<|lI!

MQSeries™ for AS/400®

System Administration
V5.1

SC34-5558-00

<|lI!

MQSeries™ for AS/400®

System Administration
V5.1

SC34-5558-00

Note!
Before using this information and the product it supports, be sure to read the general information under [Appendix Cl

First edition (March 2000)
This edition applies to the following product:

MQSeries for AS/400 Version 5 Release 1 and to all subsequent releases and modifications until otherwise indicated
in new editions.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures
Tables

About this book

Who this book is for

What you need to know to understand thls book
How to use this book .

Chapter 1. Introduction to MQSeries
MQSeries and message queuing .
Time-independent applications
Message-driven processing
Messages and queues
What is a message? .
What is a queue? .
Objects .
Object names .
Managing objects .
Object attributes .
MQSeries queue managers
MQSeries queues .
Process definitions
Channels
Clusters .
Namelists .
System default objects .
Clients and servers
MQSeries applications in a cllent -server
environment .
Extending queue manager faC|I|t|es
User exits .
Security
Transactional support

Chapter 2. Managing MQSeries for
AS/400 using CL commands
MQSeries applications. .
MQSeries for AS/400 CL commands .
Starting a local queue manager .
Creating MQSeries objects

Examples of creating a local queue

Examples of creating a remote queue.

Creating a transmission queue .

Creating an initiation queue .

Creating an alias queue

Creating a model queue .

Altering queue manager attrlbutes
Working with local queues

Defining a local queue.

Defining a dead-letter queue

Displaying default object attributes

Copying a local queue definition

Changing local queue attributes

© Copyright IBM Corp. 1994, 2000

. Vi

. Xi
. Xi

. Xi

©©O©OWOOUBRDDDRMWNNNEREERER

. 10
. 10
. 10
. 10

. 13
. 13
.13
.15
.15
. 16
.18
.19
. 20
. 20
. 20
. 20
. 20
. 20
.21
.22
.22
.22

Clearing a local queue.22
Deleting a local queue.23
Working with alias queues23
Defining an alias queue23
Using other commands with alias queues .o .24
Working with model queues.24
Defining a model queue 24
Using other commands with model queues . .25
Managing objects for triggering.25
Defining an application queue for trlggerlng . .25
Defining an initiation queue.26
Creating a process definiton26
Displaying your process definition26
Communicating between two systems27

Chapter 3. Alternative methods for

MQSeries administration 29
Local and remote administration29
Performing administrative tasks using MQSC
commands. . . . < 10
MQSC command flles Lo .. .30
Performing administrative tasks usmg PCF
commands. . . N
Attributes in MQSC and PCFs X
Escape PCFs03
Using the MQAI to S|mpI|fy the use of PCFs . .31
Using the MQSeries Explorer32
What you can do with the MQSeries Explorer. . 33
Prerequisite software33
Required definitions for admlnlstratlon33
Managing the command server for remote
administration . . . B 7
Starting the command server34
Displaying the status of the command server . . 34
Stopping a command server.35
Chapter 4. Work management 37
Description of MQSeries Tasks38
MQSeries work management objects 38
How MQSeries uses the work management objects 39
The MQSeries message queue40
Configuring Work Management41

Chapter 5. Protecting MQSeries objects 43

Security considerations 43
Understanding the Object Authorlty Manager .44
Resources you can protect with the OAM . . . 44
MQSeries authorities44
Granting MQSeries authorltles to MQSerles
objects44
Understanding the authorlzatlon speC|f|cat|on tables 47
MQI authorizations.47
Administration authorizations 50
Authorizations for MQSC commands in escape
PCFs50

Authorizations for different types of object .
Object Authority Manager guidelines.

Queue manager directories .

Queues. .

Alternate-user authorlty .

Context authority

Remote security con5|derat|ons

Channel command security .

Chapter 6. The MQSeries dead-letter
queue handler
Invoking the DLQ handler
The DLQ handler rules table

Control data .

Rules (patterns and actlons)

Rules table conventions
Processing the rules table.

Ensuring that all DLQ messages are processed
An example DLQ handler rules table .

Chapter 7. Instrumentation events . . . 67

. 67
. 68
. 69
. 70
. 70
.71

What are instrumentation events? .
Why use events?
Types of event
Event notification through event queues
Enabling and disabling events .
Event messages .

Chapter 8. Backup, recovery, and
restart . .
MQSeries for AS/400 Journals .
MQSeries for AS/400 journal usage
Media images .
Recovery from media |mages
Backups of MQSeries for AS/400 data
Journal management
Restoring a complete queue manager (data and
journals) .
Restoring journal receivers for a partlcular queue
manager .
Performance consrderatlons .

Chapter 9. Analyzing problems

Preliminary checks .

Problem characteristics . .
Can the problem be reproduced’? .
Is the problem intermittent? .
Problems with commands
Does the problem affect all users of the MQSerles
for AS/400 application?
Does the problem affect specmc parts of the
network? . .
Does the problem occur onIy on MQSerles V5R1
Does the problem occur at specmc times of the
day?. .
Have you failed to receive a response from a
command?.

Determining problems W|th MQSenes appllcatlons
Are some of your queues working? .
Does the problem affect only remote queues? .

iV MQSeries for AS/400, V5.1 System Administration

. 52
. 53
. 53
. 53
. 54
. 54
. 54
. 55

. 57
. 57
. 58
. 58
. 59
. 62
. 63
. 64
. 65

. 73
. 73
.75
. 76
77
.17
. 18

. 80

. 80
. 81

. 83
. 83
. 85
. 85
. 86

. 86

. 86

. 86
87

. 87

. 87

88

. 88
. 88

Does the problem affect messages? 89
Receiving unexpected messages when using
distributed queues . . . P [0
Obtaining diagnostic |nformat|on B X
Using MQSeries for AS/400 trace92
Formatting trace output93
Errorlogs.9%
Logfiles9%
Earlyerrors9
Operator messages . . . P |1
An example MQSeries error Iog95
Dead-letter queues9
First-failure support technology (FFST) P T
Performance considerations98
Application design con5|derat|ons98
Number of threads inuse 100
Specific performance problems 100
Chapter 10. Configuring MQSenes 101
MQSeries configuration files 101
Editing configuration files 101
The MQSeries configuration file, mqs ini . . . 102
Queue manager configuration files, gm.ini . . 102
Attributes for changing MQSeries configuration
information103
The AIIQueueManagers stanza1o03
The DefaultQueueManager stanza 104
The ExitProperties stanza 104
The QueueManager stanza. 105
Changing queue manager configuration
information106
The Log stanza.106
The Channels stanza 106
The TCP stanza.108
Example mgs.ini and gm.ini flles N 0
Appendix A. MQSeries names and
default objects e I
MQSeries object names . . . 111
Understanding MQSeries queue manager I|brary
names. . . oo 1
Understandlng MQSerles IFS d|rector|es and
files . . . L. 112
IFS Queue manager name transformatlon L. 2112
Object name transformation 112
System and default objects 113
Appendix B. Sample resource
definitions . 115
Appendix C. Notices R
Trademarks121
Glossary of terms and abbreviations 123
Bibliography : . . 133
MQSeries cross-platform publlcatlons133
MQSeries platform-specific publications 135
Softcopy books.136

BookManager format .

HTML format . e

Portable Document Format (PDF)

PostScript format . Coe

Windows Help format
MQSeries information available on th

e Internet .

. 136
. 136
. 136
. 136
. 136
. 136

Related publications .
Index .

Sending your comments to IBM

. 136

. 137

. 141

Contents

\

VI MQSeries for AS/400, V5.1 System Administration

Figures

N

Create MQM Queue initial panel

Work with MQM Queues panel .

