const * programID,
FmcjReadWriteContainerHandle const output)

C++
static APIRET SetRemoteOutContainer(

string const & programID,
FmcjReadWriteContainer const & output)

Java
public abstract
void ExecutionAgent.setRemoteOutContainer(String programID,

ReadWriteContainer output)
throws FmcException

COBOL

FmcjCSetRemoteOutCtnr.

CALL "FmcjContainerSetRemoteOutContainer"
USING
BY REFERENCE

programID
BY VALUE

outputValue
RETURNING

intReturnValue.

Parameters
output Input. The output container handle or the output container of the

activity implementation to be passed.
programID Input. The program identification by which the activity

implementation is known to the program execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.

Container

Chapter 5. API action and activity implementation calls 313

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_PROGRAM_EXECUTION(126)
The API call was not issued from within an activity
implementation, or the program execution server is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

ExecutionService actions
An ExecutionService object represents a session between a user and an MQSeries
Workflow execution server so that Runtime services may be requested.

The execution service object essentially provides for the basic API calls to set up a
communication path to the specified MQSeries Workflow execution server and to
establish the user session (log on), and finish it (log off).

At FmcjExecutionService or ExecutionService construction or allocation time the
name of the MQSeries Workflow system and system group where the execution
server resides can be specified. Default values are taken from the current user’s
profile or from the configuration profile, in this sequence, when logging on. The
configuration where to search for the profiles can also be specified.

When the session to an execution server has been established, you can query
objects for which you are authorized; for example, you can query process
templates, process instances, or work items. The attributes of the queried objects
can then be read and further actions can be requested. For example, once a process
template has been queried, creation of a process instance can be asked for.

When the execution service object is destructed or deallocated and still represents
an active session, logoff is automatically called (provided that there is no other
object referencing this session). It is, however, recommended that logon and logoff
calls are paired before the execution service object is deallocated.

FmcjService or Service represents common properties of services.

Container

314 MQSeries Workflow for OS/390 Programming Guide

In C++, FmcjExecutionService is thus a subclass of the FmcjService class and
inherits all properties and methods. In the Java language, ExecutionService is thus
a subclass of the Service class and inherits all properties and methods. Similarly, in
C and COBOL, common implementations of functions are taken from FmcjService.
That is, common functions start with the prefix FmcjService; they are also defined
starting with the prefix FmcjExecutionService.

The following sections describe the actions which can be applied on an execution
service. See “ExecutionService” on page 248 for a complete list of API calls.

CreateProcessInstanceList()
This API call creates a process instance list on the MQSeries Workflow execution
server so that process instances can be grouped to one’s own taste or for a group
of users (action call).

A process instance list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is for
private usage and no owner is provided, then the list is created for the logged-on
user.

When the process instance list is to be created for public usage or for the private
usage of another user, that is, not the logged-on user itself, then the logged-on user
needs to have staff definition authorization.

A process instance list groups a set of process instances which have the same
characteristics. These characteristics are defined via search filters. The number of
process instances in the list can be restricted via a threshold which specifies the
maximum number of process instances to be returned to the client. That threshold
is applied after the process instance list has been sorted according to sort criteria
specified. Note that process instances are sorted on the server, that is, the code
page of the server determines the sort sequence.

The following rules apply for specifying a process instance list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A process instance list filter is specified as a character string containing a filter on
process instances (refer to “How to read the syntax diagrams” on page xii).

Notes:

1. A string constant is to be enclosed in single quotes (’).

ExecutionService

Chapter 5. API action and activity implementation calls 315

A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PILFilter

��
NOT

PIPredicate
(PILFilter)

�

�

�

AND PIPredicate
OR NOT

(PILFilter)

��

PIPredicate

��

�

�

�

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

��

BasicPredicate

ExecutionService

316 MQSeries Workflow for OS/390 Programming Guide

�� =
>
>=
<
<=
<>

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

PIString

�� ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

��

PITimeStamp

�� LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME
START_TIME

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

A process instance list sort criterion is specified as a character string.

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState diagram.

PILOrderBy

ExecutionService

Chapter 5. API action and activity implementation calls 317

�� �

,

PIString
PITimeStamp ASC

STATE DESC

��

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessInstanceList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessInstanceListHandle * newList)

C++
APIRET CreateProcessInstanceList(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceList & newList) const

ExecutionService

318 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
ProcessInstanceList createProcessInstanceList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

COBOL
FmcjESCreateProcInstList.

CALL "FmcjExecutionServiceCreateProcessInstanceList"
USING
BY VALUE

serviceValue
name
typeValue
ownerValue
description
filter
sortCriteria
threshold

BY REFERENCE
newList

RETURNING
intReturnValue.

Parameters
description Input. A user-defined description of the process instance list.
filter Input. The filter criteria which characterize the process instances to

be contained in the process instance list.
name Input. A user-defined name for the process instance list.
newList Input/Output. The newly created process instance list.
owner Input. The owner of the list when the type is private. Ignored for

public lists.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the process instances in the

process instance list.
threshold Input. The threshold which defines the maximum number of

process instances in the process instance list to be passed to the
client.

type Input. An indication whether a private or a public list is to be
created.

Return type
long/ APIRET The return code from this API call - see return codes below.
ProcessInstanceList

The newly created process instance list.

Return codes/ FmcException

ExecutionService

Chapter 5. API action and activity implementation calls 319

FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance list name does not comply with the
syntax rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not conform to
the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum possible
value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process instance list is not
found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance list is not unique within the
specified type.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Create a process instance list (C)” on page 526.
v For a C++ example, see “Create a process instance list (C++)” on page 527.
v For a Java example, see “Create a process instance list (Java)” on page 528.
v For a COBOL example, see “Create a process instance list (COBOL)” on

page 531.

ExecutionService

320 MQSeries Workflow for OS/390 Programming Guide

CreateProcessTemplateList()
This API call creates a process template list on the MQSeries Workflow execution
server so that process templates can be grouped to one’s own taste or for a group
of users (action call).

A process template list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is for
private usage and no owner is provided, then the list is created for the logged-on
user.

When the process template list is to be created for public usage or for the private
usage of another user, that is, not the logged-on user itself, then the logged-on user
needs to have staff definition authorization.

A process template list groups a set of process templates which have the same
characteristics. These characteristics are defined via filters. The number of process
templates in the list can be restricted via a threshold which specifies the maximum
number of process templates to be returned to the client. That threshold is applied
after the process template list has been sorted according to sort criteria specified.
Process templates are sorted on the server, that is, the code page of the server
determines the sort sequence.

The following rules apply for specifying a process template list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A process template list filter is specified as a character string containing a filter on
process templates (refer to “How to read the syntax diagrams” on page xii).

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

ExecutionService

Chapter 5. API action and activity implementation calls 321

PTLFilter

��
NOT

PTPredicate
(PTLFilter)

�

�

�

AND PTPredicate
OR NOT

(PTLFilter)

��

PTPredicate

��

�

�

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

PTString

�� CATEGORY
DESCRIPTION
NAME

��

ExecutionService

322 MQSeries Workflow for OS/390 Programming Guide

PTTimeStamp

�� LAST_MODIFICATION_TIME ��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

A process template list sort criterion is specified as a character string.

Note: The default sort order is ascending.

PTLOrderBy

�� �

,

PTString
PTTimeStamp ASC

DESC

��

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

ExecutionService

Chapter 5. API action and activity implementation calls 323

C
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessTemplateList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessTemplateListHandle * newList)

C++
APIRET CreateProcessTemplateList(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjProcessTemplateList & newList) const

Java
public abstract
ProcessTemplateList createProcessTemplateList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

COBOL
FmcjESCreateProcTemplList.

CALL "FmcjExecutionServiceCreateProcessTemplateList"
USING
BY VALUE

serviceValue
name
typeValue
ownerValue
description
filter
sortCriteria
threshold

BY REFERENCE
newList

RETURNING
intReturnValue.

ExecutionService

324 MQSeries Workflow for OS/390 Programming Guide

Parameters
description Input. A user-defined description of the process template list.
filter Input. The filter criteria which characterize the process templates in

the process template list.
name Input. A user-defined name for the process template list.
newList Input/Output. The newly created process template list.
owner Input. The owner of the list when the type is private. Ignored for

public lists.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the process templates in the

process template list.
threshold Input. The threshold which defines the maximum number of

process templates in the process template list.
type Input. An indication whether a private or a public list is to be

created.

Return type
long/ APIRET The return code from this API call - see return codes below.
ProcessTemplateList

The newly created process template list.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process template list name does not comply with the
syntax rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not conform to
the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum possible
value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process template list is not
found.

ExecutionService

Chapter 5. API action and activity implementation calls 325

FMC_ERROR_NOT_UNIQUE(121)
The name of the process template list is not unique within the
specified type.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Create a process instance list (C)” on page 526.
v For a C++ example, see “Create a process instance list (C++)” on page 527.
v For a Java example, see “Create a process instance list (Java)” on page 528.
v For a COBOL example, see “Create a process instance list (COBOL)” on

page 531.

CreateWorklist()
This API call creates a worklist on the MQSeries Workflow execution server so that
work items or notifications can be grouped to one’s own taste or for a group of
users (action call).

A worklist is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is for
private usage and no owner is provided, then the list is created for the logged-on
user.

When the worklist is to be created for public usage or for the private usage of
another user, that is, not the logged-on user itself, then the logged-on user needs to
have staff definition authorization.

A worklist groups a set of work items or notifications which have the same
characteristics. These characteristics are defined via filters. The number of items in
the worklist can be restricted via a threshold which specifies the maximum number
of items to be returned to the client. That threshold is applied after the worklist
has been sorted according to sort criteria specified. Items are sorted on the server,
that is, the code page of the server determines the sort sequence.

The following rules apply for specifying a worklist name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

The following rules apply for specifying a description:

ExecutionService

326 MQSeries Workflow for OS/390 Programming Guide

v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A worklist filter is specified as a character string containing a filter on the items in
the worklist (refer to “How to read the syntax diagrams” on page xii).

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

WLFilter

��
NOT

WLPredicate-1
WLPredicate-2

(WLFilter)

�

�

�

AND WLPredicate-1
OR NOT WLPredicate-2

(WLFilter)

��

WLPredicate-1

��

�

�

TYPE IN ITType
NOT ,

(ITType)
OWNER BasicPredicate string

CURRENT_USER
OWNER BETWEEN string AND string

NOT CURRENT_USER CURRENT_USER
OWNER IN string

NOT CURRENT_USER
,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

��

WLPredicate-2

ExecutionService

Chapter 5. API action and activity implementation calls 327

��

�

�

�

�

�

�

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

ExecutionService

328 MQSeries Workflow for OS/390 Programming Guide

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� LAST_MODIFICATION_TIME
RECEIVED_TIME

��

ITType

�� WORK_ITEM
PROCESS_NOTIFICATION
FIRST_NOTIFICATION
SECOND_NOTIFICATION

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

TimeStamp

ExecutionService

Chapter 5. API action and activity implementation calls 329

�� year - month - day
hours

: minutes
: seconds

��

A worklist sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

Item types are sorted according to the sequence shown in the ITType
diagram.

States are sorted according to the sequence shown in the ITState or the
PIState diagram.

WLOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE
TYPE

��

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

ExecutionService

330 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjExecutionServiceCreateWorklist(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjWorklistHandle * newList)

C++
APIRET CreateWorklist(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjWorklist & newList) const

Java
public abstract
WorkList createWorkList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

COBOL

FmcjESCreateWorklist.

CALL "FmcjExecutionServiceCreateWorklist"
USING
BY VALUE

serviceValue
name
typeValue
ownerValue
description
filter
sortCriteria
threshold

BY REFERENCE
newList

RETURNING
intReturnValue.

ExecutionService

Chapter 5. API action and activity implementation calls 331

Parameters
description Input. A user-defined description of the worklist.
filter Input. The filter criteria which characterize the items in the

worklist.
name Input. A user-defined name for the worklist.
newList Input/Output. The newly created worklist.
owner Input. The owner of the list when the type is private. Ignored for

public lists.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the items in the worklist.
threshold Input. The threshold which defines the maximum number of items

in the worklist.
type Input. An indication whether a private or a public list is to be

created.

Return type
long/ APIRET The return code from this API call - see return codes below.
WorkList The newly created worklist.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified worklist name does not comply with the syntax
rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not conform to
the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum possible
value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the worklist is not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the worklist is not unique within the specified type.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

ExecutionService

332 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Create a process instance list (C)” on page 526.
v For a C++ example, see “Create a process instance list (C++)” on page 527.
v For a Java example, see “Create a process instance list (Java)” on page 528.
v For a COBOL example, see “Create a process instance list (COBOL)” on

page 531.

Logoff()
This API call allows the application to finish the specified user session with an
MQSeries Workflow execution server (action call).

When logoff has been successfully executed, no further client/server calls are
accepted using this execution service object.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceLogoff(

FmcjExecutionServiceHandle service)

C++
APIRET Logoff()

ExecutionService

Chapter 5. API action and activity implementation calls 333

Java
public abstract
void logoff() throws FmcException

COBOL

FmcjESLogoff.

CALL "FmcjExecutionServiceLogoff"
USING
BY VALUE

serviceValue
RETURNING

intReturnValue.

Parameters
service Input. A handle to the service object representing the session with

the execution server.

Return type
long/ APIRET

The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Chapter 6. Examples” on page 525.

Logon()
This API call allows an application to establish a user session with an MQSeries
Workflow execution server (action call).

ExecutionService

334 MQSeries Workflow for OS/390 Programming Guide

A successful Logon() is the prerequisite for using all other action and program
execution management API calls of the MQSeries Workflow API.

The user ID to log on with must be a registered MQSeries Workflow user.

When the execution server supports unified logon, an empty password and user ID
can be provided. The user ID to log on with is then retrieved from the operating
system, that is, logon must have been performed at the client. The client is trusted
and the execution server performs no password checking.

After a successful logon, the execution service object represents that single user
session. A further request to log on with a different user ID will be rejected. You
can, however, establish as many sessions as needed, even for the same user, using
different execution service objects, one for each session.

At logon time, you can specify your mode of operation. When you are operating in
the present session mode, the execution server can assume that you are able to react
to requests from activity implementations which might ask, for example, for
container data. Thus, activity instances that are started automatically may be
scheduled on your behalf - provided that you also started a program execution
agent.5

Furthermore, the present mode indicates to MQSeries Workflow that the session can
handle unsolicited messages pushed by the execution server - see “The push data
access model” on page 16 for additional prerequisites.

There can only be a single present session for one user. The present here option can
be used, to force that other present session logoff and to newly establish a present
session here.

When you are operating in a default session mode, the execution server does not
assume that you are able to react. Activity instances are not automatically started
on your behalf and messages are not pushed to you. There can be multiple
sessions for one user with the default session mode.

The following enumeration types can be used to specify the session mode:

C FmcjServiceSessionMode

C++ FmcjService::SessionMode

Java com.ibm.workflow.api.ServicePackage.SessionMode

The enumeration constants can take the following values; it is strongly advised to
use the symbolic names instead of the associated integer values.
Default Indicates that you want to operate in a default, nonpresent, session

mode.

C Fmc_SM_Default

C++ FmcjService::Default or
FmcjExecutionService::Default

Java SessionMode.DEFAULT

COBOL Fmc-SM-Default
Present Indicates that you want to operate in a present session mode.

5. This is not an option under OS/390.

ExecutionService

Chapter 5. API action and activity implementation calls 335

C Fmc_SM_Present

C++ FmcjService::Present or
FmcjExecutionService::Present

Java SessionMode.PRESENT

COBOL Fmc-SM-Present
PresentHere Indicates that you want to operate in a present session mode. If a

session with the present session mode already exists, then it should
be logged off.

C Fmc_SM_PresentHere

C++ FmcjService::PresentHere or
FmcjExecutionService::PresentHere

Java SessionMode.PRESENT_HERE

COBOL Fmc-SM-PresentHere

At logon time, you can also specify whether you are back in case you are set to be
absent. When you are not absent you participate in work assignment; otherwise no
work items are assigned to you.

The following enumeration types can be used to deal with your absence:

C FmcjServiceAbsenceIndicator

C++ FmcjService::AbsenceIndicator

Java com.ibm.workflow.api.ServicePackage.AbsenceIndicator

The enumeration constants can take the following values; it is strongly advised to
use the symbolic names instead of the associated integer values.
NotSet Indicates that no value is specified. This means that the definition

in your person record applies. Your absence is reset or not
according to the definition found there.

C Fmc_SA_NotSet

C++ FmcjService::NotSet or
FmcjExecutionService::NotSet

Java AbsenceIndicator.NOT_SET

COBOL Fmc-SA-NotSet
Reset Indicates that your absence setting is to be reset; you are back.

C Fmc_SA_Reset

C++ FmcjService::Reset or FmcjExecutionService::Reset

Java AbsenceIndicator.RESET

COBOL Fmc-SA-Reset
Leave Indicates that your absence setting should stay as is; you are either

absent or not.

C Fmc_SA_Leave

C++ FmcjService::Leave or FmcjExecutionService::Leave

Java AbsenceIndicator.LEAVE

COBOL Fmc-SA-Leave

ExecutionService

336 MQSeries Workflow for OS/390 Programming Guide

For Java programs, logon2() allows for the specification of the session mode and
absence setting.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be a registered MQSeries Workflow user

Required connection

None

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceLogon (

FmcjExecutionServiceHandle service,
char const * userID,
char const * password,
enum FmcjServiceSessionMode sessionMode,
enum FmcjServiceAbsenceIndicator absenceIndicator)

C++
APIRET Logon(string const & userID, string const & password)

APIRET Logon(
string const & userID,
string const & password,
SessionMode sessionMode = Present,
AbsenceIndicator absenceIndicator = NotSet)

Java
public abstract
void logon (String userID, String password)

public abstract
void logon2(String userID,

String password,
SessionMode sessionMode,
AbsenceIndicator absenceIndicator) throws FmcException

ExecutionService

Chapter 5. API action and activity implementation calls 337

COBOL

FmcjESLogon.

CALL "FmcjExecutionServiceLogon"
USING
BY VALUE

serviceValue
userID
passwordValue
sessionMode
absenceIndicator

RETURNING
intReturnValue.

Parameters
absenceIndicator

Input. An indicator to state how to handle any absence set.
password Input. The password of the user. Can be empty for unified logon.
service Input. A handle to the service object representing the session to be

established with the execution server.
sessionMode Input. The mode of the session to be established.
userID Input. The user ID of the user on whose behalf a logon is to be

made. Can be empty for unified logon.

Return type
long/ APIRET

The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_ALREADY_LOGGED_ON(11)
The user is already logged on with present mode or the execution
service object already represents a different user session.

FMC_ERROR_BACK_LEVEL_VERSION(504)
The version of the client is out-of-date, that is, not supported by
this server.

FMC_ERROR_INVALID_ABSENCE_SPEC(905)
An unknown absence setting has been specified.

FMC_ERROR_INVALID_SESSION_MODE(901)
An unknown session mode has been specified.

FMC_ERROR_NEWER_VERSION(505)
The version of the client is newer than the server version, that is,
not supported.

FMC_ERROR_PASSWORD(12)
Incorrect password.

FMC_ERROR_PROFILE(124)
Required user or workstation profile entries cannot be found.

ExecutionService

338 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_USERID_UNKNOWN(10)
No user ID registered with MQSeries Workflow has been provided.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Chapter 6. Examples” on page 525.

Passthrough()
This API call can be used by an activity implementation to establish a user session
with an MQSeries Workflow execution server from within this program (activity
implementation).

When successfully executed, a session is set up to the same execution server from
which the work item implemented by this program was started; the user on whose
behalf the session is set up is the same one on whose behalf the work item was
started.

Note: This call will fail after the COMMAREA or IMS I/O Area has been changed
with SetOutContainer() or SetRemoteOutContainer().

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Activity implementation started by MQSeries Workflow

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServicePassthrough(

FmcjExecutionServiceHandle service)

ExecutionService

Chapter 5. API action and activity implementation calls 339

C++
APIRET Passthrough()

Java
public abstract
void passthrough() throws FmcException

COBOL

FmcjESPassthrough.

CALL "FmcjExecutionServicePassthrough"
USING
BY VALUE

serviceValue
RETURNING

intReturnValue.

Parameters
service Input. A handle to the service object which is to represent the

session to be established with the execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from within an activity
implementation, or the program execution server is not active.

FMC_ERROR_TOOL_FUNCTION(128)
Passthrough cannot be called from a program started by the
program execution server.

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item no longer exists.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

ExecutionService

340 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Programming an activity implementation (C)” on

page 573.
v For a C++ example, see “Programming an activity implementation (C++)” on

page 574.
v For a COBOL example, see “Programming an activity implementation (COBOL)”

on page 575.

QueryActivityInstanceNotifications()
This API call retrieves the activity instance notifications the user has access to from
the MQSeries Workflow execution server (action call).

In C, C++, and COBOL, any activity instance notifications retrieved are appended
to the supplied vector. If you want to read the current activity instance
notifications only, you have to clear the vector before you issue this API call. This
means that you should set the vector handle to 0 in C or COBOL, or erase all
elements of the vector in the C++ API.

The activity instance notifications to be retrieved can be characterized by a filter.
An activity instance notification filter is specified as a character string:

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

AINFilter

��
NOT

ITPredicate
(AINFilter)

�

�

�

AND ITPredicate
OR NOT

(AINFilter)

��

ITPredicate

ExecutionService

Chapter 5. API action and activity implementation calls 341

��

�

�

�

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

ExecutionService

342 MQSeries Workflow for OS/390 Programming Guide

BasicPredicate

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� LAST_MODIFICATION_TIME
RECEIVED_TIME

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

ExecutionService

Chapter 5. API action and activity implementation calls 343

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Activity instance notifications can be sorted. An activity instance notification sort
criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState or the
PIState diagram.

AINOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

��

The number of activity instance notifications to be retrieved can be restricted via a
threshold which specifies the maximum number of activity instance notifications to
be returned to the client. That threshold is applied after the activity instance
notifications have been sorted according to the sort criteria specified. Note that the
activity instance notifications are sorted on the server, that is, the code page of the
server determines the sort sequence.

The primary information that is retrieved for each activity instance notification is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v State

ExecutionService

344 MQSeries Workflow for OS/390 Programming Guide

v SupportTools

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY

FmcjExecutionServiceQueryActivityInstanceNotifications(
FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjActivityInstanceNotificationVectorHandle * notifications)

C++
APIRET QueryActivityInstanceNotifications(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjActivityInstanceNotification> & notifications) const

Java
public abstract
ActivityInstanceNotification[] queryActivityInstanceNotifications(

String filter,
String sortCriteria,
Integer threshold)

throws FmcException

ExecutionService

Chapter 5. API action and activity implementation calls 345

COBOL
FmcjESQueryActInstNotifs.

CALL
"FmcjExecutionServiceQueryActivityInstanceNotifications"

USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
notifications

RETURNING
intReturnValue.

Parameters
filter Input. The filter criteria which characterize the activity instance

notifications to be retrieved.
notifications Input/Output. The qualifying vector of activity instance

notifications.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the activity instance

notifications found.
threshold Input. The threshold which defines the maximum number of

activity instance notifications to be returned to the client.

Return type
APIRET The return code from this API call - see return codes below.
ActivityInstanceNotification[]

The qualifying activity instance notifications.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of activity instance notifications to be returned
exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

ExecutionService

346 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Query process instances (C)” on page 550.
v For a C++ example, see “Query process instances (C++)” on page 552.
v For a Java example, see “Query process instances (Java)” on page 553.
v For a COBOL example, see “Query process instances (COBOL)” on page 556.

QueryItems()
This API call retrieves the work items or notifications the user has access to from
the MQSeries Workflow execution server (action call).

In C, C++, and COBOL, any items retrieved are appended to the supplied vector. If
you want to read the current items only, you have to clear the vector before you
issue this API call. This means that you should set the handle to 0 in C or COBOL,
or erase all elements of the vector in the C++ API.

The items to be retrieved can be characterized by a filter. An item filter is specified
as a character string.

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

ItemFilter

��
NOT

ITPredicate
(ItemFilter)

�

�

�

AND ITPredicate
OR NOT

(ItemFilter)

��

ITPredicate

ExecutionService

Chapter 5. API action and activity implementation calls 347

��

�

�

�

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

ExecutionService

348 MQSeries Workflow for OS/390 Programming Guide

BasicPredicate

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� LAST_MODIFICATION_TIME
RECEIVED_TIME

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

ExecutionService

Chapter 5. API action and activity implementation calls 349

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Items can be sorted. An item sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState or the
PIState diagram.

ItemOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

��

The number of items to be retrieved can be restricted via a threshold which
specifies the maximum number of items to be returned to the client. That threshold
is applied after the items have been sorted according to the sort criteria specified.
Note that the items are sorted on the server, that is, the code page of the server
determines the sort sequence.

The primary information that is retrieved for each item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

ExecutionService

350 MQSeries Workflow for OS/390 Programming Guide

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryItems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjItemHandle * items)

C++
APIRET QueryItems(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjItem> & items) const

Java
public abstract
Item[] queryItems(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

ExecutionService

Chapter 5. API action and activity implementation calls 351

COBOL

FmcjESQueryItems.

CALL "FmcjExecutionServiceQueryItems"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
items

RETURNING
intReturnValue.

Parameters
filter Input. The filter criteria which characterize the items to be

retrieved.
items Input/Output. The qualifying vector of items.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the items found.
threshold Input. The threshold which defines the maximum number of items

to be returned to the client.

Return type
APIRET The return code from this API call - see return codes below.
Item[] The qualifying items.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of items to be returned exceeds the maximum size
allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

ExecutionService

352 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Query process instances (C)” on page 550.
v For a C++ example, see “Query process instances (C++)” on page 552.
v For a Java example, see “Query process instances (Java)” on page 553.
v For a COBOL example, see “Query process instances (COBOL)” on page 556.

QueryProcessInstanceLists()
This API call retrieves the process instance lists the user has access to from the
MQSeries Workflow execution server (action call).

In C, C++, and COBOL, any process instance lists retrieved are appended to the
supplied vector. If you want to read the current process instance lists only, you
have to clear the vector before you make this API call. This means that you should
set the vector handle to 0 in C or COBOL, or erase all elements of the vector in the
C++ API.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceLists(

FmcjExecutionServiceHandle service,
FmcjProcessInstanceListVectorHandle * lists)

C++
APIRET QueryProcessInstanceLists(

vector<FmcjProcessInstanceList> & lists) const

ExecutionService

Chapter 5. API action and activity implementation calls 353

Java
public abstract
ProcessInstanceList[] queryProcessInstanceLists() throws FmcException

COBOL

FmcjESQueryProcInstLists.

CALL "FmcjExecutionServiceQueryProcessInstanceLists"
USING
BY VALUE

serviceValue
BY REFERENCE

lists
RETURNING

intReturnValue.

Parameters
lists Input/Output. The vector of process instance lists.
service Input. A handle to the service object representing the session with

the execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.
ProcessInstanceList[]

The qualifying process instance lists.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instance lists to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ExecutionService

354 MQSeries Workflow for OS/390 Programming Guide

Examples
v For a C example, see “Query worklists (C)” on page 536.
v For a C++ example, see “Query worklists (C++)” on page 538.
v For a Java example, see “Query worklists (Java)” on page 539.
v For a COBOL example, see “Query worklists (COBOL)” on page 542.

QueryProcessInstanceNotifications()
This API call retrieves the process instance notifications the user has access to from
the MQSeries Workflow execution server (action call).

In C, C++, and COBOL, any process instance notifications retrieved are appended
to the supplied vector. If you want to read the current process instance
notifications only, you have to clear the vector before you issue this API call. This
means that you should set the vector handle to 0 in C or COBOL, or erase all
elements of the vector in the C++ API.

The process instance notifications to be retrieved can be characterized by a filter. A
process instance notification filter is specified as a character string.

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PINFilter

��
NOT

ITPredicate
(PINFilter)

�

�

�

AND ITPredicate
OR NOT

(PINFilter)

��

ITPredicate

ExecutionService

Chapter 5. API action and activity implementation calls 355

��

�

�

�

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

ExecutionService

356 MQSeries Workflow for OS/390 Programming Guide

BasicPredicate

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� LAST_MODIFICATION_TIME
RECEIVED_TIME

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

ExecutionService

Chapter 5. API action and activity implementation calls 357

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Process instance notifications can be sorted. A process instance notification sort
criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState or the
PIState diagram.

PINOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

��

The number of process instance notifications to be retrieved can be restricted via a
threshold which specifies the maximum number of process instance notifications to
be returned to the client. That threshold is applied after the activity instance
notifications have been sorted according to the sort criteria specified. Note that the
process instance notifications are sorted on the server, that is, the code page of the
server determines the sort sequence.

The primary information that is retrieved for each process instance notification is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

Usage notes

ExecutionService

358 MQSeries Workflow for OS/390 Programming Guide

v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceNotifications(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceNotificationVectorHandle * notifications)

C++
APIRET QueryProcessInstanceNotifications(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessInstanceNotification> & notifications) const

Java
public abstract
ProcessInstanceNotification[] queryProcessInstanceNotifications(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

ExecutionService

Chapter 5. API action and activity implementation calls 359

COBOL

FmcjESQueryProcInstNotifs.

CALL
"FmcjExecutionServiceQueryProcessInstanceNotifications"

USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
notifications

RETURNING
intReturnValue.

Parameters
filter Input. The filter criteria which characterize the process instance

notifications to be retrieved.
items Input/Output. The qualifying vector of process instance

notifications.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the process instance

notifications found.
threshold Input. The threshold which defines the maximum number of

process instance notifications to be returned to the client.

Return type
APIRET The return code from this API call - see return codes below.
ProcessInstanceNotification[]

The qualifying process instance notifications.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instance
notifications.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process instance
notifications.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instance notifications to be returned

ExecutionService

360 MQSeries Workflow for OS/390 Programming Guide

exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Query process instances (C)” on page 550.
v For a C++ example, see “Query process instances (C++)” on page 552.
v For a Java example, see “Query process instances (Java)” on page 553.
v For a COBOL example, see “Query process instances (COBOL)” on page 556.

QueryProcessInstances()
This API call retrieves the current process instances the user has access to from the
MQSeries Workflow execution server (action call).

In C, C++, and COBOL, any process instances retrieved are appended to the
supplied vector. If you want to read the current process instances only, you have to
clear the vector before you issue this API call. This means that you should set the
vector handle to 0 in C or COBOL, or erase all elements of the vector in the C++
API.

A filter on process instances is specified as a character string containing a filter
predicate:

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PIFilter

��
NOT

PIPredicate
(PIFilter)

�

ExecutionService

Chapter 5. API action and activity implementation calls 361

�

�

AND PIPredicate
OR NOT

(PIFilter)

��

PIPredicate

��

�

�

�

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

ExecutionService

362 MQSeries Workflow for OS/390 Programming Guide

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

PIString

�� ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

��

PITimeStamp

�� LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME

��

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Process instances can be sorted. A process instance sort criterion is specified as a
character string.

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState diagram.

