
MQSeries® for AS/400®

System Administration
V5.1

SC34-5558-00

IBM

MQSeries® for AS/400®

System Administration
V5.1

SC34-5558-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 119.

First edition (March 2000)

This edition applies to the following product:

MQSeries for AS/400 Version 5 Release 1 and to all subsequent releases and modifications until otherwise indicated
in new editions.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
How to use this book xi

Chapter 1. Introduction to MQSeries . . 1
MQSeries and message queuing 1

Time-independent applications 1
Message-driven processing 1

Messages and queues 2
What is a message? 2
What is a queue? 2

Objects 3
Object names 4
Managing objects 4
Object attributes 4
MQSeries queue managers. 4
MQSeries queues 5
Process definitions 8
Channels 8
Clusters 8
Namelists 9

System default objects 9
Clients and servers 9

MQSeries applications in a client-server
environment 10

Extending queue manager facilities 10
User exits 10

Security 10
Transactional support 10

Chapter 2. Managing MQSeries for
AS/400 using CL commands 13
MQSeries applications 13
MQSeries for AS/400 CL commands 13
Starting a local queue manager 15
Creating MQSeries objects 15

Examples of creating a local queue 16
Examples of creating a remote queue 18
Creating a transmission queue 19
Creating an initiation queue 20
Creating an alias queue 20
Creating a model queue 20
Altering queue manager attributes. 20

Working with local queues 20
Defining a local queue. 20
Defining a dead-letter queue 21
Displaying default object attributes 22
Copying a local queue definition 22
Changing local queue attributes 22

Clearing a local queue 22
Deleting a local queue 23

Working with alias queues 23
Defining an alias queue 23
Using other commands with alias queues . . . 24

Working with model queues. 24
Defining a model queue 24
Using other commands with model queues. . . 25

Managing objects for triggering. 25
Defining an application queue for triggering . . 25
Defining an initiation queue 26
Creating a process definition 26
Displaying your process definition 26

Communicating between two systems 27

Chapter 3. Alternative methods for
MQSeries administration 29
Local and remote administration 29
Performing administrative tasks using MQSC
commands. 30

MQSC command files 30
Performing administrative tasks using PCF
commands. 30

Attributes in MQSC and PCFs 31
Escape PCFs 31
Using the MQAI to simplify the use of PCFs . . 31

Using the MQSeries Explorer 32
What you can do with the MQSeries Explorer . . 33
Prerequisite software 33
Required definitions for administration 33

Managing the command server for remote
administration 34

Starting the command server 34
Displaying the status of the command server . . 34
Stopping a command server 35

Chapter 4. Work management 37
Description of MQSeries Tasks 38
MQSeries work management objects 38
How MQSeries uses the work management objects 39

The MQSeries message queue 40
Configuring Work Management 41

Chapter 5. Protecting MQSeries objects 43
Security considerations 43
Understanding the Object Authority Manager . . . 44

Resources you can protect with the OAM . . . 44
MQSeries authorities 44

Granting MQSeries authorities to MQSeries
objects 44

Understanding the authorization specification tables 47
MQI authorizations. 47
Administration authorizations 50
Authorizations for MQSC commands in escape
PCFs 50

© Copyright IBM Corp. 1994, 2000 iii

Authorizations for different types of object . . . 52
Object Authority Manager guidelines 53

Queue manager directories 53
Queues 53
Alternate-user authority 54
Context authority 54
Remote security considerations 54
Channel command security 55

Chapter 6. The MQSeries dead-letter
queue handler 57
Invoking the DLQ handler 57
The DLQ handler rules table 58

Control data 58
Rules (patterns and actions) 59
Rules table conventions 62

Processing the rules table 63
Ensuring that all DLQ messages are processed . 64

An example DLQ handler rules table 65

Chapter 7. Instrumentation events . . . 67
What are instrumentation events? 67
Why use events? 68

Types of event 69
Event notification through event queues 70
Enabling and disabling events 70
Event messages 71

Chapter 8. Backup, recovery, and
restart 73
MQSeries for AS/400 journals 73

MQSeries for AS/400 journal usage 75
Media images 76
Recovery from media images 77

Backups of MQSeries for AS/400 data 77
Journal management 78
Restoring a complete queue manager (data and
journals) 80
Restoring journal receivers for a particular queue
manager 80

Performance considerations 81

Chapter 9. Analyzing problems 83
Preliminary checks 83
Problem characteristics 85

Can the problem be reproduced? 85
Is the problem intermittent? 86
Problems with commands 86
Does the problem affect all users of the MQSeries
for AS/400 application? 86
Does the problem affect specific parts of the
network? 86
Does the problem occur only on MQSeries V5R1 87
Does the problem occur at specific times of the
day? 87
Have you failed to receive a response from a
command?. 87

Determining problems with MQSeries applications 88
Are some of your queues working? 88
Does the problem affect only remote queues? . . 88

Does the problem affect messages? 89
Receiving unexpected messages when using
distributed queues 90

Obtaining diagnostic information 91
Using MQSeries for AS/400 trace 92
Formatting trace output 93

Error logs 94
Log files 94
Early errors 95
Operator messages 95
An example MQSeries error log 95

Dead-letter queues 96
First-failure support technology (FFST) 97
Performance considerations 98

Application design considerations 98
Number of threads in use 100
Specific performance problems 100

Chapter 10. Configuring MQSeries 101
MQSeries configuration files 101

Editing configuration files 101
The MQSeries configuration file, mqs.ini . . . 102
Queue manager configuration files, qm.ini . . 102

Attributes for changing MQSeries configuration
information 103

The AllQueueManagers stanza 103
The DefaultQueueManager stanza 104
The ExitProperties stanza 104
The QueueManager stanza 105

Changing queue manager configuration
information 106

The Log stanza 106
The Channels stanza 106
The TCP stanza. 108

Example mqs.ini and qm.ini files 109

Appendix A. MQSeries names and
default objects 111
MQSeries object names 111
Understanding MQSeries queue manager library
names 111

Understanding MQSeries IFS directories and
files 112
IFS Queue manager name transformation . . . 112
Object name transformation 112

System and default objects 113

Appendix B. Sample resource
definitions 115

Appendix C. Notices 119
Trademarks 121

Glossary of terms and abbreviations 123

Bibliography 133
MQSeries cross-platform publications 133
MQSeries platform-specific publications 135
Softcopy books 136

iv MQSeries for AS/400, V5.1 System Administration

BookManager format 136
HTML format 136
Portable Document Format (PDF) 136
PostScript format 136
Windows Help format 136

MQSeries information available on the Internet . . 136

Related publications 136

Index 137

Sending your comments to IBM . . . 141

Contents v

vi MQSeries for AS/400, V5.1 System Administration

Figures

1. Create MQM Queue initial panel 17
2. Work with MQM Queues panel 17
3. Extract from the MQSC command file,

myprog.in 30
4. Display MQM Command Server panel 35
5. An example rule from a DLQ handler rules

table 59
6. Understanding instrumentation events . . . 68
7. Monitoring queue managers across different

platforms, on a single node 69

8. Sequence of events when updating MQM
objects 75

9. MQSeries for AS/400 journaling 79
10. Extract from an MQSeries error log 96
11. FFST report 98
12. Example of an MQSeries configuration file 109
13. Example queue manager configuration file 110

© Copyright IBM Corp. 1994, 2000 vii

viii MQSeries for AS/400, V5.1 System Administration

Tables

1. MQSeries tasks. 38
2. Work management objects 38
3. Authorizations for MQI calls 45
4. Authorizations for context calls 45
5. Authorizations for MQSC and PCF calls 45
6. Authorizations for generic operations 46
7. Security authorization needed for MQI calls 48
8. MQSC commands and security authorization

needed 50

9. PCF commands and security authorization
needed 51

10. Specifying authorizations for different object
types. 52

11. List of possible ISO CCSIDs. 104
12. System and default objects - queues 113
13. System and default objects - channels 114
14. System and default objects - processes 114

© Copyright IBM Corp. 1994, 2000 ix

x MQSeries for AS/400, V5.1 System Administration

About this book

This book applies to MQSeries for AS/400, V5.1.

This product provides application programming services that enable application
programs to communicate with each other using message queues. This form of
communication is referred to as commercial messaging. The applications involved
can exist on different nodes on a wide variety of machine and operating system
types. The product uses a common application programming interface, called the
Message Queuing Interface or MQI, so that programs developed on one platform
can readily be transferred to another.

This book describes the system administration aspects of MQSeries for AS/400,
V5.1, and the services provided to support commercial messaging. This includes
managing the queues that applications use to receive their messages, and ensuring
that applications have access to the queues that they require.

Installation of MQSeries is described in the MQSeries for AS/400, V5.1 Quick
Beginnings book.

Post-installation configuration of a distributed queuing network is described in the
MQSeries Intercommunication book.

Who this book is for
This book is intended for system administrators and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book
To use this book, you should have a good understanding of the IBM operating
system for the AS/400, and of the utilities associated with it. You do not need to
have worked with message queuing products before, but you should have an
understanding of the basic concepts of message queuing.

For a summary of the new function introduced in MQSeries for AS/400, V5.1, see
the MQSeries for AS/400, V5.1 Quick Beginnings book.

How to use this book
This book is divided into the following sections:
v The use of MQSeries for AS/400 using CL commands. This is the preferred

method of operation.
v An overview of other methods of administering MQSeries for AS/400, V5.1.
v The various features of the product.
v A glossary and a bibliography at the back of the book.

© Copyright IBM Corp. 1994, 2000 xi

About this book

xii MQSeries for AS/400, V5.1 System Administration

Chapter 1. Introduction to MQSeries

This chapter introduces the MQSeries for AS/400 Version 5.1 product from an
administrator’s perspective, and describes the basic concepts of MQSeries and
messaging. It contains these sections:
v “MQSeries and message queuing”
v “Messages and queues” on page 2
v “Objects” on page 3
v “System default objects” on page 9
v “Clients and servers” on page 9
v “Extending queue manager facilities” on page 10
v “Security” on page 10
v “Transactional support” on page 10

MQSeries and message queuing
MQSeries allows application programs to use message queuing to participate in
message-driven processing. Application programs can communicate across
different platforms by using the appropriate message queuing software products.
For example, HP-UX and OS/390 applications can communicate through MQSeries
for HP-UX and MQSeries for OS/390 respectively. The applications are shielded
from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface
known as the message queue interface (or MQI) whatever platform the
applications are run on. This makes it easier for you to port application programs
from one platform to another.

The MQI is described in detail in the MQSeries Application Programming Reference
manual.

Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is independent of time. This means that the sending and
receiving application programs are decoupled so that the sender can continue
processing without having to wait for the receiver to acknowledge receipt of the
message. In fact, the target application does not even have to be running when the
message is sent. It can retrieve the message after it is has been started.

Message-driven processing
Upon arrival on a queue, messages can automatically start an application using a
mechanism known as triggering. If necessary, the applications can be stopped
when the message (or messages) have been processed.

© Copyright IBM Corp. 1994, 2000 1

Messages and queues
Messages and queues are the basic components of a message queuing system.

What is a message?
A message is a string of bytes that is meaningful to the applications that use it.
Messages are used for transferring information from one application program to
another (or to different parts of the same application). The applications can be
running on the same platform, or on different platforms.

MQSeries messages have two parts:
v The application data The content and structure of the application data is

defined by the application programs that use them.
v A message descriptor The message descriptor identifies the message and

contains additional control information such as the type of message, and the
priority assigned to the message by the sending application.
The format of the message descriptor is defined by MQSeries. For a complete
description of the message descriptor, see the MQSeries Application Programming
Reference manual.

Message lengths
The maximum length a message can be is 100 MB (where 1 MB equals 1 048 576
bytes). In practice, the message length may be limited by:
v The maximum message length defined for the receiving queue
v The maximum message length defined for the queue manager
v The maximum message length defined by either the sending or receiving

application
v The amount of storage available for the message

It may take several messages to send all the information that an application
requires.

What is a queue?
A queue is a data structure used to store messages. The messages may be put on
the queue by application programs, or by a queue manager as part of its normal
operation.

Each queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns and for storing all the messages it receives onto
the appropriate queues.

The maximum size of a queue is 2 GB. For information about planning the
amount of storage you require for queues, see the MQSeries Planning Guide or visit
the following web site for platform-specific performance reports:
http://www.software.ibm.com/ts/mqseries/txppacs/txpm1.html

How do applications send and receive messages?
Application programs send and receive messages using MQI calls.

For example, to put a message onto a queue, an application:
1. Opens the required queue by issuing an MQI MQOPEN call
2. Issues an MQI MQPUT call to put the message onto the queue

Messages and queues

2 MQSeries for AS/400, V5.1 System Administration

3. Another application can retrieve the message from the same queue by issuing
an MQI MQGET call.

For more information about MQI calls, see the MQSeries Application Programming
Reference manual.

Predefined queues and dynamic queues
Queues can be characterized by the way they are created:
v Predefined queues are created by an administrator using the appropriate

MQSeries commands. Predefined queues are permanent; they exist
independently of the applications that use them and survive MQSeries restarts.

v Dynamic queues are created when an application issues an OPEN request
specifying the name of a model queue. The queue created is based on a template
queue definition, which is the model queue. You can create a model queue using
the MQSeries DEFINE QMODEL command. The attributes of a model queue, for
example the maximum number of messages that can be stored on it, are
inherited by any dynamic queue that is created from it.
Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues
Suitably authorized applications can retrieve messages from a queue according to
the following retrieval algorithms:
v First-in-first-out (FIFO)
v Message priority, as defined in the message descriptor. Messages that have the

same priority are retrieved on a FIFO basis.
v A program request for a specific message.

The MQGET request from the application determines the method used.

Objects
Many of the tasks described in this book involve manipulating MQSeries objects.

In MQSeries Version 5.1, the object types include queue managers, queues, process
definitions, channels, clusters, and namelists.

