
MQSeries®

Publish/Subscribe User’s Guide
Version 1 Release 0.6

GC34-5269-07

���

MQSeries®

Publish/Subscribe User’s Guide
Version 1 Release 0.6

GC34-5269-07

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 183.

Eighth edition (May 2001)

This edition applies to IBM® MQSeries Publish/Subscribe Version 1.0.6, and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
How to use this book xi

Appearance of text in this book xi

Summary of changes xv
Changes for this edition (GC34-5269-07) xv
Changes for the seventh edition (GC34-5269-06) . . xv
Changes for the sixth edition (GC34-5269-05) . . . xv

Part 1. Introduction and system
design 1

Chapter 1. Introduction 3
What is publish/subscribe? 3

What are the components involved? 3
Example of a single broker configuration 4
Example of a multiple broker configuration . . . 4

How does it work? 5
How MQSeries Publish/Subscribe relates to
MQSeries 6
How MQSeries Publish/Subscribe relates to
MQSeries Integrator 7
Installation instructions 8

Prerequisites 8
Disk space requirements 9
The MQSeries Publish/Subscribe package . . . 9
Installation on AIX 10
Installation on HP-UX 10 11
Installation on HP-UX 11 (non-DCE) 12
Installation on HP-UX 11 (DCE) 13
Installation on Linux 14
Installation on Sun Solaris 15
Installation on Windows NT and Windows 2000 16

Chapter 2. System design 17
Topics 17

Matching topic strings 17
Streams. 18
Broker networks 19

Passing subscription information between
brokers 20

Different types of publication 22
Local and global publications 22
State and event information 22
Retained publications 22

Sample application 23

Part 2. Writing applications. 27

Chapter 3. Introduction to writing
applications 29
Message flows 30

Simplified message flow 31
Message ordering 34

Ensuring that messages are retrieved in the
correct order 34

Publisher and subscriber identity 35
The message descriptor 36

Messages sent to the broker 36
Publications forwarded by the broker. 37

Persistence and units of work 38
Limitations 39

Group messages 39
Segmented messages 39
Cluster queues 39
Data conversion of MQRFH structure. 39

Using the Application Messaging Interface 39
AMI publish/subscribe functions 39

Chapter 4. Writing publisher
applications 41
Registering with the broker 41

Choosing not to register 42
Options you can specify when registering as a
publisher 42
Broker restart 43
Changing an application’s registration 43

Publishing information 43
Publication data 43
Retained publications 44
Publishing locally and globally 44

Deleting information 44
Deregistering with the broker 45

Chapter 5. Writing subscriber
applications 47
Registering as a subscriber 47

Subscriber queues 48
Options you can specify when registering as a
subscriber 48
Broker restart 49
Changing an application’s registration 49

Requesting information 49
Requesting information from the broker 49
Requesting information from a publisher . . . 50

Deregistering as a subscriber 50

Chapter 6. Format of command
messages 53
MQRFH – Rules and formatting header 53

© Copyright IBM Corp. 1998, 2001 iii

||

||

Fields 54
Structure definition in C 56

Publish/Subscribe name/value strings 57
Options using string constants 58
Options using integer constants 58
Sending a command message with the RFH
structure 58

Publication data 59
Double-byte character sets 59

Chapter 7. Publish/Subscribe command
messages 63
Delete Publication 64

Required parameters 64
Optional parameters 64
Example 64
Error codes 65

Deregister Publisher 66
Required parameters 66
Optional parameters 66
Example 67
Error codes 67

Deregister Subscriber 68
Required parameters 68
Optional parameters 68
Example 69
Error codes 69

Publish 70
Required parameters 70
Optional parameters 70
Example 74
Error codes 74

Register Publisher 75
Required parameters 75
Optional parameters 75
Example 76
Error codes 76

Register Subscriber 78
Required parameters 78
Optional parameters 78
Example 80
Error codes 80

Request Update 81
Required parameters 81
Optional parameters 81
Example 82
Error codes 82

Chapter 8. Error handling and response
messages 83
Error handling by the broker 83
Response messages 84

Message descriptor for response messages . . . 84
Types of error response 85

Broker responses 86
Standard parameters 86
Optional parameters 87
Examples 88
Error codes applicable to all commands 88

Problem determination 89

Chapter 9. Sample programs 91
Sample application 92

Running the application 92
Possible extensions 94

Application Messaging Interface samples 95

Part 3. Managing the broker 97

Chapter 10. Setting up a broker 99
Broker queues 99

System queues 99
Other stream queues 100
Internal queues 101
Dead-letter queue 101

Other considerations 101
Access control 101
Backup 101

Broker configuration stanza 102
Broker configuration tool 102
Broker configuration parameters 102

Chapter 11. Controlling the broker 107
Starting a broker 107

Using triggering to start the broker 107
Stopping a broker 107
Displaying the status of a broker 107
Adding a stream 107

Creating a stream queue. 108
Informing other brokers about the stream . . . 108

Deleting a stream 108
Deleting a stream on an isolated broker . . . 108
Deleting a stream on a broker that is part of a
network 109

Adding a broker to a network 109
Deleting a broker from the network 109

Problems when deleting brokers 110
Deleting a broker that has a child broker . . . 110

Sequence of commands for adding and deleting
brokers 110

Chapter 12. Control commands. . . . 113
clrmqbrk (Clear broker’s memory of a neighboring
target broker) 114
dltmqbrk (Delete broker) 117
dspmqbrk (Display broker status) 119
endmqbrk (End broker function) 120
migmqbrk (Migrate broker to MQSeries Integrator) 121
strmqbrk (Start broker function) 123

Chapter 13. Message broker exit . . . 125
Publish/subscribe routing exit. 125

Parameters 125
Usage notes 125
Publish/subscribe routing exit parameter
structure 126

Writing a publish/subscribe routing exit program 132
Limitations on MQSeries work done in the
routing exit 132
Security considerations 133

iv MQSeries Publish/Subscribe User’s Guide

Compiling a publish/subscribe routing exit
program 133
Sample routing exit 133

Part 4. System programming . . . 135

Chapter 14. Writing system
management applications 137
Format of broker administration messages. . . . 137

Subscription deregistered message 138
Stream deleted message 138
Broker deleted message 138
Stream support messages 139
Children messages 139
Parent messages 139

MQCFH - PCF header 139
Reason codes returned from publish/subscribe
messages 141

PCF Command Messages 142
Delete Publication 143
Deregister Publisher 143
Deregister Subscriber 143
Publish 144
Register Publisher 144
Register Subscriber 145
Request Update 145

Chapter 15. Finding out about other
publishers and subscribers 147
Metatopics 147
Subscribing to metatopics 148

Using wildcards 149
Example requests 149

Authorized metatopics 149
Finding out about brokers 149
Message format for metatopics 150

Parameters 150
Sample program for administration information 152

Operation 153
Example of metatopic information 153

Part 5. Appendixes 157

Appendix A. Reason codes 159

Appendix B. Error messages. 165

Appendix C. Constants 175

String constants 175
MQPS_* (Publish/Subscribe tag names) . . . 175
MQPS_* (Command tag values) 176
MQPS_* (Delete, publication and registration
options) 177
MQRFH_* (Rules and formatting header
structure identifier) 178

Integer constants 178
MQAT_* (Application type for message
descriptor) 178
MQCACF_* (Character parameter identifiers for
PCF) 178
MQCMD_* (Command identifiers for PCF) . . 178
MQDELO_* (Delete options) 178
MQDT_* (Destination type for routing exit) . . 178
MQIACF_* (Integer parameter identifiers for
PCF) 179
MQPUBO_* (Publication options). 179
MQREGO_* (Registration options) 179
MQRFH_* (Rules and formatting header) . . . 179
MQUA_* (User-attribute selectors for PCF) . . 179

Reason codes 179
MQRC_RFH_* (RFH reason codes) 179
MQRCCF_* (PCF reason codes) 179

Appendix D. Header files 181

Appendix E. Notices 183
Trademarks 184

Glossary of terms and abbreviations 185

Bibliography. 187
MQSeries cross-platform publications 187
MQSeries platform-specific publications 187
MQSeries Integrator publications 188
Softcopy books 188

HTML format 188
Portable Document Format (PDF) 189
BookManager® format 189
PostScript format 189
Windows Help format 189

MQSeries information available on the Internet . . 189

Index 191

Sending your comments to IBM . . . 195

Contents v

vi MQSeries Publish/Subscribe User’s Guide

Figures

1. Simple publish/subscribe example 4
2. Publish/subscribe example with two brokers 5
3. Communication between publishers,

subscribers, and brokers. 6
4. Simple broker hierarchy 19
5. Propagation of subscriptions through a broker

network. 20
6. Multiple subscriptions 21
7. Propagation of publications through a broker

network. 21
8. The results service application 24
9. Basic flow of messages 30

10. Simplified flow of messages 31
11. Flow of messages in a single-broker system 32
12. Flow of messages in a multi-broker system 32

13. Flow of messages using retained publications 33
14. Flow of messages using publish on request

only 33
15. Message descriptor and RFH structure . . . 59
16. Publication data after the RFH structure 60
17. Publishing data within the NameValueString 60
18. User-defined publication data 61
19. Inheriting the CCSID 62
20. Results service running with four match

simulators 94
21. Sample Broker stanza for qm.ini 102
22. Sequence of commands to create brokers in a

network 110
23. Sequence of commands to delete brokers in a

network 111

© Copyright IBM Corp. 1998, 2001 vii

viii MQSeries Publish/Subscribe User’s Guide

Tables

1. How to read syntax diagrams xii
2. Fields in MQRFH 53
3. Initial values of fields in MQRFH 56
4. Sample programs 91

5. Fields in MQPXP 126
6. Parameters for publisher and subscriber

information messages 150

© Copyright IBM Corp. 1998, 2001 ix

x MQSeries Publish/Subscribe User’s Guide

About this book

This book describes how to use MQSeries Publish/Subscribe. It is available in
portable document format (PDF) only. To view it you need the Adobe Acrobat
Reader, Version 3 or later. Click on an entry in the table of contents, or a cross
reference within the text, to move directly to that page. Use the Acrobat Reader
controls to return to the previous page.

This book is not available in hard copy.

Who this book is for
This book is for experienced users of MQSeries who wish to use MQSeries
Publish/Subscribe. Familiarity with these MQSeries books is assumed:
v MQSeries Application Programming Reference
v MQSeries Application Programming Guide
v MQSeries Programmable System Management
v MQSeries System Administration

What you need to know to understand this book
To use MQSeries Publish/Subscribe you need to have a good knowledge of
MQSeries in general. All the sample programs and header files are in the C
programming language.

How to use this book
This book contains the following parts:
v “Part 1. Introduction and system design” on page 1 explains what you can do

using MQSeries Publish/Subscribe.
v “Part 2. Writing applications” on page 27 discusses how to write programs to use

MQSeries Publish/Subscribe.
v “Part 3. Managing the broker” on page 97 describes how to set up and manage

your brokers.
v “Part 4. System programming” on page 135 contains information needed to write

system management programs.

There is a glossary and a bibliography at the back of the book.

Appearance of text in this book
This book uses the following type styles:

CompCode
The name of a parameter of a call, a field in a structure, or an attribute of
an object

dltmqbrk
A control command or command message

MQRFH
The name of a data type or structure

© Copyright IBM Corp. 1998, 2001 xi

MQPS_COMMAND
The name of a constant

MQPSCommand Publish
Examples

"MQPSTopic"
A character string

How to read syntax diagrams
This book contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines beginning with a single right arrow are continuation lines.
You read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Table 1. How to read syntax diagrams

Convention Meaning

�� A B C ��
You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

��
A

��
You may specify value A. Optional values are shown below the main
line of a syntax diagram.

�� A
B
C

��
Values A, B, and C are alternatives, one of which you must specify.

��
A
B
C

��
Values A, B, and C are alternatives, one of which you might specify.

About this book

xii MQSeries Publish/Subscribe User’s Guide

Table 1. How to read syntax diagrams (continued)

Convention Meaning

��

�

,

A
B
C

��

You might specify one or more of the values A, B, and C. Any
required separator for multiple or repeated values (in this example,
the comma (,)) is shown on the arrow.

��

�

,

A
��

You might specify value A multiple times. The separator in this
example is optional.

��
A

B
C

��

Values A, B, and C are alternatives, one of which you might specify.
If you specify none of the values shown, the default A (the value
shown above the main line) is used.

�� Name ��

Name:

A
B

The syntax fragment Name is shown separately from the main syntax
diagram.

Punctuation and
uppercase values

Specify exactly as shown.

Lowercase values
(for example, name)

Supply your own text in place of the name variable.

Syntax diagrams

About this book xiii

Syntax diagrams

xiv MQSeries Publish/Subscribe User’s Guide

Summary of changes

This section describes changes in this edition of MQSeries Publish/Subscribe User’s
Guide. Changes since the previous edition of the book are marked by vertical lines
to the left of the changes.

Changes for this edition (GC34-5269-07)
v MQSeries Publish/Subscribe now runs on the Linux platform.
v “Installation on Windows NT and Windows 2000” on page 16 has been updated.

Changes for the seventh edition (GC34-5269-06)
v MQSeries Publish/Subscribe now runs on the Microsoft® Windows® 2000

platform.
v References to MQSeries Publish/Subscribe on the Compaq Tru64 UNIX®

platform have been removed.

Changes for the sixth edition (GC34-5269-05)
v MQSeries Publish/Subscribe now runs on the Compaq Tru64 UNIX platform.
v A section on the Publish/Subscribe, Integrator relationship (“How MQSeries

Publish/Subscribe relates to MQSeries Integrator” on page 7) has been added.
v The section on Publish/Subscribe prerequisites (“Prerequisites” on page 8) has

been updated.
v A section on Publish/Subscribe installation has been added.
v The examples for the clrmqbrk command (“clrmqbrk (Clear broker’s memory of

a neighboring target broker)” on page 114) have been clarified.
v A section on the migmqbrk command (“migmqbrk (Migrate broker to MQSeries

Integrator)” on page 121) has been added.
v A section on compiling a routing exit (“Compiling a publish/subscribe routing

exit program” on page 133) has been added.
v The bibliography (“Bibliography” on page 187) has been updated.
v References to Compaq Tru64 UNIX have been added to the following sections:

– “How MQSeries Publish/Subscribe relates to MQSeries” on page 6
– “MQRFH – Rules and formatting header” on page 53
– “Chapter 9. Sample programs” on page 91
– “Broker configuration parameters” on page 102
– “Publish/subscribe routing exit parameter structure” on page 126

© Copyright IBM Corp. 1998, 2001 xv

|

|

|

Changes

xvi MQSeries Publish/Subscribe User’s Guide

Part 1. Introduction and system design

Chapter 1. Introduction 3
What is publish/subscribe? 3

What are the components involved? 3
Example of a single broker configuration 4
Example of a multiple broker configuration . . . 4

How does it work? 5
How MQSeries Publish/Subscribe relates to
MQSeries 6
How MQSeries Publish/Subscribe relates to
MQSeries Integrator 7
Installation instructions 8

Prerequisites 8
Disk space requirements 9
The MQSeries Publish/Subscribe package . . . 9
Installation on AIX 10

Testing the installation. 10
Installation on HP-UX 10 11

Testing the installation 11
Installation on HP-UX 11 (non-DCE) 12

Testing the installation. 12
Installation on HP-UX 11 (DCE) 13

Testing the installation. 13
Installation on Linux 14

Testing the installation. 14
Installation on Sun Solaris 15

Testing the installation. 15
Installation on Windows NT and Windows 2000 16

Testing the installation. 16

Chapter 2. System design 17
Topics 17

Matching topic strings 17
Streams. 18
Broker networks 19

Passing subscription information between
brokers 20

Different types of publication 22
Local and global publications 22
State and event information 22
Retained publications 22

Sample application 23

© Copyright IBM Corp. 1998, 2001 1

||
||

2 MQSeries Publish/Subscribe User’s Guide

Chapter 1. Introduction

This chapter explains what MQSeries Publish/Subscribe is and introduces the
concepts and terminology used in this manual. It contains the following sections:
v “What is publish/subscribe?”
v “How does it work?” on page 5
v “How MQSeries Publish/Subscribe relates to MQSeries” on page 6
v “How MQSeries Publish/Subscribe relates to MQSeries Integrator” on page 7
v “Installation instructions” on page 8

What is publish/subscribe?
MQSeries Publish/Subscribe allows you to decouple the provider of information
from the consumers of that information.

Before a standard MQSeries application can send some information to another
application, it needs to know something about that application. For example, it
needs to know the name of the queue to which to send the information, and might
also specify a queue manager name.

MQSeries Publish/Subscribe removes the need for your application to know
anything about the target application. All it has to do is send information it wants
to share to a standard destination managed by MQSeries Publish/Subscribe, and
let MQSeries Publish/Subscribe deal with the distribution. Similarly, the target
application does not have to know anything about the source of the information it
receives.

What are the components involved?
The provider of the information is called a publisher. Publishers supply information
about a subject, without needing to know anything about the applications that are
interested in the information.

The consumer of the information is called a subscriber. The subscriber decides what
information it is interested in, and then waits to receive that information.
Subscribers can receive information from many different publishers, and the
information they receive can also be sent to other subscribers.

The information is sent in an MQSeries message, and the subject of the information
is identified by a topic. The publisher specifies the topic when it publishes the
information, and the subscriber specifies the topics on which it wishes to receive
publications. The subscriber is only sent information about those topics it
subscribes to.

Interactions between publishers and subscribers are all controlled by a broker. The
broker receives messages from publishers, and subscription requests from
subscribers (to a range of topics). The broker’s job is to route the published data to
the target subscribers.

Related topics can be grouped together to form a stream. Publishers can choose to
use streams, for example to restrict the range of publications and subscriptions that
a broker has to support, or to provide access control. The broker has a default
stream that is used for all topics that do not belong to another stream.

© Copyright IBM Corp. 1998, 2001 3

The broker uses standard MQSeries facilities to do this, so your applications can
use all the features that are available to existing MQSeries applications. This means
that you can use persistent messages to get once-only assured delivery, and that
your messages can be part of a transactional unit-of-work to ensure that messages
are delivered to the subscriber only if they are committed by the publisher.

Example of a single broker configuration
Figure 1 illustrates a basic broker configuration. The example shows the
configuration for a news service, where information is available about several
topics within a single stream:
v Publisher 1 is publishing information about sports results using a topic of Sport
v Publisher 2 is publishing information about stock prices using a topic of Stock
v Publisher 3 is publishing information about film reviews using a topic of Films,

and about television listings using a topic of TV

Three subscribers have registered an interest in different topics, so the broker sends
them the information that they are interested in:
v Subscriber 1 receives the sports results and stock prices
v Subscriber 2 receives the film reviews
v Subscriber 3 receives the sports results

None of the subscribers have registered an interest in the television listings, so
these are not distributed.

Example of a multiple broker configuration
You can have only one broker on each MQSeries queue manager; however, brokers
can communicate with other brokers in your MQSeries system, so subscribers can
subscribe to one broker and receive messages that were initially published to
another broker. This is illustrated in Figure 2 on page 5.

In this example, a second broker has been added.
v Broker 2 is used by Publisher 4 to publish weather forecast information, using a

topic of Weather, and information about traffic conditions on major roads, using
a topic of Traffic.

BROKER

Subscriber 3
Topic:
Sport

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Figure 1. Simple publish/subscribe example. This shows the relationship between publishers, subscribers, and brokers.

What is publish/subscribe?

4 MQSeries Publish/Subscribe User’s Guide

v Subscriber 4 also uses this broker, and subscribes to information about traffic
conditions using topic Traffic.

v Subscriber 3 also subscribes to information about weather conditions, even
though it uses a different broker from the publisher. This is possible because the
brokers are linked to each other.

A publication is propagated to another broker only if a subscription to that topic
exists on the other broker.

How does it work?
Publishers, subscribers, and brokers communicate with each other using command
messages. These messages are used to do the following things:

Publisher and broker
The following communications take place between publishers and brokers:
1. A publisher can register its intention to publish information about

certain topics (this is optional: registration can take place with the first
publication, or not at all, as described in “Registering with the broker”
on page 41).

2. A publisher sends publication messages to the broker, containing the
publication data (or referring to it). The messages can be forwarded
directly to the subscribers, or, in the case of retained publications, be
held at the broker until requested by a subscriber.

3. A publisher can send a message to the broker requesting that a retained
publication held at the broker be deleted.

4. A publisher can deregister with the broker when it has finished sending
messages about a certain topic.

These interactions are all described in “Chapter 4. Writing publisher
applications” on page 41.

Subscriber and broker
The following communications take place between subscribers and brokers:
1. A subscriber registers with a broker, specifying the topics that it is

interested in.
2. The broker sends to the subscriber subsequent publications that match

the topics specified. Alternatively, the subscriber can request retained
publications held at the broker.

BROKER 1

Subscriber 3
Topics:

Sport, Weather

Subscriber 2
Topic:
Films

Publisher 1
Topic:
Sport

Publisher 2
Topic:
Stock

Publisher 3
Topics:

Films, TV

Subscriber 1
Topics:

Sport, Stock

Subscriber 4
Topics:
Traffic

Publisher 4
Topics:

Weather, Traffic

BROKER 2

Figure 2. Publish/subscribe example with two brokers

What is publish/subscribe?

Chapter 1. Introduction 5

3. The subscriber can deregister with the broker for certain topics when it
is no longer interested in them.

These interactions are all described in “Chapter 5. Writing subscriber
applications” on page 47.

Broker and broker
The following communications take place between brokers:
1. Brokers can exchange subscription registrations and deregistrations.
2. Brokers can exchange publications, and requests to delete publications.
3. Brokers can exchange information about themselves.

These interactions are illustrated in Figure 3.

How MQSeries Publish/Subscribe relates to MQSeries
MQSeries Publish/Subscribe is a function of MQSeries. The broker runs on
MQSeries for AIX®, HP-UX, Linux, Microsoft Windows NT®, Microsoft Windows
2000, and Sun Solaris. It uses standard MQSeries facilities (but note that it does not
support message groups or segmented messages).

You can have one broker on each MQSeries queue manager. The broker uses the
same name as the queue manager.

(Register Publisher)

Publish

Delete Publication

Deregister Publisher

Register Subscriber

Request Update

Deregister Subscriber
Publish

Register Subscriber
Deregister Subscriber
Publish
Delete Publication

Broker 1

Subscriber

Broker 2

Publisher

Figure 3. Communication between publishers, subscribers, and brokers

How does it work?

6 MQSeries Publish/Subscribe User’s Guide

|
|
|
|

Applications can be written with standard MQSeries programming techniques,
using the Message Queue Interface (MQI) or the Application Messaging Interface
(AMI).

Publishers and subscribers do not have to be on the same machine as a broker.
They can reside anywhere in the network, provided that there is a route from their
queue manager to the broker. So, for example, you could have a publisher on
OS/390® and a subscriber on OS/2®.

How MQSeries Publish/Subscribe relates to MQSeries Integrator
MQSeries Integrator works with MQSeries messaging, extending its basic
connectivity and transport capabilities to provide a powerful message broker
solution driven by business rules. Messages are formed, routed, and transformed
according to the rules defined by an easy-to-use graphical user interface.

Diverse applications can exchange information in unlike forms, with brokers
handling the processing required for the information to arrive in the right place in
the correct format, according to the rules you have defined. The applications have
no need to know anything other than their own conventions and requirements.

Applications also have much greater flexibility in selecting which messages they
wish to receive, because they can specify a topic filter, or a content-based filter, or
both, to control the messages made available to them.

MQSeries Integrator provides a framework that supports supplied, basic, functions
along with plug-in enhancements, to enable rapid construction and modification of
business processing rules that are applied to messages in the system.

MQSeries Integrator addresses the needs of business and application integration
through management of information flow. It provides services based on message
brokers to allow you to:
v Route a message to several destinations, using rules that act on the contents of

one or more of the fields in the message or message header.
v Transform a message, so that applications using different formats can exchange

messages in their own formats.
v Store and retrieve a message, or part of a message, in a database.
v Modify the contents of a message (for example, by adding data extracted from a

database).
v Publish a message to make it available to other applications. Other applications

can choose to receive publications that relate to specific topics, or that have
specific content, or both.

v Create structured topic names, topic-based access control functions,
content-based subscriptions, and subscription points.

v Exploit a plug-in interface to develop message processing node types that can be
incorporated into the broker framework to complement or replace the supplied
nodes, or to incorporate node types developed by Independent Software
Vendors (ISVs).

v Enable instrumentation by products such as those developed by Tivoli®, using
system management hooks.

The benefits of MQSeries Integrator can be realized both within and beyond your
enterprise:

How MQSeries Publish/Subscribe relates to MQSeries

Chapter 1. Introduction 7

v Your processes and applications can be integrated by providing message and
data transformations in a single place, the broker. This helps reduce costs of
application upgrades and modifications.

v You can extend your systems to reach your suppliers and customers, by meeting
their interface requirements within your brokers. This can help you improve the
quality of your interactions and allow you to respond more quickly to changing
or additional requirements.

MQSeries Integrator Version 2.0 extends the capabilities of MQSeries
Publish/Subscribe by supporting:
v Enhanced publish/subscribe function through exploitation of structured topic

names, access control, content-based subscriptions, and subscription points.
v Enhancement of message processing through the addition of new message

processing nodes to complement or replace the supplied nodes.
v Interfaces that allow messages to be enriched with information from a database,

or to be stored in a database.

You can upgrade your applications, messages, and brokers to take advantage of the
enhancements in MQSeries Integrator Version 2.0. You can also continue to use
your existing MQSeries Publish/Subscribe applications and messages unchanged,
by tailoring your Version 2.0 system to provide compatible support.

MQSeries Integrator Version 2.0 brokers can interact with MQSeries
Publish/Subscribe brokers in a common publish/subscribe environment, to
provide coexistence within a single mixed broker network.

Individual MQSeries Publish/Subscribe brokers can also be migrated to become
equivalent MQSeries Integrator brokers with support for their existing client
applications intact.

Installation instructions
This section discusses the prerequisites, package contents, and installation
instructions for MQSeries Publish/Subscribe.

Prerequisites
The MQSeries Publish/Subscribe prerequisites are as follows.
v MQSeries Publish/Subscribe base

MQSeries Publish/Subscribe requires one of the following:
– MQSeries for AIX Version 5.2, 5.1, 5.0 with CSD05 (PTF U461602), or later
– MQSeries for HP-UX Version 5.2, 5.1, 5.0 with CSD05 (PTF U461603), or later

(for HP-UX 10)
– MQSeries for HP-UX Version 5.2, 5.1, or later (for HP-UX 11)
– MQSeries for Linux Version 5.2
– MQSeries for Sun Solaris Version 5.2, 5.1, 5.0 with CSD05 (PTF U461609), or

later
– MQSeries for Windows NT and Windows 2000 Version 5.2, MQSeries for

Windows NT Version 5.1, 5.0 with CSD05 (PTF U200095), or later
v MQSeries Publish/Subscribe, MQSeries Integrator Version 2.0 mixed network

If you run a mixed network of MQSeries Publish/Subscribe and MQSeries
Integrator brokers, the Publish/Subscribe brokers must be at these levels:

How MQSeries Publish/Subscribe relates to MQSeries Integrator

8 MQSeries Publish/Subscribe User’s Guide

|

– MQSeries for AIX Version 5.2, 5.1 with CSD02 (PTF U467826), 5.0 with CSD07
(PTF U462315), or later

– MQSeries for HP-UX Version 5.2, 5.1 with CSD01 (PTF U465344), 5.0 with
CSD07 (PTF U462316), or later (for HP-UX 10)

– MQSeries for HP-UX Version 5.2, 5.1 with CSD01 (PTF U465427), or later (for
HP-UX 11)

– MQSeries for Linux Version 5.2
– MQSeries for Sun Solaris Version 5.2, 5.1 with CSD01 (PTF U469913), 5.0 with

CSD07 (PTF U462317), or later
– MQSeries for Windows NT and Windows 2000 Version 5.2, MQSeries for

Windows NT Version 5.1 with CSD03 (PTF U200113), 5.0 with CSD07 (PTF
U200100), or later

v MQSeries Publish/Subscribe and the migmqbrk command
If you wish to run the migmqbrk command, MQSeries Publish/Subscribe
requires the following:
– MQSeries for Windows NT and Windows 2000 Version 5.2, MQSeries for

Windows NT Version 5.1 with CSD03 (PTF U200113), or later

Disk space requirements
1.0 MB of disk space is required for the MQSeries Publish/Subscribe executable
code and samples.

In addition, 1.2 MB is required to hold the Portable Document Format (PDF) file of
the MQSeries Publish/Subscribe User’s Guide.

The MQSeries Publish/Subscribe package
The package consists of the following files:
v Executables for the functions that control the MQSeries Publish/Subscribe

broker. They are described in “Chapter 12. Control commands” on page 113.
clrmqbrk (clrmqbrk.exe on Windows NT and Windows 2000)
dltmqbrk (dltmqbrk.exe on Windows NT and Windows 2000)
dspmqbrk (dspmqbrk.exe on Windows NT and Windows 2000)
endmqbrk (endmqbrk.exe on Windows NT and Windows 2000)
migmqbrk (migmqbrk.exe on Windows NT and Windows 2000)
strmqbrk (strmqbrk.exe on Windows NT and Windows 2000)

v Broker control processes.
amqfcxaa (amqfcxaa.exe on Windows NT and Windows 2000)
amqfcxba (amqfcxba.exe on Windows NT and Windows 2000)

v Broker configuration tool. This is described in “Broker configuration tool” on
page 102.
cfgmqbrk.exe (Windows NT and Windows 2000 only)

v Sample programs for MQSeries Publish/Subscribe. They are described in
“Chapter 9. Sample programs” on page 91.
amqsgam (amqsgam.exe on Windows NT and Windows 2000)
amqspsd (amqspsd.exe on Windows NT and Windows 2000)
amqsres (amqsres.exe on Windows NT and Windows 2000)
amqsfmda.tst
amqsgama.c
amqsgama.tst
amqspsra.c
amqsresa.c
amqsresa.tst
amqspsda.c
amqspsda.tst

Installation

Chapter 1. Introduction 9

|

Installation on AIX
1. For MQSeries for AIX Version 5.2

a. Login as root
b. Download ma0c_axmq52.tar.Z in binary and store in /tmp

c. Execute uncompress -fv /tmp/ma0c_axmq52.tar.Z

d. Execute tar -xvf /tmp/ma0c_axmq52.tar

e. Execute rm /tmp/ma0c_axmq52.tar

2. For MQSeries for AIX Version 5.0 and 5.1
a. Login as root
b. Download ma0c_ax.tar.Z in binary and store in /tmp

c. Execute uncompress -fv /tmp/ma0c_ax.tar.Z

d. Execute tar -xvf /tmp/ma0c_ax.tar

e. Execute rm /tmp/ma0c_ax.tar

The following files will be created:
/usr/lpp/mqm/bin/amqfcxaa
/usr/lpp/mqm/bin/amqfcxba
/usr/lpp/mqm/bin/clrmqbrk
/usr/lpp/mqm/bin/dltmqbrk
/usr/lpp/mqm/bin/dspmqbrk
/usr/lpp/mqm/bin/endmqbrk
/usr/lpp/mqm/bin/migmqbrk
/usr/lpp/mqm/bin/strmqbrk
/usr/bin/amqfcxaa -> /usr/lpp/mqm/bin/amqfcxaa
/usr/bin/amqfcxba -> /usr/lpp/mqm/bin/amqfcxba
/usr/bin/clrmqbrk -> /usr/lpp/mqm/bin/clrmqbrk
/usr/bin/dltmqbrk -> /usr/lpp/mqm/bin/dltmqbrk
/usr/bin/dspmqbrk -> /usr/lpp/mqm/bin/dspmqbrk
/usr/bin/endmqbrk -> /usr/lpp/mqm/bin/endmqbrk
/usr/bin/migmqbrk -> /usr/lpp/mqm/bin/migmqbrk
/usr/bin/strmqbrk -> /usr/lpp/mqm/bin/strmqbrk
/usr/lpp/mqm/samp/bin/amqsgam
/usr/lpp/mqm/samp/bin/amqspsd
/usr/lpp/mqm/samp/bin/amqsres
/usr/lpp/mqm/samp/pubsub/amqsfmda.tst
/usr/lpp/mqm/samp/pubsub/amqsgama.c
/usr/lpp/mqm/samp/pubsub/amqsgama.tst
/usr/lpp/mqm/samp/pubsub/amqspsra.c
/usr/lpp/mqm/samp/pubsub/amqsresa.c
/usr/lpp/mqm/samp/pubsub/amqsresa.tst
/usr/lpp/mqm/samp/pubsub/admin/amqspsda.c
/usr/lpp/mqm/samp/pubsub/admin/amqspsda.tst
/tmp/li
/tmp/ipla

To uninstall MQSeries Publish/Subscribe on AIX platforms, remove the files
created above.

Testing the installation
After installation, it is recommended that you run the sample application (see
“Running the application” on page 92) to verify that the MQSeries
Publish/Subscribe system has been installed correctly.

Installation

10 MQSeries Publish/Subscribe User’s Guide

Installation on HP-UX 10
1. Login as root
2. Download ma0c_hp.tar.Z in binary and store in /tmp

3. Execute uncompress -fv /tmp/ma0c_hp.tar.Z

4. Execute tar -xvf /tmp/ma0c_hp.tar

5. Execute rm /tmp/ma0c_hp.tar

The following files will be created:
/opt/mqm/bin/amqfcxaa
/opt/mqm/bin/amqfcxba
/opt/mqm/bin/clrmqbrk
/opt/mqm/bin/dltmqbrk
/opt/mqm/bin/dspmqbrk
/opt/mqm/bin/endmqbrk
/opt/mqm/bin/migmqbrk
/opt/mqm/bin/strmqbrk
/usr/bin/amqfcxaa -> /opt/mqm/bin/amqfcxaa
/usr/bin/amqfcxba -> /opt/mqm/bin/amqfcxba
/usr/bin/clrmqbrk -> /opt/mqm/bin/clrmqbrk
/usr/bin/dltmqbrk -> /opt/mqm/bin/dltmqbrk
/usr/bin/dspmqbrk -> /opt/mqm/bin/dspmqbrk
/usr/bin/endmqbrk -> /opt/mqm/bin/endmqbrk
/usr/bin/migmqbrk -> /opt/mqm/bin/migmqbrk
/usr/bin/strmqbrk -> /opt/mqm/bin/strmqbrk
/opt/mqm/samp/bin/amqsgam
/opt/mqm/samp/bin/amqspsd
/opt/mqm/samp/bin/amqsres
/opt/mqm/samp/pubsub/amqsfmda.tst
/opt/mqm/samp/pubsub/amqsgama.c
/opt/mqm/samp/pubsub/amqsgama.tst
/opt/mqm/samp/pubsub/amqspsra.c
/opt/mqm/samp/pubsub/amqsresa.c
/opt/mqm/samp/pubsub/amqsresa.tst
/opt/mqm/samp/pubsub/admin/amqspsda.c
/opt/mqm/samp/pubsub/admin/amqspsda.tst
/tmp/li
/tmp/ipla

To uninstall MQSeries Publish/Subscribe on HP-UX platforms, remove the files
created above.

Testing the installation
After installation, it is recommended that you run the sample application (see
“Running the application” on page 92) to verify that the MQSeries
Publish/Subscribe system has been installed correctly.

Installation

Chapter 1. Introduction 11

Installation on HP-UX 11 (non-DCE)
1. Login as root
2. Download ma0c_hp11.tar.Z in binary and store in /tmp

3. Execute uncompress -fv /tmp/ma0c_hp11.tar.Z

4. Execute tar -xvf /tmp/ma0c_hp11.tar

5. Execute rm /tmp/ma0c_hp11.tar

The following files will be created:
/opt/mqm/bin/amqfcxaa
/opt/mqm/bin/amqfcxba
/opt/mqm/bin/clrmqbrk
/opt/mqm/bin/dltmqbrk
/opt/mqm/bin/dspmqbrk
/opt/mqm/bin/endmqbrk
/opt/mqm/bin/migmqbrk
/opt/mqm/bin/strmqbrk
/usr/bin/amqfcxaa -> /opt/mqm/bin/amqfcxaa
/usr/bin/amqfcxba -> /opt/mqm/bin/amqfcxba
/usr/bin/clrmqbrk -> /opt/mqm/bin/clrmqbrk
/usr/bin/dltmqbrk -> /opt/mqm/bin/dltmqbrk
/usr/bin/dspmqbrk -> /opt/mqm/bin/dspmqbrk
/usr/bin/endmqbrk -> /opt/mqm/bin/endmqbrk
/usr/bin/migmqbrk -> /opt/mqm/bin/migmqbrk
/usr/bin/strmqbrk -> /opt/mqm/bin/strmqbrk
/opt/mqm/samp/bin/amqsgam
/opt/mqm/samp/bin/amqspsd
/opt/mqm/samp/bin/amqsres
/opt/mqm/samp/pubsub/amqsfmda.tst
/opt/mqm/samp/pubsub/amqsgama.c
/opt/mqm/samp/pubsub/amqsgama.tst
/opt/mqm/samp/pubsub/amqspsra.c
/opt/mqm/samp/pubsub/amqsresa.c
/opt/mqm/samp/pubsub/amqsresa.tst
/opt/mqm/samp/pubsub/admin/amqspsda.c
/opt/mqm/samp/pubsub/admin/amqspsda.tst
/tmp/li
/tmp/ipla

To uninstall MQSeries Publish/Subscribe on HP-UX platforms, remove the files
created above.

Testing the installation
After installation, it is recommended that you run the sample application (see
“Running the application” on page 92) to verify that the MQSeries
Publish/Subscribe system has been installed correctly.

Installation

12 MQSeries Publish/Subscribe User’s Guide

Installation on HP-UX 11 (DCE)
1. Login as root
2. Download ma0c_hp11dce.tar.Z in binary and store in /tmp

3. Execute uncompress -fv /tmp/ma0c_hp11dce.tar.Z

4. Execute tar -xvf /tmp/ma0c_hp11dce.tar

5. Execute rm /tmp/ma0c_hp11dce.tar

The following files will be created:
/opt/mqm/bin/amqfcxaa_d
/opt/mqm/bin/amqfcxba_d
/opt/mqm/bin/clrmqbrk_d
/opt/mqm/bin/dltmqbrk_d
/opt/mqm/bin/dspmqbrk_d
/opt/mqm/bin/endmqbrk_d
/opt/mqm/bin/migmqbrk_d
/opt/mqm/bin/strmqbrk_d
/opt/mqm/bin/amqfcxaa -> /opt/mqm/bin/amqfcxaa_d
/opt/mqm/bin/amqfcxba -> /opt/mqm/bin/amqfcxba_d
/opt/mqm/bin/clrmqbrk -> /opt/mqm/bin/clrmqbrk_d
/opt/mqm/bin/dltmqbrk -> /opt/mqm/bin/dltmqbrk_d
/opt/mqm/bin/dspmqbrk -> /opt/mqm/bin/dspmqbrk_d
/opt/mqm/bin/endmqbrk -> /opt/mqm/bin/endmqbrk_d
/opt/mqm/bin/migmqbrk -> /opt/mqm/bin/migmqbrk_d
/opt/mqm/bin/strmqbrk -> /opt/mqm/bin/strmqbrk_d
/usr/bin/amqfcxaa -> /opt/mqm/bin/amqfcxaa_d
/usr/bin/amqfcxba -> /opt/mqm/bin/amqfcxba_d
/usr/bin/clrmqbrk -> /opt/mqm/bin/clrmqbrk_d
/usr/bin/dltmqbrk -> /opt/mqm/bin/dltmqbrk_d
/usr/bin/dspmqbrk -> /opt/mqm/bin/dspmqbrk_d
/usr/bin/endmqbrk -> /opt/mqm/bin/endmqbrk_d
/usr/bin/migmqbrk -> /opt/mqm/bin/migmqbrk_d
/usr/bin/strmqbrk -> /opt/mqm/bin/strmqbrk_d
/opt/mqm/samp/bin/amqsgam_d
/opt/mqm/samp/bin/amqspsd_d
/opt/mqm/samp/bin/amqsres_d
/opt/mqm/samp/bin/amqsgam -> /opt/mqm/samp/bin/amqsgam_d
/opt/mqm/samp/bin/amqspsd -> /opt/mqm/samp/bin/amqspsd_d
/opt/mqm/samp/bin/amqsres -> /opt/mqm/samp/bin/amqsres_d
/opt/mqm/samp/pubsub/amqsfmda.tst
/opt/mqm/samp/pubsub/amqsgama.c
/opt/mqm/samp/pubsub/amqsgama.tst
/opt/mqm/samp/pubsub/amqspsra.c
/opt/mqm/samp/pubsub/amqsresa.c
/opt/mqm/samp/pubsub/amqsresa.tst
/opt/mqm/samp/pubsub/admin/amqspsda.c
/opt/mqm/samp/pubsub/admin/amqspsda.tst
/tmp/li
/tmp/ipla

To uninstall MQSeries Publish/Subscribe on HP-UX platforms, remove the files
created above.

Testing the installation
After installation, it is recommended that you run the sample application (see
“Running the application” on page 92) to verify that the MQSeries
Publish/Subscribe system has been installed correctly.

Installation

Chapter 1. Introduction 13

Installation on Linux
1. Login as root
2. Download ma0c_linux.tar.gz in binary and store in /tmp

3. Execute gunzip /tmp/ma0c_linux.tar.gz

4. Execute tar -xvPf /tmp/ma0c_linux.tar

5. Execute rm /tmp/ma0c_linux.tar

The following files will be created:
/opt/mqm/bin/amqfcxaa
/opt/mqm/bin/amqfcxba
/opt/mqm/bin/clrmqbrk
/opt/mqm/bin/dltmqbrk
/opt/mqm/bin/dspmqbrk
/opt/mqm/bin/endmqbrk
/opt/mqm/bin/migmqbrk
/opt/mqm/bin/strmqbrk
/usr/bin/amqfcxaa -> /opt/mqm/bin/amqfcxaa
/usr/bin/amqfcxba -> /opt/mqm/bin/amqfcxba
/usr/bin/clrmqbrk -> /opt/mqm/bin/clrmqbrk
/usr/bin/dltmqbrk -> /opt/mqm/bin/dltmqbrk
/usr/bin/dspmqbrk -> /opt/mqm/bin/dspmqbrk
/usr/bin/endmqbrk -> /opt/mqm/bin/endmqbrk
/usr/bin/migmqbrk -> /opt/mqm/bin/migmqbrk
/usr/bin/strmqbrk -> /opt/mqm/bin/strmqbrk
/opt/mqm/samp/bin/amqsgam
/opt/mqm/samp/bin/amqspsd
/opt/mqm/samp/bin/amqsres
/opt/mqm/samp/pubsub/amqsfmda.tst
/opt/mqm/samp/pubsub/amqsgama.c
/opt/mqm/samp/pubsub/amqsgama.tst
/opt/mqm/samp/pubsub/amqspsra.c
/opt/mqm/samp/pubsub/amqsresa.c
/opt/mqm/samp/pubsub/amqsresa.tst
/opt/mqm/samp/pubsub/admin/amqspsda.c
/opt/mqm/samp/pubsub/admin/amqspsda.tst
/tmp/li
/tmp/ipla

To uninstall MQSeries Publish/Subscribe on Linux platforms, remove the files
created above.

Note: See the GroupId parameter in “Broker configuration parameters” on page 102
as the group nobody does not exist by default on some Linux installations.

Testing the installation
After installation, it is recommended that you run the sample application (see
“Running the application” on page 92) to verify that the MQSeries
Publish/Subscribe system has been installed correctly.

Installation

14 MQSeries Publish/Subscribe User’s Guide

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

Installation on Sun Solaris
1. Login as root
2. Download ma0c_sol.tar.Z in binary and store in /tmp

3. Execute uncompress -fv /tmp/ma0c_sol.tar.Z

4. Execute tar -xvf /tmp/ma0c_sol.tar

5. Execute rm /tmp/ma0c_sol.tar

The following files will be created:
/opt/mqm/bin/amqfcxaa
/opt/mqm/bin/amqfcxba
/opt/mqm/bin/clrmqbrk
/opt/mqm/bin/dltmqbrk
/opt/mqm/bin/dspmqbrk
/opt/mqm/bin/endmqbrk
/opt/mqm/bin/migmqbrk
/opt/mqm/bin/strmqbrk
/usr/bin/amqfcxaa -> /opt/mqm/bin/amqfcxaa
/usr/bin/amqfcxba -> /opt/mqm/bin/amqfcxba
/usr/bin/clrmqbrk -> /opt/mqm/bin/clrmqbrk
/usr/bin/dltmqbrk -> /opt/mqm/bin/dltmqbrk
/usr/bin/dspmqbrk -> /opt/mqm/bin/dspmqbrk
/usr/bin/endmqbrk -> /opt/mqm/bin/endmqbrk
/usr/bin/migmqbrk -> /opt/mqm/bin/migmqbrk
/usr/bin/strmqbrk -> /opt/mqm/bin/strmqbrk
/opt/mqm/samp/bin/amqsgam
/opt/mqm/samp/bin/amqspsd
/opt/mqm/samp/bin/amqsres
/opt/mqm/samp/pubsub/amqsfmda.tst
/opt/mqm/samp/pubsub/amqsgama.c
/opt/mqm/samp/pubsub/amqsgama.tst
/opt/mqm/samp/pubsub/amqspsra.c
/opt/mqm/samp/pubsub/amqsresa.c
/opt/mqm/samp/pubsub/amqsresa.tst
/opt/mqm/samp/pubsub/admin/amqspsda.c
/opt/mqm/samp/pubsub/admin/amqspsda.tst
/tmp/li
/tmp/ipla

To uninstall MQSeries Publish/Subscribe on Sun Solaris platforms, remove the files
created above.