Extract from the MQSC command file,
myprog.in
Display MQM Command Server panel

An example rule from a DLQ handler rules
table .
Understanding instrumentation events
Monitoring queue managers across different
platforms, on a single node

© Copyright IBM Corp. 1994, 2000

.17
.17

. 30

35

. 59
. 68

. 69

10.
11.
12.
13.

Sequence of events when updating MQM
objects
MQSeries for AS/400 journaling

Extract from an MQSeries error log

FFST report

Example of an MQSeries configuration file

Example queue manager configuration file

.75
.79
. 96
. 98
109
110

Vii

Viil MQSeries for AS/400, V5.1 System Administration

Tables

O NGk WNE

MQSeries tasks. . .

Work management objects

Authorizations for MQI calls.
Authorizations for context calls .
Authorizations for MQSC and PCF calls
Authorizations for generic operations .
Security authorization needed for MQI calls
MQSC commands and security authorization
needed .

© Copyright IBM Corp. 1994, 2000

. 38
. 38
. 45
. 45

45

. 46

48

. 50

10.

11.
12.
13.
14.

PCF commands and security authorization
needed .
Specifying authorizations for different object
types.

List of possible ISO CCSIDs. .

System and default objects - queues .
System and default objects - channels
System and default objects - processes

.51

. 52

. 104
. 113

114
114

ix

X MQSeries for AS/400, V5.1 System Administration

About this book

This book applies to MQSeries for AS/400, V5.1.

This product provides application programming services that enable application
programs to communicate with each other using message queues. This form of
communication is referred to as commercial messaging. The applications involved
can exist on different nodes on a wide variety of machine and operating system
types. The product uses a common application programming interface, called the
Message Queuing Interface or MQI, so that programs developed on one platform
can readily be transferred to another.

This book describes the system administration aspects of MQSeries for AS/400,
V5.1, and the services provided to support commercial messaging. This includes
managing the queues that applications use to receive their messages, and ensuring
that applications have access to the queues that they require.

Installation of MQSeries is described in the MQSeries for AS/400, V5.1 Quick
Beginnings book.

Post-installation configuration of a distributed queuing network is described in the

MQSeries Intercommunicatiod book.

Who this book is for

This book is intended for system administrators and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book

To use this book, you should have a good understanding of the IBM operating
system for the AS/400, and of the utilities associated with it. You do not need to
have worked with message queuing products before, but you should have an
understanding of the basic concepts of message queuing.

For a summary of the new function introduced in MQSeries for AS/400, V5.1, see
the MQSeries for AS/400, V5.1 Quick Beginnings book.

How to use this book

This book is divided into the following sections:

* The use of MQSeries for AS/400 using CL commands. This is the preferred
method of operation.

* An overview of other methods of administering MQSeries for AS/400, V5.1.
» The various features of the product.
* A glossary and a bibliography at the back of the book.

© Copyright IBM Corp. 1994, 2000 Xi

About this book

Xil MQSeries for AS/400, V5.1 System Administration

Chapter 1. Introduction to MQSeries

This chapter introduces the MQSeries for AS/400 Version 5.1 product from an
administrator’s perspective, and describes the basic concepts of MQSeries and
messaging. It contains these sections:

MQSeries and message queuing

MQSeries allows application programs to use message queuing to participate in
message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.
For example, HP-UX and OS/390 applications can communicate through MQSeries
for HP-UX and MQSeries for OS/390 respectively. The applications are shielded
from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface
known as the message queue interface (or MQI) whatever platform the
applications are run on. This makes it easier for you to port application programs
from one platform to another.

The MQI is described in detail in the MQSeries Application Programming Referencd

manual.

Time-independent applications

With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving application programs are decoupled so that the sender can continue
processing without having to wait for the receiver to acknowledge receipt of the
message. In fact, the target application does not even have to be running when the
message is sent. It can retrieve the message after it is has been started.

Message-driven processing

Upon arrival on a queue, messages can automatically start an application using a
mechanism known as triggering. If necessary, the applications can be stopped
when the message (or messages) have been processed.

© Copyright IBM Corp. 1994, 2000 1

Messages and queues

Messages and queues

Messages and queues are the basic components of a message queuing system.

What is a message”?

A message is a string of bytes that is meaningful to the applications that use it.
Messages are used for transferring information from one application program to
another (or to different parts of the same application). The applications can be
running on the same platform, or on different platforms.

MQSeries messages have two parts:

* The application data The content and structure of the application data is
defined by the application programs that use them.

* A message descriptor The message descriptor identifies the message and
contains additional control information such as the type of message, and the
priority assigned to the message by the sending application.

The format of the message descriptor is defined by MQSeries. For a complete

dESCI’IEtIOH of the message descriptor, see the MQSeries Application Programming

manual.

Message lengths
The maximum length a message can be is 100 MB (where 1 MB equals 1 048 576
bytes). In practice, the message length may be limited by:

* The maximum message length defined for the receiving queue
* The maximum message length defined for the queue manager

* The maximum message length defined by either the sending or receiving
application

* The amount of storage available for the message

It may take several messages to send all the information that an application
requires.

What is a queue?

A queue is a data structure used to store messages. The messages may be put on
the queue by application programs, or by a queue manager as part of its normal
operation.

Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns and for storing all the messages it receives onto
the appropriate queues.

The maximum size of a queue is 2 GB. For information about planning the

amount of storage you require for queues, see the MQSeries Planning Guidd or visit

the following web site for platform-specific performance reports;
http://www.software.ibm.com/ts/mgseries/txppacs/txpml.html

How do applications send and receive messages?
Application programs send and receive messages using MQI calls.

For example, to put a message onto a queue, an application:
1. Opens the required queue by issuing an MQIl MQOPEN call
2. lIssues an MQI MQPUT call to put the message onto the queue

2 MQSeries for AS/400, V5.1 System Administration

Messages and queues

3. Another application can retrieve the message from the same queue by issuing
an MQI MQGET call.

For more information about MQI calls, see the IMQSeries Application Programming
Referencd manual.

Predefined queues and dynamic queues

Queues can be characterized by the way they are created:

* Predefined queues are created by an administrator using the appropriate
MQSeries commands. Predefined queues are permanent; they exist
independently of the applications that use them and survive MQSeries restarts.

* Dynamic queues are created when an application issues an OPEN request
specifying the name of a model queue. The queue created is based on a template
queue definition, which is the model queue. You can create a model queue using
the MQSeries DEFINE QMODEL command. The attributes of a model queue, for
example the maximum number of messages that can be stored on it, are
inherited by any dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues
Suitably authorized applications can retrieve messages from a queue according to

the following retrieval algorithms:
* First-in-first-out (FIFO)

* Message priority, as defined in the message descriptor. Messages that have the
same priority are retrieved on a FIFO basis.

* A program request for a specific message.

The MQGET request from the application determines the method used.

Objects

Many of the tasks described in this book involve manipulating MQSeries objects.

In MQSeries Version 5.1, the object types include queue managers, queues, process
definitions, channels, clusters, and namelists.

The manipulation or administration of objects includes:
» Starting and stopping queue managers.
» Creating objects, particularly queues, for applications.

» Working with channels to create communication paths to queue managers on
other (remote) systems. This is described in detail in the ﬂ@
icationl manual.
» Creating clusters of queue managers to simplify the overall administration

process, or to achieve workload balancing. This is described in detail in the
i manual.

This book contains detailed information about administration in the following
chapters:

Chapter 1. Introduction to MQSeries 3

Objects

Object names

The naming convention adopted for MQSeries objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message should be sent.

For the other types of object, each object has a name associated with it and can be
referenced by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In MQSeries, names can have a maximum of 48 characters, with the exception of
channels WhICh have a maX|mum of 20 characters. For more information about
names, see >

Managing objects

You can manage objects using the native AS/400 menus.