The manipulation or administration of objects includes:
v Starting and stopping queue managers.
v Creating objects, particularly queues, for applications.
v Working with channels to create communication paths to queue managers on

other (remote) systems. This is described in detail in the MQSeries
Intercommunication manual.

v Creating clusters of queue managers to simplify the overall administration
process, or to achieve workload balancing. This is described in detail in the
MQSeries Queue Manager Clusters manual.

This book contains detailed information about administration in the following
chapters:
v “Chapter 2. Managing MQSeries for AS/400 using CL commands” on page 13
v “Chapter 3. Alternative methods for MQSeries administration” on page 29

Messages and queues

Chapter 1. Introduction to MQSeries 3

Object names
The naming convention adopted for MQSeries objects depends on the object.

Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any
given message should be sent.

For the other types of object, each object has a name associated with it and can be
referenced by that name. These names must be unique within one queue manager
and object type. For example, you can have a queue and a process with the same
name, but you cannot have two queues with the same name.

In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters. For more information about
names, see “MQSeries object names” on page 111.

Managing objects
You can manage objects using the native AS/400 menus.

You can create, alter, display, and delete objects using:
v MQSeries for AS/400 CL commands
v MQSeries commands (MQSC), which can be typed in from a keyboard or read

from a file
v Programmable Command Format (PCF) messages, which can be used in an

automation program
v MQSeries Administration Interface (MQAI) calls in a program

For more information about these methods, see “Chapter 3. Alternative methods
for MQSeries administration” on page 29.

You can also administer MQSeries for AS/400 from a Windows NT machine using
the MQSeries Explorer (see “Using the MQSeries Explorer” on page 32).

Object attributes
The properties of an object are defined by its attributes. Some you can specify,
others you can only view. For example, the maximum message length that a queue
can accommodate is defined by its MaxMsgLength attribute; you can specify this
attribute when you create a queue. The DefinitionType attribute specifies how the
queue was created; you can only display this attribute.

In MQSeries, there are three ways of referring to an attribute:
v Using its CL parameter name, for example, MAXMSGLEN.
v Using its PCF name, for example, MaxMsgLength.
v Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the CL interface is
an important part of this book, you are more likely to see the CL name in
examples than the PCF name of a given attribute.

MQSeries queue managers
A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:

Objects

4 MQSeries for AS/400, V5.1 System Administration

v Object attributes are changed according to the commands received.
v Special events such as trigger events or instrumentation events are generated

when the appropriate conditions are met.
v Messages are put on the correct queue, as requested by the application making

the MQPUT call. The application is informed if this cannot be done, and an
appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager.

The queue manager to which an application is connected is said to be the local
queue manager for that application. For the application, the queues that belong to
its local queue manager are local queues.

A remote queue is a queue that belongs to another queue manager.

A remote queue manager is any queue manager other than the local queue manager.
A remote queue manager may exist on a remote machine across the network, or
may exist on the same machine as the local queue manager.

MQSeries for AS/400, V5.1 supports multiple queue managers on the same
machine.

A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Note: You cannot put messages on a queue manager object; messages are always
put on queue objects, not on queue manager objects.

MQSeries queues
Queues are defined to MQSeries using:
v The native AS/400 CRTMQMQ CL command
v The appropriate MQSC DEFINE command
v The PCF Create Queue command

Note: The MQSeries process, channel, and namelist objects can be defined in a
similar manner.

The commands specify the type of queue and its attributes. For example, a local
queue object has attributes that specify what happens when applications reference
that queue in MQI calls. Examples of attributes are:
v Whether applications can retrieve messages from the queue (GET enabled).
v Whether applications can put messages on the queue (PUT enabled).
v Whether access to the queue is exclusive to one application or shared between

applications.
v The maximum number of messages that can be stored on the queue at the same

time (maximum queue depth).
v The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see the MQSeries Command
Reference manual or the MQSeries Programmable System Management manual.

Objects

Chapter 1. Introduction to MQSeries 5

Using queue objects
There are four types of queue object available in MQSeries. Each type of object can
be manipulated by the product commands and is associated with real queues in
different ways.
1. Local queue object A local queue object identifies a local queue belonging to

the queue manager to which the application is connected. All queues are local
queues in the sense that each queue belongs to a queue manager and, for that
queue manager, the queue is a local queue.

2. A remote queue object A remote queue object identifies a queue belonging to
another queue manager. This queue must be defined as a local queue to that
queue manager. The information you specify when you define a remote queue
object allows the local queue manager to find the remote queue manager, so
that any messages destined for the remote queue go to the correct queue
manager.
Before applications can send messages to a queue on another queue manager,
you must have defined a transmission queue and channels between the queue
managers, unless you have grouped one or more queue managers together into
a cluster. For more information about clusters, see the MQSeries Queue Manager
Clusters manual.

3. An alias queue object An alias queue allows applications to access a queue by
referring to it indirectly in MQI calls. When an alias queue name is used in an
MQI call, the name is resolved to the name of either a local or a remote queue
at run time. This allows you to change the queues that applications use without
changing the application in any way—you merely change the alias queue
definition to reflect the name of the new queue to which the alias resolves.
An alias queue is not a queue, but an object that you can use to access another
queue.

4. A model queue object A model queue defines a set of queue attributes that are
used as a template for creating a dynamic queue. Dynamic queues are created
by the queue manager when an application issues an MQOPEN request
specifying a queue name that is the name of a model queue. The dynamic
queue that is created in this way is a local queue whose attributes are taken
from the model queue definition. The dynamic queue name can be specified by
the application or the queue manager can generate the name and return it to
the application.
Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Specific local queue types and their uses
MQSeries uses some local queues for specific purposes related to its operation.
These are:
v Application queues This is a queue that is used by an application through the

MQI. It can be a local queue on the queue manager to which an application is
linked, or it can be a remote queue that is owned by another queue manager.
Applications can put messages on local or remote queues. However, they can
only get messages from a local queue.

v Initiation queues Initiation queues are queues that are used in triggering. A
queue manager puts a trigger message on an initiation queue when a trigger
event occurs. A trigger event is a logical combination of conditions that is
detected by a queue manager. For example, a trigger event may be generated
when the number of messages on a queue reaches a predefined depth. This
event causes the queue manager to put a trigger message on a specified
initiation queue. This trigger message is retrieved by a trigger monitor, a special

Objects

6 MQSeries for AS/400, V5.1 System Administration

application that monitors an initiation queue. The trigger monitor then starts up
the application program that was specified in the trigger message.
If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.
See “Managing objects for triggering” on page 25 For more information about
triggering, see the MQSeries Application Programming Guide.

v Transmission queues Transmission queues are queues that temporarily stores
messages that are destined for a remote queue manager. You must define at least
one transmission queue for each remote queue manager to which the local
queue manager is to send messages directly. These queues are also used in
remote administration. For information about the use of transmission queues in
distributed queuing, see the MQSeries Intercommunication book.

v Cluster transmission queues Each queue manager within a cluster has a cluster
transmission queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE. A definition
of this queue is created by default on every queue manager on Version 5.1 of
MQSeries for AIX, AS/400, HP-UX, OS/2, Warp, Sun Solaris, and Windows NT.
A queue manager that is part of the cluster can send messages on the cluster
transmission queue to any other queue manager that is in the same cluster.
Cluster queue managers can communicate with queue managers that are not
part of the cluster. In order to do this, the queue manager must define channels
and a transmission queue to the other queue manager in the same way as in a
traditional distributed-queuing environment.
For more information on using clusters, see the MQSeries Queue Manager Clusters
manual.

v Dead-letter queues A dead-letter queue is a queue that stores messages that
cannot be routed to their correct destinations. This occurs when, for example, the
destination queue is full. The supplied dead-letter queue is called
SYSTEM.DEAD.LETTER.QUEUE. These queues are sometimes referred to as
undelivered-message queues.
A dead-letter queue is defined by default when each queue manager is created.
However, you must ensure that the queue manager on which this queue resides
points to the dead-letter queue that it is going to use.
The following command creates an undelivered-message queue on queue
manager neptune.queue.manager:

v Command queues The command queue, named
SYSTEM.ADMIN.COMMAND.QUEUE, is a local queue to which suitably
authorized applications can send MQSeries commands for processing. These
commands are then retrieved by an MQSeries component called the command
server. The command server validates the commands, passes the valid ones on
for processing by the queue manager, and returns any responses to the
appropriate reply-to queue.
A command queue is created automatically for each queue manager when that
queue manager is created.

v Reply-to queues When an application sends a request message, the application
that receives the message can send back a reply message to the sending
application. This message is put on a queue, called a reply-to queue, which is
normally a local queue to the sending application. The name of the reply-to
queue is specified by the sending application as part of the message descriptor.

CRTMQM MQMNAME(neptune.queue.manager) UDLMSGQ(ANOTHERDLQ)

Objects

Chapter 1. Introduction to MQSeries 7

v Event queues The MQSeries Version 5 products support instrumentation events,
which can be used to monitor queue managers independently of MQI
applications. Instrumentation events can be generated in several ways, for
example:
– An application attempting to put a message on a queue that is not available

or does not exist.
– A queue becoming full.
– A channel being started.

When an instrumentation event occurs, the queue manager puts an event
message on an event queue. This message can then be read by a monitoring
application which may inform an administrator or initiate some remedial action
if the event indicates a problem. Note: Trigger events are quite different from
instrumentation events in that trigger events are not caused by the same
conditions, and do not generate event messages.

For more information about instrumentation events, see the MQSeries
Programmable System Management manual.

Process definitions
A process definition object defines an application that is to be started in response to a
trigger event on an MQSeries queue manager. See the “Initiation queues” entry
under “Specific local queue types and their uses” on page 6 for more information.

The process definition attributes include the application ID, the application type,
and data specific to the application.

Use the MQSeries for AS/400 CRTMQMPRC CL command, the MQSC command
DEFINE PROCESS, or the PCF command Create Process to create a process
definition.

Channels
Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.

Use the MQSeries for AS/400 CRTMQMCHL CL command, the MQSC command
DEFINE CHANNEL, or the PCF command Create Channel to create a channel
definition.

Note: Clustering automates some of these tasks for you.

For information on channels and how to use them, see the MQSeries
Intercommunication manual.

Clusters
In a traditional MQSeries network using distributed queuing, every queue
manager is independent. If one queue manager needs to send messages to another

Objects

8 MQSeries for AS/400, V5.1 System Administration

queue manager it must have defined a transmission queue, a channel to the remote
queue manager, and a remote queue definition for every queue to which it wants
to send messages.

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another over a single network,
without the need for complex transmission queue, channels, and queue definitions.

For information about clusters, see the MQSeries Queue Manager Clusters book.

Namelists
A namelist is an MQSeries object that contains a list of other MQSeries objects.
Typically, namelists are used by applications such as trigger monitors, where they
are used to identify a group of queues. The advantage of using a namelist is that it
is maintained independently of applications; that is, it can be updated without
stopping any of the applications that use it. Also, if one application fails, the
namelist is not affected and other applications can continue using it.

Namelists are also used with queue manager clusters so that you can maintain a
list of clusters referenced by more than one MQSeries object.

Use the MQSeries for AS/400 CRTMQMNL CL command, the MQSC command
DEFINE NAMELIST, or the PCF command Create Namelist to create a namelist
definition.

System default objects
The system default objects are a set of object definitions that are created
automatically whenever a queue manager is created. You can copy and modify any
of these object definitions for use in applications at your installation.

Default object names have the stem SYSTEM.DEF; for example, the default local
queue is SYSTEM.DEFAULT.LOCAL.QUEUE, and the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of these
names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, those attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

Clients and servers
MQSeries supports client-server configurations for MQSeries applications.

An MQSeries client is a part of the MQSeries product that is installed on a machine
to accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

Note: MQSeries for AS/400, V5.1 cannot act as a client.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects, for example queues, exist only on the queue

Objects

Chapter 1. Introduction to MQSeries 9

manager machine, that is, on the MQI server machine. A server can support
normal local MQSeries applications as well.

For more information about creating channels for clients and servers, see the
MQSeries Intercommunication book.

For information about client support in general, see the MQSeries Clients book.

MQSeries applications in a client-server environment
When linked to a server, client MQSeries applications can issue most MQI calls in
the same way as local applications. The client application issues an MQCONN call
to connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
queue manager.

The advantages of a client are that:
v It is straightforward to set up
v It is straightforward to manage
v It has a low resource footprint

You must link your applications to the appropriate client libraries. See the
MQSeries Clients book for further information.

Extending queue manager facilities
The facilities provided by a queue manager can be extended by defining user exits.

User exits
User exits provide a mechanism for you to insert your own code into a queue
manager function. The user exits supported include:
v Channel exits These exits change the way that channels operate. Channel exits

are described in the MQSeries Intercommunication book
v Data conversion exits These exits create source code fragments that can be put

into application programs to convert data from one format to another. Data
conversion exits are described in the MQSeries Application Programming Guide.

v The cluster workload exit The function performed by this exit is defined by the
provider of the exit. Call definition information is given in the MQSeries Queue
Manager Clusters book. The exit is supported in the following environments: AIX,
AS/400, HP-UX, OS/2, Sun Solaris, Windows NT, and OS/390.

Security
In MQSeries for AS/400, V5.1 security is provided by the Object Authority
Manager (OAM) component. See “Chapter 5. Protecting MQSeries objects” on
page 43 for details of this component.

Transactional support
An application program can group a set of updates into a unit of work. These
updates are usually logically related and must all be successful for data integrity to
be preserved. If one update succeeded while another failed then data integrity
would be lost.

Clients and servers

10 MQSeries for AS/400, V5.1 System Administration

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent or irreversible. If the unit of
work fails then all updates are instead backed out. Syncpoint coordination is the
process by which units of work are either committed or backed out with integrity.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here, syncpoint coordination is provided by the queue
manager itself using a dual-phase commit process and use of the new MQI calls,
MQBACK and MQCMIT.

MQSeries for AS/400 is not XA-compliant but is able to support and participate in
global units of work coordinated by the AS/400 COMMIT and ROLLBACK
commands.