Testing the installation
After installation, it is recommended that you run the sample application (see
“Running the application” on page 92) to verify that the MQSeries
Publish/Subscribe system has been installed correctly.

Installation

Chapter 1. Introduction 15

Installation on Windows NT and Windows 2000
1. For MQSeries for Windows NT and Windows 2000 Version 5.2

a. Download file ma0c_ntmq52.exe.
b. Change to the directory where the file was downloaded.
c. Enter ma0c_ntmq52.
d. Follow the instructions in the dialog boxes displayed on the screen.

2. For MQSeries for Windows NT Version 5.0 and 5.1
a. Create an empty directory called tmp and make it current.
b. Download file ma0c_nt.zip to this directory.
c. Uncompress using Info-ZIP’s UnZip program.
d. Enter install <drive:directory> for the drive and directory where

MQSeries has been installed. For example install C:\mqm or
install "C:\Program Files\mqm"

Alternatively, you can copy the files manually. Enter the following if you installed
MQSeries to C:\mqm, otherwise use the drive and directory where MQSeries was
installed.
copy bin\amqfcxaa.exe c:\mqm\bin
copy bin\amqfcxba.exe c:\mqm\bin
copy bin\cfgmqbrk.exe c:\mqm\bin
copy bin\clrmqbrk.exe c:\mqm\bin
copy bin\dltmqbrk.exe c:\mqm\bin
copy bin\dspmqbrk.exe c:\mqm\bin
copy bin\endmqbrk.exe c:\mqm\bin
copy bin\migmqbrk.exe c:\mqm\bin
copy bin\strmqbrk.exe c:\mqm\bin
copy bin\samples\amqsgam.exe c:\mqm\tools\c\samples\bin
copy bin\samples\amqspsd.exe c:\mqm\tools\c\samples\bin
copy bin\samples\amqsres.exe c:\mqm\tools\c\samples\bin
copy samples\amqsfmda.tst c:\mqm\tools\c\samples\pubsub
copy samples\amqsgama.c c:\mqm\tools\c\samples\pubsub
copy samples\amqsgama.tst c:\mqm\tools\c\samples\pubsub
copy samples\amqspsra.c c:\mqm\tools\c\samples\pubsub
copy samples\amqsresa.c c:\mqm\tools\c\samples\pubsub
copy samples\amqsresa.tst c:\mqm\tools\c\samples\pubsub
copy samples\admin\amqspsda.c c:\mqm\tools\c\samples\pubsub\admin
copy samples\admin\amqspsda.tst c:\mqm\tools\c\samples\pubsub\admin

To uninstall MQSeries Publish/Subscribe on Windows NT and Windows 2000
platforms, delete the files that were created above.

Testing the installation
After installation, it is recommended that you run the sample application (see
“Running the application” on page 92) to verify that the MQSeries
Publish/Subscribe system has been installed correctly.

Installation

16 MQSeries Publish/Subscribe User’s Guide

|

|

|

|

|

Chapter 2. System design

This chapter discusses the things that you need to consider when you design your
MQSeries Publish/Subscribe system.
v “Topics”
v “Streams” on page 18
v “Broker networks” on page 19
v “Different types of publication” on page 22

The “Sample application” on page 23 illustrates how these features can be used in
practice.

Topics
A topic identifies what a publication is about. It consists of a character string.

You can use any characters within the single-byte character set for which the
machine is configured in a topic string. However, a topic string might need to be
translated to a different character representation, so you are recommended to use
only those characters that are available in the configured character set of all
relevant machines. Topic strings are case sensitive, and a blank character has no
special meaning. A null character terminates the string and is not considered to be
part of it.

Subscribers can specify a topic or range of topics, using wildcards, for the
information that they want.

Matching topic strings
The wildcard characters recognized by MQSeries Publish/Subscribe are:

* Zero or more characters

? One character

In the example shown in Figure 1 on page 4, the high-level topic of ’Sport’ might
be divided into separate topics covering different sports, such as:
Sport/Soccer
Sport/Golf
Sport/Tennis

These might be divided further, to separate different types of information about
each sport, such as:
Sport/Soccer/Fixtures
Sport/Soccer/Results
Sport/Soccer/Reports

Note: MQSeries Publish/Subscribe does not recognize that the ‘/’ character is
being used in a special way. However, it is recommended that the ‘/’
character is used as a separator to ensure compatibility with other MQSeries
business integration functions.

The following topic strings could be used in subscriptions to retrieve particular
sets of information:

© Copyright IBM Corp. 1998, 2001 17

* All information on Sport, Stock, Films and TV.

Sport/*
All information on Soccer, Golf and Tennis.

Sport/Soccer/*
All information on Soccer (Fixtures, Results and Reports).

Sport/*/Results
All Results for Soccer, Golf and Tennis.

Note that wildcards do not span streams (see “Streams”).

The percent character ‘%’ is used as an escape character, to allow these characters
to be used in a topic string. For example, the string ‘ABC%*D’ represents the actual
topic ABC*D. If the string ABC%*D is specified in a Publish message (where wildcard
characters are not allowed), the string could be matched by a subscriber specifying
the string ABC?D.

To use a % character in a topic string, specify two percent characters ‘%%’. A
percent character in a string must always be followed by a ‘*’, a ‘?’, or another ‘%’
character.

If wildcard characters are not allowed in a message, a ‘*’ or ‘?’ character can only
be present if it is immediately preceded by a ‘%’ character so that the ‘*’ or ‘?’
character loses its wildcard semantics. Therefore, ABC%*D is a valid topic string in a
Publish message but ABC*D is not.

Streams
Streams provide a way of separating the flow of information for different topics. A
stream is implemented as a set of queues, one at each broker that supports the
stream. Each of these queues has the same name (the name of the stream). The
default stream set up between all the brokers in a network is called
SYSTEM.BROKER.DEFAULT.STREAM.

Streams can be created by an application or by the administrator. Stream names are
case sensitive, and stream queues must be local queues (not alias queues). Stream
names beginning with the characters ‘SYSTEM.BROKER.’ are reserved for
MQSeries use. For more information see “Broker queues” on page 99.

A broker has a separate thread for each stream that it supports. If multiple streams
are used the broker can process publications arriving at different stream queues in
parallel. Other advantages of using streams are as follows:
v To provide a high level grouping of topics.

Streams act as high-level qualifiers for topics. For instance, in the example
shown in Figure 1 on page 4, a separate stream might be set up for Sport. In this
case, to get the soccer results you need to subscribe to the Soccer/Results topic
specifying the ‘Sport’ stream. The other topics (Stock, Films, TV) will remain on
the default stream, unless other streams are set up for them.
Note that wildcard characters are not used for stream names, and that wildcards
do not span streams. For example, a subscriber to topic ‘*’ on the ‘Sport’ stream
will not receive publications published on other streams.

v To restrict the range of publications and subscriptions that a broker has to deal
with.

Topics

18 MQSeries Publish/Subscribe User’s Guide

A given stream can be restricted to a subtree of a hierarchy or the stream can be
split into separate hierarchies that are not connected (see “Broker networks”).
For example, if broker 1 in Figure 4 does not support a stream supported by its
children, brokers 2 and 3 will each form the root of a separate hierarchy for that
stream, and no subscriptions or publications will flow between the two
hierarchies.

v To provide access control.
A broker has a stream queue for each stream that it supports. Normal MQSeries
access control techniques can be used to control whether a particular application
is authorized to put messages onto this queue (publish to this stream), or to
browse messages from the queue (subscribe to it). Although a subscribing
application does not get messages from the broker’s queue directly, the broker
checks the subscriber’s authorization to subscribe to the broker’s queue when it
registers the subscription. This authorization check takes place at the broker to
which the application publishes or subscribes, not at other brokers to which the
publication or subscription might be propagated.
The administrator can change publishers’ and subscribers’ stream queue
authorizations dynamically (using normal MQSeries queue management
facilities), although the changes might not take effect until the broker is
restarted.

v To define a certain quality of service for broker-to-broker communication of
publications.
You can send information associated with one stream along different channels
from those used for another stream. For example, a non-urgent stream might
have its associated channels active only during the night.

v To allow different queue attributes (such as maximum message length) to be
assigned for publications on different streams.

Broker networks
You can link brokers together to form a network of brokers. A broker network
must be arranged as a hierarchy. The broker at the top of the hierarchy is called
the root broker. The root broker can have one or more child brokers, and is known as
the parent broker to these brokers. The child brokers can also have child brokers,
and so on, as illustrated in Figure 4.

Using a hierarchy reduces the number of channels that need to be defined because
each broker does not need to be connected to every other broker. Both publication
and subscription traffic take a hierarchic route to their destinations.

BROKER 1

BROKER 2

BROKER 6BROKER 5

BROKER 3

BROKER 8BROKER 7

BROKER 4

Figure 4. Simple broker hierarchy. Broker 1 is the root broker and brokers 2 and 3 are its children. Broker 4 is the child
of broker 2 and the parent of brokers 7 and 8.

Streams

Chapter 2. System design 19

Each broker maintains administrative information about its parent broker. When a
broker first starts, it communicates with its parent. In this way, each broker knows
the identities of its immediate children as well as its parent. These are known as
the broker’s neighbors.

The hierarchy should be defined from the root down and, if it is necessary to
delete brokers, this should be done from the bottom up. This usually means that to
change the root broker you have to delete the whole network and start again (in
exceptional cases you can use the clrmqbrk command described on 114).

Passing subscription information between brokers
Subscriptions flow to all nodes in the network that support the stream in question.
This is shown in Figure 5.

A broker consolidates all of the subscriptions that are registered with it, whether
from applications directly or from other brokers. In turn, it registers subscriptions
for these topics with its neighbors, unless a subscription already exists. This is
shown in Figure 6 on page 21.

When an application publishes information, the receiving broker forwards it
(possibly through one or more other brokers) to any applications that have valid
subscriptions for it, including applications registered at other brokers supporting
this stream (for global publications). This is shown in Figure 7 on page 21.

Subscriber 1

4 - s
ub

sc
rip

tio
n

3 -
 su

bs
cr

ipt
ion

3 - s
ub

sc
rip

tio
n

2 - subscription

HQ

Europe

London

Asia
1 - subscription

Figure 5. Propagation of subscriptions through a broker network. Subscriber 1 registers a subscription for a particular
topic and stream on the Asia broker (1). The subscription for this topic is forwarded to all other brokers in the network
that support the stream (2,3,4).

Broker networks

20 MQSeries Publish/Subscribe User’s Guide

When a broker sends any publish or subscribe message to another broker, it sets its
own user ID in the message, and uses its own authority to put the message. This
means that the broker must have the authority to put messages onto other brokers’
queues (unless the channel is set up to put incoming messages with the message
channel agent’s authority). This also means that all authorization checks are
performed at the publisher’s or subscriber’s local broker.

Subscriber 1

Subscriber 2

6 - subscriptionsu
bs

cr
ipt

ion

su
bs

cr
ipt

ion

HQ

Europe

London

Asia
subscription

5 - subscription

subscription

Figure 6. Multiple subscriptions. Subscriber 2 registers a subscription, with the same topic and stream as in Figure 5
on page 20, on the HQ broker (5). The subscription for this topic is forwarded to the Asia broker, so that it is aware
that subscriptions exist elsewhere on the network (6). The subscription does not have to be forwarded to the Europe
broker, because a subscription for this topic has already been registered (step 3 in Figure 5 on page 20).

Subscriber 1
7 - publication

Subscriber 2

Publisher

8 - p
ub

lic
ati

on

9 - publication

9 - publication

10 - publication

subscription

su
bs

cr
ipt

ion

subscription

subscription

HQ

Europe

London

Asia

su
bs

cr
ipt

ion

Figure 7. Propagation of publications through a broker network. A publisher sends a publication, on the same topic and
stream as in Figure 6, to the Europe broker (7). A subscription for this topic exists from HQ to Europe, so the
publication is forwarded to the HQ broker (8). However, no subscription exists from London to Europe (only from
Europe to London), so the publication is not forwarded to the London broker. The HQ broker sends the publication
directly to subscriber 2 and to the Asia broker (9), from where it is forwarded to subscriber 1 (10).

Broker networks

Chapter 2. System design 21

For more information about brokers, see “Part 3. Managing the broker” on page 97.

Different types of publication
The broker can handle publications it receives in different ways, depending on the
type of information contained in the publication.

Local and global publications
A publication that is made available through all the brokers on a network is called
a global publication. If required, access to publications can be restricted to
subscribers that use the same broker as the publisher. This is called a local
publication, and it can be specified when the publisher registers with the broker, or
each time it sends publications to the broker. Local publications are not forwarded
to other brokers.

Subscribers can specify whether they want to receive local publications or global
publications (but not both) when they register with the broker. Subscribers
subscribing to global publications do not receive local publications, even if they are
published at the same broker that their subscription was registered at.

State and event information
Publications can be categorized as follows:

State publications
State publications contain information about the current state of something,
such as the price of stock or the current score in a soccer match. When
something happens (for example, the stock price changes or the soccer
score changes), the previous state information is no longer required as it is
superseded by the new information.

A subscriber will want to receive the current version of the state
information when it starts up, and be sent new information whenever the
state changes.

Event publications
Event publications contain information about individual events that occur,
such as a trade in some stock or the scoring of a particular goal. Each of
these events is independent of other events.

A subscriber will want to receive information about events as they happen.

Retained publications
By default, a broker deletes a publication when it has sent that publication to all
the interested subscribers. This type of processing is suitable for event information,
but is not always suitable for state information. A publisher can specify that it
wants the broker to keep a copy of a publication, which is then called a retained
publication. The copy can be sent to subsequent subscribers who register an interest
in the topic. This means that new subscribers don’t have to wait for information to
be published again before they receive it. For example, a subscriber registering a
subscription to a stock price would receive the current price straightaway, without
waiting for the stock price to change (and hence be re-published).

The broker retains only one publication for each topic, so the old publication is
deleted when a new one arrives. It is recommended that you do not have more
than one publisher sending retained publications on the same topic.

Different types of publication

22 MQSeries Publish/Subscribe User’s Guide

Subscribers can specify that they do not want to receive retained publications, and
existing subscribers can ask for duplicate copies of retained publications to be sent
to them.

When deciding whether to used retained publications, you need to consider
several factors.
v Will your publications contain state information or event information?

Event publications do not usually have to be retained. For state information, if
all the subscriptions to a topic are in place before any publications are made on
that topic (and no new ones are expected), there is no need to retain publications
because they will be delivered to all subscribers when they are published.
Another reason why publications might not need to be retained is if they are
very frequent (for example, every second), because a new subscriber (or a
subscriber recovering from a failure) will receive the current state almost
immediately after it subscribes.

v How will the subscriber application recover from a failure?
If the publisher does not use retained publications, the subscriber application
might need to store its current state locally. If the publisher does use retained
publications, the subscriber application can use the Request Update message to
refresh its state information after a restart.
Note that the broker will continue to send publications to a registered subscriber
even if that subscriber is not running. This could lead to a build-up of messages
on the subscriber queue, which can be avoided if the subscriber registers with
the ‘Publish on Request Only’ option. The subscriber must then refresh its state
periodically using the Request Update command message. Note that in this case
the subscriber will not receive any non-retained publications.

v What are the performance implications of retaining publications?
The broker needs to write retained publications to disk during the Publish
request, which will reduce throughput. If the publications are very large, a
considerable amount of queue space (and hence disk space) will be needed to
store the retained publication of each topic. In a multi-broker environment,
retained publications will also be stored by all other brokers in the network that
have a matching subscription.

Sample application
The sample application (see “Chapter 9. Sample programs” on page 91) simulates a
results gathering service that reports the latest score in a sports event such as a
soccer match. It receives information from one or more instances of a soccer match
simulator that scores goals at random for the two teams. This is illustrated in
Figure 8 on page 24.

Different types of publication

Chapter 2. System design 23

The match simulator does not keep track of the score. It merely indicates when a
match starts or finishes, and when a goal is scored. These events are published to
three different topics on the SAMPLE.BROKER.RESULTS.STREAM stream. (The
sample program sets up its own stream to avoid any possible conflict with
customer applications on the default stream).
v When a match starts, the names of the teams are published on the

Sport/Soccer/Event/MatchStarted topic.
v When a goal is scored, the name of the team scoring the goal is published on the

Sport/Soccer/Event/ScoreUpdate topic.
v When a match ends, the names of the teams are published on the

Sport/Soccer/Event/MatchEnded topic.

The publications on these topics are not retained, as they contain event information
and not state information.

The results service subscribes to the topic Sport/Soccer/Event/* to receive
publications from any matches that are in progress. It keeps track of the current
score in each match, and whenever there is a change it publishes the score as a
retained publication on the topic Sport/Soccer/State/LatestScore/Team1 Team2,
where Team1 and Team2 are the names of the teams in the match.

A subscriber wanting to receive all the latest scores could register a wildcard
subscription to topic Sport/Soccer/State/LatestScore/* . If it was interested in
one particular team only, it could register a different wildcard subscription to topic
Sport/Soccer/State/LatestScore/*MyTeam* .

Note that the results service must be started before the match simulators, otherwise
it might miss some events and hence not be able to ascertain the current state in
each match. This is usually the case with event publications, in which subscriptions
are static and need to be in place before publications arrive.

If it stops while matches are still in progress the results service can find out the
state of play when it restarts. This is done by subscribing to its own retained
publications using the the Sport/Soccer/State/LatestScore/* topic, with the
‘Publish on Request Only’ option. A Request Update command is then issued to

Broker

Results
Service

Match Simulator
event

publications

Match Simulator
event

publications

event publications

state publications

subscription

Figure 8. The results service application. The match simulators publish events when a match starts or finishes, or a
goal is scored. The results service subscribes to these events, and publishes the latest scores as state publications.

Sample application

24 MQSeries Publish/Subscribe User’s Guide

receive any retained publications which contain latest scores. (In fact, this is done
using a different CorrelId as explained in “Publisher and subscriber identity” on
page 35.)

These publications enable the results service to reconstruct its state as it was when
it stopped. It can then process all events that occurred while it was stopped by
processing the subscription queue for the Sport/Soccer/Events/* topic. Since the
subscription will still be registered (no Deregister Subscriber message has been
sent) it will include any event publications that arrived while the results service
was inactive.

This sample program illustrates the following aspects of a Publish/Subscribe
application:
v The use of streams other than the default stream.
v Event publications (not retained).
v State publications (retained).
v Wildcard matching of topic strings.
v Multiple publishers on the same topics (event publications only).
v The need to subscribe to a topic before it is published on (event publications).
v A subscriber continuing to be sent publications when that subscriber (not its

subscription) is interrupted.
v The use of retained publications to recover state after a subscriber failure.

Further details of the messages sent between the publisher, subscriber and broker,
and the results service sample program, are given in “Part 2. Writing applications”
on page 27.

Sample application

Chapter 2. System design 25

26 MQSeries Publish/Subscribe User’s Guide

Part 2. Writing applications

Chapter 3. Introduction to writing applications 29
Message flows 30

Simplified message flow 31
Message ordering 34

Ensuring that messages are retrieved in the
correct order 34

Publisher and subscriber identity 35
The message descriptor 36

Messages sent to the broker 36
Publications forwarded by the broker. 37

Persistence and units of work 38
Limitations 39

Group messages 39
Segmented messages 39
Cluster queues 39
Data conversion of MQRFH structure. 39

Using the Application Messaging Interface 39
AMI publish/subscribe functions 39

Publish command 39
Register Subscriber command 40
Deregister Subscriber command 40
Receive a publication 40

Chapter 4. Writing publisher applications . . . 41
Registering with the broker 41

Choosing not to register 42
Options you can specify when registering as a
publisher 42

Queue name 42
Selecting a stream 42
Publisher identity 42
Registration scope 42
Registration expiry 42

Broker restart 43
Changing an application’s registration 43

Publishing information 43
Publication data 43

Including data in the message 43
Referring to data in the message 43

Retained publications 44
Expiry of retained publications 44

Publishing locally and globally 44
Deleting information 44
Deregistering with the broker 45

Chapter 5. Writing subscriber applications . . . 47
Registering as a subscriber 47

Subscriber queues 48
Options you can specify when registering as a
subscriber 48

Queue name 48
Selecting a stream 48
Subscriber identity 48
Subscription scope 49
Subscription expiry 49

Broker restart 49

Changing an application’s registration 49
Requesting information 49

Requesting information from the broker 49
Requesting information from a publisher . . . 50

Deregistering as a subscriber 50

Chapter 6. Format of command messages . . . 53
MQRFH – Rules and formatting header 53

Fields 54
Structure definition in C 56

Publish/Subscribe name/value strings 57
Options using string constants 58
Options using integer constants 58
Sending a command message with the RFH
structure 58

Publication data 59
Double-byte character sets 59

Chapter 7. Publish/Subscribe command
messages 63
Delete Publication 64

Required parameters 64
Optional parameters 64
Example 64
Error codes 65

Deregister Publisher 66
Required parameters 66
Optional parameters 66
Example 67
Error codes 67

Deregister Subscriber 68
Required parameters 68
Optional parameters 68
Example 69
Error codes 69

Publish 70
Required parameters 70
Optional parameters 70
Example 74
Error codes 74

Register Publisher 75
Required parameters 75
Optional parameters 75
Example 76
Error codes 76

Register Subscriber 78
Required parameters 78
Optional parameters 78
Example 80
Error codes 80

Request Update 81
Required parameters 81
Optional parameters 81
Example 82
Error codes 82

© Copyright IBM Corp. 1998, 2001 27

Chapter 8. Error handling and response
messages 83
Error handling by the broker 83
Response messages 84

Message descriptor for response messages . . . 84
Types of error response 85

OK response 85
Warning response 85
Error response 85

Broker responses 86
Standard parameters 86
Optional parameters 87
Examples 88
Error codes applicable to all commands 88

Problem determination 89

Chapter 9. Sample programs 91
Sample application 92

Running the application 92
Possible extensions 94

Application Messaging Interface samples 95

28 MQSeries Publish/Subscribe User’s Guide

Chapter 3. Introduction to writing applications

Applications use command messages to communicate with the broker when they
want to publish or subscribe to information. These messages use the MQSeries
Rules and Formatting Header (RF Header), which is described in “Chapter 6.
Format of command messages” on page 53. The content of each command message
starts with an MQRFH structure. This structure contains a name/value string,
which defines the type of command the message represents and any parameters
associated with the command. In the case of a Publish command message, the
name/value string is usually followed by the data to be published, in any format
specified by the user. Broker responses to command messages also use the MQRFH
structure.

The normal Message Queue Interface (MQI) calls (such as MQPUT and MQGET)
can be used to put RF Header command messages to the broker queue, and to
retrieve response messages and publications from their respective queues. The MQI
is described in the MQSeries Application Programming Guide. Most command
messages are sent to the broker’s control queue
(SYSTEM.BROKER.CONTROL.QUEUE), but Publish and Delete Publication
command messages are sent to the appropriate stream queue at the broker (for
example, SYSTEM.BROKER.DEFAULT.STREAM).

Alternatively, you can use the MQSeries Application Messaging Interface (AMI) to
send messages to and receive them from the broker. The AMI constructs and
interprets the fields in the RF Header, so you don’t need to understand its
structure. In addition, the application programmer is not concerned with details of
how MQSeries sends the message. These details (for instance, the queue name and
fields in the message descriptor) are contained in AMI services and policies set up
by a system administrator.

Like MQSeries Publish/Subscribe, the AMI is available as a SupportPac™.

This chapter describes the things that you need to know before you start writing a
publisher or subscriber application. It discusses the following topics:
v “Message flows” on page 30
v “Message ordering” on page 34
v “Publisher and subscriber identity” on page 35
v “The message descriptor” on page 36
v “Persistence and units of work” on page 38
v “Limitations” on page 39
v “Using the Application Messaging Interface” on page 39

You can find more information about writing applications in:
v “Chapter 4. Writing publisher applications” on page 41
v “Chapter 5. Writing subscriber applications” on page 47
v “Chapter 6. Format of command messages” on page 53
v “Chapter 7. Publish/Subscribe command messages” on page 63
v “Chapter 8. Error handling and response messages” on page 83
v “Chapter 15. Finding out about other publishers and subscribers” on page 147

Sample programs to illustrate the techniques used are described in “Chapter 9.
Sample programs” on page 91.

© Copyright IBM Corp. 1998, 2001 29

Message flows

Figure 9 shows the basic flow of messages using the Register Publisher,
Deregister Publisher, Register Subscriber, Deregister Subscriber and Publish
command message and responses. This flow applies to all event publications, and
to state information where the subscriber wants to get the latest published state of
a topic.

The responses are optional, and the Register Publisher and Deregister Publisher
command messages can be omitted (publishers can choose not to register, or to
register on their first publish command). So the flow diagram can be simplified as
shown in Figure 10 on page 31.

Publisher Broker Subscriber

Register Publisher

Register Publisher (response)

Register Subscriber

Register Subscriber (response)

Publish

Publish (response)

Publish

Publish

Publish (response)

Publish

Deregister Subscriber

Deregister Subscriber (response)

Deregister Publisher

Deregister Publisher (response)

... ...

Figure 9. Basic flow of messages

Message flows

30 MQSeries Publish/Subscribe User’s Guide

Simplified message flow
Figure 10 is a simplified version of Figure 9 on page 30 with the optional messages

and responses omitted.

Figure 11 on page 32 shows how publish and subscribe messages flow between the
publisher, the subscriber, and the broker queues. In Figure 12 on page 32 this is
extended to a two-broker system.

The flow of messages when retained publications are used is shown in Figure 13
on page 33. In this case, the subscriber receives the current retained publication as

soon as it registers a subscription. In Figure 14 on page 33, the subscriber registers
with the ‘Publish on Request Only’ option, so it doesn’t receive the publication
until it sends a Request Update command message. (Note that the first publication
is not delivered to the subscriber, because it is updated by the second publication
before the update request is received).

Publisher Broker Subscriber

Register Subscriber

Publish

Publish

Publish

Publish

Deregister Subscriber

... ...

Figure 10. Simplified flow of messages

Message flows

Chapter 3. Introduction to writing applications 31

Subscriber
Queue

Subscriber

Broker

Stream
Queue

Control
Queue

Publisher
2 - publication 3 - publication

4 - publication

1 - subscription

Figure 11. Flow of messages in a single-broker system. The subscriber registers a subscription by putting a message
on the broker’s control queue (1). Subsequently, a publisher puts a publication message, for the same topic, on the
corresponding stream queue in the broker (2). The broker forwards the publication by putting the same message on
the subscriber queue (3), from where the subscriber application can get it (4).

Subscriber
Queue

Subscriber

Publisher
3 - publication 5 - publication4 - publication

6 - publication

1 - subscription2 - subscription

Stream
Queue

Control
Queue

Stream
Queue

Control
Queue

Broker 1 Broker 2

Figure 12. Flow of messages in a multi-broker system. The subscriber registers a subscription as in Figure 11(1).
Broker 2 forwards the subscription by putting a message on the control queue of Broker 1 (2). Subsequently, a
publisher puts a publication message, for the same topic, on the corresponding stream queue in Broker 1 (3). The
publication is forwarded to Broker 2 (4), and then to the subscriber queue (5), from where the subscriber application
can get it (6).

Message flows

32 MQSeries Publish/Subscribe User’s Guide

Subscriber
Queue

Subscriber

Broker

Stream
Queue

Control
Queue

Internal
Queue

Publisher
1 - publication

5 - publication

3 - subscription

2 - publication 4 - publication

Figure 13. Flow of messages using retained publications. A publisher sends a retained publication by putting a
message on the appropriate stream queue in the broker (1). The broker stores the publication on an internal queue
(2). Subsequently, a subscriber registers a subscription, to the same topic and stream, by putting a message on the
broker’s control queue (3). The broker sends the current retained publication for this topic by putting a message on the
subscriber queue (4), from where the subscriber application can get it (5).

Subscriber
Queue

Subscriber

Broker

Control
Queue

Internal
Queue

Publisher

1 - publication 2 - publication 7 - publication

8 - publication

3 - subscription

4 - publication 5 - publication

6 - request update

Stream
Queue
Stream
Queue

Figure 14. Flow of messages using publish on request only. A publisher sends a retained publication to a stream
queue in the broker (1). The broker stores it on an internal queue (2). A subscriber registers a subscription, to the
same topic and stream, by putting a message on the broker’s control queue (3), but it uses the ‘Publish on Request
Only’ option so the broker takes no action. Subsequently, the publisher sends a second retained publication to the
broker (4), which replaces the first one on the internal queue (5). The subscriber then sends a request update
message to the broker’s control queue (6). This causes the broker to send the current retained publication to the
subscriber queue (7), from where the subscriber application can get it (8).

Message flows

Chapter 3. Introduction to writing applications 33

Message ordering
For a given stream, messages are published by brokers in the same order as they
are received from publishers (subject to reordering based on message priority).
This normally means that each subscriber receives messages from a particular
broker, on a particular topic and stream, from a particular publisher in the order
that they are published by that publisher.

However, as with all MQSeries messages, it is possible for messages, occasionally,
to be delivered out of order. This could happen:
v If a link in the network goes down and subsequent messages are rerouted along

another link
v If a queue becomes temporarily full, or put-inhibited, so that a message is put to

a dead-letter queue and therefore delayed, while subsequent messages pass
straight through.

v If the administrator deletes a broker or uses the clrmqbrk command when
publishers and subscribers are still operating, causing queued messages to be
put to the dead-letter queue and subscriptions to be interrupted.

If these circumstances cannot occur, publications will always be delivered in order.

Ensuring that messages are retrieved in the correct order
If you need to ensure that your messages are delivered in the correct order in all
circumstances, you can use one of the following strategies:
v A SequenceNumber parameter is supported on the Publish message. A publisher

can include this with each message, increasing the value by one for each
successive message that it publishes for the same stream and topic. The broker
does not check or set this parameter; the responsibility for it lies with the
publisher. The number can be checked by the subscriber, which needs to
remember the last sequence number it received for each stream and topic
combination.
If a subscriber receives a publication message that is out of order, it can react in
various ways:
– If it needs only the latest information (for example, a stock price) and the

sequence number is greater than it should be (that is, one or more previous
publications have not yet been received), this publication message is accepted.
If the sequence number is less than it should be (that is, this is a previous
publication), the publication message is ignored.

– If it needs to keep track of all information, it must record this information
and its sequence number.

v A PublishTimestamp parameter, in Universal time, is provided on the Publish
message. A publisher can include this with each message (with or without the
SequenceNumber parameter). This is particularly useful if subscribers are only
interested in the latest information; they can check whether the timestamp is
greater than that of the last Publish message that they processed.

In both of the above solutions, the publisher and subscriber need to remember
information about the last message they processed for a particular stream and
topic. In the first solution this is the SequenceNumber for the Publish message, and
in the second solution it is the PublishTimestamp. This information might need to
be remembered atomically with issuing or receiving a publication. This can be
accomplished by saving the information on a queue, using the same unit-of-work
as the one in which the publication is put or retrieved.

Message ordering

34 MQSeries Publish/Subscribe User’s Guide

Publisher and subscriber identity
A publisher’s or subscriber’s identity consists of the following:
v Their queue name
v Their queue manager name (this can be blank to indicate the local queue

manager).
v Correlation identifier (this is optional).

The correlation identifier can be used to distinguish between different publishers
or subscribers using the same queue. If different subscribers are using the same
queue, all publications sent by the broker to a subscriber specify the correlation
identifier in the CorrelId field of the message descriptor (MQMD).

Note: For responses, MQRO_xx_CORREL_ID report options determine the
correlation identifier used. Applications using a correlation identifier for
identification will typically specify the CorrelId and the
MQRO_PASS_CORREL_ID option.

The recipient can then use MQGET with the CorrelId to retrieve the
messages.

This allows several applications to share a queue (this might be desirable if there
are many clients). It also allows one application to distinguish between
publications arising from different subscriptions. An example of this is in the
sample program described on page 23. When the results service restarts, it
subscribes to the topic Sport/Soccer/State/LatestScore/*, with the ‘Publish on
Request Only’ option. It uses a different CorrelId from that used to subscribe to
the Sport/Soccer/Event/* publications. This allows it to retrieve from the same
queue all of the retained ‘LatestScore’ publications before it starts processing the
event publications again.

An identity that includes the correlation identifier in the message descriptor is
established by including MQPS_CORREL_ID_AS_IDENTITY in the
RegistrationOptions parameter of the Register Publisher or Register Subscriber
message (or of the Publish message for implicit registration). The correlation
identifier to be used as part of the identity must not be zero.

If MQPS_CORREL_ID_AS_IDENTITY is not set, the identity does not include the
correlation identifier and the broker uses a correlation identifier of its own
choosing when sending messages to that publisher or subscriber. When a broker
selects the correlation identifier itself, this will not conflict with other message
identifiers or correlation identifiers generated by queue managers.

A single publisher or subscriber queue can therefore support multiple identities,
each with a specific correlation identifier value, plus one further identity for which
the correlation identifier is not specified (MQPS_CORREL_ID_AS_IDENTITY was
not set for registration). Each of these identities is treated by the broker as being
independent of the others. (Usually, however, a queue will either have a number of
identities each with its own specific correlation identifier, or it will have only one
identity with no specific correlation identifier).

MQPS_CORREL_ID_AS_IDENTITY should be set by a publisher whose identity
includes a correlation identifier when sending a Publish message to the broker, so
that the broker can identify the publisher using the CorrelId field in the MQMD. If
such a message is received by the broker when there is no registration in effect for

Publisher and subscriber identity

Chapter 3. Introduction to writing applications 35

the publisher’s queue and the correlation identifier specified, an implicit
registration is performed (unless MQPS_NO_REGISTRATION is specified).

When a Publish message is sent by a broker to a subscriber whose identity
includes a correlation identifier, the CorrelId field in the MQMD is set to the
required correlation identifier. The correlation identifier sent to the subscriber
depends only upon what the subscriber set when it registered. The correlation
identifier used by the publisher is independent of the correlation identifier sent to
the subscriber.

MQPS_CORREL_ID_AS_IDENTITY is valid for the Deregister Publisher and
Deregister Subscriber message, to delete a registration for an identity that includes
a correlation identifier.

The value used for a correlation identifier that is part of a publisher’s or
subscriber’s identity needs to be unique only between the other users of the same
queue. The MQPMO_NEW_CORREL_ID option can be used to cause the queue
manager to generate a unique value.

The message descriptor
This section gives information about the values you should set in the message
descriptor (MQMD) for messages that you send to the broker. It also explains the
values that the broker sets in the message descriptor for publication messages it
forwards to subscribers.

Messages sent to the broker
This section shows the values set for fields in the MQMD for messages sent to the
broker.

Report
See MsgType (below), and “Error handling by the broker” on page 83.

MsgType
Can be set to MQMT_REQUEST for a command message if a response is
always required. The MQRO_PAN and MQRO_NAN flags in the Report field
are not significant in this case.

Can be set to MQMT_DATAGRAM, in which case responses depend on the
setting of the MQRO_PAN and MQRO_NAN flags in the Report field:
v MQRO_PAN alone means that the broker is to send a response only if the

command succeeds.
v MQRO_NAN alone means that the broker is to send a response only if the

command fails.
v If a command succeeds partially a response is sent if either MQRO_PAN or

MQRO_NAN is set.
v MQRO_PAN + MQRO_NAN means that the broker is to send a response

whether the command succeeds or fails. This has the same effect from the
broker’s perspective as setting MsgType to MQMT_REQUEST.

v If neither MQRO_PAN nor MQRO_NAN is set, no response will ever be
sent.

Format
Set to MQFMT_RF_HEADER.

Publisher and subscriber identity

36 MQSeries Publish/Subscribe User’s Guide

MsgId
Normally set to MQMI_NONE, so that the queue manager generates a unique
value.

CorrelId
Specifies the CorrelId which can optionally be included as part of the
subscriber’s identity. When used with the MQRO_PASS_CORREL_ID option in
the Report field, it will also be set in all response messages sent by the broker
to the sender.

ReplyToQ
This is the queue to which responses, if any, are to be sent. This can be the
sender’s publisher or subscriber queue which has the advantage that the QName
parameter can be omitted from the message text. If, however, responses are to
be sent to a different queue, the QName parameter will be needed.

ReplyToQMgr
Queue manager for responses.

Note that a putting application can leave this field blank (the default value), in
which case the local queue manager puts its own name in this field.

Expiry
Expiry of the subscription or publication.

Publications forwarded by the broker
This section shows the values set for fields in the MQMD for publications sent by
the broker to subscribers.

The fields are set to default values, except for the following:

Report
Set to MQRO_NONE.

MsgType
Set to MQMT_DATAGRAM.

Expiry
Set to the value in the Publish message received from the publisher. In the
case of a retained message, the time outstanding is reduced by the
approximate time the message has been at the broker.

Format
Set to MQFMT_RF_HEADER.

MsgId
Set to MQMI_NONE, so that the queue manager generates a unique value.

CorrelId
If CorrelId is part of the subscriber’s identity, this is the value specified by the
subscriber when registering. Otherwise, it is a non-zero value chosen by the
broker.

Priority
Set by the publisher or as a resolved value if the publisher specified
MQPRI_PRIORITY_AS_Q_DEF.

Persistence
Set by the publisher or as a resolved value if the publisher specified
MQPER_PERSISTENCE_AS_Q_DEF.

The message descriptor

Chapter 3. Introduction to writing applications 37

ReplyToQ
Set to blanks.

ReplyToQMgr
Broker’s queue manager name.

UserIdentifier
Subscriber’s user identifier (as set when the subscriber registered).

AccountingToken
Subscriber’s accounting token (as set when the subscriber registered).

ApplIdentityData
Subscriber’s application identity data (as set when the subscriber registered).

PutApplType
Set to MQAT_BROKER.

PutApplName
Set to the first 28 characters of the broker’s queue manager name.

PutDate
Timestamp when the broker puts the message.

PutTime
Timestamp when the broker puts the message.

ApplOriginData
Set to blanks.

Persistence and units of work
Subscriber and publisher registration messages should normally be sent as
persistent messages (registrations themselves are always persistent, regardless of
the persistence of the messages that caused them). Publication messages can be
either persistent or non-persistent. Brokers maintain the persistence and priority of
publications as set by the publisher.

When reading messages from stream queues, brokers always read persistent
messages within a unit-of-work, so that they are not lost if the broker or system
crashes. Non-persistent messages might or might not be read within a
unit-of-work, depending on the options set in the queue manager configuration
file, qm.ini. This is described in “Broker configuration stanza” on page 102.

Publication messages are treated so that publication to subscribers is once and once
only for persistent messages. For non-persistent messages, delivery to subscribers
is also once only unless SyncPointIfPersistent was specified in the queue
manager configuration file and the broker or queue manager stops abruptly. In this
case, the message might be lost for one or more subscribers. Regardless of its
persistence, however, a Publish message is never sent more than once to a
subscriber, for a given subscription (unless Request Update is used).

Publishers and subscribers can choose whether or not to use a unit-of-work when
publishing or receiving messages. However, if the SequenceNumber technique
described previously is used for maintaining ordering, both publisher and
subscriber must retain sequencing information atomically with putting or getting a
message if the application is to be re-startable.

The message descriptor

38 MQSeries Publish/Subscribe User’s Guide

Limitations
This section describes some limitations of MQSeries Publish/Subscribe.

Group messages
Group messages are not supported by MQSeries Publish/Subscribe. If a group
message is sent to the broker it will not cause an error, but the group message
flags in the message descriptor will not be forwarded by the broker.

Segmented messages
Segmented messages are not supported by MQSeries Publish/Subscribe. If a
segmented message is sent to the broker, it will be rejected as not valid.

If you want to distribute a segmented message to subscribers, you can publish a
short notification that the message is available, offering to accept ‘direct requests’
for the full message (see “Publish” on page 70).

Cluster queues
Stream queues must not be cluster queues.

Data conversion of MQRFH structure
You might have a client application (publisher or subscriber) running on a version
of MQSeries that does not support data conversion of the MQRFH structure. The
application is able to pass publish/subscribe messages to other queue managers
provided that CONVERT(NO) is specified on the sending channel.

Using the Application Messaging Interface
The MQSeries Application Messaging Interface (AMI) provides a simple interface
that application programmers can use without needing to understand all the
options available in the MQSeries Message Queue Interface (MQI). The options
that are needed in a particular installation are defined by a system administrator,
using services and policies.

The AMI has functions to generate the most commonly used publish/subscribe
command messages, and to receive a publication from the broker. It is available for
the C, C++, and Java™ programming languages. The name of the function (or
method) depends on the programming language being used. In the case of C, there
are two sets of functions: the high-level interface and the object interface.

AMI publish/subscribe functions
The AMI publish/subscribe functions are:
v Publish command
v Register Subscriber command
v Deregister Subscriber command
v Receive a publication

Publish command
C high-level

amPublish

C object-level
amPubPublish

Limitations

Chapter 3. Introduction to writing applications 39

C++ AmPublisher->publish

Java AmPublisher.publish

Register Subscriber command
C high-level

amSubscribe

C object-level
amSubSubscribe

C++ AmSubscriber->subscribe

Java AmSubscriber.subscribe

Deregister Subscriber command
C high-level

amUnsubscribe

C object-level
amSubUnsubscribe

C++ AmSubscriber->unsubscribe

Java AmSubscriber.unsubscribe

Receive a publication
C high-level

amReceivePublication

C object-level
amSubReceive

C++ AmSubscriber->receive

Java AmSubscriber.receive

These functions have parameters that enable you to specify some of the parameters
in the command message, such as the topic. Other parameters in the command
message are specified by the AMI service that you use to send the message (the
service is set up by the system administrator). You can modify these parameters by
changing the appropriate name/value elements before sending the command
message; helper functions are provided for this purpose. Details of these
name/value elements and the options that are available for each command are
given in “Chapter 7. Publish/Subscribe command messages” on page 63.

There are no AMI functions to generate Delete Publication, Deregister Publisher,
Register Publisher, or Request Update command messages directly. You have to
construct a message containing the appropriate name/value elements using the
helper functions provided, and then send the message to the broker.

Please refer to the MQSeries Application Messaging Interface book for details of how
to use the functions mentioned above (including the name/value element helper
functions).

Using the Application Messaging Interface

40 MQSeries Publish/Subscribe User’s Guide

Chapter 4. Writing publisher applications

Publisher applications communicate with the broker using command messages in
the RF Header format (or the equivalent functions in the Application Messaging
Interface). Publishers can register with the broker before they start publishing
information, they can register implicitly with their first publication, or they can
choose not to register. When they have finished publishing information, they can
deregister with the broker. They can also delete retained publications. This chapter
discusses the following:
v “Registering with the broker”
v “Publishing information” on page 43
v “Deleting information” on page 44
v “Deregistering with the broker” on page 45

You can see an example of a publisher application in “Chapter 9. Sample
programs” on page 91.

The only configuration the administrator has to perform before you can define an
application as a potential publisher is to set up the necessary security authorization
to enable the application to put messages to the required stream queues, and, if
explicit registration is required, to send messages to the broker’s control queue (see
“Broker queues” on page 99).

Registering with the broker
Publisher applications can register their intention to publish with a broker.

There are two ways for a publisher to register with a broker:
v The publisher can send a Register Publisher command message to the broker’s

control queue (SYSTEM.BROKER.CONTROL.QUEUE) to indicate that a
publisher will be, or is capable of, publishing data on one or more specified
topics. This message can also be sent by another application on a publisher’s
behalf. This command is described in “Register Publisher” on page 75.

v The publisher can register with the broker implicitly when it sends its first
Publish command message to a stream queue at the broker (such as
SYSTEM.BROKER.DEFAULT.STREAM or
SAMPLE.BROKER.RESULTS.STREAM). This command is described in “Publish”
on page 70. However, if the broker is not currently aware of the stream

specified, a Register Publisher command message will be necessary to cause the
broker to recognize the stream queue.

A publishing application might not know if a stream is supported by a particular
broker. In this case it is recommended that the publisher issues the Register
Publisher command message and waits for a response that indicates that the
stream is known to the broker, before sending the first Publish command message.