You can create, alter, display, and delete objects using:
* MQSeries for AS/400 CL commands

* MQSeries commands (MQSC), which can be typed in from a keyboard or read
from a file

* Programmable Command Format (PCF) messages, which can be used in an
automation program

* MQSeries Administration Interface (MQAI) calls in a program

For more information about these methods, see I‘Chapter 3 Alternative methadd

You can also administer MQSeries for AS/400 from a Windows NT machine using

the MQSeries Explorer (see t‘Using the MQSeries Fxplarer” on page 39).

Object attributes

The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute; you can specify this
attribute when you create a queue. The DefinitionType attribute specifies how the
queue was created; you can only display this attribute.

In MQSeries, there are three ways of referring to an attribute:
* Using its CL parameter name, for example, MAXMSGLEN.
* Using its PCF name, for example, MaxMsgLength.
* Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the CL interface is
an important part of this book, you are more likely to see the CL name in
examples than the PCF name of a given attribute.

MQSeries queue managers

A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:

4 MQSeries for AS/400, V5.1 System Administration

Objects

* Object attributes are changed according to the commands received.

» Special events such as trigger events or instrumentation events are generated
when the appropriate conditions are met.

» Messages are put on the correct queue, as requested by the application making

the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager.

The queue manager to which an application is connected is said to be the local
gueue manager for that application. For the application, the queues that belong to
its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager.

A remote queue manager is any queue manager other than the local queue manager.
A remote queue manager may exist on a remote machine across the network, or
may exist on the same machine as the local queue manager.

MQSeries for AS/400, V5.1 supports multiple queue managers on the same
machine.

A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call

MQINQ.

Note: You cannot put messages on a queue manager object; messages are always
put on queue objects, not on queue manager objects.

MQSeries queues

Queues are defined to MQSeries using:

* The native AS/400 CRTMQMQ CL command
* The appropriate MQSC DEFINE command

* The PCF Create Queue command

Note: The MQSeries process, channel, and namelist objects can be defined in a
similar manner.

The commands specify the type of queue and its attributes. For example, a local
queue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:

* Whether applications can retrieve messages from the queue (GET enabled).
* Whether applications can put messages on the queue (PUT enabled).

* Whether access to the queue is exclusive to one application or shared between
applications.

* The maximum number of messages that can be stored on the queue at the same
time (maximum queue depth).

* The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see the IMQSeries Command
manual or the MQSeries Programmable System Managemeni manual.

Chapter 1. Introduction to MQSeries 5

Objects

Using queue objects

There are four types of queue object available in MQSeries. Each type of object can
be manipulated by the product commands and is associated with real queues in
different ways.

1. Local queue object A local queue object identifies a local queue belonging to
the queue manager to which the application is connected. All queues are local
queues in the sense that each queue belongs to a queue manager and, for that
gqueue manager, the queue is a local queue.

2. A remote queue object A remote queue object identifies a queue belonging to
another queue manager. This queue must be defined as a local queue to that
queue manager. The information you specify when you define a remote queue
object allows the local queue manager to find the remote queue manager, so
that any messages destined for the remote queue go to the correct queue
manager.

Before applications can send messages to a queue on another queue manager,

you must have defined a transmission queue and channels between the queue

managers, unless you have grouped one or more queue managers together into

a cluster. For more information about clusters, see the i
manual.

3. An alias queue object An alias queue allows applications to access a queue by
referring to it indirectly in MQI calls. When an alias queue name is used in an
MQI call, the name is resolved to the name of either a local or a remote queue
at run time. This allows you to change the queues that applications use without
changing the application in any way—you merely change the alias queue
definition to reflect the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access another
queue.

4. A model queue object A model queue defines a set of queue attributes that are
used as a template for creating a dynamic queue. Dynamic queues are created
by the queue manager when an application issues an MQOPEN request
specifying a queue name that is the name of a model queue. The dynamic
queue that is created in this way is a local queue whose attributes are taken
from the model queue definition. The dynamic queue name can be specified by
the application or the queue manager can generate the name and return it to
the application.

Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Specific local queue types and their uses
MQSeries uses some local queues for specific purposes related to its operation.

These are:

» Application queues This is a queue that is used by an application through the
MQI. It can be a local queue on the queue manager to which an application is
linked, or it can be a remote queue that is owned by another queue manager.

Applications can put messages on local or remote queues. However, they can
only get messages from a local queue.

 Initiation queues Initiation queues are queues that are used in triggering. A
queue manager puts a trigger message on an initiation queue when a trigger
event occurs. A trigger event is a logical combination of conditions that is
detected by a queue manager. For example, a trigger event may be generated
when the number of messages on a queue reaches a predefined depth. This
event causes the queue manager to put a trigger message on a specified
initiation queue. This trigger message is retrieved by a trigger monitor, a special

6 MQSeries for AS/400, V5.1 System Administration

Objects

application that monitors an initiation queue. The trigger monitor then starts up
the application program that was specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

LMa.nag.Lng_ahjeds_taLmqqeanq_m_paqe_Zﬂ For more information about
trlggermg, see the MQSeries Application Programming Guidd,

* Transmission queues Transmission queues are queues that temporarily stores
messages that are destined for a remote queue manager. You must define at least
one transmission queue for each remote queue manager to which the local
gqueue manager is to send messages directly. These queues are also used in
remote administration. For information about the use of transmission queues in

distributed queuing, see the MQSeries Intercommunicatiod book.

» Cluster transmission queues Each queue manager within a cluster has a cluster
transmission queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition
of this queue is created by default on every queue manager on Version 5.1 of
MQSeries for AIX, AS/400, HP-UX, OS/2, Warp, Sun Solaris, and Windows NT.

A queue manager that is part of the cluster can send messages on the cluster
transmission queue to any other queue manager that is in the same cluster.

Cluster queue managers can communicate with queue managers that are not
part of the cluster. In order to do this, the queue manager must define channels
and a transmission queue to the other queue manager in the same way as in a
traditional distributed-queuing environment.

For more information on using clusters, see the MQSeries Queue Manager Clusterd

manual.

» Dead-letter queues A dead-letter queue is a queue that stores messages that
cannot be routed to their correct destinations. This occurs when, for example, the
destination queue is full. The supplied dead-letter queue is called
SYSTEM.DEAD.LETTER.QUEUE. These queues are sometimes referred to as
undelivered-message queues.

A dead-letter queue is defined by default when each queue manager is created.
However, you must ensure that the queue manager on which this queue resides
points to the dead-letter queue that it is going to use.

The following command creates an undelivered-message queue on queue
manager neptune.queue.manager:

CRTMQM MQMNAME (neptune.queue.manager) UDLMSGQ(ANOTHERDLQ)

* Command queues The command queue, named
SYSTEM.ADMIN.COMMAND.QUEUE, is a local queue to which suitably
authorized applications can send MQSeries commands for processing. These
commands are then retrieved by an MQSeries component called the command
server. The command server validates the commands, passes the valid ones on
for processing by the queue manager, and returns any responses to the
appropriate reply-to queue.

A command queue is created automatically for each queue manager when that
queue manager is created.

* Reply-to queues When an application sends a request message, the application
that receives the message can send back a reply message to the sending
application. This message is put on a queue, called a reply-to queue, which is
normally a local queue to the sending application. The name of the reply-to
queue is specified by the sending application as part of the message descriptor.

Chapter 1. Introduction to MQSeries 7

Objects

* Event queues The MQSeries Version 5 products support instrumentation events,
which can be used to monitor queue managers independently of MQI
applications. Instrumentation events can be generated in several ways, for
example:

— An application attempting to put a message on a queue that is not available
or does not exist.

— A queue becoming full.
— A channel being started.

When an instrumentation event occurs, the queue manager puts an event
message on an event queue. This message can then be read by a monitoring
application which may inform an administrator or initiate some remedial action
if the event indicates a problem. Note: Trigger events are quite different from
instrumentation events in that trigger events are not caused by the same
conditions, and do not generate event messages.