Transactional support

Chapter 1. Introduction to MQSeries 11

About this book

12 MQSeries for AS/400, V5.1 System Administration

Chapter 2. Managing MQSeries for AS/400 using CL
commands

This chapter gives an overview of working with MQSeries for AS/400 from the
AS/400 command line, together with some suggested operations.

MQSeries applications
When you create or customize MQSeries applications, it is useful to keep a record
of all MQSeries definitions created. This record can be used for:
v Recovery purposes
v Maintenance
v Rolling out MQSeries applications

You can do this by either:
v Creating CL programs to generate your MQSeries definitions for the AS/400, or
v Creating MQSC text files as SRC members to generate your MQSeries definitions

using the cross-platform MQSeries command language.

MQSeries for AS/400 CL commands
The commands can be grouped as follows:
v Channel Commands

CHGMQMCHL, Change MQM Channel
CPYMQMCHL, Copy MQM Channel
CRTMQMCHL, Create MQM Channel
DLTMQMCHL, Delete MQM Channel
DSPMQMCHL, Display MQM Channel
ENDMQMCHL, End MQM Channel
ENDMQMLSR, End MQM Listener
PNGMQMCHL, Ping MQM Channel
RSTMQMCHL, Reset MQM Channel
RSVMQMCHL, Resolve MQM Channel
STRMQMCHL, Start MQM Channel
STRMQMCHLI, Start MQM Channel Initiator
STRMQMLSR, Start MQM Listener
WRKMQMCHL, Work with MQM Channel
WRKMQMCHST, Work with MQM Channel Status

v Cluster Commands
RFRMQMCL, Refresh Cluster
RSMMQMCLQM, Resume Cluster Queue Manager
RSTMQMCL, Reset Cluster
SPDMQMCLQM, Suspend Cluster Queue Manager
WRKMQMCL, Work with Clusters
WRKMQMCLQM, Work with Cluster Queue Manager

v Command Server Commands
DSPMQMCSVR, Display MQM Command Server
ENDMQMCSVR, End MQM Command Server
STRMQMCSVR, Start MQM Command Server

v Data Type Conversion Command
CVTMQMDTA, Convert MQM Data Type Command

© Copyright IBM Corp. 1994, 2000 13

v Dead-Letter Queue Handler Command
STRMQMDLQ, Start MQSeries Dead-Letter Queue Handler

v Media Recovery Commands
RCDMQMIMG, Record MQM Object Image
RCRMQMOBJ, Recreate MQM Object

v MQSeries Command
STRMQMMQSC, Start MQSC Commands

v Name Command
DSPMQMOBJN, Display MQM Object Names

v Namelist Commands
CHGMQMNL, Change MQM Namelist
CPYMQMNL, Copy MQM Namelist
CRTMQMNL, Create MQM Namelist
DLTMQMNL, Delete MQM Namelist
DSPMQMNL, Display MQM Namelist
WRKMQMNL, Work with MQM Namelists

v Process Commands
CHGMQMPRC, Change MQM Process
CPYMQMPRC, Copy MQM Process
CRTMQMPRC, Create MQM Process
DLTMQMPRC, Delete MQM Process
DSPMQMPRC, Display MQM Process
WRKMQMPRC, Work with MQM Processes

v Queue Commands
CHGMQMQ, Change MQM Queue
CLRMQMQ, Clear MQM Queue
CPYMQMQ, Copy MQM Queue
CRTMQMQ, Create MQM Queue
DLTMQMQ, Delete MQM Queue
DSPMQMQ, Display MQM Queue
WRKMQMMSG, Work with MQM Messages
WRKMQMQ, Work with MQM Queues

v Queue Manager Commands
CCTMQM, Connect to Message Queue Manager
CHGMQM, Change Message Queue Manager
CRTMQM, Create Message Queue Manager
DLTMQM, Delete Message Queue Manager
DSCMQM, Disconnect from Message Queue Manager
DSPMQM, Display Message Queue Manager
ENDMQM, End Message Queue Manager
STRMQM, Start Message Queue Manager
WRKMQM, Work with Message Queue managers

v Security Commands
DSPMQMAUT, Display MQM Object Authority
GRTMQMAUT, Grant MQM Object Authority
RVKMQMAUT, Revoke MQM Object Authority

v Trace Commands
TRCMQM, Trace MQM Job

v Transaction Commands
WRKMQMTRN, Work with MQSeries Transactions
RSVMQMTRN, Resolve MQSeries Transaction

v Trigger Monitor Command
STRMQMTRM, Start Trigger Monitor

MQSeries applications

14 MQSeries for AS/400, V5.1 System Administration

Starting a local queue manager
You must:
1. Ensure that the MQSeries subsystem is running (using the command

STRSBS QMQM/QMQM), and that the job queue associated with that subsystem is
not held. By default, the MQSeries subsystem and job queue are both named
QMQM in library QMQM.

2. Create a local queue manager by issuing the CRTMQM command from an
AS/400 command line.
When you create a queue manager, you have the option of making that queue
manager the default queue manager.
The default queue manager (of which there can be only one) is the queue
manager to which a CL command applies, if the queue manager name
(MQMNAME) parameter is omitted.

Note: One queue manager must be selected as the default queue manager.
3. Start a local queue manager by issuing the STRMQM command from an

AS/400 command line.

You can stop a queue manager by issuing the ENDMQM command from the
AS/400 command line, and control a queue manager by issuing other MQSeries
commands from an AS/400 command line.

The principal commands are described later in this chapter.

Remote queue managers cannot be started remotely but must be created and
started in their systems by local operators. An exception to this is where remote
operating facilities (outside MQSeries for AS/400) exist to enable such operations.

The local queue administrator cannot stop a remote queue manager.

Creating MQSeries objects
The following tasks suggest various ways in which you can use MQSeries for
AS/400, from the command line.

There are two online methods to create MQSeries objects, which are:
1. Using a Create command:

CRTMQMCHL
Create MQM Channel

CRTMQMNL
Create MQM Namelist

CRTMQMPRC
Create MQM Process

CRTMQMQ
Create MQM Queue

2. Using the appropriate Work with MQM object command:
WRKMQMCHL

Work with MQM Channels
WRKMQMNL

Work with MQM Namelists
WRKMQMPRC

Work with MQM Processes

Starting local queue manager

Chapter 2. Managing MQSeries for AS/400 using CL commands 15

WRKMQMQ
Work with MQM Queues

Note: All MQM commands can be submitted from the ‘Message Queue Manager
Commands’ menu. To display this menu, type GO CMDMQM on the command
line, and press the Enter key.

The system displays the prompt panel automatically when you select a
command from this menu. To display the prompt panel for a command that
you have typed directly on the command line, press F4 before pressing the
Enter key.

Examples of creating a local queue
To create a local queue from the command line, you can:
1. Use the Create MQM Queue (CRTMQMQ) command
2. Use the Work with MQM Queues (WRKMQMQ) command

Creating a local queue using the CRTMQMQ command
1. Type CRTMQMQ on the command line and press the PF4 key.
2. On the Create MQM Queue panel, type the name of the queue you want to

create in the Queue name field.
To specify a mixed case name, you enclose the name in apostrophes.

3. Type *LCL in the Queue type field.
4. Specify a queue manager name, unless you are using the default queue

manager, and press the Enter key. Further settings for a local queue will be
displayed, see Figure 1, with the fields containing the default values. You may
overtype any of these values with a new value.
Scroll forward to see further fields. The options used for clusters are at the end
of the list of options.

5. When you have made any changes to the values, press the Enter key to create
the queue.

Creating MQSeries objects

16 MQSeries for AS/400, V5.1 System Administration

Creating a local queue using the WRKMQMQ command
1. Type WRKMQMQ on the command line.
2. If you want to display the prompt panel, press F4.

The prompt panel is useful to reduce the number of queues displayed, by
specifying a generic queue name or queue type.

3. Press the Enter key and Figure 2 is displayed.

4. Press F6 to create a new queue; this takes you to the CRTMQMQ panel. See
“Creating a local queue using the CRTMQMQ command” on page 16 for
instructions on how to create the queue.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name > TEST.QUEUE.LCL

Queue type > *LCL *ALS, *LCL, *MDL, *RMT
Message Queue Manager Name . . . MY.QUEUE.MANAGER__________________________

Replace *NO_ *NO, *YES
Text 'description' '___
___________________________________'
Put enabled *YES____ *SYSDFTQ, *NO, *YES
Default message priority 5_________ 0-9, *SYSDFTQ
Default message persistence . . *NO_____ *SYSDFTQ, *NO, *YES
Process name '__

Triggering enabled *NO_____ *SYSDFTQ, *NO, *YES
Get enabled *YES____ *SYSDFTQ, *NO, *YES
Sharing enabled *YES____ *SYSDFTQ, *NO, *YES

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 1. Create MQM Queue initial panel

Work with MQM Queues

Queue Manager Name . . . MY.QUEUE.MANAGER_____________________ _____

Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Clear 14=Display authority
15=Grant authority 16=Revoke authority

Opt Name Type Text
TEST.QUEUE.LCL *LCL This is a text
TKR.TEST.LCL *LCL
TKR.TEST.RMT *RMT REMOTE Q FOR
TKR.TEST.XMIT.C2M *LCL XMITQ CORSAIR TO

Bottom
Parameters for options 2, 3, 5, 14, 15, 16 or command
===> __
F3=Exit F4=Prompt F5=Refresh F6=Create F9=Retrieve F12=Cancel
F16=Repeat position to F17=Position to F20=Right F21=Print

Figure 2. Work with MQM Queues panel

Creating MQSeries objects

Chapter 2. Managing MQSeries for AS/400 using CL commands 17

When you have created the queue, the Work with MQM Queues panel will be
displayed again. The new queue will be added to the list when you press
F5=Refresh.

Examples of creating a remote queue
You use the CRTMQMQ panel to define the queue with queue type *RMT, using
one of the following online methods:
1. The CRTMQMQ command.
2. F6=Create on the WRKMQMQ panel.

The use of remote queues is described in detail in the MQSeries Intercommunication
book.

This section describes how to define a remote queue for each of the three uses.

Creating a remote queue as a remote queue definition
This is the most straightforward use of remote queues. It is used to direct messages
to a local queue on a remote queue manager, through a transmission queue.

To create a remote queue for this use, you:
1. Display the Create MQM Queue panel.
2. Type the queue name in the Queue name field.
3. Type *RMT in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field.
5. Type the name of the local queue at the remote location in the Remote queue

field.
6. Type the name of the queue manager at the remote location in the

Remote Message Queue Manager field.
7. Optionally, type the name of the transmission queue to the remote location in

the Transmission queue field.
If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

Creating a remote queue as a queue manager alias
Queue manager alias definitions can be used to remap the queue manager name
specified in the MQOPEN call. This enables you to alter the target queue manager
without changing your applications.

See the MQSeries Intercommunication manual for further information.

To define a remote queue as a queue manager object, you:
1. Display the Create MQM Queue panel.
2. Type the queue name in the Queue name field.
3. Type *RMT in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field.
5. Type the name of the queue manager at the remote location in the

Remote Message Queue Manager field.
6. Optionally, type the name of the transmission queue to the remote location in

the Transmission queue field.
If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

Creating MQSeries objects

18 MQSeries for AS/400, V5.1 System Administration

Creating a remote queue as an alias to a reply-to queue
An application may name a reply-to queue when it puts a message on a queue.
The reply-to queue name is used by the application that gets the message from the
queue to send reply messages. To define an alias to a reply-to queue, you define a
remote queue with the same name as the reply-to queue.

See the MQSeries Intercommunication manual for further information.

To create a remote queue as an alias to a reply-to queue, you:
1. Display the Create MQM Queue panel.
2. Type the queue name in the Queue name field.

This must be the same as the reply-to queue named by the putting application.
3. Type *RMT in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field,

unless you are using the default queue manager.
5. Type the queue name in the Queue name field.

This is the name of the queue to which you want the reply-to messages sent.
6. Type the name of the queue manager at the remote location in the

Remote Message Queue Manager field.
This is the name of the queue manager to which you want the reply-to
messages sent.

7. Optionally, type the name of the transmission queue to the remote location in
the Transmission queue field.
If you do not specify a transmission queue name, the transmission queue with
the same name as the remote queue manager is used.

Creating a transmission queue
A transmission queue is a local queue that is used to send messages to a remote
queue manager, through a message channel, which provides a one-way link to the
remote queue manager.

Each message channel has a transmission queue name specified at the sending end
of the message channel.

Note: If you use clusters, you do not have to create a transmission queue.

Applications can put messages directly on a message queue, or they can be put
there indirectly, for example, through a remote queue definition.

To create a transmission queue, you:
1. Display the Create MQM Queue panel.
2. Type the queue name in the Queue name field.

If you want to define a default transmission queue for all messages destined to
a remote queue manager, the transmission queue name must be the same as the
remote queue manager name.

3. Type *LCL in the Queue type field.
4. Type *TMQ in the Usage field.

Creating MQSeries objects

Chapter 2. Managing MQSeries for AS/400 using CL commands 19

Creating an initiation queue
An initiation queue is a local queue on which the queue manager puts trigger
messages in response to a trigger event, for example, a message arriving on a local
queue. An initiation queue is a local queue and has no special settings that define
it as an initiation queue.

For more information about triggering, see the MQSeries Application Programming
Guide.

Creating an alias queue
You use an alias queue object to access another queue on the local queue manager.
Any messages put on the alias queue are redirected to the queue named in the
alias queue definition.

Note: An alias queue cannot hold messages itself.

To create an alias queue, you:
1. Display the Create MQM Queue panel.
2. Type the queue name in the Queue name field.
3. Type *ALS in the Queue type field.
4. Type the name of the local queue manager in the Queue Manager Name field.
5. Type the name of the local queue that you want the queue name to resolve to

in the Target queue field.

Creating a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Type *MDL in the Queue type field.