An application can register with the same broker more than once, and can also
register with many different brokers. An application that is already registered as a
subscriber can also register as a publisher. This is the case in the sample
application (see “Sample application” on page 23). The results service registers as a
subscriber to the events published by the match simulators, and as a publisher of the
latest scores.

© Copyright IBM Corp. 1998, 2001 41

Choosing not to register
Publishers do not have to register with a broker. This saves the programming
overhead of performing the registration, and of deregistering when the publisher
has finished. However, other applications cannot find out about unregistered
publishers because they do not appear in metatopics (see “Metatopics” on page 147
for information about these). Unregistered publishers can send Publish command
messages to the broker, specifying that they do not want the broker to perform an
implicit registration, provided that:
v The publisher does not need to be listed in the metatopics
v The publisher’s stream is already known to the broker

Options you can specify when registering as a publisher
When a publisher registers with a broker, it must specify the topics that it is going
to publish information about. It can specify the name of more than one topic, but it
cannot use wildcards to specify a range of topics.

Queue name
A publisher is required to specify a queue when it registers and also when it issues
Publish command messages (unless it specifies the MQPS_NO_REGISTRATION
option). This is the queue to which any Request Update command messages sent
directly by a subscriber to this publisher are normally sent. The publisher specifies
the queue to which any responses from the broker are to be sent using the
ReplyToQ and ReplyToQMgr parameters; this queue can also be the publisher’s
queue.

Selecting a stream
You can specify the name of the stream to which the specified topics apply. If you
do not specify this, the SYSTEM.BROKER.DEFAULT.STREAM is assumed.

Publisher identity
The identity of the publisher consists of the name of the queue and queue manager
that it uses, as described in “Publisher and subscriber identity” on page 35. You can
specify these names when you register as a publisher. If you do not specify these
names, the names of the reply-to queue and reply-to queue manager specified in
the message descriptor (MQMD) of the command message are used for this
instead.

You can also specify that you want to use the correlation identifier in the message
descriptor as part of the publisher’s identity.

A publisher can register anonymously. In this case its identity will not be divulged
by the broker, except to subscribers to metatopics which have additional authority
(see “Authorized metatopics” on page 149).

Registration scope
If the broker is part of a network, the publisher can specify whether it wants its
publications (a) sent to subscribers who have registered local subscriptions on that
broker only (a local publication), or (b) distributed to other brokers in the network
and sent to all subscribers, including those on that broker, who have registered
global subscriptions (a global publication).

Registration expiry
Publisher registrations do not expire, even if you specify a value for Expiry field of
the message descriptor. The value you set for Expiry might however cause the
command message to expire before it is processed by the broker.

Registering with the broker

42 MQSeries Publish/Subscribe User’s Guide

Broker restart
Publisher registrations and retained publications are maintained across broker
restarts.

Changing an application’s registration
If a publisher has registered, it can use the Register Publisher command message
again to increase the range of topics it wants to publish for, or to change the
options for topics that it has already registered for. This command should be sent
to the broker’s control queue.

Publishing information
When an application wants to publish some information, it sends a Publish
command message to the stream queue at the broker. This command is described
in “Publish” on page 70.

The publisher must specify the topic to which the publication applies. If a
publication matches several subscriptions for which a subscriber is registered, only
one copy of the publication is sent to the subscriber for all matching subscriptions.
The publisher can also specify the name of a stream; however, this is not necessary
if the message is put to the correct stream queue at the broker.

If the publisher is not registered with the broker for those topics, the broker will
automatically register the publisher when it receives this message, unless you tell it
not to (see “Choosing not to register” on page 42).

If an application is registered as both a publisher and a subscriber for a topic, it
can use an option when publishing to say that it does not want to receive a copy
of this publication.

Publication data
Publishers can include the publication data in the message, or they can refer to it.

Including data in the message
Publication data is usually appended to the Publish command message, following
the NameValueString of the MQRFH header, as shown in “Publication data” on
page 59. The characteristics of the data are defined in the Encoding, CodedCharSetId
and Format fields of the MQRFH header. Alternatively, string data can be contained
within the NameValueString.

Referring to data in the message
Publishers can make information available to subscribers directly, without going
through the broker. The publisher needs to advertise the fact that it is publishing
information about a topic, and that it is willing to receive direct requests for this
information from subscribers.

There are two ways that a subscriber can find out about this information:
v From a publication received in a normal way.

The publisher can use a normal publication to advertise the fact that it has more
information about a topic (for example, a large file in several different formats).
The publisher should also specify the topic name to be used (which could be the
same, or different) and where the subscriber will find the information.

v From a subscription to the metatopics.

Registering with the broker

Chapter 4. Writing publisher applications 43

The publisher can register with the broker specifying that it will accept direct
requests for information about a topic. Subscribers that request information
about publishers (metatopics) will discover the names of publishers who publish
on this topic. (See “Metatopics” on page 147 for information about metatopics.)

Retained publications
When a publication specifies that it is to be retained, any previously retained
publication for this stream and topic combination is replaced, so that the
information is always at the latest level. See “Retained publications” on page 22 for
information about retained publications.

Mixing retained and non-retained publications on the same topic in a stream is not
recommended. If an application does this and publishes a non-retained publication,
any previously retained publication is still retained.

It is not recommended for two or more applications to publish retained
publications to the same topic and stream. If two applications do publish a
retained publication about the same topic on the same stream simultaneously, it is
difficult to determine which publication is retained. If these publishers use two
different brokers, it is possible that different retained publications could be active
at different brokers for the same topic and stream.

Expiry of retained publications
Use the Expiry field of the message descriptor (MQMD) of the publish message to
set an expiry interval for a retained message.

Publishing locally and globally
Publishers can specify that they want a publication to be published locally. If they
do not specify this, the publication is made available globally through all the
brokers in the network. Local publications can only be received by subscribers who
register local subscriptions at the same broker as the publisher. Local retained
publications are only retained at this broker.

Applications can publish and subscribe locally to the same topic and stream at
different brokers. Each broker will deal with the publications and subscriptions in
isolation from the other brokers.

Mixing local and global publications and subscriptions to the same topic and
stream is not recommended. A local publication will not be delivered to a
subscriber registered globally, even if they are at the same broker.

Deleting information
Publishers can request that the broker delete retained publications for specified
topics. To do this, send the Delete Publication command message to the stream
queue at the broker to tell it to delete its copy of any data for the specified topics.
This command is described in “Delete Publication” on page 64.

The application needs the same authority to delete publications as it needs to
publish messages for the specified stream. You do not have to be a registered
publisher to be able to delete publications.

If you want to delete some of the information that was originally published in a
message that covered more than one topic, the broker deletes the publication only
for the topics you specify, and retains the rest.

Publishing information

44 MQSeries Publish/Subscribe User’s Guide

If different publishers publish data on the same stream and topics, the data that is
deleted might have originated from a different publisher.

You can also specify if you want to delete retained publications published locally
at the broker, or those published globally.

Deregistering with the broker
When a publisher that is registered with a broker no longer wishes to publish
information on a topic, it can use the Deregister Publisher command message to
deregister with the broker. This message should be sent to the
SYSTEM.BROKER.CONTROL.QUEUE. This command is described in “Deregister
Publisher” on page 66.

This command can be used if the publisher registered with the broker explicitly
using Register Publisher, or implicitly using Publish. A publisher cannot
deregister if it chose not to register in the first place.

The application must specify one of the following:
v Deregister for all topics for which it was registered.
v Deregister for a subset of the topics for which it is registered if it wants to

continue publishing on other topics. It must specify one or more topics, and it
can use wildcards.

You must specify the stream name for these topics, unless it is the default
(SYSTEM.BROKER.DEFAULT.STREAM).

You must also specify the name of the publisher’s queue and queue manager.

The publisher registration must be deregistered by the same user that registered it
originally, unless the deregistering application is allowed to put the message as the
appropriate user (for example using alternate user authority to open the
SYSTEM.BROKER.CONTROL.QUEUE for that user).

Deleting information

Chapter 4. Writing publisher applications 45

46 MQSeries Publish/Subscribe User’s Guide

Chapter 5. Writing subscriber applications

Subscriber applications communicate with the broker using command messages in
the RF Header format (or the equivalent functions in the Application Messaging
Interface). Subscribers need to register with a broker before they can start receiving
publications. They can also request certain types of publication from the broker or
directly from the publisher.

This chapter discusses the following:
v “Registering as a subscriber”
v “Requesting information” on page 49
v “Deregistering as a subscriber” on page 50

You can see an example of a subscriber application in “Chapter 9. Sample
programs” on page 91.

Registering as a subscriber
Subscriber applications need to register their interest in receiving publications with
a broker. Before you can define an application as a potential subscriber, you must
set up the necessary security authorization to enable the application to:
v put a message to the broker’s control queue
v browse the required stream queues
v put a message to the subscriber queue that will be used to receive publications

Send the Register Subscriber command message to the
SYSTEM.BROKER.CONTROL.QUEUE to register as a subscriber. This command is
described in “Register Subscriber” on page 78.

Your application should send this message to a broker’s control queue (see “Broker
queues” on page 99). to indicate that it wishes to subscribe to the topics specified
in the message. Alternatively, an application can send this message to register on
behalf of another application that wishes to subscribe. If an application subscribes
on behalf of another application, the user ID of the subscribing application is used.
The application will need alternate user authority if a different user ID is to be
used. An application that has already registered as a publisher can also register as
a subscriber.

An application can register with the same broker more than once, and can also
register with many different brokers.

When a subscriber has registered with a broker, the subscription is persistent and
survives broker and queue manager restarts, regardless of the persistence of the
Register Subscriber command message.

When a subscriber registers with the broker, it must specify the topics that it is
interested in. It can specify the name of more than one topic, and it can also use
wildcards to specify a range of topics (described in “Topics” on page 17). If a
subscriber has many (different) registrations that match the topic of a publication,
only one copy of the publication is sent to it.

© Copyright IBM Corp. 1998, 2001 47

Subscriber queues
A subscriber queue is the queue where publications for that subscriber will be sent.
The subscriber specifies the name of the queue when it registers a subscription. If
the subscriber is at the same queue manager as the broker, the subscriber’s queue
name must not be the same as that of the stream. Such a subscription will be
rejected. Even if the subscriber’s and broker’s queue managers are different, it is
strongly recommended that you use different names for the queues.

If a subscribing application registers multiple subscriptions (for the same or
different streams), it can choose whether all Publish command messages are sent
to the same queue, or whether Publish command messages for different
subscriptions go to different queues.

The queue name, queue manager name and correlation identifier (if one is
specified) of a subscriber’s queue are used by the broker to identify the subscriber
(as described in “Publisher and subscriber identity” on page 35). When the broker
publishes information about subscribers, if a subscriber has registered several
subscriptions for the same stream that are all to be sent to the same queue (and the
subscriptions are not distinguished with different correlation identifiers, the
subscriber appears as a single application.

If publications for different subscriptions are sent to different queues, or use a
different CorrelId, the broker regards these as being from multiple subscribers
(even though the subscriber might be a single application).

Options you can specify when registering as a subscriber
The options that a subscriber specifies when registering determine which
publications (if any) are sent to it by the broker. Any previously retained
publications for the topics specified are sent immediately after registration (unless
the subscriber specifies new publications only, which are those published after the
subscriber registered with the broker).

Alternatively, the subscriber can request that it is not sent any publications about a
topic unless it asks for them using the Request Update command message. This
method is applicable where publications have been retained, and an application
might want to know the latest information about a topic.

Queue name
The queue where messages for a subscriber should be sent is called the subscriber
queue. This queue should not be a temporary dynamic queue. The subscriber
specifies the name of the queue when it registers a subscription.

Selecting a stream
You can specify the name of the stream to which the specified topics apply. If you
do not specify this, the SYSTEM.BROKER.DEFAULT.STREAM is used.

You can also request that publication messages that will be sent to the subscriber
include the name of the stream to which the publication applies, even if the
publisher did not include the name in the publication.

Subscriber identity
The identity of the subscriber consists of the name of the queue and queue
manager that it uses, as described in “Publisher and subscriber identity” on
page 35. You can specify these names when you register as a subscriber. If you do

Registering as a subscriber

48 MQSeries Publish/Subscribe User’s Guide

not specify these names, the names of the reply-to queue and reply-to queue
manager specified in the message descriptor (MQMD) of the command message
are used for this instead.

You can also use the correlation identifier in the message descriptor as part of the
subscriber’s identity. You might need to do this if, for example, the broker
publishes information about subscribers, and a subscriber has registered several
subscriptions for the same stream that are all to be sent to the same queue. If the
subscriptions are not distinguished with different correlation identifiers, the
subscriber appears as a single application.

If the different subscriptions are to be sent to different queues, the broker believes
that these are from multiple subscribers even though the subscriber might be a
single application.

If required, you can tell the broker that the identity of the subscriber should not be
divulged by the broker when the broker publishes information about subscribers
(unless the request comes from a subscriber with additional authority).

Subscription scope
If the broker is part of a network, the subscriber can specify whether it wants to
subscribe to local publications sent to the local broker only, or whether it wants its
subscription distributed to other brokers in the network.

Subscription expiry
The values you set for the Expiry attribute in the message descriptor (MQMD) of
the Register Subscriber command message determines when the subscription will
expire. This is measured from the time the subscription request is put. This means
that the message could expire before the subscriber is registered with the broker. If
this is set to MQEI_UNLIMITED, the subscription does not expire, and the
subscriber will continue to receive publications until it explicitly deregisters.

Broker restart
Subscriber registrations are maintained across broker restarts. Any subsequent
publications for the specified topics will be forwarded to the subscriber, including
any that arrived while the broker was inactive.

Changing an application’s registration
When a subscriber has registered, it can use the Register Subscriber command
message again to increase the range of topics that it wants to receive information
for, or to change the options for topics that it has already registered for.

When a subscription is re-registered, the values you set for the Expiry attribute in
the message descriptor (MQMD) of the Register Subscriber command message
determines when the subscription will expire. This is measured from the time the
subscription request is put. Thus the Register Subscriber command message can
be used to refresh a subscription before it expires.

Requesting information
A subscriber can request information from the broker, or directly from a publisher.

Requesting information from the broker
A subscriber can request a retained publication on a specified topic from the
broker. To do this, it uses the Request Update command message, which is

Registering as a subscriber

Chapter 5. Writing subscriber applications 49

described in “Request Update” on page 81. Applications usually do this if, when
they registered with the broker, they asked to be sent publications on request only.
If the broker has a retained publication for the topic specified, it is sent to the
subscriber.

This command message can also be sent by a subscriber that did not register in
this way, to request that the latest copy of a publication be sent to it. This might be
necessary if a subscriber has already seen a publication, but has failed without
saving it, and on restart wants to see it again.

This command message can be satisfied only by a retained publication at the
broker (see “State and event information” on page 22). If the broker to which this
message is sent has no retained publication for the topic specified, the request fails.

Requesting information from a publisher
Under some circumstances, subscribers can request information directly from a
publisher without involving the broker.

A publisher can specify that it is willing to receive direct requests for information
from other applications. In this case, the publisher must make its queue and queue
manager names (and possibly correlation identifier) known to subscribers by
including them in a publication that advertises the availability of other
publications on direct request.

Alternatively, subscribers can subscribe to information about publishers (called
metatopics). They can discover the names of publishers who are willing to accept
direct requests for publications on this topic. (See “Metatopics” on page 147 for
information about metatopics.)

The subscriber can use this information to send a normal MQSeries message (using
the MQI) directly to the publisher. The publisher can then use the MQI to send the
publication directly to the subscriber.

Deregistering as a subscriber
When a subscriber no longer wishes to receive publications on a topic, send the
Deregister Subscriber command message to the broker’s control queue. This
command is described in “Deregister Subscriber” on page 68.

This tells the broker that it should stop sending publications, about the topics
specified, to the subscriber.

An application must specify one of the following:
v Deregister for all topics for which it was registered.
v Deregister for a subset of the topics for which it is registered if it still wants to

receive publications on other topics. It must specify one or more topics. If the
original subscription used wildcards, it must be deregistered using the same
wildcard topic.

You must specify the stream name for these topics, unless it was the default
(SYSTEM.BROKER.DEFAULT.STREAM).

You must also specify the name of the subscriber’s queue and queue manager,
unless they are the same as the reply-to queue and reply-to queue manager in the
message descriptor of the command message. The subscription must be

Requesting information

50 MQSeries Publish/Subscribe User’s Guide

deregistered by the same user that registered it originally, unless the deregistering
application is allowed to put the Deregister Subscriber message as the appropriate
user (for example using alternate user authority to open the
SYSTEM.BROKER.CONTROL.QUEUE for that user and CorrelId).

Deregistering as a subscriber

Chapter 5. Writing subscriber applications 51

52 MQSeries Publish/Subscribe User’s Guide

Chapter 6. Format of command messages

Applications use command messages to communicate with the broker when they
want to publish or subscribe to information. These messages use the MQSeries
Rules and Formatting Header (RF Header). Each message or response starts with
an MQRFH structure, which includes a NameValueString. This consists of a
succession of tag names and values (name/value pairs), which define the type of
command the message represents and any options that apply to it. In the case of a
Publish command message, the MQRFH header is usually followed by the data
being published, in a format defined in the MQRFH structure. Alternatively, string
publication data can be included within the NameValueString, using appropriate
tag names and values defined by the publisher.

This chapter discusses the following topics:
v “MQRFH – Rules and formatting header”
v “Publish/Subscribe name/value strings” on page 57
v “Publication data” on page 59

The name/value pairs that define the parameters needed for the command
messages are detailed in “Chapter 7. Publish/Subscribe command messages” on
page 63.

If you are using the MQSeries Application Messaging Interface (AMI) to
communicate with the broker, you don’t need to understand all the information in
this chapter. The AMI constructs and interprets the RF Header and its name/value
pairs (see “Using the Application Messaging Interface” on page 39). However, you
might find it useful to read this chapter, in particular the section on publication
data.

MQRFH – Rules and formatting header
The following table summarizes the fields in the structure.

Table 2. Fields in MQRFH

Field Description Page

StrucId Structure identifier 54

Version Structure version number 54

StrucLength Total length of MQRFH including string
containing name/value pairs

54

Encoding Numeric encoding 54

CodedCharSetId Coded character set identifier 55

Format Format name 55

Flags Flags 55

NameValueString String containing name/value pairs 55

The MQRFH structure defines the format of the rules and formatting header. This
header can be used to send string data in the form of name/value pairs.

© Copyright IBM Corp. 1998, 2001 53

The format name of an MQRFH structure is MQFMT_RF_HEADER. The fields in
the MQRFH structure and the name/value pairs are in the character set and
encoding given by the CodedCharSetId and Encoding fields in the header structure
that precedes the MQRFH, or by those fields in the MQMD structure if the
MQRFH is at the start of the application message data.

Character data in the MQRFH (including the NameValueString field) must belong
to a single-byte character set (SBCS). The user data that follows NameValueString
can belong to any supported character set (SBCS or DBCS).

This structure is supported in the following environments: AIX, DOS client,
HP-UX, Linux, OS/2, OS/390, Sun Solaris, Windows client, Windows NT,
Windows 2000.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQRFH_STRUC_ID
Identifier for rules and formatting header structure.

For the C programming language, the constant
MQRFH_STRUC_ID_ARRAY is also defined; this has the same value as
MQRFH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQRFH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQRFH_VERSION_1
Version-1 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_1.

StrucLength (MQLONG)
Total length of MQRFH including string containing name/value pairs.

This is the length in bytes of the MQRFH structure, including the
NameValueString field at the end of the structure. The length does not include
any user data that follows the NameValueString field.

To avoid problems with data conversion of the user data in some
environments, it is recommended that StrucLength should be a multiple of
four.

The following constant gives the length of the fixed part of the structure, that
is, the length excluding the NameValueString field:

MQRFH_STRUC_LENGTH_FIXED
Length of fixed part of MQRFH structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED.

Encoding (MQLONG)
Numeric encoding.

Rules and formatting header

54 MQSeries Publish/Subscribe User’s Guide

|
|
|

This specifies the representation used for numeric values in the user data (if
any) that follows the string containing the name/value pairs. This applies to
binary integer data, packed-decimal integer data, and floating-point data.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of character strings in the user
data (if any) that follows the string containing the name/value pairs.

Note: When a message is put, this field must be set to the nonzero value that
specifies the character set of the user data. If this is not done, it will not
be possible to convert the message using the MQGMO_CONVERT
option when the message is retrieved.

The initial value of this field is 0.

Format (MQCHAR8)
Format name.

This specifies the format name of the user data (if any) that follows the string
containing the name/value pairs.

The name should be padded with blanks to the length of the field. Do not use
a null character to terminate the name before the end of the field, as the queue
manager does not change the null and subsequent characters to blanks in the
MQRFH structure. Do not specify a name with leading or embedded blanks.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
Flags.

The following can be specified:

MQRFH_NONE
No flags.

The initial value of this field is MQRFH_NONE.

NameValueString (MQCHARn)
String containing name/value pairs.

This is a variable-length character string containing name/value pairs in the
form:
name1 value1 name2 value2 name3 value3 ...

Each name or value must be separated from the adjacent name or value by one
or more blank characters; these blanks are not significant. A name or value can
contain significant blanks by prefixing and suffixing the name or value with
the double-quote character; all characters between the open double-quote and
the matching close double-quote are treated as significant. In the following
example, the name is FAMOUS_WORDS, and the value is Hello World:
FAMOUS_WORDS "Hello World"

A name or value can contain any characters other than the null character
(which acts as a delimiter for NameValueString – see below). However, to assist
interoperability, an application may prefer to restrict names to the following
characters:

Rules and formatting header

Chapter 6. Format of command messages 55

v First character: upper or lower case alphabetic (A through Z, or a through z),
or underscore.

v Second character: upper or lower case alphabetic, decimal digit (0 through
9), underscore, hyphen, or dot.

If a name or value contains one or more double-quote characters, the name or
value must be enclosed in double quotes, and each double quote within the
string must be doubled:
Famous_Words "The program displayed ""Hello World"""

Names and values are case sensitive, that is, lower-case letters are not
considered to be the same as upper-case letters. For example, FAMOUS_WORDS
and Famous_Words are two different names.

The length in bytes of NameValueString is equal to StrucLength minus
MQRFH_STRUC_LENGTH_FIXED. To avoid problems with data conversion of
the user data in some environments, it is recommended that this length should
be a multiple of four. NameValueString must be padded with blanks to this
length, or terminated earlier by placing a null character following the last
value in the string. The null and bytes following it, up to the specified length
of NameValueString, are ignored.

Note: Because the contents and length of the NameValueString field are not fixed,
no initial value is given for this field, and it is omitted from the “Structure
definition in C”.

Table 3. Initial values of fields in MQRFH

Field name Name of constant Value of constant

StrucId MQRFH_STRUC_ID 'RFHb' (See note 1)

Version MQRFH_VERSION_1 1

StrucLength MQRFH_STRUC_LENGTH_FIXED 32

Encoding MQENC_NATIVE See note 2

CodedCharSetId None 0

Format MQFMT_NONE 'bbbbbbbb'

Flags MQRFH_NONE 0

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

3. In the C programming language, the macro variable MQRFH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for the
fields in the structure:

MQRFH MyRFH = {MQRFH_DEFAULT};

Structure definition in C
typedef struct tagMQRFH {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Total length of MQRFH including string

containing name/value pairs */
MQLONG Encoding; /* Numeric encoding */

Rules and formatting header

56 MQSeries Publish/Subscribe User’s Guide

MQLONG CodedCharSetId; /* Coded character set identifier */
MQCHAR8 Format; /* Format name */
MQLONG Flags; /* Flags */
} MQRFH;

Publish/Subscribe name/value strings
The MQRFH format is used to encode command messages that are sent to the
MQSeries Publish/Subscribe broker. The NameValueString field within the RF
header contains name/value pairs that describe the command to be carried out by
the broker. If the command being issued is a Publish command, publication data
(in a format defined by the publisher) can follow the NameValueString field.

The NameValueString can contain any number of name/value pairs, but only those
in which the tag-name begins with the characters ‘MQPS’ will be recognized by the
broker. Other name/value pairs (which can be defined by the publisher to encode
publication data, for instance) will be ignored by the broker.

The first occurrence of an ‘MQPS’ tag-name must be MQPSCommand, followed by a
tag-value which identifies the command to be carried out. Subsequent ‘MQPS’
tag-names and their values identify any options for that command (if they occur
before the MQPSCommand tag-name, the command will fail).

Each name or value must be separated from the adjacent name or value by one or
more blank characters. The C header file cmqpsc.h defines tag-names and values
that can be used by publisher and subscriber applications when building command
messages to be sent to the broker. Blank enclosed versions of the constants are
provided to simplify construction of a NameValueString. For example, topics are
specified using a tag-name of MQPSTopic, and the following three constants are
provided in the cmqpsc.h header file:
#define MQPS_TOPIC "MQPSTopic"
#define MQPS_TOPIC_B " MQPSTopic "
#define MQPS_TOPIC_A ' ','M','Q','P','S','T','o','p','i','c',' '

The MQPS_TOPIC constant is not enclosed by blanks. If it is used to build a
NameValueString, the application must add blanks between tag-names and values.
The version of the constant with the ‘_B’ suffix includes the necessary blanks. The
version with the ‘_A’ suffix also includes the blanks, but is in character array form.
These constants are most suited for initialization of a C structure which is being
used to define a fixed layout of a NameValueString.

For example, the Delete Publication command can be issued to delete retained
publications throughout the broker network. A topic of '*' matches all topics
within the stream which the command is sent to, so using this will delete all
retained publications. A NameValueString to perform such a command can be
constructed as follows.

If the constants without blanks are used the blanks must be inserted:
MQCHAR DeleteCmd[] =

MQPS_COMMAND " " MQPS_DELETE_PUBLICATION " " MQPS_TOPIC " *";

This can be simplified by using the constants with blanks:
MQCHAR DeleteCmd[] =

MQPS_COMMAND_B MQPS_DELETE_PUBLICATION_B MQPS_TOPIC_B "*";

A subscribing application might need to analyze a NameValueString, for instance to
determine the topic associated with each publication it receives. One approach is to

Rules and formatting header

Chapter 6. Format of command messages 57

break down the entire NameValueString into its constituent parts. An illustration of
this approach is given in the results service sample application (see “Chapter 9.
Sample programs” on page 91). A simpler approach is to use the sscanf in the
C runtime library to determine the position of the MQPSTopic tag-name in the
string. Since sscanf automatically strips away whitespace, the MQPS_TOPIC
constant (without the blanks) is needed here.

Options using string constants
Some commands have options associated with them, which are also specified to
the broker by name/value pairs. They are defined in the C header file cmqpsc.h.
Multiple registration options, publication options and delete options are allowed,
so the MQPSRegOpts, MQPSPubOpts and MQPSDelOpts tag-names can be
repeated with different values. The effect is cumulative.

For example, to register an anonymous local publisher on topic ‘News’, the
following NameValueString is needed:
MQPSCommand RegPub
MQPSRegOpts Anon
MQPSRegOpts Local
MQPSTopic News

Options using integer constants
Alternatively, an application can specify all of its options using a single
name/value pair. This might be useful when the presence or absence of an option
is conditional upon program logic. In this case, the combined set of options can be
specified as a single decimal numeric value. The C header file cmqcfc.h provides
corresponding integer constants for all of the options. In the previous example, the
constants MQREGO_ANONYMOUS and MQREGO_LOCAL are relevant. The
anonymous option has a decimal value of 2, and the local option has a decimal
value of 4, so the following NameValueString is equivalent:
MQPSCommand RegPub
MQPSRegOpts 6
MQPSTopic News

Sending a command message with the RFH structure
Figure 15 on page 59 shows how the RFH structure (including the
NameValueString) is appended to the Message Descriptor in order to send a
message to a broker. In this case, the message is to register a subscriber to the topic
″IBM Stock Price″. Part of the message descriptor is shown, together with the
message data which consists of the RFH structure. The NameValueString should be
padded to a multiple of four bytes.

Details of the name/value pairs for all the command messages are given in
“Chapter 7. Publish/Subscribe command messages” on page 63.

Name/value strings

58 MQSeries Publish/Subscribe User’s Guide

Publication data
Publication data, or UserData, can be appended to a Publish command message
after the NameValueString. The format of the data is defined in the Encoding,
CodedCharSetId and Format fields of the MQRFH header. Alternatively, publication
data can be included within the NameValueString, by means of user defined
name/value pairs (which must not begin with the characters ‘MQ’), or the system
provided StringData and IntegerData tags. More details are given in “Publish” on
page 70.

Figure 16 on page 60 shows how publication data can be appended to the RFH
structure. Note how the encoding, CCSID and format of the publication data are
defined in the RFH structure. In Figure 17 on page 60 the publication data is
included within the NameValueString, and in Figure 18 on page 61, the format of
the publication data is defined by the user.

Double-byte character sets
Publication data can use a single-byte character set (SBCS) or a double-byte
character set (DBCS) codepage. However, if a publishing application publishes
information in SBCS, then a subscribing application receiving that information
must not request the data to be converted to DBCS (because the MQRFH header
would be converted as well, and the header must be SBCS).

MsgDescriptor

MsgData

437
MQHRF

SUB1.Q
BROKER1

ReplyToQ
ReplyToQMgr

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format " "
Flags

RFH
1
64
MQENC_NATIVE
0

0

MQPSCommand RegSub MQPSTopic
"IBM Stock Price"

64

Figure 15. Message descriptor and RFH structure. The message descriptor indicates that the subscriber has
nominated its subscriber queue to be the same as its reply queue. It also defines the encoding and CCSID of the RFH
structure, which follows as the message data. The encoding and CCSID fields in the RFH structure are not set, as
there is no data following the RFH structure (compare with Figure 16 on page 60). Note that the length of the RFH
structure includes the NameValueString (which contains the name/value pairs defining the Register Subscriber
command). The topic string is quoted as it contains significant blanks.

Publication data

Chapter 6. Format of command messages 59

MsgDescriptor

MsgData

437
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
437
MQSTR
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic "IBM Stock Price"

$112.85
112

Figure 16. Publication data after the RFH structure. In this example, the publication data ($112.85) which is being
published as string data in MQSTR format, is appended to the message after the NameValueString. Note that the RFH
StrucLength includes the NameValueString, but not the publication data. The message descriptor defines the
encoding, CCSID and format of the RFH structure, which in turn defines the encoding, CCSID and format of the
publication data.

MsgDescriptor

MsgData

437
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format " "
Flags

RFH
1
128
MQENC_NATIVE
0

0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic "IBM Stock Price"
StockPrice $112.85

128

Figure 17. Publishing data within the NameValueString. Publication data can be included within the NameValueString,
by means of one or more user-defined name/value pairs, as shown in this example. The encoding and CCSID fields in
the RFH structure are not set, as there is no following data. The receiving application must parse the RFH structure to
extract the publication data.

Publication data

60 MQSeries Publish/Subscribe User’s Guide

In the previous examples, it is assumed that the subscribing or publishing
application is running in an explicit codepage of 437. However, for reasons of
portability, applications can use the special CCSID value MQCCSI_Q_MGR in the
message descriptor if they are using the same codepage as the queue manager they
are communicating with. In addition, the special value MQCCSI_INHERIT can be
set in the CCSID field of the RF header to indicate that the publication data is in
the same CCSID as the character data in the header.

Figure 19 on page 62 shows how the CCSID for the RF header and the publication
data can be inherited from the message descriptor.

MsgData

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
437
ACCOUNT
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic
Bank/Event/Account/CreditCheck

00107805 JONES P
MR 000005 57HIGH STREET, LONDON

112

struct { MQLOMG AccountNo;
MQCHAR Customer[32];
MQLONG CreditRating;
MQCHAR Address[24] }

Figure 18. User-defined publication data. In this example, the format of the publication data is set to a user-defined
format, ACCOUNT, which contains character and numeric data. When the broker processes Publish messages, it
converts the RFH header (but not the publication data) to its own CCSID and encoding. The user must write a data
conversion routine if the publication is sent to subscribing applications which use a different CCSID or encoding.

Publication data

Chapter 6. Format of command messages 61

MsgDescriptor

MsgData

MQCCSI_Q_MGR
MQHRF

Encoding
CodedCharSetld
Format

MQENC_NATIVE

StrucID
Version
StrucLength
Encoding
CodedCharSetld
Format
Flags

RFH
1
112
MQENC_NATIVE
MQCCSI INHERIT
MQSTR
0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic Temperature/London

10 Degrees Centigrade
112

Figure 19. Inheriting the CCSID. The message descriptor uses the special value MQCCSI_Q_MGR to indicate that
data within the RFH structure is in the same CCSID as the queue manager. The value of MQCCSI_INHERIT in the
RFH structure indicates that the same CCSID will be used for the publication data.

62 MQSeries Publish/Subscribe User’s Guide

Chapter 7. Publish/Subscribe command messages

This chapter describes the name/value pairs that define the parameters needed for
the following command messages:
v “Delete Publication” on page 64
v “Deregister Publisher” on page 66
v “Deregister Subscriber” on page 68
v “Publish” on page 70
v “Register Publisher” on page 75
v “Register Subscriber” on page 78
v “Request Update” on page 81

“Chapter 6. Format of command messages” on page 53 describes how to send these
command messages using the Rules and Formatting header.

If you are using the MQSeries Application Messaging Interface (AMI) to
communicate with the broker, you don’t need to understand all the information in
this chapter. The AMI constructs and interprets the RF Header and its name/value
pairs (see “Using the Application Messaging Interface” on page 39). However, you
might find it useful to read this chapter to see what options are available in each
command message. Some of the options are directly accessible through parameters
in an AMI function such as amPublish. Others can be accessed using an AMI
name/value element helper function such as amMsgGetElement, or a macro such
as AmMsgGetStreamName.

© Copyright IBM Corp. 1998, 2001 63

Delete Publication
The Delete Publication command message is sent from a publisher (or another
broker) to a broker’s stream queue to tell it to delete its copy of any retained
publications for the specified topics within that stream.

Required parameters:
Command, Topic

Optional parameters:
DeleteOptions, StreamName

Required parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: "DeletePub" (string constant: MQPS_DELETE_PUBLICATION)

The command tag must be the first one in the NameValueString.

Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: The topic for which published information is to be deleted. Wildcards

can be used to delete several topics.

The topic tag can be repeated for as many topics as required.

Optional parameters
DeleteOptions

name: "MQPSDelOpts" (string constant: MQPS_DELETE_OPTIONS)
value: The following delete options can be specified:
"Local"

(string constant: MQPS_LOCAL, integer constant: MQDELO_LOCAL).

Retained publications published locally at this broker (that is, with
RetainPub and Local specified) will be deleted. Those published
globally (that is, with RetainPub but not Local specified) will not be
deleted, even if they were published at this broker.

The default if this tag is omitted is that global retained publications will be
deleted at all brokers in the network, but local retained publications will not be
deleted. Mixing local and global publications to the same topic and stream is
not recommended. See “Publish” on page 70 for more information about
retained local publications.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The name of the publication stream for the specified Topic(s).

The default value is the name of the stream queue to which the message is
sent.

Example
Here is an example of a NameValueString for a Delete Publication command
message. This is used by the sample application to delete the retained publication
that contains the latest score in the match between Team1 and Team2.

Delete Publication

64 MQSeries Publish/Subscribe User’s Guide

MQPSCommand DeletePub
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

Error codes
The following reason codes might be returned in the NameValueString of the broker
response message to this command, in addition to those shown on page 88.

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains
invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or
contains invalid characters.

3075 MQRCCF_INCORRECT_STREAM Stream name does not match stream
queue.

3087 MQRCCF_DEL_OPTIONS_ERROR Invalid delete options supplied.

Delete Publication

Chapter 7. Publish/Subscribe command messages 65

Deregister Publisher
The Deregister Publisher command message is sent from a publisher, or another
application on a publisher’s behalf, to a broker’s control queue to indicate that a
publisher will no longer be publishing data on the topics contained in the message.

Required parameters:
Command

Optional parameters:
RegistrationOptions, StreamName, Topic, QMgrName, QName

Required parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: "DeregPub" (string constant: MQPS_DEREGISTER_PUBLISHER)

The command tag must be the first one in the NameValueString.

Optional parameters
RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)
value: The following registration options can be specified:

"DeregAll"
(string constant: MQPS_DEREGISTER_ALL, integer constant:
MQREGO_DEREGISTER_ALL)

All topics registered for this publisher are to be deregistered. If this
option is set, the Topic parameter must be omitted.

"CorrelAsId"
(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:
MQREGO_CORREL_ID_AS_IDENTITY).

The CorrelId in the MQMD (which must not be zero) is part of the
publisher’s identity.

The default if this tag is omitted is that no options are set. In this case, the
Topic parameter is required.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: The topic being deregistered. Wildcards are allowed.

If DeregAll is specified in RegistrationOptions, the Topic tag must be omitted.
Otherwise, it is required, and can optionally be repeated for as many topics as
needed.

QueueManagerName
name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)
value: The publisher’s queue manager name.

Deregister Publisher

66 MQSeries Publish/Subscribe User’s Guide

For a message sent by a publisher, if this tag is not present it defaults to the
ReplyToQMgr name in the message descriptor (MQMD). If the resulting name is
blank, it matches a publisher that registered with a blank queue manager
name.

For a message sent by a broker, this tag is omitted.

QueueName
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: The publisher’s queue name.

For a message sent by a publisher, if this tag is not present, it defaults to the
ReplyToQ name in the message descriptor (MQMD), which must not be blank
in this case.

For a message sent by a broker, this tag is omitted.

Example
Here is an example of a NameValueString for a Deregister Publisher command
message. This will deregister a publisher for all topics it has registered that match
Stock/*. The publisher’s identity, including the CorrelId, is taken from the
defaults in the MQMD.
MQPSCommand DeregPub
MQPSRegOpts CorrelAsId
MQPSTopic Stock/*

Error codes
The following reason codes might be returned in the NameValueString of the broker
response message to this command, in addition to those shown on page 88.

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains
invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or
contains invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.
3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.
3076 MQRCCF_Q_NAME_ERROR Queue name invalid.
3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.
3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.
3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and

cannot be created.
3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Deregister Publisher

Chapter 7. Publish/Subscribe command messages 67

Deregister Subscriber
The Deregister Subscriber command message is sent from a subscriber, another
application on a subscriber’s behalf, or another broker, to a broker’s control queue
to indicate that it no longer wishes to subscribe to the topics specified.

Required parameters:
Command

Optional parameters:
RegistrationOptions, StreamName, Topic, QMgrName, QName

Required parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: "DeregSub" (string constant: MQPS_DEREGISTER_SUBSCRIBER)

The command tag must be the first one in the NameValueString.

Optional parameters
RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)
value: The following registration options can be specified:

"DeregAll"
(string constant: MQPS_DEREGISTER_ALL, integer constant:
MQREGO_DEREGISTER_ALL).

All topics registered for this subscriber are to be deregistered. If this
option is set, the Topic parameter must be omitted.

"CorrelAsId"
(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:
MQREGO_CORREL_ID_AS_IDENTITY).

The CorrelId in the MQMD (which must not be zero) is part of the
subscriber’s identity.

The default if this tag is omitted is that no options are set. In this case, the
Topic parameter is required.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: The topic being deregistered. Wildcards are allowed, but a specified

topic string must match exactly the corresponding string that was
originally specified in the Register Subscriber command.

If DeregAll is specified in RegistrationOptions, the Topic tag must be omitted.
Otherwise, it is required, and can optionally be repeated for as many topics as
needed. Topics specified can be a subset of those for which the subscriber is
registered if it wishes to retain subscriptions to the other topics.

QueueManagerName

Deregister Subscriber

68 MQSeries Publish/Subscribe User’s Guide

name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)
value: The subscriber’s queue manager name.

If this tag is not present it defaults to the ReplyToQMgr name in the message
descriptor (MQMD). If the resulting name is blank, it matches a subscriber that
registered with a blank queue manager name.

QueueName
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: The subscriber’s queue name.

If this tag is not present, it defaults to the ReplyToQ name in the message
descriptor (MQMD), which must not be blank in this case.

Example
Here is an example of a NameValueString for a Deregister Subscriber command
message. In this case the sample application is deregistering its subscription to the
topics which contain the latest score for all matches. The subscriber’s identity,
including the CorrelId, is taken from the defaults in the MQMD.
MQPSCommand DeregSub
MQPSRegOpts CorrelAsId
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes
The following reason codes might be returned in the NameValueString of the broker
response message to this command, in addition to those shown on page 88.

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains
invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or
contains invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.
3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.
3076 MQRCCF_Q_NAME_ERROR Queue name invalid.
3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.
3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.
3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and

cannot be created.
3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Deregister Subscriber

Chapter 7. Publish/Subscribe command messages 69

Publish
The Publish command message is sent:
v From a publisher (or another broker) to a broker’s stream queue
v From a broker to a subscriber’s stream queue

to publish information on specific topics.

Publication data can be appended to the message, after the NameValueString, in a
format defined by the Encoding, CodedCharSetId and Format fields in the MQRFH
header.

Alternatively, publication data can be included within the NameValueString, using
name/value pairs such as the StringData and IntegerData parameters defined
below, or any other name/value pairs defined by the publisher (provided the
tag-name does not begin with the characters ‘MQ’).

Required parameters:
Command, Topic

Optional parameters:
RegistrationOptions, PublicationOptions, StreamName, QMgrName, QName,
PublishTimestamp, SequenceNumber, StringData, IntegerData

Required parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: "Publish" (string constant: MQPS_PUBLISH)

The command tag must be the first one in the NameValueString.

Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: The topic that categorizes this publication. No wildcards are allowed.

This tag can be repeated for as many topics as required. For example, an
application might publish information under topic ‘Topic 1’, which is then
enhanced to publish extra information. The new publications might use topics
‘Topic 1’ and ‘Topic 1 enhanced’, so that subscribers to ‘Topic 1 enhanced’
would be sure to get the additional information, while existing subscribers to
‘Topic 1’ could still access the basic information in the same publication.

Optional parameters
RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)
value: The registration options listed below can be specified, subject to the

following conditions:

If NoReg is not specified in PublicationOptions:
v If the publisher is already registered, the registration options are changed to

the values specified, if this tag is present. If it is not present the registration
options are unchanged.

v If the publisher is not already registered, an implicit registration is
performed. The registration options are those specified by this tag, if it is
present. If it is not present, no options are set.

Publish

70 MQSeries Publish/Subscribe User’s Guide

If NoReg is specified in PublicationOptions, any current registration has no
effect and it is not changed. RegistrationOptions can be specified. If Local is
specified in RegistrationOptions, the publication is restricted to local
subscribers and any other valid options are not acted on by the broker.

The following can be set:

"Anon"
(string constant: MQPS_ANONYMOUS, integer constant:
MQREGO_ANONYMOUS).

(Valid only if the recipient is a broker.) This option tells the broker that
the identity of the publisher is not to be divulged, except to subscribers
with additional authority.

This option (or the lack of it) overrides the option setting for any
previous publication on the same topics (or publisher registration).

"Local"
(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL).

(Valid only if the recipient is a broker.) This option tells the broker that
publications published by this publisher should only be sent to
subscribers that registered at this broker specifying Local.

"DirectReq"
(string constant: MQPS_DIRECT_REQUESTS, integer constant:
MQREGO_DIRECT_REQUESTS).

This option tells the recipient that the publisher is willing to receive
direct requests for publication information from other applications (not
just from the broker).

The publisher’s queue and queue manager names can be included in a
Publish message sent by a publisher, so that the names are visible to
the subscriber.

This option (or the lack of it) overrides the option setting for any
previous publication on the same topics (or registration in the case of a
publisher to a broker, or the value returned in the response to a
subscriber registration).

This option must not be set if Anon is also set.

"CorrelAsId"
(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:
MQREGO_CORREL_ID_AS_IDENTITY).

The CorrelId in the MQMD (which must not be zero) is part of the
publisher’s identity. This option is assumed if CorrelAsId is set in the
PublicationOptions.

PublicationOptions
name: "MQPSPubOpts" (string constant: MQPS_PUBLICATION_OPTIONS)
value: The following publication options can be specified:

"NoReg"
(string constant: MQPS_NO_REGISTRATION, integer constant:
MQPUBO_NO_REGISTRATION).

(Valid only if the recipient is a broker.) If the publisher is not already
registered with the broker as a publisher for this stream and topic, this

Publish

Chapter 7. Publish/Subscribe command messages 71

option stops the broker from performing an implicit registration. If the
publisher is already registered, the registration is unchanged, and has
no effect on this publication.

"RetainPub"
(string constant: MQPS_RETAIN_PUBLICATION, integer constant:
MQPUBO_RETAIN_PUBLICATION).

(Valid only if the recipient is a broker.) The broker is to retain a copy of
the publication. If this option is not set, the publication is deleted as
soon as the broker has sent the publication to all of its current
subscribers.

"IsRetainedPub"
(string constant: MQPS_IS_RETAINED_PUBLICATION, integer
constant: MQPUBO_IS_RETAINED_PUBLICATION).