For more information about instrumentation events, see the m

Brogrammable System Management manual.

Process definitions

A process definition object defines an application that is to be started in response toa
trigger event on an MQSeries queue manager. See the “Initiation queues” entry

under ESpecific lacal queue types and their uses” an page f for more information.

The process definition attributes include the application ID, the application type,
and data specific to the application.

Use the MQSeries for AS/400 CRTMQMPRC CL command, the MQSC command
DEFINE PROCESS, or the PCF command Create Process to create a process
definition.

Channels

Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.

Use the MQSeries for AS/400 CRTMQMCHL CL command, the MQSC command
DEFINE CHANNEL, or the PCF command Create Channel to create a channel
definition.

Note: Clustering automates some of these tasks for you.

For mformatlon on channels and how to use them, see the m
manual.

Clusters

In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another

8 MQSeries for AS/400, V5.1 System Administration

Objects

queue manager it must have defined a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network,
without the need for complex transmission queue, channels, and queue definitions.

For information about clusters, see the MQSeries Quele Manager Clusterd book.

Namelists

A namelist is an MQSeries object that contains a list of other MQSeries objects.
Typically, namelists are used by applications such as trigger monitors, where they
are used to identify a group of queues. The advantage of using a namelist is that it
is maintained independently of applications; that is, it can be updated without
stopping any of the applications that use it. Also, if one application fails, the
namelist is not affected and other applications can continue using it.

Namelists are also used with queue manager clusters so that you can maintain a
list of clusters referenced by more than one MQSeries object.

Use the MQSeries for AS/400 CRTMQMNL CL command, the MQSC command
DEFINE NAMELIST, or the PCF command Create Namelist to create a namelist
definition.

System default objects

The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify any
of these object definitions for use in applications at your installation.

Default object names have the stem SYSTEM.DEF; for example, the default local
queue is SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of these
names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, those attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

Clients and servers

MQSeries supports client-server configurations for MQSeries applications.

An MQSeries client is a part of the MQSeries product that is installed on a machine
to accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

Note: MQSeries for AS/400, V5.1 cannot act as a client.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues, exist only on the queue

Chapter 1. Introduction to MQSeries 9

Clients and servers

manager machine, that is, on the MQI server machine. A server can support
normal local MQSeries applications as well.

For more information about creating channels for clients and servers, see the

MQSeries Intercommunication book.

For information about client support in general, see the MQSeries Clientd book.

MQSeries applications in a client-server environment

When linked to a server, client MQSeries applications can issue most MQI calls in
the same way as local applications. The client application issues an MQCONN call
to connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
gueue manager.

The advantages of a client are that:
It is straightforward to set up

* It is straightforward to manage
* It has a low resource footprint

You must link your applications to the appropriate client libraries. See the

MQSeries Clientd book for further information.

Extending queue manager facilities

The facilities provided by a queue manager can be extended by defining user exits.

User exits

User exits provide a mechanism for you to insert your own code into a queue
manager function. The user exits supported include:

* Channel exits These exits change the way that channels operate. Channel exits
are described in the MQSeries Intercommunication book

« Data conversion exits These exits create source code fragments that can be put
into application programs to convert data from one format to another. Data

conversion exits are described in the IMQSeries Application Programming Guidd.

» The cluster workload exit The function performed by this exit is defined by the
provider of the exit. Call definition information is given in the
IManager Clusterd book. The exit is supported in the following environments: AlX,
AS/400, HP-UX, OS/2, Sun Solaris, Windows NT, and OS/390.

Security
In MQSeries for AS/400, V5.1 security is provided by the Object Authority

Manager (OAM) component. See EChapter 5_Protecting MQSeries abjects” od

for details of this component.

Transactional support

An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

10 MQseries for AS/400, V5.1 System Administration

Transactional support

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here, syncpoint coordination is provided by the queue
manager itself using a dual-phase commit process and use of the new MQI calls,
MQBACK and MQCMIT.

MQsSeries for AS/400 is not XA-compliant but is able to support and participate in
global units of work coordinated by the AS/400 COMMIT and ROLLBACK
commands.

Chapter 1. Introduction to MQSeries 11

About this book

12 MQseries for AS/400, V5.1 System Administration

Chapter 2. Managing MQSeries for AS/400 using CL
commands

This chapter gives an overview of working with MQSeries for AS/400 from the
AS/400 command line, together with some suggested operations.

MQSeries applications

When you create or customize MQSeries applications, it is useful to keep a record
of all MQSeries definitions created. This record can be used for:

* Recovery purposes

* Maintenance

* Rolling out MQSeries applications

You can do this by either:
» Creating CL programs to generate your MQSeries definitions for the AS/400, or

» Creating MQSC text files as SRC members to generate your MQSeries definitions
using the cross-platform MQSeries command language.

MQSeries for AS/400 CL commands

The commands can be grouped as follows:

* Channel Commands
CHGMQMCHL, Change MQM Channel
CPYMQMCHL, Copy MQM Channel
CRTMQMCHL, Create MQM Channel
DLTMQMCHL, Delete MQM Channel
DSPMQMCHL, Display MQM Channel
ENDMQMCHL, End MQM Channel
ENDMQMLSR, End MQM Listener
PNGMQMCHL, Ping MQM Channel
RSTMQMCHL, Reset MQM Channel
RSVMQMCHL, Resolve MQM Channel
STRMQMCHL, Start MQM Channel
STRMQMCHLI, Start MQM Channel Initiator
STRMQMLSR, Start MQM Listener
WRKMQMCHL, Work with MQM Channel
WRKMQMCHST, Work with MQM Channel Status

e Cluster Commands
RFRMQMCL, Refresh Cluster
RSMMQMCLQM, Resume Cluster Queue Manager
RSTMQMCL, Reset Cluster
SPDMQMCLQM, Suspend Cluster Queue Manager
WRKMQMCL, Work with Clusters
WRKMQMCLQM, Work with Cluster Queue Manager

* Command Server Commands
DSPMQMCSVR, Display MQM Command Server
ENDMQMCSVR, End MQM Command Server
STRMQMCSVR, Start MQM Command Server

» Data Type Conversion Command
CVTMQMDTA, Convert MQM Data Type Command

© Copyright IBM Corp. 1994, 2000 13

MQSeries applications

* Dead-Letter Queue Handler Command
STRMQMDLQ, Start MQSeries Dead-Letter Queue Handler

* Media Recovery Commands
RCDMQMIMG, Record MQM Object Image
RCRMQMOBJ, Recreate MQM Object

* MQSeries Command
STRMQMMQSC, Start MQSC Commands

* Name Command
DSPMQMOBIJN, Display MQM Object Names

* Namelist Commands
CHGMQMNL, Change MQM Namelist
CPYMQMNL, Copy MQM Namelist
CRTMQMNL, Create MQM Namelist
DLTMQMNL, Delete MQM Namelist
DSPMQMNL, Display MQM Namelist
WRKMQMNL, Work with MQM Namelists

* Process Commands
CHGMQMPRC, Change MQM Process
CPYMQMPRC, Copy MQM Process
CRTMQMPRC, Create MQM Process
DLTMQMPRC, Delete MQM Process
DSPMQMPRC, Display MQM Process
WRKMQMPRC, Work with MQM Processes

* Queue Commands
CHGMQMQ, Change MQM Queue
CLRMQMQ, Clear MQM Queue
CPYMQMQ, Copy MQM Queue
CRTMQMQ, Create MQM Queue
DLTMQMQ, Delete MQM Queue
DSPMQMQ, Display MQM Queue
WRKMQMMSG, Work with MQM Messages
WRKMQMQ, Work with MQM Queues

* Queue Manager Commands
CCTMQM, Connect to Message Queue Manager
CHGMQM, Change Message Queue Manager
CRTMQM, Create Message Queue Manager
DLTMQM, Delete Message Queue Manager
DSCMQM, Disconnect from Message Queue Manager
DSPMQM, Display Message Queue Manager
ENDMQM, End Message Queue Manager
STRMQM, Start Message Queue Manager
WRKMQM, Work with Message Queue managers

» Security Commands
DSPMQMAUT, Display MQM Object Authority
GRTMQMAUT, Grant MQM Object Authority
RVKMQMAUT, Revoke MQM Object Authority

e Trace Commands
TRCMQM, Trace MQM Job

* Transaction Commands
WRKMQMTRN, Work with MQSeries Transactions
RSVMQMTRN, Resolve MQSeries Transaction

» Trigger Monitor Command
STRMQMTRM, Start Trigger Monitor

14 MQSeries for AS/400, V5.1 System Administration

Starting local queue manager

Starting a local queue manager

You must:

1. Ensure that the MQSeries subsystem is running (using the command
STRSBS QMQM/QMQM), and that the job queue associated with that subsystem is
not held. By default, the MQSeries subsystem and job queue are both named
QMQM in library QMQM.