Model queues and local queues have the same set of attributes, except that on
model queues you can specify whether the dynamic queues created are temporary
or permanent. (Permanent queues are maintained across queue manager restarts,
temporary ones are not.)

Altering queue manager attributes
To alter the attributes of the queue manager specified on the CHGMQM
command, specifying the attributes and values that you want to change. For
example, use the following options to alter the attributes of
jupiter.queue.manager:
CHGMQM MQMNAME('jupiter.queue.manager') UDLMSGQ(ANOTHERDLQ) INHEVT(*YES)

This command changes the dead-letter queue used, and enables inhibit events.

Working with local queues
This section contains examples of some of the commands that you can use to
manage local, model, and alias queues.

Defining a local queue
For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager are
said to be local to that queue manager.

Creating MQSeries objects

20 MQSeries for AS/400, V5.1 System Administration

Use the command CRTMQMQ QTYPE *LCL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify the
queue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:
v It is enabled for gets, disabled for puts, and operates on a first-in-first-out (FIFO)

basis.
v It is an ‘ordinary’ queue, that is, it is not an initiation queue or a transmission

queue, and it does not generate trigger messages.
v The maximum queue depth is 1000 messages; the maximum message length is

2000 bytes.

The following command does this on the default queue manager:
CRTMQMQ QNAME('orange.local.queue') QTYPE(*LCL)

TEXT('Queue for messages from other systems')
PUTENBL(*NO)
GETENBL(*YES)
TRGENBL(*NO)
MSGDLYSEQ(*FIFO)
MAXDEPTH(1000)
MAXMSGLEN(2000)
USAGE(*NORMAL)

Notes:

1. USAGE *NORMAL indicates that this queue is not a transmission queue.
2. If you already have a local queue on the same queue manager with the name

orange.local.queue, this command fails. Use the REPLACE *YES attribute, if
you want to overwrite the existing definition of a queue, but see also
“Changing local queue attributes” on page 22.

Defining a dead-letter queue
Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval. You must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on the CRTMQM
command, or you can use the CHGMQM command to specify one later. You must
also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product. This queue is automatically created when you create the queue
manager. You can modify this definition if required. There is no need to rename it,
although you can if you like.

A dead-letter queue has no special requirements except that:
v It must be a local queue
v Its MAXMSGL (maximum message length) attribute must enable the queue to

accommodate the largest messages that the queue manager has to handle plus
the size of the dead-letter header (MQDLH)

MQSeries provides a dead-letter queue handler that allows you to specify how
messages found on a dead-letter queue are to be processed or removed. For further
information, see “Chapter 6. The MQSeries dead-letter queue handler” on page 57.

Working with local queues

Chapter 2. Managing MQSeries for AS/400 using CL commands 21

Displaying default object attributes
When you define an MQSeries object, it takes any attributes that you do not
specify from the default object. For example, when you define a local queue, the
queue inherits any attributes that you omit in the definition from the default local
queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what
these attributes are, use the following command:
DSPMQMQ QNAME(SYSTEM.DEFAULT.LOCAL.QUEUE)

Copying a local queue definition
You can copy a queue definition using the CPYMQMQ command. For example:
CPYMQMQ FROMQ('orange.local.queue') TOQ('magenta.queue')

This command creates a queue with the same attributes as our original queue
orange.local.queue, rather than those of the system default local queue.

You can also use the CPYMQMQ command to copy a queue definition, but
substituting one or more changes to the attributes of the original. For example:
CPYMQMQ FROMQ('orange.local.queue') TOQ('third.queue') MAXMSGLEN(1024)

This command copies the attributes of the queue orange.local.queue to the queue
third.queue, but specifies that the maximum message length on the new queue is
to be 1024 bytes, rather than 2000.

Note: When you use the CPYMQMQ command, you are copying the queue
attributes only. You are not copying the messages on the queue.

Changing local queue attributes
You can change queue attributes in two ways, using either the CHGMQMQ
command or the CPYMQMQ command with the REPLACE *YES attribute. In
“Defining a local queue” on page 20, we defined the queue orange.local.queue.
Suppose, for example, you wanted to increase the maximum message length on
this queue to 10 000 bytes.
v Using the CHGMQMQ command:

CHGMQMQ QNAME('orange.local.queue') MAXMSGLEN(10000)

This command changes a single attribute, that of the maximum message length;
all the other attributes remain the same.

v Using the CRTMQMQ command with the REPLACE *YES option, for example:
CRTMQMQ QNAME('orange.local.queue') QTYPE(*LCL) MAXMSGLEN(10000) REPLACE(*YES)

This command changes not only the maximum message length, but all the other
attributes, which are given their default values. The queue is now put enabled
whereas previously it was put inhibited. Put enabled is the default, as specified
by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have changed it.

If you decrease the maximum message length on an existing queue, existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue
To delete all the messages from a local queue called magenta.queue, use the
following command:
CLRMQMQ QNAME('magenta.queue')

Working with local queues

22 MQSeries for AS/400, V5.1 System Administration

You cannot clear a queue if:
v There are uncommitted messages that have been put on the queue under

syncpoint.
v An application currently has the queue open.

Deleting a local queue
Use the command DLTMQMQ to delete a local queue. A queue cannot be deleted
if it has uncommitted messages on it.

Working with alias queues
An alias queue (also known as a queue alias) provides a method of redirecting
MQI calls. An alias queue is not a real queue but a definition that resolves to a real
queue. The alias queue definition contains a target queue name which is specified
by the TGTQNAME attribute.

When an application specifies an alias queue in an MQI call, the queue manager
resolves the real queue name at run time.

For example, an application has been developed to put messages on a queue called
my.alias.queue. It specifies the name of this queue when it makes an MQOPEN
request and, indirectly, if it puts a message on this queue. The application is not
aware that the queue is an alias queue. For each MQI call using this alias, the
queue manager resolves the real queue name, which could be either a local queue
or a remote queue defined at this queue manager.

By changing the value of the TGTQNAME attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for maintenance,
migration, and load-balancing.

Defining an alias queue
The following command creates an alias queue:
CRTMQMQ QNAME('my.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')

This command redirects MQI calls that specify my.alias.queue to the queue
yellow.queue. The command does not create the target queue; the MQI calls fail if
the queue yellow.queue does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:
CHGMQMQ QNAME('my.alias.queue') TGTQNAME('magenta.queue')

This command redirects MQI calls to another queue, magenta.queue.

You can also use alias queues to make a single queue (the target queue) appear to
have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:
v Application ALPHA can put messages on yellow.queue, but is not allowed to get

messages from it.
v Application BETA can get messages from yellow.queue, but is not allowed to put

messages on it.

You can do this using the following commands:

Working with local queues

Chapter 2. Managing MQSeries for AS/400 using CL commands 23

/* This alias is put enabled and get disabled for application ALPHA */

CRTMQMQ QNAME('alphas.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')
PUTENBL(*YES) GETENBL(*NO)

/* This alias is put disabled and get enabled for application BETA */

CRTMQMQ QNAME('betas.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')
PUTENBL(*NO) GETENBL(*YES)

ALPHA uses the queue name alphas.alias.queue in its MQI calls; BETA uses the
queue name betas.alias.queue. They both access the same queue, but in different
ways.

You can use the REPLACE *YES attribute when you define queue aliases, in the
same way that you use these attributes with local queues.

Using other commands with alias queues
You can use the appropriate commands to display or change queue alias attributes.
For example:
/* Display the queue alias's attributes */

DSPMQMQ QNAME('alphas.alias.queue')

/* ALTER the base queue name, to which the alias resolves. */
/* FORCE = Force the change even if the queue is open. */

CHQMQMQ QNAME('alphas.alias.queue') TGTQNAME('orange.local.queue') FORCE(*YES)

Working with model queues
A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not.) For example:
CRTMQMQ QNAME('green.model.queue') QTYPE(*MDL) DFNTYPE(*PERMDYN)

This command creates a model queue definition. From the DFNTYPE attribute, the
actual queues created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the REPLACE *YES attribute when you define model queues, in the
same way that you use them with local queues.

Working with alias queues

24 MQSeries for AS/400, V5.1 System Administration

Using other commands with model queues
You can use the appropriate commands to display or alter a model queue’s
attributes. For example:
/* Display the model queue's attributes */

DSPMQMQ QNAME('green.model.queue')

/* ALTER the model queue to enable puts on any */
/* dynamic queue created from this model. */

CHGMQMQ QNAME('blue.model.queue') PUTENBL(*YES)

Managing objects for triggering
MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called triggering
and is described in detail in the MQSeries Application Programming Guide.

This section describes how to set up the required objects to support triggering on
MQSeries.

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the TRGENBL attribute.

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue motor.insurance.queue, as follows:
CRTMQMQ QNAME('motor.insurance.queue') QTYPE(*LCL)

PRCNAME('motor.insurance.quote.process') MAXMSGLEN(2000)
DFTMSGPST(*YES) INITQNAME('motor.ins.init.queue')
TRGENBL(*YES) TRGTYPE(*DEPTH) TRGDEPTH(100) TRGMSGPTY(5)

where:

QNAME('motor.insurance.queue')
Specifies the name of the application queue being defined.

PRCNAME('motor.insurance.quote.process')
Specifies the name of the application to be started by a trigger monitor
program.

MAXMSGLEN(2000)
Specifies the maximum length of messages on the queue.

DFTMSGPST(*YES)
Specifies that messages on this queue are persistent by default.

INITQNAME('motor.ins.init.queue')
Is the name of the initiation queue on which the queue manager is to put
the trigger message.

TRGENBL(*YES)
Is the trigger attribute value.

TRGTYPE(*DEPTH)
Specifies that a trigger event is generated when the number of messages of
the required priority (TRGMSGPTY) reaches the number specified in
TRGDEPTH.

Working with model queues

Chapter 2. Managing MQSeries for AS/400 using CL commands 25

TRGDEPTH(100)
Specifies the number of messages required to generate a trigger event.

TRGMSGPTY(5)
Is the priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority
5 or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues
have no special settings, but you can use the following definition of the local
queue motor.ins.init.queue for guidance:
CRTMQMQ QNAME('motor.ins.init.queue') QTYPE(*LCL)

GETENBL(*YES) SHARE(*NO) TRGTYPE(*NONE)
MAXMSGL(2000)
MAXDEPTH(1000)

Creating a process definition
Use the CRTMQMPRC command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PRCDEFN attribute on the
application queue motor.insurance.queue. The following command creates the
required process, motor.insurance.quote.process, identified in this example:
CRTMQMPRC PRCNAME('motor.insurance.quote.process')

TEXT('Insurance request message processing')
APPTYPE(*OS400) APPID(MQTEST/TESTPROG)
USRDATA('open, close, 235')

Where:

PRCNAME('motor.insurance.quote.process')
Is the name of the process definition.

TEXT('Insurance request message processing')
Is a description of the application program to which this definition relates.
This text is displayed when you use the DSPMQMPRC command. This can
help you to identify what the process does. If you use spaces in the string,
you must enclose the string in single quotation marks.

APPTYPE(*OS400)
Is the type of application to be started.

APPID(MQTEST/TESTPROG)
Is the name of the application executable file, specified as a fully qualified
file name.

USRDATA('open, close, 235')
Is user-defined data, which can be used by the application.

Displaying your process definition
Use the DSPMQMPRC command to examine the results of your definition. For
example:
DSPMQMPRC('motor.insurance.quote.process')

You can also use the CHGMQMPRC command to alter an existing process
definition, and the DLTMQMPRC command to delete a process definition.

Managing objects for triggering

26 MQSeries for AS/400, V5.1 System Administration

Communicating between two systems
The following example illustrates how to set up two MQSeries for AS/400 systems,
using CL commands, so that they can communicate with one another.

The systems are called SYSTEMA and SYSTEMB, and the communications protocol
used is TCP/IP.

Carry out the following procedure:
1. Create a queue manager on SYSTEMA, calling it QMGRA1.

CRTMQM MQMNAME(QMGRA1) TEXT('System A - Queue +
Manager 1') UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

2. Start this queue manager.
STRMQM MQMNAME(QMGRA1)

3. Define the MQSeries objects on SYSTEMA that you need to send messages to a
queue manager on SYSTEMB.
/* Transmission Queue */
CRTMQMQ QNAME(XMITQ.TO.QMGRB1) QTYPE(*LCL) +

MQMNAME(QMGRA1) TEXT('Transmission Queue +
to QMGRB1') MAXDEPTH(5000) USAGE(*TMQ)

/* Remote Queue which points to a Queue called TARGETB */
/* TARGETB belongs to Queue Manager QMGRB1 on SYSTEMB */
CRTMQMQ QNAME(TARGETB.ON.QMGRB1) QTYPE(*SDR) +

MQMNAME(QMGRA1) TEXT('Remote Q pointing +
at Q TARGETB on QMGRB1 on Remote System +
SYSTEMB') RMTQNAME(TARGETB) +
RMTMQMNAME(QMGRB1) TMQNAME(XMITQ.TO.QMGRB1)

/* TCP/IP Sender Channel to send messages to the Queue Manager on SYSTEMB*/
CRTMQMCHL CHLNAME(QMGRA1.TO.QMGRB1) CHLTYPE(*SDR) +

MQMNAME(QMGRA1) TRPTYPE(*TCP) +
TEXT('Sender Channel From QMGRA1 on +
SYSTEMA to QMGRB1 on SYSTEMB') +
CONNAME(SYSTEMB) TMQNAME(XMITQ.TO.QMGRB1)

4. Create a queue manager on SYSTEMB, calling it QMGRB1.
CRTMQM MQMNAME(QMGRB1) TEXT('System B - Queue +

Manager 1') UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

5. Start the queue manager on SYSTEMB.
STRMQM MQMNAME(QMGRB1)

6. Define the MQSeries objects that you need to receive messages from the queue
manager on SYSTEMA.
/* Local queue to receive messages on */
CRTMQMQ QNAME(TARGETB) QTYPE(*LCL) MQMNAME(QMGRB1) +

TEXT('Sample Local Queue for QMGRB1')

/* Receiver Channel of the same name as the Sender channel on SYSTEMA */
CRTMQMCHL CHLNAME(QMGRA1.TO.QMGRB1) CHLTYPE(*RCVR) +

MQMNAME(QMGRB1) TRPTYPE(*TCP) +
TEXT('Receiver Channel from QMGRA1 to +
QMGRB1')

7. Finally, start a TCP/IP listener on SYSTEMB so that the channel can be started.

Note: This example uses the default port of 1414.
STRMQMLSR MQMNAME(QMGRB1)

Distributed queuing example

Chapter 2. Managing MQSeries for AS/400 using CL commands 27

You are now ready to send test messages between SYSTEMA and SYSTEMB. Using one
of the supplied samples, PUT a series of messages to your remote queue on
SYSTEMA.