PIOrderBy

�� �

,

PIString
PITimeStamp ASC

STATE DESC

��

The number of process instances to be retrieved can be restricted via a threshold
which specifies the maximum number of process instances to be returned to the
client. That threshold is applied after the process instances have been sorted

ExecutionService

Chapter 5. API action and activity implementation calls 363

according to the sort criteria specified. Note that the process instances are sorted
on the server, that is, the code page of the server determines the sort sequence.

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v StartTime
v State
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstances(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceVectorHandle * instances)

C++
APIRET QueryProcessInstances(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessInstance> & instances) const

ExecutionService

364 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
ProcessInstance[] queryProcessInstances(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

COBOL

FmcjESQueryProcInsts.

CALL "FmcjExecutionServiceQueryProcessInstances"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
instances

RETURNING
intReturnValue.

Parameters
filter Input. The filter criteria which characterize the process instances to

be retrieved.
instances Input/Output. The qualifying vector of process instances.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the process instances

found.
threshold Input. The threshold which defines the maximum number of

process instances to be returned to the client.

Return type
APIRET The return code from this API call - see return codes below.
ProcessInstance[]

The qualifying process instances.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instances.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process instances.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

ExecutionService

Chapter 5. API action and activity implementation calls 365

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instances to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Query process instances (C)” on page 550.
v For a C++ example, see “Query process instances (C++)” on page 552.
v For a Java example, see “Query process instances (Java)” on page 553.
v For a COBOL example, see “Query process instances (COBOL)” on page 556.

QueryProcessTemplateLists()
This API call retrieves the current process template lists the user has access to from
the MQSeries Workflow execution server (action call).

In C, C++, and COBOL, any process template lists retrieved are appended to the
supplied vector. If you want to read the current process template lists only, you
have to clear the vector before you issue this API call. This means that you should
set the vector handle to 0 in C or COBOL, or erase all elements of the vector in the
C++ API.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

ExecutionService

366 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplateLists(

FmcjExecutionServiceHandle service,
FmcjProcessTemplateListVectorHandle * lists)

C++
APIRET QueryProcessTemplateLists(

vector<FmcjProcessTemplateList> & lists) const

Java
public abstract
ProcessTemplateList[] queryProcessTemplateLists() throws FmcException

COBOL

FmcjESQueryProcTemplLists.

CALL "FmcjExecutionServiceQueryProcessTemplateLists"
USING
BY VALUE

serviceValue
BY REFERENCE

lists
RETURNING

intReturnValue.

Parameters
lists Input/Output. The vector of process template lists.
service Input. A handle to the service object representing the session with

the execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.
ProcessTemplateList[]

The qualifying process template lists.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process template lists to be returned exceeds the

ExecutionService

Chapter 5. API action and activity implementation calls 367

maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Query worklists (C)” on page 536.
v For a C++ example, see “Query worklists (C++)” on page 538.
v For a Java example, see “Query worklists (Java)” on page 539.
v For a COBOL example, see “Query worklists (COBOL)” on page 542.

QueryProcessTemplates()
This API call retrieves the current process templates from the MQSeries Workflow
execution server (action call).

In C, C++, and COBOL, any process templates retrieved are appended to the
supplied vector. If you want to read the current process templates only, you have
to clear the vector before you issue this API call. This means that you should set
the vector handle to 0 in C or COBOL, or erase all elements of the vector in the
C++ API.

A filter on process templates is specified as a character string containing a filter
predicate:

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.
3. When using filters in API calls, be aware that due to the different order of

special characters, numbers, uppercase letters, and lowercase letters, in ASCII
and EBCDIC, calls like QueryProcessTemplates() can return different results on
OS/390 compare to LAN servers.

PTFilter

��
NOT

PTPredicate
(PTFilter)

�

ExecutionService

368 MQSeries Workflow for OS/390 Programming Guide

�

�

AND PTPredicate
OR NOT

(PTFilter)

��

PTPredicate

��

�

�

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

��

BasicPredicate

�� =
>
>=
<
<=
<>

��

PTString

�� CATEGORY
DESCRIPTION
NAME

��

PTTimeStamp

�� LAST_MODIFICATION_TIME ��

ExecutionService

Chapter 5. API action and activity implementation calls 369

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Process templates can be sorted. A process template sort criterion is specified as a
character string.

Note: The default sort order is ascending.

PTOrderBy

�� �

,

PTString
PTTimeStamp ASC

DESC

��

The number of process templates to be retrieved can be restricted via a threshold
which specifies the maximum number of process templates to be returned to the
client. That threshold is applied after the process templates have been sorted
according to the sort criteria specified. Note that the process templates are sorted
on the server, that is, the code page of the server determines the sort sequence.

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

ExecutionService

370 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplates(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessTemplateVectorHandle * templates)

C++
APIRET QueryProcessTemplates(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessTemplate> & templates) const

Java
public abstract
ProcessTemplates[] queryProcessTemplates(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

COBOL

FmcjESQueryProcTempls.

CALL "FmcjExecutionServiceQueryProcessTemplates"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
templates

RETURNING
intReturnValue.

Parameters
filter Input. The filter criteria which characterize the process templates to

be retrieved.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the process templates

found.
templates Input/Output. The qualifying vector of process templates.
threshold Input. The threshold which defines the maximum number of

process templates to be returned to the client.

Return type

ExecutionService

Chapter 5. API action and activity implementation calls 371

APIRET
The return code from this API call - see return codes below.

ProcessTemplate[]
The qualifying process templates.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process templates.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process templates.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process templates to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Query process instances (C)” on page 550.
v For a C++ example, see “Query process instances (C++)” on page 552.
v For a Java example, see “Query process instances (Java)” on page 553.
v For a COBOL example, see “Query process instances (COBOL)” on page 556.

QueryWorkitems()
This API call retrieves the work items the user has access to from the MQSeries
Workflow execution server (action call).

In C, C++, and COBOL, any work items retrieved are appended to the supplied
vector. If you want to read the current work items only, you have to clear the
vector before you issue this API call. This means that you should set the vector
handle to 0 in C or erase all elements of the vector in the C++ API.

The work items to be retrieved can be characterized by a filter. A work item filter
is specified as a character string:

ExecutionService

372 MQSeries Workflow for OS/390 Programming Guide

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark have
special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the pattern

itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

WIFilter

��
NOT

ITPredicate
(WIFilter)

�

�

�

AND ITPredicate
OR NOT

(WIFilter)

��

ITPredicate

ExecutionService

Chapter 5. API action and activity implementation calls 373

��

�

�

�

�

�

�

�

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

��

AIType

�� PROCESS_ACTIVITY
PROGRAM_ACTIVITY

��

ExecutionService

374 MQSeries Workflow for OS/390 Programming Guide

BasicPredicate

�� =
>
>=
<
<=
<>

��

ITState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

��

ITString

�� DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

��

ITTimeStamp

�� LAST_MODIFICATION_TIME
RECEIVED_TIME

��

PIState

�� READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

��

ExecutionService

Chapter 5. API action and activity implementation calls 375

TimeStamp

�� year - month - day
hours

: minutes
: seconds

��

Work items can be sorted. A work item sort criterion is specified as a character
string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the AIType
diagram.

States are sorted according to the sequence shown in the ITState or the
PIState diagram.

WIOrderBy

�� �

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

��

The number of work items to be retrieved can be restricted via a threshold which
specifies the maximum number of work items to be returned to the client. That
threshold is applied after the items have been sorted according to the sort criteria
specified. Note that the items are sorted on the server, that is, the code page of the
server determines the sort sequence.

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

ExecutionService

376 MQSeries Workflow for OS/390 Programming Guide

v SupportTools

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorkitems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjWorkitemHandle * workitems)

C++
APIRET QueryWorkitems(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjWorkitem> & workitems) const

Java
public abstract
WorkItem[] queryWorkItems(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

ExecutionService

Chapter 5. API action and activity implementation calls 377

COBOL

FmcjESQueryWorkitems.

CALL "FmcjExecutionServiceQueryWorkitems"
USING
BY VALUE

serviceValue
filter
sortCriteria
threshold

BY REFERENCE
workitems

RETURNING
intReturnValue.

Parameters
filter Input. The filter criteria which characterize the work items to be

retrieved.
service Input. A handle to the service object representing the session with

the execution server.
sortCriteria Input. The sort criteria to be applied to the work items found.
threshold Input. The threshold which defines the maximum number of work

items to be returned to the client.
workitems Input/Output. The qualifying vector of work items.

Return type
APIRET The return code from this API call - see return codes below.
WorkItem[] The qualifying work items.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to work items.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to work items.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of work items to be returned exceeds the maximum
size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

ExecutionService

378 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example, see “Query process instances (C)” on page 550.
v For a C++ example, see “Query process instances (C++)” on page 552.
v For a Java example, see “Query process instances (Java)” on page 553.
v For a COBOL example, see “Query process instances (COBOL)” on page 556.

QueryWorklists()
This API call retrieves the worklists the user has access to from the MQSeries
Workflow execution server (action call).

In C, C++, and COBOL, any worklists retrieved are appended to the supplied
vector. If you want to read the current worklists only, you have to clear the vector
before you issue this API call. This means that you should set the vector handle to
0 in C or COBOL, or erase all elements of the vector in the C++ API.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorklists(

FmcjExecutionServiceHandle service,
FmcjWorklistVectorHandle * lists)

C++
APIRET QueryWorklists(vector<FmcjWorklist> & lists) const

ExecutionService

Chapter 5. API action and activity implementation calls 379

Java
public abstract
WorkList[] queryWorkLists() throws FmcException

COBOL

FmcjESQueryWorklists.

CALL "FmcjExecutionServiceQueryWorklists"
USING
BY VALUE

serviceValue
BY REFERENCE

lists
RETURNING

intReturnValue.

Parameters
lists Input/Output. The vector of worklists.
service Input. A handle to the service object representing the session with

the execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.
WorkList[] The qualifying worklists.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of worklists to be returned exceeds the maximum size
allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your system,
system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

ExecutionService

380 MQSeries Workflow for OS/390 Programming Guide

v For a C example, see “Query worklists (C)” on page 536.
v For a C++ example, see “Query worklists (C++)” on page 538.
v For a Java example, see “Query worklists (Java)” on page 539.
v For a COBOL example, see “Query worklists (COBOL)” on page 542.

Receive()
This API call allows for receiving data pushed by an MQSeries Workflow execution
server or for receiving a response on an asynchronous request.

A correlation ID can be used to receive a specific response. To receive any data
sent, it must be a 0 (NULL) pointer or specify FMCJ_NO_CORRELID. Note that
the correlation ID is set on return provided that no 0 pointer is passed. This means
that it has to be reset for each request.

The timeout value specifies how long the application should wait at a maximum
for some data to arrive. If no data arrives, a timeout error is indicated. A timeout
value of -1 indicates an indefinite wait time.

If data is successfully received, the execution data contains the data sent and can
be used for updating objects or for creating new objects. See “ExecutionData” on
page 247 for API calls supported by the execution data object.

The following enumeration types can be used to determine the contents of the
execution data received:

C FmcjExecutionDataKindEnum

C++ FmcjExecutionData::KindEnum

Java Not supported

The enumeration constants can take the following values; it is strongly advised to
use the symbolic names instead of the associated integer values.
NotSet(0) Indicates that nothing is known about the content of the execution

data.

C Fmc_DART_NotSet

C++ FmcjExecutionData::NotSet

COBOL Fmc-DART-NotSet
Terminate(2) Indicates that receiving data can end.

C Fmc_DART_Terminate

C++ FmcjExecutionData::Terminate

COBOL Fmc-DART-Terminate
ItemDeleted(1000)

Indicates that a work item, an activity instance notification, or a
process instance notification has been deleted.

C Fmc_DART_ItemDeleted

C++ FmcjExecutionData::ItemDeleted

COBOL Fmc-DART-ItemDeleted
Workitem(1002)

Indicates that a work item has been created or updated.

C Fmc_DART_Workitem

ExecutionService

Chapter 5. API action and activity implementation calls 381

C++ FmcjExecutionData::Workitem

COBOL Fmc-DART-Workitem
ActivityInstanceNotification(1003)

Indicates that an activity instance notification has been created or
updated.

C Fmc_DART_ActivityInstanceNotification

C++ FmcjExecutionData::ActivityInstanceNotification

COBOL Fmc-DART-ActInstNotif
ProcessInstanceNotification(1004)

Indicates that a process instance notification has been created or
updated.

C Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification

COBOL Fmc-DART-ProcInstNotif
ExecuteInstanceResponse(1100)

Indicates that the execution data contains the response on an
ExecuteProcessInstance() request.

C Fmc_DART_ExecuteInstanceResponse

C++ FmcjExecutionData::ExecuteInstanceResponse

COBOL Fmc-DART-ExecuteInstResponse
ExecuteProgramResponse(1101)

Indicates that the execution data contains the response to an
ExecuteProgram() request.

C Fmc_DART_ExecuteProgramResponse

C++ FmcjExecutionData::ExecuteProgramResponse

COBOL Fmc-DART-ExecuteProgResponse

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server (present session mode)

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java not supported

ExecutionService

382 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjExecutionServiceReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID,
FmcjExecutionDataHandle * data,
signed long timeout)

C++
APIRET Receive(FmcjCorrelID * correlID,

FmcjExecutionData & data,
signed long timeout) const

COBOL

FmcjESReceive.

CALL "FmcjExecutionServiceReceive"
USING
BY VALUE

serviceValue
BY REFERENCE

correlID
data

BY VALUE
timeoutValue

RETURNING
intReturnValue.

Parameters
correlID Input/Output. The correlation ID by which this data can be

correlated to a previous request. Must be a NULL (0) pointer or
point to Fmcj_No_CorrelID if you want to receive any data.

data Output. The data sent by an MQSeries Workflow execution server.
service Input. A handle to the service object representing the present

session with the execution server.
timeout Input. The maximum time period in milliseconds to wait for some

data to arrive.

Return type
APIRET The return code from this API call - see return codes below.

Return codes
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

ExecutionService

Chapter 5. API action and activity implementation calls 383

FMC_ERROR_MESSAGE_DATA(104)
The client received an unknown message.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

RemotePassthrough()
This API call can be used by an application program to establish a user session
with an MQSeries Workflow execution server from within this program (activity
implementation call).

When the activity implementation decides to distribute work among other
programs and starts those programs as separate operating system processes, then
those processes must be passed the CICS COMMAREA or IMS I/O Area in order
to retrieve the information needed.

When successfully executed, a session is set up to the same execution server from
which the original work item was started; the user on whose behalf the session is
set up is the same one on whose behalf the original work item was started.

Note: This call will fail after the COMMAREA or I/O Area has been changed
using SetOutContainer() or SetRemoteContainer().

Usage notes
v See “Activity implementation API calls” on page 122 for general information.

Authorization

Valid program identification

Required connection

None, but MQSeries Workflow program execution server must be active.

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjExecutionServiceRemotePassthrough(

FmcjExecutionServiceHandle service)
char const * programID)

ExecutionService

384 MQSeries Workflow for OS/390 Programming Guide

C++
APIRET RemotePassthrough(string const & programID)

Java
public abstract
void remotePassthrough(String programID) throws FmcException

COBOL

FmcjESRemotePassthrough.

CALL "FmcjExecutionServiceRemotePassthrough"
USING
BY VALUE

serviceValue
BY REFERENCE

programID
RETURNING

intReturnValue.

Parameters
programID Input. The program identification by which the actually started

activity implementation is known to the program execution server.
service Input. A handle to the service object representing the session to be

established with the execution server.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from a program started by an activity
implementation, or the program execution server is not active.

FMC_ERROR_TOOL_FUNCTION(128)
Passthrough cannot be called from a program started by the
program execution server.

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item no longer exists.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

ExecutionService

Chapter 5. API action and activity implementation calls 385

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

TerminateReceive()
This API call causes information to be placed into the client input queue to tell that
receiving data from an MQSeries Workflow execution server can end.

In this way, the receiving part of the application gets to know that receiving data
can end. Any resulting actions are up to the application.

When the correlID parameter points to some buffer initialized to
FMCJ_NO_CORRELID, then a correlation ID is returned which can be used to
explicitly receive this data.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

None

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java not supported

C
APIRET FMC_APIENTRY FmcjExecutionServiceTerminateReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID)

C++
APIRET TerminateReceive(FmcjCorrelID * correlID = 0)

ExecutionService

386 MQSeries Workflow for OS/390 Programming Guide

COBOL

FmcjESTerminateReceive.

CALL "FmcjExecutionServiceTerminateReceive"
USING
BY VALUE

serviceValue
BY REFERENCE

correlID
RETURNING

intReturnValue.

Parameters
correlID Input/Output. The correlation ID by which this request can be

correlated.
service Input. A handle to the service object.

Return type
APIRET The return code from this API call - see return codes below.

Return codes
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_CORRELATION_ID(506)
The correlation ID passed is not FMCJ_NO_CORRELID.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Item actions
An Item object represents a work item or an activity instance notification or a
process instance notification.

An FmcjItem or Item object represents the common aspects of work items and
notifications. In C++, FmcjItem is thus the superclass of the FmcjWorkitem,
FmcjActivityInstanceNotification, and FmcjProcessInstanceNotification classes and
provides for all common properties and methods. In Java, Item is thus a superclass
of the WorkItem, ActivityInstanceNotification, and ProcessInstanceNotification

ExecutionService

Chapter 5. API action and activity implementation calls 387

classes and provides for all common properties and methods. Similarly, in C or
COBOL, common implementations of functions are taken from FmcjItem. That is,
common functions start with the prefix FmcjItem; they are also defined starting
with the prefixes FmcjWorkitem, FmcjActivityInstanceNotification, and
FmcjProcessInstanceNotification.

An item is uniquely identified by its object identifier.

The following sections describe the actions which can be applied on an item. See
“Item” on page 256 for a complete list of API calls.

Delete()
This API call deletes the specified item from the MQSeries Workflow execution
server (action call).

A notification can always be deleted. A work item must be in states Ready, Finished,
ForceFinished, or Disabled. If the work item is in the Ready state and represents the
only work associated with the activity instance and when the associated process
instance is not Terminating or Terminated, then deletion is rejected.

There are no impacts on the transient representation of your item; in C and C++,
you have to destruct or deallocate the transient object when it is no longer needed.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Item

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjItemDelete(FmcjItemHandle hdlItem)

#define FmcjActivityInstanceNotificationDelete FmcjItemDelete
#define FmcjProcessInstanceNotificationDelete FmcjItemDelete
#define FmcjWorkitemDelete FmcjItemDelete

C++
APIRET Delete()

Item

388 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
void delete() throws FmcException

COBOL
FmcjItemDelete.

CALL "FmcjItemDelete"
USING
BY VALUE

hdlItem
RETURNING

intReturnValue.

Parameters
hdlItem Input. The handle of the item to be deleted.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item no longer exists.

FMC_ERROR_NOT_ALLOWED(507)
The item represents the only work associated with the activity
instance.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Item

Chapter 5. API action and activity implementation calls 389

ObtainProcessInstanceMonitor()
This API call retrieves the process instance monitor for the process instance the
item is part of from the MQSeries Workflow execution server (action call).

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the server.

Note: Deep is not yet supported.

In C++, when the process instance monitor object to be initialized is not empty,
that object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process instance monitor handle already points to some object.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Item

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjItemObtainProcessInstanceMonitor(

FmcjItemHandle hdlItem,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

#define FmcjActivityInstanceNotificationObtainProcessInstanceMonitor
FmcjItemObtainProcessInstanceMonitor

#define FmcjProcessInstanceNotificationObtainProcessInstanceMonitor
FmcjItemObtainProcessInstanceMonitor

#define FmcjWorkitem
FmcjItemObtainProcessInstanceMonitor

Item

390 MQSeries Workflow for OS/390 Programming Guide

C++
APIRET ObtainProcessInstanceMonitor(

FmcjProcessInstanceMonitor & monitor,
bool deep= false) const

Java
public abstract
ProcessInstanceMonitor obtainProcessInstanceMonitor(

boolean deep) throws FmcException

COBOL

FmcjItemObtainProcInstMon.

CALL "FmcjItemObtainProcessInstanceMonitor"
USING
BY VALUE

hdlItem
deep

BY REFERENCE
monitor

RETURNING
intReturnValue.

Parameters
deep Input. An indicator whether activity instances of type Block are to

be resolved, that is, their monitor is also to be provided. Note,
deep is not yet supported.

hdlItem Input. The item whose process instance monitor is to be retrieved.
monitor Input/Output. The address of the handle to the process instance

monitor or the process instance monitor object to be set.
returnCode Input/Output. The return code of calling this method - see return

codes below.

Return type
APIRET The return code from this API call - see return codes below.
ProcessInstanceMonitor*/ ProcessInstanceMonitor

A pointer to the process instance monitor or the process instance
monitor the item is a part of.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

Item

Chapter 5. API action and activity implementation calls 391

FMC_ERROR_DOES_NOT_EXIST(118)
The item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProcessInstance()
This API call retrieves the process instance the item is a part of from the MQSeries
Workflow execution server (action call).

All information about the process instance, primary and secondary, is retrieved.

In C++, when the process instance object to be initialized is not empty, that object
is destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the
process instance handle already points to some object.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Item

COBOL fmcvars.cpy, fmcperf.cpy

Item

392 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjItemProcessInstance(

FmcjItemHandle hdlItem,
FmcjProcessInstanceHandle * instance)

#define FmcjActivityInstanceNotificationProcessInstance
FmcjItemProcessInstance

#define FmcjProcessInstanceNotificationProcessInstance
FmcjItemProcessInstance

#define FmcjWorkitemProcessInstance
FmcjItemProcessInstance

C++
APIRET ProcessInstance(FmcjProcessInstance & instance) const

Java
public abstract
ProcessInstance processInstance() throws FmcException

COBOL

FmcjItemProcInst.

CALL "FmcjItemProcessInstance"
USING
BY VALUE

hdlItem
BY REFERENCE

instance
RETURNING

intReturnValue.

Parameters
hdlItem Input. The handle of the item object to be queried.
instance Input/Output. The process instance object to be retrieved

(initialized).
returnCode Input/Output. The return code of calling this method - see return

codes below.

Return type
APIRET The return code from this API call - see return codes below.
ProcessInstance*/ ProcessInstance

A pointer to the process instance or the process instance the item is
a part of.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

Item

Chapter 5. API action and activity implementation calls 393

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()
This API call refreshes the item from the MQSeries Workflow execution server
(action call).

All information about the item, primary and secondary, is retrieved.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the item owner
v Work item authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Item

COBOL fmcvars.cpy, fmcperf.cpy

Item

394 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjItemRefresh(FmcjItemHandle hdlItem)

#define FmcjActivityInstanceNotificationRefresh FmcjItemRefresh
#define FmcjProcessInstanceNotificationRefresh FmcjItemRefresh
#define FmcjWorkitemRefresh FmcjItemRefresh

C++
APIRET Refresh()

Java
public abstract
void refresh() throws FmcException

COBOL

FmcjItemRefresh.

CALL "FmcjItemRefresh"
USING
BY VALUE

hdlItem
RETURNING

intReturnValue.

Parameters
hdlItem Input. The handle of the item object to be refreshed.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Item

Chapter 5. API action and activity implementation calls 395

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()
This API call sets the description of the item to the specified value (action call).

If no description is provided, the description of the item is reset to the description
of the associated activity instance or process instance.

The following rules apply for specifying an item description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Item

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjItemSetDescription(

FmcjItemHandle hdlItem,
char const * description)

#define FmcjActivityInstanceNotificationSetDescription
FmcjItemSetDescription

#define FmcjProcessInstanceNotificationSetDescription
FmcjItemSetDescription

#define FmcjWorkitemSetDescription
FmcjItemSetDescription

Item

396 MQSeries Workflow for OS/390 Programming Guide

C++
APIRET SetDescription(string const * description)

Java
public abstract
void setDescription(String description) throws FmcException

COBOL

FmcjItemSetDescription.

CALL "FmcjItemSetDescription"
USING
BY VALUE

hdlItem
description

RETURNING
intReturnValue.

Parameters
description Input. The description or a pointer to the description to be set; can

be a NULL (0) pointer or null object (Java).
hdlItem Input. The handle of the item object whose description is to be set.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item no longer exists.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

Item

Chapter 5. API action and activity implementation calls 397

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetName()
This API call sets the name of the item (action call).

If no name is provided, the name of the item is reset to its default, the activity
instance or the process instance name.

The following rules apply for specifying a work item or activity instance
notification name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale, except

the following:
! " ' () * + , - . / : ; < = > [\] |

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

v You cannot use leading digits.
v You cannot use keywords AND, OR, NOT, IS, NULL, MOD, LOWER, UPPER,

VALUE, SUBSTR, _BLOCK

The following rules apply for specifying a process instance notification name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Item

COBOL fmcvars.cpy, fmcperf.cpy

Item

398 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjItemSetName(FmcjItemHandle hdlItem,

char const * name)

#define FmcjActivityInstanceNotificationSetName FmcjItemSetName
#define FmcjProcessInstanceNotificationSetName FmcjItemSetName
#define FmcjWorkitemSetName FmcjItemSetName

C++
APIRET SetName(string const * name)

Java
public abstract
void setName(String name) throws FmcException

COBOL

FmcjItemSetName.

CALL "FmcjItemSetName"
USING
BY VALUE

hdlItem
name

RETURNING
intReturnValue.

Parameters
hdlItem Input. The handle of the item to be dealt with.
name Input. The new name of the item; can be a NULL (0) pointer or

null object (Java).

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item no longer exists.

Item

Chapter 5. API action and activity implementation calls 399

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Transfer()
This API call transfers an item to the specified user (action call).

Notifications can always be transferred. A work item must be in states Ready,
InError, Executed, Suspending, or Suspended and the associated process instance in
states Running, Suspending, or Suspended.

The user who transfers the item must be the owner of the item or have work item
authorization for the owner of the item and have work item authorization for the
new owner.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Workitem authority for the persons to transfer from/to
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Item

COBOL fmcvars.cpy, fmcperf.cpy

Item

400 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjItemTransfer(FmcjItemHandle hdlItem,

char const * userID)

#define FmcjActivityInstanceNotificationTransfer FmcjItemTransfer
#define FmcjProcessInstanceNotificationTransfer FmcjItemTransfer
#define FmcjWorkitemTransfer FmcjItemTransfer

C++
APIRET Transfer(string const & userID)

Java
public abstract
void transfer(String userID) throws FmcException

COBOL

FmcjItemTransfer.

CALL "FmcjItemTransfer"
USING
BY VALUE

hdlItem
userID

RETURNING
intReturnValue.

Parameters
hdlItem Input. The handle of the item object to be transferred.
userID Input. The ID of the user to whom the item is to be transferred.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item no longer exists.

Item

Chapter 5. API action and activity implementation calls 401

FMC_ERROR_NEW_OWNER_ABSENT(110)
The user to whom the item is to be transferred is absent, that is,
the item is not transferred.

FMC_ERROR_NEW_OWNER_NOT_FOUND(107)
The user to whom the item is to be transferred is unknown.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_OWNER_ALREADY_ASSIGNED(133)
The user to whom the item is to be transferred does already have
that item.

FMC_ERROR_WRONG_STATE(120)
The item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PersistentList actions
A PersistentList object represents a set of objects of the same type the user is
authorized for. Moreover, all objects which are accessible through this list have the
same characteristics. These characteristics are specified by a filter. Additionally, sort
criteria can be applied and, after that, a threshold to restrict the number of objects
to be transferred from a server to the client.

As the name indicates, the list definition is stored persistently. The objects
contained in the list are, however, assembled dynamically when they are queried.

A persistent list can be a process template list, a process instance list, or a worklist.

An FmcjPersistentList or PersistentList object represents the common aspects of
lists. In C++, FmcjPersistentList is thus the superclass of the
FmcjProcessInstanceList, FmcjProcessTemplateList, and FmcjWorklist classes and
provides for all common properties and methods. In Java, PersistentList is thus a
superclass of the ProcessInstanceList, ProcessTemplateList, and Worklist classes and
provides for all common properties and methods. Similarly, in C or COBOL,
common implementations of functions are taken from FmcjPersistentList. That is,
common functions start with the prefix FmcjPersistentList; they are also defined
starting with the prefixes FmcjProcessInstanceList, FmcjProcessTemplateList, and
FmcjWorklist.

A persistent list is uniquely identified by its name, type, and owner. It can be
defined for general access purposes; it is then of a public type. Or, it can be defined
for some specific user; it is then of a private type.

The following sections describe the actions which can be applied on a persistent
list. See “PersistentList” on page 259 for a complete list of API calls.

Item

402 MQSeries Workflow for OS/390 Programming Guide

Delete()
This API call deletes the specified persistent list from the MQSeries Workflow
execution server (action call).

The transient representation of the persistent list is not impacted; in C, C++, and
COBOL, you have to destruct or deallocate the transient object when it is no longer
needed.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.PersistentList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjPersistentListDelete(FmcjPersistentListHandle hdlList)

#define FmcjProcessInstanceListDelete FmcjPersistentListDelete
#define FmcjProcessTemplateListDelete FmcjPersistentListDelete
#define FmcjWorklistDelete FmcjPersistentListDelete

C++
APIRET Delete()

Java
public abstract
void delete() throws FmcException

PersistentList

Chapter 5. API action and activity implementation calls 403

COBOL

FmcjPLDelete.

CALL "FmcjPersistentListDelete"
USING
BY VALUE

hdlList
RETURNING

intReturnValue.

Parameters
hdlList Input. The handle of the persistent list to be deleted.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()
This API call refreshes the persistent list from the MQSeries Workflow execution
server (action call).

All information about the persistent list is retrieved, for example, its description, its
filter, or its sort criteria.

Usage notes
v See “Action API calls” on page 122 for general information.

PersistentList

404 MQSeries Workflow for OS/390 Programming Guide

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.PersistentList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjPersistentListRefresh(FmcjPersistentListHandle hdlList)

#define FmcjProcessInstanceListRefresh FmcjPersistentListRefresh
#define FmcjProcessTemplateListRefresh FmcjPersistentListRefresh
#define FmcjWorklistRefresh FmcjPersistentListRefresh

C++
APIRET Refresh()

Java
public abstract
void refresh() throws FmcException

COBOL

FmcjPLRefresh.

CALL "FmcjPersistentListRefresh"
USING
BY VALUE

hdlList
RETURNING

intReturnValue.

Parameters
hdlList Input. The handle of the persistent list to be refreshed.

Return type
long/ APIRET The return code from this API call - see return codes below.

PersistentList

Chapter 5. API action and activity implementation calls 405

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()
This API call sets the description of the persistent list to the specified value (action
call).

If no description is provided, the description of the persistent list is erased.

The following rules apply for specifying a persistent list description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

PersistentList

406 MQSeries Workflow for OS/390 Programming Guide

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.PersistentList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjPersistentListSetDescription(FmcjPersistentListHandle hdlList,

char const * description)

#define FmcjProcessInstanceListSetDescription
FmcjPersistentListSetDescription

#define FmcjProcessTemplateListSetDescription
FmcjPersistentListSetDescription

#define FmcjWorklistSetDescription
FmcjPersistentListSetDescription

C++
APIRET SetDescription(string const * description)

Java
public abstract
void setDescription(String description) throws FmcException

COBOL

FmcjPLSetDescription.