2. Create a local queue manager by issuing the CRTMQM command from an
AS/400 command line.
When you create a queue manager, you have the option of making that queue
manager the default queue manager.

The default queue manager (of which there can be only one) is the queue
manager to which a CL command applies, if the queue manager name
(MQMNAME) parameter is omitted.

Note: One queue manager must be selected as the default queue manager.

3. Start a local queue manager by issuing the STRMQM command from an
AS/400 command line.

You can stop a queue manager by issuing the ENDMQM command from the
AS/400 command line, and control a queue manager by issuing other MQSeries
commands from an AS/400 command line.

The principal commands are described later in this chapter.

Remote queue managers cannot be started remotely but must be created and
started in their systems by local operators. An exception to this is where remote

operating facilities (outside MQSeries for AS/400) exist to enable such operations.

The local queue administrator cannot stop a remote queue manager.

Creating MQSeries objects

The following tasks suggest various ways in which you can use MQSeries for
AS/400, from the command line.

There are two online methods to create MQSeries objects, which are:

1. Using a Create command:
CRTMQMCHL
Create MQM Channel
CRTMQMNL
Create MQM Namelist
CRTMQMPRC
Create MQM Process
CRTMQMQ
Create MQM Queue
2. Using the appropriate Work with MQM object command:
WRKMQMCHL
Work with MQM Channels
WRKMQMNL
Work with MQM Namelists
WRKMQMPRC
Work with MQM Processes

Chapter 2. Managing MQSeries for AS/400 using CL commands 15

Creating MQSeries objects

WRKMQMQ
Work with MQM Queues

Note: All MQM commands can be submitted from the ‘Message Queue Manager
Commands’ menu. To display this menu, type G0 CMDMQM on the command
line, and press the Enter key:.

The system displays the prompt panel automatically when you select a
command from this menu. To display the prompt panel for a command that
you have typed directly on the command line, press F4 before pressing the
Enter key.

Examples of creating a local queue

To create a local queue from the command line, you can:
1. Use the Create MQM Queue (CRTMQMQ) command
2. Use the Work with MQM Queues (WRKMQMQ) command

Creating a local queue using the CRTMQMQ command
1. Type CRTMQMQ on the command line and press the PF4 key.

2. On the Create MQM Queue panel, type the name of the queue you want to
create in the Queue name field.

To specify a mixed case name, you enclose the name in apostrophes.
3. Type *LCL in the Queue type field.

4. Specify a queue manager name, unless you are using the default queue
manager, and press the Enter key. Further settings for a local queue will be
displayed, see Figure fl, with the fields containing the default values. You may
overtype any of these values with a new value.

Scroll forward to see further fields. The options used for clusters are at the end
of the list of options.

5. When you have made any changes to the values, press the Enter key to create
the queue.

16 MQseries for AS/400, V5.1 System Administration

Creating MQSeries objects

4 Create MQM Queue (CRTMQMQ) h

Type choices, press Enter.

Queue name > TEST.QUEUE.LCL

Queue type uu . > *LCL *ALS, *LCL, *MDL, *RMT
Message Queue Manager Name . . . MY.QUEUE .MANAGER

Replace *NO_ *NO, *YES

Text 'description'

Put enabled *YES *SYSDFTQ, *NO, *YES
Default message priority 5 0-9, *SYSDFTQ
Default message persistence . . *NO *SYSDFTQ, *NO, *YES
Process name !

Triggering enabled *NO *SYSDFTQ, *NO, *YES
Get enabled *YES *SYSDFTQ, *NO, =*YES
Sharing enabled *YES *SYSDFTQ, *NO, *YES

More...
F3=Exit F4=Prompt F5=Refresh Fl12=Cancel F13=How to use this display
F24=More keys

- J

Figure 1. Create MQM Queue initial panel

Creating a local queue using the WRKMQMQ command
1. Type WRKMQMQ on the command line.
2. If you want to display the prompt panel, press F4.

The prompt panel is useful to reduce the number of queues displayed, by
specifying a generic queue name or queue type.

3. Press the Enter key and Figure Bis displayed.

Work with MQM Queues

Queue Manager Name . . . MY.QUEUE .MANAGER

Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Clear 14=Display authority
15=Grant authority 16=Revoke authority

Opt Name Type Text
TEST.QUEUE.LCL *LCL This is a text
TKR.TEST.LCL *LCL
TKR.TEST.RMT *RMT REMOTE Q FOR
TKR.TEST.XMIT.C2M *LCL XMITQ CORSAIR TO

Bottom
Parameters for options 2, 3, 5, 14, 15, 16 or command
E==5
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
F16=Repeat position to F17=Position to F20=Right F21=Print
N J

Figure 2. Work with MQM Queues panel

4. Press F6 to create a new gueue; this takes you to the CRTMQMQ panel. See
: i i » for

instructions on how to create the queue.

Chapter 2. Managing MQSeries for AS/400 using CL commands 17

Creating MQSeries objects

When you have created the queue, the Work with MQM Queues panel will be
displayed again. The new queue will be added to the list when you press
F5=Refresh.

Examples of creating a remote queue

You use the CRTMQMQ panel to define the queue with queue type *RMT, using
one of the following online methods:

1. The CRTMQMQ command.
2. F6=Create on the WRKMQMQ panel.

The use of remote queues is described in detail in the MQSeries Intercommunication
book.

This section describes how to define a remote queue for each of the three uses.

Creating a remote queue as a remote queue definition
This is the most straightforward use of remote queues. It is used to direct messages

to a local queue on a remote queue manager, through a transmission queue.

To create a remote queue for this use, you:

1. Display the Create MQM Queue panel.

Type the queue name in the Queue name field.

Type *RMT in the Queue type field.

Type the name of the local queue manager in the Queue Manager Name field.

Type the name of the local queue at the remote location in the Remote queue
field.
6. Type the name of the queue manager at the remote location in the

Remote Message Queue Manager field.
7. Optionally, type the name of the transmission queue to the remote location in
the Transmission queue field.

If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

a s~ N

Creating a remote queue as a queue manager alias
Queue manager alias definitions can be used to remap the queue manager name

specified in the MQOPEN call. This enables you to alter the target queue manager
without changing your applications.

See the MQSeries Intercommunication manual for further information.

To define a remote queue as a queue manager object, you:

1. Display the Create MQM Queue panel.

Type the queue name in the Queue name field.

Type *RMT in the Queue type field.

Type the name of the local queue manager in the Queue Manager Name field.

Type the name of the queue manager at the remote location in the

Remote Message Queue Manager field.