Start the channel on SYSTEMA, either by using the command STRMQMCHL, or by
using the command WRKMQMCHL and entering a start request (Option 14)
against the sender channel.

The channel should go to RUNNING status and the messages will be sent to
queue TARGETB on SYSTEMB.

Check your messages by issuing the command:
WRKMQMMSG QNAME(TARGETB) MQMNAME(QMGRB1).

Distributed queuing example

28 MQSeries for AS/400, V5.1 System Administration

Chapter 3. Alternative methods for MQSeries administration

You normally use the native AS/400 CL commands to perform administrative
tasks. See “Chapter 2. Managing MQSeries for AS/400 using CL commands” on
page 13 for an overview of these commands.

Using CL commands is the preferred method of administering the system.
However, you can use various other methods.

This chapter gives an overview of the various methods, and includes the following
topics:
v “Local and remote administration”
v “Performing administrative tasks using MQSC commands” on page 30
v “Performing administrative tasks using PCF commands” on page 30
v “Using the MQSeries Explorer” on page 32
v “Managing the command server for remote administration” on page 34

Local and remote administration
You administer MQSeries objects locally or remotely.

Local administration means carrying out administration tasks on any queue
managers you have defined on your local system. In MQSeries, you can consider
this as local administration because no MQSeries channels are involved, that is, the
communication is managed by the operating system. Some commands cannot be
issued in this way, in particular, creating or starting queue managers and starting
command servers. To perform this type of task, you must either log onto the
remote system and issue the commands from there or create a process that can
issue the commands for you.

MQSeries supports administration from a single point through what is known as
remote administration. All remote administration consists of sending programmable
command format (PCF) control messages to the
SYSTEM.ADMIN.COMMAND.QUEUE on the target queue manager.

There are a number of ways of generating PCF messages. These are:
1. Writing a program using PCF messages. See “Performing administrative tasks

using PCF commands” on page 30.
2. Writing a program using the MQAI, which actually sends out PCF messages.

See “Using the MQAI to simplify the use of PCFs” on page 31.
3. Use the MQSeries Explorer, available with MQSeries for Windows NT, which

allows you to use a graphical user interface (GUI) and generates the correct
PCF messages. See “Using the MQSeries Explorer” on page 32.

For example, you can issue a remote command to change a queue definition on a
remote queue manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

© Copyright IBM Corp. 1994, 2000 29

Performing administrative tasks using MQSC commands
You use MQSeries commands (MQSC) to manage queue manager objects,
including the queue manager itself, channels, queues, and process definitions.

You issue MQSC commands to a queue manager using the STRMQMMQSC
AS/400 CL command. This is a batch method only, taking its input from a SRC
PHYSICAL file in the AS/400 library system. The default name for this source
physical file is QMQSC.

MQSC command files
MQSC commands are written in human-readable form, that is, in ASCII text.

Figure 3 is an extract from an MQSC command file showing an MQSC command
(DEFINE QLOCAL) with its attributes.

For portability among MQSeries environments, you are recommended to limit the
line length in MQSC command files to 72 characters. The plus sign indicates that
the command is continued on the next line.

Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive.

Notes:

1. The format of an MQSC file does not depend on its location in the file system
2. MQSC attribute names are limited to eight characters.
3. MQSC commands are available on other platforms, including OS/390.

The MQSeries Command Reference manual contains a description of each MQSC
command and its syntax.

Performing administrative tasks using PCF commands
The purpose of MQSeries programmable command format (PCF) commands is to
allow administration tasks to be programmed into an administration program. In
this way you can create queues and process definitions, and change queue
managers, from a program.

.

.
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(' ') +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER;

.

.

Figure 3. Extract from the MQSC command file, myprog.in

Using MQSC commands

30 MQSeries for AS/400, V5.1 System Administration

PCF commands cover the same range of functions provided by the MQSC facility.

Therefore, you can write a program to issue PCF commands to any queue manager
in the network from a single node. In this way, you can both centralize and
automate administration tasks.

Each PCF command is a data structure that is embedded in the application data
part of an MQSeries message. Each command is sent to the target queue manager
using the MQI function MQPUT in the same way as any other message. The
command server on the queue manager receiving the message interprets it as a
command message and runs the command. To get the replies, the application
issues an MQGET call and the reply data is returned in another data structure. The
application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:

Message type (MsqType) is MQMT_REQUEST.
Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type (Type) specifies MQCFT_COMMAND.
The command identifier specifies the command, for example, Change
Queue (MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them,
see the MQSeries Programmable System Management manual.

Attributes in MQSC and PCFs
Object attributes specified in MQSC are shown in this book in uppercase (for
example, RQMNAME), although they are not case sensitive. MQSC attribute
names are limited to eight characters.

Object attributes in PCF, which are not limited to eight characters, are shown in
this book in italics. For example, the PCF equivalent of RQMNAME is
RemoteQMgrName.

Escape PCFs
Escape PCFs are PCF commands that contain MQSC commands within the
message text. You can use PCFs to send commands to a remote queue manager.
For more information about using escape PCFs, see the MQSeries Programmable
System Management manual.

Using the MQAI to simplify the use of PCFs
You can use the MQSeries Administration Interface (MQAI) to obtain easier
programming access to PCF messages.

Using PCFs

Chapter 3. Alternative methods for MQSeries administration 31

It performs administration tasks on a queue manager through the use of data bags.
Data bags allow you to handle properties (or parameters) of objects in a way that
is easier than using PCFs.

The MQAI can be used:
v To simplify the use of PCF messages The MQAI is an easy way to administer

MQSeries; you do not have to write your own PCF messages and this avoids the
problems associated with complex data structures.
To pass parameters in programs that are written using MQI calls, the PCF
message must contain the command and details of the string or integer data. To
do this, several statements are needed in your program for every structure, and
memory space must be allocated. This task is long and laborious.
On the other hand, programs written using the MQAI pass parameters into the
appropriate data bag and only one statement is required for each structure. The
use of MQAI data bags removes the need for you to handle arrays and allocate
storage, and provides some degree of isolation from the details of the PCF.

v To handle error conditions more easily It is difficult to get return codes back
from MQSC commands, but the MQAI makes it easier for the program to
handle error conditions.

After you have created and populated your data bag, you can then send an
administration command message to the command server of a queue manager,
using the mqExecute call, which will wait for any response messages. The
mqExecute call handles the exchange with the command server and returns
responses in a response bag.

For more information about using the MQAI, see the MQSeries Administration
Interface Programming Guide and Reference book.

For more information about PCFs in general, see the MQSeries Programmable System
Management manual.

Using the MQSeries Explorer
The MQSeries Explorer is an application that runs under the Microsoft®

Management Console (MMC) on Windows® NT version 4.0. It provides a graphical
user interface for controlling MQSeries resources in an MQSeries network and is
provided only with MQSeries for Windows NT V5.1.

The platforms and levels of MQSeries which can be administered using the
MQSeries Explorer are described in “Prerequisite software” on page 33.

Using the online guidance, you can:
v Define and control various resources including queue managers, queues,

channels, process definitions, client connections, namelists, and clusters.
v Start or stop a queue manager and its associated processes.
v View queue managers and their associated objects on your workstation or from

other workstations.
v Check the status of queue managers, clusters, and channels.

You can invoke the MQSeries Explorer from the First Steps application, or from the
Windows NT Start prompt.

Using PCFs

32 MQSeries for AS/400, V5.1 System Administration

The configuration steps you must perform on remote MQSeries queue managers to
allow the MQSeries Explorer to administer them are outlined in “Required
definitions for administration” on page 33.

This section contains the following topics:
v “What you can do with the MQSeries Explorer” on page 33
v “Prerequisite software” on page 33
v “Required definitions for administration” on page 33

What you can do with the MQSeries Explorer
With the MQSeries Explorer, you can:
v Start and stop a queue manager (on your local machine only).
v Define, display, and alter the definitions of MQSeries objects such as queues and

channels.
v Browse the messages on a queue.
v Start and stop a channel.
v View status information about a channel.
v View queue managers in a cluster.
v Create a new queue manager cluster using the Create New Cluster wizard.
v Add a queue manager to a cluster using the Add Queue Manager to Cluster

wizard.
v Add an existing queue manager to a cluster using the Join Cluster wizard.

Prerequisite software
Before you can use the MQSeries Explorer, you must have the following installed
on your Windows NT computer:
v The Microsoft Management Console Version 1.1 or higher (installed as part of

MQSeries for Windows NT 5.1 installation)
v Internet Explorer Version 4.01 (SP1) (installed as part of MQSeries for Windows

NT 5.1 installation)

The MQSeries Explorer can connect to remote queue managers using the TCP/IP
communication protocol only.

The MQSeries Explorer handles the differences in the capabilities between the
different command levels and platforms. However, if it encounters a value which it
does not recognize as an attribute for an object, you won’t be able to change the
value of that attribute.

Required definitions for administration
Ensure that you have satisfied the following requirements before attempting to use
the MQSeries Explorer to manage MQSeries on an AS/400 machine. Check that:
1. A command server is running for any queue manager being administered,

starting on the AS/400 by the STRMQMCSVR CL command.
2. A suitable TCP/IP listener exists for every remote queue manager. This will be

the MQSeries listener started by the STRMQMLSR command.
3. The server connection channel, called SYSTEM.ADMIN.SVRCONN, exists on

every remote queue manager. This channel is created automatically when you
issue a CRTMQM command.
This channel is mandatory for every remote queue manager being
administered. Without it, remote administration is not possible.

Using PCFs

Chapter 3. Alternative methods for MQSeries administration 33

For further information on the MQSeries Explorer, see the MQSeries System
Administration manual supplied with your MQSeries for Windows NT product.

Managing the command server for remote administration
Each queue manager can have a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command.

A command server is mandatory for all administration involving PCFs, the MQAI,
and also for remote administration.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
queue manager from which they are issued. Instead, these messages are
queued in the local transmission queue that serves the remote queue
manager. This situation should be avoided, if at all possible.

There are separate control commands for starting and stopping the command
server. Users can perform the operations described in the following sections using
the MQSeries Services snap-in.

Starting the command server
To start the command server use this CL command:
STRMQMCSVR('saturn.queue.manager')

where saturn.queue.manager is the queue manager for which the command server
is being started.

Displaying the status of the command server
For remote administration, ensure that the command server on the target queue
manager is running. If it is not running, remote commands cannot be processed.
Any messages containing commands are queued in the target queue manager’s
command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the CL command is:
DSPMQMCSVR('saturn.queue.manager')

You must issue this command on the target machine. If the command server is
running, the panel shown in Figure 4 on page 35 appears:

Required definitions

34 MQSeries for AS/400, V5.1 System Administration

Stopping a command server
To end a command server, the command, using the previous example is:
ENDMQMCSVR('saturn.queue.manager')

You can stop the command server in two different ways:
v For a controlled stop, use the ENDMQMCSVR command with the *CNTRLD

option, which is the default.
v For an immediate stop, use the ENDMQMCSVR command with the *IMMED

option.

Note: Stopping a queue manager also ends the command server associated with it
(if one has been started).

Display MQM Command Server (DSPMQMCSVR)

Queue manager name > saturn queue manager

MQM Command Server Status. . . . > RUNNING

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 4. Display MQM Command Server panel

Command server remote administration

Chapter 3. Alternative methods for MQSeries administration 35

Command server remote administration

36 MQSeries for AS/400, V5.1 System Administration

Chapter 4. Work management

This chapter describes the way in which MQSeries handles work requests, and
details the options available for prioritizing and controlling the jobs associated
with MQSeries.

Warning to users
You are strongly recommended not to alter MQSeries work management
objects unless you fully understand the concepts of OS/400 and MQSeries
work management.

Internal MQSeries jobs use threads – do not change any parameters in the
objects described in this chapter.

Before reading this chapter you should familiarize yourself with the concepts of
work management on the AS/400. You are recommended to look at the OS/400
Work Management manual, paying particular attention to the sections on “Job
Starting and Routing” and “Batch Jobs”.

During normal operations, an MQSeries queue manager starts a number of batch
jobs to perform different tasks. By default these AS/400 batch jobs run in the
QMQM subsystem that is created when MQSeries is installed.

Work Management refers to the process of tailoring MQSeries tasks to obtain the
optimum performance from your system, or to make administration simpler.

For example, you can:
v Change the run-priority of jobs to make one queue manager more responsive

than another.
v Redirect the output of a number of jobs to a particular output queue.
v Make all jobs of a certain type run in a specific subsystem.

Work management is carried out by creating or changing the job descriptions
associated with the MQSeries jobs, and is configurable for:
v An entire MQSeries installation
v Individual Queue managers
v Individual jobs for individual Queue Managers

© Copyright IBM Corp. 1994, 2000 37

Description of MQSeries Tasks
When a queue manager is running, you see some or all of the following batch jobs
running under the QMQM user profile in the MQSeries subsystem. The jobs are
described briefly in Table 1, to help you decide how to prioritize them.

Table 1. MQSeries tasks.