CALL "FmcjPersistentListSetDescription"
USING
BY VALUE

hdlList
description

RETURNING
intReturnValue.

Parameters
description Input. The description or a pointer to the description to be set; can

be a NULL (0) pointer or null object (Java).
hdlList Input. The handle of the persistent list object whose description is

to be set.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.

PersistentList

Chapter 5. API action and activity implementation calls 407

FMC_ERROR(1)
A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list no longer exists.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetFilter()
This API call sets the filter of the persistent list to the specified value (action call).

If no filter is provided, the current filter of the persistent list is erased. This means
that all objects authorized for will be selected via this list.

Refer to the appropriate list creation for a description of a valid filter syntax.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.PersistentList

COBOL fmcvars.cpy, fmcperf.cpy

PersistentList

408 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY
FmcjPersistentListSetFilter(FmcjPersistentListHandle hdlList,

char const * filter)

#define FmcjProcessInstanceListSetFilter FmcjPersistentListSetFilter
#define FmcjProcessTemplateListSetFilter FmcjPersistentListSetFilter
#define FmcjWorklistSetFilter FmcjPersistentListSetFilter

C++
APIRET SetFilter(string const * filter)

Java
public abstract
void setFilter(String filter) throws FmcException

COBOL

FmcjPLSetFilter.

CALL "FmcjPersistentListSetFilter"
USING
BY VALUE

hdlList
filter

RETURNING
intReturnValue.

Parameters
filter Input. The filter or a pointer to the filter to be set; can be a NULL

(0) pointer or null object (Java).
hdlList Input. The handle of the persistent list object whose filter is to be

set.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

PersistentList

Chapter 5. API action and activity implementation calls 409

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list no longer exists.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetSortCriteria()
This API call sets the sort criteria of the persistent list to the specified value (action
call).

If no sort criteria are provided, the current sort criteria of the persistent list are
erased. This means that objects selected via this list will not be sorted.

Refer to the appropriate list creation for a description of a valid sort criteria syntax.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.PersistentList

COBOL fmcvars.cpy, fmcperf.cpy

PersistentList

410 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY
FmcjPersistentListSetSortCriteria(FmcjPersistentListHandle hdlList,

char const * sortCriteria)

#define FmcjProcessInstanceListSetSortCriteria
FmcjPersistentListSetSortCriteria

#define FmcjProcessTemplateListSetSortCriteria
FmcjPersistentListSetSortCriteria

#define FmcjWorklistSetSortCriteria
FmcjPersistentListSetSortCriteria

C++
APIRET SetSortCriteria(string const * sortCriteria)

Java
public abstract
void setSortCriteria(String sortCriteria) throws FmcException

COBOL

FmcjPLSetSortCriteria.

CALL "FmcjPersistentListSetSortCriteria"
USING
BY VALUE

hdlList
sortCriteria

RETURNING
intReturnValue.

Parameters
hdlList Input. The handle of the persistent list object whose sort criteria

are to be set.
sortCriteria Input. The sort criteria or a pointer to the sort criteria to be set; can

be a NULL (0) pointer or null object (Java).

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

PersistentList

Chapter 5. API action and activity implementation calls 411

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list no longer exists.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetThreshold()
This API call sets the threshold of the persistent list to the specified value (action
call).

If no threshold is provided, the threshold of the persistent list is erased. This
means that all objects contained in the list will be provided when queried.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.PersistentList

COBOL fmcvars.cpy, fmcperf.cpy

PersistentList

412 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY
FmcjPersistentListSetThreshold(FmcjPersistentListHandle hdlList,

unsigned long const * threshold)

#define FmcjProcessInstanceListSetThreshold FmcjPersistentListSetThreshold
#define FmcjProcessITemplateListSetThreshold FmcjPersistentListSetThreshold
#define FmcjWorklistSetThreshold FmcjPersistentListSetThreshold

C++
APIRET SetThreshold(unsigned long const * threshold)

Java
public abstract
void setThreshold(Integer threshold) throws FmcException

COBOL

FmcjPLSetThreshold.

CALL "FmcjPersistentListSetThreshold"
USING
BY VALUE

hdlList
threshold

RETURNING
intReturnValue.

Parameters
hdlList Input. The handle of the persistent list object whose threshold is to

be set.
threshold Input. The threshold or a pointer to the threshold to be set; can be

a NULL (0) pointer or null object (Java).

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

PersistentList

Chapter 5. API action and activity implementation calls 413

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list no longer exists.

FMC_ERROR_INVALID_THRESHOLD(807)
The threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Person actions
An FmcjPerson or a Person object represents an MQSeries Workflow user. A person
is uniquely identified by its user identification.

The following sections describe the actions which can be applied on a person. See
“Person” on page 260 for a complete list of API calls.

Refresh()
This API call refreshes the person from the MQSeries Workflow execution server
(action call).

All information about the person, primary and secondary, is retrieved.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Person

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjPersonRefresh(FmcjPersonHandle hdlPerson)

PersistentList

414 MQSeries Workflow for OS/390 Programming Guide

C++
APIRET Refresh()

Java
public abstract
void refresh() throws FmcException

COBOL

FmcjPRefresh.

CALL "FmcjPersonRefresh"
USING
BY VALUE

hdlPerson
RETURNING

intReturnValue.

Parameters
hdlPerson Input. The handle of the person to be refreshed.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Person

Chapter 5. API action and activity implementation calls 415

SetAbsence()
This API call sets the absence indication of the logged-on user to the specified
value (action call).

When a person is absent, this person does not participate in staff resolution, that is,
this person does not get assigned any work items.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Person

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjPersonSetAbsence(

FmcjPersonHandle hdlPerson,
bool newValue)

C++
APIRET SetAbsence(bool newValue)

Java
public abstract
void setAbsence(boolean newValue) throws FmcException

COBOL

FmcjPSetAbsence.

CALL "FmcjPersonSetAbsence"
USING
BY VALUE

hdlPerson
newValue

RETURNING
intReturnValue.

Person

416 MQSeries Workflow for OS/390 Programming Guide

Parameters
hdlPerson Input. The handle of the person object whose absence is to be set.
newValue Input. True, if the person is denoted as absent, else false.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetSubstitute()
This API call sets the substitute of the logged-on user (action call).

The substitute must be a registered MQSeries Workflow user ID other than the
logged-on user. If no substitute is provided, the substitute of the logged-on user is
erased.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Person

Person

Chapter 5. API action and activity implementation calls 417

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjPersonSetSubstitute(

FmcjPersonHandle hdlPerson,
char const * substitute)

C++
APIRET SetSubstitute(string const * substitute)

Java
public abstract
void setSubstitute(String substitute) throws FmcException

COBOL

FmcjPSetSubstitute.

CALL "FmcjPersonSetSubstitute"
USING
BY VALUE

hdlPerson
substitute

RETURNING
intReturnValue.

Parameters
hdlPerson Input. The handle of the person object whose substitute is to be set.
substitute Input. The substitute or a pointer to the substitute to be set; can be

a NULL (0) pointer or null object (Java).

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_INVALID_USER(132)
The specified user ID does not correspond to the syntax rules or
the user cannot be logged on and be the substitute at the same
time.

Person

418 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_USERID_UNKNOWN(10)
The specified user ID is not a registered MQSeries Workflow user
ID.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProcessInstance actions
A ProcessInstance object represents an instance of a process template. A process
instance is uniquely identified by its object identifier or by its name. Depending on
the keep option when the process instance was created, the unique process
instance name has been supplied by the user or has been generated by MQSeries
Workflow.

The following diagram provides an overview of the possible process instance states
and the actions which are allowed in those states, provided that the appropriate
authority has been granted:

The following sections describe the actions which can be applied on a process
instance. See “ProcessInstance” on page 265 for a complete list of API calls.

Figure 43. Process instance states

Person

Chapter 5. API action and activity implementation calls 419

Delete()
This API call deletes the specified process instance from the MQSeries Workflow
execution server (action call).

The process instance must be a top-level process and in states Ready, Finished, or
Terminated. The creator can delete the process instance as long as it has not been
started.

There are no impacts on your transient representation of the process instance; in C
and C++, you have to destruct or deallocate the transient object when it is no
longer needed.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessInstanceDelete(FmcjProcessInstanceHandle hdlInstance)

C++
APIRET Delete()

Java
public abstract
void delete() throws FmcException

ProcessInstance

420 MQSeries Workflow for OS/390 Programming Guide

COBOL

FmcjPIDelete.

CALL "FmcjProcessInstanceDelete"
USING
BY VALUE

hdlInstance
RETURNING

intReturnValue.

Parameters
hdlInstance Input. The handle of the process instance to be deleted.

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

InContainer()
This API call retrieves the input container associated with the process instance
from the MQSeries Workflow execution server (action call).

In C++, when the container object to be initialized is not empty, that object is
destructed before the new one is assigned. In C, the application is completely

ProcessInstance

Chapter 5. API action and activity implementation calls 421

responsible for the ownership of objects, that is, it is not checked whether the
container handle already points to some object.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessInstanceInContainer(

FmcjProcessInstanceHandle hdlInstance,
FmcjReadWriteContainerHandle * input)

C++
APIRET InContainer(FmcjReadWriteContainer & input)

Java
public abstract
ReadWriteContainer inContainer() throws FmcException

ProcessInstance

422 MQSeries Workflow for OS/390 Programming Guide

COBOL

FmcjPIInCtnr.

CALL "FmcjProcessInstanceInContainer"
USING
BY VALUE

hdlInstance
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
hdlInstance Input. The handle of the process instance object whose input

container is to be retrieved.
input Input/Output. The address of the input container or of its handle

or the input container of the process instance to be set.

Return type
long/ APIRET The result of making this API call - see return codes below.
ReadWriteContainer

The input container of the process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProcessInstance

Chapter 5. API action and activity implementation calls 423

ObtainMonitor()
This API call obtains a monitor for the process instance from the MQSeries
Workflow execution server (action call).

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the server.

Note: Deep is not yet supported.

In C++, when the process instance monitor object to be initialized is not empty,
that object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process instance monitor handle already points to some object.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessInstanceObtainMonitor(

FmcjProcessInstanceHandle hdlInstance,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

C++
APIRET ObtainMonitor(FmcjProcessInstanceMonitor & monitor,

bool deep= false)

ProcessInstance

424 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
ProcessInstanceMonitor obtainMonitor(boolean deep) throws FmcException

COBOL

FmcjPIObtainMon.

CALL "FmcjProcessInstanceObtainMonitor"
USING
BY VALUE

hdlInstance
deep

BY REFERENCE
monitor

RETURNING
intReturnValue.

Parameters
deep Input. An indicator whether activity instances of type Block are to

be resolved, that is, their monitor is also to be provided. Note,
deep is not yet supported.

hdlInstance Input. The handle of the process instance object whose monitor is
to be retrieved.

monitor Input/Output. The address of the monitor handle or the monitor
of the process instance to be set.

returnCode Input/Output. A pointer to the result of the method call - see
return codes below.

Return type
APIRET The return code from this API call - see return codes below.
InstanceMonitor*/ProcessInstanceMonitor

A pointer to the process instance monitor or the process instance
monitor.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

ProcessInstance

Chapter 5. API action and activity implementation calls 425

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PersistentObject()
This API call retrieves the process instance identified by the passed object identifier
from the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the process instance is to be
retrieved is identified by the execution service object. The transient object is then
created or updated with all information, primary and secondary, of the process
instance.

In C++, when the process instance object to be initialized is not empty, that object
is destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the
process instance handle already points to some object. In Java, a process instance is
newly created; the execution service acts as a factory.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

ProcessInstance

426 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjProcessInstancePersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessInstanceHandle * hdlInstance)

C++
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

Java
public abstract

ProcessInstance ExecutionService.persistentObject(String oid)
throws FmcException

COBOL

FmcjPIPersistentObj.

CALL "FmcjProcessInstancePersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlInstance

RETURNING
intReturnValue.

Parameters
hdlInstance Input/Output. The address of the handle to the process instance

object to be set.
oid Input. The object identifier of the process instance to be retrieved.
service Input. The service object representing the session with the

execution server.

Return type
long/ APIRET The result of making this API call - see return codes below.
ProcessInstance

The process instance retrieved.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

ProcessInstance

Chapter 5. API action and activity implementation calls 427

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()
This API call refreshes the process instance from the MQSeries Workflow execution
server (action call).

All information about the process instance, primary and secondary, is retrieved.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessInstanceRefresh(FmcjProcessInstanceHandle hdlInstance)

ProcessInstance

428 MQSeries Workflow for OS/390 Programming Guide

C++
APIRET Refresh()

Java
public abstract
void refresh() throws FmcException

COBOL

FmcjPIRefresh.

CALL "FmcjProcessInstanceRefresh"
USING
BY VALUE

hdlInstance
RETURNING

intReturnValue.

Parameters
hdlInstance Input. The handle of the process instance object to be refreshed.

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

ProcessInstance

Chapter 5. API action and activity implementation calls 429

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Restart()
This API call restarts the process instance on the MQSeries Workflow execution
server (action call).

Only finished or terminated top-level process instances can be restarted. The process
administrator does not change. The process starter is set to the requester of this
API call.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessInstanceRestart(FmcjProcessInstanceHandle hdlInstance)

C++
APIRET Restart()

Java
public abstract
void restart() throws FmcException

ProcessInstance

430 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjPIRestart.

CALL "FmcjProcessInstanceRestart"
USING
BY VALUE

hdlInstance
RETURNING

intReturnValue.

Parameters
hdlInstance Input. The handle of the process instance object to be restarted.

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The process instance is no top-level process instance.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Resume()
This API call resumes processing of a suspended or suspending process instance
(action call).

All non-autonomous subprocesses with respect to control autonomy are also
resumed, if the deep option is true.

ProcessInstance

Chapter 5. API action and activity implementation calls 431

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessInstanceResume(FmcjProcessInstanceHandle hdlInstance,

bool deep)

C++
APIRET Resume(bool deep)

Java
public abstract
void resume(boolean deep) throws FmcException

COBOL

FmcjPIResume.

CALL "FmcjProcessInstanceResume"
USING
BY VALUE

hdlInstance
deep

RETURNING
intReturnValue.

Parameters
deep Input. If deep is true, processing of all non-autonomous

subprocesses is also resumed.
hdlInstance Input. The handle of the process instance to be resumed.

ProcessInstance

432 MQSeries Workflow for OS/390 Programming Guide

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()
This API call sets the description of the process instance to the specified value
(action call).

If no description is provided, the description of the process instance is erased.

The following rules apply for specifying a process instance description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

ProcessInstance

Chapter 5. API action and activity implementation calls 433

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessInstanceSetDescription(

FmcjProcessInstanceHandle hdlInstance,
char const * description)

C++
APIRET SetDescription(string const * description)

Java
public abstract
void setDescription(String description) throws FmcException

COBOL

FmcjPISetDescription.

CALL "FmcjProcessInstanceSetDescription"
USING
BY VALUE

hdlInstance
description

RETURNING
intReturnValue.

Parameters
description Input. The description or a pointer to the description to be set; can

be a NULL (0) pointer or null object (Java).
hdlInstance Input. The handle of the process instance object whose description

is to be set.

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

ProcessInstance

434 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetName()
This API call sets the name of the process instance to the specified value (action
call).

The process instance must still be in the Ready state.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

ProcessInstance

Chapter 5. API action and activity implementation calls 435

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessInstanceSetName(FmcjProcessInstanceHandle hdlInstance,

char const * name)

C++
APIRET SetName(string const & name)

Java
public abstract
void setName(String name) throws FmcException

COBOL

FmcjPISetName.

CALL "FmcjProcessInstanceSetName"
USING
BY VALUE

hdlInstance
name

RETURNING
intReturnValue.

Parameters
hdlInstance Input. The handle of the process instance object whose name is to

be set.
name Input. The name to be set.

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

ProcessInstance

436 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The process instance name is not unique.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Start()
This API call starts a ready process instance (action call).

When successfully executed, the starter is set to the requester of this action and the
process administrator is determined.

When initial values are to be passed to the process instance to be started, an input
container can be provided (see also FmcjProcessInstance:: InContainer()). When the
process instance requires input and is started without specifying an input
container, the input-container values are not set. So, when, for example,
input-container values are queried from within an activity implementation,
FMC_ERROR_MEMBER_NOT_SET is returned.

For Java programs, start2() additionally allows to pass an input container.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

ProcessInstance

Chapter 5. API action and activity implementation calls 437

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessInstanceStart(FmcjProcessInstanceHandle hdlInstance,

FmcjReadWriteContainerHandle input)

C++
APIRET Start()

APIRET Start(FmcjReadWriteContainer const & input)

Java
public abstract
void start() throws FmcException

public abstract
void start2(ReadWriteContainer input) throws FmcException

COBOL
FmcjPIStart.

CALL "FmcjProcessInstanceStart"
USING
BY VALUE

hdlInstance
inputValue

RETURNING
intReturnValue.

Parameters
hdlInstance Input. The handle of the process instance object to be started.
input Input. The input container of the process instance.

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

ProcessInstance

438 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Suspend()
This API call suspends (temporarily stops) the process instance (action call).

The process instance must be in state Running. All non-autonomous subprocesses
with respect to control autonomy are also suspended if the deep option is true.
Autonomous subprocesses are not considered.

The process instance remains in state Suspending as long as there are running
program activity implementations or suspending non-autonomous subprocesses.
When the activity implementations completed their executions and when the
non-autonomous subprocesses reached the Suspended state, the process instance is
put into the Suspended state.

Optionally, a date may be specified up to when the process instance is suspended;
it is then automatically resumed, together with the non-autonomous subprocesses,
if the deep option had been specified.

For Java programs, suspend2() additionally allows to provide a date at which the
process instance is automatically resumed.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

ProcessInstance

Chapter 5. API action and activity implementation calls 439

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessInstanceSuspend(

FmcjProcessInstanceHandle hdlInstance,
bool deep)

APIRET FMC_APIENTRY FmcjProcessInstanceSuspendUntil(
FmcjProcessInstanceHandle hdlInstance,
FmcjCDateTime const * time,
bool deep)

C++
APIRET Suspend(bool deep)

APIRET Suspend(FmcjDateTime const & time, bool deep)

Java
public abstract
void suspend(boolean deep) throws FmcException

public abstract
void suspend2(Calendar time, boolean deep) throws FmcException

COBOL
FmcjPISuspend.

CALL "FmcjProcessInstanceSuspend"
USING
BY VALUE

hdlInstance
deep

RETURNING
intReturnValue.

Parameters
deep Input. An indicator whether also non-autonomous subprocesses are

to be suspended.
hdlInstance Input. The handle of the process instance object to be suspended.
time Input. The date/time or a pointer to the date/time until which the

process instance is to be suspended.

ProcessInstance

440 MQSeries Workflow for OS/390 Programming Guide

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Terminate()
This API call terminates a process instance and all of its non-autonomous
subprocesses (action call).

The process instance must be in states Running, Suspended, or Suspending.

The process instance is put into state terminating as long as there are running
activity implementations or terminating non-autonomous subprocesses. When the
activity implementations completed their executions or when the non-autonomous
subprocesses terminated, the process instance is put into the Terminated state. When
the process instance has reached the Terminated state, it is deleted depending on the
setting of the “delete finished items” option.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process administration authorization
v Be the process administrator
v Be the system administrator

ProcessInstance

Chapter 5. API action and activity implementation calls 441

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstance

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessInstanceTerminate(FmcjProcessInstanceHandle hdlInstance)

C++
APIRET Terminate()

Java
public abstract
void terminate() throws FmcException

COBOL

FmcjPITerminate.

CALL "FmcjProcessInstanceTerminate"
USING
BY VALUE

hdlInstance
RETURNING

intReturnValue.

Parameters
hdlInstance Input. The handle of the process instance object to be terminated.

Return type
long/ APIRET The result of making this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

ProcessInstance

442 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProcessInstanceList actions
A process instance list represents a set of process instances. All process instances
which are accessible through this list have the same characteristics. These
characteristics are specified by a filter. Additionally, sort criteria can be applied
and, after that, a threshold to restrict the number of process instances to be
transferred from the execution server to the client.

The process instance list definition is stored persistently.

A process instance list is uniquely identified by its name, type, and owner. It can
be defined for general access purposes; it is then of a public type. Or, it can be
defined for some specific user; it is then of a private type.

Other lists that can be defined are process template lists or worklists.
FmcjPersistentList or PersistentList represents the common properties of all lists.

In C++, FmcjProcessInstanceList is a subclass of the FmcjPersistentList class and
inherits all properties and methods. In the Java language, ProcessInstanceList is
thus a subclass of the PersistentList class and inherits all properties and methods.
Similarly, in C or COBOL, common implementations of functions are taken from
FmcjPersistentList. That is, common functions start with the prefix
FmcjPersistentList; they are also defined starting with the prefix
FmcjProcessInstanceList.

The following sections describe the actions which can be applied on a process
instance list. See “ProcessInstanceList” on page 268 for a complete list of API calls.

QueryProcessInstances()
This API call retrieves the primary information for all process instances
characterized by the specified process instance list from the MQSeries Workflow
execution server (action call).

ProcessInstance

Chapter 5. API action and activity implementation calls 443

From the set of qualifying process instances, only those are retrieved the user is
authorized for. The user is authorized for a process instance if the process instance:
v Does not belong to any category
v Does belong to a category and the user has global process authorization or

global process administration authorization or selected process authorization or
selected process administration authorization for that category

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v StartTime
v State
v SuspensionExpirationTime
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

In C, C++, and COBOL, any process instances retrieved are appended to the
supplied vector of process instances. If you want to read those process instances
only which are currently included in the process instance list, you have to clear the
vector before you issue this API call.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessInstanceList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessInstanceListQueryProcessInstances(

FmcjProcessInstanceListHandle hdlList,
FmcjProcessInstanceVectorHandle * instances)

ProcessInstanceList

444 MQSeries Workflow for OS/390 Programming Guide

C++
APIRET QueryProcessInstances(

vector<FmcjProcessInstance> & instances) const

Java
public abstract
ProcessInstance[] queryProcessInstances() throws FmcException

COBOL

FmcjPILQueryProcInsts.

CALL "FmcjProcessInstanceListQueryProcessInstances"
USING
BY VALUE

hdlList
BY REFERENCE

instances
RETURNING

intReturnValue.

Parameters
hdlList Input. The handle of the process instance list to be queried.
instances Input/Output. The vector of qualifying process instances.

Return type
long/ APIRET The result returned by this API call - see return codes below.
ProcessInstance[]

The qualifying process instances.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance list no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

ProcessInstanceList

Chapter 5. API action and activity implementation calls 445

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example see “Query worklists (C)” on page 536
v For a C++ example see “Query worklists (C++)” on page 538
v For a COBOL example, see “Query worklists (COBOL)” on page 542

ProcessInstanceNotification actions
A ProcessInstanceNotification object represents a notification on a process instance
assigned to a user.

Other items assigned to users are activity instance notifications and work items.
FmcjItem or Item represents the common properties of all items.

In C++, FmcjProcessInstanceNotification is thus a subclass of the FmcjItem class
and inherits all properties and methods. In Java, ProcessInstanceNotification is thus
a subclass of the Item class and inherits all properties and methods. Similarly, in C
or COBOL, common implementations of functions are taken from FmcjItem. That
is, common functions start with the prefix FmcjItem; they are also defined starting
with the prefix FmcjProcessInstanceNotification.

A process instance notification is uniquely identified by its object identifier.

The following sections describe the actions which can be applied on a process
instance notification. See “ProcessInstanceNotification” on page 269 for a complete
list of API calls.

PersistentObject()
This API call retrieves the process instance notification identified by the passed
object identifier from the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the process instance
notification is to be retrieved is identified by the execution service object. The
transient object is then created or updated with all information - primary and
secondary - of the process instance notification.

In C++, when the process instance notification object to be initialized is not empty,
that object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process instance notification handle already points to some object. In
Java, a process instance notification is newly created; the execution service acts as a
factory.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the item owner
v Work item authorization

ProcessInstanceList

446 MQSeries Workflow for OS/390 Programming Guide

v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessInstanceNotificationPersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessInstanceNotificationHandle * hdlItem)

C++
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

Java
public abstract

ProcessInstanceNotification
ExecutionService.processInstanceNotification(String oid)

throws FmcException

COBOL

FmcjPINPersistentObj.

CALL "FmcjProcessInstanceNotificationPersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlItem

RETURNING
intReturnValue.

Parameters
hdlItem Input/Output. The address of the handle to the process instance

notification object to be set.
oid Input. The object identifier of the process instance notification to be

retrieved.
service Input. The service object representing the session with the

execution server.

ProcessInstanceNotification

Chapter 5. API action and activity implementation calls 447

Return type
long/ APIRET The result returned by this API call - see return codes below.
ProcessInstanceNotification

The process instance notification retrieved.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance notification .

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProcessTemplate actions
A ProcessTemplate object is the frozen state of a process model from which it is
created via translation. All program definitions and data structures referenced by
the process model are copied into the process template (early binding).
Subprocesses are bound lately. Their definitions are only located during execution.

A process template is uniquely identified by its object identifier or by its name and
a valid-from date. This valid-from date determines since when the process template
can be used to create process instances.

When process templates are queried from the execution server, then only currently
valid process templates are returned.

The following sections describe the actions which can be applied on a process
template. See “ProcessTemplate” on page 271 for a complete list of API calls.

CreateAndStartInstance()
This API call creates a process instance from the specified process template and
starts the resulting process instance (action call).

Depending on the keepName option, a process instance name must be provided. If
the process instance name is to be kept as is, you cannot provide an empty string.

ProcessInstanceNotification

448 MQSeries Workflow for OS/390 Programming Guide

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

If a unique name may be generated by MQSeries Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created with

a default name ProcessTemplateName$Oid, where Oid is a printable version of the
process instance object identifier. Since the process instance name cannot be
longer than 63 characters, the process template name can be shortened.

v If a process instance name is provided, that name is kept as long as it is unique.
If the provided process instance name is already used for another instance, an
instance is created with the name name$Oid, where Oid is a printable version of
the process instance object identifier. Since the process instance name cannot be
longer than 63 characters, the name can be shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains the primary attribute values
only.

When initial values are to be passed to the process instance to be created and
started, an input container can be provided - see also
FmcjProcessTemplate::InContainer(). When a process instance that requires input is
started without specifying an input container, the input-container values are not
set. When, for example, input-container values are queried from within an activity
implementation, FMC_ERROR_MEMBER_NOT_SET is returned.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

See createAndStartInstance; additionally allows to pass an input container.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessTemplate

ProcessTemplate

Chapter 5. API action and activity implementation calls 449

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessTemplateCreateAndStartInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

C++
APIRET CreateAndStartInstance(

string const * name,
string const * reserved1,
string const * reserved2,
FmcjProcessInstance & newInstance,
bool keepName = false) const;

APIRET CreateAndStartInstance(
string const * name,
string const * reserved1,
string const * reserved2,
FmcjReadWriteContainer const & input,
FmcjProcessInstance & newInstance,
bool keepName = false) const;

Java
public abstract
ProcessInstance createAndStartInstance(

String name,
String reserved1,
String reserved2,
boolean keepName) throws FmcException

public abstract
ProcessInstance createAndStartInstance2(

String name,
String reserved1,
String reserved2,
ReadWriteContainer input,
boolean keepName) throws FmcException

ProcessTemplate

450 MQSeries Workflow for OS/390 Programming Guide

XML
<!-- ProcessTemplateCreateAndStart =================== -->
<!ELEMENT ProcessTemplateCreateAndStartInstance

(ProcTemplName,
ProcInstName,
KeepName,
ProcInstInputData) >

<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT ProgInstName (#PCDATA) >
<!ELEMENT KeepName (#PCDATA) >

<!-- Expected values: {true, false} -->
<!ELEMENT ProcInstInputData (%CONTAINER;) >

<!ELEMENT ProcessTemplateCreateAndStartInstanceResponse
(ProcessInstance
| Exception) >

<!ELEMENT ProcessInstance
(ProcInstID,

ProcInstName,
ProcInstParentName?,
ProcInstTopLevelName,
ProcInstDescription?,
ProcInstState,
LastStateChangeTime,
LastModificationTime,
ProcTemplID,
ProcTemplName,
Icon,
Category?) >

<!ELEMENT ProcInstID (#PCDATA) >
<!ELEMENT ProcInstDescription (#PCDATA) >
<!ELEMENT ProcInstName (#PCDATA) >
<!ELEMENT ProcInstParentName (#PCDATA) >
<!ELEMENT ProcInstTopLevelName (#PCDATA) >
<!ELEMENT ProcInstState (#PCDATA) >

<!-- Expected values: {Ready,Running,Finished,Terminated,
Suspended, Terminating,
Suspending,Deleted} -->

<!ELEMENT LastModificationTime (#PCDATA) >
<!ELEMENT LastStateChangeTime (#PCDATA) >
<!ELEMENT ProcTemplID (#PCDATA) >
<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT Icon (#PCDATA) >
<!ELEMENT Category (#PCDATA) >
<!ELEMENT Exception

(Rc, Parameters, MessageText?, Origin) >
<!-- Message text is optional, as it will be ignored

in messages being sent *to* the Wf server. -->
<!ELEMENT Parameters

(Parameter*) >
<!ELEMENT Parameter (#PCDATA) >
<!ELEMENT Rc (#PCDATA) >
<!ELEMENT MessageText (#PCDATA) >
<!ELEMENT Origin (#PCDATA) >

ProcessTemplate

Chapter 5. API action and activity implementation calls 451

COBOL
FmcjPTCreateAndStartInst.

CALL "FmcjProcessTemplateCreateAndStartInstance"
USING
BY VALUE

hdlTemplate
name
reserved1
reserved2
inputValue
keepName

BY REFERENCE
newInstance

RETURNING
intReturnValue.

Parameters
hdlTemplate Input. The handle of the process template object to be used.
input Input. The input container of the process instance.
keepName Input. True, if only the specified name can be used for the process

instance. False, if a unique name can be generated.
name Input. The name of the process instance to be created and started.
newInstance Input/Output. The newly created and started process instance.
returnCode Input/Output. The result of calling this method - see below.
reserved1/reserved2

Input. Pass a 0 (NULL) pointer or an empty string.

Return type
APIRET The return code from this API call - see return codes below.
ProcessInstance*/ ProcessInstance

A pointer to the newly created and started process instance or the
newly created and started process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template no longer exists or is no longer valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

ProcessTemplate

452 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FMC_ERROR_XML_DOCUMENT_INVALID(1100)
The document is not a valid XML document.

FMC_ERROR_XML_NO_MQSWF_DOCUMENT(1101)
The document is not a valid MQSeries Workflow XML document.

FMC_ERROR_XML_WRONG_DATA_STRUCTURE(1103)
The type of the container is incorrect.

FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND(1104)
The specified data member is not part of the container.

FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE(1105)
The type of the data member value passed is incorrect.