(Can only be set by a broker.) This publication has been retained by the
broker. The broker sets this option to notify a subscriber that this
publication was published earlier and has been retained. A subscriber
can receive such a publication immediately after registering (or later if
a publication has been retained at another broker that is temporarily
inaccessible). It can also be received in response to a Request Update
command.

The broker sets this option only if the subscriber registered with the
InformIfRet option.

"OtherSubsOnly"
(string constant: MQPS_OTHER_SUBSCRIBERS_ONLY, integer
constant: MQPUBO_OTHER_SUBSCRIBERS_ONLY).

(Valid only if the recipient is a broker.) This option allows simpler
processing of conference-type applications. It tells the broker not to
send the publication to the publisher even if he has subscribed. For
example, a group of applications can all subscribe to the same topic
(for example, “Conference”). Using this option, each application can
publish information into the conference without themselves receiving
the information.

"CorrelAsId"
(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:
MQPUBO_CORREL_ID_AS_IDENTITY).

The CorrelId in the MQMD (which must not be zero) is part of the
publisher’s identity (for messages sent by a publisher to a broker). For
messages sent from a broker to a subscriber, this option is not changed
by the broker.

The default is that no publication options are set.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The name of the publication stream for the specified Topic(s).

This defaults to the name of the stream queue to which the message is sent if
sent to a broker, or an unspecified stream name if the message is sent to a
subscriber (note that a subscriber can request that the broker always include
StreamName in Publish messages by specifying "InclStreamName" when it
registers).

Publish

72 MQSeries Publish/Subscribe User’s Guide

QMgrName
name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)
value: The publisher’s queue manager name.

For a message sent by a publisher, the default is the ReplyToQMgr name in the
message descriptor (MQMD). If the resulting name is blank, it represents a
publisher that can be reached by resolving QName at the broker.

For a message sent by a broker, this tag is present if and only if it was
explicitly included by the publisher. (Note that it is not removed by the broker
if the publisher has registered with Anon)

QName
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: The publisher’s queue name.

For a message sent by a publisher, the default is the ReplyToQ name in the
message descriptor (MQMD), which must not be blank in this case (unless
PublicationOptions specifies NoReg and not OtherSubsOnly).

For a message sent by a broker, this tag is present if and only if it was
explicitly included by the publisher. (Note that it is not removed by the broker
if the publisher has registered with Anon)

PublishTimestamp
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: Optional publication timestamp set by the publisher.

This is of length 16 characters in the format:
YYYYMMDDHHMMSSTH

using Universal Time. However, this is not checked by the broker, which
merely transmits this information to subscribers if it is present.

SequenceNumber
name: "MQPSSeqNum" (string constant: MQPS_SEQUENCE_NUMBER)
value: Optional sequence number set by the publisher.

This should increase by 1 with each publication. However, this is not checked
by the broker, which merely transmits this information to subscribers if it is
present. If publications on the same stream and topic are published to different
interconnected brokers, it is the responsibility of the publisher to ensure that
sequence numbers, if used, are meaningful.

StringData
name: "MQPSStringData" (string constant: MQPS_STRING_DATA)
value: Optional publication data as a character string.

The meaning and format are as defined by the publisher. This tag can be
repeated, interspersed with IntegerData tags if required, to send publication
data in any manner defined by the publisher.

IntegerData
name: "MQPSIntData" (string constant: MQPS_INTEGER_DATA)
value: Optional publication data as an integer.

Publish

Chapter 7. Publish/Subscribe command messages 73

The meaning is as defined by the publisher. This tag can be repeated,
interspersed with StringData tags if required, to send publication data in any
manner defined by the publisher.

Example
Here are some examples of a NameValueString for a Publish command message.
The first example is for an Event Publication sent by the match simulator in the
sample application to indicate that a match has started, with ‘No Registration’
specified for the publisher:
MQPSCommand Publish
MQPSPubOpts NoReg
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic Sport/Soccer/Event/MatchStarted

The second example is for a State Publication, so ‘Retain Publication’ is specified as
well. In this case the results service is publishing the latest score in the match
between Team1 and Team2.
MQPSCommand Publish
MQPSPubOpts RetainPub
MQPSPubOpts NoReg
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

In both examples the publication data (the names of the teams, or the latest score)
follows the NameValueString, as string data in MQSTR format.

Error codes
The following reason codes might be returned in the NameValueString of the broker
response message to this command, in addition to those shown on page 88.

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains
invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or
contains invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.
3075 MQRCCF_INCORRECT_STREAM Stream not defined to broker and

cannot be created.
3076 MQRCCF_Q_NAME_ERROR Queue name invalid.
3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.
3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.
3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.
3084 MQRCCF_PUB_OPTIONS_ERROR Invalid publication options supplied.

Publish

74 MQSeries Publish/Subscribe User’s Guide

Register Publisher
The Register Publisher command message is sent from a publisher (or another
application on a publisher’s behalf) to a broker’s control queue to indicate that a
publisher will be, or is capable of, publishing data on one or more specified topics.

Required parameters:
Command, Topic

Optional parameters:
RegistrationOptions, StreamName, QMgrName, QName

Required parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: "RegPub" (string constant: MQPS_REGISTER_PUBLISHER)

The command tag must be the first one in the NameValueString.

Topic
Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: The topic for which the publisher will be providing publications.

Wildcards are not allowed.

This tag can be repeated for as many topics as required.

Optional parameters
RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)
value: The following registration options can be specified:

"Anon"
(string constant: MQPS_ANONYMOUS, integer constant:
MQREGO_ANONYMOUS)

This option tells the broker that the identity of the publisher is not to
be divulged, except to subscribers with additional authority.

"Local"
(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL)

This option tells the broker that publications published by this
publisher should only be sent to subscribers that registered on this
broker specifying Local.

"DirectReq"
(string constant: MQPS_DIRECT_REQUESTS, integer constant:
MQREGO_DIRECT_REQUEST)

This option tells the recipient that the publisher is willing to receive
direct requests for publication information from other applications (that
is, not just from the broker).

This option must not be set if Anon is also set.

"CorrelAsId"
(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:
MQREGO_CORREL_ID_AS_IDENTITY)

Register Publisher

Chapter 7. Publish/Subscribe command messages 75

The CorrelId in the message descriptor, MQMD, (which must not be
zero) is part of the publisher’s identity.

If the RegistrationOptions tag is omitted and the publisher is already
registered, its registration options are unchanged. If the publisher is not
already registered, the default is that no registration options are set.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

QMgrName
name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)
value: The publisher’s queue manager name.

For a message sent by a publisher, the default is the ReplyToQMgr name in the
message descriptor (MQMD). If the resulting name is blank, it represents a
publisher that can be reached by resolving QName at the broker.

For a message sent by a broker, this tag is present only if DirectReq is set in
the RegistrationOptions tag.

QName
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: The publisher’s queue name.

For a message sent by a publisher, the default is the ReplyToQ name in the
message descriptor (MQMD), which must not be blank in this case.

For a message sent by a broker, this tag is present only if DirectReq is set in
the RegistrationOptions tag.

Example
Here is an example of a NameValueString for a Register Publisher command
message. The publisher is registering with the ‘Direct Requests’ option, for the
Stock/IBM topic on the default stream. The queue name and queue manager name
are specified so that subscribers can respond directly to the publisher.
MQPSCommand RegPub
MQPSRegOpts DirectReq
MQPSQMgrName Broker1
MQPSQName STOCK.IBM.PUBLISHER.QUEUE
MQPSTopic Stock/IBM

Error codes
The following reason codes might be returned in the NameValueString of the broker
response message to this command, in addition to those shown on page 88.

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains
invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or
contains invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.
3076 MQRCCF_Q_NAME_ERROR Queue name invalid.

Register Publisher

76 MQSeries Publish/Subscribe User’s Guide

Reason Reason text Explanation

3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already
assigned to another user ID.

3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of
identity but is all binary zero.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and
cannot be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Register Publisher

Chapter 7. Publish/Subscribe command messages 77

Register Subscriber
The Register Subscriber command message is sent from a subscriber (or another
application on its behalf), or a broker, to a broker’s control queue to indicate that it
wishes to subscribe to the topics specified.

Required parameters:
Command, Topic

Optional parameters:
RegistrationOptions, StreamName, QMgrName, QName

Required parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: "RegSub" (string constant: MQPS_REGISTER_SUBSCRIBER)

The command tag must be the first one in the NameValueString.

Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: The topic for which the subscriber wants to receive publications.

Wildcards are allowed.

This tag can be repeated for as many topics as required.

Optional parameters
RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)
value: The following registration options can be specified:

"Anon"
(string constant: MQPS_ANONYMOUS, integer constant:
MQREGO_ANONYMOUS)

This option tells the broker that the identity of the publisher is not to
be divulged, except to subscribers with additional authority.

"Local"
(string constant: MQPS_LOCAL, integer constant: MQREGO_LOCAL)

This option tells the broker that the subscription is local and should
not be distributed to other brokers in the network. Only publications
published at this node by a publisher specifying Local will be sent to
this subscriber.

"NewPubsOnly"
(string constant: MQPS_NEW_PUBLICATIONS_ONLY, integer
constant: MQREGO_NEW_PUBLICATIONS_ONLY)

This option tells the broker that no currently retained publications are
to be sent, only new publications. If a subscriber re-registers and
changes this option so that it is not set, it is possible that a publication
that has already been sent to it will be sent to it again.

"PubOnReqOnly"
(string constant: MQPS_PUBLISH_ON_REQUEST_ONLY, integer
constant: MQREGO_PUBLISH_ON_REQUEST_ONLY)

Register Subscriber

78 MQSeries Publish/Subscribe User’s Guide

This option indicates that the subscriber will only poll for information
with Request Update. The broker is not to send unsolicited messages
to the subscriber.

This option is not propagated if the broker sends this subscription to
other brokers in the network. Publications will be sent to it in the
normal way, and these publications should specify RetainPub in order
to be eligible for return in response to a Request Update message.

"CorrelAsId"
(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:
MQREGO_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor, MQMD, (which must not be
zero) is part of the subscriber’s identity.

"InclStreamName"
(string constant: MQPS_INCLUDE_STREAM_NAME, integer constant:
MQREGO_INCLUDE_STREAM_NAME)

Each Publish message that is sent must include the StreamName
parameter. The broker does this by adding the appropriate name/value
pair to the NameValueString of the message. The NameValueString will
be extended if necessary.

If this option is not set, StreamName is included only if it was specified
explicitly by the publisher.

"InformIfRet"
(string constant: MQPS_INFORM_IF_RETAINED, integer constant:
MQREGO_INFORM_IF_RETAINED)

The broker will inform the subscriber if a publication is retained when
a Publish message is sent. It does this by adding the name/value pair
"MQPSPubOpts IsRetainedPub" to the NameValueString of the message
(after the StreamName if that has been added in accordance with the
InclStreamName option).

Use this option if a subscriber needs to distinguish between new
publications and old publications that were retained by the broker
prior to the subscription being made. If this option is specified, the
broker will always add the name/value pair to a publication sent in
response to a Request Update command.

If the registration options tag is omitted and the subscriber is already
registered, its registration options are unchanged. If the subscriber is not
already registered, the default is that no registration options are set.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

QMgrName
name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)
value: The subscriber’s queue manager name.

The default is the ReplyToQMgr name in the message descriptor (MQMD). If the
resulting name is blank, it represents a publisher that can be reached by
resolving QName at the broker.

Register Subscriber

Chapter 7. Publish/Subscribe command messages 79

QName
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: The subscriber’s queue name.

The default is the ReplyToQ name in the message descriptor (MQMD), which
must not be blank in this case.

Example
Here is an example of a NameValueString for a Register Subscriber command
message. In the sample application, the results service uses this message to register
a subscription to the topics containing the latest scores in all matches, with the
‘Publish on Request Only’ option set. The subscriber’s identity, including the
CorrelId, is taken from the defaults in the MQMD.
MQPSCommand RegSub
MQPSRegOpts PubOnReqOnly
MQPSRegOpts CorrelAsId
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic Sport/Soccer/State/LatestScore/*

Here is the same message using the equivalent decimal registration options:
MQPSCommand RegSub
MQPSRegOpts 33
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes
The following reason codes might be returned in the NameValueString of the broker
response message to this command, in addition to those shown on page 88.

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains
invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or
contains invalid characters.

3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.
3076 MQRCCF_Q_NAME_ERROR Queue name invalid.
3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.
3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.
3081 MQRCCF_NOT_AUTHORIZED Publisher or subscriber not registered.
3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and

cannot be created.
3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Register Subscriber

80 MQSeries Publish/Subscribe User’s Guide

Request Update
The Request Update command message is sent from a subscriber to a broker to
request an update publication for the topic specified. This is normally used if the
subscriber specified the option "PubOnReqOnly" (publish on request only) when it
registered. If the broker has a retained publication for the topic, this is sent to the
subscriber. If not, the request fails.

Required parameters:
Command, Topic

Optional parameters:
RegistrationOptions, StreamName, QMgrName, QName

Required parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: "ReqUpdate" (string constant: MQPS_REQUEST_UPDATE)

The command tag must be the first one in the NameValueString.

Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: The topic the subscriber is requesting. Wildcards are allowed, in which

case the subscriber might receive multiple retained publications.

Only one occurrence of this tag is allowed in this message.

Optional parameters
RegistrationOptions

name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)
value: The following registration options can be specified:

"CorrelAsId"
(string constant: MQPS_CORREL_ID_AS_IDENTITY, integer constant:
MQREGO_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor (MQMD), which must not be
zero, is part of the subscriber’s identity.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The name of the publication stream for the specified Topic(s).

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

QMgrName
name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)
value: The subscriber’s queue manager name.

The default is the ReplyToQMgr name in the message descriptor (MQMD). If the
resulting name is blank, it matches a publisher with a blank queue manager
name (that is, local to the broker).

QName
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: The subscriber’s queue name.

Request Update

Chapter 7. Publish/Subscribe command messages 81

The default is the ReplyToQ name in the message descriptor (MQMD), which
must not be blank in this case.

Example
Here is an example of a NameValueString for a Request Update command
message. In the sample application, the results service uses this message to request
retained publications containing the latest scores for all teams. The subscriber’s
identity, including the CorrelId, is taken from the defaults in the MQMD.
MQPSCommand ReqUpdate
MQPSRegOpts CorrelAsId
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic Sport/Soccer/State/LatestScore/*

Error codes
The following reason codes might be returned in the NameValueString of the broker
response message to this command, in addition to those shown on page 88.

Reason Reason text Explanation

3071 MQRCCF_STREAM_ERROR Stream name too long or contains
invalid characters.

3072 MQRCCF_TOPIC_ERROR Topic name has an invalid length or
contains invalid characters.

3073 MQRCCF_NOT_REGISTERED Publisher or subscriber not registered.
3074 MQRCCF_Q_MGR_NAME_ERROR Queue manager name invalid.
3076 MQRCCF_Q_NAME_ERROR Queue name invalid.
3077 MQRCCF_NO_RETAINED_MSG No retained message exists for this

topic.
3078 MQRCCF_DUPLICATE_IDENTITY Publisher or subscriber identity already

assigned to another user ID.
3080 MQRCCF_CORREL_ID_ERROR Correlation identifier used as part of

identity but is all binary zero.
3081 MQRCCF_NOT_AUTHORIZED Subscriber not authorized to browse

broker’s stream queue or subscriber
queue.

3082 MQRCCF_UNKNOWN_STREAM Stream not defined to broker and
cannot be created.

3083 MQRCCF_REG_OPTIONS_ERROR Invalid registration options supplied.

Request Update

82 MQSeries Publish/Subscribe User’s Guide

Chapter 8. Error handling and response messages

Messages sent to and by a broker are subject to exception processing, report
generation and dead-letter queue processing in the same way as other MQSeries
messages. A message can indicate that a response is not required, is required only
if there is an error, only if the command succeeds, or always required.

Response messages can be generated by the broker to each command message
issued by a publisher or subscriber. Response messages indicate the success or
failure of a request and also the reason for the failure. Responses are given only by
the broker to which the messages are initially sent.

The following topics are discussed in this chapter:
v “Error handling by the broker”
v “Response messages” on page 84
v “Broker responses” on page 86
v “Problem determination” on page 89

Error handling by the broker
Any message received by a broker that is not of Format MQFMT_RF_HEADER (or
MQFMT_PCF in the case of the system management messages described in “Part 4.
System programming” on page 135) is treated as an error. It is written to the
dead-letter queue (or discarded, depending on the report options), and an
exception report generated, if requested. If a message is of the correct format but
has some other error (for example, a syntax error), or if the broker is unable to
process it correctly (for example, it is unable to retain a message), the following
happens:
v If a response has been requested, one is generated.

– If the response cannot be enqueued at the broker, the response is put to the
dead-letter queue (responses are always generated with MQRO_NONE).

– If the response cannot be put to the dead-letter queue, the response is
discarded if this is allowed (this depends on the type of response message),
depending on the broker configuration parameters.

– If the response could not be discarded or put to the reply-to queue or the
dead-letter queue, the command is backed out and the input message is put
to the dead-letter queue with a Reason of
MQRCCF_BROKER_COMMAND_FAILED, or discarded, as indicated by the
report options. An exception report message is generated if requested.

– If the input message or response cannot be put to the dead-letter queue or
discarded, the command is backed out and the input message is restored to
the input queue if the message is within syncpoint. The input message is
retried periodically, and (less frequently) a message is written to the queue
manager log to alert the administrator.

v If a response has not been requested, one is not sent, and no further action is
appropriate for this message.

If an input message is put to the dead-letter queue, no response and publication
messages will have been sent. It might be appropriate for the input message to be
restored and reprocessed when the error has been resolved.

© Copyright IBM Corp. 1998, 2001 83

If the message is a Publish command message, and there is a problem sending an
outgoing message on to a subscriber, the processing is as follows:
v The outgoing message is put to the dead-letter queue, if this is permitted by the

broker and queue manager configuration. If the outgoing message cannot be put
to the dead-letter queue because of a failure or because it is not permitted by the
broker and queue manager configuration, it is discarded if this is permitted by
the broker and queue manager configuration.

v If the outgoing message cannot be put to the dead-letter queue or discarded, the
input message is restored. The input message is retried after suitable time
interval, and (less frequently) a message is written to the log to alert the
administrator.

Note: If the broker cannot put a publication message onto a destination queue or
the dead-letter queue and cannot discard the message, the broker will
continue trying to put the publication message onto the destination queue
(at suitable intervals) and will not continue processing subsequent messages.

The dead-letter queue and discard options for nonpersistent messages are specified
in queue manager configuration file (qm.ini or equivalent). These options are
described in “Chapter 10. Setting up a broker” on page 99.

Response messages
Each command message that the broker processes can generate a response
message. A response message has a similar format to a command message; the
NameValueString in the MQRFH header contains the response to the command.
Response messages are sent to the queue identified by the ReplyToQ and
ReplyToQMgr fields in the message descriptor of the original message.

The MsgType and Report options specified in the message descriptor of the
command message, together with the success or failure of the command, determine
whether response messages are sent or not. If no responses are requested, and the
command message contains an error, it will be discarded.

Notes:

1. If there are multiple errors in a command message, a single response message
will be generated.

2. Brokers do not request publishers or subscribers to generate responses.

Message descriptor for response messages
When the broker sends a response message, all the fields of the message descriptor
are set to their default values, except for the following:

Report
Set to zeroes.

MsgType
Set to MQMT_REPLY.

Format
Set to MQFMT_RF_HEADER.

MsgId
Set according to the Report options in the original command message. By
default, this means that it is set to MQMI_NONE, so that the queue manager
generates a unique value.

Error handling by the broker

84 MQSeries Publish/Subscribe User’s Guide

CorrelId
Set according to the Report options in the original command message. By
default, this means that the CorrelId is set to the same value as the MsgId of
the command message. This can be used to correlate commands with their
responses.

Priority
The same value as in the original command message.

Persistence
The same value as in the original command message.

Expiry
The same value as in the original command message received by the broker.

PutApplType
Set to MQAT_QMGR.

PutApplName
Set to the first 28 characters of the queue manager name.

Other context fields are set as if generated with
MQPMO_PASS_IDENTITY_CONTEXT.

Types of error response
The broker generates three types of response.

OK response
This indicates that the command completed successfully. The response consists of a
message that contains an MQRFH format header with the CompCode tag name in
the NameValueString set to the value of MQCC_OK.

An OK response is sent by the broker if the command message was sent with a
MsgType of MQMT_REQUEST, or if it was sent with a MsgType of
MQMT_DATAGRAM and the MQRO_PAN Report option was set.

Warning response
This indicates that the command was only partially successful. The response
consists of a message that contains an MQRFH format header with the CompCode
tag name in the NameValueString set to the value of MQCC_WARNING. The
Reason and the ReasonText tag names and values identify the nature of the
warning.

A warning response is sent by the broker if the command message was sent with a
MsgType of MQMT_REQUEST, or if it was sent with a MsgType of
MQMT_DATAGRAM and either the MQRO_PAN or MQRO_NAN Report options
were set.

Error response
This indicates that the command has failed. The response consists of a message
that contains an MQRFH format header with the CompCode tag name in the
NameValueString set to the value of MQCC_FAILED. The Reason and the
ReasonText tag names and values identify the nature of the failure, and additional
tags may be used to give more information.

Error responses are sent by the broker if the command message was sent with a
MsgType of MQMT_REQUEST, or if it was sent with a MsgType of
MQMT_DATAGRAM and the MQRO_NAN Report option was set.

Response messages

Chapter 8. Error handling and response messages 85

Broker responses
A Broker Response message is sent from a broker to the ReplyToQ of a publisher
or a subscriber, to indicate the success or failure of a command message received
by the broker.

The standard parameters listed below will always be returned in the order shown.
In the case where an error is being reported, they may be followed by an optional
parameter (depending on the command message that failed) which gives more
information about the error.

With multiple errors, the group of standard and optional parameters will be
repeated as necessary.

The NameValueString of the command message that caused an error will usually be
appended to the broker response message following the MQRFH structure, to
assist in diagnosis of the error. However, in the case of an MQRC_RFH_ERROR or
MQRCCF_MSG_LENGTH_ERROR, the NameValueString of the command message
that caused the error will not be appended to the broker response message.

Standard parameters:
CompCode, Reason, ReasonText

Optional parameters:
DeleteOptions, ErrorId, ErrorPos, ParameterId, PublicationOptions,
QMgrName, QName, RegistrationOptions, StreamName, Topic, UserId

Standard parameters
CompCode

name: "MQPSCompCode" (string constant: MQPS_COMPCODE)
value: The completion code is returned in decimal form, and takes one of

three values:
MQCC_OK

Command completed successfully
MQCC_WARNING

Command completed with warning
MQCC_FAILED

Command failed

Reason
name: "MQPSReason" (string constant: MQPS_REASON)
value: A decimal value corresponding to the error code. It is set to the value

of MQRC_NONE if CompCode is set to MQCC_OK.

Error codes are listed on page 88, and in the sections describing individual
command messages.

ReasonText
name: "MQPSReasonText" (string constant: MQPS_REASON_TEXT)
value: A string corresponding to the error code. It is set to MQRC_NONE if

CompCode is set to MQCC_OK.

Error codes are listed on page 88, and in the sections describing individual
command messages.

Broker responses

86 MQSeries Publish/Subscribe User’s Guide

Optional parameters
Command

name: "MQPSCommand" (string constant: MQPS_COMMAND)
value: The incorrect command that was specified when a command fails with

MQRC_RFH_COMMAND_ERROR.

DeleteOptions
name: "MQPSDelOpts" (string constant: MQPS_DELETE_OPTIONS)
value: The incorrect delete options that were specified when a command fails

with MQRCCF_DEL_OPTIONS_ERROR.

ErrorId
name: "MQPSErrorId" (string constant: MQPS_ERROR_ID)
value: An additional reason code (decimal value) when a command fails with

MQRCCF_Q_MGR_NAME_ERROR, MQRCCF_Q_NAME_ERROR or
MQRCCF_NOT_AUTHORIZED. For example, the value might be
MQRC_UNKNOWN_ENTITY indicating that the subscriber is not
authorized because it is unknown to the broker.

ErrorPos
name: "MQPSErrorPos" (string constant: MQPS_ERROR_POS)
value: A decimal value indicating the position in the NameValueString of the

command message sent to the broker at which an error was found. An
error at the first character is reported with an error position of zero.

If the first ‘MQPS’ tag isn’t MQPSCommand, the command will fail with an
MQRC_RFH_COMMAND_ERROR, and the MQPSErrorPos tag will
indicate the position of the offending tag.

If no ‘MQPS’ tags were encountered, the command will fail with an
MQRC_RFH_COMMAND_ERROR, and the MQPSErrorPos tag will be
set to the last character in the string.

If an ‘MQPS’ tag doesn’t have a matching value, or a quoted name or
value doesn’t have a matching end quote, the command will fail with
an MQRC_RFH_STRING_ERROR, and the MQPSErrorPos tag will
indicate the position in the string where the error was detected.

ParameterId
name: "MQPSParmId" (string constant: MQPS_PARAMETER_ID)
value: The incorrect parameter that was specified, or the parameter that was

missing, when a command fails with MQRC_RFH_PARM_ERROR,
MQRC_RFH_DUPLICATE_PARM or MQRC_RFH_PARM_MISSING.

PublicationOptions
name: "MQPSPubOpts" (string constant: MQPS_PUBLICATION_OPTIONS)
value: The incorrect publication options that were specified when a command

fails with MQRCCF_PUB_OPTIONS_ERROR.

QMgrName
name: "MQPSQMgrName" (string constant: MQPS_Q_MGR_NAME)
value: The invalid queue manager name that was specified when a command

fails with MQRCCF_Q_MGR_NAME_ERROR.

QName
name: "MQPSQName" (string constant: MQPS_Q_NAME)
value: The invalid queue name that was specified when a command fails with

MQRCCF_Q_NAME_ERROR.

RegistrationOptions
name: "MQPSRegOpts" (string constant: MQPS_REGISTRATION_OPTIONS)

Broker responses

Chapter 8. Error handling and response messages 87

value: The incorrect registration options that were specified when a command
fails with MQRCCF_REG_OPTIONS_ERROR.

StreamName
name: "MQPSStreamName" (string constant: MQPS_STREAM_NAME)
value: The unknown or incorrect stream name that was specified when a

command fails with MQRCCF_UNKNOWN_STREAM or
MQRCCF_STREAM_ERROR.

Topic
name: "MQPSTopic" (string constant: MQPS_TOPIC)
value: Up to 256 characters of the incorrect topic name that was specified

when a command fails with MQRCCF_TOPIC_ERROR.

UserId
name: "MQPSUserId" (string constant: MQPS_USER_ID)
value: The user ID to which the publisher or subscriber is currently assigned

when a command fails with MQRCCF_DUPLICATE_IDENTITY.

Examples
Here are some examples of the NameValueString in a Broker Response message. A
successful response will be as follows:
MQPSCompCode 0
MQPSReason 0
MQPSReasonText MQRC_NONE

Examples of failure responses are:
MQPSCompCode 2
MQPSReason 2102
MQPSReasonText MQRC_RESOURCE_PROBLEM

MQPSCompCode 2
MQPSReason 3082
MQPSReasonText MQRCCF_REG_OPTIONS_ERROR
MQPSRegOpts DeregAll

Error codes applicable to all commands
The following reason codes might be returned in the NameValueString of the
response message for any of the commands, in addition to the codes listed for each
command message. See “Appendix A. Reason codes” on page 159 for detailed
descriptions of these codes.

Reason Reason text Explanation

2334 MQRC_RFH_ERROR MQRFH structure not valid.
2335 MQRC_RFH_STRING_ERROR ″NameValueString″ field not valid.
2336 MQRC_RFH_COMMAND_ERROR Command not valid.
2337 MQRC_RFH_PARM_ERROR Parameter not valid.
2338 MQRC_RFH_DUPLICATE_PARM Duplicate parameter.
2339 MQRC_RFH_PARM_MISSING Parameter missing.
3016 MQRCCF_MSG_LENGTH_ERROR Message length not valid.
3023 MQRCCF_MD_FORMAT_ERROR Format not valid.
3050 MQRCCF_ENCODING_ERROR Encoding error.
3079 MQRCCF_INCORRECT_Q Command sent to wrong broker queue.

Broker responses

88 MQSeries Publish/Subscribe User’s Guide

Problem determination
Check that you are not using MQSeries facilities that are not supported by
MQSeries Publish/Subscribe (see “Limitations” on page 39).

Problems with brokers are reported as AMQ58xx messages, which are described in
“Appendix B. Error messages” on page 165.

Problems with the command messages sent to brokers by publisher and subscriber
applications are reported in broker response messages (described in “Broker
responses” on page 86). You should remember to set the MsgType and Report
options in the message descriptor of the command message so that the broker will
send a response message (see “The message descriptor” on page 36).

Even if there are no problems with the brokers and command messages, you might
find that subscribers do not receive the publications they expect. Here is a list of
possible causes:
v One or more of the brokers in the network isn’t running.
v The subscription has expired, or failed to be made in the first place.

Use the amqspsd sample to check that the broker has knowledge of the
subscribing application’s subscription.

v If the publishing application is running at a different broker, a channel might be
down.

Check that all channels between the publishing and subscribing brokers have
been started. If not then the subscriber’s publication might be sitting on a
transmission queue.

v If the publishing application is running at a different broker, the subscription
might not have been propagated to that broker yet.

Even though a subscribing application has received a positive reply to its
Register Subscriber command message, the subscription might not have
propagated to the publishing broker. Check all channels between the
subscribing and publishing brokers. Also check the
SYSTEM.BROKER.CONTROL.QUEUE at each of these brokers, since an
intermediate broker might not have processed the propagated subscription
yet.
Note that brokers process publish messages in batches. This is controlled by
the PublishBatchSize parameter (see “Broker configuration parameters” on
page 102). The effect of this is that, in general, publish messages are
processed more rapidly than subscriptions. If you are loading your system
with a large number of new subscriptions there might be a delay before they
are propagated to all brokers in the network.

v The publishing application might not have published successfully.
Don’t always assume that the problem is with the subscribing application.
Make sure that the publishing application received a positive response
message from its broker. If it is publishing using MQMT_DATAGRAM
messages and doesn’t specify either the MQRO_NAN or MQRO_PAN report
options, then the broker won’t send it a reply message even if the Publish
command messages fails. If such a publishing application doesn’t use the
NoReg publication option, then it must set up a valid ReplyToQ in the message
descriptor.

v The broker might be putting the subscriber’s publications to the dead-letter
queue.

Problem determination

Chapter 8. Error handling and response messages 89

There might be a problem with the subscriber’s queue. For example, it might
be put-inhibited or the publications might be too large for the queue. In this
case the broker will, by default, put these messages to the dead-letter queue
(DLQ). Check the DLQ at the subscriber’s broker. The broker will also issue
message AMQ5882 if it has had to put a message to the DLQ.

v The stream might not be supported by all necessary brokers.
If the publication is not being published on the default stream, all brokers in
the network between the publishing and subscribing brokers must support
the stream you are using. Use the amqspsd sample to check that the stream is
supported by all necessary brokers.

Problem determination

90 MQSeries Publish/Subscribe User’s Guide

Chapter 9. Sample programs

Table 4 shows the techniques demonstrated by the sample programs supplied with
MQSeries Publish/Subscribe.

Table 4. Sample programs

Technique C source Executable MQSC script

Results service amqsresa.c amqsres -

Match simulator amqsgama.c amqsgam -

Administration application amqspsda.c amqspsd -

Routing exit amqspsra.c - -

Create definitions for sample application - - amqsresa.tst

Create stream on another broker - - amqsgama.tst

Create administration app. reply queue - - amqspsda.tst

Create SYSTEM.BROKER.MODEL.STREAM - - amqsfmda.tst

You can find the samples in the following directories.

AIX
source files

/usr/lpp/mqm/samp/pubsub
amqspsda.*

/usr/lpp/mqm/samp/pubsub/admin
executables

/usr/lpp/mqm/samp/bin

HP-UX, Linux, and Sun Solaris
source files

/opt/mqm/samp/pubsub
amqspsda.*

/opt/mqm/samp/pubsub/admin
executables

/opt/mqm/samp/bin

Windows NT and Windows 2000
source files

<drive:directory>\MQM\TOOLS\C\SAMPLES\PUBSUB
amqspsda.*

<drive:directory>\MQM\TOOLS\C\SAMPLES\PUBSUB\ADMIN
executables

<drive:directory>\MQM\TOOLS\C\SAMPLES\BIN

The sample programs are described in the following sections:
v amqsres and amqsgam in “Sample application” on page 92
v amqspsd in “Sample program for administration information” on page 152
v amqspsr in “Sample routing exit” on page 133

© Copyright IBM Corp. 1998, 2001 91

|
|
|
|
|
|
|

|

You must start the queue manager before running the MQSC scripts. In addition,
before running the executables, you must start the broker (see “Chapter 11.
Controlling the broker” on page 107).

Instructions for compiling the samples can be found in the MQSeries Application
Programming Guide.

Sample application
The following aspects of the results service application are described in “Sample
application” on page 23:
v The use of streams other than the default stream.
v Event publications (not retained).
v State publications (retained).
v Wildcard matching of topic strings.
v Multiple publishers on the same topics (event publications only).
v The need to subscribe to a topic before it is published on (event publications).
v A subscriber continuing to be sent publications when that subscriber (not its

subscription) is interrupted.
v The use of retained publications to recover state after a subscriber failure.

The application’s use of multiple subscription identities on the same subscriber
queue is covered in “Publisher and subscriber identity” on page 35, and the
following aspects are described in “Chapter 6. Format of command messages” on
page 53:
v MQRFH format messages.
v MQRFH NameValueString parsing.
v MQRFH broker response message checking.
v Publish, Register Subscriber, Request Update, Delete Publication and

Deregister Subscriber command messages.
v Separate user data in Publish messages.

Running the application
To run the application on a single queue manager, first start the queue manager
and then enter the following command:
runmqsc QMgrName < amqsresa.tst

where QMgrName is the queue manager that the results service will use (if QMgrName
is omitted, the default queue manager will be assumed). This will create the
appropriate queues on the queue manager. Then start the broker (see “Chapter 11.
Controlling the broker” on page 107).

The results service program is started by entering the following:
amqsres QMgrName

QMgrName is optional, and defaults to the default queue manager. The results service
will produce the following output:
Results Service is ready for match input,
instances of amqsgam can now be started.

You can now start one or more match simulators by entering the following:
amqsgam Team1 Team2 QMgrName

Sample programs

92 MQSeries Publish/Subscribe User’s Guide

QMgrName is optional, as before.

Typical output from a match simulator is:
Match between Team1 and Team2
GOAL! Team2 scores after 20 minutes
GOAL! Team1 scores after 25 minutes
GOAL! Team1 scores after 38 minutes
GOAL! Team2 scores after 73 minutes
Full time

This would produce corresponding output from the results service:
LATEST: Team1 0, Team2 0
LATEST: Team1 0, Team2 1
LATEST: Team1 1, Team2 1
LATEST: Team1 2, Team2 1
LATEST: Team1 2, Team2 2
FULLTIME: Team1 2, Team2 2

A match simulator can be run on a different queue manager in the broker
hierarchy if required. In this case, you need to enter the following command:
runmqsc QMgrName < amqsgama.tst

to create the appropriate stream queue on that queue manager. This must be done
before starting the results service and the match simulator.

The team names must be 31 characters or less in length, and contain no blanks.
The simulator runs for 30 seconds and scores goals at random for each side.

The simulator publishes event publications on the following topics:
Sport/Soccer/Event/MatchStarted
Sport/Soccer/Event/ScoreUpdate
Sport/Soccer/Event/MatchEnded

The UserData is contained in a formatted string following the NameValueString of
the MQRFH header. In the case of ‘MatchStarted’ or ‘MatchEnded’ it consists of
both team names in the following structure:
{

MQCHAR32 Team1;
MQCHAR32 Team2;

}

For a ‘ScoreUpdate’ the UserData consists of the name of the team that scored:
MQCHAR32 TeamThatScored;

The team names are NULL padded to 32 characters.

The results service program subscribes to these three topics to monitor the state of
play in the matches that are active. It publishes the latest score in the match
between Team1 and Team2 on the following topic:
Sport/Soccer/State/LatestScore/Team1 Team2

In this case the UserData is a variable string containing the data in the format:
"Team1Score Team2Score"

For example "0 0" or "2 1".

Sample application

Chapter 9. Sample programs 93

Figure 20 illustrates the situation when four match simulators are running.

Once a match has ended, the retained publication that contains its latest score is
deleted. After a period of inactivity (45 seconds), the results service deregisters the
subscription from the Sport/Soccer/Event/* topic and the program ends with the
message:
Results Service has ended

If the results service program (amqsres) is stopped and restarted while the match
simulators are still running, the results will be restored to their correct values and
processing will continue as before.

Possible extensions
The sample application illustrates many aspects of an MQSeries Publish/Subscribe
system. Possible extensions which might be implemented by the user include:
v Distribute the results service and match simulators across multiple connected

brokers.

Sport/Soccer/Event/....
Sport/Soccer/Event/....

Sport/Soccer/Event/....

SAMPLE.BROKER.RESULTS.STREAM

Publisher Publisher Publisher

Match Simulator 1

Sport/Soccer/State/LatestScore/....

Match 4
Match 3

Match 2

Match 1

Match Simulator 2 Match Simulator 3 Match Simulator 4

Publisher

event publications event publications

event
publications

event publications event publications

Publisher

Subscriber

Results Service

state
publications

Figure 20. Results service running with four match simulators. The match simulators send event publications to three
topics (MatchStarted, ScoreUpdate, MatchEnded). The results service subscribes to these, and sends state
publications to four state topics (the LatestScore for each match).

Sample application

94 MQSeries Publish/Subscribe User’s Guide

v Extend the application to handle more than one sport, and have a results service
running for each sport.

v Extend the results service to publish the final score when a match ends, and add
another application that subscribes to these publications to produce a table of
results.

v Extend the match simulator to confirm that a results service is subscribing to
Sport/Soccer/Events/* topics before it starts publishing. This can be done using
metatopics.

v Change the format of the user data in the publications, create a user defined
format, and write a data conversion exit to enable the passing of publications
between different platforms or languages.

Application Messaging Interface samples
For sample publisher and subscriber programs that use the Application Messaging
Interface in C, C++, and Java, see the MQSeries Application Messaging Interface book.

Sample application

Chapter 9. Sample programs 95

96 MQSeries Publish/Subscribe User’s Guide

Part 3. Managing the broker

Chapter 10. Setting up a broker 99
Broker queues 99

System queues 99
Other stream queues 100

SYSTEM.BROKER.MODEL.STREAM . . . 100
Internal queues 101
Dead-letter queue 101

Other considerations 101
Access control 101
Backup 101

Broker configuration stanza 102
Broker configuration tool 102
Broker configuration parameters 102

Chapter 11. Controlling the broker 107
Starting a broker 107

Using triggering to start the broker 107
Stopping a broker 107
Displaying the status of a broker 107
Adding a stream 107

Creating a stream queue. 108
Informing other brokers about the stream . . . 108

Deleting a stream 108
Deleting a stream on an isolated broker . . . 108
Deleting a stream on a broker that is part of a
network 109

Adding a broker to a network 109
Deleting a broker from the network 109

Problems when deleting brokers 110
Deleting a broker that has a child broker . . . 110

Sequence of commands for adding and deleting
brokers 110

Chapter 12. Control commands 113
clrmqbrk (Clear broker’s memory of a neighboring
target broker) 114
dltmqbrk (Delete broker) 117
dspmqbrk (Display broker status) 119
endmqbrk (End broker function) 120
migmqbrk (Migrate broker to MQSeries Integrator) 121
strmqbrk (Start broker function) 123

Chapter 13. Message broker exit 125
Publish/subscribe routing exit. 125

Parameters 125
Usage notes 125

C invocation. 126
Publish/subscribe routing exit parameter
structure 126

Fields 127
C declaration 132

Writing a publish/subscribe routing exit program 132
Limitations on MQSeries work done in the
routing exit 132
Security considerations 133

Compiling a publish/subscribe routing exit
program 133
Sample routing exit 133

© Copyright IBM Corp. 1998, 2001 97

98 MQSeries Publish/Subscribe User’s Guide

Chapter 10. Setting up a broker

Publishers, subscribers, and brokers communicate by using queues. Configuration
and monitoring of these queues can be performed by whatever technique is
currently in use for MQSeries, whether supplied by MQSeries or available from
third parties.

Before you can use MQSeries Publish/Subscribe you need to do the following
things to set up your broker:
v If necessary, define the queues that the broker needs to use
v Authorize applications to use these queues
v Review the default settings of the broker parameters in the queue manager

initialization file (qm.ini)

For information about managing your brokers when they have been set up, see
“Chapter 11. Controlling the broker” on page 107.

How to find out about publishers and subscribers registered with brokers, and
how to write applications to manage a network of brokers is explained in “Part 4.
System programming” on page 135.

Broker queues
Brokers are event-driven; they wait for messages to arrive on their queues. The
broker needs several system queues, and can also have any number of stream
queues; these are described below.

Note: If you are using MQSeries Version 5.2 or 5.1, please note that stream queues
must not be cluster queues.

System queues
The broker uses three system queues. These queues all have names beginning with
SYSTEM.BROKER, and are used for the purposes described below. These queues
are created automatically when the broker starts if they do not already exist. You
might want to alter access authority to these queues.

SYSTEM.BROKER.CONTROL.QUEUE
This is the broker’s control queue. Publisher and subscriber applications,
and other brokers, send all command messages (except publications and
requests to delete publications) to this queue.

SYSTEM.BROKER.CONTROL.QUEUE is created as a predefined queue
based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

SYSTEM.BROKER.DEFAULT.STREAM
This is the queue that receives all publication messages for the default
stream. Applications can also send requests to delete publications on the
default stream to this queue.

SYSTEM.BROKER.DEFAULT.STREAM is created using
SYSTEM.BROKER.MODEL.STREAM if it exists, otherwise the broker
predefines it based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

© Copyright IBM Corp. 1998, 2001 99

Note: SYSTEM.BROKER.DEFAULT.STREAM is created with a default
persistence of yes. This means that an application using the
MQPER_AS_Q_DEF option in the message descriptor (the default)
will be publishing persistent messages by default.

SYSTEM.BROKER.ADMIN.STREAM
This is the queue that the broker uses to publish its own broker
configuration information (for example the identity of its parent). If you
write your own administration applications, they can use the information
published on this stream. You can also publish information on this stream
(but not to topics with names beginning MQ/).

SYSTEM.BROKER.ADMIN.STREAM is created using
SYSTEM.BROKER.MODEL.STREAM if it exists, otherwise the broker
predefines it based on the SYSTEM.DEFAULT.LOCAL.QUEUE.

Other stream queues
Stream queues are used to process publications for all topics within a stream.
Applications send publications (and requests to delete publications) to a stream
queue. The stream queue must be a local queue at the broker, not an alias or
remote queue. Applications can send messages to a stream queue through an alias
or remote queue.

Publishing applications can register with the broker before they start sending
publications. If the application specifies that it will be using a stream queue that
does not yet exist, the broker might create a permanent dynamic queue with the
same name as the stream specified, based on the
SYSTEM.BROKER.MODEL.STREAM queue.

If the SYSTEM.BROKER.MODEL.STREAM queue does not exist, any message sent
by an application that refers to a stream for which there is no stream queue, will
be rejected. The broker keeps information about which streams are known to it so
that, when it is restarted, it can recognize the stream queues.

Applications can also specify the stream name in a publication message. If a
publication message specifies the name of a stream that is different from the name
of the queue to which it was sent, the message is rejected. If the application does
not specify a stream name, it defaults to the name of the stream queue to which it
is sent.

If you are using a network of brokers, and you want to restrict a certain stream to
a particular sub-tree of the hierarchy, brokers immediately outside the sub-tree
must not have a SYSTEM.MODEL.STREAM.QUEUE defined. All stream queues for
streams that these brokers support must, therefore, be defined by the administrator.

SYSTEM.BROKER.MODEL.STREAM
The SYSTEM.BROKER.MODEL.STREAM is a model queue definition that can be
used by the broker to create dynamic queues to receive publications for streams
other than the default stream. This is only used if the stream queue does not
already exist. This definition must specify that the dynamic queue to be created is
a permanent-dynamic queue. If this queue does not exist, all stream queues must
be defined by the administrator. (The administrator can also define stream queues
manually, even if this queue does exist.)

This queue is supplied as sample amqsfmda.tst (see page 91). To create the queue
from the sample, use the following command:
runmqsc QMgrName < amqsfmda.tst

Broker queues

100 MQSeries Publish/Subscribe User’s Guide

where QMgrName is the name of the queue manager.

Internal queues
The broker creates several other queues for its own internal use. These queues also
have names beginning with SYSTEM.BROKER. The broker uses them to store its
persistent state, such as subscriptions and retained publications.