6. Optionally, type the name of the transmission queue to the remote location in
the Transmission queue field.

If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

o~ N

18 MQseries for AS/400, V5.1 System Administration

Creating MQSeries objects

Creating a remote queue as an alias to a reply-to queue

An application may name a reply-to queue when it puts a message on a queue.
The reply-to queue name is used by the application that gets the message from the
queue to send reply messages. To define an alias to a reply-to queue, you define a
remote queue with the same name as the reply-to queue.

See the MQSeries Intercommunication manual for further information.

To create a remote queue as an alias to a reply-to queue, you:
1. Display the Create MQM Queue panel.
2. Type the queue name in the Queue name field.
This must be the same as the reply-to queue named by the putting application.
3. Type *RMT in the Queue type field.

4. Type the name of the local queue manager in the Queue Manager Name field,
unless you are using the default queue manager.

5. Type the queue name in the Queue name field.
This is the name of the queue to which you want the reply-to messages sent.

6. Type the name of the queue manager at the remote location in the
Remote Message Queue Manager field.

This is the name of the queue manager to which you want the reply-to
messages sent.

7. Optionally, type the name of the transmission queue to the remote location in
the Transmission queue field.

If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

Creating a transmission queue

A transmission queue is a local queue that is used to send messages to a remote
queue manager, through a message channel, which provides a one-way link to the
remote queue manager.

Each message channel has a transmission queue name specified at the sending end
of the message channel.

Note: If you use clusters, you do not have to create a transmission queue.

Applications can put messages directly on a message queue, or they can be put
there indirectly, for example, through a remote queue definition.

To create a transmission queue, you:
1. Display the Create MQM Queue panel.
2. Type the queue name in the Queue name field.

If you want to define a default transmission queue for all messages destined to
a remote queue manager, the transmission queue name must be the same as the
remote queue manager name.

3. Type *LCL in the Queue type field.
4. Type *TMQ in the Usage field.

Chapter 2. Managing MQSeries for AS/400 using CL commands 19

Creating MQSeries objects

Creating an initiation queue

An initiation queue is a local queue on which the queue manager puts trigger
messages in response to a trigger event, for example, a message arriving on a local
queue. An initiation queue is a local queue and has no special settings that define
it as an initiation queue.

For more information about triggering, see the MQSeries Application Programming
Guide.

Creating an alias queue

You use an alias queue object to access another queue on the local queue manager.
Any messages put on the alias queue are redirected to the queue named in the
alias queue definition.

Note: An alias queue cannot hold messages itself.

To create an alias queue, you:

1. Display the Create MQM Queue panel.

Type the queue name in the Queue name field.

Type *ALS in the Queue type field.

Type the name of the local queue manager in the Queue Manager Name field.

Type the name of the local queue that you want the queue name to resolve to
in the Target queue field.

a s~ DN

Creating a model queue

You define a model queue with a set of attributes in the same way that you define
a local queue. Type *MDL in the Queue type field.

Model queues and local queues have the same set of attributes, except that on
model queues you can specify whether the dynamic queues created are temporary
or permanent. (Permanent queues are maintained across queue manager restarts,
temporary ones are not.)

Altering queue manager attributes

To alter the attributes of the queue manager specified on the CHGMQM
command, specifying the attributes and values that you want to change. For
example, use the following options to alter the attributes of
jupiter.queue.manager:

CHGMQM MQMNAME (' jupiter.queue.manager') UDLMSGQ(ANOTHERDLQ) INHEVT(*YES)

This command changes the dead-letter queue used, and enables inhibit events.

Working with local queues

This section contains examples of some of the commands that you can use to
manage local, model, and alias queues.

Defining a local queue

For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager are
said to be local to that queue manager.

20 MQSeries for AS/400, V5.1 System Administration

Working with local queues

Use the command CRTMQMQ QTYPE *LCL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify the
gueue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:

» It is enabled for gets, disabled for puts, and operates on a first-in-first-out (FIFO)
basis.

* Itis an ‘ordinary’ queue, that is, it is not an initiation queue or a transmission
queue, and it does not generate trigger messages.

* The maximum queue depth is 1000 messages; the maximum message length is
2000 bytes.

The following command does this on the default queue manager:

CRTMQMQ QNAME('orange.local.queue') QTYPE(*LCL)
TEXT('Queue for messages from other systems')
PUTENBL (*NO)

GETENBL (*YES)
TRGENBL (*NO)
MSGDLYSEQ(*FIFO)
MAXDEPTH(1000)
MAXMSGLEN (2000)
USAGE (*NORMAL)

Notes:
1. USAGE *NORMAL indicates that this queue is not a transmission queue.

2. If you already have a local queue on the same queue manager with the name
orange.local.queue, this command fails. Use the REPLACE *YES attribute, if
you want to overwrite the existing definition of a queue, but see also

Defining a dead-letter queue

Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval. You must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on the CRTMQM
command, or you can use the CHGMQM command to specify one later. You must
also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product. This queue is automatically created when you create the queue
manager. You can modify this definition if required. There is no need to rename it,
although you can if you like.

A dead-letter queue has no special requirements except that:
* It must be a local queue

* Its MAXMSGL (maximum message length) attribute must enable the queue to
accommodate the largest messages that the queue manager has to handle plus
the size of the dead-letter header (MQDLH)

MQSeries provides a dead-letter queue handler that allows you to specify how
messages found on a dead-letter queue are to be processed or removed. For further

information, see t‘Chapter 6 The MQSeries dead-letter queue handler” an page 57,

Chapter 2. Managing MQSeries for AS/400 using CL commands 21

Working with local queues

Displaying default object attributes

When you define an MQSeries object, it takes any attributes that you do not
specify from the default object. For example, when you define a local queue, the
queue inherits any attributes that you omit in the definition from the default local
queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what
these attributes are, use the following command:

DSPMQMQ QNAME (SYSTEM.DEFAULT.LOCAL.QUEUE)

Copying a local queue definition
You can copy a queue definition using the CPYMQMQ command. For example:
CPYMQMQ FROMQ('orange.local.queue') TOQ('magenta.queue')

This command creates a queue with the same attributes as our original queue
orange.local.queue, rather than those of the system default local queue.

You can also use the CPYMQMQ command to copy a queue definition, but
substituting one or more changes to the attributes of the original. For example:

CPYMQMQ FROMQ('orange.local.queue') TOQ('third.queue') MAXMSGLEN(1024)

This command copies the attributes of the queue orange.local.queue to the queue
third.queue, but specifies that the maximum message length on the new queue is
to be 1024 bytes, rather than 2000.

Note: When you use the CPYMQMQ command, you are copying the queue
attributes only. You are not copying the messages on the queue.

Changing local queue attributes

You can change queue attributes in two ways, using either the CHGMQMQ
command or the CPYMQMQ command with the REPLACE *YES attribute. In

‘Defining a lacal queue” on page 20, we defined the queue orange.local.queue.

Suppose, for example, you wanted to increase the maximum message length on
this queue to 10 000 bytes.

* Using the CHGMQMQ command:
CHGMQMQ QNAME('orange.local.queue') MAXMSGLEN(10000)

This command changes a single attribute, that of the maximum message length;
all the other attributes remain the same.

» Using the CRTMQMQ command with the REPLACE *YES option, for example:
CRTMQMQ QNAME ('orange.local.queue') QTYPE(*LCL) MAXMSGLEN(10000) REPLACE(*YES)

This command changes not only the maximum message length, but all the other
attributes, which are given their default values. The queue is now put enabled
whereas previously it was put inhibited. Put enabled is the default, as specified
by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue

To delete all the messages from a local queue called magenta.queue, use the
following command:

CLRMQMQ QNAME('magenta.queue')

22 MQSeries for AS/400, V5.1 System Administration

Working with local queues

You cannot clear a queue if:

* There are uncommitted messages that have been put on the queue under
syncpoint.

* An application currently has the queue open.

Deleting a local queue

Use the command DLTMQMQ to delete a local queue. A queue cannot be deleted
if it has uncommitted messages on it.