XML example
<ProcessTemplateCreateAndStartInstance>

<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<ProgInstName>Credit Request #658321<ProgInstName>
<KeepName>true</KeepName>
<ProcInstInputData>

<CreditData>
<!-- here comes the data for data structure CreditData -->

</CreditData>
</ProcInstInputData>

</ProcessTemplateCreateAndStartInstance>

<ProcessTemplateCreateAndStartInstanceResponse>
<ProcessInstance>

<ProcInstID>42424242EFEFEFEF</ProcInstID>
<ProcInstName>Credit Request#658321</ProcInstName>
<ProcInstTopLevelName>Credit Request#658321</ProcInstTopLevelName>
<ProcInstDescription>Sample description</ProcInstDescription>
<ProcInstState>Finished</ProcInstState>
<LastStateChangeTime>1999-05-18 14:35:00</LastStateChgTime>
<LastModificationTime>1999-05-19 23:40:00</LastModTime>
<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<Icon>fmcpcred</Icon>
<Category>Finance</Category>

</ProcessInstance>
</ProcessTemplateCreateAndStartInstanceResponse>

CreateInstance()
This API call creates a process instance from the specified process template (action
call).

Depending on the keepName option, a process instance name must be provided. If
the process instance name is to be kept as is, you cannot provide an empty string.

The following rules apply for specifying a process instance name:

ProcessTemplate

Chapter 5. API action and activity implementation calls 453

v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

If a unique name may be generated by MQSeries Workflow, the following applies:
v If no name or an empty process instance name is provided, an instance is

created with a default name ProcessTemplateName$Oid, where Oid is a printable
version of the process instance object identifier. Since the process instance name
cannot be longer than 63 characters, the process template name can be
shortened.

v If a process instance name is provided, that name is kept as long as it is unique.
If the provided process instance name is already used for another instance, an
instance is created with the name name$Oid, where Oid is a printable version of
the process instance object identifier. Since the process instance name cannot be
longer than 63 characters, the name can be shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains the primary attribute values
only.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessTemplate

COBOL fmcvars.cpy, fmcperf.cpy

ProcessTemplate

454 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY FmcjProcessTemplateCreateInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

C++
APIRET CreateInstance(

string const * name,
string const * reserved1,
string const * reserved2,
FmcjProcessInstance & newInstance,
bool keepName = false) const

Java
public abstract
ProcessInstance createInstance(

String name,
String reserved1,
String reserved2,
boolean keepName) throws FmcException

COBOL

FmcjPTCreateInst.

CALL "FmcjProcessTemplateCreateInstance"
USING
BY VALUE

hdlTemplate
name
reserved1
reserved2
keepName

BY REFERENCE
newInstance

RETURNING
intReturnValue.

Parameters
hdlTemplate Input. The handle of the process template object to be used.
keepName Input. True, if only the specified name can be used for the process

instance. False, if a unique name can be generated.
name Input. The name of the process instance to be created.
newInstance Input/Output. The newly created process instance.
reserved1/reserved2

Input. Pass a 0 (NULL) pointer or an empty string.
returnCode Input/Output. The result of calling this method - see below.

ProcessTemplate

Chapter 5. API action and activity implementation calls 455

Return type
APIRET The return code from this API call - see return codes below.
ProcessInstance*/ ProcessInstance

A pointer to the newly created process instance or the newly
created process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template no longer exists or is no longer valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Delete()
This API call deletes the specified process template(s) from the execution server
(action call).

Since process templates are versioned, you can specify whether you want to delete
the currently valid process template, the past versions of the process template, or
the future versions of the process template. When all options are specified, all
versions of the process template are deleted. Deletion always applies to the
currently existing process templates only.

For Java programs, delete2() additionally allows for specifying the versions to be
deleted.

There are no impacts on your transient representation of the process template; in
C, C++, or COBOL, you must destruct or deallocate the transient object when it is
no longer needed.

ProcessTemplate

456 MQSeries Workflow for OS/390 Programming Guide

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process modeling authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessTemplate

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessTemplateDelete(FmcjProcessTemplateHandle hdlTemplate,

bool pastVersions,
bool currentVersion,
bool futureVersions)

C++
APIRET Delete(bool pastVersions = true,

bool currentVersion= true,
bool futureVersions= true)

Java
public abstract
void delete() throws FmcException

public abstract
void delete2(boolean pastVersions,

boolean currentVersion,
boolean futureVersions) throws FmcException

ProcessTemplate

Chapter 5. API action and activity implementation calls 457

COBOL

FmcjPTDelete.

CALL "FmcjProcessTemplateDelete"
USING
BY VALUE

hdlTemplate
RETURNING

intReturnValue.

Parameters
currentVersion Input. An indication whether the current version of this process

template is to be deleted.
futureVersions Input. An indication whether future versions of this process

template are to be deleted.
hdlTemplate Input. The handle of the process template to be deleted.
pastVersions Input. An indication whether past versions of this process template

are to be deleted.

Return type
long/ APIRET The result returned by this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template or its specified versions no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ExecuteProcessInstance()
This API call creates a process instance from the specified process template and
executes the resulting process instance (action call).

ProcessTemplate

458 MQSeries Workflow for OS/390 Programming Guide

The program execution server must have been started so that the activity
implementations are executed.

This API call can be issued synchronously or asynchronously. When called
synchronously, the process instance should be fast enough to complete within the
application wait time. When called asynchronously, a user context can be specified
to correlate the response received later. Additionally, a correlation ID can be
received which can be used to wait for the specific response. If a buffer to hold the
correlation ID is specified, then it must initially point to FMCJ_NO_CORRELID.

Depending on the keepName option, a process instance name must be provided. If
the process instance name is to be kept as is, you cannot provide an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale, except

the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing blanks,
and no consecutive blanks.

If a unique name may be generated by MQSeries Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created with

a default name ProcessTemplateName$Oid, where Oid is a printable version of the
process instance object identifier. Since the process instance name cannot be
longer than 63 characters, the process template name can be shortened.

v If a process instance name is provided, that name is kept as long as it is unique.
If the provided process instance name is already used for another instance, an
instance is created with the name name$Oid, where Oid is a printable version of
the process instance object identifier. Since the process instance name cannot be
longer than 63 characters, the name can be shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains all attributes, primary and
secondary.

When initial values are to be passed to the process instance to be created and
started, an input container can be provided - see also
FmcjProcessTemplate::InContainer(). When a process instance that requires input is
started without specifying an input container, the input-container values are not
set. When, for example, input-container values are queried from within an activity
implementation, FMC_ERROR_MEMBER_NOT_SET is returned.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

On completion, the executed process instance and its output container are
returned. The process instance contains values for the primary attributes only. In
case of process instance termination, a container is not returned, that is, a 0-pointer
or empty container is returned.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

ProcessTemplate

Chapter 5. API action and activity implementation calls 459

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java not supported

C
APIRET FMC_APIENTRY FmcjProcessTemplateExecuteProcessInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance,
FmcjReadOnlyContainerHandle * output)

APIRET FMC_APIENTRY FmcjProcessTemplateExecuteProcessInstanceAsync(
FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjCorrelID * correlID,
char const * userContext)

ProcessTemplate

460 MQSeries Workflow for OS/390 Programming Guide

C++
APIRET ExecuteProcessInstance(

FmcjProcessInstance & newInstance,
FmcjReadOnlyContainer & output,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false) const

APIRET ExecuteProcessInstance(
FmcjReadWriteContainer const & input,
FmcjProcessInstance & newInstance,
FmcjReadOnlyContainer & output,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false) const

APIRET ExecuteProcessInstanceAsync(
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false,
FmcjCorrelID * correlID = 0,
string const * userContext = 0)

APIRET ExecuteProcessInstanceAsync(
FmcjReadWriteContainer const & input,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false,
FmcjCorrelID * correlID = 0,
string const * userContext = 0)

ProcessTemplate

Chapter 5. API action and activity implementation calls 461

XML
<!-- ProcessTemplateExecute ========================== -->
<!ELEMENT ProcessTemplateExecute

(ProcTemplName,
ProcInstName,
KeepName,
ProcInstInputData) >

<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT ProgramName (#PCDATA) >
<!ELEMENT KeepName (#PCDATA) >

<!-- Expected values: {true, false} -->
<!ELEMENT ProcInstInputData (%CONTAINER;) >
<!ELEMENT ProcessTemplateExecuteResponse

((ProcessInstance,
ProcInstOutputData)

| Exception) >
<!ELEMENT ProcessInstance

(ProcInstID,
ProcInstName,
ProcInstParentName?,
ProcInstTopLevelName,
ProcInstDescription?,
ProcInstState,
LastStateChangeTime,
LastModificationTime,
ProcTemplID,
ProcTemplName,
Icon,
Category?) >

<!ELEMENT ProcInstID (#PCDATA) >
<!ELEMENT ProcInstDescription (#PCDATA) >
<!ELEMENT ProcInstName (#PCDATA) >
<!ELEMENT ProcInstParentName (#PCDATA) >
<!ELEMENT ProcInstTopLevelName (#PCDATA) >
<!ELEMENT ProcInstState (#PCDATA) >

<!-- Expected values: { Ready, Running,
Finished, Terminated,
Suspended, Terminating,
Suspending, Deleted } -->

<!ELEMENT LastModificationTime (#PCDATA) >
<!ELEMENT LastStateChangeTime (#PCDATA) >
<!ELEMENT ProcTemplID (#PCDATA) >
<!ELEMENT ProcTemplName (#PCDATA) >
<!ELEMENT Icon (#PCDATA) >
<!ELEMENT Category (#PCDATA) >
<!ELEMENT ProcInstOutputData (%CONTAINER;) >
<!ELEMENT Exception

(Rc, Parameters, MessageText?, Origin) >
<!-- Message text is optional, as it will be ignored

in messages being sent *to* the Wf server. -->
<!ELEMENT Parameters

(Parameter*) >
<!ELEMENT Parameter (#PCDATA) >
<!ELEMENT Rc (#PCDATA) >
<!ELEMENT MessageText (#PCDATA) >
<!ELEMENT Origin (#PCDATA) >

ProcessTemplate

462 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjPTExecuteProcInst.

CALL "FmcjProcessTemplateExecuteProcessInstance"
USING
BY VALUE

hdlTemplate
name
reserved1
reserved2
inputValue
keepName

BY REFERENCE
newInstance
outputValue

RETURNING
intReturnValue.

FmcjPTExecuteProcInstAsync.

CALL "FmcjProcessTemplateExecuteProcessInstanceAsync"
USING
BY VALUE

hdlTemplate
name
reserved1
reserved2
inputValue
keepName

BY REFERENCE
correlID

BY VALUE
userContext

RETURNING
intReturnValue.

Parameters
correlID Input/Output. If specified, contains the correlation ID by which

this request can be correlated to a later response.
hdlTemplate Input. The handle of the process template object to be used.
input Input. The input container of the process instance.
keepName Input. True, if only the specified name can be used for the process

instance. False, if a unique name can be generated.
name Input. The name of the process instance to be executed.
newInstance Input/Output. The executed process instance.
output Output. The output container of the process instance.
returnCode Input/Output. The result of calling this method - see below.
reserved1/reserved2

Input. Pass a 0 (NULL) pointer or an empty string.
userContext Input. A user-defined context which can be used for correlation.

Return type
APIRET The return code from this API call - see return codes below.
ProcessInstance*

A pointer to the newly created and executed process instance.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.

ProcessTemplate

Chapter 5. API action and activity implementation calls 463

FMC_ERROR(1)
A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template no longer exists or is no longer valid.

FMC_ERROR_INVALID_CORRELATION_ID
The specified correlation ID does not point to
FMCJ_NO_CORRELID.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_INVALID_USER_CONTEXT(819)
The specified user context is longer than 254 characters.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FMC_ERROR_XML_DOCUMENT_INVALID(1100)
The document is not a valid XML document.

FMC_ERROR_XML_NO_MQSWF_DOCUMENT(1101)
The document is not a valid MQSeries Workflow XML document.

FMC_ERROR_XML_WRONG_DATA_STRUCTURE(1103)
The type of the container is incorrect.

FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND(1104)
The specified data member is not part of the container.

FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE(1105)
The type of the data member value passed is incorrect.

XML example
<ProcessTemplateExecute>

<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<ProcInstName>Credit Request #658321</ProcInstName>
<KeepName>true</KeepName>
<ProcInstInputData>

</CreditData>
<!-- here comes the data for data structure CreditData -->
</CreditData>

</ProcInstInputData>
</ProcessTemplateExecute>

ProcessTemplate

464 MQSeries Workflow for OS/390 Programming Guide

<ProcessTemplateExecuteResponse>
<ProcessInstance>

<ProcInstID>42424242EFEFEFEF</ProcInstID>
<ProcInstName>Credit Request #658321</ProcInstName>
<ProcInstTopLevelName>Credit Request #658321</ProcInstTopLevelName>
<ProcInstDescription>Sample description</ProcInstDescription>
<ProcInstState>Finished</ProcInstState>
<LastStateChangeTime>1999-05-18 14:35:00</LastStateChgTime>
<LastModificationTime>1999-05-19 23:40:00</LastModTime>
<ProcTemplID>84848484FEFEFEFE</ProcTemplID>
<ProcTemplName>OnlineCreditRequest</ProcTemplName>
<Icon>fmcpcred</Icon>
<Category>Finance</Category>

</ProcessInstance>
<ProcInstOutputData>

<CreditData>
<!-- here comes the data structure data -->
</CreditData>

</ProcInstOutputData>
</ProcessTemplateExecuteResponse>

InitialInContainer()
This API call retrieves the input container associated with the process template
from the MQSeries Workflow execution server (action call).

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessTemplate

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessTemplateInitialInContainer(

FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle * input)

C++
APIRET InContainer(FmcjReadWriteContainer & input)

ProcessTemplate

Chapter 5. API action and activity implementation calls 465

Java
public abstract
ReadWriteContainer initialInContainer() throws FmcException

COBOL
FmcjPTInitialInCtnr.

CALL "FmcjProcessTemplateInitialInContainer"
USING
BY VALUE

hdlTemplate
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
hdlTemplate Input. The handle of the process template object whose input

container is to be retrieved.
input Input/Output. The address of the input container handle or the

input container of the process template to be set.

Return type
long/ APIRET The result returned by this API call - see return codes below.
ReadWriteContainer

The input container of the process template.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template no longer exists or is no longer valid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

ProcessTemplate

466 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PersistentObject()
This API call retrieves the process template identified by the passed object
identifier from the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the process template is to be
retrieved is identified by the execution service object. The transient object is then
created or updated with all information - primary and secondary - of the process
template.

In C++, when the process template object to be initialized is not empty, that object
is destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the
process template handle already points to some object. In Java, a process template
is newly created; the execution service acts as a factory.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessTemplatePersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessTemplateHandle * hdlTemplate)

C++
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

ProcessTemplate

Chapter 5. API action and activity implementation calls 467

Java
public abstract

ProcessTemplate ExecutionService.processTemplate(String oid)
throws FmcException

COBOL

FmcjPTPersistentObj.

CALL "FmcjProcessTemplatePersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlTemplate

RETURNING
intReturnValue.

Parameters
hdlTemplate Input/Output. The address of the handle to the process template

object to be set.
oid Input. The object identifier of the process template to be retrieved.
service Input. The service object representing the session with the

execution server.

Return type
long/ APIRET The result returned by this API call - see return codes below.
ProcessTemplate

The process template retrieved.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template no longer exists or is no longer valid.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

ProcessTemplate

468 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProgramTemplate()
This API call retrieves the program template identified by the name passed from
the MQSeries Workflow execution server (action call).

A program template comprises data about its associated input and output
containers, implementation data for all specified platforms and various other
properties. In case structures from activity was specified for the program during
Buildtime, no input or output container information is available; any container can
be passed to the program when executed.

When containers are provided for a program template, they are initial containers.
Therefore, no default values are set for data members. Also, predefined data
members are not set.

The result of calling this API call is dependent on the system where the request is
executed, because there are values returned that can be inherited from the system.

The program template is versioned within the context of the corresponding process
template.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessTemplate

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessTemplateProgramTemplate(

FmcjProcessTemplateHandle hdlTemplate,
char const * programName,
FmcjProgramTemplateHandle * program)

ProcessTemplate

Chapter 5. API action and activity implementation calls 469

C++
APIRET ProgramTemplate(string const & programName,

FmcjProgramTemplate & program) const

Java
public abstract
ProgramTemplate programTemplate(String programName)
throws FmcException

COBOL
FmcjPTProgramTempl.

CALL "FmcjProcessTemplateProgramTemplate"
USING
BY VALUE

hdlTemplate
programName

BY REFERENCE
programValue

RETURNING
intReturnValue.

Parameters
hdlTemplate Input. The handle of the process template where a program

template is to be retrieved.
program Input/Output. The program template retrieved.
programName Input. The name of the program template to be retrieved.

Return type
APIRET The result of calling this API call - see return codes below.
ProgramTemplate/ProgramTemplate*

The program template or a pointer to the program template
retrieved.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_BACK_LEVEL_OBJECT
The request can only be executed on process templates translated
after MQSeries Workflow 3.2.1 has been installed.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template no longer exists or is no longer valid or the
program template does not exist within the process template.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

ProcessTemplate

470 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()
This API call refreshes the process template from the MQSeries Workflow
execution server (action call).

All information about the process template - primary and secondary - is retrieved.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessTemplate

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjProcessTemplateRefresh(FmcjProcessTemplateHandle hdlTemplate)

C++
APIRET Refresh()

ProcessTemplate

Chapter 5. API action and activity implementation calls 471

Java
public abstract
void refresh() throws FmcException

COBOL

FmcjPTRefresh.

CALL "FmcjProcessTemplateRefresh"
USING
BY VALUE

hdlTemplate
RETURNING

intReturnValue.

Parameters
hdlTemplate Input. The handle of the process template object to be refreshed.

Return type
long/ APIRET The result returned by this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template no longer exists or is no longer valid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ProcessTemplate

472 MQSeries Workflow for OS/390 Programming Guide

ProcessTemplateList actions
A process template list represents a set of process templates. All process templates
which are accessible through this list have the same characteristics. These
characteristics are specified by a filter. Additionally, sort criteria can be applied
and, after that, a threshold to restrict the number of process templates to be
transferred from the execution server to the client.

The process template list definition is stored persistently.

A process template list is uniquely identified by its name, type, and owner. It can
be defined for general access purposes; it is then of a public type. Or, it can be
defined for some specific user; it is then of a private type.

Other lists that can be defined are process instance lists or worklists.
FmcjPersistentList or PersistentList represents the common properties of all lists.

In C++, FmcjProcessTemplateList is thus a subclass of the FmcjPersistentList class
and inherits all properties and methods. In Java, ProcessTemplateList is thus a
subclass of the PersistentList class and inherits all properties and methods.
Similarly, in C or COBOL, common implementations of functions are taken from
FmcjPersistentList. That is, common functions start with the prefix
FmcjPersistentList; they are also defined starting with the prefix
FmcjProcessTemplateList.

The following sections describe the actions which can be applied on a process
template list. See “ProcessTemplateList” on page 273 for a complete list of API
calls.

QueryProcessTemplates()
This API call retrieves the primary information for all process templates
characterized by the specified process template list from the MQSeries Workflow
execution server (action call).

From the set of qualifying process templates, only those are retrieved, the user is
authorized for. The user is authorized for a process template if the process
template:
v Does not belong to any category
v Does belong to a category and the user has global process authorization or

global process administration authorization or selected process authorization or
selected process administration authorization for that category

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name
v ValidFromTime

ProcessTemplateList

Chapter 5. API action and activity implementation calls 473

In C, C++, and COBOL, any process templates retrieved are appended to the
supplied vector of process templates. If you want to read those process templates
only which are currently included in the process template list, you have to clear
the vector before you make this API call.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProcessTemplateList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjProcessTemplateListQueryProcessTemplates(

FmcjProcessTemplateListHandle hdlList,
FmcjProcessTemplateVectorHandle * templates)

C++
APIRET QueryProcessTemplates(

vector<FmcjProcessTemplate> & templates) const;

Java
public abstract
ProcessTemplate[] queryProcessTemplates() throws FmcException

COBOL

FmcjPTLQueryProcTempls.

CALL "FmcjProcessTemplateListQueryProcessTemplates"
USING
BY VALUE

hdlList
BY REFERENCE

templates
RETURNING

intReturnValue.

ProcessTemplateList

474 MQSeries Workflow for OS/390 Programming Guide

Parameters
hdlList Input. The handle of the process template list to be queried.
templates Input/Output. The vector of qualifying process templates.

Return type
long/ APIRET The result returned by this API call - see return codes below.
ProcessTemplate[]

The qualifying process templates.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template list no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example see “Query worklists (C)” on page 536
v For a C++ example see “Query worklists (C++)” on page 538
v For a Java example, see “Query worklists (Java)” on page 539
v For a COBOL example, see “Query worklists (COBOL)” on page 542

ProgramTemplate actions
A ProgramTemplate object represents the definition of a program within a process
template.

A program template is uniquely identified by its name and the process template in
which it is contained. This means that it is versioned via the containing process
template.

The following sections describe the actions which can be applied to a program
template. See “ProgramTemplate” on page 275 for a complete list of API calls.

ProcessTemplateList

Chapter 5. API action and activity implementation calls 475

Execute()
This API call requests the execution of the specified program template on the
program execution server (PES) of the system where the user is logged on.

This API call can be issued synchronously or asynchronously. When called
synchronously, the program should be fast enough to complete within the
application wait time. When called asynchronously, a user context can be specified
to correlate the response received later. Additionally, a correlation ID can be
received which can be used to wait for the specific response. If a buffer to hold the
correlation ID is specified, then it must initially point to FMCJ_NO_CORRELID.

Depending on the input container access definition of the program template, an
input container must be specified for execution. Depending on the output container
access definition, an output container can be specified to hold the values returned
by program execution. If an output container is specified for the program and the
output parameter is not provided, the output container defined for the program is
used. When structures from activity is defined, containers passed can be of any type,
since the program thus states that it is able to handle any container. When
structures from activity is not defined, any containers passed must conform to the
type defined in the program settings.

Initial containers returned by FmcjProcessTemplate::ProgramTemplate() do not
contain any default values. When initial values are to be passed to the program,
they can be set in the input or output container before making this API call.

The output container, if any, is returned on completion. The _RC data member of
the output container denotes the program return code. The RC is thus available
only if an output container is defined.

Specification of a priority influences OS/390 Workload management. The priority
must be a value between 0 and 9.

Notes:

1. Passthrough() cannot be called from a program executed via the PES.
2. The output container is an input/output parameter. For Java, this means that it

is passed as an input parameter and is the return value of the Execute()
method; the input parameter is not changed.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be logged on

Required connection

MQSeries Workflow program execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ProgramTemplate

ProgramTemplate

476 MQSeries Workflow for OS/390 Programming Guide

COBOL fmcjvars.cpy, fmcjperf.cpy

C
APIRET FMC_APIENTRY FmcjProgramTemplateExecute(

FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output)

APIRET FMC_APIENTRY FmcjProgramTemplateExecuteWithOptions(
FmcjProcessTemplateHandle hdlTemplate,
unsigned long priority,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output)

APIRET FMC_APIENTRY FmcjProgramTemplateExecuteAsync(
FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output,
FmcjCorrelID * correlID,
char const * userContext)

APIRET FMC_APIENTRY FmcjProgramTemplateExecuteWithOptionsAsync(
FmcjProcessTemplateHandle hdlTemplate,
unsigned long priority,
FmcjReadWriteContainerHandle input,
FmcjReadWriteContainerHandle output,
FmcjCorrelID * correlID,
char const * userContext)

C++
APIRET Execute(FmcjReadWriteContainer const * input = 0,

FmcjReadWriteContainer * output = 0,
unsigned long priority = 0) const

APIRET ExecuteAsync(FmcjReadWriteContainer const * input = 0,
FmcjReadWriteContainer const * output = 0,
FmcjCorrelID * correlID = 0,
string const * userContext = 0,
unsigned long priority = 0) const

Java
public abstract
ReadWriteContainer execute() throws FmcException

public abstract
ReadWriteContainer execute2(ReadWriteContainer input,

ReadWriteContainer output,
long priority)

throws FmcException

ProgramTemplate

Chapter 5. API action and activity implementation calls 477

COBOL
FmcjPgTExecute.

CALL "FmcjProgramTemplateExecute"
USING
BY VALUE

hdlTemplate
inputValue
outputValue

BY REFERENCE
returnCode

RETURNING
intReturnValue.

FmcjPgTExecuteWithOptions.

CALL "FmcjProgramTemplateExecuteWithOptions"
USING
BY VALUE

hdlTemplate
priority
inputValue
outputValue

BY REFERENCE
returnCode

RETURNING
intReturnValue.

FmcjPgTExecuteAsync.

CALL "FmcjProgramTemplateExecuteAsync"
USING
BY VALUE

hdlTemplate
inputValue
outputValue

BY REFERENCE
correlID

BY VALUE
userContext

RETURNING
intReturnValue.

FmcjPgTExecuteWithOptionsAsync.

CALL "FmcjProgramTemplateExecuteWithOptionsAsync"
USING
BY VALUE

hdlTemplate
priority
inputValue
outputValue

BY REFERENCE
correlID

BY VALUE
userContext

RETURNING
intReturnValue.

Parameters

ProgramTemplate

478 MQSeries Workflow for OS/390 Programming Guide

correlID Input/Output. If specified, contains the correlation ID by which
this request can be correlated to a later response.

hdlTemplate Input. The handle of the program template object to be executed.
input Input. The input container of the program.
output Input/Output. The output container of the program.
priority Input. The priority of the program to be executed.
userContext Input. A user-defined context which can be used for correlation.

Return type
long/APIRET The return code of calling this API call - see return codes below.
ReadWriteContainer

The output container of the program.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_IMPLEMENTATION_SUPPORT_MISMATCH(32015)
The program definition for the operating system platform the PES
is running on is not found.

FMC_ERROR_INVALID_CONTAINER(509)
The type of the container is incorrect or a container is expected but
not passed.

FMC_ERROR_INVALID_CORRELATION_ID(506)
The specified correlation ID does not point to
FMCJ_NO_CORRELID.

FMC_ERROR_INVALID_USER_CONTEXT(819)
The specified user context is longer than 254 characters.

FMC_ERROR_SUPPORT_MODE_MISMATCH(32014)
The execution mode of the program and the execution mode of the
PES do not match.

FMC_ERROR_UNEXPECTED_CONTAINER(510)
A container is passed but not expected by the program.

FMC_ERROR_USER_SUPPORT_MISMATCH(32013)
The execution user of the program and the execution user of the
PES do not match.

FMC_ERROR_COMMUNICATION(13)
The specified program execution server cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

FMC_ERROR_XML_DOCUMENT_INVALID(1100)
The document is not a valid XML document.

FMC_ERROR_XML_NO_MQSWF_DOCUMENT(1101)
The document is not a valid MQSeries Workflow XML document.

ProgramTemplate

Chapter 5. API action and activity implementation calls 479

FMC_ERROR_XML_WRONG_DATA_STRUCTURE(1103)
The type of the container is incorrect.

FMC_ERROR_XML_DATA_MEMBER_NOT_FOUND(1104)
The specified data member is not part of the container.

FMC_ERROR_XML_DATA_MEMBER_WRONG_TYPE(1105)
The type of the data member value passed is incorrect.

Service actions
A Service object represents the common aspects of MQSeries Workflow service
objects.

In C++, FmcjService is the superclass of the FmcjExecutionService class and
provides for all common properties and methods. In Java, Service is thus a
superclass of the ExecutionService class and provides for all common properties
and methods. Similarly, in C or COBOL, common implementations of functions are
taken from FmcjService. That is, common functions start with the prefix
FmcjService; they are also defined starting with the prefix FmcjExecutionService.

The following sections describe the actions which can be applied on a service. See
“Service” on page 280 for a complete list of API calls.

Refresh()
This API call refreshes the logon status from the server (action call).

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Logon required

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Service

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_FMC_APIENTRY

FmcjServiceRefresh(FmcjServiceHandle service)

#define FmcjExecutionServiceRefresh FmcjServiceRefresh

C++
APIRET Refresh()

ProgramTemplate

480 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
void refresh() throws FmcException

COBOL
FmcjSrvRefresh.

CALL "FmcjServiceRefresh"
USING
BY VALUE

serviceValue
RETURNING

intReturnValue.

Parameters
service Input. A handle to the service object representing the session with

an MQSeries Workflow server.

Return type
APIRET/long The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetPassword()
This API call allows a user’s password to be changed (action call).

Note: The password is case-sensitive.

The following rules apply for specifying a password:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale.
v Do not use DBCS characters.

Service

Chapter 5. API action and activity implementation calls 481

Note: If you intend to work in a multi-platform environment or switch between
code pages, it is recommended that you use alphabetic characters, digits,
and blanks only. This is because it cannot be guaranteed that special
characters are available in all code pages.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Logon required

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.Service

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_FMC_APIENTRY

FmcjServiceSetPassword(FmcjServiceHandle service,
char const * newPassword)

#define FmcjExecutionServiceSetPassword FmcjServiceSetPassword

C++
APIRET SetPassword(string const & newPassword) const

Java
public abstract
void setPassword(String newPassword) throws FmcException

COBOL

FmcjSrvSetPassword.

CALL "FmcjServiceSetPassword"
USING
BY VALUE

serviceValue
newPassword

RETURNING
intReturnValue.

Service

482 MQSeries Workflow for OS/390 Programming Guide

Parameters
newPassword Input. The new password to be used.
service Input. A handle to the service object representing the session with

an MQSeries Workflow server.

Return type
long/ APIRET The return code from this API call - see return codes below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_USERID_UNKNOWN(10)
The user no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_PASSWORD(12)
The password does not comply with the MQSeries Workflow
syntax rules.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

UserSettings()
This API call returns all settings of the logged on user (action call).

An empty object or a null pointer is returned if no user has logged on yet via this
service object.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Logon required

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Service

Chapter 5. API action and activity implementation calls 483

Java com.ibm.workflow.api.Service

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_FMC_APIENTRY

FmcjServiceUserSettings(FmcjServiceHandle service,
FmcjPersonHandle * user)

#define FmcjExecutionServiceUserSettings FmcjServiceUserSettings

C++
APIRET UserSettings(FmcjPerson & user) const

Java
public abstract
Person userSettings() throws FmcException

COBOL

FmcjSrvUserSettings.

CALL "FmcjServiceUserSettings"
USING
BY VALUE

serviceValue
BY REFERENCE

user
RETURNING

intReturnValue.

Parameters
returnCode Input/Output. The return code of calling this method - see return

codes below.
service Input. A handle to the service object representing the session with

an MQSeries Workflow server.
user Input/Output. The person object to contain or the address of the

person handle to point to the settings of the logged on user.

Return type
APIRET The return code from this API call - see return codes below.
IDispatch*/ Person

A pointer to the person settings or the person settings of the
logged on user.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

Service

484 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Workitem actions
A Workitem object represents an activity instance assigned to a user in order to be
worked on.

Other items assigned to users are process instance notifications and activity
instance notifications. FmcjItem or Item represents the common properties of all
items.