Dead-letter queue
You are recommended to set up a dead-letter queue for each queue manager that
has a broker running on it. This enables the broker to continue operating when
problems are encountered, such as a subscriber’s queue being full. In this case
publications for that subscriber are put to the dead-letter queue, and the broker
continues to process publish command messages.

Without a dead-letter queue you might also have problems if you want to delete
that broker from the network (see “Deleting a broker from the network” on
page 109).

Other considerations
Some other considerations are:
v Access control
v Backup

Access control
Normal MQSeries access control techniques apply to applications and brokers
opening queues for Publish/Subscribe messages. These authorization checks are
carried out using standard MQSeries functions. The authority is tested before any
message is sent to a particular identity after a broker restart, but not necessarily
each subsequent time a message is put (see “Streams” on page 18).

Any application putting a message to the broker’s
SYSTEM.BROKER.CONTROL.QUEUE must have authorization to put messages to
this queue.

A publisher must be authorized to put messages on the broker’s appropriate
stream queue.

Subscribers must be authorized to browse the broker’s stream queue; this is
checked by the broker because the subscriber does not try to open the broker’s
stream queue. In addition, a subscriber must have authority to put messages on
the subscriber queue that the publications will be sent to.

There is no topic based security; the access check is for the stream and there are no
further checks on topics within a particular stream.

Backup
Normal MQSeries backup and restore procedures apply, as described in the
MQSeries System Administration book. When a queue manager is backed up, a
broker installed on that queue manager will be backed up as well.

Broker queues

Chapter 10. Setting up a broker 101

Broker configuration stanza
Broker parameters are controlled by the Broker stanza of the queue manager
configuration file, qm.ini. Figure 21 shows an example of this stanza. The
parameters are described in “Broker configuration parameters”.

Note: You do not need to list parameters if you are using their default values. Any
parameters that you do list will be checked for validity. A blank entry is not
valid.

Broker configuration tool
If you are running MQSeries for Windows NT and Windows 2000 version 5.2 or
MQSeries for Windows NT version 5.1, you can use the broker configuration tool.
This tool has a graphical user interface for setting up the broker configuration
parameters. The tool is started by entering the following on the command line:
cfgmqbrk

The left-hand panel provides a list of queue managers. Click on one of them to
display its broker configuration parameters in the right-hand panel.

Make any necessary changes to the parameters. You can do this by overtyping the
values, or by using Cut, Copy, Paste, Delete and Select in the Edit menu or on the
Toolbar. Then use Save, Reload or Reset in the File menu to save the changes,
reload the stored parameters, or reset to the original values.

The View menu allows you to switch the toolbar and status bar on and off.

Broker configuration parameters
MaxMsgRetryCount=number

When the broker fails to process a command message under syncpoint (for
example a publish message that cannot be delivered to a subscriber because
the subscriber queue is full and it is not possible to put the publication to the
dead-letter queue), the unit of work will be backed out and the command

Broker:
MaxMsgRetryCount=5
StreamsPerProcess=1
OpenCacheSize=128
OpenCacheExpiry=300
PublishBatchSize=5
PublishBatchInterval=0
ChkPtMsgSize=100000
ChkPtActiveCount=400
ChkPtRestartCount=40
RoutingExitPath=/opt/mqm/samp/bin/amqspsra(RoutingExit)
RoutingExitConnectType=STANDARD
RoutingExitAuthorityCheck=no
RoutingExitData=My routing exit string data
SyncPointIfPersistent=no
DiscardNonPersistentInputMsg=no
DLQNonPersistentResponse=yes
DiscardNonPersistentResponse=no
DLQNonPersistentPublication=yes
DiscardNonPersistentPublication=no
GroupId=nobody

Figure 21. Sample Broker stanza for qm.ini

Broker configuration

102 MQSeries Publish/Subscribe User’s Guide

retried this number of times before the broker will attempt to process the
command message according to its report options instead.

The default is MaxMsgRetryCount=5.

StreamsPerProcess=number
The broker consists of a broker main process (amqfcxaa) and a number of
broker worker processes (amqfcxba). Each worker process is capable of
supporting one or more streams. Depending upon the broker configuration (for
example the operating system, number of streams, number of publishers,
subscribers and retained messages, whether a non-fastpath routing exit is in
use), varying this number can alter capacity or throughput (or both).

If you have a large number of lightly loaded streams you should consider
increasing this value.

The defaults are:

AIX
StreamsPerProcess=10 (RoutingExitConnectType=Standard)
StreamsPerProcess=1 (RoutingExitConnectType=Fastpath)
StreamsPerProcess=1 (no routing exit)

HP-UX, Linux, and Sun Solaris
StreamsPerProcess=10

Windows NT and Windows 2000
StreamsPerProcess=10

OpenCacheSize=number
Each broker stream thread (2 threads per stream) keeps a cache of recently
used open queues. This parameter specifies the maximum number of queues in
the cache.

The default is OpenCacheSize=128.

OpenCacheExpiry=number
Each broker stream thread (2 threads per stream) keeps a cache of recently
used open queues. If a queue in the cache is not used for approximately
OpenCacheExpiry seconds, the queue is removed from the cache (closed).

The default is OpenCacheExpiry=300.

PublishBatchSize=number
The broker normally processes publish messages within syncpoint. It can be
inefficient to commit each publication individually, and in some circumstances
the broker can process multiple publish messages in a single unit of work. This
parameter specifies the maximum number of publish messages that can be
processed in a single unit of work.

The default is PublishBatchSize=5.

PublishBatchInterval=number
The broker normally processes publish messages within syncpoint. It can be
inefficient to commit each publication individually, and in some circumstances
the broker can process multiple publish messages in a single unit of work. This
parameter specifies the maximum time (in milliseconds) between the first
message in a batch and any subsequent publication included in the same
batch. A batch interval of 0 indicates that up to PublishBatchSize messages can
be processed, provided that the messages are available immediately.

The default is PublishBatchInterval=0.

Broker configuration

Chapter 10. Setting up a broker 103

|
|

ChkPtMsgSize=number
The broker stores individual publisher and subscriber registrations as messages
on its internal queues. Periodically, it might consolidate a number of these
registrations into a smaller number of larger messages called checkpoint
messages. This action is called checkpointing and is performed to reduce the
number of messages that need to be read to restore the publisher and
subscriber registrations at broker and stream restart.

The ChkPtMsgSize parameter determines the default size of each checkpoint
message in bytes, which in turn determines the number of registrations that
each checkpoint message can contain.

The default is ChkPtMsgSize=100000.

ChkPtActiveCount=number
The broker stores individual publisher and subscriber registrations as messages
on its internal queues. Periodically it might consolidate a number of these
registrations into a smaller number of larger messages called checkpoint
messages. This action is called checkpointing and is performed to reduce the
number of messages that need to be read to restore the publisher and
subscriber registrations at broker and stream restart.

The number of changes that need to be made to part of the registration state of
an individual stream during normal broker operation before checkpointing is
considered for that part depends on the ChkPtActiveCount parameter.

The default is ChkPtActiveCount=400. A lower value will make checkpointing
occur more frequently. A higher value will make checkpointing occur less
frequently. A value of 0 disables checkpointing completely during normal
operation and would be applicable if checkpoint activity was having an
adverse effect on broker throughput.

ChkPtRestartCount=number
The broker stores individual publisher and subscriber registrations as messages
on its internal queues. Periodically it might consolidate a number of these
registrations into a smaller number of larger messages called checkpoint
messages. This action is called checkpointing and is performed to reduce the
number of messages that need to be read to restore the publisher and
subscriber registrations at broker and stream restart.

The number of changes that need to have been made to part of the registration
state of an individual stream during broker or stream restart before
checkpointing is considered for that part depends on the ChkPtRestartCount
parameter.

The default is ChkPtRestartCount=40. This is lower than the ChkPtActiveCount
on the assumption that stream or broker restart is a more suitable time for the
registration state to be checkpointed. A value of 0 disables checkpointing
completely during restart.

RoutingExitPath=[path]module_name(function_name)
Before the broker sends a publication to a subscriber, the broker invokes the
exit identified by the RoutingExitPath (if any).

The default is no routing exit.

RoutingExitConnectType=FASTPATH|STANDARD
If the broker is configured to use a routing exit, the exit runs within a broker
process. If the exit conforms to the requirements of a fastpath application
(MQCNO_FASTPATH_BINDING), the broker process can use a fastpath

Broker configuration

104 MQSeries Publish/Subscribe User’s Guide

connection to the queue manager. This attribute informs the broker if the exit
meets the standards necessary for a fastpath application.

Note: This attribute is only relevant if a RoutingExitPath is specified. For
performance reasons RoutingExitConnectType=FASTPATH is desirable.

The default is RoutingExitConnectType=STANDARD.

RoutingExitAuthorityCheck=yes|no
Before the broker sends a publication to a subscriber the broker must have
validated the subscribers authority to write to the subscriber queue. If the
routing exit changes the message destination, the authority check already
performed by the broker is not valid. This attribute informs the broker if the
authority check should be repeated for any changed destination.

Note: The performance implications of setting RoutingExitAuthorityCheck=yes
are considerable if the routing exit frequently changes the destination.

The default is RoutingExitAuthorityCheck=no.

RoutingExitData=string
If the broker is using a routing exit, the broker invokes the routing exit passing
an MQPXP structure as input. The data specified using this attribute is
provided in the ExitData field. The string can be up to
MQ_EXIT_DATA_LENGTH characters in length.

The default is 32 blank characters.

SyncPointIfPersistent=yes|no
If this attribute is specified, when the broker reads a publish or delete
publication message from a stream queue during normal operation the broker
specifies MQGMO_SYNCPOINT_IF_PERSISTENT. This makes the broker
receive nonpersistent messages outside syncpoint. If the broker receives a
publication outside syncpoint, the broker will forward that publication to
subscribers known to the broker outside syncpoint.

When using SyncPointIfPersistent=yes it is possible that a nonpersistent
publication might not be delivered to all subscribers known to a broker (for
example, if an immediate broker shutdown occurred while a publish message
was being processed). If SyncPointIfPersistent=yes is specified, the broker
performance for publishing nonpersistent publications will improve.

The default is SyncPointIfPersistent=no.

DiscardNonPersistentInputMsg=yes|no
If the broker cannot process a nonpersistent input message, the broker might
attempt to write the input message to the dead-letter queue (depending on the
report options of the input message). If the attempt to write the input message
to the dead-letter queue fails, and the MQRO_DISCARD_MSG report option
was specified on the input message or DiscardNonPersistentInputMsg=yes, the
broker will discard the input message. If DiscardNonPersistentInputMsg=no is
specified, the broker will only discard the input message if the
MQRO_DISCARD_MSG report option was set in the input message.

The defaults are:
DiscardNonPersistentInputMsg=no if SyncPointIfPersistent=no.
DiscardNonPersistentInputMsg=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set, DiscardNonPersistentInputMsg=no
must not be set.

Broker configuration

Chapter 10. Setting up a broker 105

DLQNonPersistentResponse=yes|no
If the broker attempts to generate a response message in response to a
nonpersistent input message, and the response message cannot be delivered to
the reply-to queue, this attribute indicates if the broker should attempt to write
the undeliverable response message to the dead-letter queue.

The default is DLQNonPersistentResponse=yes.

DiscardNonPersistentResponse=yes|no
If the broker attempts to generate a response message in response to a
nonpersistent input message, and the response message cannot be delivered to
the reply-to queue or written to the dead-letter queue, this attribute indicates
whether the broker can discard the undeliverable response message.

The default is:
DiscardNonPersistentResponse=no if SyncPointIfPersistent=no.
DiscardNonPersistentResponse=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set DiscardNonPersistentResponse=no
must not be set.

DLQNonPersistentPublication=yes|no
If the broker fails to send a nonpersistent publication to a subscriber, this
attribute indicates whether the broker should attempt to put the publication to
the dead-letter queue.

The default is DLQNonPersistentPublication=yes.

DiscardNonPersistentPublication=yes|no
If the broker fails to send a nonpersistent publication to a subscriber and is
unable to write the publication to the dead-letter queue, this attribute indicates
whether the broker can discard the publication.

The default is:
DiscardNonPersistentPublication=no if SyncPointIfPersistent=no.
DiscardNonPersistentPublication=yes if SyncPointIfPersistent=yes.

Note: If SyncPointIfPersistent=yes is set,
DiscardNonPersistentPublication=no must not be set.

GroupId=group_identifier
Specifies the group that owns the stream queues created by the broker, except
the admin stream (for example, SYSTEM.BROKER.DEFAULT.STREAM). Users
in this group are able to access the stream queues. If this group does not exist,
the broker will not be able to run.

If not specified, the following defaults are used (this normally means that all
users can access the stream queues):

AIX, Linux, and Sun Solaris
GroupId=nobody

HP-UX
GroupId=nogroup

Windows NT and Windows 2000
GroupId=Users

Note: For MQSeries for Windows NT and Windows 2000 Version 5.2,
MQSeries for Windows NT Version 5.1 with CSD03 (PTF U200113), or
later, the GroupId is set to ‘Users’ or the national language equivalent.

Broker configuration

106 MQSeries Publish/Subscribe User’s Guide

|
|

Chapter 11. Controlling the broker

This chapter describes the following broker operations:
v “Starting a broker”
v “Stopping a broker”
v “Displaying the status of a broker”
v “Adding a stream”
v “Deleting a stream” on page 108
v “Adding a broker to a network” on page 109
v “Deleting a broker from the network” on page 109

How to find out about publishers and subscribers registered with brokers, and
how to write applications to manage a network of brokers is explained in “Part 4.
System programming” on page 135.

Starting a broker
Use the strmqbrk command to start a broker.

This starts the broker on the specified queue manager, either initially, or as a
restart after an endmqbrk command.

This command is described in “strmqbrk (Start broker function)” on page 123.

Using triggering to start the broker
It is also possible to start a broker by enabling triggering on any of the broker’s
queues. Triggering on the first message should be specified. Note, however, that it
might be unwise for a broker to be triggered on more than one of its stream
queues because a trigger message will be generated for each queue at startup.

Stopping a broker
Use the endmqbrk command to stop a broker.

This stops the broker on the specified queue manager.

This command is described in “endmqbrk (End broker function)” on page 120.

Displaying the status of a broker
Use the dspmqbrk command to display the status of the broker for the specified
queue manager.

This command is described in “dspmqbrk (Display broker status)” on page 119.

Adding a stream
The following things need to happen for a stream to be created:
v A queue must be created to hold publications for that stream.
v Information about the stream has to be passed to other brokers in the network

that need to support the stream.

© Copyright IBM Corp. 1998, 2001 107

Creating a stream queue
The stream queue has the same name as the stream, and is usually created by the
operator. There should be one instance of the stream queue at each broker that
supports the stream. When defining the queue, you must specify the NOSHARE
option.

Alternatively, you can let the broker create the stream queue dynamically when it
is needed. The queue is based on the model queue definition
SYSTEM.BROKER.MODEL.STREAM if this is available. If the model queue
definition is not available, the broker will not create stream queues dynamically.

Note: If the queue is created dynamically, the operator will have to grant the
required access authority to applications using the queue. Because of this,
dynamic stream queue creation should be used only in a test environment.

Informing other brokers about the stream
When a stream is first referenced by a publisher or subscriber (for example, when
a registration request is sent to the broker’s control queue) the broker informs its
neighbors that the stream exists. If the neighboring brokers also have a queue
defined for the stream (or can create one using
SYSTEM.BROKER.MODEL.STREAM), they also recognize the stream and pass
information about it to their neighbors.

If a broker that is told about the stream does not have a queue for the stream and
does not have the SYSTEM.BROKER.MODEL.STREAM, it does not pass
information about the stream to its neighbors.

Deleting a stream
Before you delete a stream you should quiesce all applications that use the stream.

In order to delete a stream, you need to delete the stream queue. In order to delete
the queue, you must ensure that no applications (or channels) have the queue
open. If there are messages on the queue, you will have to remove them from the
queue, or purge them when you delete the queue.

You must also ensure that you do not have a definition of the
SYSTEM.BROKER.MODEL.STREAM on the broker. If you do, and the old one is
deleted, a new version of the stream queue will be created dynamically when the
broker is restarted.

Deleting a stream on an isolated broker
To delete a stream on a broker that is not part of a broker network:
1. Stop the broker (using endmqbrk).
2. Delete the queue.
3. Restart the broker (using strmqbrk).

When the broker realizes that the queue no longer exists, it deregisters all
subscriptions to the stream, and publishes a message to the
SYSTEM.BROKER.ADMIN.STREAM advertising that the stream has been deleted.
(For information about the format of this message see “Format of broker
administration messages” on page 137.)

Adding a stream

108 MQSeries Publish/Subscribe User’s Guide

Deleting a stream on a broker that is part of a network
A stream on a broker that is part of a broker network is deleted in the same way
as for an isolated broker. Other brokers in the network are advised that the stream
has been deleted and stop sending publications and subscription requests to the
broker for that stream. Messages sent from other brokers before they receive
notification that the stream has been deleted are handled as follows:
v Publication messages are put to the dead-letter queue.
v Registration messages are put to the dead-letter queue.

Adding a broker to a network
It is recommended that you define the broker topology from the root down.

Before you can add a broker to the network, channels in both directions must exist
between the queue manager which hosts the new broker and the queue manager
which hosts the parent. Brokers use explicit addressing when sending messages to
queues which reside on another queue manager. When the queue is opened by the
broker both the queue and queue manager names will be specified. To facilitate
multi-broker operation this queue manager name must resolve to the appropriate
transmission queue. The simplest method of achieving this is for the transmission
queue to have the same name as the remote queue manager name.

If you do not adopt this naming scheme, then a queue manager alias definition can
be used to ensure that messages get placed on the appropriate transmission queue.
For example, to specify that messages sent to queue manager PARENT are placed
on transmission queue, PARENT.XMITQ:
DEFINE QREMOTE (PARENT) RNAME() RQMNAME(PARENT) XMITQ(PARENT.XMITQ)

To add a broker to the network, start the broker with the strmqbrk command,
specifying the name of the parent broker if appropriate. When the broker has been
started with a parent named you cannot change the name of its parent, even when
the broker is restarted. You cannot change the parent of a broker as part of normal
operational procedures without disrupting service.

This command is described in “strmqbrk (Start broker function)” on page 123.

Deleting a broker from the network
Brokers must always be deleted from the bottom of the broker hierarchy. You
cannot delete a broker if it has one or more child brokers. (See “Sequence of
commands for adding and deleting brokers” on page 110 for more information.)

The broker needs to delete any queues that were created by the broker, so these
queues need to be closed and empty.
1. Stop the broker (using endmqbrk).
2. Quiesce all applications that use the broker.
3. Applications and brokers can use channels to talk to the broker, so receiving

channels might have queues open. If a channel has a queue open, stop and
restart the channel.

4. Use the dltmqbrk command to delete the broker. This command is described in
“dltmqbrk (Delete broker)” on page 117.

The broker performs the actions listed in “dltmqbrk (Delete broker)” on page 117
and sends a message to tell its parent broker that it is no longer active. This

Deleting a stream

Chapter 11. Controlling the broker 109

message needs to be processed by its parent broker before the parent can be
deleted. The parent broker will only process this message while running.

If you don’t quiesce all of your applications before deleting the broker, messages
might be sent from other brokers before they receive notification that the broker
has been deleted. Because there is no broker to handle these messages, the queue
manager deals with them according to the report options set for these messages.
This means that publication and registration messages are put to the dead-letter
queue. Therefore, you should ensure that a dead-letter queue has been set up for
this queue manager before attempting to delete a broker.

Problems when deleting brokers
If you are unable to delete your broker, consider the following:
v Are any queues that are to be quiesced by the broker open to an application or a

channel?
If so, you will receive an error message containing reason code 5840. The error
log will contain information about which queues can’t be quiesced.

v Does the broker have any children?
If it does, you will receive an error message containing reason code 5838. The
error log will contain information about the broker’s children.

Deleting a broker that has a child broker
If you are unable to delete a child of a broker you want to delete (for example,
because the queue manager of the child broker has been deleted) you can use the
clrmqbrk command to clear the broker’s memory of the child broker. This
command should be used only in exceptional circumstances, and must be used
with great care. If it is not used correctly, brokers will see an inconsistent view of
the hierarchy; this is likely to cause severe disruption to the service.

The command makes it appear as if the child broker has been deleted so that the
parent broker can be deleted. If you use this command, you must remember to
make sure that both ends have the same view of the relationship (see page 114).

Sequence of commands for adding and deleting brokers
This example shows the sequence of commands for adding and deleting brokers in
a network. Queue manager A is to host the parent broker and queue manager B is
to host the child broker. Channels are defined between the two queue managers.
Broker A is the parent broker, so this must be created first. Broker B is then created
as a child broker of broker A.

The sequence of commands to achieve this is shown in Figure 22.

When both brokers are deleted, broker B must be deleted first, and broker A must
be available for this to happen. Only when broker B has been deleted can broker A
be deleted.

START CHANNEL (B.to.A)
START CHANNEL (A.to.B)
strmqbrk -m A
strmqbrk -m B -p A

Figure 22. Sequence of commands to create brokers in a network

Deleting a broker from a network

110 MQSeries Publish/Subscribe User’s Guide

The sequence of commands to achieve this is shown in Figure 23.

endmqbrk -m B
STOP CHANNEL (A.to.B)
START CHANNEL (A.to.B)
dltmqbrk -m B

endmqbrk -m A
STOP CHANNEL (B.to.A)
START CHANNEL (B.to.A)
dltmqbrk -m A

Figure 23. Sequence of commands to delete brokers in a network

Command sequence

Chapter 11. Controlling the broker 111

112 MQSeries Publish/Subscribe User’s Guide

Chapter 12. Control commands

This chapter describes the commands that you can use to manage your brokers.
“Chapter 11. Controlling the broker” on page 107 discusses the circumstances under
which you would use these commands. The commands are:
v “clrmqbrk (Clear broker’s memory of a neighboring target broker)” on page 114
v “dltmqbrk (Delete broker)” on page 117
v “dspmqbrk (Display broker status)” on page 119
v “endmqbrk (End broker function)” on page 120
v “migmqbrk (Migrate broker to MQSeries Integrator)” on page 121
v “strmqbrk (Start broker function)” on page 123

© Copyright IBM Corp. 1998, 2001 113

clrmqbrk (Clear broker’s memory of a neighboring target broker)

Purpose
Use the clrmqbrk command to clear the broker’s memory of a neighboring (parent
or child) target broker. Using this command should be regarded as exceptional
rather than normal.

The broker cancels all subscriptions from the target broker. The broker must be
stopped when this command is issued. The command is synchronous, and when it
has completed the broker can be restarted normally. No messages are read from
any of the input queues.

After restart, the broker detects any messages on its input queues that came from
this broker, and processes them according to their report options.

You need to clear the memory of the broker at each end of the connection. This
means that you must issue this command (or an equivalent) to both the parent and
the child broker. If you don’t do this, one broker will continue to send messages to
the other broker, which will be processed according to their report options. This
might lead to a build-up of messages on the dead-letter queue, and unnecessary
report messages being sent across the network.

Deleting a broker with dltmqbrk requires first deleting its children. If this is
impractical (for example, if the child broker is no longer reachable) the clrmqbrk
command can be used to make the child broker appear deleted to its parent so that
the parent can be deleted. The child broker must be deleted whenever practical.

You can also use this command at the child with the -p parameter to break the link
with its parent. Using such a pair of clrmqbrk commands, one at the child and one
at the parent, causes the child and its descendants (if any), together with their
publishers and subscribers, to be isolated from the rest of the network. The child
now becomes the root node of a hierarchy. It can operate this way or be restarted
with another parent (or even with its old parent) provided the new parent is not
also a descendant.

Note: This command might mean that publications are not sent to subscribers that
should receive them, even if the publishers or subscribers have registered
with other brokers in the network. When making topology changes such as
this to the broker hierarchy, it is the administrator’s responsibility to ensure
that publishers are quiesced, and not restarted until the effects of the
topology change on the subscription state have propagated through the
broker network.

Syntax

�� clrmqbrk -p
-c ChildQMgrName

-m QMgrName ��

Required parameters
-p Specifies that the link is to be broken with the parent broker. If you specify this

parameter, do not specify the -c parameter

clrmqbrk

114 MQSeries Publish/Subscribe User’s Guide

-c ChildQMgrName
Specifies that the link is to be broken with a child broker; you also need to
specify the name of the queue manager that hosts the child broker. If you
specify this parameter, do not specify the -p parameter

-m QMgrName
The name of the queue manager hosting the broker whose link is to be broken.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples
In a broker network like this:

grandparentQM
|

parentQM
|

childQM

remove the parentQM from the network like this:

1. clrmqbrk -m grandparentQM -c parentQM breaks the link between the broker on
grandparentQM and its child on
parentQM

2. clrmqbrk -m parentQM -p breaks the link between the broker on
parentQM and its parent

3. clrmqbrk -m parentQM -c childQM breaks the link between the broker on
parentQM and its child on childQM

4. clrmqbrk -m childQM -p breaks the link between the broker on
childQM and its parent

If the broker on childQM is started by strmqbrk -m childQM -p grandparentQM at
restart, the broker network will now look like this:

grandparentQM
|

childQM

clrmqbrk

Chapter 12. Control commands 115

Attention
If you do not issue the clrmqbrk command at both ends of a connection, for
example, by omitting step 3 above, and you try to reconnect the brokers on
parentQM and childQM at restart, it will fail with an AMQ5839 message at
the parent, an AMQ5822 message at the child, and an AMQ5839 FDC file will
be generated. If you issue the clrmqbrk command at both ends of the
connection now, it will not fix the problem. You must issue the following
commands, assuming that the parent and child brokers are running with
channels between them:
1. endmqbrk -m childQM

(wait a few seconds for the failed registration message to reach the child)
2. clrmqbrk -m childQM -p

3. strmqbrk -m childQM

(note that there is no parent argument, wait a few seconds for the failed
registration message to be removed)

4. endmqbrk -m parentQM

5. endmqbrk -m childQM

6. clrmqbrk -m parentQM -c childQM

7. strmqbrk -m parentQM

8. strmqbrk -m childQM -p parentQM

These commands restore the connection between the brokers on parentQM
and childQM and leave the network looking like this:

parentQM
|

childQM

clrmqbrk

116 MQSeries Publish/Subscribe User’s Guide

dltmqbrk (Delete broker)

Purpose
Use the dltmqbrk command to delete the broker. The broker must be stopped
when this command is issued, and the queue manager running. If the broker is
already started, you must issue the endmqbrk before issuing this command. To
delete more than one broker in the hierarchy, it is essential that you stop (using the
endmqbrk command) and delete each broker one at a time. You should not
attempt to stop all the brokers in the hierarchy that you want to delete first and
then try to delete them.

The broker must not have children when this command is issued, because they
might be cut off from the rest of the network as a result. If the broker has children
and this command is issued, an error message naming at least one child broker
will be received. Any children should be deleted before the broker is deleted or, in
exceptional circumstances, cleared using the clrmqbrk command on this broker.

The broker performs the following actions:
v Put-inhibits its input queues (SYSTEM.BROKER.CONTROL.QUEUE and all

stream queues).
v Deregisters all of its subscribers and publishers.
v Sends Delete Publication commands to its parent for its metatopics.
v Deregisters all of its subscriptions with the parent.
v Processes any messages on its input queues according to their report options.

Note: You are advised to have a dead-letter queue because any input messages
will be processed according to their report options. If there is no
dead-letter queue, commands might fail.

v Deletes internal queues (purging any messages on the queues).
v Deletes any empty input queues. that were created by the broker in question.
v Terminates.

If the queue manager terminates before the broker has finished deleting itself (the
finish is indicated by a message to the operator), the operator must issue dltmqbrk
again when the queue manager has been restarted.

Syntax

�� dltmqbrk -m QMgrName ��

Required parameters
-m QMgrName

The name of the queue manager for which the broker function is to be deleted.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

dltmqbrk

Chapter 12. Control commands 117

Examples

dltmqbrk -m exampleQM Deletes the broker on exampleQM

dltmqbrk

118 MQSeries Publish/Subscribe User’s Guide

dspmqbrk (Display broker status)

Purpose
Use the dspmqbrk command to display the status of a broker. The status value
returned from this command can be one of:
v Starting
v Running
v Stopping (immediate shutdown)
v Quiescing (controlled shutdown)
v Not active
v Ended abnormally

Syntax

�� dspmqbrk
-m QMgrName

��

Optional parameters
-m QMgrName

The name of the queue manager for which the broker status is to be displayed.
If you do not specify this parameter, the command applies to the default queue
manager.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

dspmqbrk Displays information about the broker on the
default queue manager

dspmqbrk -m exampleQM Displays information about the broker on
exampleQM

dspmqbrk

Chapter 12. Control commands 119

endmqbrk (End broker function)

Purpose
Use the endmqbrk command to stop a broker.

Control information is retained and registrations for publishers and subscribers
remain in force. Messages are queued by the queue manager until the broker is
restarted using the strmqbrk command.

Syntax

�� endmqbrk
-c

-i -m QMgrName
��

Optional parameters
-c Requests a controlled shutdown. This is the default value.

-i Requests an immediate shutdown. The broker does not attempt any further
gets or puts, and backs out any in-flight units-of-work. This might mean that a
nonpersistent input message is only published to a subset of subscribers, or
lost, depending on the broker configuration parameters. (See the description of
SyncPointIfPersistent in “Broker configuration parameters” on page 102.)

-m QMgrName
The name of the queue manager for which the broker function is to be ended.
If you do not specify this parameter, the command is routed to the default
queue manager.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

endmqbrk Stops the broker on the default queue manager
with a controlled shutdown

endmqbrk -i -m exampleQM Stops the broker on exampleQM immediately

endmqbrk

120 MQSeries Publish/Subscribe User’s Guide

migmqbrk (Migrate broker to MQSeries Integrator)

Purpose
Use the migmqbrk command to migrate an MQSeries Publish/Subscribe broker to
an MQSeries Integrator broker. This command is only available on platforms that
support MQSeries Integrator Version 2.0 and above. Please make sure that you
have applied the necessary CSD to the MQSeries base product before running this
command (see “Prerequisites” on page 8).

Please read the “Planning for migration and integration” appendix in the MQSeries
Integrator Version 2.0 Introduction and Planning book before deciding to migrate. In
particular, read the “Product differences” section which outlines the impact that
migration will have on your current broker network.

Migration exports the following state to a replacement MQSeries Integrator broker.
This broker must reside on the same queue manager as the Publish/Subscribe
broker.

Subscriptions
All client subscriptions are exported from all streams except
SYSTEM.BROKER.ADMIN.STREAM

Retained publications
All retained publications in MQRFH format are exported from all streams
except SYSTEM.BROKER.ADMIN.STREAM

Local publishers
Registrations for all publishers that produce local publications are exported
from all streams except SYSTEM.BROKER.ADMIN.STREAM

Related brokers
If the broker is part of a multibroker hierarchy, details of all of its relations
are exported. This includes the names of all streams that the broker to be
migrated has in common with each relation.

The MQSeries Integrator broker and the MQSeries Publish/Subscribe broker which
it is to replace must have been created on the same queue manager. Before you
start the migration, the MQSeries Integrator broker must be made ready. See the
MQSeries Integrator Version 2.0 Administration Guide for guidance on performing the
migration.

When migration is complete, the Publish/Subscribe broker will be deleted
automatically. Therefore, you are advised to back up the queue manager that hosts
the Publish/Subscribe broker before you start the migration. If migration fails, the
Publish/Subscribe broker remains operational and you can restart it.

Syntax

�� migmqbrk -m QMgrName ��

migmqbrk

Chapter 12. Control commands 121

Optional parameters
-m QMgrName

The name of the queue manager for which the broker function is to be
migrated. This must match the queue manager that hosts the replacement
MQSeries Integrator broker.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

Examples

migmqbrk -m exampleQM Migrates the broker on exampleQM

migmqbrk

122 MQSeries Publish/Subscribe User’s Guide

strmqbrk (Start broker function)

Purpose
Use the strmqbrk command to start a broker, either as a restart after an endmqbrk
command (in which case control information is maintained) or initially.

On MQSeries for Windows NT and Windows 2000, the strmqbrk command can be
added to the reference command file used when starting a queue manager
automatically. See the description of the scmmqm command in the MQSeries
System Administration book for more information.

Syntax

�� strmqbrk
-p ParentQMgrName -m QMgrName

��

Optional parameters
-p ParentQMgrName

The name of the queue manager that provides the parent broker function.

Before you can add a broker to the network, channels in both directions must
exist between the queue manager that hosts the new broker, and the queue
manager that hosts the parent. See “Adding a broker to a network” on
page 109 for more details.

On restart, this parameter is optional. If present, it must be the same as it was
when previously specified. If this is the root-node broker, the queue manager
specified will become its parent. You cannot specify the name of the parent
broker when you use triggering to start a broker.

Once a parent has been specified, it is only possible to change parentage in
exceptional circumstances in conjunction with the clrmqbrk command.

By changing a root node to become the child of an existing broker, two
hierarchies can be joined. This will cause subscriptions to be propagated across
the two hierarchies, which now become one. After that, publications will start
to flow across them. To ensure predictable results, it is essential that you
quiesce all publishing applications at this time. If the changed broker detects a
hierarchical error (that is, if the new parent is found also to be a descendant), it
will immediately shutdown. The administrator must then use clrmqbrk at both
the changed broker and the new, false parent to restore the previous status.
Note that a hierarchical error is detected by propagating a message up the
hierarchy, which can complete only when the relevant brokers and links are
available.

-m QMgrName
The name of the queue manager for which the broker function is to be started.
If you do not specify this parameter, the command is routed to the default
queue manager.

Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

strmqbrk

Chapter 12. Control commands 123

Examples

strmqbrk -p parentQM Starts the broker on the default queue manager
specifying that it is a child of the broker on
parentQM

strmqbrk -m exampleQM Starts the broker on exampleQM

strmqbrk

124 MQSeries Publish/Subscribe User’s Guide

Chapter 13. Message broker exit

An exit can be configured at the broker to customize publications. This exit can be
used, for example, to cause traffic for different streams to be sent along different
channels.

The exit is invoked after the broker has decided to send a publication to a
particular broker or subscriber, and the exit can modify the publication and
message descriptor. You are strongly advised not to change the message descriptor
for a publication that is being sent between brokers.

Exits are configured in the queue manager configuration file, qm.ini (described in
“Broker configuration stanza” on page 102).

The following topics are discussed in this chapter:
v “Publish/subscribe routing exit”
v “Writing a publish/subscribe routing exit program” on page 132
v “Compiling a publish/subscribe routing exit program” on page 133
v “Sample routing exit” on page 133

Publish/subscribe routing exit
This call definition describes the parameters that are passed to the
publish/subscribe routing exit called by the publish/subscribe broker.

Note: No entry point called MQ_PUBSUB_ROUTING_EXIT is actually provided
by the broker. This is because the name of the publish/subscribe routing exit
is defined by the RoutingExitPath parameter in the Broker stanza of the queue
manager’s initialization file qm.ini.

Parameters
ExitParms (MQPXP) – input/output

Exit parameter block.

This structure contains information relating to the invocation of the exit. The
exit sets information in this structure to indicate the destination to which the
message should be sent.

Usage notes
1. The function performed by the publish/subscribe routing exit is defined by the

provider of the exit. The exit, however, must conform to the rules defined in
the associated control block MQPXP.

2. No entry point called MQ_PUBSUB_ROUTING_EXIT is actually provided by
the publish/subscribe broker. However, a typedef is provided for the name
MQ_PUBSUB_ROUTING_EXIT in the C programming language, and this can
be used to declare the user-written exit, to ensure that the parameters are
correct. The following example illustrates how this can be used:

MQ_PUBSUB_ROUTING_EXIT (ExitParms)

© Copyright IBM Corp. 1998, 2001 125

#include "cmqc.h"
#include "cmqxc.h"

MQ_PUBSUB_ROUTING_EXIT MyRoutingExit;

void MQENTRY MyRoutingExit(PMQPXP pExitParms)
{

/* C language statements to perform the function of the exit */
}

C invocation
exitname (&ExitParms);

Declare the parameters as follows:
MQPXP ExitParms; /* Exit parameter block */

Publish/subscribe routing exit parameter structure
The following table summarizes the fields in the structure.

Table 5. Fields in MQPXP

Field Description Page

StrucId Structure identifier 127

Version Structure version number 127

ExitId Type of exit 127

ExitReason Reason for invoking exit 127

ExitResponse Response from exit 128

Feedback Feedback code 129

ExitNumber Exit number 129

ExitUserArea Exit user area 129

ExitData Exit data 129

MsgInLength Length of input message 130

MsgOutLength Length of output message 130

DestinationType Type of destination 130

MsgDescPtr Address of message descriptor (MQMD) 130

MsgInPtr Address of input message 130

MsgOutPtr Address of output message 130

StreamName Name of stream 131

QMgrName Name of local queue manager 131

DestinationQName Name of destination queue 131

DestinationQMgrName Name of destination queue manager 131

The MQPXP structure describes the information that is passed to the
publish/subscribe routing exit. The exit is invoked each time a broker sends a
publication to a subscriber or to another broker. The exit is also invoked when a
stream is initialized or terminated.

This structure is supported in the following environments: AIX, HP-UX, Linux, Sun
Solaris, Windows NT, Windows 2000.

Publish/subscribe routing exit

126 MQSeries Publish/Subscribe User’s Guide

|
|

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:

MQPXP_STRUC_ID
Identifier for publish/subscribe routing-exit parameter structure.

For the C programming language, the constant
MQPXP_STRUC_ID_ARRAY is also defined; this has the same value as
MQPXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value is:

MQPXP_VERSION_1
Version-1 publish/subscribe routing-exit parameter structure.

The following constant specifies the version number of the current version:

MQPXP_CURRENT_VERSION
Current version of publish/subscribe routing-exit parameter structure.

This is an input field to the exit.

ExitId (MQLONG)
Type of exit.

This indicates the type of exit being called. The value is:

MQXT_PUBSUB_ROUTING_EXIT
Publish/subscribe routing exit.

This is an input field to the exit.

ExitReason (MQLONG)
Reason for invoking exit.

This indicates the reason why the exit is being called. Possible values are:

MQXR_INIT
Exit initialization.

This indicates that the exit for the stream identified by the StreamName
field is being invoked for the first time. It allows the exit to acquire
and initialize any resources that it may need (for example: main
storage).

MQXR_TERM
Exit termination.

This indicates that the exit for the stream identified by the StreamName
field is about to be terminated. The exit should free any resources that
it may have acquired since it was initialized (for example: main
storage).

MQXR_MSG
Process a message.

Publish/subscribe routing exit

Chapter 13. Message broker exit 127

This indicates that the exit is being invoked to process a message.

This is an input field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to indicate how processing should continue. It must be
one of the following:

MQXCC_OK
Continue normally.

This indicates that processing should continue normally. It is valid for
all values of ExitReason.

When ExitReason has the value MQXR_MSG, DestinationQName and
DestinationQMgrName identify the destination to which the message
should be sent.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

This indicates that the normal processing of the message should be
discontinued. It is valid only when ExitReason has the value
MQXR_MSG.

The processing performed on the message is determined by the
MQRO_DISCARD_MSG option in the Report field of the message
descriptor of the message:
v If the exit specifies MQRO_DISCARD_MSG, the message is

discarded.
v If the exit does not specify MQRO_DISCARD_MSG, the message is

placed on the dead-letter queue (undelivered-message queue). If
there is no dead-letter queue, or the message cannot be placed
successfully on the dead-letter queue:
– The message is discarded if the Persistence field in the message

descriptor has the value MQPER_NOT_PERSISTENT and the
DiscardNonPersistentPublication parameter in the queue manager’s
initialization file has the value yes.

– In all other cases, the message is retried intermittently.

MQXCC_SUPPRESS_EXIT
Suppress exit.

This indicates that the exit should not be invoked again until
termination of the stream. It is valid only when ExitReason has the
value MQXR_INIT or MQXR_MSG.

The broker processes subsequent messages as if no publish/subscribe
routing exit were defined. Processing of the current message (if there is
one) continues normally; DestinationQName and DestinationQMgrName
identify the destination to which the current message should be sent.

If any other value is returned by the exit, the broker processes the message as
if MQXCC_OK had been specified.

This is an output field from the exit.

ExitResponse2 (MQLONG)
Reserved.

Publish/subscribe routing exit

128 MQSeries Publish/Subscribe User’s Guide

This is a reserved field. The value is zero.

Feedback (MQLONG)
Feedback code.

This is the feedback code to be used if the exit returns
MQXCC_SUPPRESS_FUNCTION in the ExitResponse field.

On input to the exit, this field always has the value MQFB_NONE. If the exit
decides to return MQXCC_SUPPRESS_FUNCTION, the exit should set
Feedback to the value to be used for the message when the broker places it on
the dead-letter queue.

If MQXCC_SUPPRESS_FUNCTION is returned by the exit, but Feedback still
has the value MQFB_NONE, the following feedback code is used:

MQFB_STOPPED_BY_PUBSUB_EXIT
Message stopped by publish/subscribe routing exit.

This is an input/output field to the exit.

ExitNumber (MQLONG)
Exit number.

This is the sequence number of the exit. The value is one.

This is an input field to the exit.

ExitUserArea (MQBYTE16)
Exit user area.

This is a field that is available for the exit to use. It is initialized to
MQXUA_NONE (binary zero) on the first invocation of the exit for the stream,
and thereafter any changes made to this field by the exit are preserved across
invocations of the exit. The first invocation of the exit is indicated by the
ExitReason field having the value MQXR_INIT. There is a separate
ExitUserArea for each stream.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQXUA_NONE_ARRAY is also defined; this has the same value as
MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is
an input/output field to the exit.

ExitData (MQCHAR32)
Exit data.

This is the fixed exit data defined by the RoutingExitData parameter of the
Broker stanza in the queue manager’s initialization file. The data is padded
with blanks to the full length of the field. If there is no fixed exit data defined
in the initialization file, this field is completely blank.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This is an
input field to the exit.

HeaderLength (MQLONG)
Reserved.

Publish/subscribe routing exit

Chapter 13. Message broker exit 129

This is a reserved field. The value is zero.

This is an input field to the exit.

MsgInLength (MQLONG)
Length of input message data.

This is the length in bytes of the message data passed to the exit. The address
of the data is given by MsgInPtr.

This is an input field to the exit.

MsgOutLength (MQLONG)
Length of output message data.

This is the length in bytes of the message data returned by the exit. On input
to the exit, this field is always zero. On output from the exit, this field is
ignored if MsgOutPtr is the null pointer. See the description of the MsgOutPtr
field for information about modifying the message data.

This is an input/output field to the exit.

DestinationType (MQLONG)
Type of destination for message.

This is the type of the destination to which the message is being sent. It is one
of the following:

MQDT_APPL
Application.

MQDT_BROKER
Broker.

This is an input field to the exit.

MsgDescPtr (PMQMD)
Address of message descriptor.

This is the address of the message descriptor (MQMD) of the message being
processed. The exit can change the contents of the message descriptor, but
caution should be exercised. In particular:
v If DestinationType has the value MQDT_BROKER, the CorrelId field in the

message descriptor must not be changed.

No message descriptor is passed to the exit if ExitReason is MQXR_INIT or
MQXR_TERM; in these cases, MsgDescPtr is the null pointer.

This is an input field to the exit.

MsgInPtr (PMQVOID)
Address of input message data.

This is the address of a buffer containing the message data that is input to the
exit. The contents of this buffer can be modified by the exit; see MsgOutPtr.

This is an input field to the exit.

MsgOutPtr (PMQVOID)
Address of output message data.

This is the address of a buffer containing the message data that is output from
the exit. On input to the exit, this field is always the null pointer. On output
from the exit, if the value is still the null pointer, the broker sends the message
specified by MsgInPtr, with the length given by MsgInLength.

Publish/subscribe routing exit

130 MQSeries Publish/Subscribe User’s Guide

If the exit needs to modify the message data, one of the following procedures
should be used:
v If the length of the data does not change, the data can be modified in the

buffer addressed by MsgInPtr. In this case MsgOutPtr and MsgOutLength
should not be changed.

v If the modified data is shorter than the original data, the data can be
modified in the buffer addressed by MsgInPtr. In this case MsgOutPtr must
be set to the address of the input message buffer, and MsgOutLength set to
the new length of the message data.

v If the modified data is (or may be) longer than the original data, the exit
must obtain a buffer of the required size and copy the modified data into it.
In this case MsgOutPtr must be set to the address of the new buffer, and
MsgOutLength set to the new length of the message data. The exit is
responsible for freeing the buffer on a subsequent invocation of the exit.

Note: Because MsgOutPtr is always the null pointer on input to the exit, the
exit must save the address of the buffer it obtains, either in
ExitUserArea, or in a control block whose address is saved in
ExitUserArea.

This is an input/output field to the exit.

StreamName (MQCHAR48)
Name of stream.

This is the name of the stream to which the message belongs. The name is
padded with blanks to the full length of the field.

The length of this field is given by MQ_OBJECT_NAME_LENGTH. This is an
input field to the exit.