Job name Function

AMQZXMA0 The execution controller is the first job started by the queue manager. It deals with
MQCONN requests, and starts agent processes to process MQSeries API calls

AMQZLAA0 Queue manager agents perform the bulk of the work for applications that connect to the
queue manager using MQCNO_STANDARD_BINDING

AMQALMPX The checkpoint processor periodically takes journal checkpoints

AMQRRMFA Repository manager for clusters

RUNMQCHL This Sender Channel job will be started for each sender channel

RUNMQCHI The Channel Initiator

AMQPCSEA PCF command processor handles PCF and remote administration requests

AMQCRS6B LU62 Receiver channel and client connection. (See note)

RUNMQLSR TCP/IP Channel listener

Note: The LU62 receiver job runs in the communications subsystem and takes its run-time properties from the
routing entry and communications entry that are used to start the job. See the MQSeries Intercommunication book for
more details.

MQSeries work management objects
When MQSeries is installed, various objects are supplied in the QMQM library to
assist with work management. These objects are the ones necessary for MQSeries
jobs to run in their own subsystem.

Sample job descriptions are provided for two of the MQSeries batch jobs. If no
specific job description is provided for an MQSeries job it runs with the default job
description QMQMJOBD.

The work management objects that are supplied when you install MQSeries are
listed in Table 2.

Table 2. Work management objects

Name Type Description

QMQM *SBSD The subsystem in which all MQSeries jobs run.

QMQM *JOBQ The job queue attached to the supplied subsystem

QMQMMSG *MSGQ The default message queue for MQSeries jobs.

QMQMRUN20 *CLS A class description for high priority MQSeries jobs

QMQMRUN35 *CLS A class description for medium priority MQSeries jobs

QMQMRUN50 *CLS A class description for low priority MQSeries jobs

AMQZLAA0 *JOBD The job description that is used by the MQSeries agent processes

AMQZXMA0 *JOBD The job description that is used by MQSeries execution controllers

QMQMJOBD *JOBD The default MQSeries job description - used if there is not a specific
job description for a job

Work management

38 MQSeries for AS/400, V5.1 System Administration

How MQSeries uses the work management objects
To understand how you can configure work management, you should first
understand how job descriptions are used by MQSeries.

The job description used to start the job controls many attributes of the job. For
example:
v The job queue on which the job will be queued and, therefore, on which

subsystem the job will run.
v The routing data used to start the job and, therefore, the class that the job uses

for its run-time parameters.
v The output queue that the job will use for print files.

The process of starting an MQSeries job can be considered in three steps:
1. MQSeries selects a job description.

MQSeries uses the following technique to determine which job description to
use for a batch job:
a. Look in the queue manager library for a job description with the same

name as the job. See “Understanding MQSeries queue manager library
names” on page 111 for further details about the queue manager library.

b. Look in the queue manager library for the default job description
QMQMJOBD.

c. Look in the QMQM library for a job description with the same name as the
job.

d. Use the default job description, QMQMJOBD, in the QMQM library.
2. The job is submitted to the job queue.

Job descriptions supplied with MQSeries have been set up, by default, to put
jobs on to job queue QMQM in library QMQM. The QMQM job queue is
attached to the supplied QMQM subsystem, so by default the jobs will start
running in the QMQM subsystem.

3. The job enters the subsystem and goes through the routing steps.
When the job enters the subsystem, the routing data specified on the job
description is used to find routing entries for the job.
The routing data must match one of the routing entries defined in the QMQM
subsystem, and this defines which of the supplied classes (QMQMRUN20,
QMQMRUN35, or QMQMRUN50) is used by the job.

Note: If MQSeries jobs do not appear to be starting, make sure that the subsystem
is running and the job queue is not held,

objects

Chapter 4. Work management 39

The MQSeries message queue
An MQSeries message queue, QMQMMSG, is created in each queue manager
library. Operating system messages are sent to this queue when queue manager
jobs end and MQSeries sends messages to the queue. For example, to report which
journal receivers are needed at startup. It is a good idea to keep the number of
messages in this message queue at a manageable size to make it easier to monitor.

Default system examples
The following examples show how an unmodified MQSeries installation works
when some of the standard jobs are submitted at queue manager startup time.

The first job that is started is the Execution Controller, AMQZXMA0.
1. You issue the STRMQM command for queue manager TESTQM.
2. MQSeries searches the queue manager library QMTESTQM, firstly for job

description AMQZXMA0, and then job description QMQMJOBD.
Neither of these job descriptions exist, so MQSeries looks for job description
AMQZXMA0 in the product library QMQM. This job description does exist, so
it is used to submit the job.

3. The job description uses the MQSeries default job queue so the job is submitted
to job queue QMQM/QMQM.

4. The routing data on the AMQZXMA0 job description is QMQMRUN20, so the
machine searches the subsystem routing entries for one that matches that data.
By default, the routing entry with sequence number 9900 has comparison data
that matches QMQMRUN20, so the job will be started with the class defined on
that routing entry, which is also called QMQMRUN20.

5. The QMQM/QMQMRUN20 class has run priority set to 20, so the
AMQZXMA0 job runs in subsystem QMQM with the same priority as most
interactive jobs on the system.

The next job that starts is the Checkpoint Process, AMQALMPX.
1. MQSeries searches the queue manager library QMTESTQM, firstly for job

description AMQALPMX, and then job description QMQMJOBD.
Neither of these job descriptions exist so MQSeries looks for job descriptions
AMQALMPX and QMQMJOBD in the product library QMQM.
Job description AMQALMPX does not exist but QMQMJOBD does, so
QMQMJOBD is used to submit the job.

Note: The QMQMJOBD job description will always be used for MQSeries jobs
that do not have their own job description.

2. The job description uses the MQSeries default job queue so the job is submitted
to job queue QMQM/QMQM.

3. The routing data on the QMQMJOBD job description is QMQMRUN35, so the
machine searches the subsystem routing entries for one that matches that data.
By default, the routing entry with sequence number 9910 has comparison data
that matches QMQMRUN35, so the job will be started with the class defined on
that routing entry, which is also called QMQMRUN35.

4. The QMQM/QMQMRUN35 class has run priority set to 35, so the
AMQALMPX job runs in subsystem QMQM with a lower priority than most
interactive jobs on the system, but higher priority than most batch jobs.

objects

40 MQSeries for AS/400, V5.1 System Administration

Configuring Work Management
The preceding examples show how MQSeries job descriptions determine the
run-time attributes of MQSeries jobs.

The following examples show how you can change and create MQSeries job
descriptions to change the run-time attributes of MQSeries jobs.

The key to the flexibility of MQSeries Work Management lies in the two—tier way
that MQSeries searches for job descriptions:
v If you create or change job descriptions in a queue manager library, those

changes will override the global job descriptions in QMQM but the changes will
be local and affect that particular queue manager alone.

v If you create or change global job descriptions in the QMQM library, those job
descriptions will affect all queue managers on the system, unless overridden
locally for individual queue managers.

Configuration examples
1. The following example increases the priority of channel control jobs for an

individual queue manager.
To make the repository manager and channel initiator jobs, AMQRRMFA and
RUNMQCHI respectively, run as quickly as possible for queue manager
TESTQM, carry out the following steps:
a. Create local duplicates of the QMQM/QMQMJOBD job description with the

names of the MQSeries processes that you want to control in the queue
manager library. For example,
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM)

NEWOBJ(RUNMQCHI)
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM)

NEWOBJ(AMQRRMFA)

b. Change the routing data parameter on the job description to ensure that the
jobs will use the QMQMRUN20 class.
CHGJOBD JOBD(QMTESTQM/RUNMQCHI) RTGDTA('QMQMRUN20')
CHGJOBD JOBD(QMTESTQM/AMQRRMFA) RTGDTA('QMQMRUN20')

The AMQRRMFA and RUNMQCHI jobs for queue manager TESTQM will now:
v Use the new local job descriptions in the queue manager library
v Run with priority 20, because the QMQMRUN20 class will be used when the

jobs enter the subsystem.
2. The following example runs a queue manager in its own subsystem

To make all the jobs for queue manager TESTQM run in the QBATCH
subsystem , carry out the following steps:
a. Create a local duplicate of the QMQM/QMQMJOBD job description in the

queue manager library with the command:
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM2)

b. Change the job queue parameter on the job description to ensure that the
jobs use the QBATCH job queue:
CHGJOBD JOBD(QMTESTQM2/QMQMJOBD) JOBQ(*LIBL/QBATCH)

All jobs for queue manager TESTQM2 will now:
v Use the new local default job description in the queue manager library
v Will be submitted to job queue QBATCH.

To ensure that jobs are routed and prioritized correctly you can either:

objects

Chapter 4. Work management 41

v Create routing entries for the MQSeries jobs in subsystem QBATCH, or
v Rely on a catch-all routing entry that calls QCMD, irrespective of what

routing data is used.
Note that this option works only if the maximum active jobs option for job
queue QBATCH is set to *NOMAX.

3. The following example collects all output for a job type.
To collect all the checkpoint process, AMQALMPX, job logs for multiple queue
managers onto a single output queue, carry out the following steps:
a. Create an output queue, for example:

CRTOUTQ OUTQ(MYLIB/CHCKPTLOGS)

b. Create a global duplicate of the QMQM/QMQMJOBD job description, using
the name of the MQSeries process that you want to control, for example:
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) NEWOBJ(AMQALMPX)

c. Change the output queue parameter on the job description to point to your
new output queue, and change the job logging level so that all messages
will be written to the job log.
CHGJOBD JOBD(QMQM/AMQALMPX) OUTQ(MYLIB/CHKPTLOGS) LOG(4 00 *SECLVL)

All MQSeries AMQALMPX jobs, for all queue managers, will use the new
global AMQALMPX job description, providing that there are no local
overriding job descriptions in the local queue manager library.

All job log spool files for these jobs will now be written to output queue
CHKPTLOGS in library MYLIB.

objects

42 MQSeries for AS/400, V5.1 System Administration

Chapter 5. Protecting MQSeries objects

Security for MQSeries for AS/400 changes significantly with Version 5 Release 1.
Security is implemented using the MQSeries Object Authority Manager (OAM).

Security considerations
You need to consider the following points when setting up authorities to the users
in your enterprise:
1. You should grant and revoke authorities to the MQSeries for AS/400

commands using the AS/400 GRTOBJAUT and RVKOBJAUT commands.
2. During installation of MQSeries for AS/400 the following special user profiles

are created:

QMQM
Is used primarily for internal product-only functions. However, it can
be used to write trusted applications using
MQCNO_FASTPATH_BINDINGS; see the MQSeries Application
Programming Guide for further information.

QMQMADM
Is intended to be used as a group profile for administrators of
MQSeries. The group profile gives access to CL commands and
MQSeries resources.

NOBODY
Is intended for internal product-only features.

3. If you are sending channel commands to remote queue managers, you must
ensure that your user profile is a member of the group QMQMADM on the
target system. For a list of PCF and MQSC channel commands, see “Channel
command security” on page 55.

4. It is not essential for your user profile to belong to group QMQMADM to issue:
v PCF commands, including Escape PCFs, from an administration program
v MQI calls from an application program.

5. The group set associated with a user is cached when the group authorizations
are computed by the OAM.
Any changes made to a user’s group memberships after the group set has
been cached are not recognized until the queue manager is restarted.

6. You should limit the number of users who have authority to work with
commands that are particularly sensitive. These commands include:
v Create Message Queue Manager (CRTMQM)
v Delete Message Queue Manager (DLTMQM)
v Start Message Queue Manager (STRMQM)
v End Message Queue Manager (ENDMQM)
v Start Command Server (STRMQMCSVR)
v End Command Server (ENDMQMCSVR)
v Trace MQSeries (TRCMQM)

7. Channel definitions contain a security exit program specification. Channel
creation and modification requires special considerations. Details of security,
concerning exits, are given in the MQSeries Intercommunication book.

© Copyright IBM Corp. 1994, 2000 43

8. You need to be aware that the channel exit and trigger monitor programs can
be substituted. The security of such replacements is the responsibility of the
programmer.

Understanding the Object Authority Manager
The OAM manages users’ authorizations to manipulate MQSeries objects,
including queues and process definitions. It also provides a command interface
through which you can grant or revoke access authority to an object for a specific
group of users. The decision to allow access to a resource is made by the OAM,
and the queue manager follows that decision. If the OAM cannot make a decision,
the queue manager prevents access to that resource.

Resources you can protect with the OAM
Through the OAM you can control:
v Access to MQSeries objects through the MQI. When an application program

attempts to access an object, the OAM checks that the user profile making the
request has the authorization for the operation requested.
In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

v Permission to use PCF and MQSC commands.

Different groups of users may be granted different kinds of access authority to the
same object. For example, for a specific queue, one group may be allowed to
perform both put and get operations; another group may be allowed only to
browse the queue (MQGET with browse option). Similarly, some groups may have
get and put authority to a queue, but are not allowed to alter or delete the queue.

MQSeries for AS/400 provides commands to grant, revoke, and display the
authority that an application, or user, has to do the following:
v Issue MQSeries for AS/400 commands
v Perform operations on MQSeries for AS/400 objects

MQSeries authorities
Access to MQSeries objects is controlled by authorities to:
1. Issue the MQSeries command
2. Access the MQSeries objects referenced by the command

Granting MQSeries authorities to MQSeries objects
You must either grant authority to MQSeries for AS/400 objects using the
GRTMQMAUT command, or revoke the authority to MQSeries for AS/400 objects
using the RVKMQMAUT command.

The Grant MQM Authority (GRTMQMAUT) command is used to grant specific
authority for the object named in the command to another user or group of users.

Revoke MQM Authority (RVKMQMAUT) is used to reset, or take away
previously granted authority. The names of the objects, their types, and the users
and groups may all be given generically.

By authorizing *PUBLIC to an object, or set of objects, all users of the system gain
that authority.

Security considerations

44 MQSeries for AS/400, V5.1 System Administration

The authorizations apply to objects belonging to a particular queue manager. If
you do not specify the name of a queue manager it is assumed that the default
queue manager, if it exists, should be used.