In C++, FmcjWorkitem is thus a subclass of the FmcjItem class and inherits all
properties and methods. In Java, WorkItem is thus a subclass of the Item class and
inherits all properties and methods. Similarly, in C or COBOL, common
implementations of functions are taken from FmcjItem. That is, common functions
start with the prefix FmcjItem; they are also defined starting with the prefix
FmcjWorkitem.

A work item is uniquely identified by its object identifier.

The following diagrams provide an overview of the possible work item states and
the actions which are allowed in those states, provided that the appropriate
authority has been granted. Note that the actions and possible states are dependent
on the process instance state, the work item is a part of.

Service

Chapter 5. API action and activity implementation calls 485

Figure 44. Work item states - process instance state running

Figure 45. Work item states - process instance state suspending or suspended

Workitem

486 MQSeries Workflow for OS/390 Programming Guide

The following sections describe the actions which can be applied on a work item.
See “WorkItem” on page 282 for a complete list of API calls.

CancelCheckOut()
This API call cancels the checkout of the work item (action call).

The work item must have been checked out and is put into the Ready state. The
associated process instance must be in the Running, Suspending, Suspended, or
Terminating state.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

Figure 46. Work item states - process instance state terminating or terminated

Workitem

Chapter 5. API action and activity implementation calls 487

C
APIRET FMC_APIENTRY
FmcjWorkitemCancelCheckOut(FmcjWorkitemHandle hdlWorkitem)

C++
APIRET CancelCheckOut()

Java
public abstract
void cancelCheckOut() throws FmcException

COBOL
FmcjWICancelCheckOut.

CALL "FmcjWorkitemCancelCheckOut"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is not in a required state.

Workitem

488 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

CheckIn()
This API call allows for the check in of a work item that was previously checked
out for user processing (action call).

Checking in a work item tells MQSeries Workflow that user processing has
finished and workflow processing under the control of MQSeries Workflow can
continue. The return code of the user processing and, optionally, the output
container values are passed back to MQSeries Workflow. As usual, these container
values and the return code can be used in exit conditions to let navigation
continue depending on the success of the processing and in transition conditions to
indicate how to proceed.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorkitemCheckIn(FmcjWorkitemHandle hdlWorkitem,

FmcjReadWriteContainerHandle output,
long returnCode)

C++
APIRET CheckIn(FmcjReadWriteContainer const * output,

long returnCode)

Workitem

Chapter 5. API action and activity implementation calls 489

Java
public abstract
void checkIn(ReadWriteContainer output,

int returnCode) throws FmcException

COBOL

FmcjWICheckIn.

CALL "FmcjWorkitemCheckIn"
USING
BY VALUE

hdlWorkitem
outputValue
returnCode

RETURNING
intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
output Input. A handle or pointer to the output container; can be a NULL

pointer.
returnCode Input. The return code of user processing.

Return type
long/ APIRET

The return code from this API call- see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is not checked out.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

Workitem

490 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

CheckOut()
This API call checks out a ready work item for user processing (action call).

The work item must processed by a program.

Checkout then means that processing is not done by MQSeries Workflow’s
inherent program-invocation mechanism. MQSeries Workflow assumes that
processing is done by user-specific means and changes the state of the work item
to CheckedOut.

The associated process instance must be in the Running state.

The caller can request program definitions for specific operating system platforms.
The following enumeration types can be used to specify the requested program
data.

C FmcjWorkitemProgramRetrieval

C++ FmcjWorkitem::ProgramRetrieval

Java com.ibm.workflow.api.WorkItemPackage.ProgramRetrieval

The enumeration constants can take the following values; it is strongly advised to
use the symbolic names instead of the associated integer values.
NotSet indicates that no value is set.

C Fmc_DP_NotSet

C++ FmcjWorkitem::NotSet

Java ProgramRetrieval.NOT_SET

COBOL Fmc-DP-NotSet
CommonDataOnly

returns only data common to all platforms, the description, the
icon, the unattended indicator, and the input and output
containers. Any platform specification is ignored.

C Fmc_WS_CommonDataOnly

C++ FmcjWorkitem::CommonDataOnly

Java ProgramRetrieval.COMMON_DATA_ONLY

COBOL Fmc-WS-CommonDataOnly
SpecifiedDefinitions

returns the program definition for the specified platform. A
platform must be specified.

C Fmc_WS_SpecifiedDefinitions

C++ FmcjWorkitem::SpecifiedDefinitions

Java ProgramRetrieval.SPECIFIED_DEFINITIONS

COBOL Fmc-WS-SpecifiedDefs

Workitem

Chapter 5. API action and activity implementation calls 491

AllDefinitions
returns all available program definitions. Any platform
specification is ignored.

C Fmc_WS_AllDefinitions

C++ FmcjWorkitem::AllDefinitions

Java ProgramRetrieval.ALL_DEFINITIONS

COBOL Fmc-WS-AllDefs

The following enumeration types can be used to specify the platform for which
program definitions are to be retrieved.

C FmcjImplementationDataBasis

C++ FmcjImplementationData::Basis

Java com.ibm.workflow.api.ProgramDataPackage.Basis

The enumeration constants can take the following values; it is strongly advised to
use the symbolic names instead of the associated integer values.
NotSet indicates that no value is set.

C Fmc_DP_NotSet

C++ FmcjImplementationData::NotSpecified

Java Basis.NOT_SPECIFIED

COBOL Fmc-DP-NotSet
OS2 indicates that the program definition for the OS/2 platform is

requested.

C Fmc_DP_OS2

C++ FmcjImplementationData::OS2

Java Basis.OS2

COBOL Fmc-DP-OS2
AIX indicates that the program definition for the AIX platform is

requested.

C Fmc_DP_AIX

C++ FmcjImplementationData::AIX

Java Basis.AIX

COBOL Fmc-DP-AIX
HPUX indicates that the program definition for the HP-UX platform is

requested.

C Fmc_DP_HPUX

C++ FmcjImplementationData::HPUX

Java Basis.HPUX

COBOL Fmc-DP-HPUX
Windows95 indicates that the program definition for the Windows 95 platform

is requested.

C Fmc_DP_Windows95

C++ FmcjImplementationData::Windows95

Workitem

492 MQSeries Workflow for OS/390 Programming Guide

Java Basis.WINDOWS_95

COBOL Fmc-DP-Windows95
WindowsNT indicates that the program definition for the Windows NT platform

is requested.

C Fmc_DP_WindowsNT

C++ FmcjImplementationData::WindowsNT

Java Basis.WINDOWS_NT

COBOL Fmc-DP-WindowsNT
OS390 indicates that the program definition for the OS/390 platform is

requested.

C Fmc_DP_OS390

C++ FmcjImplementationData::OS390

Java Basis.WINDOWS_OS390

COBOL Fmc-DP-OS390
Solaris indicates that the program definition for the Solaris platform is

requested.

C Fmc_DP_Solaris

C++ FmcjImplementationData::Solaris

Java Basis.Solaris

COBOL Fmc-DP-Solaris

For Java programs, checkOut2() additionally allows for specifying which program
definitions to retrieve.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

Workitem

Chapter 5. API action and activity implementation calls 493

C
APIRET FMC_APIENTRY
FmcjWorkitemCheckOut(FmcjWorkitemHandle hdlWorkitem,

enum FmcjWorkitemProgramRetrieval requestedData,
enum FmcjImplementationDataBasis platform,
FmcjProgramDataHandle * programData)

C++
APIRET CheckOut(ProgramRetrieval requestedData,

FmcjImplementationData::Basis platform,
FmcjProgramData & programData)

Java
public abstract
ReadOnlyContainer checkOut() throws FmcException

public abstract
ProgramData checkOut2(

ProgramRetrieval requestedData,
Basis platform) throws FmcException

COBOL

FmcjWICheckOut.

CALL "FmcjWorkitemCheckOut"
USING
BY VALUE

hdlWorkitem
requestedData
platform

BY REFERENCE
programData

RETURNING
intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
platform Input. The platform for which the program definition is to be

returned.
programData Input/Output. The address of a handle to the program definition

or the program definition object to be set.
requestedData Input. An indicator which program definitions are to be returned.
returnCode Input/Output. The return code of calling this method - see below.

Return type
APIRET The return code of calling this method - see below.
ProgramData The program definition.

Workitem

494 MQSeries Workflow for OS/390 Programming Guide

ReadOnlyContainer
The input container of the work item; the container is part of the
program definition. Returned for Version 2 compatibility reasons.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_CHECKOUT_NOT_POSSIBLE(503)
The work item cannot be checked out.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Finish()
This API call ends the execution of a manual-exit work item (action call).

The work item must be in state Executed, that is, must have run at least once. The
work item is then put into the Finished state. Depending on the “delete finished
items” option, it is deleted.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

Required connection

MQSeries Workflow execution server

API interface declarations

Workitem

Chapter 5. API action and activity implementation calls 495

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjWorkitemFinish(FmcjWorkitemHandle hdlWorkitem)

C++
APIRET Finish()

Java
public abstract
void finish() throws FmcException

COBOL

FmcjWIFinish.

CALL "FmcjWorkitemFinish"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

Workitem

496 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ForceFinish()
This API call ends the execution of a work item which is known to have completed
in cases where MQSeries Workflow did not recognize this event (action call).

This situation can occur when the execution server aborted before it received the
activity implementation completion message.

A work item implemented by a program must be in the states Ready, Running,
Executed, CheckedOut, InError, Terminating, or Terminated. A work item implemented
by a process must be in the states Ready, Executed, InError, or Terminated. The
associated process instance must be in the states Running, Suspending, Suspended, or
Terminating.

The work item is then put into the ForceFinished state. The exit condition is
considered to be true and navigation proceeds.

Depending on the “delete finished items” option, the work item is deleted.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner and one of
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

Workitem

Chapter 5. API action and activity implementation calls 497

C
APIRET FMC_APIENTRY
FmcjWorkitemForceFinish(FmcjWorkitemHandle hdlWorkitem)

C++
APIRET ForceFinish()

Java
public abstract
void forceFinish() throws FmcException

COBOL

FmcjWIForceFinish.

CALL "FmcjWorkitemForceFinish"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

Workitem

498 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ForceRestart()
This API call forces MQSeries Workflow to enable the restart of a work item (action
call).

A work item implemented by a program must be in states Running, Executed,
CheckedOut, InError, Terminating, or Terminated. A work item implemented by a
process must be in states Executed, InError, or Terminated. The associated process
instance must be in states Running, Suspending, or Suspended.

It is then reset into the Ready state. Note that automatic activity instances must
now be started manually.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner and one of
v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjWorkitemForceRestart(

FmcjWorkitemHandle hdlWorkitem)

C++
APIRET ForceRestart()

Workitem

Chapter 5. API action and activity implementation calls 499

Java
public abstract
void forceRestart() throws FmcException

COBOL
FmcjWIForceRestart.

CALL "FmcjWorkitemForceRestart"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Workitem

500 MQSeries Workflow for OS/390 Programming Guide

InContainer()
This API call retrieves the input container associated with the work item from the
MQSeries Workflow execution server (action call).

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the work item owner
v Work item authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorkitemInContainer(FmcjWorkitemHandle hdlWorkitem,

FmcjReadOnlyContainerHandle * input)

C++
APIRET InContainer(FmcjReadOnlyContainer & input) const

Java
public abstract
ReadOnlyContainer inContainer() throws FmcException

Workitem

Chapter 5. API action and activity implementation calls 501

COBOL

FmcjWIInCtnr.

CALL "FmcjWorkitemInContainer"
USING
BY VALUE

hdlWorkitem
BY REFERENCE

inputValue
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
input Input/Output. The input container.

Return type
long/ APIRET The return code of calling this method - see below.
ReadOnlyContainer

The input container.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

OutContainer()
This API call retrieves the output container associated with the work item from the
MQSeries Workflow execution server (action call).

Workitem

502 MQSeries Workflow for OS/390 Programming Guide

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the work item owner
v Work item authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorkitemOutContainer(FmcjWorkitemHandle hdlWorkitem,

FmcjReadWriteContainerHandle * output)

C++
APIRET OutContainer(FmcjReadWriteContainer & output) const

Java
public abstract
ReadWriteContainer outContainer() throws FmcException

COBOL

FmcjWIOutCtnr.

CALL "FmcjWorkitemOutContainer"
USING
BY VALUE

hdlWorkitem
BY REFERENCE

outputValue
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
output Input/Output. The output container.

Workitem

Chapter 5. API action and activity implementation calls 503

Return type
long/ APIRET The return code of calling this method - see below.
ReadWriteContainer

The output container.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PersistentObject()
This API call retrieves the work item identified by the passed object identifier from
the MQSeries Workflow execution server (action call).

The MQSeries Workflow execution server from which the work item is to be
retrieved is identified by the execution service object. The transient object is then
created or updated with all information - primary and secondary - of the work
item.

In C++, when the work item object to be initialized is not empty, that object is
destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the Work
item handle already points to some object. In Java, a work item is newly created;
the execution service acts as a factory.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

One of:
v Be the work item owner

Workitem

504 MQSeries Workflow for OS/390 Programming Guide

v Work item authorization
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.ExecutionService

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorkitemPersistentObject(FmcjExecutionServiceHandle service,

char const * oid,
FmcjWorkitemHandle * hdlWorkitem)

C++
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

Java
public abstract

WorkItem ExecutionService.persistentWorkItem(String oid)
throws FmcException

COBOL

FmcjWIPersistentObj.

CALL "FmcjWorkitemPersistentObject"
USING
BY VALUE

serviceValue
oid

BY REFERENCE
hdlWorkitem

RETURNING
intReturnValue.

Parameters
hdlWorkitem Input/Output. The address of the handle to the work item object

to be set.
oid Input. The object identifier of the work item to be retrieved.
service Input. The service object representing the session with the

execution server.

Workitem

Chapter 5. API action and activity implementation calls 505

Return type
long/ APIRET The return code of calling this method - see below.
WorkItem The work item retrieved.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Restart()
This API call asks MQSeries Workflow to enable the restart of a work item (action
call).

The work item must be in state Executed. It is then reset into the Ready state.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

Workitem

506 MQSeries Workflow for OS/390 Programming Guide

C
APIRET FMC_APIENTRY
FmcjWorkitemRestart(FmcjWorkitemHandle hdlWorkitem)

C++
APIRET Restart()

Java
public abstract
void restart() throws FmcException

COBOL

FmcjWIRestart.

CALL "FmcjWorkitemRestart"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

Workitem

Chapter 5. API action and activity implementation calls 507

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Start()
This API call starts a ready work item (action call).

The associated process instance must be in the Running state.

If the associated activity instance is implemented by a program, the program is
started on the program execution server associated with the program.

The work item is put into the Running state. If the activity implementation or an
associated process activity cannot be started, the work item is put into the InError
state.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorkitemStart(FmcjWorkitemHandle hdlWorkitem)

C++
APIRET Start()

Workitem

508 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
void start() throws FmcException

COBOL
FmcjWIStart.

CALL "FmcjWorkitemStart"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

StartTool()
This API call starts the specified support tool (action call).

Workitem

Chapter 5. API action and activity implementation calls 509

The support tool must be one of the tools associated with the activity instance the
work item is derived from. It is then started via the program execution agent
associated with the logged-on user.

Note: A support tool can be started only via a program execution agent in the
LAN environment; starting via a program execution server (in either
environment) is currently not supported. Since there are only unattended
processes under MQSeries Workflow for OS/390, it is not meaningful to
start a support tool in this environment. The PES will simply ignore such an
attempt.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorkitemStartTool(FmcjWorkitemHandle hdlWorkitem,

char const * toolName)

C++
APIRET StartTool(string const & toolName) const

Java
public abstract
void startTool(String toolName) throws FmcException

Workitem

510 MQSeries Workflow for OS/390 Programming Guide

COBOL
FmcjWIStartTool.

CALL "FmcjWorkitemStartTool"
USING
BY VALUE

hdlWorkitem
toolName

RETURNING
intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
toolName Input. The support tool to be started.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_INVALID_TOOL(129)
No tool name is provided or the specified tool is not defined for
the work item.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Terminate()
This API call terminates a work item implemented by a program or process (action
call).

Workitem

Chapter 5. API action and activity implementation calls 511

If the work item is implemented by a program, it must be in the states CheckedOut
or Running and the process instance must be in the states Running, Suspending, or
Suspended. If the work item is implemented by a process, it must be in the states
Running, Suspending, or Suspended and the process instance must be in the states
Running, Suspending, Suspended, or Terminating.

A work item implemented by a process is terminated together with all its
non-autonomous subprocesses with respect to control autonomy.

The work item is then put into the Terminating or Terminated state.

Depending on the “delete finished items” option, the work item is deleted.

When the Terminated state has been reached, the exit condition is considered to be
false, the output container and especially the return code (_RC) are not set, and
navigation ends. If not yet deleted, navigation can be explicitly continued by a user
with process administration rights, that is, ForceFinish() or ForceRestart() repair
actions can be called.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Be the work item owner

For work items implemented by a process, additionally one of:
v Process administration authority
v Be the process administrator
v Be the system administrator

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkItem

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorkitemTerminate(FmcjWorkitemHandle hdlWorkitem)

C++
APIRET Terminate()

Workitem

512 MQSeries Workflow for OS/390 Programming Guide

Java
public abstract
void terminate() throws FmcException

COBOL

FmcjWITerminate.

CALL "FmcjWorkitemTerminate"
USING
BY VALUE

hdlWorkitem
RETURNING

intReturnValue.

Parameters
hdlWorkitem Input. The handle of the work item to be terminated.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item no longer exists.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the API call.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Workitem

Chapter 5. API action and activity implementation calls 513

Worklist actions
A Worklist object represents a set of items, that is, a set of work items or
notifications. All items which are accessible through this list have the same
characteristics. These characteristics are specified by a filter. Additionally, sort
criteria can be applied and, after that, a threshold to restrict the number of items to
be transferred from the execution server to the client.

The worklist definition is stored persistently. The items contained in the worklist
are, however, assembled dynamically when they are queried.

A worklist is uniquely identified by its name, type, and owner. It can be defined
for general access purposes; it is then of a public type. Or, it can be defined for
some specific user; it is then of a private type.

Other lists that can be defined are process template lists or process instance lists.
FmcjPersistentList or PersistentList represents the common properties of all lists.

In C++, FmcjWorklist is thus a subclass of the FmcjPersistentList class and inherits
all properties and methods. In the Java language, WorkList is thus a subclass of the
PersistentList class and inherits all properties and methods. Similarly, in C or
COBOL, common implementations of functions are taken from FmcjPersistentList.
That is, common functions start with the prefix FmcjPersistentList; they are also
defined starting with the prefix FmcjWorklist.

The following sections describe the actions which can be applied on a worklist. See
“Worklist” on page 284 for a complete list of API calls.

QueryActivityInstanceNotifications()
This API call retrieves the primary information for all activity instance notifications
characterized by the specified worklist from the MQSeries Workflow execution
server (action call).

From the set of qualifying activity instance notifications, only those are retrieved,
the user is authorized for. The user is authorized for an activity instance
notification if
v He is the owner of the activity instance notification
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each activity instance notification is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime

Worklist

514 MQSeries Workflow for OS/390 Programming Guide

v StartTime
v State
v SupportTools

In C, C++, and COBOL, any activity instance notifications retrieved are appended
to the supplied vector of activity instance notifications. If you want to read those
activity instance notifications only which are currently included in the worklist,
you have to clear the vector before you issue this API call. This means that you
should set the handle to 0 in C or COBOL, or erase all elements of the vector in
C++.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjWorklistQueryActivityInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjActivityInstanceNotificationVectorHandle * notifications)

C++
APIRET QueryActivityInstanceNotifications(

vector<FmcjActivityInstanceNotification> & notifications) const

Java
public abstract
ActivityInstanceNotification[] queryActivityInstanceNotifications()
throws FmcException

Worklist

Chapter 5. API action and activity implementation calls 515

COBOL

FmcjWLQueryActInstNotifs.

CALL "FmcjWorklistQueryActivityInstanceNotifications"
USING
BY VALUE

hdlList
BY REFERENCE

notifications
RETURNING

intReturnValue.

Parameters
hdlList Input. The handle of the worklist to be queried.
notifications Input/Output. The vector of qualifying activity instance

notifications.

Return type
long/ APIRET The return code of calling this method - see below.
ActivityInstanceNotification[]

The qualifying activity instance notifications.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example see “Query work items from a worklist (C)” on page 560
v For a C++ example see “Query work items from a worklist (C++)” on page 562
v For a Java example see “Query work items from a worklist (Java)” on page 564

Worklist

516 MQSeries Workflow for OS/390 Programming Guide

QueryItems()
This API call retrieves the primary information for all items characterized by the
specified worklist from the MQSeries Workflow execution server (action call).

From the set of qualifying items, only those are retrieved, the user is authorized
for. The user is authorized for an item if
v He is the owner of the item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each item is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

If the item is an actual work item or an activity instance notification, then
additional primary information is retrieved:
v ActivityType
v Implementation
v Priority
v SupportTools

In C, C++, and COBOL, any items retrieved are appended to the supplied vector
of items. If you want to read those items only which are currently included in the
worklist, you have to clear the vector before you issue this API call. This means
that you should set the handle to 0 in C or COBOL, or erase all elements of the
vector in the C++ API.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkList

Worklist

Chapter 5. API action and activity implementation calls 517

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY
FmcjWorklistQueryItems(FmcjWorklistHandle hdlList,

FmcjItemVectorHandle * items)

C++
APIRET QueryItems(vector<FmcjItem> & items) const

Java
public abstract Item[] queryItems() throws FmcException

COBOL

FmcjWLQueryItems.

CALL "FmcjWorklistQueryItems"
USING
BY VALUE

hdlList
BY REFERENCE

items
RETURNING

intReturnValue.

Parameters
hdlList Input. The handle of the worklist to be queried.
items Input/Output. The vector of qualifying items.

Return type
APIRET The return code of calling this method - see below.
Item[] The qualifying items.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Worklist

518 MQSeries Workflow for OS/390 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example see “Query work items from a worklist (C)” on page 560
v For a C++ example see “Query work items from a worklist (C++)” on page 562
v For a Java example see “Query work items from a worklist (Java)” on page 564

QueryProcessInstanceNotifications()
This API call retrieves the primary information for all process instance notifications
characterized by the specified worklist from the MQSeries Workflow execution
server (action call).

From the set of qualifying process instance notifications, only those are retrieved,
the user is authorized for. The user is authorized for a process instance notification
if
v He is the owner of the process instance notification
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each process instance notification is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

In C, C++, and COBOL, any process instance notifications retrieved are appended
to the supplied vector of process instance notifications. If you want to read those
process instance notifications only which are currently included in the worklist,
you have to clear the vector before you issue this API call. This means that you
should set the handle to 0 in C or COBOL, or erase all elements of the vector in
the C++ API.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

Worklist

Chapter 5. API action and activity implementation calls 519

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjWorklistQueryProcessInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjProcessInstanceNotificationVectorHandle * notifications)

C++
APIRET QueryProcessInstanceNotifications(

vector<FmcjProcessInstanceNotification> & notifications) const

Java
public abstract
ProcessInstanceNotification[] queryProcessInstanceNotifications()
throws FmcException

COBOL

FmcjWLQueryProcInstNotifs.

CALL "FmcjWorklistQueryProcessInstanceNotifications"
USING
BY VALUE

hdlList
BY REFERENCE

notifications
RETURNING

intReturnValue.

Parameters
hdlList Input. The handle of the worklist to be queried.
notifications Input/Output. The vector of qualifying process instance

notifications.

Return type
long/ APIRET The return code of calling this method - see below.
ProcessInstanceNotification[]

The qualifying process instance notifications.

Worklist

520 MQSeries Workflow for OS/390 Programming Guide

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example see “Query work items from a worklist (C)” on page 560
v For a C++ example see “Query work items from a worklist (C++)” on page 562
v For a Java example see “Query work items from a worklist (Java)” on page 564

QueryWorkitems()
This API call retrieves the primary information for all work items characterized by
the specified worklist from the MQSeries Workflow execution server (action call).

From the set of qualifying work items, only those are retrieved, the user is
authorized for. The user is authorized for a work item if
v He is the owner of the work item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs

Worklist

Chapter 5. API action and activity implementation calls 521

v ReceivedTime
v StartTime
v State
v SupportTools

In C, C++, and COBOL, any work items retrieved are appended to the supplied
vector of work items. If you want to read those work items only which are
currently included in the worklist, you have to clear the vector before you issue
this API call. This means that you should set the handle to 0 in C or COBOL, or
erase all elements of the vector in the C++ API.

Usage notes
v See “Action API calls” on page 122 for general information.

Authorization

None

Required connection

MQSeries Workflow execution server

API interface declarations

C fmcjcrun.h

C++ fmcjprun.hxx

Java com.ibm.workflow.api.WorkList

COBOL fmcvars.cpy, fmcperf.cpy

C
APIRET FMC_APIENTRY FmcjWorklistQueryWorkitems(

FmcjWorklistHandle hdlList,
FmcjWorkitemVectorHandle * workitems)

C++
APIRET QueryWorkitems(vector<FmcjWorkitem> & workitems) const

Java
public abstract
WorkItem[] queryWorkItems() throws FmcException

Worklist

522 MQSeries Workflow for OS/390 Programming Guide

COBOL

FmcjWLQueryWorkitems.

CALL "FmcjWorklistQueryWorkitems"
USING
BY VALUE

hdlList
BY REFERENCE

workitems
RETURNING

intReturnValue.

Parameters
hdlList Input. The handle of the worklist to be queried.
workitems Input/Output. The vector of qualifying work items.

Return type
long/ APIRET The return code of calling this method - see below.
WorkItem[] The qualifying work items.

Return codes/ FmcException
FMC_OK(0) The API call completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example, the
address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, does
not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to an
object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist no longer exists.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which the
connection should be established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQSeries Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples
v For a C example see “Query work items from a worklist (C)” on page 560
v For a C++ example see “Query work items from a worklist (C++)” on page 562
v For a Java example see “Query work items from a worklist (Java)” on page 564

Worklist

Chapter 5. API action and activity implementation calls 523

Worklist

524 MQSeries Workflow for OS/390 Programming Guide

Chapter 6. Examples

The following samples are provided in InstHLQ.SFMCSRC:

FMCHSCFA C Full API sample (native OS/390)

FMCHSCCA C Container API sample (CICS and IMS)

FMCHSCBF COBOL Full API sample (native OS/390)

FMCHSCBC COBOL Container API sample (IMS)

FMCHSCBN COBOL Container API sample (CICS)

In addition, the following sections illustrate examples for:
v Creating persistent lists, such as process instances
v Querying persistent lists, such as process instances
v Querying a set of objects, such as process instances and work items
v Programming an activity implementation (executable)

How to create persistent lists
The following examples show how to create a persistent list, that is, a persistent
view of a set of objects. They define a view of process instances. Other possible
lists to define are process template lists or worklists.

© Copyright IBM Corp. 1999, 2000 525

Create a process instance list (C)

#include <stdio.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceListHandle instanceList = 0;
unsigned long threshold = 10;
int enumValue = 0;
char name[50] = "MyTenInstances";
char desc[50] = "This list contains no more than 10 instances";

FmcjGlobalConnect();
/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{

printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* create a process instance list */
rc = FmcjExecutionServiceCreateProcessInstanceList(

service,
name,
Fmc_LT_Private,
"USERID",
desc,
FmcjNoFilter,
FmcjNoSortCriteria,
&threshold,
&instanceList);

if (rc != FMC_OK)
printf("CreateProcessInstanceList returns: %u%\n",rc);

else
printf("CreateProcessInstanceList okay\n");

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);
FmcjGlobalDisconnect();
return 0;

}

Figure 47. Sample C program to create a process instance list

Examples

526 MQSeries Workflow for OS/390 Programming Guide

Create a process instance list (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// create a process instance list

FmcjProcessInstanceList instanceList;
string name ("MyTenInstances");
string desc ("List contains no more than 10 instances");
string onwer ("USERID");
unsigned long threshold= 10;

rc = service.CreateProcessInstanceList(
name,
FmcjPersistentList::Private,
&owner,
&desc,
FmcjNoFilter,
FmcjNoSortCriteria,
&threshold,
instanceList);

if (rc != FMC_OK)
cout << "CreateProcessInstanceList returns: " << rc << endl;

else
cout << "CreateProcessInstanceList okay" << endl;

service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

Figure 48. Sample C++ program to create a process instance list

Examples

Chapter 6. Examples 527

Create a process instance list (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;
import com.ibm.workflow.api.PersistentListPackage.*;

public class CreateProcInstList
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println("java CreateProcessInstanceList

<agent> <LOC|RMI|OSA|IOR|COS>
[userid] [password]");

System.exit(0);
}

try
{

// An agent bean representing an MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();
// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

Figure 49. Sample Java program to create a process instance list (Part 1 of 3)

Examples

528 MQSeries Workflow for OS/390 Programming Guide

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, an FmcException will be thrown.
service.logon(userid, passwd);
System.out.println("Logon successful");

String ListName ="MyTenInstances";
String ListDesc = "List contains no more than 10 instances";
String ListFilter = "";
String ListSort = "";
int ListThreshold = 10;

try
{

service.createProcessInstanceList(ListName, TypeOfList.PRIVATE,
userid , ListDesc, ListFilter,
ListSort, ListThreshold);

System.out.println("Private ProcessInstanceList created successfully");
}
catch(FmcException e)
{

if (e.rc == FmcException.FMC_ERROR_NOT_UNIQUE)
{

System.out.println("ProcessInstanceList: '" + ListName +
"' already exists");

}
}

finally
{

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

}

Figure 49. Sample Java program to create a process instance list (Part 2 of 3)

Examples

Chapter 6. Examples 529

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 49. Sample Java program to create a process instance list (Part 3 of 3)

Examples

530 MQSeries Workflow for OS/390 Programming Guide

Create a process instance list (COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 listName PIC X(50) VALUE z"MyTenInstances".
01 desc PIC X(50)

VALUE z"This list contains no more than 10 instances".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon
PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

* create a process instance list
CALL "SETADDR" USING listName name.
CALL "SETADDR" USING localUserID ownerValue.
CALL "SETADDR" USING desc description.
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
MOVE Fmc-LT-Private TO typeValue.
PERFORM FmcjESCreateProcInstList.

Figure 50. Sample COBOL program to create a process instance list (via PERFORM) (Part 1
of 2)

Examples

Chapter 6. Examples 531

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "CreateProcessInstanceList returns - rc: "
DISPLAY retCode

ELSE
DISPLAY "CreateProcessInstanceList okay"

END-IF

PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 50. Sample COBOL program to create a process instance list (via PERFORM) (Part 2
of 2)

Examples

532 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "VECTOR".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 listName PIC X(50) VALUE z"MyTenInstances".
01 desc PIC X(50)

VALUE z"This list contains no more than 10 instances".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

Figure 51. Sample COBOL program to create a process instance list (via CALL) (Part 1 of 2)

Examples

Chapter 6. Examples 533

* create a process instance list
CALL "SETADDR" USING listName name.
CALL "SETADDR" USING localUserID ownerValue.
CALL "SETADDR" USING desc description.
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
CALL "FmcjExecutionServiceCreateProcessInstanceList"

USING BY VALUE serviceValue
name
Fmc-LT-Private
ownerValue
description
filter
sortCriteria
FmcjNoThreshold

BY REFERENCE
newList

RETURNING
intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "CreateProcessInstanceList returns - rc: "
DISPLAY retCode

ELSE
DISPLAY "CreateProcessInstanceList okay"

END-IF

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Figure 51. Sample COBOL program to create a process instance list (via CALL) (Part 2 of 2)

Examples

534 MQSeries Workflow for OS/390 Programming Guide

How to query persistent lists
The following examples show how to retrieve persistent lists from the MQSeries
Workflow execution server and how to query the characteristics of a list. They use
worklists as example. Other possible lists to query are process template lists or
process instance lists.