Working with alias queues

An alias queue (also known as a queue alias) provides a method of redirecting
MQI calls. An alias queue is not a real queue but a definition that resolves to a real
queue. The alias queue definition contains a target queue name which is specified
by the TGTQNAME attribute.

When an application specifies an alias queue in an MQI call, the queue manager
resolves the real queue name at run time.

For example, an application has been developed to put messages on a queue called
my.alias.queue. It specifies the name of this queue when it makes an MQOPEN
request and, indirectly, if it puts a message on this queue. The application is not
aware that the queue is an alias queue. For each MQI call using this alias, the
queue manager resolves the real queue name, which could be either a local queue
or a remote queue defined at this queue manager.

By changing the value of the TGTQNAME attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for maintenance,
migration, and load-balancing.

Defining an alias queue

The following command creates an alias queue:
CRTMQMQ QNAME('my.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')

This command redirects MQI calls that specify my.alias.queue to the queue
yellow.queue. The command does not create the target queue; the MQI calls fail if
the queue yellow.queue does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

CHGMQMQ QNAME('my.alias.queue') TGTQNAME('magenta.queue')
This command redirects MQI calls to another queue, magenta.queue.

You can also use alias queues to make a single queue (the target queue) appear to
have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:

* Application ALPHA can put messages on yellow.queue, but is not allowed to get
messages from it.

» Application BETA can get messages from yellow.queue, but is not allowed to put
messages on it.

You can do this using the following commands:

Chapter 2. Managing MQSeries for AS/400 using CL commands 23

Working with alias queues
/* This alias is put enabled and get disabled for application ALPHA */

CRTMQMQ QNAME('alphas.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')
PUTENBL(*YES) GETENBL(*NO)

/* This alias is put disabled and get enabled for application BETA */

CRTMQMQ QNAME('betas.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')
PUTENBL(*NO) GETENBL(*YES)

ALPHA uses the queue name alphas.alias.queue in its MQI calls; BETA uses the
queue name betas.alias.queue. They both access the same queue, but in different
ways.

You can use the REPLACE *YES attribute when you define queue aliases, in the
same way that you use these attributes with local queues.

Using other commands with alias queues

You can use the appropriate commands to display or change queue alias attributes.
For example:

/* Display the queue alias's attributes */
DSPMQMQ QNAME('alphas.alias.queue')

/* ALTER the base queue name, to which the alias resolves. */
/* FORCE = Force the change even if the queue is open. */

CHQMQMQ QNAME('alphas.alias.queue') TGTQNAME('orange.local.queue') FORCE(*YES)

Working with model queues

A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not.) For example:

CRTMQMQ QNAME('green.model.queue') QTYPE(*MDL) DFNTYPE(*PERMDYN)

This command creates a model queue definition. From the DFNTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the REPLACE *YES attribute when you define model queues, in the
same way that you use them with local queues.

24 MQSeries for AS/400, V5.1 System Administration

Working with model queues

Using other commands with model queues

You can use the appropriate commands to display or alter a model queue’s
attributes. For example:

/* Display the model queue's attributes =/
DSPMQMQ QNAME('green.model.queue')

/* ALTER the model queue to enable puts on any */
/* dynamic queue created from this model. */

CHGMQMQ QNAME('blue.model.queue') PUTENBL(*YES)

Managing objects for triggering

MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called triggering

and is described in detail in the MQSeries Application Programming Guidd.

This section describes how to set up the required objects to support triggering on
MQSeries.

Defining an application queue for triggering

An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the TRGENBL attribute.

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue motor.insurance.queue, as follows:

CRTMQMQ QNAME('motor.insurance.queue') QTYPE(*LCL)
PRCNAME ('motor.insurance.quote.process') MAXMSGLEN(2000)
DFTMSGPST (*YES) INITQNAME('motor.ins.init.queue')
TRGENBL (*YES) TRGTYPE(*DEPTH) TRGDEPTH(100) TRGMSGPTY(5)

where:

QNAME ('motor.insurance.queue')
Specifies the name of the application queue being defined.

PRCNAME ('motor.insurance.quote.process')
Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGLEN (2000)
Specifies the maximum length of messages on the queue.

DFTMSGPST (*YES)
Specifies that messages on this queue are persistent by default.

INITQNAME ('motor.ins.init.queue')
Is the name of the initiation queue on which the queue manager is to put
the trigger message.

TRGENBL (*YES)
Is the trigger attribute value.

TRGTYPE (*DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRGMSGPTY) reaches the number specified in
TRGDEPTH.

Chapter 2. Managing MQSeries for AS/400 using CL commands 25

Managing objects for triggering

TRGDEPTH (100)
Specifies the number of messages required to generate a trigger event.

TRGMSGPTY (5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority
5 or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues
have no special settings, but you can use the following definition of the local
queue motor.ins.init.queue for guidance:

CRTMQMQ QNAME('motor.ins.init.queue') QTYPE(*LCL)
GETENBL(*YES) SHARE(*NO) TRGTYPE (*NONE)
MAXMSGL (2000)

MAXDEPTH(1000)

Creating a process definition

Use the CRTMQMPRC command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PRCDEFN attribute on the
application queue motor.insurance.queue. The following command creates the
required process, motor.insurance.quote.process, identified in this example:

CRTMQMPRC PRCNAME ('motor.insurance.quote.process')
TEXT('Insurance request message processing')
APPTYPE (*0S400) APPID(MQTEST/TESTPROG)
USRDATA('open, close, 235')

Where:

PRCNAME ('motor.insurance.quote.process')
Is the name of the process definition.

TEXT('Insurance request message processing')
Is a description of the application program to which this definition relates.
This text is displayed when you use the DSPMQMPRC command. This can
help you to identify what the process does. If you use spaces in the string,
you must enclose the string in single quotation marks.

APPTYPE (*0S400)
Is the type of application to be started.

APPID(MQTEST/TESTPROG)
Is the name of the application executable file, specified as a fully qualified
file name.

USRDATA('open, close, 235')
Is user-defined data, which can be used by the application.

Displaying your process definition
Use the DSPMQMPRC command to examine the results of your definition. For
example:

DSPMQMPRC ('motor.insurance.quote.process')

You can also use the CHGMQMPRC command to alter an existing process
definition, and the DLTMQMPRC command to delete a process definition.

26 MQSeries for AS/400, V5.1 System Administration

Distributed queuing example

Communicating between two systems

The following example illustrates how to set up two MQSeries for AS/400 systems,
using CL commands, so that they can communicate with one another.

The systems are called SYSTEMA and SYSTEMB, and the communications protocol
used is TCP/IP.

Carry out the following procedure:
1. Create a queue manager on SYSTEMA, calling it QMGRAL.