Access authorizations
Authorizations defined by the AUT keyword on the GRTMQMAUT and
RVKMQMAUT commands can be categorized as follows:
v Authorizations related to MQI calls
v Authorization-related administration commands
v Context authorizations
v General authorizations, that is, for MQI calls, for commands, or both

The following tables list the different authorities, using the AUT parameter for
MQI calls, Context calls, MQSC and PCF commands, and generic operations.

Table 3. Authorizations for MQI calls

AUT Description

*ALTUSR Allows another user’s authority to be used for MQOPEN and
MQPUT1 calls.

*BROWSE Retrieve a message from a queue by issuing an MQGET call with the
BROWSE option.

*CONNECT Connect the application to the specified queue manager by issuing
an MQCONN call.

*GET Retrieve a message from a queue by issuing an MQGET call.

*INQ Make an inquiry on a specific queue by issuing an MQINQ call.

*PUT Put a message on a specific queue by issuing an MQPUT call.

*SET Set attributes on a queue from the MQI by issuing an MQSET call. If
you open a queue for multiple options, you have to be authorized
for each of them.

Table 4. Authorizations for context calls

AUT Description

*PASSALL Pass all context on the specified queue. All the context fields are
copied from the original request.

*PASSID Pass identity context on the specified queue. The identity context is
the same as that of the request.

*SETALL Set all context on the specified queue. This is used by special system
utilities.

*SETID Set identity context on the specified queue. This is used by special
system utilities.

Table 5. Authorizations for MQSC and PCF calls

AUT Description

*ADMCHG Change the attributes of the specified object.

*ADMCLR Clear the specified queue (PCF Clear queue command only).

*ADMCRT Create objects of the specified type.

*ADMDLT Delete the specified object.

*ADMDSP Display the attributes of the specified object.

MQSeries authorities

Chapter 5. Protecting MQSeries objects 45

Table 6. Authorizations for generic operations

AUT Description

*ALL Use all operations applicable to the object.

*ALLADM Perform all administration operations applicable to the object.

*ALLMQI Use all MQI calls applicable to the object.

Using the GRTMQMAUT command
Provided that you have the required authorization, you can use the
GRTMQMAUT command to grant authorization of a user profile or user group to
access a particular object. The following examples illustrate how the
GRTMQMAUT command is used:
1.

GRTMQMAUT OBJ(RED.LOCAL.QUEUE) OBJTYPE(*LCLQ) USER(GROUPA) +
AUT(*BROWSE *PUT) MQMNAME('saturn.queue.manager')

In this example:
v RED.LOCAL.QUEUE is the object name.
v *LCLQ (local queue) is the object type.
v GROUPA is the name of a user profile on the system whose authorizations are

to change. This could be, but does not have to be, used as a group profile for
other users.

v *BROWSE and *PUT are the authorizations being granted to the specified queue.
*BROWSE adds authorization to browse messages on the queue (to issue
MQGET with the browse option).
*PUT adds authorization to put (MQPUT) messages on the queue.

v saturn.queue.manager is the queue manager name.
2. The following command grants to users JACK and JILL all applicable

authorizations, to all process definitions, for the default queue manager.
GRTMQMAUT OBJ(*ALL) OBJTYPE(*PRC) USER(JACK JILL) AUT(*ALL)

3. The following command grants user GEORGE authority to put a message on the
queue ORDERS, on the queue manager TRENT.

GRTMQMAUT OBJ(TRENT) OBJTYPE(*MQM) USER(GEORGE) AUT(*CONNECT) MQMNAME (TRENT)
GRTMQMAUT OBJ(ORDERS) OBJTYPE(*Q) USER(GEORGE) AUT(*PUT) MQMNAME (TRENT)

Using the RVKMQMAUT command
Provided that you have the required authorization, you can use the
RVKMQMAUT command to remove previously granted authorization of a user
profile or user group to access a particular object. The following examples illustrate
how the RVKMQMAUT command is used:
1.

RVKMQMAUT OBJ(RED.LOCAL.QUEUE) OBJTYPE(*LCLQ) USER(GROUPA) +
AUT(*PUT) MQMNAME('saturn.queue.manager')

2. The authority to put messages to the specified queue, that was granted in the
previous example, is removed for GROUPA.

RVKMQMAUT OBJ(PAY*) OBJTYPE(*Q) USER(*PUBLIC) AUT(*GET) +
MQMNAME(PAYROLLQM)

Authority to get messages from any queue, whose name starts with the characters
PAY, owned by queue manager PAYROLLQM is removed from all users of the system
unless they, or a group to which they belong, have been separately authorized.

MQSeries authorities

46 MQSeries for AS/400, V5.1 System Administration

Using the DSPMQMAUT command
The Display MQM Authority (DSPMQMAUT) command shows, for the specified
object and user, the list of authorizations that user has for the object. The following
example illustrates how the command is used:

DSPMQMAUT OBJ(ADMINNL) OBJTYPE(*NMLIST) USER(JOE) OUTPUT(*PRINT) +
MQMNAME(ADMINQM)

Understanding the authorization specification tables
The authorization specification tables starting on page 48 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:
v Applications that issue MQI calls
v Administration programs that issue MQSC commands as escape PCFs
v Administration programs that issue PCF commands

In this §, the information is presented as a set of tables that specify the following:

Action to be performed
MQI option, MQSC command, or PCF command.

Access control object
Queue, process, or queue manager.

Authorization required
Expressed as an ‘MQZAO_’ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in
the authorization list for the GRTMQMAUT and RVKMQMAUT commands for
the particular entity. For example, MQZAO_BROWSE corresponds to the keyword
*BROWSE; similarly, the keyword MQZAO_SET_ALL_CONTEXT corresponds to the
keyword *SETALL and so on. These constants are defined in the header file
cmqzc.h, which is supplied with the product.

MQI authorizations
An application is allowed to issue specific MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls may require authorization checks: MQCONN, MQOPEN,
MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the
object being opened, and not on the name, or names, resulting after a name has
been resolved. For example, an application may be granted authority to open an
alias queue without having authority to open the base queue to which the alias
resolves. The rule is that the check is carried out on the first definition encountered
during the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority—which is obtained through an authorization for the queue-manager
object—is required.

Table 7 on page 48 summarizes the authorizations needed for each call.

MQSeries authorities

Chapter 5. Protecting MQSeries objects 47

Table 7. Security authorization needed for MQI calls

Authorization required
for:

Queue object (1) Process object Queue manager object Namelists

MQCONN option Not applicable Not applicable MQZAO_CONNECT Not applicable

MQOPEN Option

MQOO_INQUIRE MQZAO_INQUIRE (2) MQZAO_INQUIRE (2) MQZAO_INQUIRE (2) MQZAO_INQUIRE (2)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check Not applicable

MQOO_INPUT_* MQZAO_INPUT Not applicable No check Not applicable

MQOO_SAVE_
ALL_CONTEXT (3)

MQZAO_INPUT Not applicable Not applicable Not applicable

MQOO_OUTPUT
(Normal queue) (4)

MQZAO_OUTPUT Not applicable Not applicable Not applicable

MQOO_PASS_
IDENTITY_CONTEXT
(5)

MQZAO_PASS_
IDENTITY_CONTEXT

Not applicable No check Not applicable

MQOO_PASS_ALL_
CONTEXT (5, 6)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check Not applicable

MQOO_SET_
IDENTITY_CONTEXT
(5, 6)

MQZAO_SET_
IDENTITY_CONTEXT

Not applicable MQZAO_SET_
IDENTITY_CONTEXT
(7)

Not applicable

MQOO_SET_
ALL_CONTEXT (5, 8)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

MQOO_OUTPUT
(Transmission queue) (9)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

MQOO_SET MQZAO_SET Not applicable No check Not applicable

MQOO_ALTERNATE_
USER_AUTHORITY

(10) (10) MQZAO_ALTERNATE_
USER_AUTHORITY (10,
11)

(10)

MQPUT1 Option

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_CONTEXT
(12)

Not applicable No check Not applicable

MQPMO_PASS_ALL
_CONTEXT

MQZAO_PASS_
ALL_CONTEXT (12)

Not applicable No check Not applicable

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_CONTEXT
(12)

Not applicable MQZAO_SET_
IDENTITY_CONTEXT
(7)

Not applicable

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT (12)

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

(Transmission queue) (9) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

Not applicable

MQPMO_ALTERNATE_
USER_AUTHORITY

(13) Not applicable MQZAO_ALTERNATE_
USER_AUTHORITY (11)

Not applicable

MQCLOSE Option

MQCO_DELETE MQZAO_DELETE (14) Not applicable Not applicable Not applicable

MQCO_DELETE
_PURGE

MQZAO_DELETE (14) Not applicable Not applicable Not applicable

Authorization specification tables

48 MQSeries for AS/400, V5.1 System Administration

Notes for Table 7:

1. If a model queue is being opened:
v MQZAO_DISPLAY authority is needed for the model queue, in addition to

the authority to open the model queue for the type of access for which you
are opening.

v MQZAO_CREATE authority is not needed to create the dynamic queue.
v The user identifier used to open the model queue is automatically granted

all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

2. Either the queue, process, namelist, or queue manager object is checked,
depending on the type of object being opened.

3. MQOO_INPUT_* must also be specified. This is valid for a local, model, or
alias queue.

4. This check is performed for all output cases, except the case specified in note
9.

5. MQOO_OUTPUT must also be specified.
6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.
7. This authority is required for both the queue manager object and the

particular queue.
8. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.
9. This check is performed for a local or model queue that has a Usage queue

attribute of MQUS_TRANSMISSION, and is being opened directly for output.
It does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate-user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.
12. An MQZAO_OUTPUT check is also carried out, if the queue does not have a

Usage queue attribute of MQUS_TRANSMISSION.
13. The check carried out is as for the other options specified, using the supplied

alternate-user identifier for the specific-named queue authority, and the
current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following are true:
v A permanent dynamic queue is being closed and deleted.
v The queue was not created by the MQOPEN which returned the object

handle being used.

Otherwise, there is no check.

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that
are relevant to the object type:
v MQZAO_CONNECT
v MQZAO_INQUIRE

Authorization specification tables

Chapter 5. Protecting MQSeries objects 49

v MQZAO_SET
v MQZAO_BROWSE
v MQZAO_INPUT
v MQZAO_OUTPUT
v MQZAO_PASS_IDENTITY_CONTEXT
v MQZAO_PASS_ALL_CONTEXT
v MQZAO_SET_IDENTITY_CONTEXT
v MQZAO_SET_ALL_CONTEXT
v MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14) and MQZAO_DISPLAY are classed as
administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.
4. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot issue an MQPUT call to a process object.

Administration authorizations
These authorizations allow a user to issue administration commands. This can be
an MQSC command as an escape PCF message or as a PCF command itself. These
methods allow a program to send an administration command as a message to a
queue manager, for execution on behalf of that user.

Authorizations for MQSC commands in escape PCFs
Table 8 summarizes the authorizations needed for each MQSC command that is
contained in Escape PCF.

Table 8. MQSC commands and security authorization needed

(2) Authorization
required for:

Queue object Process object Queue manager object Namelists

MQSC command

ALTER object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

CLEAR QLOCAL MQZAO_CLEAR Not applicable Not applicable Not applicable

DEFINE object
NOREPLACE (3)

MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable MQZAO_CREATE (4)

DEFINE object
REPLACE (3, 5)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

DELETE object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE

DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Notes for Table 8:

1. The user identifier, under which the program that submits the command is
running, must also have MQZAO_CONNECT authority to the queue manager.

2. Either the queue, process, namelist, or queue manager object is checked,
depending on the type of object.

3. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the GRTMQMAUT command.

5. This applies if the object to be replaced does in fact already exist. If it does not,
the check is as for DEFINE object NOREPLACE.

Authorization specification tables

50 MQSeries for AS/400, V5.1 System Administration

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

Authorizations for PCF commands
Table 9 summarizes the authorizations needed for each PCF command.

Table 9. PCF commands and security authorization needed

(2) Authorization
required for:

Queue object Process object Queue manager object Namelists

PCF command

Change object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

Clear Queue MQZAO_CLEAR Not applicable Not applicable Not applicable

Copy object (without
replace) (3)

MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable MQZAO_CREATE (4)

Copy object (with
replace) (3, 6)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

Create object (without
replace) (5)

MQZAO_CREATE (4) MQZAO_CREATE (4) Not applicable MQZAO_CREATE (4)

Create object (with
replace) (5, 6)

MQZAO_CHANGE MQZAO_CHANGE Not applicable MQZAO_CHANGE

Delete object MQZAO_DELETE MQZAO_DELETE Not applicable MQZAO_DELETE

Inquire object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Inquire object names No check No check No check No check

Reset queue statistics MQZAO_DISPLAY and
MQZAO_CHANGE

Not applicable Not applicable Not applicable

Notes for Table 9:

1. The user identifier under which the program submitting the command is
running must also have authority to connect to its local queue manager, and to
open the command administration queue for output.

2. Either the queue, process, namelist, or queue-manager object is checked,
depending on the type of object.

3. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

4. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the GRTMQMAUT command.

5. For Create commands, MQZAO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

6. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

Authorization specification tables

Chapter 5. Protecting MQSeries objects 51

2. The special authorization MQZAO_ALL_ADMIN includes all of the following
that are relevant to the object type:
v MQZAO_CHANGE
v MQZAO_CLEAR
v MQZAO_DELETE
v MQZAO_DISPLAY

MQZAO_CREATE is not included because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.
4. ‘Not applicable’ means that authorization checking is not relevant to this

operation. For example, you cannot use a Clear Queue command on a process
object.

Authorizations for different types of object
Table 10 shows the authorities that can be given to the different object types.