QMgrName (MQCHAR48)
Name of local queue manager.

This is the name of the local queue manager. The name is padded with blanks
to the full length of the field.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an
input field to the exit.

DestinationQName (MQCHAR48)
Name of destination queue.

This is the name of the queue to which the message is being sent. The name is
padded with blanks to the full length of the field. The name can be altered by
the exit.

The length of this field is given by MQ_Q_NAME_LENGTH. This is an
input/output field to the exit.

DestinationQMgrName (MQCHAR48)
Name of destination queue manager.

This is the name of the queue manager to which the message is being sent. The
name is padded with blanks to the full length of the field. The name can be
altered by the exit.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. This is an
input/output field to the exit.

Publish/subscribe routing exit

Chapter 13. Message broker exit 131

C declaration
typedef struct tagMQPXP {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ExitId; /* Type of exit */
MQLONG ExitReason; /* Reason for invoking exit */
MQLONG ExitResponse; /* Response from exit */
MQLONG ExitResponse2; /* Reserved */
MQLONG Feedback; /* Feedback code */
MQLONG ExitNumber; /* Exit number */
MQBYTE16 ExitUserArea; /* Exit user area */
MQCHAR32 ExitData; /* Exit data */
MQLONG HeaderLength; /* Reserved */
MQLONG MsgInLength; /* Length of input message data */
MQLONG MsgOutLength; /* Length of output message data */
MQLONG DestinationType; /* Type of destination for message */
PMQMD MsgDescPtr; /* Address of message descriptor */
PMQVOID MsgInPtr; /* Address of input message data */
PMQVOID MsgOutPtr; /* Address of output message data */
MQCHAR48 StreamName; /* Name of stream */
MQCHAR48 QMgrName; /* Name of local queue manager */
MQCHAR48 DestinationQName; /* Name of destination queue */
MQCHAR48 DestinationQMgrName; /* Name of destination queue

manager */
} MQPXP;

Writing a publish/subscribe routing exit program
The MQSeries Publish/Subscribe routing exit is a stream related exit; the
parameters (for example, ExitUserArea) passed to the exit have the scope of a
stream.

The broker uses two threads per stream and the exit can be invoked under either
thread. The broker does not call the exit for a single stream under two threads
concurrently (that is, the exit does not need to serialize access to the ExitUserArea
or other stream related data).

If the exit uses thread related resources (for example, a connection handle or queue
handle) the exit must manage these resources on a thread basis. The connection
handle obtained by a thread is not usable by any other thread. The exit can use
operating system thread services such as pthread_set_specific and
pthread_get_specific on Unix, or TlsSetValue and TlsGetValue on Windows NT
and Windows 2000 to manage thread related resources.

The routing exit is called before a broker sends a publication to a subscriber or
another broker. It is also called at initialization and termination of a stream.

Limitations on MQSeries work done in the routing exit
When writing routing exit programs, be aware of the following restrictions on MQI
calls:
v Do not issue MQDISC.
v Do not issue MQCMIT or MQBACK within the exit:

– If you are using SyncPointIfPersistent=yes (described in “Broker
configuration stanza” on page 102), do not take recoverable action within the
exit when processing nonpersistent messages.

– If you are using SyncPointIfPersistent=no, or persistent messages, the exit is
invoked within the scope of the publication unit of work.

Publish/subscribe routing exit

132 MQSeries Publish/Subscribe User’s Guide

Security considerations
If the routing exit changes the destination queue or queue manager name, by
default no new authority check is carried out.

Compiling a publish/subscribe routing exit program
The routing exit is a dynamically loaded library; it can be thought of as a
channel-exit. For information on writing and compiling channel-exit programs see
the MQSeries Intercommunication book.

Sample routing exit
A sample routing exit program is provided with MQSeries Publish/Subscribe (see
“Chapter 9. Sample programs” on page 91). The exit sample is invoked using the
RoutingExitPath in the Broker stanza of queue manager initialization file (see
“Broker configuration stanza” on page 102).

The sample program changes either the destination queue or queue manager,
depending upon the parameters supplied, as follows:
v If the destination of the message is an application, and the stream name is the

default stream:
– If the destination queue name is Q1, change it to Q2
– If the destination queue name is Q2, change it to Q3
– If the destination queue name is Q3, change it to Q4

v If the destination of the message is a broker, and the stream name is
MY.ROUTING.STREAM:
– If the destination queue manager is queue manager 1, change it to queue

manager 2.
– If the destination queue manager is queue manager 2, change it to queue

manager 3.
– If the destination queue manager is queue manager 3, change it to queue

manager 4.

Routing exit program

Chapter 13. Message broker exit 133

Sample routing exit

134 MQSeries Publish/Subscribe User’s Guide

Part 4. System programming

Chapter 14. Writing system management
applications 137
Format of broker administration messages. . . . 137

Subscription deregistered message 138
Stream deleted message 138
Broker deleted message 138
Stream support messages 139
Children messages 139
Parent messages 139

MQCFH - PCF header 139
Reason codes returned from publish/subscribe
messages 141

PCF Command Messages 142
Delete Publication 143
Deregister Publisher 143
Deregister Subscriber 143
Publish 144
Register Publisher 144
Register Subscriber 145
Request Update 145

Chapter 15. Finding out about other publishers
and subscribers 147
Metatopics 147
Subscribing to metatopics 148

Using wildcards 149
Example requests 149

Authorized metatopics 149
Finding out about brokers 149
Message format for metatopics 150

Parameters 150
Sample program for administration information 152

Operation 153
Example of metatopic information 153

© Copyright IBM Corp. 1998, 2001 135

136 MQSeries Publish/Subscribe User’s Guide

Chapter 14. Writing system management applications

Brokers communicate with their neighbors in the hierarchy to establish the
topology, and to inform their neighbors about the streams they support. They do
this by publishing broker administration messages, as retained messages, using the
MQSeries Programmable Command Format (PCF).

Please note that the format of administration information (including metatopics)
may be changed in future products.

A PCF message starts with an MQCFH structure, which includes a definition of the
type of command the message represents. This is followed by a succession of
MQCFIN (integer parameter) and MQCFST (string parameter) structures. The PCF
format is described in the MQSeries Programmable System Management book. The
MQSeries administration interface (MQAI) has been provided to help you write
PCF applications. It is described in the MQSeries Administration Interface
Programming Guide and Reference book.

The SYSTEM.BROKER.ADMIN.STREAM queue is used for broker administration
messages. System management applications can subscribe to these messages,
provided that they have the correct security authorization. Subscription requests
for these topics are sent to the SYSTEM.BROKER.CONTROL.QUEUE in the normal
way.

Topics starting ‘MQ/’ are reserved for MQSeries use, but other topics can be
defined. The broker passes these publications to subscribers in the same way as for
other streams.

Brokers publish on the ‘MQ/QMgrName/Children’ and ‘MQ/QMgrName/Parent’ topics
if applicable. This enables applications to build a view of the broker topology.

The ‘MQ/QMgrName/StreamSupport’ topic is published on by all brokers. This
enables applications to build a view of the stream topology in relation to the
broker topology.

Brokers also publish messages to this queue when a stream or broker has been
deleted, and when a subscription has been deregistered by the broker because it is
no longer valid.

This chapter discusses the following topics:
v “Format of broker administration messages”
v “MQCFH - PCF header” on page 139
v “PCF Command Messages” on page 142

Metatopics are published on the stream to which they relate so the relevant ones
are published on SYSTEM.BROKER.ADMIN.STREAM. For information about
metatopics see “Metatopics” on page 147.

Format of broker administration messages
The broker sends administration messages as Publish messages in PCF format. The
following parameters are always present:

© Copyright IBM Corp. 1998, 2001 137

PublicationOptions (MQCFIN)
MQPUBO_RETAIN_PUBLICATION is set if the publication is retained.

StreamName (MQCFST)
Set to the reserved stream name ‘SYSTEM.BROKER.ADMIN.STREAM’.

Topic (MQCFST)
This is one of the following:
v ‘MQ/QMgrName/Event/SubscriptionDeregistered’
v ‘MQ/QMgrName/Event/StreamDeleted’
v ‘MQ/QMgrName/Event/BrokerDeleted’
v ‘MQ/QMgrName/StreamSupport’
v ‘MQ/QMgrName/Children’
v ‘MQ/QMgrName/Parent’

where QMgrName is the queue manager name of the broker sending the message
(this is 48 characters long padded with blanks if necessary).

PublishTimestamp (MQCFST)
Set to the time of publication (Universal time).

Subscription deregistered message
An ‘MQ/QMgrName/Event/SubscriptionDeregistered’ message is published when a
subscription is deregistered by the broker because it has become invalid (for
example, it is no longer authorized).

For ‘MQ/QMgrName/Event/SubscriptionDeregistered’ messages, the following
group of parameters is published to identify the subscription which has been
removed by the broker.
v RegistrationStreamName
v RegistrationTopic
v RegistrationQMgrName
v RegistrationQName
v RegistrationCorrelId (if applicable)
v RegistrationUserIdentifier
v RegistrationRegistrationOptions

These additional parameters are described in “Message format for metatopics” on
page 150.

Stream deleted message
An ‘MQ/QMgrName/Event/StreamDeleted’ message is published when a stream is
deleted. The following additional parameter is present:

RegistrationStreamName (MQCFST)
Name of deleted stream (parameter identifier:
MQCACF_REG_STREAM_NAME).

Broker deleted message
When a broker is deleted with the dltmqbrk command, it publishes an
‘MQ/QMgrName/Event/BrokerDeleted’ message.

The administrator is advised to stop affected application programs before making
changes to broker network and stream topology. However, a program could be
written to subscribe to these administrative event topics and take appropriate
action. In the case of the BrokerDeleted event, such a program cannot rely on this

Broker administration messages

138 MQSeries Publish/Subscribe User’s Guide

message being propagated to the parent, but the program will receive the message
if it has subscribed to this topic at the affected broker.

Stream support messages
An ‘MQ/QMgrName/StreamSupport’ message (a retained publication) gives
information about which streams the broker supports. The following parameter is
repeated for each stream supported:

SupportedStreamName (MQCFST)
Name of supported stream (parameter identifier:
MQCACF_SUPPORTED_STREAM_NAME).

Children messages
An ‘MQ/QMgrName/Children’ message (a retained publication) gives information
about a broker’s children. It is published only by those brokers that have children.
The following parameter is repeated for each child:

QMgrName (MQCFST)
Queue manager name of child broker (parameter identifier:
MQCACF_CHILD_Q_MGR_NAME).

This list gives all of the broker’s immediate children in the hierarchy.

Parent messages
An ‘MQ/QMgrName/Parent’ message (a retained publication) gives information
about a broker’s parent. It is published only by those brokers that have a parent.
The following parameter occurs once:

QMgrName (MQCFST)
Queue manager name of parent broker (parameter identifier:
MQCACF_PARENT_Q_MGR_NAME).

MQCFH - PCF header
Each message or response in PCF format starts with an MQCFH structure. The
field contents of the MQCFH structure for MQSeries Publish/Subscribe are as
follows:

Type (MQLONG)
Structure type.

The following values are valid:

MQCFT_COMMAND
Command message (for example, Publish, Register Subscribers).

MQCFT_RESPONSE
Message is a response to a command.

StrucLength (MQLONG)
Structure length. The value must be MQCFH_STRUC_LENGTH.

Version (MQLONG)
Structure version number. The value must be MQCFH_VERSION_1.

Command (MQLONG)
Command identifier.

Broker administration messages

Chapter 14. Writing system management applications 139

For a command message, this identifies the function to be performed. For a
response message, it identifies the command to which this is the reply. The
following values are valid:
MQCMD_DELETE_PUBLICATION

Delete Publication
MQCMD_DEREGISTER_PUBLISHER

Deregister Publisher
MQCMD_DEREGISTER_SUBSCRIBER

Deregister Subscriber
MQCMD_PUBLISH

Publish
MQCMD_REGISTER_PUBLISHER

Register Publisher
MQCMD_REGISTER_SUBSCRIBER

Register Subscriber
MQCMD_REQUEST_UPDATE

Request Update
MQCMD_BROKER_INTERNAL

Used internally by brokers

MsgSeqNumber (MQLONG)
Message sequence number. The value must be 1 for MQSeries
Publish/Subscribe messages and responses.

Control (MQLONG)
Control options.

The value must be MQCFC_LAST for MQSeries Publish/Subscribe messages
and responses.

CompCode (MQLONG)
Completion code.

This field is meaningful only for a response; its value is not significant for a
command. The following values are possible:

MQCC_OK
Command completed successfully.

MQCC_WARNING
Command completed with warning.

MQCC_FAILED
Command failed.

Reason (MQLONG)
Reason code qualifying completion code.

This field is meaningful only for a response; its value is not significant for a
command.

The reason codes that might be returned in response to a command are listed
in “Reason codes returned from publish/subscribe messages” on page 141.

ParameterCount (MQLONG)
Count of parameter structures (MQCFIN, MQCFST) following.

The value of this field is zero or greater.

PCF header

140 MQSeries Publish/Subscribe User’s Guide

Reason codes returned from publish/subscribe messages
The following reason codes can be returned by a broker in response to any
command message in PCF format. They are described in the MQSeries
Programmable System Management book.

MQRCCF_CFH_COMMAND_ERROR
Command identifier not valid.

MQRCCF_CFH_CONTROL_ERROR
Control option not valid.

MQRCCF_CFH_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFH_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

MQRCCF_CFH_PARM_COUNT_ERROR
Parameter count not valid.

MQRCCF_CFH_TYPE_ERROR
Type not valid.

MQRCCF_CFH_VERSION_ERROR
Structure version number not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate MQCFIN parameter.

MQRCCF_CFIN_LENGTH_ERROR
MQCFIN structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate MQCFST parameter.

MQRCCF_CFST_LENGTH_ERROR
MQCFST structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
MQCFST string length not valid.

MQRCCF_COMMAND_FAILED
Command failed.

MQRCCF_ENCODING_ERROR
Encoding error.

MQRCCF_INCORRECT_Q
Command sent to wrong broker queue.

MQRCCF_MD_FORMAT_ERROR
Format not valid.

MQRCCF_MSG_LENGTH_ERROR
Message length not valid.

MQRCCF_PARM_COUNT_TOO_SMALL
Mandatory parameter for command missing.

PCF header

Chapter 14. Writing system management applications 141

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type invalid.

The following reason codes might be returned by a broker in response to a
command message in PCF format, depending on the parameters used in that
message. They are described in “Appendix A. Reason codes” on page 159.

MQRCCF_CORREL_ID_ERROR
Correlation identifier used as part of identity but is all binary zero.

MQRCCF_DEL_OPTIONS_ERROR
Invalid delete options supplied.

MQRCCF_DUPLICATE_IDENTITY
Publisher or subscriber identity already assigned to another user ID.

MQRCCF_INCORRECT_STREAM
Stream name different from queue name.

MQRCCF_NO_RETAINED_MSG
No retained message exists for this topic.

MQRCCF_NOT_AUTHORIZED
Subscriber not authorized to browse broker’s stream queue or subscriber
queue.

MQRCCF_NOT_REGISTERED
Publisher or subscriber not registered.

MQRCCF_PUB_OPTIONS_ERROR
Invalid publication options supplied.

MQRCCF_Q_MGR_NAME_ERROR
Queue manager name invalid.

MQRCCF_Q_NAME_ERROR
Queue name invalid.

MQRCCF_REG_OPTIONS_ERROR
Invalid registration options supplied.

MQRCCF_STREAM_ERROR
Stream name too long or contains invalid characters.

MQRCCF_TOPIC_ERROR
Topic name has an invalid length or contains invalid characters.

MQRCCF_UNKNOWN_STREAM
Stream not defined to broker and cannot be created.

PCF Command Messages
This section lists the parameters and options that are relevant for each command
message in PCF format. Parameter identifiers and types (MQCFIN or MQCFST) are
shown. Broker administration and metatopic messages use the PCF format.

The usage of each parameter and option is the same as for the corresponding
command messages in RFH format, which are described in “Chapter 7.
Publish/Subscribe command messages” on page 63. In principle, publishers and
subscribers could send command messages to a broker in PCF format. This is not
recommended. You should use the RFH format for command messages to ensure
interoperability with other MQSeries business integration functions.

PCF header

142 MQSeries Publish/Subscribe User’s Guide

Delete Publication
Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

DeleteOptions (MQCFIN)
Delete options (parameter identifier: MQIACF_DELETE_OPTIONS).

The following option can be set:
MQDELO_LOCAL

StreamName (MQCFST)
Stream name (parameter identifier: MQCACF_STREAM_NAME).

Deregister Publisher
RegistrationOptions (MQCFIN)

Registration options (parameter identifier:
MQIACF_REGISTRATION_OPTIONS).

The following options can be set:
MQREGO_DEREGISTER_ALL
MQREGO_CORREL_ID_AS_IDENTITY

StreamName (MQCFST)
Stream name (parameter identifier: MQCACF_STREAM_NAME).

Topic (MQCFST)
Topic (parameter identifier: MQCACF_TOPIC).

QMgrName (MQCFST)
Publisher’s queue manager name (parameter identifier:
MQCA_Q_MGR_NAME).

QName (MQCFST)
Publisher’s queue name (parameter identifier: MQCA_Q_NAME).

Deregister Subscriber
RegistrationOptions (MQCFIN)

Registration options (parameter identifier:
MQIACF_REGISTRATION_OPTIONS).

The following options can be set:
MQREGO_DEREGISTER_ALL
MQREGO_CORREL_ID_AS_IDENTITY

StreamName (MQCFST)
Stream name (parameter identifier: MQCACF_STREAM_NAME).

Topic (MQCFST)
Topic (parameter identifier: MQCACF_TOPIC).

QMgrName (MQCFST)
Subscriber’s queue manager name (parameter identifier:
MQCA_Q_MGR_NAME).

QName (MQCFST)
Subscriber’s queue name (parameter identifier: MQCA_Q_NAME).

PCF Command Messages

Chapter 14. Writing system management applications 143

Publish
Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

RegistrationOptions (MQCFIN)
Registration options (parameter identifier:
MQIACF_REGISTRATION_OPTIONS).

The following options can be set:
MQREGO_ANONYMOUS
MQREGO_LOCAL
MQREGO_DIRECT_REQUESTS
MQREGO_CORREL_ID_AS_IDENTITY

PublicationOptions (MQCFIN)
Publication options (parameter identifier: MQIACF_PUBLICATION_OPTIONS).

The following options can be set:
MQPUBO_NO_REGISTRATION
MQPUBO_RETAIN_PUBLICATION
MQPUBO_IS_RETAINED_PUBLICATION
MQPUBO_OTHER_SUBSCRIBERS_ONLY
MQPUBO_CORREL_ID_AS_IDENTITY

StreamName (MQCFST)
Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)
Publisher’s queue manager name (parameter identifier:
MQCA_Q_MGR_NAME).

QName (MQCFST)
Publisher’s queue name (parameter identifier: MQCA_Q_NAME).

PublishTimestamp (MQCFST)
Publication timestamp (parameter identifier:
MQCACF_PUBLISH_TIMESTAMP).

SequenceNumber (MQCFIN)
Publication sequence number (parameter identifier:
MQIACF_SEQUENCE_NUMBER).

StringData (MQCFST)
String publication data (parameter identifier: MQCACF_STRING_DATA).

IntegerData (MQCFIN)
Integer publication data (parameter identifier: MQIACF_INTEGER_DATA).

Register Publisher
Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

RegistrationOptions (MQCFIN)
Registration options (parameter identifier:
MQIACF_REGISTRATION_OPTIONS).

The following options can be set:
MQREGO_ANONYMOUS
MQREGO_LOCAL
MQREGO_DIRECT_REQUESTS
MQREGO_CORREL_ID_AS_IDENTITY

PCF Command Messages

144 MQSeries Publish/Subscribe User’s Guide

StreamName (MQCFST)
Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)
Publisher’s queue manager name (parameter identifier:
MQCA_Q_MGR_NAME).

QName (MQCFST)
Publisher’s queue name (parameter identifier: MQCA_Q_NAME).

Register Subscriber
Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

RegistrationOptions (MQCFIN)
Registration options (parameter identifier:
MQIACF_REGISTRATION_OPTIONS).

The following options can be set:
MQREGO_ANONYMOUS
MQREGO_LOCAL
MQREGO_NEW_PUBLICATIONS_ONLY
MQREGO_PUBLISH_ON_REQUEST_ONLY
MQREGO_CORREL_ID_AS_IDENTITY
MQREGO_INCLUDE_STREAM_NAME
MQREGO_INFORM_IF_RETAINED

StreamName (MQCFST)
Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)
Subscriber’s queue manager name (parameter identifier:
MQCA_Q_MGR_NAME).

QName (MQCFST)
Subscriber’s queue name (parameter identifier: MQCA_Q_NAME).

Request Update
Topic (MQCFST)

Topic (parameter identifier: MQCACF_TOPIC).

RegistrationOptions (MQCFIN)
Registration options (parameter identifier:
MQIACF_REGISTRATION_OPTIONS).

The following option can be set:
MQREGO_CORREL_ID_AS IDENTITY

StreamName (MQCFST)
Stream name (parameter identifier: MQCACF_STREAM_NAME).

QMgrName (MQCFST)
Subscriber’s queue manager name (parameter identifier:
MQCA_Q_MGR_NAME).

QName (MQCFST)
Subscriber’s queue name (parameter identifier: MQCA_Q_NAME).

PCF Command Messages

Chapter 14. Writing system management applications 145

PCF Command Messages

146 MQSeries Publish/Subscribe User’s Guide

Chapter 15. Finding out about other publishers and
subscribers

Brokers publish information about the publishers and subscribers that are
registered with them. The information is published as a special set of topics,
known as metatopics, within each supported stream. They are published as
persistent messages, and use the default priority for the stream queue (at the last
time the broker started).

Applications can subscribe to this information in the same way as they can register
any other subscription. Whenever the information changes, brokers publish the
changed information in the form of retained publications so that new subscribers
to it will receive the current state.

Metatopic command messages can be sent to a broker using the MQSeries
Programmable Command Format (PCF), which is described in “Chapter 14.
Writing system management applications” on page 137. Publications containing the
metatopic data will be sent in PCF format, as will any broker response messages.
This is illustrated in the “Sample program for administration information” on
page 152.

Alternatively, metatopic command messages can be sent with the Rules and
Formatting header (RFH), which is described in “Chapter 6. Format of command
messages” on page 53. In this case any broker response messages will be in RFH
format, but publications containing the metatopic data will be sent in PCF format.

This chapter discusses the following topics:
v “Metatopics”
v “Subscribing to metatopics” on page 148
v “Authorized metatopics” on page 149
v “Finding out about brokers” on page 149
v “Message format for metatopics” on page 150

Metatopics
Brokers publish information about the publishers and subscribers that are
registered with them. The information is published as a special set of topics,
known as metatopics, within each supported stream.

Each broker publishes on metatopics to each stream to describe the publishers,
subscribers and topics on that stream. Metatopics include subscribers to
metatopics. All metatopic publications are global.

Metatopics always begin with ‘MQ/’, and topics starting with ‘MQ/’ are reserved
for all streams. These metatopic strings are of the form:
v ‘MQ/S/QMgrName/Publishers/Topics’
v ‘MQ/S/QMgrName/Publishers/Summary’
v ‘MQ/S/QMgrName/Publishers/Summary/Topic’
v ‘MQ/S/QMgrName/Publishers/Identities’
v ‘MQ/S/QMgrName/Publishers/Identities/Topic’
v ‘MQ/SA/QMgrName/Publishers/AllIdentities’
v ‘MQ/SA/QMgrName/Publishers/AllIdentities/Topic’

© Copyright IBM Corp. 1998, 2001 147

v ‘MQ/S/QMgrName/Subscribers/Topics’
v ‘MQ/S/QMgrName/Subscribers/Summary’
v ‘MQ/S/QMgrName/Subscribers/Summary/Topic’
v ‘MQ/S/QMgrName/Subscribers/Identities’
v ‘MQ/S/QMgrName/Subscribers/Identities/Topic’
v ‘MQ/SA/QMgrName/Subscribers/AllIdentities’
v ‘MQ/SA/QMgrName/Subscribers/AllIdentities/Topic’

Where:
v QMgrName is the name of the broker’s queue manager. This is 48 characters long

padded with blanks if necessary.
v Topic is any topic for which the broker has a registered publisher or subscriber

(depending on whether the subscription is for publishers or subscribers).

Metatopics that do not include Topic each represent a single metatopic (for one
broker), so a broker receiving a Register Subscriber message for one of these
metatopics generates one retained Publish message as a result (additional retained
Publish messages are generated whenever the information changes). However, for
metatopics that do include Topic, one retained Publish message is generated for
each registered topic that matches the Topic specification (and again further
messages are generated as the information changes).

The strings in the fifth part of the metatopic offer varying levels of detail, as
follows:

Summary
Minimal information including counts. If Topic is included, one message is
generated for each matching topic.

Topics A list of registered topics in a single message.

Identities
Identities of publishers or subscribers, including user ID and time of
registration. If Topic is included, one message is generated for each
matching topic, otherwise all identities are packaged into a single message.
Anonymous publishers or subscribers are not included (this means that no
message is generated for topics that have only anonymous publishers and
subscribers registered).

AllIdentities
This is the equivalent of Identities for authorized metatopics (see
“Authorized metatopics” on page 149) and gives the same information, but
also includes anonymous publishers and subscribers.

If an application subscribes to an ‘AllIdentities’ metatopic, the application
requires altusr authority for the queue manager, as well as the normal
browse authority for that stream queue.

Subscribing to metatopics
Applications should use this facility carefully because it can produce a large
amount of data. Applications using metatopics are recommended to register
subscriptions with each broker individually (using the
SYSTEM.BROKER.ADMIN.STREAM to determine the queue manager names of the
brokers). These applications are recommended to subscribe only to the information
from that broker and set the MQREGO_PUBLISH_ON_REQUEST option in the
Register Subscriber message and use Request Update to minimize network traffic.

Metatopics

148 MQSeries Publish/Subscribe User’s Guide

Using wildcards
Metatopics describing subscribers include information about wildcard
subscriptions. This is an exception to the rule that publications should not include
wildcards in their topics.

In subscriptions to metatopics, wildcards can be used in the usual way. For
example, if the metatopic ‘MQ/S/QM1/Publishers/S*’ is specified, this matches
‘MQ/S/QM1/Publishers/Summary’ plus all of the
‘MQ/S/QM1/Publishers/Summary/Topic’ metatopics (one for each topic
registered implicitly or explicitly for publishers, except for those published
anonymously), and the broker sends this number of retained Publish messages as
a result.

If the metatopic ‘MQ/S/QM1/Subscribers/S*’ is specified, the resultant messages
show all the topics registered for subscribers (except for those registered
anonymously), including wildcard subscriptions. (The wildcard characters in
metatopics only match wildcard subscriptions.)

A wildcard subscription of the form ‘*’ will give all topics on a stream except for
the metatopics. You need to specify at least the first five characters (‘MQ/S/’) to
receive publications about metatopics.

Example requests
The following examples show valid metatopic requests.
v To find out what topics are being published on QM22 in a single Publish

message:
MQ/S/QM22/Publishers/Topics

No information is returned about publishers’ identities.
v To find the identities of each subscriber (except anonymous subscribers) on all

brokers in the network, for any topics starting with ‘Trade/’:
MQ/S/*/Subscribers/Identities/Trade/*

One Publish message is generated for each matching topic, by each broker.
Requesting this much information could have an adverse effect on the
performance of your system.

Authorized metatopics
There is a subclass of metatopics, called authorized metatopics, that are only
available to users with altusr authority for that queue manager. These show the
identities of all publishers and subscribers including the anonymous ones.
Subscribers (who must be authorized) will only receive authorized metatopics by
specifying at least the first six characters ‘MQ/SA/’. A wildcard subscription of the
form ’MQ/S*’ will give no metatopics at all, ‘MQ/SA/*’ will give all the
authorized metatopics and ‘MQ/S/*’ will give all the others.

Finding out about brokers
To find out about all brokers, a subscriber can specify a Topic parameter of, say,
‘MQ/S/*/Publishers/Summary’. If no StreamName parameter is specified, this
defaults to the default stream, which all brokers support. At least one message will
be received from each broker that is connected. More than one message might be

Subscribing to metatopics

Chapter 15. Finding out about other publishers and subscribers 149

received from a broker if the state changes. For efficiency, however, it is
recommended to register a subscription with each broker individually.

To determine which brokers support a particular stream, the program can issue the
Register Subscriber command to the SYSTEM.BROKER.ADMIN.STREAM at its
local broker and specify an appropriate StreamSupport topic.

Message format for metatopics
These messages are sent as Publish messages in PCF format with
MQPUBO_RETAIN_PUBLICATION (for ongoing subscriptions registered with
Register Subscriber). In these messages, Command is MQCMD_PUBLISH, and Type
is MQCFT_COMMAND.

The following table summarizes which parameters are included for which
metatopics. An explanation of each parameter follows the table.

Table 6. Parameters for publisher and subscriber information messages

Topics Summary Summary
/<Topic>

Identities �1� Identities
/<Topic> �1�

Number of messages sent 1 1 1 per topic 1 1 per topic

StreamName Y Y Y Y Y

Topic Y Y Y Y Y

PublishTimestamp Y Y Y Y Y

BrokerCount Y Y Y Y Y

ApplCount Y Y Y Y Y

AnonymousCount Y Y Y Y Y

RegistrationTopic Y �2� N N �3� N N �3�

RegistrationQMgrName N N N Y Y

RegistrationQName N N N Y Y

RegistrationCorrelId N N N Y Y

RegistrationUserIdentifier N N N Y Y

RegistrationRegistrationOptions N N N N Y

RegistrationTime N N N N Y

Notes:

�1� ‘AllIdentities’ subscriptions are the same except that they include anonymous as well as non-anonymous
publishers and subscribers.

�2� Repeated for each registered topic.

�3� Topic parameter contains the registered topic.

Parameters
These parameters might be included in publisher and subscriber information
messages sent by the broker. Table 6 summarizes the parameters that are used for
each metatopic.

StreamName (MQCFST)
Stream Name (parameter identifier: MQCACF_STREAM_NAME).

Name of the stream for which this information applies.

Finding out about brokers

150 MQSeries Publish/Subscribe User’s Guide

Topic (MQCFST)
Topic (parameter identifier: MQCACF_TOPIC).

The metatopic under which this publication is published. These are listed in
“Metatopics” on page 147.

PublishTimestamp (MQCFST)
Time this Publish message was generated (parameter identifier:
MQCACF_PUBLISH_TIMESTAMP).

This is of length 16 characters, in the format YYYYMMDDHHMMSSTH, using Universal
Time.

BrokerCount (MQCFIN)
Number of broker publishers or subscribers (parameter identifier:
MQIACF_BROKER_COUNT).

Count of publisher or subscriber registrations from brokers, for the specified
topic if this is a ‘MQ/QMgrName/.../Topic’ message.

For publishers, this count is normally zero, as brokers do not register as
publishers. The role of a broker in acting as a publisher itself for metatopics on
stream queues is not counted, nor is its role as a publisher for administrative
topics on the SYSTEM.BROKER.ADMIN.STREAM stream.

ApplCount (MQCFIN)
Number of application publishers or subscribers (parameter identifier:
MQIACF_APPL_COUNT).

Count of publisher or subscriber registrations from applications, for the
specified topic if this is a ‘MQ/S/QMgrName/.../Topic’ or
‘MQ/SA/QMgrName/.../Topic’ message. The latter includes anonymous
registrations.

AnonymousCount (MQCFIN)
Number of anonymous publishers or subscribers (parameter identifier:
MQIACF_ANONYMOUS_COUNT).

Count of anonymous publisher or subscriber registrations from applications,
for the specified topic if this is a ‘MQ/SA/QMgrName/.../Topic’ message.

RegistrationTopic (MQCFST)
Topic (parameter identifier: MQCACF_REG_TOPIC).

A topic for which at least one publisher or subscriber is registered. Wildcards
are not present for publishers, but might be for subscribers.

This parameter is repeated for as many topics as necessary for
‘MQ/S/QMgrName/Publishers/Topics’ and
‘MQ/S/QMgrName/Subscribers/Topics’ messages. Each topic is present only
once, even if there are several publishers or subscribers registered for the same
topic.

RegistrationQMgrName (MQCFST)
Publisher’s or subscriber’s queue manager name (parameter identifier:
MQCACF_REG_Q_MGR_NAME).

RegistrationQName (MQCFST)
Publisher’s or subscriber’s queue name (parameter identifier:
MQCACF_REG_Q_NAME).

RegistrationCorrelId (MQCFST)
Publisher’s or subscriber’s correlation identifier (parameter identifier:
MQCACF_REG_CORREL_ID).

Metatopic message format

Chapter 15. Finding out about other publishers and subscribers 151

This is a 48-byte character string of hexadecimal characters representing the
contents of the 24-byte binary correlation identifier. Each character in the string
is in the range 0 through 9 or A through F.

This parameter is present only if the publisher’s or subscriber’s identity
includes a correlation identifier.

RegistrationUserIdentifier (MQCFST)
Publisher’s or subscriber’s user ID (parameter identifier:
MQCACF_REG_USER_ID).

RegistrationRegistrationOptions (MQCFST)
Publisher’s or subscriber’s registration options (parameter identifier:
MQIACF_REG_REG_OPTIONS).

RegistrationOptions parameter as specified (or defaulted) by the publisher or
subscriber when it registered.

RegistrationTime (MQCFST)
Registration time (parameter identifier: MQCACF_REG_TIME).

This is of length 16 characters, in the format YYYYMMDDHHMMSSTH, using Universal
Time.

Sample program for administration information
The sample administration program will attach to a broker, subscribe to the
appropriate streams to obtain the required metatopic information, and then detach
from the broker. The following RegistrationOptions will be used:

MQREGO_ANONYMOUS
MQREGO_PUBLISH_ON_REQUEST_ONLY

The information listed below can be dumped into a file or to standard output.
1. The parent and children for the broker.
2. All the streams supported at the broker (unless overridden by the -s option).
3. All the subscribers and publishers registered for these streams (unless

overridden by the -p or -u options), with the following parameters:
StreamName
Topic (max 255 chars)
BrokerCount
ApplCount
AnonymousCount
RegistrationQMgrName
RegistrationQName
RegistrationCorrelId
RegistrationUserIdentifier
RegistrationRegistrationOptions
RegistrationTime

4. All retained messages at the broker for the given topic (if and only if the -r
option is set), with the following parameters:

StreamName
Topic (max 255 chars)
StringData (max 255 chars, PCF only)
IntegerData (PCF only)
QMgrName
QName
SequenceNumber
PublishTimestamp

Metatopic message format

152 MQSeries Publish/Subscribe User’s Guide

Expiry

Operation
To run the sample administration program, first run amqspsda.tst on the queue
manager. Then enter the following:
amqspsd options

where options are:

-l LogFileName
The name of the log file that the information is sent to.

The default is that output will be sent to the screen (stdio).

-m QMgrName
The queue manager name.

The default is that the default queue manager will be used.

-q QName
The name of the queue which is subscribed to.

The default is that the program will attempt to create a permanent-dynamic
queue based on AMQSPSDA.PERMDYN.MODEL.QUEUE. This queue will be
deleted at program termination.

-s StreamName
The stream name.

The default is that all streams will be dumped.

-t Topic
The topic.

The default is that * (all topics) will be used as the topic.

-r Topic
Dump retained messages for this topic (* can be used for all topics).

The default is not to dump retained messages.

-p Dump information for publishers only.

The default is to dump information for publishers and subscribers.

-u Dump information for subscribers only.

The default is to dump information for publishers and subscribers.

-a Dump information for anonymous publishers and subscribers.

The default is to dump information for non-anonymous publishers and
subscribers.

On successful termination, zero will be returned to any calling application.

Example of metatopic information
Here is an example of output from the sample administration program, which was
obtained from a newly created broker using:
amqspsd -m PubSub -r *

It shows two retained messages, one in RFH and one in PCF format.

Sample administration program

Chapter 15. Finding out about other publishers and subscribers 153

MQSeries Message Broker Dumper
Start time Wed-18-Nov-1998 10:35:31

Broker Hierarchy

QMgrName:

PubSub
Parent:

None
Children:

None

Streams supported

SYSTEM.BROKER.DEFAULT.STREAM
SYSTEM.BROKER.ADMIN.STREAM

Publishers

StreamName: SYSTEM.BROKER.ADMIN.STREAM

None
StreamName: SYSTEM.BROKER.DEFAULT.STREAM

Topic: Topic 3
BrokerCount: 0
ApplCount: 1
AnonymousCount: 0
RegistrationQMgrName: PubSub
RegistrationQName: Q2
RegistrationUserIdentifier: hgdd
RegistrationRegistrationOptions: 0 : MQREGO_NONE
RegistrationTime: 1998111810350435

Topic: Topic 2
BrokerCount: 0
ApplCount: 1
AnonymousCount: 0
RegistrationQMgrName: PubSub
RegistrationQName: Q2
RegistrationUserIdentifier: hgdd
RegistrationRegistrationOptions: 0 : MQREGO_NONE
RegistrationTime: 1998111810350435

Topic: Topic 1
BrokerCount: 0
ApplCount: 1
AnonymousCount: 0
RegistrationQMgrName: PubSub
RegistrationQName: Q1
RegistrationUserIdentifier: hgdd
RegistrationRegistrationOptions: 0 : MQREGO_NONE
RegistrationTime: 1998111810341148

Subscribers

StreamName: SYSTEM.BROKER.ADMIN.STREAM

Topic: MQ/PubSub /StreamSupport
BrokerCount: 0
ApplCount: 1
AnonymousCount: 0
RegistrationQMgrName: PubSub
RegistrationQName: SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
RegistrationCorrellId: 414D5159010100000000000000000000000000000000
RegistrationUserIdentifier: mqm
RegistrationRegistrationOptions: 17 : MQREGO_CORREL_ID_AS_IDENTITY

MQREGO_NEW_PUBLICATIONS_ONLY
RegistrationTime: 1998111810330750

Topic: MQ/S/PubSub /Subscribers/Identities/*
BrokerCount: 0
ApplCount: 1
AnonymousCount: 1

Sample administration program

154 MQSeries Publish/Subscribe User’s Guide

StreamName: SYSTEM.BROKER.DEFAULT.STREAM
Topic: MQ/S/PubSub /Subscribers/Identities/*

BrokerCount: 0
ApplCount: 1
AnonymousCount: 1

Retained messages

StreamName: SYSTEM.BROKER.DEFAULT.STREAM

RFH Message
Expiry: -1
Topic: Topic 2
Topic: Topic 3
QMgrName: PubSub
QName: Q2
SequenceNumber: None
PublishTimestamp: None

**** Message **** length - 92 bytes

0000: 0100 0000 2400 0000 0100 0000 0000 0000 '....¢...........'
0010: 0100 0000 0100 0000 0000 0000 0000 0000 '................'
0020: 0200 0000 0400 0000 2800 0000 DB0B 0000 '........(...³...'
0030: 0000 0000 1200 0000 4D79 2072 6574 6169 '........My retai'
0040: 6E65 6420 7374 7269 6E67 0000 0300 0000 'ned string......'
0050: 1000 0000 3804 0000 15CD 5B07 '....8...."£. '

PCF Message
Expiry: -1
Topic: Topic 1
QMgrName: PubSub
QName: Q1
SequenceNumber: None
PublishTimestamp: None
IntegerData: 123456789
StringData: My retained string

Sample administration program

Chapter 15. Finding out about other publishers and subscribers 155

156 MQSeries Publish/Subscribe User’s Guide

Part 5. Appendixes

© Copyright IBM Corp. 1998, 2001 157

158 MQSeries Publish/Subscribe User’s Guide

Appendix A. Reason codes

This appendix describes the MQRCCF_* and MQRC_RFH_* reason codes that can
be issued by the broker.

If the code you are looking for is not in this list, see the MQSeries Programmable
System Management book for information. The MQRC_* return codes issued by the
broker are described in the MQSeries Application Programming Reference book.

MQRCCF_BROKER_DELETED
Broker has been deleted.

When a broker is deleted using the dltmqbrk command all broker queues
created by the broker will be deleted. Before this can be done the queues are
emptied of all command messages; any found are placed on the dead-letter
queue with this reason code.

Corrective action: Process the command messages that were placed on the
dead-letter queue.

MQRCCF_CORREL_ID_ERROR
Correlation identifier used as part of an identity is all binary zeroes.

Each publisher and subscriber is identified by a queue manager name, a queue
name, and optionally a correlation identifier. The correlation identifier is
typically used to allow multiple subscribers to share the same subscriber
queue. In this instance a publisher or subscriber has indicated within the
Registration or Publication options supplied on the command that their
identity does include a correlation identifier, but a valid identifier has not been
supplied.

Corrective action: Retry the command ensuring that the correlation identifier
supplied in the message descriptor of the command message is not all binary
zeroes.

MQRCCF_DEL_OPTIONS_ERROR
Invalid delete options have been supplied.

The options provided with a Delete Publication command are not valid.

Corrective action: Retry the command with a valid combination of options.

MQRCCF_DUPLICATE_IDENTITY
Publisher or subscriber identity already assigned to another user ID.

Each publisher and subscriber has a unique identity consisting of a queue
manager name, a queue name, and optionally a correlation identifier.
Associated with each identity is the user ID under which that publisher or
subscriber first registered. A given identity can only be assigned to one user ID
at a time. While the identity is registered with the broker all commands
wanting to use it must specify the correct user ID. When a publisher or a
subscriber no longer has any registrations with the broker the identity can be
used by another user ID.

Corrective action: Either retry the command using a different identity or
remove all registrations associated with the identity so that it can be used by a
different user ID. The user ID to which the identity is currently assigned is
returned within the error response message. A Deregister command could be
issued to remove these registrations. If the user ID in question cannot be used

© Copyright IBM Corp. 1998, 2001 159

to execute such a command, you will need to have the necessary authority to
open the SYSTEM.BROKER.CONTROL.QUEUE using the
MQOO_ALTERNATE_USER_AUTHORITY option.

MQRCCF_ENCODING_ERROR
Encoding error.

The Encoding field in the message descriptor of the command does not match
that required for the platform at which the command is being processed.

Corrective action: Construct the command with the correct encoding, and
specify this in the message descriptor when sending the command.

MQRCCF_INCORRECT_Q
Command sent to wrong broker queue.

The command is a valid broker command but the queue it has been sent to is
incorrect. Publish and Delete Publication commands need to be sent to the
stream queue, all other commands need to be sent to the
SYSTEM.BROKER.CONTROL.QUEUE.

Corrective action: Retry the command by sending it to the correct queue.

MQRCCF_INCORRECT_STREAM
Stream name does not match the stream queue it was sent to.

A command has been sent to a stream queue that specified a different stream
name parameter.

Corrective action: Retry the command either by sending it to the correct stream
queue or by modifying the command so that the stream name parameter
matches.

MQRCCF_MD_FORMAT_ERROR
Format not valid.

The MQMD Format field value was not MQFMT_ADMIN.

Corrective action: Specify the valid format.

MQRCCF_MSG_LENGTH_ERROR
Message length not valid.

A message length error was detected. The message data length was
inconsistent with the length implied by the parameters in the message, or a
positional parameter was out of sequence.

Corrective action: Specify a valid message length, and check that positional
parameters are in the correct sequence.

MQRCCF_NO_RETAINED_MSG
No retained message exists for the topic specified.

A Request Update command has been issued to request the retained message
associated with the specified topic. No retained message exists for that topic.

Corrective action: If the topic or topics in question should have retained
messages the publishers of these topics might not be publishing with the
correct publication options to cause their publications to be retained.

MQRCCF_NOT_AUTHORIZED
Subscriber has insufficient authority.

To receive publications a subscriber application needs both browse authority
for the stream queue that it is subscribing to, and put authority for the queue
that publications are to be sent to. Subscriptions are rejected if the subscriber

Reason codes

160 MQSeries Publish/Subscribe User’s Guide

does not have both authorities. In addition to having browse authority for the
stream queue, a subscriber would also require altusr authority for the stream
queue in order to subscribe to certain topics that the broker itself publishes
information on. These topics start with the MQ/SA/ prefix.

Corrective action: Ensure that the subscriber has the necessary authorities and
re-issue the request. The problem might occur because the subscriber’s user ID
is not known to the broker. This can be identified if a further error reason code
of MQRC_UNKNOWN_ENTITY is returned within the error response
message.

MQRCCF_NOT_REGISTERED
Subscriber or publisher is not registered.

A Deregister command has been issued to remove registrations for a topic, or
topics, for which the publisher or subscriber is not registered. If multiple topics
were specified on the command it will fail with a completion code of
MQCC_WARNING if the publisher or subscriber was registered for some, but
not all, of the topics specified. This error code is also returned to a subscriber
issuing a Request Update command for a topic for which he does not have a
subscription.

Corrective action: Investigate why the publisher or subscriber is not registered.
In the case of a subscriber, the subscriptions might have expired, or been
removed automatically by the broker if the subscriber is no longer authorized.