CRTMQM MQMNAME (QMGRA1) TEXT('System A - Queue +
Manager 1') UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

2. Start this queue manager.
STRMQM MQMNAME (QMGRA1)

3. Define the MQSeries objects on SYSTEMA that you need to send messages to a
queue manager on SYSTEMB.

/* Transmission Queue */

CRTMQMQ QNAME (XMITQ.TO.QMGRB1) QTYPE(*LCL) +
MQMNAME (QMGRAL) TEXT('Transmission Queue +
to QMGRB1') MAXDEPTH(5000) USAGE (*TMQ)

/* Remote Queue which points to a Queue called TARGETB */
/* TARGETB belongs to Queue Manager QMGRB1 on SYSTEMB */
CRTMQMQ QNAME (TARGETB.ON.QMGRB1) QTYPE(*SDR) +

MQMNAME (QMGRA1) TEXT('Remote Q pointing +

at Q TARGETB on QMGRB1 on Remote System +

SYSTEMB') RMTQNAME (TARGETB) +

RMTMQMNAME (QMGRB1) TMQNAME (XMITQ.TO.QMGRB1)

/* TCP/IP Sender Channel to send messages to the Queue Manager on SYSTEMBx/
CRTMQMCHL CHLNAME (QMGRA1.TO.QMGRB1) CHLTYPE(*SDR) +

MQMNAME (QMGRA1) TRPTYPE(*TCP) +

TEXT('Sender Channel From QMGRAL on +

SYSTEMA to QMGRB1 on SYSTEMB') +

CONNAME (SYSTEMB) TMQNAME (XMITQ.T0.QMGRB1)

4. Create a queue manager on SYSTEMB, calling it QMGRB1.

CRTMQM MQMNAME (QMGRB1) TEXT('System B - Queue +
Manager 1') UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

5. Start the queue manager on SYSTEMB.
STRMQM MQMNAME (QMGRB1)

6. Define the MQSeries objects that you need to receive messages from the queue
manager on SYSTEMA.
/* Local queue to receive messages on */

CRTMQMQ QNAME (TARGETB) QTYPE(*LCL) MQMNAME (QMGRB1) +
TEXT('Sample Local Queue for QMGRB1')

/* Receiver Channel of the same name as the Sender channel on SYSTEMA x/
CRTMQMCHL CHLNAME (QMGRA1.TO.QMGRB1) CHLTYPE(*RCVR) +

MQMNAME (QMGRB1) TRPTYPE(*TCP) +

TEXT('Receiver Channel from QMGRAl to +

QMGRB1")

7. Finally, start a TCP/IP listener on SYSTEMB so that the channel can be started.

Note: This example uses the default port of 1414.
STRMQMLSR MQMNAME (QMGRB1)

Chapter 2. Managing MQSeries for AS/400 using CL commands 27

Distributed queuing example

You are now ready to send test messages between SYSTEMA and SYSTEMB. Using one
of the supplied samples, PUT a series of messages to your remote queue on
SYSTEMA.

Start the channel on SYSTEMA, either by using the command STRMQMCHL, or by
using the command WRKMQMCHL and entering a start request (Option 14)
against the sender channel.

The channel should go to RUNNING status and the messages will be sent to
queue TARGETB on SYSTEMB.

Check your messages by issuing the command:
WRKMQMMSG QNAME (TARGETB) MQMNAME (QMGRB1) .

28 MQSeries for AS/400, V5.1 System Administration

Chapter 3. Alternative methods for MQSeries administration

You normally use the native AS/400 CL commands to perform administrative
tasks. See L i i i ”
for an overview of these commands.

Using CL commands is the preferred method of administering the system.
However, you can use various other methods.

This chapter gives an overview of the various methods, and includes the following
topics:

Local and remote administration

You administer MQSeries objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. In MQSeries, you can consider
this as local administration because no MQSeries channels are involved, that is, the
communication is managed by the operating system. Some commands cannot be
issued in this way, in particular, creating or starting queue managers and starting
command servers. To perform this type of task, you must either log onto the
remote system and issue the commands from there or create a process that can
issue the commands for you.

MQSeries supports administration from a single point through what is known as
remote administration. All remote administration consists of sending programmable
command format (PCF) control messages to the
SYSTEM.ADMIN.COMMAND.QUEUE on the target queue manager.

There are a number of ways of generating PCF messages. These are:

1. Writing a program using PCF messages. See [‘Performing administrative tasks

2. Writing a program using the MQAI, which actually sends out PCF messages.
See Llsi i i 2 :

3. Use the MQSeries Explorer, available with MQSeries for Windows NT, which

allows you to use a graphical user interface (GUI) and generates the correct
PCF messages. See Elsi i i

For example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

© Copyright IBM Corp. 1994, 2000 29

Using MQSC commands

Performing administrative tasks using MQSC commands

You use MQSeries commands (MQSC) to manage queue manager objects,
including the queue manager itself, channels, queues, and process definitions.

You issue MQSC commands to a queue manager using the STRMQMMQSC
AS/400 CL command. This is a batch method only, taking its input from a SRC
PHYSICAL file in the AS/400 library system. The default name for this source
physical file is QMQSC.

MQSC command files

MQSC commands are written in human-readable form, that is, in ASCII text.

m is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes.

DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +
DESCR(' ') +
PUT (ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET (ENABLED) +
MAXDEPTH(5000) +
MAXMSGL (1024) +
DEFSOPT (SHARED) +
NOHARDENBO +
USAGE (NORMAL) +
NOTRIGGER;

Figure 3. Extract from the MQSC command file, myprog.in

For portability among MQSeries environments, you are recommended to limit the
line length in MQSC command files to 72 characters. The plus sign indicates that
the command is continued on the next line.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, ROMNAME), although they are not case sensitive.

Notes:

1. The format of an MQSC file does not depend on its location in the file system
2. MQSC attribute names are limited to eight characters.

3. MQSC commands are available on other platforms, including OS/390.

The MQSeries Command Referencd manual contains a description of each MQSC

command and its syntax.

Performing administrative tasks using PCF commands

The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In
this way you can create queues and process definitions, and change queue
managers, from a program.

30 MQSeries for AS/400, V5.1 System Administration

Using PCFs

PCF commands cover the same range of functions provided by the MQSC facility.

Therefore, you can write a program to issue PCF commands to any queue manager
in the network from a single node. In this way, you can both centralize and
automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue manager
using the MQI function MQPUT in the same way as any other message. The
command server on the queue manager receiving the message interprets it as a
command message and runs the command. To get the replies, the application
issues an MQGET call and the reply data is returned in another data structure. The
application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:
Message type (MsqType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:
The PCF message type (Type) specifies MQCFT_COMMAND.

The command identifier specifies the command, for example, Change
Queue (MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,

see the MQSeries Programmable System Management manual.
Attributes in MQSC and PCFs

Obiject attributes specified in MQSC are shown in this book in uppercase (for
example, ROMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

Object attributes in PCF, which are not limited to eight characters, are shown in
this book in italics. For example, the PCF equivalent of RQMNAME is
RemoteQMgrName.

Escape PCFs

Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.

For more information about using escape PCFs, see the MQSeries Programmahld
Bystem Management manual.

Using the MQAI to simplify the use of PCFs

You can use the MQSeries Administration Interface (MQAI) to obtain easier
programming access to PCF messages.

Chapter 3. Alternative methods for MQSeries administration 31

Using PCFs

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using PCFs.

The MQAI can be used:

* To simplify the use of PCF messages The MQAI is an easy way to administer
MQSeries; you do not have to write your own PCF messages and this avoids the
problems associated with complex data structures.

To pass parameters in programs that are written using MQI calls, the PCF
message must contain the command and details of the string or integer data. To
do this, several statements are needed in your program for every structure, and
memory space must be allocated. This task is long and laborious.

On the other hand, programs written using the MQAI pass parameters into the
appropriate data bag and only one statement is required for each structure. The
use of MQAI data bags removes the need for you to handle arrays and allocate
storage, and provides some degree of isolation from the details of the PCF.

» To handle error conditions more easily It is difficult to get return codes back
from MQSC commands, but the MQAI makes it easier for the program to
handle error conditions.

After you have created and populated your data bag, you can then send an
administration command message to the command server of a queue manager,
using the mgExecute call, which will wait for any response messages. The
mgExecute call handles the exchange with the command server and returns
responses in a response bag.

For more information about using the MQAI, see the MQSeries Administratior]
Lnterface Programming Guide and Referencd book.

For more information about PCFs in general, see the MQSeries Programmable Systen]

manual.

Using the MQSeries Explorer

The MQSeries Explorer is an application that runs under the Microsoft®
Management Console (MMC) on Windows® NT version 4.0. It provides a graphical
user interface for controlling MQSeries resources in an MQSeries network and is
provided only with MQSeries for Windows NT V5.1.

The platforms and levels of MQSeries which can be administered using the

MQSeries Explorer are described in F‘Prerequisite