Examples

Chapter 6. Examples 535

Query worklists (C)

#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorklistVectorHandle lists = 0;
unsigned long numWList = 0;
unsigned long i = 0;
unsigned long enumValue = 0;
char tInfo[4096+1]= "";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}
rc= FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{

printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &lists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");

if (rc == FMC_OK)
{

numWList= FmcjWorklistVectorSize(lists);
printf ("Number of worklists returned : %u\n", numWList);
for(i=1; i<= numWList; i++)
{

worklist= FmcjWorklistVectorNextElement(lists);
FmcjWorklistName(worklist, tInfo, 4097);
printf("- Name : %s\n",tInfo);

Figure 52. Sample C program to query worklists (Part 1 of 2)

Examples

536 MQSeries Workflow for OS/390 Programming Guide

enumValue= FmcjWorklistType(worklist);
if (enumValue == Fmc_LT_Private)

printf("- Type : %s\n","private");
if (enumValue == Fmc_LT_Public)

printf("- Type : %s\n","public");

FmcjWorklistOwnerOfList(worklist, tInfo, 4097);
printf("- OwnerOfList : %s\n",tInfo);
printf("- OwnerOfList is null ? : %u\n",

FmcjWorklistOwnerOfListIsNull(worklist));

FmcjWorklistDescription(worklist, tInfo, 4097);
printf("- Description : %s\n",tInfo);
printf("- Description is null ? : %u\n",

FmcjWorklistDescriptionIsNull(worklist));

FmcjWorklistFilter(worklist, tInfo, 4097);
printf("- Filter : %s\n",tInfo);
printf("- Filter is null ? : %u\n",

FmcjWorklistFilterIsNull(worklist));

FmcjWorklistSortCriteria(worklist, tInfo, 4097);
printf("- SortCriteria : %s\n",tInfo);
printf("- SortCriteria is null ? : %u\n",

FmcjWorklistSortCriteriaIsNull(worklist));

printf("- Threshold : %u\n",
FmcjWorklistThreshold(worklist));

printf("- Threshold is null ? : %u\n",
FmcjWorklistThresholdIsNull(worklist));

/* deallocate just read object */
FmcjWorklistDeallocate(&worklist);

}
FmcjWorklistVectorDeallocate(&lists);

}

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Figure 52. Sample C program to query worklists (Part 2 of 2)

Examples

Chapter 6. Examples 537

Query worklists (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// query worklists

vector<FmcjWorklist> lists;
FmcjWorklist worklist;
rc = service.QueryWorklists(lists);
if (rc != FMC_OK)

cout << "QueryWorklists() returns: " << rc << endl;
else

cout << "QueryWorklists returns okay" << endl;

if (rc == FMC_OK)
{

unsigned int numWList= lists.size();
cout << "Number of worklists returned : " << numWList << endl;

for(unsigned long i=0; i< numWList; i++)
{

worklist= lists[i];
cout << "Name : " << worklist.Name() << endl;

cout << "Type : " <<
((worklist.Type() == FmcjPersistentList::Private) ? "private" :
(worklist.Type() == FmcjPersistentList::Public) ? "public" :
"not set") << endl;

cout << "Owner : " << worklist.OwnerOfList() << endl;
cout << "Owner null ? : " << worklist.OwnerOfListIsNull() << endl;

cout << "Description : " << worklist.Description() << endl;
cout << "Description null ?: " << worklist.DescriptionIsNull() << endl;

cout << "Filter : " << worklist.Filter() << endl;
cout << "Filter null ? : " << worklist.FilterIsNull() << endl;
cout << "SortCriteria : " << worklist.SortCriteria() << endl;
cout << "SortCriteria null?: " << worklist.SortCriteriaIsNull()<< endl;

cout << "Threshold : " << worklist.Threshold() << endl;
cout << "Threshold null ? : " << worklist.ThresholdIsNull() << endl;
cout << endl; } cout << endl; }

rc = service.Logoff();
FmcjGlobal::Disconnect();
return 0;

}

Figure 53. Sample C++ program to query worklists

Examples

538 MQSeries Workflow for OS/390 Programming Guide

Query worklists (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;
import com.ibm.workflow.api.PersistentListPackage.*;

public class QueryWorkLists
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password
//
if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println("java QueryWorkLists [userid] [password]");
System.exit(0);

}

try
{

// An agent bean representing an MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();

// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

Figure 54. Sample Java program to query worklists (Part 1 of 3)

Examples

Chapter 6. Examples 539

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, an FmcException will be thrown.

// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

// Query the set of worklists the logged on user can access.
WorkList[] worklists = service.queryWorkLists();

if (worklists.length == 0)
{

System.out.println(" No worklist found");
}
else
{

System.out.println(" Number of worklists returned: " + worklists.length
);

// Iterate over the worklists, printing out their names.
for (int ndx = 0; ndx < worklists.length; ndx++)
{

System.out.println(" Name :" + worklists[ndx].name());

if (worklists[ndx].type() == TypeOfList.PUBLIC)
{

System.out.println(" Type :Public ");
}
else if (worklists[ndx].type() == TypeOfList.PRIVATE)
{

System.out.println(" Type :Private");
}
else
{

System.out.println(" Type :NotSet ");
}

Figure 54. Sample Java program to query worklists (Part 2 of 3)

Examples

540 MQSeries Workflow for OS/390 Programming Guide

System.out.println(" Owner :" + worklists[ndx].ownerOfList());
System.out.println(" Description :"+ worklists[ndx].description());
System.out.println(" Filter :"+ worklists[ndx].filter());
System.out.println(" SortCriteria :"+ worklists[ndx].sortCriteria());
System.out.println(" Threshold :"+ worklists[ndx].threshold());
System.out.println(" ");

}

}/* End if*/

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 54. Sample Java program to query worklists (Part 3 of 3)

Examples

Chapter 6. Examples 541

Query worklists (COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWL".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon
PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

* query worklists
PERFORM FmcjESQueryWorklists.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode
ELSE

DISPLAY "QueryWorklists returns okay"
END-IF

Figure 55. Sample COBOL program to query worklists (via PERFORM) (Part 1 of 3)

Examples

542 MQSeries Workflow for OS/390 Programming Guide

IF retCode = FMC-OK
SET hdlVector TO lists
PERFORM FmcjWLVectorSize
MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
PERFORM VARYING i FROM 1 BY 1 UNTIL i >= numWList

PERFORM FmcjWLVectorNextElement
SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo listNameBuffer
PERFORM FmcjWLName
DISPLAY "- Name : " tInfo
PERFORM FmcjWLType
IF intReturnValue = Fmc-LT-Private

DISPLAY "- Type : private"
END-IF
IF intReturnValue = Fmc-LT-Public

DISPLAY "- Type : public"
END-IF
CALL "SETADDR" USING tInfo userIdBuffer
PERFORM FmcjWLOwnerOfList
DISPLAY "- OwnerOfList : " tInfo
PERFORM FmcjWLOwnerOfListIsNull
IF boolReturnValue = 0

DISPLAY "- OwnerOfList is null ? : false"
ELSE

DISPLAY "- OwnerOfList is null ? : true"
END-IF
CALL "SETADDR" USING tInfo descriptionBuffer
PERFORM FmcjWLDescription
DISPLAY "- Description : " tInfo
PERFORM FmcjWLDescriptionIsNull
IF boolReturnValue = 0

DISPLAY "- Description is null ? : false"
ELSE

DISPLAY "- Description is null ? : true"
END-IF
CALL "SETADDR" USING tInfo filterBuffer
PERFORM FmcjWLFilter
DISPLAY "- Filter : " tInfo
PERFORM FmcjWLFilterIsNull
IF boolReturnValue = 0

DISPLAY "- Filter is null ? : false"
ELSE

DISPLAY "- Filter is null ? : true"
END-IF
CALL "SETADDR" USING tInfo sortCriteriaBuffer
PERFORM FmcjWLSortCriteria
DISPLAY "- SortCriteria : " tInfo
PERFORM FmcjWLSortCriteriaIsNull
IF boolReturnValue = 0

DISPLAY "- SortCriteria is null ?: false"
ELSE

DISPLAY "- SortCriteria is null ?: true"
END-IF
PERFORM FmcjWLThreshold
DISPLAY "- Threshold : " ulongReturnValue
PERFORM FmcjWLThresholdIsNull

Figure 55. Sample COBOL program to query worklists (via PERFORM) (Part 2 of 3)

Examples

Chapter 6. Examples 543

IF boolReturnValue = 0
DISPLAY "- Threshold is null ? : false"

ELSE
DISPLAY "- Threshold is null ? : true"

END-IF
PERFORM FmcjWLDeallocate

END-PERFORM
PERFORM FmcjWLVectorDeallocate

END-IF
PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 55. Sample COBOL program to query worklists (via PERFORM) (Part 3 of 3)

Examples

544 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWL".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.
01 bufferPtr USAGE IS POINTER VALUE NULL.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

Figure 56. Sample COBOL program to query worklists (via CALL) (Part 1 of 4)

Examples

Chapter 6. Examples 545

* query worklists
CALL "FmcjExecutionServiceQueryWorklists"

USING BY VALUE serviceValue
BY REFERENCE lists

RETURNING intReturnValue.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode
ELSE

DISPLAY "QueryWorklists returns okay"
END-IF

IF retCode = FMC-OK
SET hdlVector TO lists
CALL "FmcjWorklistVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue

MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
PERFORM VARYING i FROM 1 BY 1 UNTIL i >= numWList

CALL "FmcjWorklistVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjWLHandleReturnValue

SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo bufferPtr
CALL "FmcjPersistentListName"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- Name : " tInfo
CALL "FmcjPersistentListType"

USING BY VALUE hdlList
RETURNING intReturnValue

IF intReturnValue = Fmc-LT-Private
DISPLAY "- Type : private"

END-IF
IF intReturnValue = Fmc-LT-Public

DISPLAY "- Type : public"
END-IF
CALL "FmcjPersistentListOwnerOfList"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- OwnerOfList : " tInfo
CALL "FmcjPersistentListOwnerOfListIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- OwnerOfList is null ? : false"

ELSE
DISPLAY "- OwnerOfList is null ? : true"

END-IF
CALL "FmcjPersistentListDescription"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue

Figure 56. Sample COBOL program to query worklists (via CALL) (Part 2 of 4)

Examples

546 MQSeries Workflow for OS/390 Programming Guide

DISPLAY "- Description : " tInfo
CALL "FmcjPersistentListDescriptionIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- Description is null ? : false"

ELSE
DISPLAY "- Description is null ? : true"

END-IF
CALL "FmcjPersistentListFilter"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- Filter : " tInfo
CALL "FmcjPersistentListFilterIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- Filter is null ? : false"

ELSE
DISPLAY "- Filter is null ? : true"

END-IF
CALL "FmcjPersistentListSortCriteria"

USING BY VALUE hdlList
bufferPtr
bufferLength

RETURNING pointerReturnValue
DISPLAY "- SortCriteria : " tInfo
CALL "FmcjPersistentListSortCriteriaIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- SortCriteria is null ?: false"

ELSE
DISPLAY "- SortCriteria is null ?: true"

END-IF
CALL "FmcjPersistentListThreshold"

USING BY VALUE hdlList
RETURNING ulongReturnValue

DISPLAY "- Threshold : " ulongReturnValue
CALL "FmcjPersistentListThresholdIsNull"

USING BY VALUE hdlList
RETURNING boolReturnValue

IF boolReturnValue = 0
DISPLAY "- Threshold is null ? : false"

ELSE
DISPLAY "- Threshold is null ? : true"

END-IF
CALL "FmcjWorklistDeallocate"

USING BY REFERENCE hdlList
RETURNING intReturnValue

END-PERFORM
CALL "FmcjWorklistVectorDeallocate"

USING BY REFERENCE hdlVector
RETURNING intReturnValue

END-IF

Figure 56. Sample COBOL program to query worklists (via CALL) (Part 3 of 4)

Examples

Chapter 6. Examples 547

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Figure 56. Sample COBOL program to query worklists (via CALL) (Part 4 of 4)

Examples

548 MQSeries Workflow for OS/390 Programming Guide

How to query a set of objects
The following examples show how to query objects for which you are authorized.
They use a query for process instances in order to demonstrate an ad-hoc query.
They use work items in order to demonstrate how to query the contents of a
predefined list, a worklist.

Examples

Chapter 6. Examples 549

Query process instances (C)

#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceHandle instance = 0;
FmcjProcessInstanceVectorHandle iList = 0;
unsigned long numIList = 0;
unsigned long i = 0;
char tInfo[4096+1]= "";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}
rc= FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{

printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}
/* query process instances */
rc= FmcjExecutionServiceQueryProcessInstances(

service,
FmcjNoFilter, FmcjNoSortCriteria, FmcjNoThreshold,
&iList);

if (rc != FMC_OK)
printf("QueryProcessInstances() returns: %u%\n",rc);

else
printf("QueryProcessInstances() returns okay\n");

if (rc == FMC_OK)
{

numIList= FmcjProcessInstanceVectorSize(iList);
printf ("Number of instances returned : %u\n", numIList);

for(i=1; i<= numIList; i++)
{

instance= FmcjProcessInstanceVectorNextElement(iList);
FmcjProcessInstanceName(instance, tInfo, 4097);
printf("- Name : %s\n",tInfo);
FmcjProcessInstanceDeallocate(&instance);

}

FmcjProcessInstanceVectorDeallocate(&iList);
}

Figure 57. Sample C program to query process instances (Part 1 of 2)

Examples

550 MQSeries Workflow for OS/390 Programming Guide

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Figure 57. Sample C program to query process instances (Part 2 of 2)

Examples

Chapter 6. Examples 551

Query process instances (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// query process instances

vector<FmcjProcessInstance> instances;

rc = service.QueryProcessInstances(
FmcjNoFilter, FmcjNoSortCriteria, FmcjNoThreshold,
instances);

if (rc != FMC_OK)
cout << "QueryProcessInstances returns: " << rc << endl;

else
cout << "QueryProcessInstances okay" << endl;

if (rc == FMC_OK)
{

cout << "Number of instances returned: " << instances.size() << endl;

for (int i=0; i < instances.size(); i++)
cout << "- Name: " << instances[i].Name() << endl;

}

service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

Figure 58. Sample C++ program to query process instances

Examples

552 MQSeries Workflow for OS/390 Programming Guide

Query process instances (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;

public class QueryProcInst
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println(" java QueryProcessInstances [userid] [password]");
System.exit(0);

}

try
{

// An agent bean representing an MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();
// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

Figure 59. Sample Java program to query process instances (Part 1 of 3)

Examples

Chapter 6. Examples 553

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, an FmcException will be thrown.
// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

// Query a set of processinstances (30 at maximum), sort them by name
ProcessInstance[] procInstances =

service.queryProcessInstances("","NAME DESC", 30);

if (procInstances.length == 0)
{

System.out.println(" No process instances found");
}
else
{

System.out.println("Number of instances returned: " + procInstances.length);

// Iterate over the process instances, printing out their names.
for (int ndx = 0; ndx < procInstances.length; ndx++)
{

System.out.println(" - Name: " + procInstances[ndx].name());
}

}

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

Figure 59. Sample Java program to query process instances (Part 2 of 3)

Examples

554 MQSeries Workflow for OS/390 Programming Guide

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 59. Sample Java program to query process instances (Part 3 of 3)

Examples

Chapter 6. Examples 555

Query process instances (COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYPI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numIList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon
PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

Figure 60. Sample COBOL program to query process instances (via PERFORM) (Part 1 of 2)

Examples

556 MQSeries Workflow for OS/390 Programming Guide

* query process instances
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
MOVE FmcjNoThreshold TO threshold.
PERFORM FmcjESQueryProcInsts.

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryProcessInstances returns: " retCode
ELSE

DISPLAY "QueryProcessInstances returns okay"
END-IF

IF retCode = FMC-OK
PERFORM FmcjPIVSize
MOVE ulongReturnValue TO numIList
DISPLAY "Number of instances returned: " numIList
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo instanceNameBuffer
PERFORM VARYING i FROM 1 BY 1 UNTIL i > numIList

PERFORM FmcjPIVNextElement
SET hdlInstance TO FmcjPIHandleReturnValue
PERFORM FmcjPIName
DISPLAY "- name: " tInfo
PERFORM FmcjPIDeallocate

END-PERFORM
PERFORM FmcjPIVDeallocate

END-IF

PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 60. Sample COBOL program to query process instances (via PERFORM) (Part 2 of 2)

Examples

Chapter 6. Examples 557

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYPI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numIList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).
01 i PIC 9(9) BINARY VALUE 0.

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

Figure 61. Sample COBOL program to query process instances (via CALL) (Part 1 of 2)

Examples

558 MQSeries Workflow for OS/390 Programming Guide

* query process instances
CALL "SETADDR" USING FmcjNoFilter filter.
CALL "SETADDR" USING FmcjNoSortCriteria sortCriteria.
CALL "FmcjExecutionServiceQueryProcessInstances"

USING BY VALUE serviceValue
filter
sortCriteria
FmcjNoThreshold

BY REFERENCE instances
RETURNING intReturnValue.

SET hdlVector TO instances.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryProcessInstances returns: " retCode
ELSE

DISPLAY "QueryProcessInstances returns okay"
END-IF

IF retCode = FMC-OK
CALL "FmcjProcessInstanceVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue

MOVE ulongReturnValue TO numIList
DISPLAY "Number of instances returned: " numIList
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo instanceNameBuffer
PERFORM VARYING i FROM 1 BY 1 UNTIL i > numIList

CALL "FmcjProcessInstanceVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjPIHandleReturnValue

SET hdlInstance TO FmcjPIHandleReturnValue
CALL "FmcjProcessInstanceName"

USING BY VALUE hdlInstance
instanceNameBuffer
FMC-PROC-INST-NAME-LENGTH

RETURNING pointerReturnValue
DISPLAY "- name: " tInfo
CALL "FmcjProcessInstanceDeallocate"

USING BY REFERENCE hdlInstance
RETURNING intReturnValue

END-PERFORM
CALL "FmcjProcessInstanceVectorDeallocate"

USING BY REFERENCE hdlVector
RETURNING intReturnValue

END-IF

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Figure 61. Sample COBOL program to query process instances (via CALL) (Part 2 of 2)

Examples

Chapter 6. Examples 559

Query work items from a worklist (C)

#include <stdio.h>
#include <string.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */

int main (int argc, char ** argv)
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistVectorHandle wLists = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorkitemVectorHandle wVector = 0;
FmcjWorkitemHandle workitem = 0;
unsigned long numWList = 0;
char tInfo[4096+1] = "";

FmcjGlobalConnect();

/* Logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{

printf("Service object could not be allocated: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet);

if (rc != FMC_OK)
{

printf("Logon failed - rc : %u%\n",rc);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &wLists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");

if (rc == FMC_OK)
{

numWList= FmcjWorklistVectorSize(wLists);
printf ("Number of worklists returned : %u\n", numWList);
if (numWList == 0)
{

printf("No worklist found \n");
FmcjWorklistVectorDeallocate(&wLists);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

worklist= FmcjWorklistVectorFirstElement(wLists);
FmcjWorklistName(worklist, tInfo, 4097);
printf("Name : %s\n",tInfo);

Figure 62. Sample C program to query work items from a worklist (Part 1 of 2)

Examples

560 MQSeries Workflow for OS/390 Programming Guide

/* query workitems */
rc= FmcjWorklistQueryWorkitems(worklist, &wVector);
printf("\nQuery workitems of list returns rc: %u\n",rc);

if (rc == FMC_OK)
{

while (0 != (workitem= FmcjWorkitemVectorNextElement(wVector)))
{

FmcjWorkitemName(workitem, tInfo, 4097);
printf("- Name : %s\n",tInfo);

FmcjWorkitemDeallocate(&workitem);
}

}

FmcjWorklistDeallocate(&worklist);
FmcjWorklistVectorDeallocate(&wLists);

}

/* Logoff */
rc= FmcjExecutionServiceLogoff(service);
rc= FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Figure 62. Sample C program to query work items from a worklist (Part 2 of 2)

Examples

Chapter 6. Examples 561

Query work items from a worklist (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{

cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// query worklists

vector<FmcjWorklist> lists;
FmcjWorklist worklist;

rc = service.QueryWorklists(lists);
if (rc != FMC_OK)

cout << "QueryWorklists() returns: " << rc << endl;
else

cout << "QueryWorklists returns okay" << endl;

if (rc == FMC_OK)
{

unsigned int numWList= lists.size();
cout << "Number of worklists returned : " << numWList << endl;
if (numWList == 0)
{

cout << "No worklist found" << endl;
return -1;

}

worklist= lists[0];
cout << "Name : " << worklist.Name() << endl;

vector<FmcjWorkitem> wVector;
FmcjWorkitem workitem;

rc= worklist.QueryWorkitems(wVector);
cout << "Query workitems of list returns: " << rc << endl;
cout << "Number of workitems " << wVector.size() << endl;

Figure 63. Sample C++ program to query work items from a worklist (Part 1 of 2)

Examples

562 MQSeries Workflow for OS/390 Programming Guide

if (rc == FMC_OK)
{

for (int i= 0; i < wVector.size(); i++)
{

workitem= wVector[i];
cout << "Name : " << workitem.Name() << endl;

}
}

}

rc = service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

Figure 63. Sample C++ program to query work items from a worklist (Part 2 of 2)

Examples

Chapter 6. Examples 563

Query work items from a worklist (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;

public class QueryWorkItems
{

public static void main(String[] args)
{

// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{

System.out.println("Usage:");
System.out.println(" java QueryWorkitems [userid] [password]");
System.exit(0);

}

try
{

// An agent bean representing an MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();

// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{

agent.setLocator(Agent.LOC_LOCATOR);
}
else if (args[1].equalsIgnoreCase("RMI"))
{

agent.setLocator(Agent.RMI_LOCATOR);
}
else if (args[1].equalsIgnoreCase("OSA"))
{

agent.setLocator(Agent.OSA_LOCATOR);
}
else if (args[1].equalsIgnoreCase("IOR"))
{

agent.setLocator(Agent.IOR_LOCATOR);
}
else if (args[1].equalsIgnoreCase("COS"))
{

agent.setLocator(Agent.COS_LOCATOR);
}
else
{

System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

Figure 64. Sample Java program to query work items from a worklist (Part 1 of 3)

Examples

564 MQSeries Workflow for OS/390 Programming Guide

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.
// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

// Query the set of worklists the logged on user can access.
WorkList[] worklists = service.queryWorkLists();

if (worklists.length == 0)
{

System.out.println(" No worklist found");
}
else
{

System.out.println(" Number of worklists returned: " + worklists.length);

WorkList worklist = worklists[0];
System.out.println(" Name: "+worklist.name());

// Query the set of workitems in the first worklist.
WorkItem[] workitems = worklist.queryWorkItems();
System.out.println(" Number of workitems: " + workitems.length);

// Iterate over the workitems, printing out their names.
for (int ndx = 0; ndx < workitems.length; ndx++)
{

System.out.println(" " + workitems[ndx].name());
}

}/* End if*/

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

Figure 64. Sample Java program to query work items from a worklist (Part 2 of 3)

Examples

Chapter 6. Examples 565

catch(FmcException e)
{

// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{

System.out.println(" " + e.parameters[i]);
}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{

// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

Figure 64. Sample Java program to query work items from a worklist (Part 3 of 3)

Examples

566 MQSeries Workflow for OS/390 Programming Guide

Query work items from a worklist (COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

PERFORM FmcjGlobalConnect.

* logon
PERFORM FmcjESAllocate.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
MOVE Fmc-SM-Default TO sessionMode.
MOVE Fmc-SA-Reset TO absenceIndicator.
PERFORM FmcjESLogon.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

* query worklists
PERFORM FmcjESQueryWorklists.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode
ELSE

DISPLAY "QueryWorklists returns okay"
END-IF

Figure 65. Sample COBOL program to query work items from a worklist (via PERFORM)
(Part 1 of 2)

Examples

Chapter 6. Examples 567

IF retCode = FMC-OK
SET hdlVector TO lists
PERFORM FmcjWLVectorSize
MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
IF numWList = 0

DISPLAY "No worklist found"
PERFORM FmcjWLDeallocate
PERFORM FmcjESDeallocate
MOVE -1 TO retCode
GOBACK

END-IF

PERFORM FmcjWLVectorFirstElement
SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo listNameBuffer
PERFORM FmcjWLName
DISPLAY "Name : " tInfo

* query workitems
PERFORM FmcjWLQueryWorkitems
MOVE intReturnValue TO retCode
DISPLAY "Query workitems of list returns rc:" retCode
SET hdlVector TO workitems
CALL "SETADDR" USING tInfo itemNameBuffer
IF retCode = FMC-OK

PERFORM FmcjWIVNextElement
SET hdlItem TO FmcjWIHandleReturnValue
PERFORM UNTIL pointerReturnValue = NULL

PERFORM FmcjWIName
DISPLAY "- Name : " tInfo
PERFORM FmcjWIDeallocate
PERFORM FmcjWIVNextElement

END-PERFORM
END-IF
PERFORM FmcjWLDeallocate
PERFORM FmcjWLVectorDeallocate

END-IF

PERFORM FmcjESLogoff.
PERFORM FmcjESDeallocate.
PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 65. Sample COBOL program to query work items from a worklist (via PERFORM)
(Part 2 of 2)

Examples

568 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "QUERYWI".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcconst.
COPY fmcrcs.

01 localUserID PIC X(30) VALUE z"USERID".
01 localPassword PIC X(30) VALUE z"PASSWORD".
01 numWList PIC 9(9) BINARY VALUE 0.
01 tInfo PIC X(4097).

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

CALL "FmcjGlobalConnect".
* logon

CALL "FmcjExecutionServiceAllocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Service object could not be allocated"
DISPLAY "rc: " retCode
MOVE -1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING localUserId userId.
CALL "SETADDR" USING localPassword passwordValue.
CALL "FmcjExecutionServiceLogon"

USING BY VALUE serviceValue
userID
passwordValue
Fmc-SM-Default
Fmc-SA-Reset

RETURNING intReturnValue.

MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "Logon failed - rc: " retCode
CALL "FmcjExecutionServiceDeallocate"

USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

Figure 66. Sample COBOL program to query work items from a worklist (via CALL) (Part 1 of
3)

Examples

Chapter 6. Examples 569

* query worklists
CALL "FmcjExecutionServiceQueryWorklists"

USING BY VALUE serviceValue
BY REFERENCE lists

RETURNING intReturnValue.
MOVE intReturnValue TO retCode
IF retCode NOT = FMC-OK

DISPLAY "QueryWorklists returns - rc: " retCode
ELSE

DISPLAY "QueryWorklists returns okay"
END-IF

IF retCode = FMC-OK
SET hdlVector TO lists
CALL "FmcjWorklistVectorSize"

USING BY VALUE hdlVector
RETURNING ulongReturnValue

MOVE ulongReturnValue TO numWList
DISPLAY "Number of worklists returned : " numWList
IF numWList = 0

DISPLAY "No worklist found"
CALL "FmcjWorklistDeallocate"

USING BY REFERENCE hdlList
RETURNING intReturnValue

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue

MOVE -1 TO retCode
GOBACK

END-IF

CALL "FmcjWorklistVectorFirstElement"
USING BY VALUE hdlVector
RETURNING FmcjWLHandleReturnValue

SET hdlList TO FmcjWLHandleReturnValue
MOVE 4097 TO bufferLength
CALL "SETADDR" USING tInfo listNameBuffer
CALL "FmcjPersistentListName"

USING BY VALUE hdlList
listNameBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY "Name : " tInfo

* query workitems
CALL "FmcjWorklistQueryWorkitems"

USING BY VALUE hdlList
BY REFERENCE workitems
RETURNING intReturnValue

MOVE intReturnValue TO retCode
DISPLAY "Query workitems of list returns rc:" retCode
SET hdlVector TO workitems
CALL "SETADDR" USING tInfo itemNameBuffer
IF retCode = FMC-OK

CALL "FmcjWorkitemVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjWIHandleReturnValue

SET hdlItem TO FmcjWIHandleReturnValue

Figure 66. Sample COBOL program to query work items from a worklist (via CALL) (Part 2 of
3)

Examples

570 MQSeries Workflow for OS/390 Programming Guide

PERFORM UNTIL pointerReturnValue = NULL
CALL "FmcjItemName"

USING BY VALUE hdlItem
itemNameBuffer
bufferLength

RETURNING pointerReturnValue
DISPLAY "- Name : " tInfo
CALL "FmcjWorkitemDeallocate"

USING BY REFERENCE hdlWorkitem
RETURNING intReturnValue

CALL "FmcjWorkitemVectorNextElement"
USING BY VALUE hdlVector
RETURNING FmcjWIHandleReturnValue

END-PERFORM
END-IF
CALL "FmcjWorklistDeallocate"

USING BY REFERENCE hdlList
RETURNING intReturnValue

CALL "FmcjWorklistVectorDeallocate"
USING BY REFERENCE hdlVector
RETURNING intReturnValue

END-IF

CALL "FmcjExecutionServiceLogoff"
USING BY VALUE serviceValue
RETURNING intReturnValue.

CALL "FmcjExecutionServiceDeallocate"
USING BY REFERENCE serviceValue
RETURNING intReturnValue.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

Figure 66. Sample COBOL program to query work items from a worklist (via CALL) (Part 3 of
3)

Examples

Chapter 6. Examples 571

How to code an activity implementation
The following examples show the concept of how to query and set containers from
within an activity implementation. Refer to the examples provided with the
product for more details.

Examples

572 MQSeries Workflow for OS/390 Programming Guide

Programming an activity implementation (C)

#include <stdio.h>
#include <fmcjccon.h> /* MQ Workflow Container API */
int main()
{

FILE * file1 = 0;
APIRET rc = FMC_OK;
FmcjReadOnlyContainerHandle input = 0;
FmcjReadWriteContainerHandle output = 0;
char stringBuffer[4097]="";

/*- keep results in a file --*/
file1 = fopen ("sample.out", "a");
if (file1 == 0)

return -1;
fprintf(file1,"\n----- C-API Activity Implementation called -----\n");
fflush(file1);

FmcjGlobalConnect();

/*-- retrieve the input container from the PEA who started the program --*/
rc = FmcjContainerInContainer(&input);
fprintf(file1, "Get Input Container - rc: %u\n", rc);
if (rc != FMC_OK)
{

fclose(file1);
return 1;

}

fprintf(file1, "Input Container Name: %s\n",
FmcjReadOnlyContainerType(input, stringBuffer, 4097));

/*-- retrieve the output container from the PEA who started the program -*/
rc = FmcjContainerOutContainer(&output);
fprintf(file1, "Get Output Container - rc: %u\n", rc);
if (rc != FMC_OK)
{

fclose(file1);
return 1;

}

fprintf(file1, "Output Container Name: %s\n",
FmcjReadWriteContainerType(output, stringBuffer, 4097));

/*----- Modify output values --*/
rc= FmcjReadWriteContainerSetLongValue(output, "aFieldInTheOutput",42);
fprintf(file1, "\nSetting long value returns rc: %u\n", rc);

...