MQRCCF_PUB_OPTIONS_ERROR
Invalid publication options have been supplied.

The publication options provided on a Publish command are not valid.

Corrective action: Retry the command with a valid combination of options.

MQRCCF_Q_MGR_NAME_ERROR
An invalid or unknown queue manager name has been supplied.

A queue manager name has been supplied as part of a publisher or subscriber
identity. This might have been supplied as an explicit parameter or in the
ReplyToQMgr field in the message descriptor of the command. Either the queue
manager name is not valid, or in the case of a subscriber identity, the
subscriber’s queue could not be resolved because the remote queue manager is
not known to the broker queue manager.

Corrective action: Retry the command with a valid queue manager name. If
appropriate the broker will include a further error reason code within the error
response message. If one is supplied then follow the guidance for that reason
code in the MQSeries Application Programming Reference book to resolve the
problem.

MQRCCF_Q_NAME_ERROR
An invalid or unknown queue name has been supplied.

A queue name has been supplied as part of a publisher or subscriber identity.
This might have been supplied as an explicit parameter or in the ReplyToQ field
in the message descriptor of the command. Either the queue name is not valid,
or in the case of a subscriber identity, the broker has failed to open the queue.

Corrective action: Retry the command with a valid queue name. If appropriate
the broker will include a further error reason code within the error response
message. If one is supplied then follow the guidance for that reason code in
the MQSeries Application Programming Reference book to resolve the problem.

Reason codes

Appendix A. Reason codes 161

MQRCCF_REG_OPTIONS_ERROR
Invalid registration options have been supplied.

The registration options provided on a command are not valid.

Corrective action: Retry the command with a valid combination of options.

MQRCCF_STREAM_ERROR
Stream name is not valid.

The stream name parameter is not valid. Stream names must obey the same
naming rules as for MQSeries queues.

Corrective action: Retry the command with a valid stream name parameter.

MQRCCF_TOPIC_ERROR
Topic name is invalid.

A command has been sent to the broker containing a topic name that is not
valid. Note that wildcard topic names are not allowed for Register Publisher
and Publish commands.

Corrective action: Retry the command with a valid topic name parameter. Up
to 256 characters of the topic name in question are returned with the error
response message. If the topic name contains a null character this is assumed
to terminate the string and is not considered to be part of it. A zero length
topic name is not valid, as is one which contains an escape sequence that is not
valid.

MQRCCF_UNKNOWN_BROKER
Command received from an unknown broker.

Within a multi-broker network, related brokers pass subscriptions and
publications between each other as a series of command messages. One such
command message has been received from a broker that is not, or is no longer,
related to the detecting broker.

Corrective action: This situation can occur if the broker network is not quiesced
while topology changes are made to the network. When removing a broker
from the network ensure that the channels between the two related brokers in
question are active.

MQRCCF_UNKNOWN_STREAM
Stream is not known by the broker or could not be created.

A command message has been put to the
SYSTEM.BROKER.CONTROL.QUEUE for an unknown stream. This error code
is also returned if dynamic stream creation is enabled and the broker failed to
create a stream queue for the new stream using the
SYSTEM.BROKER.MODEL.STREAM queue.

Corrective action: Retry the command for a stream that the broker supports. If
the broker should support the stream, either define the stream queue manually,
or correct the problem which prevented the broker from creating the stream
queue itself.

MQRC_RFH_COMMAND_ERROR
Command not valid.

The message contains an MQRFH structure, but the command name contained
in the NameValueString field is not valid.

Corrective action: Modify the application that generated the message to ensure
that it places in the NameValueString field a command name that is valid.

Reason codes

162 MQSeries Publish/Subscribe User’s Guide

MQRC_RFH_DUPLICATE_PARM
Duplicate parameter.

The message contains an MQRFH structure, but a parameter occurs more than
once in the NameValueString field when only one occurrence is valid for the
specified command.

Corrective action: Modify the application that generated the message to ensure
that it places in the NameValueString field only one occurrence of the
parameter.

MQRC_RFH_ERROR
MQRFH structure not valid.

The message contains an MQRFH structure, but the structure is not valid.

Corrective action: Modify the application that generated the message to ensure
that it places a valid MQRFH structure in the message data. You may find it
helpful to stop the broker and rerun the failing application. The amqsbcg
sample program can then be used to examine the failing input message on the
broker’s queue.

MQRC_RFH_PARM_ERROR
Parameter not valid.

The message contains an MQRFH structure, but a parameter name contained
in the NameValueString field is not valid for the command specified.

Corrective action: Modify the application that generated the message to ensure
that it places in the NameValueString field only parameters that are valid for
the specified command.

MQRC_RFH_PARM_MISSING
Parameter missing.

The message contains an MQRFH structure, but the command specified in the
NameValueString field requires a parameter that is not present.

Corrective action: Modify the application that generated the message to ensure
that it places in the NameValueString field all parameters that are required for
the specified command.

MQRC_RFH_STRING_ERROR
″NameValueString″ field not valid.

The contents of the NameValueString field in the MQRFH structure are not
valid. NameValueString must adhere to the following rules:
v The string must consist of zero or more name/value pairs separated from

each other by one or more blanks; the blanks are not significant.
v If a name or value contains blanks that are significant, the name or value

must be enclosed in double-quote characters.
v If a name or value itself contains one or more double-quote characters, the

name or value must be enclosed in double-quote characters, and each
embedded double-quote character must be doubled.

v A name or value can contain any characters other than the null, which acts
as a delimiter. The null and characters following it, up to the defined length
of NameValueString, are ignored.

The following is a valid NameValueString:
Famous_Words "The program displayed ""Hello World"""

Reason codes

Appendix A. Reason codes 163

Corrective action: Modify the application that generated the message to ensure
that it places in the NameValueString field data that adheres to the rules listed
above. Check that the StrucLength field is set to the correct value.

Reason codes

164 MQSeries Publish/Subscribe User’s Guide

Appendix B. Error messages

AMQ5805 MQSeries message broker currently
running for queue manager.

Explanation: The command was unsuccessful because
queue manager &3 currently has an MQSeries message
broker running.

User action: None.

AMQ5806 MQSeries message broker started for
queue manager &3.

Explanation: MQSeries message broker started for
queue manager &3.

User action: None.

AMQ5807 MQSeries message broker for queue
manager &3 ended.

Explanation: The MQSeries message broker on queue
manager &3 has ended.

User action: None.

AMQ5808 MQSeries message broker for queue
manager &3 is already quiescing.

Explanation: The endmqbrk command was
unsuccessful because an orderly shutdown of the
MQSeries message broker running on queue manager
&3 is already in progress.

User action: None.

AMQ5809 MQSeries message broker for queue
manager &3 starting.

Explanation: The dspmqbrk command has been
issued to query the state of the MQSeries message
broker. The MQSeries broker is currently initializing.

User action: None.

AMQ5810 MQSeries message broker for queue
manager &3 running.

Explanation: The dspmqbrk command has been
issued to query the state of the MQSeries message
broker. The MQSeries broker is currently running.

User action: None.

AMQ5811 MQSeries message broker for queue
manager &3 quiescing.

Explanation: The dspmqbrk command has been
issued to query the state of the MQSeries message

broker. The MQSeries broker is currently performing a
controlled shutdown.

User action: None.

AMQ5812 MQSeries message broker for queue
manager &3 stopping.

Explanation: Either the dspmqbrk command or the
endmqbrk command has been issued. The MQSeries
broker is currently performing an immediate shutdown.
If the endmqbrk command has been issued to request
that the broker terminate, the command is unsuccessful
because the broker is already performing an immediate
shutdown.

User action: None.

AMQ5813 MQSeries message broker for queue
manager &3 not active.

Explanation: An MQSeries message broker
administration command has been issued to query or
change the state of the message broker. The MQSeries
broker is not currently running.

User action: None.

AMQ5814 MQSeries message broker for queue
manager &3 ended abnormally.

Explanation: The dspmqbrk command has been
issued to query the state of the MQSeries message
broker. The MQSeries broker has ended abnormally.

User action: Refer to the queue manager error logs to
determine why the broker ended abnormally.

AMQ5815 Invalid MQSeries message broker
initialization file stanza for queue
manager &3.

Explanation: The MQSeries message broker was
started using the strmqbrk command. The Broker
stanza in the queue manager initialization file is not
valid. The broker will terminate immediately. The
attribute which is not valid is &5.

User action: Correct the Broker stanza in the queue
manager initialization file.

AMQ5816 Unable to open MQSeries message
broker control queue for reason &1,&2.

Explanation: The MQSeries message broker has failed
to open the message broker control queue (&3). The
attempt to open the queue failed with completion code
&1 and reason &2.

© Copyright IBM Corp. 1998, 2001 165

The most likely reasons for this error are that an
application program has opened the message broker
control queue for exclusive access, or that the message
broker control queue has been defined incorrectly. The
broker will terminate immediately.

User action: Correct the problem and restart the
broker.

AMQ5817 An invalid stream queue (&3) has been
detected by the MQSeries message
broker.

Explanation: MQSeries has detected an attempt to use
a queue (&3) as a stream queue, but the attributes of
the queue make it unsuitable for use as a stream queue.
The most likely reason for this error is that the queue
is:
1. Not a local queue
2. A shareable queue
3. A temporary dynamic queue.

If the queue was created using implicit stream creation,
the model stream might have been defined incorrectly.
The message that caused the stream to be created will
be rejected or put to the dead-letter queue, depending
upon the message report options and broker
configuration.

User action: Correct the problem and resubmit the
request.

AMQ5818 Unable to open MQSeries message
broker stream queue (&3) for reason
&1,&2.

Explanation: The MQSeries message broker has failed
to open a stream queue (&3) for the reason indicated.
The attempt to open the queue failed with completion
code &1 and reason &2.

The most likely reason for this error is that an
application has the queue open for exclusive access.
The stream will be temporarily shut down and an
attempt will be made to restart the stream after a short
interval.

User action: Correct the problem.

AMQ5819 MQSeries message broker stream &3
has ended abnormally for reason &1.

Explanation: An MQSeries message broker stream has
ended abnormally. The broker will attempt to restart
the stream. If the stream should repeatedly fail then the
broker will progressively increase the time between
attempts to restart the stream.

User action: Investigate why the problem occurred
and take appropriate action to correct the problem. If
the problem persists, contact your IBM service
representative.

AMQ5820 MQSeries message broker stream &3
restarted.

Explanation: The MQSeries message broker has
restarted a stream that ended abnormally. This message
will frequently be preceded by message AMQ5867 or
AMQ5819 indicating why the stream ended.

User action: Correct the problem.

AMQ5821 MQSeries message broker unable to
contact parent broker (&3) for reason
&1.

Explanation: The MQSeries message broker has been
started specifying a parent broker. The message broker
has been unable to send a message to the parent
broker. The message broker will terminate immediately.

User action: Investigate why the problem occurred
and take appropriate action to correct the problem. The
problem is likely to be caused by the parent broker
name not resolving to the name of a transmission
queue on the local broker.

AMQ5822 MQSeries message broker failed to
register as child of broker(&3) for
reason &1.

Explanation: The MQSeries message broker has been
started specifying a parent broker. The message broker
attempted to register as a child of the parent but
received an exception response indicating that this was
not possible. The message broker will attempt to
reregister as a child of the parent periodically. The child
might not be able to process global publications or
subscriptions correctly until this registration process
has completed normally.

User action: Investigate why the problem occurred
and take appropriate action to correct the problem. The
problem is likely to be caused by the parent broker not
yet existing, or a problem with the
SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS
queue at the parent broker.

AMQ5823 Exit path attribute invalid in MQSeries
message broker stanza.

Explanation: The MQSeries message broker exit path
attribute (&3) is not valid. The attribute should be
specified as: <path><module name>(<function name>).
The MQSeries message broker will terminate
immediately.

User action: Correct the problem with the attribute
and restart the broker.

AMQ5817 • AMQ5823

166 MQSeries Publish/Subscribe User’s Guide

AMQ5824 MQSeries message broker exit module
could not be loaded.

Explanation: MQSeries message broker exit module
’&3’ could not be loaded for reason ’&1:&4’. The broker
will terminate immediately.

User action: Correct the problem with MQSeries
message broker exit module ’&3’ and restart the broker.

AMQ5825 The address of the MQSeries message
broker exit function could not be found.

Explanation: The address of the MQSeries message
broker exit function &4 could not be found in module
&3 for reason &1:&5. The broker will terminate
immediately.

User action: Correct the problem with the MQSeries
message broker exit function &4 in module &3, and
restart the broker.

AMQ5826 MQSeries message broker failed to
propagate subscription to stream &4 at
broker &3. Reason codes &1 and &2.

Explanation: An application has either registered or
deregistered a global subscription to stream &4. The
broker has attempted to propagate the subscription
change to broker &3 but the request has not been
successful. The message broker will immediately
attempt to refresh the state of the global subscriptions
for stream &4 at broker &3.

Until the subscription state has been successfully
refreshed, messages published on stream &4 through
broker &3 might not reach this broker.

User action: Use the reason codes to investigate why
the problem occurred and take appropriate action to
correct the problem.

AMQ5827 MQSeries message broker failed to
subscribe to stream &4 at broker &3.
Reason codes &1 and &2.

Explanation: Related MQSeries message brokers learn
about each other’s configuration by subscribing to
information published by each other. An MQSeries
message broker has discovered that one of these
internal subscriptions has failed. The broker will reissue
the subscription immediately.

The broker cannot function correctly without knowing
some information about neighboring brokers. The
information that this broker has about broker &3 is not
complete and this could lead to subscriptions and
publications not being propagated around the network
correctly.

User action: Investigate why the problem occurred
and take appropriate action to correct the problem. The
most likely cause of this failure is a problem with the
SYSTEM.BROKER.CONTROL.QUEUE at broker &3, or

a problem with the definition of the route between this
broker and broker &3.

AMQ5828 MQSeries message broker exit returned
an ExitResponse that is not valid.

Explanation: The MQSeries message broker exit
returned an ExitResponse &1 that is not valid. The
message has been allowed to continue and an FFST™

has been generated that contains the entire exit
parameter structure.

User action: Correct the problem with the MQSeries
message broker exit.

AMQ5829 Usage: strmqbrk [-m QMgrName] [-p
ParentQMgrName]

Explanation: This shows the correct usage.

User action: None.

AMQ5830 Usage: endmqbrk [-c | -i] [-m
QMgrName]

Explanation: This shows the correct usage.

User action: None.

AMQ5831 Usage: dspmqbrk [-m QMgrName]

Explanation: This shows the correct usage.

User action: None.

AMQ5832 MQSeries message broker failed to
publish configuration information on
SYSTEM.BROKER.ADMIN.STREAM.

Explanation: Related MQSeries message brokers learn
about each other’s configuration by subscribing to
information published by each other. An MQSeries
message broker has discovered that one of these
internal publications has failed. The broker will
republish the information immediately.

Brokers cannot function correctly without knowing
some information about neighboring brokers. The
information that neighboring brokers have of this
broker might not be complete and this could lead to
some subscriptions and publications not being
propagated around the network.

User action: Investigate why the problem occurred
and take appropriate action to correct the problem.

AMQ5833 A loop has been detected in the
MQSeries message broker hierarchy.

Explanation: The MQSeries message broker, on queue
manager &3, introduced a loop in the broker hierarchy.
This broker will terminate immediately.

User action: Remove broker &3 from the hierarchy,

AMQ5824 • AMQ5833

Appendix B. Error messages 167

either by deleting the broker, or by removing
knowledge of the broker’s parent, using the clrmqbrk
command.

AMQ5834 Conflicting queue manager names in the
MQSeries message broker hierarchy.

Explanation: The names of the queue managers &3
and &4 in the MQSeries message broker hierarchy both
start with the same 12 characters. The first 12
characters of a broker’s queue manager name should
be unique to ensure that no confusion arises within the
broker hierarchy, and to guarantee unique message ID
allocation.

User action: Use a queue manager naming convention
that guarantees uniqueness of the first 12 characters of
the queue manager name.

AMQ5835 MQSeries message broker failed to
inform its parent of a relation for reason
&1.

Explanation: The message broker failed to notify its
parent on queue manager ’&3’ of the relation ’&4’ in
the broker hierarchy. The notification message will be
put to the parent’s dead-letter queue. A failure to notify
a broker of a new relation will mean that no loop
detection can be performed for the new relation.

User action: Diagnose and correct the problem on the
parent queue manager. One possible reason for this is
that the parent broker does not yet exist.

AMQ5836 Duplicate queue manager name located
in the MQSeries message broker
hierarchy.

Explanation: Multiple instances of the queue manager
name ’&3’ have been located. This could either be the
result of a previously resolved loop in the broker
hierarchy, or multiple queue managers in the broker
hierarchy having the same name.

User action: If this broker introduced a loop in the
hierarchy (typically identified by message AMQ5833),
this message can be ignored. It is strongly
recommended that every queue manager in a broker
hierarchy has a unique name. It is not recommended
that multiple queue managers use the same name.

AMQ5837 MQSeries message broker failed to
quiesce queue &3 for reason &1.

Explanation: When a broker is deleted, the broker’s
input queues are quiesced by making the queue get
inhibited, and writing the contents of the queue to the
dead-letter queue (depending upon the report options
of the message). The broker was unable to quiesce the
named queue for the reason shown. The attempt to
delete the broker will fail.

User action: Investigate why the problem occurred,

take appropriate action to correct the problem, and
reissue the dltmqbrk command. Likely reasons include
the queue being open for input by another process,
there being no dead-letter queue defined at this queue
manager, or the operator setting the queue to get
inhibited while the dltmqbrk command is running.

If there is no dead-letter queue defined, the reason will
be reported as MQRC_UNKNOWN_OBJECT_NAME. If
the problem occurs because there is no dead-letter
queue defined at this broker, the operator can either
define a dead-letter queue, or manually empty the
queue causing the problem.

AMQ5838 MQSeries message broker cannot be
deleted as child &3 is still registered.

Explanation: An MQSeries message broker cannot be
deleted until all other brokers that have registered as
children of that broker have deregistered as its children.

User action: Use the clrmqbrk and dltmqbrk
commands to change the broker topology so that
broker &3 is not registered as a child of the broker
being deleted.

AMQ5839 MQSeries message broker received
unexpected inter-broker communication
from broker &3.

Explanation: An MQSeries message broker has
received an inter-broker communication that it did not
expect. The message was sent by broker &3. The
message will be processed according to the report
options in that message.

The most likely reason for this message is that the
broker topology has been changed while inter-broker
communication messages were in transit (for example,
on a transmission queue) and that a message relating to
the previous broker topology has arrived at a broker in
the new topology. This message may be accompanied
by an informational FFST including details of the
unexpected communication.

User action: If the broker topology has changed and
the broker named in the message is no longer related to
the broker issuing this message, this message can be
ignored.

If the clrmqbrk command was issued to unilaterally
remove knowledge of broker &3 from this broker, the
clrmqbrk command should also be used to remove
knowledge of this broker from broker &3.

If the clrmqbrk command was issued to unilaterally
remove knowledge of this broker from broker &3, the
clrmqbrk command should also be used to remove
knowledge of broker &3 at this broker.

AMQ5834 • AMQ5839

168 MQSeries Publish/Subscribe User’s Guide

AMQ5840 MQSeries message broker unable to
delete queue &3 for reason &2.

Explanation: The MQSeries message broker has failed
to delete the named queue for the reason shown. The
broker typically attempts to delete queues during
dltmqbrk processing, in which case the dltmqbrk
command will fail.

User action: The most likely reason for this error is
that some other process has the queue open. Determine
why the queue cannot be deleted, remove the inhibitor,
and retry the failed operation. In a multi-broker
environment, it is likely that a message channel agent
might have queues open, which the broker needs to
delete for a dltmqbrk command to complete.

AMQ5841 MQSeries message broker &3 deleted.

Explanation: The MQSeries message broker &3 has
been deleted using the dltmqbrk command.

User action: None.

AMQ5842 MQSeries message broker &3 cannot be
deleted for reason &1&5.

Explanation: An attempt has been made to delete the
MQSeries message broker &3 but the request has failed
for reason &1.

User action: Determine why the dltmqbrk command
cannot complete successfully. The message logs for the
queue manager might contain more detailed
information on why the broker cannot be deleted.
Resolve the problem that is preventing the command
from completing and reissue the dltmqbrk command.

AMQ5843 MQSeries message broker &3 cannot be
started as it is partially deleted.

Explanation: An attempt has been made to start an
MQSeries message broker that is in a partially deleted
state. An earlier attempt to delete the broker has failed.
The broker deletion must be completed before the
broker will be allowed to restart.

When broker deletion is successful, message AMQ5841
is issued, indicating that the broker has been deleted. If
this message is not received on completion of a
dltmqbrk command, the broker deletion has not been
completed and the command will have to be reissued.

User action: Investigate why the earlier attempt to
delete the broker failed. Resolve the problem and
reissue the dltmqbrk command.

AMQ5844 MQSeries message broker relation &4 is
unknown to broker &3.

Explanation: The clrmqbrk command has been issued
in an attempt to remove a broker’s knowledge of a
relation of that broker. The relative &4 is unknown at

broker &3. If the ″-p″ flag was specified, the broker
does not currently have a parent. If the ″-c″ flag was
specified, the broker does not recognize the named
child.

User action: Investigate why the broker is unknown.

AMQ5845 Usage: dltmqbrk -m QMgrName

Explanation: This shows the correct usage.

User action: None.

AMQ5846 Usage: clrmqbrk -p | -c
ChildQMgrName -m QMgrName

Explanation: This shows the correct usage.

User action: None.

AMQ5847 MQSeries message broker &3 has
removed knowledge of relation &4.

Explanation: The clrmqbrk command has been used
to remove knowledge of broker &4 from broker &3.

User action: None.

AMQ5848 MQSeries message broker &3 has failed
to remove references to relation &4 for
reason &1&5.

Explanation: An attempt has been made to remove
references to broker &4 from broker &3 using the
clrmqbrk command, but the request has been
unsuccessful.

User action: Determine why the clrmqbrk command
cannot complete successfully. The message logs for the
queue manager might contain more detailed
information on why the broker cannot be deleted.
Resolve the problem that is preventing the command
from completing and then reissue the clrmqbrk
command.

AMQ5849 MQSeries message broker &3 may not
change parent from &5 to &4.

Explanation: An attempt has been made to start
broker &3, nominating broker &4 as its parent. Message
broker &3 has previously been started, nominating
broker &5 as its parent. The strmqbrk command cannot
be used to change an existing relationship.

User action: Do not attempt to change the broker
topology by using the strmqbrk command. The
dltmqbrk and clrmqbrk commands are the only
supported means of changing the broker topology.
Refer to the documentation of those commands for
guidance on changing the broker topology.

AMQ5840 • AMQ5849

Appendix B. Error messages 169

AMQ5850 MQSeries message broker interrupted
while creating queue &3 for user ID &4.

Explanation: When the MQSeries message broker
creates a queue, it first creates the queue with default
security attributes and it then sets the appropriate
security attributes for the queue. If the broker should
be interrupted during this operation (for example the
queue manager is shut down), the broker cannot
reliably detect that the security attributes have not been
set correctly.

The MQSeries message broker was creating a queue,
but was interrupted before it could complete creation of
the queue and setting the initial authority. If the
interrupt occurred before the initial authority of the
queue could be set, it might be necessary for the
operator to set the appropriate authorities using the
setmqaut command.

User action: Confirm that the named queue has the
appropriate security attributes and modify them as
necessary.

AMQ5851 MQSeries message broker interrupted
while creating internal queue &3 for
user ID &4.

Explanation: When the MQSeries message broker
creates an internal queue, it first creates the queue with
default security attributes and it then sets the
appropriate security attributes for the queue. If the
broker should be interrupted during this operation (for
example the queue manager is shut down), the broker
attempts to delete and redefine the queue.

If the internal queue is available to users (for example,
the default stream or the administration stream), it is
possible that a user will put a message on the queue
while it is in this invalid state, or that a user
application has the queue open. In this situation the
broker does not automatically redefine the queue and
cannot be restarted until the queue has been emptied or
closed.

User action: Examine any messages on the named
queue and take appropriate action to remove them
from the queue. Ensure that no applications have the
queue open.

AMQ5852 MQSeries message broker failed to
propagate delete publication command
for stream &3 to related broker &4 for
reason &1.

Explanation: When an application issues a delete
publication command to delete a global publication, the
command has to be propagated to all brokers in the
sub-hierarchy supporting the stream.

The broker reporting the error has failed to forward a
delete publication command to a related broker (&4)
who supports stream (&3).

Delete publication commands are propagated without
MQRO_DISCARD and the command message might
have been written to a dead-letter queue. The topic for
which the delete publication has failed is &5.

User action: If the delete publication has failed
because the stream has been deleted at the related
broker, this message can be ignored. Investigate why
the delete publication has failed and take the
appropriate action to recover the failed command.

AMQ5853 MQSeries message broker failed to
propagate a delete publication command
for stream &3 to a previously related
broker.

Explanation: When an application issues a delete
publication command to delete a global publication, the
command is propagated to all brokers in the
sub-hierarchy supporting the stream.

The broker topology was changed after deleting the
publication, but before a broker removed by the
topology change processed the propagated delete
publication message. The topic for which the delete
publication has failed is &5.

User action: It is the user’s responsibility to quiesce
broker activity before changing the broker topology
using the clrmqbrk command. Investigate why this
delete publication activity was not quiesced. The delete
publication command will have been written to the
dead-letter queue at the broker that was removed from
the topology. In this case, further action might be
necessary to propagate the delete publication command
that was not quiesced before the clrmqbrk command
was issued.

If this message occurs as a result of the dltmqbrk
command, the publication will have been deleted as a
result of the dltmqbrk command, and the delete
publication message will have been written to the
dead-letter queue at the queue manager where the
broker was deleted. In this case the delete publication
message on the dead-letter queue can be discarded.

AMQ5854 MQSeries message broker failed to
propagate a delete publication command
for stream &3 to broker &4.

Explanation: When an application issues a delete
publication command to delete a global publication, the
command has to be propagated to all brokers in the
sub-hierarchy supporting the stream.

At the time the delete publication was propagated,
broker &4 was a known relation of this message broker
supporting stream &3. Before the delete publication
command arrived at the related broker, the broker
topology was changed so that broker &4 no longer
supported stream &3. The topic for which the delete
publication has failed is &5.

User action: It is the user’s responsibility to quiesce

AMQ5850 • AMQ5854

170 MQSeries Publish/Subscribe User’s Guide

broker activity before changing the stream topology of
the broker. Investigate why this delete publication
activity was not quiesced. The delete publication
command will have been written to the dead-letter
queue at broker &4.

AMQ5855 MQSeries message broker &3 ended for
reason &1&5.

Explanation: An attempt has been made to run the
MQSeries message broker &3 but the broker has ended
for reason &1.

User action: Determine why the broker ended. The
message logs for the queue manager might contain
more detailed information on why the broker cannot be
started. Resolve the problem that is preventing the
command from completing and reissue the strmqbrk
command.

AMQ5856 Broker publish command message
cannot be processed. Reason code &1.

Explanation: The MQSeries broker failed to process a
publish message for stream &3. The broker was unable
to write the publication to the dead-letter queue and
was not permitted to discard the publication.

The broker will temporarily stop the stream and will
restart the stream and consequently retry the
publication after a short interval.

User action: Investigate why the error has occurred
and why the publication cannot be written to the
dead-letter queue. Either manually remove the
publication from the stream queue, or correct the
problem that is preventing the broker from writing the
publication to the dead-letter queue.

AMQ5857 Broker control command message
cannot be processed. Reason code &1.

Explanation: The MQSeries broker failed to process a
command message on the
SYSTEM.BROKER.CONTROL.QUEUE. The broker was
unable to write the command message to the
dead-letter queue and was not permitted to discard the
command message.

The broker will temporarily stop the stream and will
restart the stream and consequently retry the command
message after a short interval. Other broker control
commands cannot be processed until this command
message has been processed successfully or removed
from the control queue.

User action: Investigate why the error has occurred
and why the command message cannot be written to
the dead-letter queue. Either manually remove the
command message from the stream queue, or correct
the problem that is preventing the broker from writing
the command message to the dead-letter queue.

AMQ5858 Broker could not send publication to
subscriber queue &4 at queue manager
&3 for reason &1.

Explanation: A failure has occurred sending a
publication to subscriber queue &4 at queue manager
&3. The broker configuration options prevent it from
recovering from this failure by discarding the
publication or by sending it to the dead-letter queue.
Instead the broker will back out the unit of work under
which the publication is being sent and retry the failing
command message a fixed number of times.

If the problem still persists, the broker will then
attempt to recover by failing the command message
with a negative reply message. If the issuer of the
command did not request negative replies, the broker
will either discard or send to the dead-letter queue the
failing command message. If the broker configuration
options prevent this, the broker will restart the affected
stream, which will reprocess the failing command
message again.

This behavior will be repeated until such time as the
failure is resolved. During this time the stream will be
unable to process further publications or subscriptions.

User action: Usually the failure will be due to a
transient resource problem, for example, the subscriber
queue, or an intermediate transmission queue,
becoming full. Use reason code &1 to determine what
remedial action is required.

If the problem persists for a long time, you will notice
the stream being continually restarted by the broker.
Evidence of this occurring will be a large number of
AMQ5820 messages, indicating stream restart, being
written to the error logs. In such circumstances, manual
intervention will be required to allow the broker to
dispose of the failing publication. To do this, you will
need to end the broker using the endmqbrk command
and restart it with appropriate disposition options. This
will allow the publication to be sent to the rest of the
subscribers, while allowing the broker to discard or
send to the dead-letter queue the publication that could
not be sent.

AMQ5859 MQSeries message broker stream &3 is
terminating due to an internal resource
problem. Reason code &1.

Explanation: The MQSeries stream &3 has run out of
internal resources and will terminate. If the command
in progress was being processed under syncpoint
control, it will be backed out and retried when the
stream is restarted by the broker. If the command was
being processed out of syncpoint control, it will not be
able to be retried when the stream is restarted.

User action: This message should only be issued in
very unusual circumstances. If this message is issued
repeatedly for the same stream, and the stream is not
especially large in terms of subscriptions, topics, and

AMQ5855 • AMQ5859

Appendix B. Error messages 171

retained publications, save all generated diagnostic
information and contact your IBM Support Center for
problem resolution.

AMQ5864 Broker reply message could not be sent
to queue &4 at queue manager &3 for
reason &1. The command will be
retried.

Explanation: While processing a publish/subscribe
command, the MQSeries message broker could not
send a reply message to queue &4 at queue manager
&3. The broker was also unable to write the message to
the dead-letter queue. Since the command is being
processed under syncpoint control, the broker will
attempt to retry the command in the hope that the
problem is only of a transient nature.

If, after a set number of retries, the reply message still
could not be sent, the command message will be
discarded if the report options allow it. If the command
message is not discardable, the stream will be restarted,
and processing of the command message recommenced.

User action: Use reason code &1 to determine what
remedial action is required. If the failure is due to a
resource problem (for example, a queue being full), you
might find that the problem has already cleared itself.
If not, this message will be issued repeatedly each time
the command is retried. In this case you are strongly
advised to define a dead-letter queue to receive the
reply message so that the MQSeries broker can process
other commands while the problem is being
investigated. Check the application from which the
command originated and ensure that it is specifying its
reply-to queue correctly.

AMQ5865 Broker reply message could not be sent
to queue &4 at queue manager &3 for
reason &1.

Explanation: While processing a publish/subscribe
command, the MQSeries message broker could not
send a reply message to queue &4 at queue manager
&3. The broker was also unable to write the message to
the dead-letter queue. As the command is not being
processed under syncpoint control, the broker is not
able to retry the command.

User action: Use reason code &1 to determine what
remedial action is required. If the failure is due to a
resource problem (for example, a queue being full), you
might find that the problem has already cleared itself.
If not, check the application from which the command
originated and ensure that it is specifying its reply-to
queue correctly. You might find that defining a
dead-letter queue to capture the reply message on a
subsequent failure will help you with this task.

AMQ5866 Broker command message has been
discarded. Reason code &1.

Explanation: The MQSeries broker failed to process a
publish/subscribe command message, which has now
been discarded. The broker will begin to process new
command messages again.

User action: Look for previous error messages to
indicate the problem with the command message.
Correct the problem to prevent the failure from
happening again.

AMQ5867 MQSeries message broker stream &3
has ended abnormally for reason &1.

Explanation: An MQSeries message broker stream has
ended abnormally. The broker will attempt to restart
the stream. If the stream should repeatedly fail, the
broker will progressively increase the time between
attempts to restart the stream.

User action: Use the reason code &1 to investigate
why the problem occurred.

A reason code of 1 indicates that the stream ended
because a command message could not be processed
successfully. Look in the error logs for earlier messages
to determine the reason why the command message
failed.

A reason code of 2 indicates that the stream ended
because the broker exit could not be loaded. Until the
problem with the broker exit has been resolved, the
stream will continue to fail.

AMQ5868 User ID &3 is no longer authorized to
subscribe to stream &4.

Explanation: The broker has attempted to publish a
publication to a subscriber, but the subscriber no longer
has browse authority to stream queue &4. The
publication is not sent to the subscriber and its
subscription is deregistered. An event publication
containing details of the subscription that was removed
is published on SYSTEM.BROKER.ADMIN.STREAM.
While user ID &3 remains unauthorized, the broker
will continue to deregister subscriptions associated with
that user ID.

User action: If the authority of user ID &3 was
intentionally removed, consider removing all of that
user ID’s subscriptions immediately by issuing a
‘Deregister Subscriber’ command, specifying the
‘Deregister All’ option on the subscriber’s behalf. If the
authority was revoked accidentally, reinstate it, but be
aware that some, if not all, of the subscriber’s
subscriptions will have been deregistered by the broker.

AMQ5864 • AMQ5868

172 MQSeries Publish/Subscribe User’s Guide

AMQ5869 MQSeries message broker is
checkpointing registrations for stream
&3.

Explanation: A large number of changes have been
made to the publisher and subscriber registrations of
stream &3. These changes are being checkpointed in
order to minimize both stream restart time and the
amount of internal queue space being used.

User action: None.

AMQ5875 MQSeries message broker cannot write
a message to the dead-letter queue (&3)
for reason &1:&4.

Explanation: The MQSeries message broker attempted
to put a message to the dead-letter queue (&3) but the
message could not be written to the dead-letter queue
for reason &1:&4. The message was being written to
the dead-letter queue with a reason of &2:&5.

User action: Determine why the message cannot be
written to the dead-letter queue. Also, if the message
was not deliberately written to the dead-letter queue,
for example by a message broker exit, determine why
the message was written to the dead-letter queue and
resolve the problem that is preventing the message
from being sent to its destination.

AMQ5876 A parent conflict has been detected in
the MQSeries message broker hierarchy.

Explanation: MQSeries message broker &3 has been
started, naming this broker as its parent. This broker
was started naming broker &3 as its parent. The
MQSeries message broker will send an exception
message to broker &3 indicating that a conflict has
been detected.

The most likely reason for this message is that the
broker topology has been changed while inter-broker
communication messages were in transit (for example,
on a transmission queue) and that a message relating to
the previous broker topology has arrived at a broker in
the new topology. This message may be accompanied
by an informational FFST including details of the
unexpected communication.

User action: If the broker topology has changed and
the broker named in the message no longer identifies
this broker as its parent, this message can be ignored -
for example, if the command ″clrmqbrk -m &3 -p″ was
issued. If broker &3 has been defined as this broker’s
parent, and this broker has been defined as broker &3’s
parent, the clrmqbrk or the dltmqbrk commands
should be used to resolve the conflict.

AMQ5877 MQSeries message broker stream &3
has ended abnormally for reason &1.

Explanation: An MQSeries message broker stream has
ended abnormally. The broker recovery routines failed
to reset the stream state and the stream cannot be
restarted automatically.

User action: Investigate why the stream failed and
why the broker’s recovery routine could not recover
following the failure. Take appropriate action to correct
the problem.

Depending upon the broker configuration and the
nature of the problem it will be necessary to restart
either the MQSeries message broker, or both the queue
manager and the MQSeries message broker, to make
the stream available. If the problem persists contact
your IBM service representative.

AMQ5878 MQSeries message broker recovery
failure detected.

Explanation: An earlier problem has occurred with the
MQSeries message broker, and either a stream has been
restarted or the broker has been restarted. The restarted
stream or broker has detected that the previous
instance of the stream or broker did not clean up
successfully and the restart will fail.

User action: Investigate the cause of the failure that
caused a stream or broker restart to be necessary, and
why the broker or stream was unable to clean up its
resources following the failure.

When the broker processes with a non-trusted routing
exit (RoutingExitConnectType=STANDARD), the broker
runs in a mode where it is more tolerant of unexpected
failures and it is likely that the restart will succeed after
a short delay. In the case of a stream restart, the broker
will normally periodically retry the failing restart. In
the case of a broker restart, it will be necessary to
manually retry the broker restart after a short delay.

When the broker processes without a routing exit, or
with a trusted routing exit
(RoutingExitConnectType=FASTPATH), the broker runs
in a mode where it is less tolerant of unexpected
failures and a queue manager restart will be necessary
to resolve this problem. When the broker is running in
this mode, it is important that the broker processes are
not subjected to unnecessary asynchronous interrupts,
for example, kill. If the problem persists, contact your
IBM service representative.

AMQ5880 User ID &3 is no longer authorized to
subscribe to stream &4.

Explanation: The broker has attempted to publish a
publication to a subscriber but the subscriber no longer
has altusr authority to stream queue &4. The
publication is not sent to the subscriber and that user
ID’s subscription is deregistered. An event publication

AMQ5869 • AMQ5880

Appendix B. Error messages 173

containing details of the subscription that was removed
is published on SYSTEM.BROKER.ADMIN.STREAM.

While user ID &3 remains unauthorized, the broker
will continue to deregister subscriptions associated with
that user ID.

User action: If the authority of user ID &3 was
intentionally removed, consider removing subscriptions
immediately by issuing a ‘Deregister Subscriber’
command for the appropriate topics on the subscriber’s
behalf. If the authority was revoked accidentally,
reinstate it, but be aware that some, if not all, of the
subscriber’s subscriptions will have been deregistered
by the broker.

AMQ5881 Invalid MQSeries message broker
configuration parameter combination
&1.

Explanation: A combination of Broker stanzas in the
queue manager initialization file is not valid. The
broker will not operate until this has been corrected.

An invalid combination of (1) indicates that
SyncPointIfPersistent has been set to TRUE and
DiscardNonPersistentInputMsg has been set to FALSE.
The latter must be set to TRUE when
SyncPointIfPersistent is set to TRUE.

An invalid combination of (2) indicates that
SyncPointIfPersistent has been set to TRUE and
DiscardNonPersistentResponse has been set to FALSE.
The latter must be set to TRUE when
SyncPointIfPersistent is set to TRUE.

An invalid combination of (3) indicates that
SyncPointIfPersistent has been set to TRUE and
DiscardNonPersistentPublication has been set to
FALSE. The latter must be set to TRUE when
SyncPointIfPersistent is set to TRUE.

User action: Alter the message broker stanzas to
comply with the above rules and retry the command.

AMQ5882 MQSeries message broker has written a
message to the dead-letter queue.

Explanation: The MQSeries message broker has
written a message to the dead-letter queue (&3) for
reason &1:&4.

User action: If the message was not deliberately
written to the dead-letter queue, for example by a
message broker exit, determine why the message was
written to the dead-letter queue, and resolve the
problem that is preventing the message from being sent
to its destination.

AMQ5883 MQSeries message broker state on
stream &3 not recorded while
processing a publication outside of
syncpoint.

Explanation: A nonpersistent publication has
requested a change to either a retained message or a
publisher registration. This publication is being
processed outside of syncpoint because the broker has
been configured with the SyncPointIfPersistent option
set. A failure has occurred hardening either the
publisher registration or the retained publication to the
broker’s internal queue.

All state changes attempted as a result of this
publication will be backed-out. Processing of the
publication will continue and the broker will attempt to
deliver it to all subscribers.

User action: Investigate why the failure occurred. It is
probably due to a resource problem occurring on the
broker. The most likely cause is ’queue full’ on a broker
queue. If your publications also carry state changes,
you are advised to send them either as persistent
publications or turn off the SyncPointIfPersistent
option. In this way, they will be carried out under
syncpoint and the broker can retry them in the event of
a failure such as this.

AMQ5884 MQSeries message broker control queue
is not a local queue.

Explanation: MQSeries has detected that the queue
’SYSTEM.BROKER.CONTROL.QUEUE’ exists and is
not a local queue. This makes the queue unsuitable for
use as the control queue of the MQSeries message
broker. The broker will terminate immediately.

User action: Delete the definition of the existing queue
and, if required, re-create the queue to be of type
MQQT_LOCAL. If you do not re-create the queue the
broker will automatically create one of the correct type
when started.

AMQ5881 • AMQ5884

174 MQSeries Publish/Subscribe User’s Guide

Appendix C. Constants

This appendix lists the values of the named constants used by the functions
described in this manual. For information about MQSeries constants not in this list,
see the MQSeries Application Programming Reference book and the MQSeries
Programmable System Management book.

The constants are grouped according to the parameter or field to which they relate.
Names of the constants in a group begin with a common prefix of the form
MQxxxx_, where xxxx represents a string of 0 through 4 characters that indicates
the nature of the values defined in that group.

All string constants, such as MQPS_COMMAND, have alternative constants
defined. Those with suffix ’_A’ (for example MQPS_COMMAND_A) are in blank
enclosed array form, and those with suffix ’_B’ are in blank enclosed string form.
Character strings are shown delimited by double quotation marks; the quotation
marks are not part of the value. Each character in an array is shown delimited by
single quotation marks; the quotation marks are not part of the value.

For constants with numeric values, the values are shown in both decimal and
hexadecimal forms. Hexadecimal values are represented using the notation
X'hhhhhhhh', where each 'h' denotes a single hexadecimal digit.