/*-- return the output container to the PEA who started the program -----*/
rc = FmcjContainerSetOutContainer(output);
fprintf(file1, "\nSet Output Container - rc: %u\n",rc);
fflush(file1);

FmcjGlobalDisconnect();
fclose(file1);
return 0; // _RC passed to MQSeries Workflow

}

Figure 67. Sample activity implementation (C)

Examples

Chapter 6. Examples 573

Programming an activity implementation (C++)

#include <fstream.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjpcon.hxx> // MQ Workflow Container API
int main()
{
/*- keep results in a file --*/

ofstream file1("sample.out");
if (file1 == 0)

return -1;

file1 << "\n----- C++-API Activity Implementation called -----\n" << endl;

FmcjGlobal::Connect();

/*-- retrieve the input container from the PEA who started the program --*/
FmcjReadOnlyContainer input;

APIRET rc = FmcjContainer::InContainer(input);
file1 << "Get Input Container - rc: " << rc << endl;
if (rc != FMC_OK)
{

file1.close();
return 1;

}

file1 << "Input Container Name: " << input.Type() << endl;

/*-- retrieve the output container from the PEA who started the program -*/
FmcjReadWriteContainer output;

rc = FmcjContainer::OutContainer(output);
file1 << "Get Output Container - rc: " << rc << endl;
if (rc != FMC_OK)
{

file1.close();
return 1;

}

file1 << "Output Container Name: " << output.Type() << endl;
/*----- Modify output values --*/

rc= output.SetValue("aFieldInTheOutput",42L);
file1 << "Setting long value returns rc: " << rc << endl;

...

/*-- return the output container to the PEA who started the program -----*/
rc = FmcjContainer::SetOutContainer(output);
file1 << "Set Output Container - rc: " << rc << endl;

FmcjGlobal::Disconnect();
file1.close();
return 0; // _RC passed to MQSeries Workflow

}

Figure 68. Sample activity implementation (C++)

Examples

574 MQSeries Workflow for OS/390 Programming Guide

Programming an activity implementation (COBOL)

IDENTIFICATION DIVISION.
PROGRAM-ID. "EXEC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcrcs.

01 stringBuffer PIC X(4097).
01 fieldName PIC X(39) VALUE z"aFieldInTheOutput".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

DISPLAY "-- COBOL-API Activity Implementation called --"
PERFORM FmcjGlobalConnect.

* retrieve the input container
PERFORM FmcjCInCtnr.
MOVE intReturnValue TO retCode.
DISPLAY "Get Input Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING stringBuffer containerTypeBuffer.
MOVE 4097 TO bufferLength.
SET hdlContainer TO inputValue.
PERFORM FmcjROCType.
DISPLAY "Input Container Name: " stringBuffer.

* retrieve the output container
PERFORM FmcjCOutCtnr.
MOVE intReturnValue TO retCode.
DISPLAY "Get Output Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

SET hdlContainer TO outputValue.
PERFORM FmcjRWCType.
DISPLAY "Output Container Name: " stringBuffer.

Figure 69. Sample activity implementation (COBOL, via PERFORM) (Part 1 of 2)

Examples

Chapter 6. Examples 575

* modify output values
MOVE 42 TO intValue.
CALL "SETADDR" USING fieldName qualifiedName.
PERFORM FmcjRWCSetLongValue.
MOVE intReturnValue TO retCode.
DISPLAY "Setting long value returns rc: " retCode.

* return the output container
PERFORM FmcjCSetOutCtnr.
MOVE intReturnValue TO retCode.
DISPLAY "Set Output Container - rc: " retCode.

PERFORM FmcjGlobalDisconnect.
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 69. Sample activity implementation (COBOL, via PERFORM) (Part 2 of 2)

Examples

576 MQSeries Workflow for OS/390 Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. "EXEC".

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY fmcvars.
COPY fmcrcs.

01 stringBuffer PIC X(4097).
01 fieldName PIC X(39) VALUE z"aFieldInTheOutput".

LINKAGE SECTION.

01 retCode PIC S9(9) BINARY.

PROCEDURE DIVISION USING retCode.

DISPLAY "-- COBOL-API Activity Implementation called --"
CALL "FmcjGlobalConnect".

* retrieve the input container
CALL "FmcjContainerInContainer"

USING BY REFERENCE inputValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Get Input Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

CALL "SETADDR" USING stringBuffer containerTypeBuffer.
MOVE 4097 TO bufferLength.
SET hdlContainer TO inputValue.
CALL "FmcjContainerType"

USING BY VALUE hdlContainer
containerTypeBuffer
bufferLength

RETURNING pointerReturnValue.
DISPLAY "Input Container Name: " stringBuffer.

* retrieve the output container
CALL "FmcjContainerOutContainer"

USING BY REFERENCE outputValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Get Output Container - rc: " retCode.
IF retCode NOT = FMC-OK

MOVE 1 TO retCode
GOBACK

END-IF

SET hdlContainer TO outputValue.
CALL "FmcjContainerType"

USING BY VALUE hdlContainer
containerTypeBuffer
bufferLength

RETURNING pointerReturnValue.
DISPLAY "Output Container Name: " stringBuffer.

* modify output values
MOVE 42 TO intValue.
CALL "SETADDR" USING fieldName qualifiedName.

Figure 70. Sample activity implementation (COBOL, via CALL) (Part 1 of 2)

Examples

Chapter 6. Examples 577

CALL "FmcjReadWriteContainerSetLongValue"
USING BY VALUE hdlContainer

qualifiedName
intValue

RETURNING intReturnValue.
MOVE intReturnValue TO retCode.
DISPLAY "Setting long value returns rc: " retCode.

* return the output container
CALL "FmcjContainerSetOutContainer"

USING BY VALUE outputValue
RETURNING intReturnValue.

MOVE intReturnValue TO retCode.
DISPLAY "Set Output Container - rc: " retCode.

CALL "FmcjGlobalDisconnect".
MOVE FMC-OK TO retCode.
GOBACK.

COPY fmcperf.

Figure 70. Sample activity implementation (COBOL, via CALL) (Part 2 of 2)

Examples

578 MQSeries Workflow for OS/390 Programming Guide

Glossary

This glossary defines terms and abbreviations
used in MQSeries Workflow for OS/390
publications. If you do not find the term you are
looking for, refer to the index of the appropriate
manual or view the IBM Dictionary of Computing
located at:
http://www.ibm.com/networking/nsg/nsgmain.htm

A
administration server. The MQ Workflow component
that performs administration functions within an MQ
Workflow system. Functions include starting and
stopping of the MQ Workflow system, performing error
management, and participating in administrative
functions for a system group.

activity. One of the steps that make up a process
model. This can be a program activity, process activity,
or block activity.

activity information member. A predefined data
structure member associated with the operating
characteristics of an activity.

API. Application Programming Interface.

applet. An application program, written in the Java
programming language, that can be retrieved from a
Web server and executed by a Web browser. A
reference to an applet appears in the markup for a Web
page, in the same way that a reference to a graphics file
appears; a browser retrieves an applet in the same way
that it retrieves a graphics file. For security reasons, an
applet’s access rights are limited in two ways: the
applet cannot access the file system of the client upon
which it is executing, and the applet’s communication
across the network is limited to the server from which
it was downloaded. Contrast with servlet.

application programming interface. An interface
provided by the MQ Workflow workflow manager that
enables programs to request services from the MQ
Workflow workflow manager.

asynchronous API call. A particular service of the API
that allows programs to register functions with the API
that are invoked when a defined event is found by MQ
Workflow.

audit trail. A relational table in the database that
contains an entry for each major event during
execution of a process instance.

authorization. The attributes of a user’s staff
definition that determine the user’s level of authority in
MQ Workflow. The system administrator is allowed to
perform all functions.

B
backward mapping. Conversion of output data
created by an OS/390 legacy application into an
MQSeries Workflow container. This conversion is
performed by the program execution server’s program
mapper.

backward mapping definition. Part of the MDL
which connects an interface definition and structure
definition.

bend point. A point at which a connector starts, ends,
or changes direction.

block activity. A composite activity that consists of a
group of activities, which can be connected with control
and data connectors. A block activity is used to
implement a Do-Until loop; all activities within the
block activity are processed until the exit condition of
the block activity evaluates to true. See also composite
activity.

Buildtime. An MQ Workflow component with a
graphical user interface for creating and maintaining
workflow models, administering resources, and the
system network definitions.

C
cardinality. (1) An attribute of a relationship that
describes the membership quantity. There are four
types of cardinality: One-to-one, one-to-many,
many-to-many, and many-to-one. (2) The number of
rows in a database table or the number of different
values in a column of a database table.

child organization. An organization within the
hierarchy of administrative units of an enterprise that
has a parent organization. Each child organization can
have one parent organization and several child
organizations. The parent is one level above in the
hierarchy. Contrast with parent organization.

cleanup server. The MQ Workflow component that
physically deletes information in the MQ Workflow
Runtime database, which had only been deleted
logically.

© Copyright IBM Corp. 1999, 2000 579

composite activity. An activity which is composed of
other activities. Composite activities are block activities
and bundle activities.

container API. An MQ Workflow API that allows
programs executing under the control of MQ Workflow
to obtain data from the input and output container of
the activity and to store data in the output container of
the activity.

control connector. Defines the potential flow of
control between two nodes in the process. The actual
flow of control is determined at run time based on the
truth value of the transition conditions associated with
the control connector.

coordinator. A predefined role that is automatically
assigned to the person designated to coordinate a role.

CPIC. An invocation type that allows the program
execution server to run an application synchronously
on an IMS service. CPIC is based on IMS/APPC.

D
data connector. Defines the flow of data between
containers.

data container. Storage for the input and output data
of an activity or process. See input container and output
container.

data mapping. Specifies, for a data connector, which
fields from the associated source container are mapped
to which fields in the associated target container.

data structure. A named entity that consists of a set of
data structure members. Input and output containers
are defined by reference to a data structure and adopt
the layout of the referenced data structure type.

data structure member. One of the variables of which
a data structure is composed.

default control connector. The graphical
representation of a standard control connector, shown
in the process diagram. Control flows along this
connector if no other control path is valid.

document type definition (DTD). The rules,
determined by an application, that apply SGML to the
markup language of documents of a particular type.
SGML provides the syntax for the markup language,
and the DTD provides the vocabulary for the markup
language.

domain. A set of MQ Workflow system groups which
have the same meta-model, share the same staff
information, and topology information. Communication
between the components in the domain is via message
queuing.

dynamic staff assignment. A method of assigning
staff to an activity by specifying criteria such as role,
organization, or level. When an activity is ready, the
users who meet the selection criteria receive the activity
to be worked on. See also level, organization, process
administrator, and role.

E
end activity. An activity that has no outgoing control
connector.

EXCI. An invocation type that allows the program
execution server to run an application synchronously
on a CICS service. EXCI is based on the CICS External
CICS Interface provided by CICS Version 4.1 and
higher to allow non-CICS applications to call programs
running under CICS.

execution server. The MQ Workflow component that
performs the processing of process instances at
runtime.

exit condition. A logical expression that specifies
whether an activity is complete.

export. An MQ Workflow utility program for
retrieving information from the MQ Workflow database
and making it available in MQ Workflow Definition
Language (FDL) or HTML format. Contrast with import.

F
fixed member. A predefined data structure member
that provides information about the current activity.
The value of a fixed member is set by the MQ
Workflow workflow manager.

(FDL) MQ Workflow Definition Language. The
language used to exchange MQ Workflow information
between MQ Workflow system groups. The language is
used by the import and export function of MQ
Workflow and contains the workflow definitions for
staff, programs, data structures, and topology. This
allows non-MQ Workflow components to interact with
MQ Workflow. See also export and import.

FlowMark. The predecessor of MQSeries Workflow.

fork activity. An activity that is the source of multiple
control connectors.

forward mapping. Conversion of MQSeries Workflow
containers into a format accepted by an OS/390 legacy
application. This conversion is performed by the
program execution server’s program mapper.

forward mapping definition. Part of the MDL which
connects a structure definition and interface definition.

fully-qualified name. A qualified name that is
complete; that is, one that includes all names in the

580 MQSeries Workflow for OS/390 Programming Guide

hierarchical sequence above the structure member to
which the name refers, as well as the name of the
member itself.

I
import. An MQ Workflow utility program that accepts
information in the MQ Workflow definition language
(FDL) format and places it in an MQ Workflow
database. Contrast with export.

input container. Storage for data used as input to an
activity or process. See also source and data mapping.

interface. The definition of the data structure accepted
by an OS/390 CICS or IMS legacy application. This
definition is used by the program mapper to convert data
to (and from) an MQSeries Workflow program’s
structure.

interface definition. Part of the MDL which defines
the interface used by a legacy application.

interface element. Part of an interface definition. An
interface element has a name, a type and a cardinality.
It is mapped onto a structure element by a mapping rule.

invocation exit. The DLL specified by the invocation
type. The exit is based on an invocation protocol like
CICS External CICS Interface, IMS/APPC or the
MQSeries CICS and IMS bridges.

invocation protocol. The way the PES connects to a
service like CICS or IMS in order to invoke a program
on that service.

invocation type. The way the program execution
server connects to a service system (like CICS or IMS)
in order to invoke a program on that service. The
invocation type is part of a program mapping
execution request sent to the PES. To invoke a program,
the PES loads the appropriate invocation exit as
defined for the invocation type. Invocation types
include EXCI and CPIC.

L
level. A number from 0 through 9 that is assigned to
each person in an MQ Workflow database. The person
who defines staff in Buildtime can assign a meaning to
these numbers such as rank and experience. Level is
one of the criteria that can be used to dynamically
assign activities to people.

local user. Identifies a user during staff resolution
whose home server is in the same system group as the
originating process.

local subprocess. A subprocess that is processed in the
same MQ Workflow system group as the originating
process.

logical expression. An expression composed of
operators and operands that, when evaluated, gives a
result of true, false, or an integer. (Nonzero integers are
equivalent to false.) See also exit condition and transition
condition.

M
manager. A predefined role that is automatically
assigned to the person who is defined as head of an
organization.

mapping definition language. The language used to
define mapping definitions for the program mapping exit.

mapping exit. Used by the PES to convert data
between MQSeries Workflow and legacy applications.
The exit is defined by a mapping type defined in the
PES directory and in Buildtime. The exit is only called if
mapping has been enabled in Buildtime.

mapping rules. Part of a forward mapping or backward
mapping definition that defines the mapping between
individual interface elements and structure elements.
Mapping rules are defined using the mapper definition
language.

mapping type. The name used to identify which
mapping exit to use. The mapping type is defined in
the PES directory and must match the Buildtime
definitions for the legacy application. The mapping
type provided with MQSeries Workflow for OS/390 is
named DEFAULT.

MDL. See mapping definition language.

message queuing. A communication technique that
uses asynchronous messages for communication
between software components.

MQCICS. An invocation type that allows the program
execution server to run an application asynchronously
on a CICS service. The corresponding invocation exit
uses the MQSeries CICS Bridge as invocation protocol.

MQIMS. An invocation type that allows the program
execution server to run an application asynchronously
on an IMS service. The corresponding invocation exit
uses the invocation protocol MQSeries IMS Bridge.

N
navigation. Movement from a completed activity to
subsequent activities in a process. The paths followed
are determined by control connectors, their associated
transition conditions, and by the start conditions of
activities. See also control connector, exit condition,
transition condition, and start condition.

node. (1) The generic name for activities within a
process diagram. (2) The operating system image that
hosts MQ Workflow systems.

Glossary 581

notification. An MQ Workflow facility that can notify
a designated person when a process or activity is not
completed within the specified time.

notification work item. A work item that represents
an activity or process notification.

O
organization. An administrative unit of an enterprise.
Organization is one of the criteria that can be used to
dynamically assign activities to people. See child
organization and parent organization.

output container. Storage for data produced by an
activity or process for use by other activities or for
evaluation of conditions. See also sink.

P
parent organization. An organization within the
hierarchy of administrative units of an enterprise that
has one or more child organizations. A child is one
level below its parent in the hierarchy. Contrast with
child child organization.

parent process. A process instance that contains the
process activity which started the process as a
subprocess.

pattern activity. A single and simple activity in a
bundle activity from which multiple instances, called
pattern activity instances, are created at run time.

person (pl. people). A member of staff in an
enterprise who has been defined in the MQ Workflow
database.

PES. See program execution server.

PES directory. See program execution server directory.

predefined data structure member. A data structure
member predefined by MQ Workflow and used for
communication between user applications and MQ
Workflow Runtime.

process. Synonymously used for a process model and
a process instance. The actual meaning is typically
derived from the context.

process activity. An activity that is part of a process
model. When a process activity is executed, an instance
of the process model is created and executed.

process administrator. A person who is the
administrator for a particular process instance. The
administrator is authorized to perform all operations
on a process instance. The administrator is also the
target for staff resolution and notification.

process category. An attribute that a process modeler
can specify for a process model to limit the set of users
who are authorized to perform functions on the
appropriate process instances.

process definition. Synonym for process model.

process diagram. A graphical representation of a
process that shows the properties of a process model.

process instance. An instance of a process to be
executed in MQ Workflow Runtime.

process instance list. A set of process instances that
are selected and sorted according to user-defined
criteria.

process instance monitor. An MQ Workflow client
component that shows the state of a particular process
instance graphically.

process management. The MQ Workflow Runtime
tasks associated with process instances. These consist of
creating, starting, suspending, resuming, terminating,
restarting, and deleting process instances.

process model. A set of processes represented in a
process model. The processes are represented in
graphical form in the process diagram. The process
model contains the definitions for staff, programs, and
data structures associated with the activities of the
process. After having translated the process model into
a process template, the process template can be
executed over and over again. Workflow model and
process definition are synonyms.

process monitor API. An application programming
interface that allows applications to implement the
functions of a process instance monitor.

process-relevant data. Data that is used to control the
sequence of activities in a process instance.

process status. The status of a process instance.

process template. A fixed form of a process model
from which process instances can be created. It is the
translated form in MQ Workflow Runtime. See also
process instance.

process template list. A set of process templates that
have been selected and sorted according to
user-defined criteria.

program. A computer-based application that serves as
the implementation of a program activity or as a
support tool. Program activities reference executable
programs using the logical names associated with the
programs in MQ Workflow program registrations. See
also program registration.

program activity. An activity that is executed by a
registered program. Starting this activity invokes the
program. Contrast with process activity.

582 MQSeries Workflow for OS/390 Programming Guide

program execution agent (PEA). An MQ Workflow
component that manages the implementations of
program activities for a user in a LAN environment.
Each instance of a program execution agent services a
single user. MQSeries Workflow for OS/390 does not
support program execution agents but rather employs a
program execution server.

program execution server (PES). An MQ Workflow
component that can manage the implementations of
program activities for multiple clients. OS/390 employs
a program execution server to implement CICS and
IMS programs and to support mapping of data formats
between MQSeries Workflow and legacy applications.
Multiple instances of a program execution server are
possible. In the LAN environment, program execution
agents are used instead of program execution servers.

program mapping. Program mapping definitions
passed and supported into the mapping database and
used by the program mapper at runtime to transform
data from legacy applications.

program mapping DB. Database used by the PES exit
which contains program mappings imported by the
program mapping import tool. Used at runtime by the
exit to perform the forward and backward mapping.

program mapping exit. PES exit used to transform
MQSeries Workflow for OS/390 containers into a
format acceptable by legacy applications and vice
versa.

program mapping import tool. Component of the
MQSeries Workflow program mapping exit which reads
the result of the program mapping parser and inputs
the compiled program mapping definitions into the
program mapping DB.

program mapping parser. Component of the
MQSeries Workflow for OS/390 program mapping exit
which parses the MDL and creates an intermediate file
which is used by the program mapping import tool.

program registration. Registering a program in MQ
Workflow so that sufficient information is available for
managing the program when it is executed by MQ
Workflow.

R
role. A responsibility that is defined for staff members.
Role is one of the criteria that can be used to
dynamically assign activities to people.

S
scheduling server. The MQ Workflow component that
schedules actions based on time events, such as
resuming suspended work items, or detecting overdue
processes.

server. The servers that make up an MQ Workflow
system are called Execution Server, Administration
Server, Scheduling Server, and Cleanup Server.

servlet. An application program, written in the Java
programming language, that is executed on a Web
server. A reference to a servlet appears in the markup
for a Web page, in the same way that a reference to a
graphics file appears. The Web server executes the
servlet and sends the results of the execution (if there
are any) to the Web browser. Contrast with applet.

sink. The symbol that represents the output container
of a process or a block activity.

source. The symbol that represents the input container
of a process or a block activity.

specific resource assignment. A method of assigning
resources to processes or activities by specifying their
user IDs.

standard client. The MQ Workflow component, which
enables creation and control of process instances,
working with worklists and work items, and
manipulation of personal data of the logged-on user.

start activity. An activity that has no incoming control
connector.

start condition. The condition that determines
whether an activity with incoming control connectors
can start after all of the incoming control connectors are
evaluated.

structure. The definition of the MQSeries Workflow
structure passed into or out of an activity
implementation.

structure definition. Part of the MDL which defines
the structure used by a program activity.

structure element. Part of an structure definition. A
structure element has a name, a type and a cardinality.
It is mapped onto an interface element by a mapping
rule.

subprocess. A process instance that is started by a
process activity.

substitute. The person to whom an activity is
automatically transferred when the person to whom the
activity was originally assigned is declared as absent.

support tool. A program that end users can start from
their worklists in the MQ Workflow MQ Workflow
Client to help complete an activity.

symbolic reference. A reference to a specific data
item, the process name, or activity name in the
description text of activities or in the command-line
parameters of program registrations. Symbolic
references are expressed as pairs of percent signs (%)

Glossary 583

that enclose the fully-qualified name of a data item, or
either of the keywords _PROCESS or _ACTIVITY.

system. The smallest MQ Workflow unit within an
MQ Workflow domain. It consists of a set of the MQ
Workflow servers.

system group. A set of MQ Workflow systems that
share the same database.

system administrator. (1) A predefined role that
conveys all authorizations and that can be assigned to
exactly one person in an MQ Workflow system. (2) The
person at a computer installation who designs, controls,
and manages the use of the computer system.

T
thin client. A client that has little or no installed
software but has access to software that is managed
and delivered by network servers that are attached to
it. A thin client is an alternative to a full-function client
such as a PC.

top-level process. A process instance that is not a
subprocess and is started from a user’s process instance
list or from an application program.

transition condition. A logical expression associated
with a conditional control connector. If specified, it
must be true for control to flow along the associated
control connector. See also control connector.

translate. The action that converts a process model
into a Runtime process template.

trusted program. A program that has been assigned
such a characteristic in the FDL (via Buildtime), which
enables a PEA or PES to divulge the program ID.

U
Unicode. A system of 16 bit binary codes for text or
script characters. Officially called the Unicode
Worldwide Character Standard, it is a system for ″the
interchange, processing, and display of the written texts
of the diverse languages of the modern world″.
Unicode is used by the Java programming language for
character representation.

user-defined program execution server (UPES). A
program listening on a user-defined MQSeries queue
and effectively acting as a program execution server by
accepting and implementing program invocation
requests received from external programs in the form
of XML messages.

user ID. An alphanumeric string that uniquely
identifies an MQ Workflow user.

user type definition. Part of the MDL which defines
the interface used by a user type.

user type interface. A user defined interface type. If
you need to map a data type that is not supported by
the default mapper type, you can define a user type,
and write a type conversion program which handles
the conversion of the particular data type. This must
use the user type exit.

V
verify. The action that checks a process model for
completeness.

W
workflow. The sequence of activities performed in
accordance with the business processes of an enterprise.

Workflow Management Coalition (WfMC). A
non-profit organization of vendors and users of
workflow management systems. The Coalition’s
mission is to promote workflow standards for
workflow management systems to allow
interoperability between different implementations.

workflow model. Synonym for process model.

work item. Representation of work to be done in the
context of an activity in a process instance.

work item set of a user. All work items assigned to a
user.

worklist. A list of work items and notifications
assigned to a user and retrieved from a workflow
management system.

worklist view. List of work items selected from a
work item set of a user according to filter criteria which
are an attribute of a worklist. It can be sorted according
to sort criteria if specified for this worklist.

584 MQSeries Workflow for OS/390 Programming Guide

Bibliography

To order any of the following publications,
contact your IBM representative or IBM branch
office.

MQSeries Workflow for OS/390
publications
This section lists the publications included in the
MQSeries Workflow for OS/390 library.
v MQSeries Workflow for OS/390: Customization and

Administration, SC33-7030, explains how to
customize and administer an MQSeries
Workflow for OS/390 system.

v MQSeries Workflow for OS/390: Programming
Guide, SC33-7031, explains the application
programming interfaces (APIs) available on
OS/390, including program execution server
exits.

v MQSeries Workflow for OS/390: Messages and
Codes, SC33-7032, explains the MQSeries
Workflow for OS/390 system messages.

v MQSeries Workflow for OS/390: Program
Directory, GI10-0483, explains how to install
MQSeries Workflow for OS/390.

MQSeries Workflow publications
This section lists the publications included in the
MQSeries Workflow library.
v IBM MQSeries Workflow: List of Workstation

Server Processor Groups, GH12-6357, lists the
processor groups for MQSeries Workflow.

v IBM MQSeries Workflow: Concepts and
Architecture, GH12-6285, explains the basic
concepts of MQSeries Workflow. It also
describes the architecture of MQSeries
Workflow and how the components fit together.

v IBM MQSeries Workflow: Getting Started with
Buildtime, SH12-6286, describes how to use
Buildtime of MQSeries Workflow.

v IBM MQSeries Workflow: Getting Started with
Runtime, SH12-6287, describes how to get
started with the Client.

v IBM MQSeries Workflow: Programming Guide,
SH12-6291, explains the application
programming interfaces (APIs).

v IBM MQSeries Workflow: Installation Guide,
SH12-6288, contains information and
procedures for installing and customizing
MQSeries Workflow.

v IBM MQSeries Workflow: Administration Guide,
SH12-6289, explains how to administer an
MQSeries Workflow system.

Workflow publications
v IBM Systems Journal, Vol. 36. No. 1, 1997 by

Frank Leymann, Dieter Roller. You can also refer
to the Internet:
http://www.almaden.ibm.com/
journal/sj361/leymann.html

v Workflow Handbook 1997, published in association
with WfMC. Edited by Peter Lawrence.

MQSeries publications
v MQSeries System Administration, SC33-1873,

explains administration tasks related to
MQSeries.

v MQSeries Installation, SH12-6288, discusses the
installation of MQSeries.

v MQSeries System Administration, SC33-0807,
discusses topics related to the application
programming interface of MQSeries.

Other useful publications
v MQSeries Clients, GC22-1632
v DB2 for OS/390 Administration Guide, SC26-8957
v DB2 for OS/390 SQL Reference, SC26-8966
v DB2 for OS/390 Application Programming and

SQL Guide, SC26-8958
v DB2 for OS/390 Command Reference, SC26-8960
v DB2 for OS/390 Utility Guide and Reference,

SC26-8967
v OS/390 MVS Planning: Workload Management,

GC28-1761
v OS/390 MVS Programming: Workload

Management Services, GC28-1773
v W3C Recommendation: Extensible Markup

Language (XML) 1.0, REC-xml-19980210

© Copyright IBM Corp. 1999, 2000 585

Licensed books
The licensed books that were declassified in
OS/390 Version 2 Release 4 appear on the OS/390
Online Library Collection, SK2T-6700. The
remaining licensed books for OS/390 Version 2
appear on the OS/390 Licensed Product library,
LK2T-2499, in unencrypted form.