String constants

MQPS_* (Publish/Subscribe tag names)
MQPS_COMMAND "MQPSCommand"
MQPS_COMP_CODE "MQPSCompCode"
MQPS_DELETE_OPTIONS "MQPSDelOpts"
MQPS_ERROR_ID "MQPSErrorId"
MQPS_ERROR_POS "MQPSErrorPos"
MQPS_INTEGER_DATA "MQPSIntData"
MQPS_PARAMETER_ID "MQPSParmId"
MQPS_PUBLICATION_OPTIONS "MQPSPubOpts"
MQPS_PUBLISH_TIMESTAMP "MQPSPubTime"
MQPS_Q_MGR_NAME "MQPSQMgrName"
MQPS_Q_NAME "MQPSQName"
MQPS_REASON "MQPSReason"
MQPS_REASON_TEXT "MQPSReasonText"
MQPS_REGISTRATION_OPTIONS "MQPSRegOpts"
MQPS_SEQUENCE_NUMBER "MQPSSeqNum"
MQPS_STREAM_NAME "MQPSStreamName"
MQPS_STRING_DATA "MQPSStringData"
MQPS_TOPIC "MQPSTopic"
MQPS_USER_ID "MQPSUserId"

The following blank-enclosed versions are also defined:
MQPS_COMMAND_B " MQPSCommand "
MQPS_COMP_CODE_B " MQPSCompCode "
MQPS_DELETE_OPTIONS_B " MQPSDelOpts "
MQPS_ERROR_ID_B " MQPSErrorId "
MQPS_ERROR_POS_B " MQPSErrorPos "
MQPS_INTEGER_DATA_B " MQPSIntData "
MQPS_PARAMETER_ID_B " MQPSParmId "
MQPS_PUBLICATION_OPTIONS_B " MQPSPubOpts "
MQPS_PUBLISH_TIMESTAMP_B " MQPSPubTime "

© Copyright IBM Corp. 1998, 2001 175

MQPS_Q_MGR_NAME_B " MQPSQMgrName "
MQPS_Q_NAME_B " MQPSQName "
MQPS_REASON_B " MQPSReason "
MQPS_REASON_TEXT_B " MQPSReasonText "
MQPS_REGISTRATION_OPTIONS_B " MQPSRegOpts "
MQPS_SEQUENCE_NUMBER_B " MQPSSeqNum "
MQPS_STREAM_NAME_B " MQPSStreamName "
MQPS_STRING_DATA_B " MQPSStringData "
MQPS_TOPIC_B " MQPSTopic "
MQPS_USER_ID_B " MQPSUserId "

The following array versions are also defined:
MQPS_COMMAND_A ' ','M','Q','P','S',\

'C','o','m','m','a','n','d',' '
MQPS_COMP_CODE_A ' ','M','Q','P','S',\

'C','o','m','p','C','o','d','e',' '
MQPS_DELETE_OPTIONS_A ' ','M','Q','P','S',\

'D','e','l','O','p','t','s',' '
MQPS_ERROR_ID_A ' ','M','Q','P','S',\

'E','r','r','o','r','I','d',' '
MQPS_ERROR_POS_A ' ','M','Q','P','S',\

'E','r','r','o','r','P','o','s',' '
MQPS_INTEGER_DATA_A ' ','M','Q','P','S',\

'I','n','t','D','a','t','a',' '
MQPS_PARAMETER_ID_A ' ','M','Q','P','S',\

'P','a','r','m','I','d',' '
MQPS_PUBLICATION_OPTIONS_A ' ','M','Q','P','S',\

'P','u','b','O','p','t','s',' '
MQPS_PUBLISH_TIMESTAMP_A ' ','M','Q','P','S',\

'P','u','b','T','i','m','e',' '
MQPS_Q_MGR_NAME_A ' ','M','Q','P','S',\

'Q','M','g','r','N','a','m','e',' '
MQPS_Q_NAME_A ' ','M','Q','P','S',\

'Q','N','a','m','e',' '
MQPS_REASON_A ' ','M','Q','P','S',\

'R','e','a','s','o','n',' '
MQPS_REASON_TEXT_A ' ','M','Q','P','S','R','e','a',\

's','o','n','T','e','x','t',' '
MQPS_REGISTRATION_OPTIONS_A ' ','M','Q','P','S',\

'R','e','g','O','p','t','s',' '
MQPS_SEQUENCE_NUMBER_A ' ','M','Q','P','S',\

'S','e','q','N','u','m',' '
MQPS_STREAM_NAME_A ' ','M','Q','P','S','S','t','r',\

'e','a','m','N','a','m','e',' '
MQPS_STRING_DATA_A ' ','M','Q','P','S','S','t','r',\

'i','n','g','D','a','t','a',' '

MQPS_TOPIC_A ' ','M','Q','P','S',\
'T','o','p','i','c',' '

MQPS_USER_ID_A ' ','M','Q','P','S',\
'U','s','e','r','I','d',' '

MQPS_* (Command tag values)
MQPS_DELETE_PUBLICATION "DeletePub"
MQPS_DEREGISTER_PUBLISHER "DeregPub"
MQPS_DEREGISTER_SUBSCRIBER "DeregSub"
MQPS_PUBLISH "Publish"
MQPS_REGISTER_PUBLISHER "RegPub"
MQPS_REGISTER_SUBSCRIBER "RegSub"
MQPS_REQUEST_UPDATE "ReqUpdate"

The following blank-enclosed versions are also defined:
MQPS_DELETE_PUBLICATION_B " DeletePub "
MQPS_DEREGISTER_PUBLISHER_B " DeregPub "
MQPS_DEREGISTER_SUBSCRIBER_B " DeregSub "

String constants

176 MQSeries Publish/Subscribe User’s Guide

MQPS_PUBLISH_B " Publish "
MQPS_REGISTER_PUBLISHER_B " RegPub "
MQPS_REGISTER_SUBSCRIBER_B " RegSub "
MQPS_REQUEST_UPDATE_B " ReqUpdate "

The following array versions are also defined:
MQPS_DELETE_PUBLICATION_A ' ','D','e','l','e','t','e',\

'P','u','b',' '
MQPS_DEREGISTER_PUBLISHER_A ' ','D','e','r','e','g',\

'P','u','b',' '
MQPS_DEREGISTER_SUBSCRIBER_A ' ','D','e','r','e','g',\

'S','u','b',' '
MQPS_PUBLISH_A ' ','P','u','b','l','i','s','h',' '
MQPS_REGISTER_PUBLISHER_A ' ','R','e','g','P','u','b',' '
MQPS_REGISTER_SUBSCRIBER_A ' ','R','e','g','S','u','b',' '
MQPS_REQUEST_UPDATE_A ' ','R','e','q','U','p','d','a','t','e',' '

MQPS_* (Delete, publication and registration options)
MQPS_ANONYMOUS "Anon"
MQPS_CORREL_ID_AS_IDENTITY "CorrelAsId"
MQPS_DEREGISTER_ALL "DeregAll"
MQPS_DIRECT_REQUESTS "DirectReq"
MQPS_INCLUDE_STREAM_NAME "InclStreamName"
MQPS_INFORM_IF_RETAINED "InformIfRet"
MQPS_IS_RETAINED_PUBLICATION "IsRetainedPub"
MQPS_LOCAL "Local"
MQPS_NEW_PUBLICATIONS_ONLY "NewPubsOnly"
MQPS_NO_REGISTRATION "NoReg"
MQPS_NONE "None"
MQPS_OTHER_SUBSCRIBERS_ONLY "OtherSubsOnly"
MQPS_PUBLISH_ON_REQUEST_ONLY "PubOnReqOnly"
MQPS_RETAIN_PUBLICATION "RetainPub"

The following blank-enclosed versions are also defined:
MQPS_ANONYMOUS_B " Anon "
MQPS_CORREL_ID_AS_IDENTITY_B " CorrelAsId "
MQPS_DEREGISTER_ALL_B " DeregAll "
MQPS_DIRECT_REQUESTS_B " DirectReq "
MQPS_INCLUDE_STREAM_NAME_B " InclStreamName "
MQPS_INFORM_IF_RETAINED_B " InformIfRet "
MQPS_IS_RETAINED_PUBLICATION_B " IsRetainedPub "
MQPS_LOCAL_B " Local "
MQPS_NEW_PUBLICATIONS_ONLY_B " NewPubsOnly "
MQPS_NO_REGISTRATION_B " NoReg "
MQPS_NONE_B " None "
MQPS_OTHER_SUBSCRIBERS_ONLY_B " OtherSubsOnly "
MQPS_PUBLISH_ON_REQUEST_ONLY_B " PubOnReqOnly "
MQPS_RETAIN_PUBLICATION_B " RetainPub "

The following array versions are also defined:
MQPS_ANONYMOUS_A ' ','A','n','o','n',' '
MQPS_CORREL_ID_AS_IDENTITY_A ' ','C','o','r','r','e','l',\

'A','s','I','d',' '
MQPS_DEREGISTER_ALL_A ' ','D','e','r','e','g','A','l','l',' '
MQPS_DIRECT_REQUESTS_A ' ','D','i','r','e','c','t',\

'R','e','q',' '
MQPS_INCLUDE_STREAM_NAME_A ' ','I','n','c','l','S','t','r',\

'e','a','m','N','a','m','e',' '
MQPS_INFORM_IF_RETAINED_A ' ','I','n','f','o','r','m',\

'I','f','R','e','t',' '
MQPS_IS_RETAINED_PUBLICATION_A ' ','I','s','R','e','t','a','i','n',\

'e','d','P','u','b',' '
MQPS_LOCAL_A ' ','L','o','c','a','l',' '
MQPS_NEW_PUBLICATIONS_ONLY_A ' ','N','e','w','P','u','b','s',\

String constants

Appendix C. Constants 177

'O','n','l','y',' '
MQPS_NO_REGISTRATION_A ' ','N','o','R','e','g',' '
MQPS_NONE_A ' ','N','o','n','e',' '
MQPS_OTHER_SUBSCRIBERS_ONLY_A ' ','O','t','h','e','r','S','u','b','s',\

'O','n','l','y',' '
MQPS_PUBLISH_ON_REQUEST_ONLY_A ' ','P','u','b','O','n','R','e','q',\

'O','n','l','y',' '
MQPS_RETAIN_PUBLICATION_A ' ','R','e','t','a','i','n',\

'P','u','b',' '

MQRFH_* (Rules and formatting header structure identifier)
MQRFH_STRUC_ID "RFH "

The following array version is also defined:
MQRFH_STRUC_ID_ARRAY 'R','F','H',' '

Integer constants
The next part of this chapter describes integer constants.

MQAT_* (Application type for message descriptor)
MQAT_BROKER 26 X'0000001A'

MQCACF_* (Character parameter identifiers for PCF)
MQCACF_STREAM_NAME 3030 X'00000BD6'
MQCACF_TOPIC 3031 X'00000BD7'
MQCACF_PARENT_Q_MGR_NAME 3032 X'00000BD8'
MQCACF_PUBLISH_TIMESTAMP 3034 X'00000BDA'
MQCACF_STRING_DATA 3035 X'00000BDB'
MQCACF_SUPPORTED_STREAM_NAME 3036 X'00000BDC'
MQCACF_REG_TOPIC 3037 X'00000BDD'
MQCACF_REG_TIME 3038 X'00000BDE'
MQCACF_REG_USER_ID 3039 X'00000BDF'
MQCACF_CHILD_Q_MGR_NAME 3040 X'00000BE0'
MQCACF_REG_STREAM_NAME 3041 X'00000BE1'
MQCACF_REG_Q_MGR_NAME 3042 X'00000BE2'
MQCACF_REG_Q_NAME 3043 X'00000BE3'
MQCACF_REG_CORREL_ID 3044 X'00000BE4'

MQCMD_* (Command identifiers for PCF)
MQCMD_DELETE_PUBLICATION 60 X'0000003C'
MQCMD_DEREGISTER_PUBLISHER 61 X'0000003D'
MQCMD_DEREGISTER_SUBSCRIBER 62 X'0000003E'
MQCMD_PUBLISH 63 X'0000003F'
MQCMD_REGISTER_PUBLISHER 64 X'00000040'
MQCMD_REGISTER_SUBSCRIBER 65 X'00000041'
MQCMD_REQUEST_UPDATE 66 X'00000042'
MQCMD_BROKER_INTERNAL 67 X'00000043'

MQDELO_* (Delete options)
MQDELO_NONE 0 X'00000000'
MQDELO_LOCAL 4 X'00000004'

MQDT_* (Destination type for routing exit)
MQDT_APPL 1 X'00000001'
MQDT_BROKER 2 X'00000002'

String constants

178 MQSeries Publish/Subscribe User’s Guide

MQIACF_* (Integer parameter identifiers for PCF)
MQIACF_INTEGER_DATA 1080 X'00000438'
MQIACF_REGISTRATION_OPTIONS 1081 X'00000439'
MQIACF_PUBLICATION_OPTIONS 1082 X'0000043A'
MQIACF_BROKER_COUNT 1088 X'00000440'
MQIACF_APPL_COUNT 1089 X'00000441'
MQIACF_ANONYMOUS_COUNT 1090 X'00000442'
MQIACF_REG_REG_OPTIONS 1091 X'00000443'
MQIACF_DELETE_OPTIONS 1092 X'00000444'

MQPUBO_* (Publication options)
MQPUBO_NONE 0 X'00000000'
MQPUBO_CORREL_ID_AS_IDENTITY 1 X'00000001'
MQPUBO_RETAIN_PUBLICATION 2 X'00000002'
MQPUBO_OTHER_SUBSCRIBERS_ONLY 4 X'00000004'
MQPUBO_NO_REGISTRATION 8 X'00000008'
MQPUBO_IS_RETAINED_PUBLICATION 16 X'00000010'

MQREGO_* (Registration options)
MQREGO_NONE 0 X'00000000'
MQREGO_CORREL_ID_AS_IDENTITY 1 X'00000001'
MQREGO_ANONYMOUS 2 X'00000002'
MQREGO_LOCAL 4 X'00000004'
MQREGO_DIRECT_REQUESTS 8 X'00000008'
MQREGO_NEW_PUBLICATIONS_ONLY 16 X'00000010'
MQREGO_PUBLISH_ON_REQUEST_ONLY 32 X'00000020'
MQREGO_DEREGISTER_ALL 64 X'00000040'
MQREGO_INCLUDE_STREAM_NAME 128 X'00000080'
MQREGO_INFORM_IF_RETAINED 256 X'00000100'

MQRFH_* (Rules and formatting header)
MQRFH_NONE 0 X'00000000'
MQRFH_VERSION_1 1 X'00000001'
MQRFH_STRUC_LENGTH_FIXED 32 X'00000020'

MQUA_* (User-attribute selectors for PCF)
MQUA_FIRST 65536 X'00010000'
MQUA_LAST 999999999 X'3B9AC9FF'

Reason codes
The next part of this chapter covers reason codes.

MQRC_RFH_* (RFH reason codes)
MQRC_RFH_ERROR 2334 X'0000091E'
MQRC_RFH_STRING_ERROR 2335 X'0000091F'
MQRC_RFH_COMMAND_ERROR 2336 X'00000920'
MQRC_RFH_PARM_ERROR 2337 X'00000921'
MQRC_RFH_PARM_MISSING 2338 X'00000922'
MQRC_RFH_STRING_ERROR 2339 X'00000923'

MQRCCF_* (PCF reason codes)
MQRCCF_MSG_LENGTH_ERROR 3016 X'00000BC8'
MQRCCF_MD_FORMAT_ERROR 3023 X'00000BCF'
MQRCCF_ENCODING_ERROR 3050 X'00000BEA'
MQRCCF_BROKER_DELETED 3070 X'00000BFE'
MQRCCF_STREAM_ERROR 3071 X'00000BFF'
MQRCCF_TOPIC_ERROR 3072 X'00000C00'

Integer constants

Appendix C. Constants 179

MQRCCF_NOT_REGISTERED 3073 X'00000C01'
MQRCCF_Q_MGR_NAME_ERROR 3074 X'00000C02'
MQRCCF_INCORRECT_STREAM 3075 X'00000C03'
MQRCCF_Q_NAME_ERROR 3076 X'00000C04'
MQRCCF_NO_RETAINED_MSG 3077 X'00000C05'
MQRCCF_DUPLICATE_IDENTITY 3078 X'00000C06'
MQRCCF_INCORRECT_Q 3079 X'00000C07'
MQRCCF_CORREL_ID_ERROR 3080 X'00000C08'
MQRCCF_NOT_AUTHORIZED 3081 X'00000C09'
MQRCCF_UNKNOWN_STREAM 3082 X'00000C0A'
MQRCCF_REG_OPTIONS_ERROR 3083 X'00000C0B'
MQRCCF_PUB_OPTIONS_ERROR 3084 X'00000C0C'
MQRCCF_UNKNOWN_BROKER 3085 X'00000C0D'
MQRCCF_Q_MGR_CCSID_ERROR 3086 X'00000C0E'
MQRCCF_DEL_OPTIONS_ERROR 3087 X'00000C0F'
MQRCCF_BROKER_COMMAND_FAILED 3094 X'00000C16'

Reason codes

180 MQSeries Publish/Subscribe User’s Guide

Appendix D. Header files

This appendix lists the C-language header files necessary for publish/subscribe
applications:

cmqpsc.h
Contains string constants for publish/subscribe messages using the
MQRFH header.

cmqc.h
Contains elementary data types, and some named constants for events and
PCF commands.

cmqcfc.h
Contains named constants specific to publish/subscribe messages,
definitions for PCF structures, and additional named constants for events
and PCF commands.

cmqbc.h
Contains definitions unique to the MQAI. This file is required only for
metatopics and system management functions.

© Copyright IBM Corp. 1998, 2001 181

Header files

182 MQSeries Publish/Subscribe User’s Guide

Appendix E. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2001 183

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
The following are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

AIX AS/400 BookManager
FFST IBM MQSeries
OS/2 OS/390 SupportPac
VSE/ESA

Tivoli is a trademark of Tivoli Systems Inc. in the United States, other countries, or
both.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

184 MQSeries Publish/Subscribe User’s Guide

Glossary of terms and abbreviations

This glossary defines terms and abbreviations
used in this book. If you do not find the term you
are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill,
1994.

B
Broker. An MQSeries application that receives
messages from publishers on selected topics, and
subscription requests from subscribers to a range of
topics. The broker routes the published data to target
subscribers. There is a maximum of one broker per
queue manager.

Broker hierarchy. The topology of a broker network.
Each broker (except the root broker) has a parent, and
might have several children.

Broker network. A group of interconnected brokers
that can share publications and subscription requests.
The brokers are arranged in a broker hierarchy.

Broker queue. A queue on which a broker puts or
receives messages. There are several types of broker
queue, including system queues used for
administration, and the queues used to hold
publications.

C
Child broker. The brokers that sit below the current
broker in the broker hierarchy. Brokers can have zero or
more child brokers. Contrast with parent broker.

E
Event publication. A publication that contains
information about an event, such as the sale of some
stock. Different events are unrelated to each other.
Contrast with state publication.

G
Global publication. A publication that is distributed
through other brokers in the network to all subscribers,
except those who have requested local publications.

L
Local publication. A publication that is available only
to subscribers, on the same broker as the publisher, that
have requested local publications. Contrast with global
publication.

M
Metatopic. A special set of topics on which the broker
publishes information about publishers and subscribers.

P
Parent broker. The broker that sits above the current
broker in the broker hierarchy. Every broker except the
root broker has a parent broker. Contrast with child
broker.

Publish message. A message sent by a publisher to a
broker, a broker to a broker, or a broker to a subscriber,
that contains information being published.

Publisher. An application that makes information
about a specified topic available.

Publisher queue. A queue to which any direct
requests are sent by subscribers. This queue can also be
used for response messages from the broker.

R
Registration message. A message sent to a broker, by
a publisher or subscriber application, that registers that
application’s interest in a topic.

Response message. A message generated by a broker,
in response to a message from a publisher or a
subscriber, to indicate the success or failure of a
request. Publishers and subscribers can request that
they are always sent response messages, are never sent
response messages, are sent a message only if an error
occurs, or only if an error does not occur.

Retained publication. A publication that is retained
by the broker so that it can be sent to new subscribers.
When a new retained publication arrives for the same
topic, it replaces the preceding retained publication.

S
State publication. A publication that contains the
latest information about the state of something, such as

© Copyright IBM Corp. 1998, 2001 185

the current price of stock. State publications are usually
implemented as retained publications. Contrast with event
publication.

Stream. A group of related topics.

Stream queue. A queue to which publications about a
particular stream are sent. The queue has the same
name as the stream, and there is one occurrence of the
stream queue at each broker that supports the stream.

Subscriber. An application that requests information
about a specified topic.

Subscriber queue. A queue on a subscriber to which
published messages are sent by the broker. A subscriber
can have more than one subscriber queue.

T
Topic. A character string that describes the nature of
the data that is being published.

W
Wildcard. A special character that can be used to
represent one or more characters. Any character or set
of characters can be used to replace a wildcard
character.

186 MQSeries Publish/Subscribe User’s Guide

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.2
v MQSeries for AS/400®, V5.2
v MQSeries for AT&T GIS UNIX, V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS,

V2.2.1.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA™, V2.1.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT and Windows 2000,

V5.2

The MQSeries cross-platform publications are:
v MQSeries Brochure, G511-1908
v MQSeries: An Introduction to Messaging and

Queuing, GC33-0805
v MQSeries Intercommunication, SC33-1872
v MQSeries Queue Manager Clusters, SC34-5349
v MQSeries Clients, GC33-1632
v MQSeries System Administration, SC33-1873
v MQSeries MQSC Command Reference, SC33-1369
v MQSeries Event Monitoring, SC34-5760
v MQSeries Programmable System Management,

SC33-1482
v MQSeries Administration Interface Programming

Guide and Reference, SC34-5390
v MQSeries Messages, GC33-1876
v MQSeries Application Programming Guide,

SC33-0807
v MQSeries Application Programming Reference,

SC33-1673

v MQSeries Programming Interfaces Reference
Summary, SX33-6095

v MQSeries Using C++, SC33-1877
v MQSeries Using Java, SC34-5456
v MQSeries Application Messaging Interface,

SC34-5604

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX, V5.2

MQSeries for AIX Quick Beginnings,
GC33-1867

MQSeries for AS/400, V5.2

MQSeries for AS/400 Quick Beginnings,
GC34-5557
MQSeries for AS/400 System
Administration, SC34-5558
MQSeries for AS/400 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX, V2.2

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS,
V2.2.1.1

MQSeries for Compaq (DIGITAL)
OpenVMS System Management Guide,
GC33-1791

MQSeries for Compaq Tru64 UNIX, V5.1

MQSeries for Compaq Tru64 UNIX Quick
Beginnings, GC34-5684

MQSeries for HP-UX, V5.2

MQSeries for HP-UX Quick Beginnings,
GC33-1869

MQSeries for Linux, V5.2

MQSeries for Linux Quick Beginnings,
GC34-5691

MQSeries for OS/2 Warp, V5.1

MQSeries for OS/2 Warp Quick
Beginnings, GC33-1868

© Copyright IBM Corp. 1998, 2001 187

MQSeries for OS/390, V5.2

MQSeries for OS/390 Concepts and
Planning Guide, GC34-5650
MQSeries for OS/390 System Setup
Guide, SC34-5651
MQSeries for OS/390 System
Administration Guide, SC34-5652
MQSeries for OS/390 Problem
Determination Guide, GC34-5892
MQSeries for OS/390 Messages and
Codes, GC34-5891
MQSeries for OS/390 Licensed Program
Specifications, GC34-5893
MQSeries for OS/390 Program Directory

MQSeries link for R/3, V1.2

MQSeries link for R/3 User’s Guide,
GC33-1934

MQSeries for SINIX and DC/OSx, V2.2

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris, V5.2

MQSeries for Sun Solaris Quick
Beginnings, GC33-1870

MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

MQSeries for Sun Solaris Quick
Beginnings, GC34-5851

MQSeries for Tandem NonStop Kernel, V2.2.0.1

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA, V2.1.1

MQSeries for VSE/ESA Licensed Program
Specifications, GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows, V2.0

MQSeries for Windows User’s Guide,
GC33-1822

MQSeries for Windows, V2.1

MQSeries for Windows User’s Guide,
GC33-1965

MQSeries for Windows NT and Windows 2000,
V5.2

MQSeries for Windows NT and Windows
2000 Quick Beginnings, GC34-5389

MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387
MQSeries LotusScript Extension,
SC34-5404

MQSeries Integrator publications
The following books make up the MQSeries
Integrator Version 2 library:
v IBM MQSeries Integrator Version 2.0.1

Introduction and Planning, GC34-5599
v IBM MQSeries Integrator for Windows NT Version

2.0.1 Installation Guide, GC34-5600
v IBM MQSeries Integrator Version 2.0.1 Messages,

GC34-5601
v IBM MQSeries Integrator Version 2.0.1 Using the

Control Center, SC34-5602
v IBM MQSeries Integrator Version 2.0.1

Programming Guide, SC34-5603
v IBM MQSeries Integrator Version 2.0.1

Administration Guide, SC34-5792
v IBM MQSeries Integrator for Sun Solaris Version

2.0.1 Installation Guide, GC34-5842
v IBM MQSeries Integrator for AIX Version 2.0.1

Installation Guide, GC34-5841

The MQSeries Integrator for Windows NT
Installation Guide is provided in hardcopy with the
product. The book is also available, separately, in
hardcopy.

All books in the MQSeries Integrator library are
provided in softcopy, in Adobe Portable
Document Format (PDF) in a searchable PDF
library for the Windows NT platform.

The PDF library is also supplied for UNIX
platforms.

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.2
v MQSeries for AS/400, V5.2
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2

188 MQSeries Publish/Subscribe User’s Guide

v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Windows NT and Windows 2000

and Windows 2000, V5.2 (compiled HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.2
v MQSeries for AS/400, V5.2
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.2
v MQSeries for Linux, V5.2
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.2
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Windows NT and Windows 2000

and Windows 2000, V5.2
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:

http://www.ibm.com/software/mqseries/

BookManager® format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2

BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download an MQSeries SupportPac.

Bibliography 189

MQSeries on the Internet

190 MQSeries Publish/Subscribe User’s Guide

Index

A
access control

defining 101
using streams 19

AccountingToken parameter
publications forwarded by broker 38

adding a broker to a network 109
adding a stream 107
adding and removing brokers 110
AIX, installation on 10
AMQ58xx messages 165
amqsfmda.tst sample 100
application

sample program 92
Application Messaging Interface 39
application programming 29
application type for message descriptor,

constants 178
applications, system management 137
ApplIdentityData parameter

publications forwarded by broker 38
ApplOriginData parameter

publications forwarded by broker 38
authorization checks 47, 101

B
backup 101
bibliography 187
BookManager 189
broker

adding to a network 109
administration messages 137
backup 101
configuration parameters 102
configuration tool 102
controlling 107
deleting from a network 109
deregistering as a publisher 45
deregistering as subscriber 50
exit program 125
finding children 139
finding out about 149
finding parent 139
finding supported streams 139
interactions with subscriber and

publisher 30
introduction 3
registering as a publisher 41
registering as a subscriber 47
response message 86
routing exit 125
setting up 99
stanza of qm.ini 102

broker deleted message 138
broker hierarchy, example 19
broker networks 19
broker queues, defining 99
broker response message 86

C
character parameter identifier

constants 178
child broker 19
children messages 139
ChkPtActiveCount parameter 104
ChkPtMsgSize parameter 104
ChkPtRestartCount parameter 104
class of service 19
clear broker’s memory, control

command 114
clrmqbrk command 114
cluster queues 39, 99
CodedCharSetId field

MQRFH structure 55
Command field

MQCFH structure 140
command identifier constants 178
command message

name/value pairs 63
PCF format 137
RFH format 53
structure 29

Command parameter
Broker response message 87
Delete Publication command 64
Deregister Publisher command 66
Deregister Subscriber command 68
Publish command 70
Register Publisher command 75
Register Subscriber command 78
Request Update command 81

command tag string constants 176
CompCode field

MQCFH structure 140
CompCode parameter

Broker response message 86
compiling, routing exit 133
configuration file 102
constants 175
control commands

clear broker’s memory
(clrmqbrk) 114

deregister or delete broker function
(dltmqbrk) 117

display broker status (dspmqbrk) 119
end broker function (endmqbrk) 120
migrate broker to MQSeries Integrator

function (migmqbrk) 121
start broker function (strmqbrk) 123

Control field
MQCFH structure 140

controlling brokers 107
CorrelId parameter

message sent to broker 37
publications forwarded by broker 37
response messages 85

creating queues 99

D
data, publication 59
data conversion 39
dead-letter queue 101
dead-letter queue processing 83
defining queues 99
delete options

integer constants 178
string constants 177

Delete Publication command 64, 143
DeleteOptions parameter

Broker response message 87
Delete Publication command 64

deleting a broker from a network 109
deleting a stream 108
deleting publications 44
deregister or delete broker function,

control command 117
Deregister Publisher command 66, 143
Deregister Subscriber command 68, 143
deregistering as a publisher 45
deregistering as a subscriber 50
destination type for routing exit,

constants 178
DestinationQMgrName field

MQPXP structure 131
DestinationQName field

MQPXP structure 131
DestinationType field

MQPXP structure 130
DiscardNonPersistentInputMsg

parameter 105
DiscardNonPersistentPublication

parameter 106
DiscardNonPersistentResponse

parameter 106
disk space requirements for

installation 9
display broker status, control

command 119
DLQNonPersistentPublication

parameter 106
DLQNonPersistentResponse

parameter 106
dltmqbrk command 117
double-byte character sets 59
dspmqbrk command 119

E
Encoding field

MQRFH structure 54
end broker function, control

command 120
endmqbrk command 120
error codes 159

Broker response message 88
Delete Publication command 65
Deregister Publisher command 67
Deregister Subscriber command 69

© Copyright IBM Corp. 1998, 2001 191

error codes 159 (continued)
Publish command 74
Register Publisher command 76
Register Subscriber command 80
Request Update command 82

error handling 83
error messages 165
error response 85
ErrorId parameter

Broker response message 87
ErrorPos parameter

Broker response message 87
event publications 22
example

administration information
program 152

application program 92
broker hierarchy 19
Broker response message 88
clrmqbrk command 115
Delete Publication command 64
Deregister Publisher command 67
Deregister Subscriber command 69
dltmqbrk command 118
dspmqbrk command 119
endmqbrk command 120
metatopic information 153
metatopic requests 149
migmqbrk command 122
multiple broker configuration 4
multiple subscriptions 20
NameValueString 57
propagation of publications 21
propagation of subscriptions 20
publication data 59
Publish command 74
qm.ini broker stanza 102
Register Publisher command 76
Register Subscriber command 80
Request Update command 82
routing exit 133
simple broker configuration 4
strmqbrk command 124

exit program 125
ExitData field

MQPXP structure 129
ExitId field

MQPXP structure 127
ExitNumber field

MQPXP structure 129
ExitParms parameter 125
ExitReason field

MQPXP structure 127
ExitResponse field

MQPXP structure 128
ExitResponse2 field

MQPXP structure 129
ExitUserArea field

MQPXP structure 129
Expiry parameter

message sent to broker 37
publications forwarded by broker 37

F
Feedback field

MQPXP structure 129

Flags field
MQRFH structure 55

Format field
MQRFH structure 55

Format parameter
message sent to broker 36
publications forwarded by broker 37
response messages 84

G
global publications

introduction 22
publishing 44

glossary 185
group messages 39
GroupId parameter 106

H
header files 181
HeaderLength field

MQPXP structure 130
HP-UX 10, installation on 11
HP-UX 11 (DCE), installation on 13
HP-UX 11 (non-DCE), installation on 12
HTML (Hypertext Markup

Language) 188
Hypertext Markup Language

(HTML) 188

I
identity of publisher and subscriber 35
initialization file 102
installation

AIX 10
disk space requirements 9
HP-UX 10 11
HP-UX 11 12, 13
Linux 14
package 9
prerequisites 8
Sun Solaris 15
Windows 2000 16
Windows NT 16

integer parameter identifier
constants 179

IntegerData parameter
Publish command 73

internal queues 101

L
limitations 6, 7, 39
Linux, installation on 14
local publications

introduction 22
publishing 44

M
managing brokers 107
MaxMsgRetryCount parameter 102

message descriptor (MQMD)
message sent to broker 36
publications forwarded by broker 37
response messages 84

message flow 30
message format

broker response 86
commands 53, 63
metatopic 150

message order 34
messages

broker administration 137
error 165
group 39
response 84
segmented 39

metatopics 147
example 153
sample program 152

migmqbrk command 121
migrate broker to MQSeries Integrator

function, control command 121
MQ_PUBSUB_ROUTING_EXIT call 125
MQAT_* constants 178
MQBACK, routing exit 132
MQCACF_* constants 178
MQCFH structure 139
MQCFT_* values 139
MQCMD_* constants 178
MQCMIT, routing exit 132
MQDELO_* constants 178
MQDISC, routing exit 132
MQDT_* constants 178
MQFB_* values 129
MQIACF_* constants 179
MQMD (message descriptor)

message sent to broker 36
publications forwarded by broker 37
response messages 84

MQPS_* constants 175, 176, 177
MQPUBO_* constants 179
MQPXP_* values 127
MQPXP structure 126
MQRC_RFH_* constants 179
MQRCCF_* codes 159
MQRCCF_* constants 179
MQREGO_* constants 179
MQRFH 53
MQRFH_* constants 178, 179
MQRFH_* values 54, 55
MQRFH_DEFAULT 56
MQSeries, relationship with 6
MQSeries Integrator, relationship with 7
MQSeries publications 187
MQUA_* constants 179
MQXCC_* values 128
MQXR_* values 127
MQXUA_* values 129
MsgDescPtr field

MQPXP structure 130
MsgId parameter

response messages 84
MsgInLength field

MQPXP structure 130
MsgInPtr field

MQPXP structure 130

192 MQSeries Publish/Subscribe User’s Guide

MsgOutLength field
MQPXP structure 130

MsgOutPtr field
MQPXP structure 130

MsgSeqNumber field
MQCFH structure 140

MsgType parameter
message sent to broker 36
publications forwarded by broker 37
response messages 84

multiple subscriptions, example 20

N
NameValueString 57
NameValueString field 55
network

adding a broker 109
broker 19
deleting a broker 109

O
OK response 85
OpenCacheExpiry parameter 103
OpenCacheSize parameter 103

P
ParameterCount field

MQCFH structure 140
ParameterId parameter

Broker response message 87
parent broker 19
parent messages 139
PCF definitions

command messages 142
Delete Publication 143
Deregister Publisher 143
Deregister Subscriber 143
Publish 144
Register Publisher 144
Register Subscriber 145
Request Update 145

PDF (Portable Document Format) 189
persistence 38
Persistence parameter

publications forwarded by broker 37
response messages 85

Portable Document Format (PDF) 189
PostScript format 189
prerequisites for installation 8
Priority parameter

publications forwarded by broker 37
response messages 85

problem determination 89
publication data 59
publication options

integer constants 179
string constants 177

publication propagation, example 21
PublicationOptions parameter

Broker response message 87
Publish command 71

publications
customizing 125

publications (continued)
deleting 44
MQSeries 187

Publish command 70, 144
publish/subscribe

command messages 53, 63
exit structure 126
string constants 175

PublishBatchInterval parameter 103
PublishBatchSize parameter 103
publisher

broker restart 43
changing registration 43
deregistering with the broker 45
exit program 125
identity 35
interactions with subscriber and

broker 30
introduction 3
registering with the broker 41
writing applications 41

publisher information messages 147
publishing information 43
PublishTimestamp parameter

Publish command 73
PutApplName parameter

publications forwarded by broker 38
response messages 85

PutApplType
publications forwarded by broker 38

PutApplType parameter
response messages 85

PutDate parameter
publications forwarded by broker 38

PutTime parameter
publications forwarded by broker 38

Q
qm.ini 102
QMgrName field

MQPXP structure 131
QMgrName parameter

Broker response message 87
Deregister Publisher command 66
Deregister Subscriber command 69
Publish command 73
Register Publisher command 76
Register Subscriber command 79
Request Update command 81

QName parameter
Broker response message 87
Deregister Publisher command 67
Deregister Subscriber command 69
Publish command 73
Register Publisher command 76
Register Subscriber command 80
Request Update command 81

queue manager initialization file 102
queues

cluster 39
dead letter 101
internal 101
stream 100
SYSTEM.BROKER.ADMIN.STREAM 100
SYSTEM.BROKER.CONTROL.QUEUE 99
SYSTEM.BROKER.DEFAULT.STREAM 99

queues (continued)
SYSTEM.BROKER.MODEL.STREAM 100

R
range delimiter constants 179
reason codes

constants 179
description 159
PCF messages 141

Reason field
MQCFH structure 140

Reason parameter
Broker response message 86

ReasonText parameter
Broker response message 86

Register Publisher command 75, 144
Register Subscriber command 78, 145
registering as a publisher 41
registering as a subscriber 47
registration

changing for a publisher 43
changing for subscriber 49

registration options
integer constants 179
string constants 177

RegistrationOptions parameter
Broker response message 87
Deregister Publisher command 66
Deregister Subscriber command 68
Publish command 70
Register Publisher command 75
Register Subscriber command 78
Request Update command 81

ReplyToQ parameter
message sent to broker 37
publications forwarded by broker 38

ReplyToQMgr parameter
message sent to broker 37
publications forwarded by broker 38

Report parameter
message sent to broker 36
publications forwarded by broker 37
response messages 84

request update
message flow 31

Request Update command 81, 145
requesting information 49
response messages 84
retained publication

introduction 22
publishing 44

return codes
clrmqbrk command 115
dltmqbrk command 117
dspmqbrk command 119
endmqbrk command 120
migmqbrk command 122
strmqbrk command 123

RFH definitions
Delete Publication 64
Deregister Publisher 66
Deregister Subscriber 68
Publish 70
Register Publisher 75
Register Subscriber 78
Request Update 81

Index 193

root broker 19
routing exit 125
RoutingExitAuthorityCheck

parameter 105
RoutingExitConnectType parameter 104
RoutingExitData parameter 105
RoutingExitPath parameter 104
rules and formatting header

constants 178, 179
definition 53
use of 57

S
sample program

administration information 152
application 92
Application Messaging Interface 95
routing exit 133

security, setting up 101
segmented messages 39
SequenceNumber parameter

Publish command 73
softcopy books 188
start broker function, control

command 123
starting a broker 107
state publications 22
stopping a broker 107
stream

adding 107
deleting 108
finding which are supported 139
implementation 18
introduction 3
reasons for using 18

stream deleted message 138
stream queues 100
stream support messages 139
StreamName field

MQPXP structure 131
StreamName parameter

Broker response message 88
Delete Publication command 64
Deregister Publisher command 66
Deregister Subscriber command 68
Publish command 72
Register Publisher command 76
Register Subscriber command 79
Request Update command 81

StreamsPerProcess parameter 103
StringData parameter

Publish command 73
strmqbrk command 123
StrucId field

MQPXP structure 127
MQRFH structure 54

StrucLength field
MQCFH structure 139
MQRFH structure 54

structures
MQCFH 139
MQPXP 126
MQRFH 53

subscriber
broker restart 49
changing registration 49

subscriber (continued)
deregistering with the broker 50
identity 35
interactions with publisher and

broker 30
introduction 3
message arrival order 34
registering with the broker 47
writing applications 47

subscriber information messages 147
subscribing to metatopics 148
subscription deregistered message 138
subscription propagation, example 20
subscriptions

passing between brokers 20
Sun Solaris, installation on 15
SyncPointIfPersistent parameter 105
SYSTEM.BROKER.ADMIN.STREAM 100
SYSTEM.BROKER.CONTROL.QUEUE 99
SYSTEM.BROKER.DEFAULT.STREAM 99
SYSTEM.BROKER.MODEL.STREAM 100
system design 17
system management programs 137

T
terminology used in this book 185
threads, routing exit 132
Topic parameter

Broker response message 88
Delete Publication command 64
Deregister Publisher command 66
Deregister Subscriber command 68
Publish command 70
Register Publisher command 75
Register Subscriber command 78
Request Update command 81

topics
introduction 3
using wildcards 17

triggering a broker 107
Type field

MQCFH structure 139

U
unit of work 38
UserId parameter

Broker response message 88
publications forwarded by broker 38

V
Version field

MQCFH structure 139
MQPXP structure 127
MQRFH structure 54

W
Warning response 85
wildcards 17

using with metatopics 149
Windows 2000, installation on 16
Windows Help 189

Windows NT, installation on 16
writing applications 29

194 MQSeries Publish/Subscribe User’s Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–816151
– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1998, 2001 195

196 MQSeries Publish/Subscribe User’s Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5269-07

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Appearance of text in this book
	How to read syntax diagrams

	Summary of changes
	Changes for this edition (GC34-5269-07)
	Changes for the seventh edition (GC34-5269-06)
	Changes for the sixth edition (GC34-5269-05)

	Part 1. Introduction and system design
	Chapter 1. Introduction
	What is publish/subscribe?
	What are the components involved?
	Example of a single broker configuration
	Example of a multiple broker configuration

	How does it work?
	How MQSeries Publish/Subscribe relates to MQSeries
	How MQSeries Publish/Subscribe relates to MQSeries Integrator
	Installation instructions
	Prerequisites
	Disk space requirements
	The MQSeries Publish/Subscribe package
	Installation on AIX
	Testing the installation

	Installation on HP-UX 10
	Testing the installation

	Installation on HP-UX 11 (non-DCE)
	Testing the installation

	Installation on HP-UX 11 (DCE)
	Testing the installation

	Installation on Linux
	Testing the installation

	Installation on Sun Solaris
	Testing the installation

	Installation on Windows NT and Windows 2000
	Testing the installation

	Chapter 2. System design
	Topics
	Matching topic strings

	Streams
	Broker networks
	Passing subscription information between brokers

	Different types of publication
	Local and global publications
	State and event information
	Retained publications

	Sample application

	Part 2. Writing applications
	Chapter 3. Introduction to writing applications
	Message flows
	Simplified message flow

	Message ordering
	Ensuring that messages are retrieved in the correct order

	Publisher and subscriber identity
	The message descriptor
	Messages sent to the broker
	Publications forwarded by the broker

	Persistence and units of work
	Limitations
	Group messages
	Segmented messages
	Cluster queues
	Data conversion of MQRFH structure

	Using the Application Messaging Interface
	AMI publish/subscribe functions
	Publish command
	Register Subscriber command
	Deregister Subscriber command
	Receive a publication

	Chapter 4. Writing publisher applications
	Registering with the broker
	Choosing not to register
	Options you can specify when registering as a publisher
	Queue name
	Selecting a stream
	Publisher identity
	Registration scope
	Registration expiry

	Broker restart
	Changing an application’s registration

	Publishing information
	Publication data
	Including data in the message
	Referring to data in the message

	Retained publications
	Expiry of retained publications

	Publishing locally and globally

	Deleting information
	Deregistering with the broker

	Chapter 5. Writing subscriber applications
	Registering as a subscriber
	Subscriber queues
	Options you can specify when registering as a subscriber
	Queue name
	Selecting a stream
	Subscriber identity
	Subscription scope
	Subscription expiry

	Broker restart
	Changing an application’s registration

	Requesting information
	Requesting information from the broker
	Requesting information from a publisher

	Deregistering as a subscriber

	Chapter 6. Format of command messages
	MQRFH – Rules and formatting header
	Fields
	Structure definition in C

	Publish/Subscribe name/value strings
	Options using string constants
	Options using integer constants
	Sending a command message with the RFH structure

	Publication data
	Double-byte character sets

	Chapter 7. Publish/Subscribe command messages
	Delete Publication
	Required parameters
	Optional parameters
	Example
	Error codes

	Deregister Publisher
	Required parameters
	Optional parameters
	Example
	Error codes

	Deregister Subscriber
	Required parameters
	Optional parameters
	Example
	Error codes

	Publish
	Required parameters
	Optional parameters
	Example
	Error codes

	Register Publisher
	Required parameters
	Optional parameters
	Example
	Error codes

	Register Subscriber
	Required parameters
	Optional parameters
	Example
	Error codes

	Request Update
	Required parameters
	Optional parameters
	Example
	Error codes

	Chapter 8. Error handling and response messages
	Error handling by the broker
	Response messages
	Message descriptor for response messages
	Types of error response
	OK response
	Warning response
	Error response

	Broker responses
	Standard parameters
	Optional parameters
	Examples
	Error codes applicable to all commands

	Problem determination

	Chapter 9. Sample programs
	Sample application
	Running the application
	Possible extensions

	Application Messaging Interface samples

	Part 3. Managing the broker
	Chapter 10. Setting up a broker
	Broker queues
	System queues
	Other stream queues
	SYSTEM.BROKER.MODEL.STREAM

	Internal queues
	Dead-letter queue

	Other considerations
	Access control
	Backup

	Broker configuration stanza
	Broker configuration tool
	Broker configuration parameters

	Chapter 11. Controlling the broker
	Starting a broker
	Using triggering to start the broker

	Stopping a broker
	Displaying the status of a broker
	Adding a stream
	Creating a stream queue
	Informing other brokers about the stream

	Deleting a stream
	Deleting a stream on an isolated broker
	Deleting a stream on a broker that is part of a network

	Adding a broker to a network
	Deleting a broker from the network
	Problems when deleting brokers
	Deleting a broker that has a child broker

	Sequence of commands for adding and deleting brokers

	Chapter 12. Control commands
	clrmqbrk (Clear broker’s memory of a neighboring target broker)
	dltmqbrk (Delete broker)
	dspmqbrk (Display broker status)
	endmqbrk (End broker function)
	migmqbrk (Migrate broker to MQSeries Integrator)
	strmqbrk (Start broker function)

	Chapter 13. Message broker exit
	Publish/subscribe routing exit
	Parameters
	Usage notes
	C invocation

	Publish/subscribe routing exit parameter structure
	Fields
	C declaration

	Writing a publish/subscribe routing exit program
	Limitations on MQSeries work done in the routing exit
	Security considerations

	Compiling a publish/subscribe routing exit program
	Sample routing exit

	Part 4. System programming
	Chapter 14. Writing system management applications
	Format of broker administration messages
	Subscription deregistered message
	Stream deleted message
	Broker deleted message
	Stream support messages
	Children messages
	Parent messages

	MQCFH - PCF header
	Reason codes returned from publish/subscribe messages

	PCF Command Messages
	Delete Publication
	Deregister Publisher
	Deregister Subscriber
	Publish
	Register Publisher
	Register Subscriber
	Request Update

	Chapter 15. Finding out about other publishers andsubscribers
	Metatopics
	Subscribing to metatopics
	Using wildcards
	Example requests

	Authorized metatopics
	Finding out about brokers
	Message format for metatopics
	Parameters

	Sample program for administration information
	Operation
	Example of metatopic information

	Part 5. Appendixes
	Appendix A. Reason codes
	Appendix B. Error messages
	Appendix C. Constants
	String constants
	MQPS_* (Publish/Subscribe tag names)
	MQPS_* (Command tag values)
	MQPS_* (Delete, publication and registration options)
	MQRFH_* (Rules and formatting header structure identifier)

	Integer constants
	MQAT_* (Application type for message descriptor)
	MQCACF_* (Character parameter identifiers for PCF)
	MQCMD_* (Command identifiers for PCF)
	MQDELO_* (Delete options)
	MQDT_* (Destination type for routing exit)
	MQIACF_* (Integer parameter identifiers for PCF)
	MQPUBO_* (Publication options)
	MQREGO_* (Registration options)
	MQRFH_* (Rules and formatting header)
	MQUA_* (User-attribute selectors for PCF)

	Reason codes
	MQRC_RFH_* (RFH reason codes)
	MQRCCF_* (PCF reason codes)

	Appendix D. Header files
	Appendix E. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	MQSeries Integrator publications
	Softcopy books
	HTML format
	Portable Document Format (PDF)
	BookManager® format
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