586 MQSeries Workflow for OS/390 Programming Guide

Index

A
accessor calls

API calls 87
authorization 86
bool 87
char 108
date/time 88
default values 85
definition 85
enumeration 88
error handling 8
examples 116, 117, 118
integer 112
IsNull 111
lifetime of values 86
long 107, 112, 114
multi-valued 109
object 113
object valued 109, 111
return codes 86
session requirements 86
string 108
vector 21

action calls
definition 122
error handling 8

activating program mappings 195
activity implementation

API calls 122
coding (examples) 572
container 126, 133, 138
error handling 8
input container 303, 307
output container 305, 308, 310, 312
passthrough 339
pseudo code 126, 133, 137
remote passthrough 384
return code 127, 133, 138
XML 156

activity instance
definition 287
error reason 253
monitor, process instance 287
notification 341
overview 229
subprocess instance, retrieval 289
vector API calls 235

activity instance notification
definition 291
delete 388
description, set 396
monitor, process instance 390
name, set 398
object identifier 291
overview 233
process instance 392
refresh 394
retrieve 292
start tool 294
transfer 400

ActivityInstance
API calls 229
ObtainInstanceMonitor() 287
ObtainProcessInstanceMonitor() 287
SubProcessInstance() 289

ActivityInstanceNotification
API calls 233
Delete() 388
ObtainProcessInstanceMonitor() 390
PersistentObject() 292
ProcessInstance() 392
Refresh() 394
SetDescription() 396
SetName() 398
StartTool() 294
Transfer() 400

agent
API calls 235
overview 235

allocation
copy 74
declaration 71
explicit 11, 134
implicit 11, 134

API calls
action 287
activity implementation 287
categories 70
summary by class/object 227

application
activity implementation 3, 7, 126, 137
activity implementation, Java 133
client 3, 7, 125, 136
client, Java 132

array
Java 30
query result 20

assignment 73
authorization

accessor API calls 86
definitions 67
explicit 67
implicit 67
process administrator 67
system administrator 67
XML message 155

B
backward mapping

constants 170, 175
definition 168, 170
example 171, 174, 175, 176
example with constants 176
grammar 189
non-default backward mapping 174

BackwardSetting 190
basic calls

definition 70
error handling 8
examples 78, 80

basic calls (continued)
return codes 70

bibliography 585
block instance monitor

definition 296
monitor, block activity 296
monitor, process instance 298
obtain 66
overview 237
ownership 67
refresh 301

BlockInstanceMonitor
API calls 237
ObtainBlockInstanceMonitor() 296
ObtainProcessInstanceMonitor() 298
Refresh() 301

bool definition 125

C
C/C++

programming considerations 125
CharacterInterfaceType 188
characters 177
check in 489
check out 491
CICS

mapping example 196, 197
special considerations 167

COBOL
calling requirements 135
compiling/linking 138
mapping to C data types 139
name differences with C 140
programming considerations 135
string handling 136
string handling example 150

comparison 73
compile

bool, string, vector 125
headers 127
library files 127

complete
data view 75
function 75, 85

concepts
memory management 8, 11
object access 8
object management 134
result object 8
session 8

constructor
copy 74
declaration 71

container
activity implementation 122, 126,

133, 138
analyze structure 37
analyzing an element 41
array 31
array index 31
basic data types 30

© Copyright IBM Corp. 1999, 2000 587

container (continued)
container element 31
data member 30
data structure 30
definition 30
element overview 241
element vector 243
example 31
exception 65
fixed data members 33
fully qualified name 31
input, process template 465
input, work item 501
input container 303, 307
leaf 31, 37
mapping 167
name in dot notation 31
output, work item 502
output container 305, 308, 310, 312
overview 238
predefined data members 32
read-only 303
read/write 303
return codes 65
structural member 31, 39
type 40
value 31, 47, 60

Container
API calls 238
container element 303
definition 303
InContainer() 303
leaves 303
OutContainer() 305
RemoteInContainer() 307
RemoteOutContainer() 308
SetOutContainer() 310
SetRemoteOutContainer() 312

container element
access 47
array 42, 46
definition 31
exception 65
leaf 31, 42, 43
name 41
return codes 65
structural member 42, 44
type 31, 41
value 54

ContainerElement
API calls 241

control connector instance
overview 243
vector 244

ControlConnectorInstance
API calls 243

conversion 178
copy

constructor 74
function 74

D
data access

models 16
pull 16
push 16

data access (continued)
view 75, 85

date/time
overview 245

DateAndTime
API calls 245

deallocation
declaration 75
function 22, 75
vector 22

default values 85
description

item 396
persistent list 406
process instance 433
process instance list 315
process template list 321
worklist 326

destructor
declaration 75

DLL options
overview 246

DllOptions
API calls 246

E
empty

function 76, 85
object 76

equal
comparison 73
function 73

error
handling 8
Java exceptions 9
mapping errors 175
overview 253
reason 253
result object 12
return codes 9

exception, Java 254
exceptions

Java 9
execution data 17

overview 247
execution service

definition 314
log off 333
log on 334
overview 4, 248
passthrough 339
password, set 481
process instance list 315
process template list 321
query, activity instance

notification 341
query, item 347
query, process instance 361
query, process instance list 353
query, process instance

notification 355
query, process template 368
query, process template list 366
query, work item 372
query, worklist 379
remote passthrough 384

execution service (continued)
session, begin 334
session, end 333
session, passthrough 339
session, remote passthrough 384
settings, logged on user 483
worklist 326

ExecutionAgent
API calls 246

ExecutionData
API calls 247

ExecutionService
API calls 248
CreateProcessInstanceList() 315
CreateProcessTemplateList() 321
CreateWorklist() 326
definition 314
Logoff() 333
Logon() 334
Passthrough() 339
Query

ActivityInstanceNotifications() 341
QueryItems() 347
QueryProcessInstanceLists() 353
QueryProcessInstanceNotifications() 355
QueryProcessInstances() 361
QueryProcessTemplateLists() 366
QueryProcessTemplates() 368
QueryWorkitems() 372
QueryWorklists() 379
Receive() 381
Refresh() 480
RemotePassthrough() 384
SetPassword() 481
TerminateReceive() 386
UserSettings() 483

ExeOptions
API calls 250
overview 250

external service options
overview 252

ExternalOptions
API calls 252

F
filter

activity instance notification 341
definition 20
item 347
persistent list 402, 408
process instance 361
process instance list 315
process instance notification 355
process template 368
process template list 321
work item 372
worklist 326, 327

finish
work item 495
work item, force 497

flat file 169
float numbers 177
float_token 181
FloatInterfaceType 188
FmcjError/FmcError

API calls 253

588 MQSeries Workflow for OS/390 Programming Guide

FmcjPEA
API calls 246

FormToMapping 190
forwardmapping

constants 170, 175
default forward mapping 173
definition 168, 170
example 171, 173, 176
example with constants 176
grammar 190
non-default forward mapping 173

ForwardSetting 190
fully qualified name 31
function

accessor 85
action 122
activity implementation 122
basic 70
categories 70
client/server call 122
vector accessor 21

G
Global

API calls 255
global services

overview 255
grammar

comments 181
example 191
interface definition 169
interface definitions

InterfaceCardinality 186
InterfaceDeclaration 185
InterfaceSetting 185
InterfaceType 186

interface types
CharacterInterfaceType 188
FloatInterfaceType 188
IntegerInterfaceType 188
PackedAttributeList 186
PackedInterfaceType 186
UserInterfaceType 189
usertype 171
ZonedAttributeList 187
ZonedInterfaceType 187

keywords 184
mapping elements 189

Backward mapping 189
BackwardSetting 190
FormToMapping 190
Forward mapping 190
ForwardSetting 190
Mapping 189
MappingElement 189
MappingRule 190

overview 181
structure definition 169
structure definitions

MemberCardinality 185
MemberDeclaration 184
MemberSetting 185
MemberType 185
StructureSetting 184

tokens 181
float_token 181

grammar (continued)
tokens 181 (continued)

hex_digit 182
hex_token 182
identifier 182
int_token 183
packed_token 183
string_token 183
zoned_token 183

usertype
UserType 190
UserTypeDeclaration 191
UserTypeLength 191
UserTypeSetting 191

usertype definition 190

H
handle

object 8
hex_digit 182
hex_token 182

I
identifier 182
implementation data

overview 255
ImplementationData

API calls 255
IMS

special considerations 167
input container

activity implementation 126, 133, 138
process instance 421
process template 465
work item 501

int_token 183
integer numbers 177
IntegerInterfaceType 188
interface (mapping)

definition 168, 169, 178
elements 169
example 170, 176
grammar 185
interface element 169
interface element size 194
interface element types

characters 177
definition 177
float numbers 177
integer numbers 177
packed numbers 177
zoned numbers 177

interface elements 170, 172
interface types grammar 186
InterfaceCardinality 186
InterfaceDeclaration 185
InterfaceSetting 185
InterfaceType 186

item
definition 387
delete 388
description, set 396
filter 347, 372
monitor, process instance 390
name 398

item (continued)
object identifier 388
overview 256
process instance, retrieval 392
properties 396
query 347
refresh 394
sort criteria 350, 376
state 485
threshold 350, 376
transfer 400
vector 258
worklist 326

Item
API calls 256
Delete() 388
ObtainProcessInstanceMonitor() 390
ProcessInstance() 392
Refresh() 394
SetDesription() 396
SetName() 398

J
Java

API beans 130
applet 132
communication layer 129
CORBA agent 129
locator methods 130
programming considerations 128
servlet 131

justification 189

K
keywords 184
kind

function 76

L
log off 333
logon

absence setting 336
default 335
present 335
session, execution server 334
session mode 335

M
mapping 167, 202

activating program mappings 195
application examples 196, 197
array 170, 172
backward mapping 170, 174, 175, 176
Buildtime 169
CICS example 196, 197
constants 170, 172, 175, 176
container 168, 169, 172
data type mappings 179, 180
default mapping 168, 170, 171, 174
errors 175, 196
example 176, 191, 199, 200, 201
examples 198

Index 589

mapping 167, 202 (continued)
explicit mapping 170, 172, 175, 176
flat file 169
Flowmark definition language

(FDL) 169
forward mapping 170, 173, 175, 176
grammar 181, 191
interface 170, 172
interface definition grammar 185
introduction 167
legacy application 167, 169, 170
mapper 168
mapping algorithm 172
mapping database 169
mapping definition elements 169
mapping definition language

(MDL) 169, 173, 195
mapping rules 169
parser 169
PES 167, 169
program mapping 167
structure 170, 172
structure definition grammar 184
usertype 171
valid conversions 178
Workflow API 168

MappingElement 189
MappingRule 190
MemberCardinality 185
MemberDeclaration 184
MemberSetting 185
MemberType 185
memory

management 8, 11
ownership 8
thread 12, 134

message
overview 259

Message
API calls 259

message interface 151
method

accessor 85
action 122
activity implementation 122
basic 70
categories 70
client/server call 122

modules 1
monitor 65

block 296
obtain 66
process instance 287, 298, 390, 424

MQSeries message descriptor 151

N
name

item 398
name 475
persistent list 402
process instance 435, 449, 453, 459
process instance list 315, 443
process template list 321, 473
syntax 398, 435, 449, 453, 459
worklist 326, 514

notification
activity instance notification,

query 341, 514
filter 341, 355
item, query 347
process instance notification,

query 355, 519
sort criteria 344, 358
threshold 344, 358
worklist, create 326

O
object

access 8
management 134
memory management 8
optional property 85
persistent 11, 134
primary property 85
querying (examples) 549
secondary property 85
transient 11, 134

object identifier
activity instance notification 291
item 388
process instance 419
process instance notification 446
process template 448
work item 485

output container
activity implementation 126, 133, 138
work item 502

owner
block instance monitor 67
persistent list 402
process instance list 315, 443
process instance monitor 67
process template list 321, 473
transfer, item 400
worklist 326, 514

P
packed numbers 177
packed_token 183
PackedAttributeList 186
PackedInterfaceType 186
parser 169
passthrough 339, 384
password, set 481
persistent list

creating (examples) 525
definition 20, 402
delete 403
description 315, 321, 326
description, set 406
filter 315, 321, 326, 327, 402
filter, set 408
name 315, 321, 326, 402
overview 4, 259
owner 315, 321, 326, 402
process instance 315
process template list 321
query 443, 473
query, process instance list 353

persistent list (continued)
query, worklist 514, 517, 519, 521
querying (examples) 535
refresh 404
sort criteria 315, 317, 321, 323, 326,

330, 402
sort criteria, set 410
threshold 315, 321, 326, 402
threshold, set 412
type 315, 321, 326, 402
worklist 326

PersistentList
API calls 259
Delete() 403
Refresh() 404
SetDescription() 406
SetFilter() 408
SetSortCriteria() 410
SetThreshold() 412

person
absence 416
definition 414
overview 260
password, set 481
refresh 414
settings, logged on user 483
substitute 417

Person
API calls 260
Refresh() 414
SetAbsence() 416
SetSubstitute() 417

point
overview 264
vector 264

Point
API calls 264

predefined data members 32
_ACTIVITY 33
_ACTIVITY_INFO.CoordinatorOfRole 35
_ACTIVITY_INFO.Duration 37
_ACTIVITY_INFO.Duration2 37
_ACTIVITY_INFO.LowerLevel 36
_ACTIVITY_INFO.MembersOfRoles 35
_ACTIVITY_INFO.Organization 35
_ACTIVITY_INFO.OrganizationType 35
_ACTIVITY_INFO.People 36
_ACTIVITY_INFO.PersonToNotify 36
_ACTIVITY_INFO.Priority 34
_ACTIVITY_INFO.UpperLevel 36
_PROCESS 33
_PROCESS_INFO.Duration 34
_PROCESS_INFO.Organization 34
_PROCESS_INFO.Role 33
_PROCESS_MODEL 33
_RC 33
activity information 32, 34
fixed 32, 33
process information 32, 33

primary view
definition 85
IsComplete() 75

process administrator 67
process instance

create 448, 453
definition 419
delete 420

590 MQSeries Workflow for OS/390 Programming Guide

process instance (continued)
description 433
execute 458
filter 361
input container 421
monitor 269, 424
name 419, 435, 449, 453, 459
notification 355
object identifier 419
overview 265
persistent list, create 315
query 361
querying (examples) 549
refresh 428
restart 430
resume 431
retrieve 426
sort criteria 363, 364
start 437, 448
state 419
suspend 439
terminate 441
threshold 363
vector 270

process instance list
creating (examples) 525
creation 315
delete 403
description 315
description, set 406
filter 315
filter, set 408
name 315, 443
overview 268
owner 315, 443
query 353, 443
refresh 404
sort criteria 315, 317
sort criteria, set 410
threshold 315
threshold, set 412
type 315, 443
vector 269

process instance monitor
monitor, block activity 296
monitor, process instance 298
overview 65, 269
ownership 67
refresh 301

process instance notification
definition 446
delete 388
description, set 396
monitor, process instance 390
name, set 398
object identifier 446
overview 269
process instance 392
refresh 394
retrieve 446
transfer 400
vector 270

process template
create process instance 448, 453
definition 448
delete 456
execute process instance 458

process template (continued)
filter 368
input container 465
name 448
object identifier 448
overview 271
persistent list, create 321
program template 469, 475
query 368
refresh 471
retrieve 467
sort criteria 370
start process instance 448
threshold 370
valid-from date 448
vector 274

process template list
creation 321
delete 403
description 321
description, set 406
filter 321
filter, set 408
name 321, 473
overview 273
owner 321, 473
query 366, 473
refresh 404
sort criteria 321, 323
sort criteria, set 410
threshold 321
threshold, set 412
type 321, 473
vector 274

ProcessInstance
API calls 265
Delete() 420
InContainer() 421
ObtainMonitor() 424
PersistentObject() 426
Refresh() 428
Restart() 430
Resume() 431
SetDescription() 433
SetName() 435
Start() 437
Suspend() 439
Terminate() 441
Transfer() 400

ProcessInstanceList
API calls 268
Delete() 403
QueryProcessInstances() 443
Refresh() 404
SetDescription() 406
SetFilter() 408
SetSortCriteria() 410
SetThreshold() 412

ProcessInstanceMonitor
API calls 269
ObtainBlockInstanceMonitor() 296
ObtainProcessInstanceMonitor() 298
Refresh() 301

ProcessInstanceNotification
API calls 269
Delete() 388
ObtainProcessInstanceMonitor() 390

ProcessInstanceNotification (continued)
PersistentObject() 446
ProcessInstance() 392
Refresh() 394
SetDescription() 396
SetName() 398
Transfer() 400

ProcessTemplate
API calls 271
CreateAndStartInstance() 448
CreateInstance() 453
Delete() 456
ExecuteProcessInstance() 458
InitialInContainer() 465
PersistentObject() 467
ProgramTemplate() 469
Refresh() 471

ProcessTemplateList
API calls 273
Delete() 403
QueryProcessTemplates() 473
Refresh() 404
SetDescription() 406
SetFilter() 408
SetSortCriteria() 410
SetThreshold() 412

profile
defaults 314
user 314
workstation 314

program data
overview 274

program execution agent (PEA)
overview 246

program execution management calls
error handling 8
program execution server 122

program execution server (PES)
program mapping 167

program execution server exits
common interfaces 203
enabling 208, 217
notification 217
program execution server 202
program invocation 209
program mapping 206
special considerations 205

program template
definition 475
execute 476
overview 275

ProgramData
API calls 274

programming
activity implementation 3, 7
client 3, 7
concepts 1
mapping 167
prerequisites 3

ProgramTemplate
API calls 275
Execute() 476

property
optional 85
primary 85
secondary 85

Index 591

protocol
asynchronous 16
supported 16
synchronous 16
unsolicited 16, 335

pull data 16
push

data, receive 381
enable 17
kind of information 17
receive 17
session mode 335
terminate receive 386

push data 16

Q
query

activity instance notification 341
array of objects 20
data 19
item 347
process instance 361
process instance list 353
process instance list, process

instances 443
process instance notification 355
process template list 366
process template list, process

templates 473
vector of objects 20
work item 372
worklist 379, 514
worklist, items 517
worklist, process instance

notification 519
worklist, work item 521

R
read-only container

activity implementation, input
container 303, 307

definition 303
overview 277
work item, input container 501

read/write container
activity implementation, output

container 305, 308, 310, 312
definition 303
overview 277
process instance, input container 421
process template, input container 465
work item, output container 502

ReadOnlyContainer
API calls 277

ReadWriteContainer
API calls 277

receive data 381
remote

terminate, subprocess 441
restart

work item 506
work item, force 499

Result
API calls 279

result object
definition 12

result object (continued)
error information 8
information contained 12
overview 279

return code
access API calls 86
action API calls 8
activity implementation 127, 133, 138
basic API calls 70
error handling 8
list of 9

S
secondary view

definition 85
IsComplete() 75

service
execution service 314
overview 280
password, set 481
settings, logged on user 483

Service
API calls 280
definition 480
Refresh() 480
SetPassword() 481
UserSettings() 483

session
absence setting 336
accessor API calls 86
begin 314, 334, 339, 384
default 335
end 314, 333
establish 19
establish, execution server 314
log off 314, 333
log on 314, 334
mode 335
overview 19
passthrough 339
present 335
remote passthrough 384
requirement 8
unified logon 335

sort criteria
activity instance notification 344
definition 20
item 350, 376
persistent list 402, 410
process instance 363, 364
process instance list 315, 317
process instance notification 358
process template 370
process template list 321, 323
work item 376
worklist 326, 330

start
process instance 437, 448
support tool 294
work item 508, 509

state
item 485
process instance 419
work item 485

string
vector 280

string definition 125
string_token 183
StringVector

vector 280
structure (mapping)

definition 168, 169
elements 169
example 169, 176
grammar 184
MemberCardinality 185
MemberDeclaration 184
MemberSetting 185
MemberType 185
structure definitions 169
structure elements 169, 170, 172
StructureSetting 184

subprocess
resume 431
suspend 439
terminate 441

suspension
process instance 439

symbol layout
overview 281

SymbolLayout
API calls 281

synchronous protocol 16
syntax rules

description, item 396
description, persistent list 406
description, process instance 433
name, item 398
name, process instance 435, 449, 453,

459
XML DTD 160

system
execution server 314

system administrator 67
system group

execution server 314

T
thread 12, 134
threshold

activity instance notifications 344
definition 20
items 350, 376
persistent list 402, 412
process instance list 315
process instance notifications 358
process instances 363
process template list 321
process templates 370
worklist 326

transient object 8
type

persistent list 402
private, persistent list 402
private, process instance list 443
private, process template list 473
private, worklist 514
process instance list 315, 443
process template list 321, 473
public, persistent list 402
public, process instance list 443
public, process template list 473

592 MQSeries Workflow for OS/390 Programming Guide

type (continued)
public, worklist 514
worklist 326, 514

U
unified logon 335
unsolicited information 16
user

default values, profile 314
password, set 481
settings 483

user-defined program execution server
definition 157

UserInterfaceType 189
usertype

creation of DLL 194
definition 171, 178, 194
example 171, 194
exit interface 193
grammar 190
introduction 192
usertype exit 168, 171
UserTypeDeclaration 191
UserTypeLength 191
UserTypeSetting 191

V
valid conversions 178
vector

accessor function 21
activity instance notifications 235
activity instances 235
container elements 243
control connector instances 244
deallocate 22
definition 125
examples 24, 26
first element 22
items 258
next element 23
overview 280
points 264
process instance lists 269
process instance notifications 270
process instances 270
process template lists 274
process templates 274
query result 20
return codes 21
size 23
work items 284
worklist 285

view
data view 85
IsComplete() 75
primary 85
secondary 85

W
work item

cancel checkout 487
check in 489
check out 491

work item (continued)
definition 485
delete 388
description, set 396
error reason 253
finish 495
finish, force 497
input container 501
monitor, process instance 390
name, set 398
object identifier 485
output container 502
overview 282
persistent list, create 326
process instance 392
query 347, 372
query, worklist 521
querying (examples) 562
refresh 394
restart 506
restart, force 499
retrieve 504
start 508, 509
state 485
terminate 511
transfer 400
vector 284

workflow model 1
Workitem

API calls 282
CancelCheckOut() 487
CheckIn() 489
CheckOut() 491
Delete() 388
Finish() 495
ForceFinish() 497
ForceRestart() 499
InContainer() 501
ObtainProcessInstanceMonitor() 390
OutContainer() 502
PersistentObject() 504
ProcessInstance() 392
Refresh() 394
Restart() 506
SetDescription() 396
SetName() 398
Start() 508, 509
Terminate() 511
Transfer() 400

worklist
creation 326
definition 514
delete 403
description 326
description, set 406
filter 326, 327
filter, set 408
name 326, 514
overview 284
owner 326, 514
query 379, 517, 519, 521
query, activity instance

notification 514
querying (examples) 535
refresh 404
sort criteria 326, 330
sort criteria, set 410

worklist (continued)
threshold 326
threshold, set 412
type 326, 514
vector 285

Worklist
API calls 284
Delete() 403
QueryActivityInstance

Notifications() 514
QueryItems() 517
QueryProcessInstance

Notifications() 519
QueryWorkitems() 521
Refresh() 404
SetDescription() 406
SetFilter() 408
SetSortCriteria() 410
SetThreshold() 412

workstation profile
default values 314

X
XML

activity implementation 156
authentication 155
authorization 155, 158
code page support 154
completion message 158
concepts 8
container 153
correlation 153
DTD 160
example 159
example, container 153
example, execute process

instance 154
input queue 155
message content 152
message format 151, 160
message header 152
message interface 151
sending requests 154
user context data 153
user-defined program execution

server 157

Z
zoned numbers 177
zoned_token 183
ZonedAttributeList 187
ZonedInterfaceType 187

Index 593

594 MQSeries Workflow for OS/390 Programming Guide

Readers’ Comments — We’d Like to Hear from You

IBM MQSeries Workflow for OS/390
Programming Guide

Publication No. SC33-7031-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC33-7031-03

SC33-7031-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH
Information Development
Department 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655–A96

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-7031-03

Spine information:

���
IBM MQSeries Workflow for
OS/390 MQSeries Workflow for OS/390 Programming Guide Version 3 Release 2

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How to get additional information
	How to send your comments
	How this book is organized
	How to read the syntax diagrams
	Notices
	Trademarks

	Summary of changes
	Chapter 1. MQSeries Workflow programming concepts
	Understanding Workflow programming
	The role of the programmer in modeling a process

	Programming interfaces
	Prerequisites for using a programming language API
	Overview of the Runtime API
	Building an MQSeries Workflow application
	Overview
	Concepts of the programming language API
	Concepts of the XML message interface

	Handling errors
	List of return codes

	Object and memory management
	The result object
	Client/server communication and data access models
	Synchronous client/server communication
	Asynchronous client/server communication
	The push data access model
	Receiving information

	An MQSeries Workflow session
	Querying data
	Persistent lists
	Using filters, sort criteria, and thresholds
	Handling collections
	C and COBOL vector accessor functions
	Return codes
	FmcjXxxVectorDeallocate()
	FmcjXxxVectorFirstElement()
	FmcjXxxVectorNextElement()
	FmcjXxxVectorSize()
	C examples
	COBOL examples

	Java arrays

	Handling containers
	Data structure/container type
	Data member/container element
	Predefined data members
	Fixed data members
	Process information data members
	Activity information data members

	Determining the structure of an unknown container
	Determining the leaves
	Determining the structural members
	Determining the type

	Analyzing a container element
	Determining the name or type of a container element
	Determining the structural properties of a container element
	Determining the leaves of a container element
	Determining the structural members of a container element
	Determining the elements of an array

	Accessing a known container element
	Accessing a value of a container
	Accessing a value of a container element
	Setting a value of a container
	Return codes/FmcException

	Monitoring a process instance
	Obtaining a process instance monitor
	Ownership of monitors

	Authorization considerations
	Types of API calls
	Basic API calls
	Return codes
	Allocation
	Assignment
	Comparison/equality
	Copy
	Deallocation
	IsComplete()
	IsEmpty()
	Kind()
	C example using basic functions
	C++ example using basic methods
	COBOL example using basic calls

	Accessor API calls
	Return codes
	Accessing a value of type bool
	Accessing a value of type date/time
	Accessing an enumerated value
	Accessing a value of type integer
	Accessing a value of type string
	Accessing a multi-valued property
	Accessing an object valued property
	Accessing a pointer valued property
	Determining whether an optional property is set
	Setting a value of type integer
	Setting an object valued property
	Updating an object
	C example: accessing values
	C++ example: accessing values
	COBOL example: accessing values

	Action API calls
	Activity implementation API calls

	Chapter 2. Language interfaces
	C and C++ interface
	Coding an MQSeries Workflow client application in C or C++
	Coding an MQSeries Workflow activity implementation in C orC++
	Compiling and linking

	Java interface
	The Java CORBA Agent
	The communication layer
	The locator methods
	The Java API Beans
	Java in the intranet
	Java as a programming language
	Java in the Internet (servlet)
	Java in the Internet (applet/RMI)

	Coding an MQSeries Workflow client application in Java
	Coding an MQSeries Workflow activity implementation in Java
	Compiling
	Object management
	Garbage collection when using Java API Beans

	COBOL interface
	Calling the API
	String handling
	Coding an MQSeries Workflow client application in COBOL
	Coding an MQSeries Workflow activity implementation inCOBOL
	Compiling and linking
	Mapping C to COBOL data types
	Name changes between COBOL and C
	Example of the use of strings

	XML message interface
	The MQSeries Workflow message
	Relevant MQSeries Message Descriptor (MQMD) fields
	The application data
	Code page support

	Sending requests to MQSeries Workflow
	Supported functions
	XML input queue
	Authentication and authorization

	Invoking an activity implementation
	User-defined program execution server (UPES)
	Completion message
	Authorization
	Example

	The MQSeries Workflow XML message format

	Chapter 3. Interfacing with the Program Execution Server
	CICS considerations
	IMS considerations
	Program mapping via the Program Execution Server
	Introduction
	Program mapping definitions
	Structure definition
	Interface definition
	Forward/backward mapping definition
	Usertype definition

	Mapping algorithm
	Constants
	Example

	Supported program mapping definition element types
	Program mapping structure definition element types
	Program mapping interface definition element types

	Grammar
	Grammar elements

	Usertype
	Exit interface
	Creation of DLL
	Usertype definition

	Size of program mapping interface definition elements
	Activation of program mapping definitions
	Troubleshooting
	Common errors

	Additional mapping examples
	Application examples
	MDL examples

	Program execution server exits
	Introduction
	Return codes and error messages

	Interfaces for all exits
	Init()
	Deinit()

	Special considerations for exit programming
	Use of RRS commit and rollback
	Buffer allocation

	Program mapping exit
	Additional interfaces specific to the program mapping exit
	Translate()
	Enabling the PES to use a program mapping exit
	Program mapping exit example

	Program invocation exit
	Synchronous and asynchronous invocation exits
	Additional interfaces specific to the invocation exit
	HdlRequ()
	Recogn()
	IsAsync()
	Invocation context
	GetContext()
	Connection parameters
	Enabling MQSeries Workflow for OS/390 to use an invocationexit
	Invocation exit coding example

	Notification exit
	Additional interfaces specific to the notification exit
	EVB4INV()
	EVIVSUCC()
	EVIVFAIL()

	Chapter 4. API classes and objects
	Summary
	API calls by class
	ActivityInstance
	ActivityInstanceNotification
	ActivityInstanceNotificationVector
	ActivityInstanceVector
	Agent
	BlockInstanceMonitor
	Container
	ContainerElement
	ContainerElementVector
	ControlConnectorInstance
	ControlConnectorInstanceVector
	Date and Time (FmcDateTime/FmcjCDateTime/Calendar)
	DllOptions
	ExecutionAgent
	ExecutionData
	ExecutionService
	ExeOptions
	ExternalOptions
	FmcError/FmcjError
	FmcException
	Global
	ImplementationData
	Item
	ItemVector
	Message
	PersistentList
	Person
	Point
	PointVector
	ProcessInstance
	ProcessInstanceList
	ProcessInstanceListVector
	ProcessInstanceMonitor
	ProcessInstanceNotification
	ProcessInstanceNotificationVector
	ProcessInstanceVector
	ProcessTemplate
	ProcessTemplateList
	ProcessTemplateListVector
	ProcessTemplateVector
	ProgramData
	ProgramTemplate
	ReadOnlyContainer
	ReadWriteContainer
	Result
	Service
	StringVector
	SymbolLayout
	WorkItem
	WorkItemVector
	Worklist
	WorklistVector

	Chapter 5. API action and activity implementation calls
	ActivityInstance actions
	ObtainProcessInstanceMonitor()
	SubProcessInstance()

	ActivityInstanceNotification actions
	PersistentObject()
	StartTool()

	BlockInstanceMonitor actions
	ObtainBlockInstanceMonitor()
	ObtainProcessInstanceMonitor()
	Refresh()

	Container activity implementation calls
	InContainer()
	OutContainer()
	RemoteInContainer()
	RemoteOutContainer()
	SetOutContainer()
	SetRemoteOutContainer()

	ExecutionService actions
	CreateProcessInstanceList()
	CreateProcessTemplateList()
	CreateWorklist()
	Logoff()
	Logon()
	Passthrough()
	QueryActivityInstanceNotifications()
	QueryItems()
	QueryProcessInstanceLists()
	QueryProcessInstanceNotifications()
	QueryProcessInstances()
	QueryProcessTemplateLists()
	QueryProcessTemplates()
	QueryWorkitems()
	QueryWorklists()
	Receive()
	RemotePassthrough()
	TerminateReceive()

	Item actions
	Delete()
	ObtainProcessInstanceMonitor()
	ProcessInstance()
	Refresh()
	SetDescription()
	SetName()
	Transfer()

	PersistentList actions
	Delete()
	Refresh()
	SetDescription()
	SetFilter()
	SetSortCriteria()
	SetThreshold()

	Person actions
	Refresh()
	SetAbsence()
	SetSubstitute()

	ProcessInstance actions
	Delete()
	InContainer()
	ObtainMonitor()
	PersistentObject()
	Refresh()
	Restart()
	Resume()
	SetDescription()
	SetName()
	Start()
	Suspend()
	Terminate()

	ProcessInstanceList actions
	QueryProcessInstances()

	ProcessInstanceNotification actions
	PersistentObject()

	ProcessTemplate actions
	CreateAndStartInstance()
	CreateInstance()
	Delete()
	ExecuteProcessInstance()
	InitialInContainer()
	PersistentObject()
	ProgramTemplate()
	Refresh()

	ProcessTemplateList actions
	QueryProcessTemplates()

	ProgramTemplate actions
	Execute()

	Service actions
	Refresh()
	SetPassword()
	UserSettings()

	Workitem actions
	CancelCheckOut()
	CheckIn()
	CheckOut()
	Finish()
	ForceFinish()
	ForceRestart()
	InContainer()
	OutContainer()
	PersistentObject()
	Restart()
	Start()
	StartTool()
	Terminate()

	Worklist actions
	QueryActivityInstanceNotifications()
	QueryItems()
	QueryProcessInstanceNotifications()
	QueryWorkitems()

	Chapter 6. Examples
	How to create persistent lists
	Create a process instance list (C)
	Create a process instance list (C++)
	Create a process instance list (Java)
	Create a process instance list (COBOL)

	How to query persistent lists
	Query worklists (C)
	Query worklists (C++)
	Query worklists (Java)
	Query worklists (COBOL)

	How to query a set of objects
	Query process instances (C)
	Query process instances (C++)
	Query process instances (Java)
	Query process instances (COBOL)
	Query work items from a worklist (C)
	Query work items from a worklist (C++)
	Query work items from a worklist (Java)
	Query work items from a worklist (COBOL)

	How to code an activity implementation
	Programming an activity implementation (C)
	Programming an activity implementation (C++)
	Programming an activity implementation (COBOL)

	Glossary
	Bibliography
	MQSeries Workflow for OS/390publications
	MQSeries Workflow publications
	Workflow publications
	MQSeries publications
	Other useful publications
	Licensed books

	Index
	Readers’ Comments — We'd Like to Hear from You