Table 10. Specifying authorizations for different object types

Authority Queue Process Qmgr Namelist

all Yes Yes Yes Yes

alladm Yes Yes Yes Yes

allmqi Yes Yes Yes Yes

altusr No No Yes No

browse Yes No No No

chg Yes Yes Yes Yes

clr Yes No No No

connect No No Yes No

crt Yes Yes Yes Yes

dlt Yes Yes Yes Yes

dsp Yes Yes Yes Yes

put Yes No No No

inq Yes Yes Yes Yes

get Yes No No No

passall Yes No No No

passid Yes No No No

set Yes Yes Yes No

setall Yes No Yes No

setid Yes No Yes No

Authorizations for MQI calls
altusr Allows another user’s authority to be used for MQOPEN and

MQPUT1 calls.
browse Retrieve a message from a queue by issuing an MQGET call with

the BROWSE option.
connect Connect the application to the specified queue manager by issuing

an MQCONN call.
get Retrieve a message from a queue by issuing an MQGET call.
inq Make an inquiry on a specific queue by issuing an MQINQ call.

Authorization specification tables

52 MQSeries for AS/400, V5.1 System Administration

put Put a message on a specific queue by issuing an MQPUT call.
set Set attributes on a queue from the MQI by issuing an MQSET call.

Note: If you open a queue for multiple options, you have to be authorized for
each of them.

Authorizations for context
passall Pass all context on the specified queue. All the context fields are

copied from the original request.
passid Pass identity context on the specified queue. The identity context is

the same as that of the request.
setall Set all context on the specified queue. This is used by special

system utilities.
setid Set identity context on the specified queue. This is used by special

system utilities.

Authorizations for commands
chg Change the attributes of the specified object.
clr Clear the specified queue (PCF Clear queue command only).
crt Create objects of the specified type.
dlt Delete the specified object.
dsp Display the attributes of the specified object.

Authorizations for generic operations
all Use all operations applicable to the object.
alladm Perform all administration operations applicable to the object.
allmqi Use all MQI calls applicable to the object.

Object Authority Manager guidelines
Some operations are particularly sensitive and should be limited to privileged
users. For example,
v Accessing some special queues, such as transmission queues or the command

queue SYSTEM.ADMIN.COMMAND.QUEUE
v Running programs that use full MQI context options
v Creating and copying application queues

Queue manager directories
The directories and libraries containing queues and other queue manager data are
private to the product. Do not use standard operating system commands to grant
or revoke authorizations to MQI resources.

Queues
The authority to a dynamic queue is based on, but is not necessarily the same as,
that of the model queue from which it is derived.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user profile to access an alias queue that resolves to a local queue to
which the user profile has no access permissions.

You should limit the authority to create queues to privileged users. If you do not,
users may bypass the normal access control simply by creating an alias.

Authorization specification tables

Chapter 5. Protecting MQSeries objects 53

Alternate-user authority
Alternate-user authority controls whether one user profile can use the authority of
another user profile when accessing an MQSeries object. This is essential where a
server receives requests from a program and the server wishes to ensure that the
program has the required authority for the request. The server may have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

For example:
v A server program running under user profile PAYSERV retrieves a request

message from a queue that was put on the queue by user profile USER1.
v When the server program gets the request message, it processes the request and

puts the reply back into the reply-to queue specified with the request message.
v Instead of using its own user profile (PAYSERV) to authorize opening the

reply-to queue, the server can specify some other user profile – in this case,
USER1. In this example, you can use alternate-user authority to control whether
PAYSERV is allowed to specify USER1 as an alternate-user profile when it opens
the reply-to queue.

The alternate-user profile is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate-user profiles on any MQSeries object. Use of an
alternate-user profile does not affect the user profile used by any other
resource managers.

Context authority
Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message.

For descriptions of the message descriptor fields relating to context, see the
MQSeries Application Programming Reference manual.

For information about the context options, see the MQSeries Application
Programming Guide.

Remote security considerations
For remote security, you should consider:

Put authority
For security across queue managers you can specify the put authority that
is used when a channel receives a message sent from another queue
manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user profile. This is the QMQM user profile under which
the message channel agent is running.

CTX The user profile in the message context.

Transmission queues
Queue managers automatically put remote messages on a transmission
queue; no special authority is required for this. However, putting a
message directly on a transmission queue requires special authorization.

OAM guidelines

54 MQSeries for AS/400, V5.1 System Administration

Channel exits
Channel exits can be used for added security.

For more information about remote security, see the MQSeries Intercommunication
book.

Channel command security
Channel commands can be issued as PCF commands, through the MQAI, MQSC
commands, and control commands.

PCF commands
You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote MQSeries system. The user
profile, as specified in the message descriptor of the PCF message, must have the
appropriate authorizations in the relevant group on the target system.

On MQSeries for AS/400 V5.1 the actual group is QMQMADM, and on UNIX systems
the name of the group is mqm.

These commands are:
v ChangeChannel
v CopyChannel
v CreateChannel
v DeleteChannel
v PingChannel
v ResetChannel
v StartChannel
v StartChannelInitiator
v StartChannelListener
v StopChannel
v ResolveChannel

See the MQSeries Programmable System Management manual for the PCF security
requirements.

MQSC channel commands
You can issue MQSC channel commands to a remote MQSeries system either by
sending the command directly in a PCF escape message or by issuing the
command using STRMQMMQSC. The user profile as specified in the message
descriptor of the associated PCF message must belong to the relevant group on the
target system. (PCF commands are implicit in MQSC commands issued from
STRMQMMQSC) These commands are:
v ALTER CHANNEL
v DEFINE CHANNEL
v DELETE CHANNEL
v PING CHANNEL
v RESET CHANNEL
v START CHANNEL
v START CHINIT
v START LISTENER
v STOP CHANNEL
v RESOLVE CHANNEL

For MQSC commands issued from the STRMQMMQSC command, the user
profile in the PCF message is normally that of the current user.

OAM guidelines

Chapter 5. Protecting MQSeries objects 55

About this book

56 MQSeries for AS/400, V5.1 System Administration

Chapter 6. The MQSeries dead-letter queue handler

A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a
holding queue for messages that cannot be delivered to their destination queues.
Every queue manager in a network should have an associated DLQ. 1

Queue managers, message channel agents, and applications can put messages on
the DLQ. All messages on the DLQ should be prefixed with a dead-letter header
structure, MQDLH. Messages put on the DLQ by a queue manager or by a
message channel agent always have an MQDLH. You are strongly recommended to
supply an MQDLH to applications putting messages on the DLQ. The Reason field
of the MQDLH structure contains a reason code that identifies why the message is
on the DLQ.

In all MQSeries environments, there should be a routine that runs regularly to
process messages on the DLQ. MQSeries supplies a default routine, called the
dead-letter queue handler (the DLQ handler), which you invoke using the
STRMQMDLQ command. A user-written rules table supplies instructions to the
DLQ handler, for processing messages on the DLQ. That is, the DLQ handler
matches messages on the DLQ against entries in the rules table. When a DLQ
message matches an entry in the rules table, the DLQ handler performs the action
associated with that entry.

Invoking the DLQ handler
Use the STRMQMDLQ command to invoke the DLQ handler. You can name the
DLQ you want to process and the queue manager you want to use in two ways:
v As parameters to STRMQMDLQ from the command prompt. For example:

v In the rules table. For example:

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the default queue manager.

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The STRMQMDLQ command takes its input from the rules table.

You must be authorized to access both the DLQ itself, and any message queues to
which messages on the DLQ are forwarded, in order to run the DLQ handler.
Furthermore, you must be authorized to assume the identity of other users, if the
DLQ handler is to be able to put messages on queues with the authority of the
user ID in the message context.

1. It is often preferable to avoid placing messages on a DLQ. For information about the use and avoidance of DLQs, see the
MQSeries Application Programming Guide.

STRMQMDLQ UDLMSGQ(ABC1.DEAD.LETTER.QUEUE) SRCMBR(QRULE) SRCFILE(library/QTXTCSRC)
MQMNAME(MY.QUEUE.MANAGER)

INPUTQ(ABC1.DEAD.LETTER.QUEUE)

© Copyright IBM Corp. 1994, 2000 57

The DLQ handler rules table
The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:
v The first entry in the table, which is optional, contains control data.
v All other entries in the table are rules for the DLQ handler to follow. Each rule

consists of a pattern (a set of message characteristics) that a message is matched
against, and an action to be taken when a message on the DLQ matches the
specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

Control data
This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Please note the following:
v The default value for a keyword, if any, is underlined.
v The vertical line (|) separates alternatives. You can specify only one of these.
v All keywords are optional.

INPUTQ (QueueName|' ')
This parameter allows you to name the DLQ you want to process:
1. If you specify an UDLMSGQ value (or *DFT) as a parameter to the

STRMQMDLQ command, this overrides any INPUTQ value in the rules
table.

2. If you specify a blank UDLMSGQ value as a parameter to the
STRMQMDLQ command, the INPUTQ value in the rules table is used.

3. If you specify a blank UDLMSGQ value as a parameter to the
STRMQMDLQ command, and a blank INPUTQ value in the rules table, the
system default dead-letter queue is used.

INPUTQM (QueueManagerName|' ')
This parameter allows you to name the queue manager that owns the DLQ
named on the INPUTQ keyword.

If you do not specify a queue manager, or you specify INPUTQM(' ') in the
rules table, the system uses the default queue manager for the installation.

RETRYINT (Interval|60)
This parameter is the interval, in seconds, at which the DLQ handler should
attempt to reprocess messages on the DLQ that could not be processed at the
first attempt, and for which repeated attempts have been requested. By default,
the retry interval is 60 seconds.

WAIT (YES|NO|nnn)
This parameter indicates whether the DLQ handler should wait for further
messages to arrive on the DLQ when it detects that there are no further
messages that it can process.

YES Causes the DLQ handler to wait indefinitely.

NO Causes the DLQ handler to terminate when it detects that the DLQ is
either empty or contains no messages that it can process.

nnn This parameter causes the DLQ handler to wait for nnn seconds for
new work to arrive before terminating, after it detects that the queue is
either empty or contains no messages that it can process.

DLQ handler

58 MQSeries for AS/400, V5.1 System Administration

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT (NO)
or WAIT (nnn) for DLQs that have a low level of activity. If the DLQ handler is
allowed to terminate, you are recommended to reinvoke it by means of
triggering.

You can supply the name of the DLQ as an input parameter of the STRMQMDLQ
command, as an alternative to including control data in the rules table. If any
value is specified both in the rules table and on input to the STRMQMDLQ
command, the value specified on the STRMQMDLQ command takes precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Figure 5 shows an example rule from a DLQ handler rules table.

This section describes the keywords that you can include in a rule. Please note the
following:
v The default value for a keyword, if any, is underlined. For most keywords, the

default value is * (asterisk), which matches any value.
v The vertical line (|) separates alternatives. You can specify only one of these.
v All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched). It then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords
The pattern-matching keywords, are described below. You use these to specify
values against which messages on the DLQ are matched. All pattern-matching
keywords are optional.

APPLIDAT (ApplIdentityData|*)
This parameter is the ApplIdentityData value of the message on the DLQ,
specified in the message descriptor, MQMD.

APPLNAME (PutApplName|*)
This parameter is the name of the application that issued the MQPUT or
MQPUT1 call, as specified in the PutApplName field of the message descriptor,
MQMD, of the message on the DLQ.

APPLTYPE (PutApplType|*)
This parameter is the PutApplType value specified in the message descriptor,
MQMD, of the message on the DLQ.

DESTQ (QueueName|*)
This parameter is the name of the message queue for which the message is
destined.

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

Figure 5. An example rule from a DLQ handler rules table. This rule instructs the DLQ
handler to make 3 attempts to deliver to its destination queue any persistent message that
was put on the DLQ because MQPUT and MQPUT1 were inhibited.

DLQ handler

Chapter 6. The MQSeries dead-letter queue handler 59

DESTQM (QueueManagerName|*)
This parameter is the queue manager name, for the message queue, for which
the message is destined.

FEEDBACK (Feedback|*)
When the MsgType value is MQMT_REPORT, Feedback describes the nature of
the report.

You can use symbolic names. For example, you can use the symbolic name
MQFB_COA to identify those messages on the DLQ that require confirmation
of their arrival on their destination queues.

FORMAT (Format|*)
This parameter is the name that the sender of the message uses to describe the
format of the message data.

MSGTYPE (MsgType|*)
This parameter is the message type of the message on the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQMT_REQUEST to identify those messages on the DLQ that require replies.

PERSIST (Persistence|*)
This parameter is the persistence value of the message. (The persistence of a
message determines whether it survives restarts of the queue manager.)

You can use symbolic names. For example, you can use the symbolic name
MQPER_PERSISTENT to identify those messages on the DLQ that are
persistent.

REASON (ReasonCode|*)
This parameter is the reason code that describes why the message was put to
the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQRC_Q_FULL to identify those messages placed on the DLQ because their
destination queues were full.

REPLYQ (QueueName|*)
This parameter is the reply-to queue name specified in the message descriptor,
MQMD, of the message on the DLQ.

REPLYQM (QueueManagerName|*)
This parameter is the queue manager name, of the reply-to queue, specified in
the REPLYQ keyword.

USERID (UserIdentifier|*)
This parameter is the user ID of the user who originated the message on the
DLQ, as specified in the message descriptor, MQMD.

The action keywords
The action keywords, are described below. You use these to describe how a
matching message is processed.

ACTION (DISCARD|IGNORE|RETRY|FWD)
This describes the action taken for any message on the DLQ that matches the
pattern defined in this rule.

DISCARD
Causes the message to be deleted from the DLQ.

DLQ handler

60 MQSeries for AS/400, V5.1 System Administration

IGNORE
Causes the message to be left on the DLQ.

RETRY
Causes the DLQ handler to try again to put the message on its
destination queue.

FWD Causes the DLQ handler to forward the message to the queue named
on the FWDQ keyword.

You must specify the ACTION keyword. The number of attempts made to
implement an action is governed by the RETRY keyword. The RETRYINT
keyword of the control data controls the interval between attempts.

FWDQ (QueueName|&DESTQ|&REPLYQ)
This parameter defines the name of the message queue to which the message
is forwarded when you select the ACTION keyword.

QueueName
This parameter is the name of a message queue. FWDQ(' ') is not
valid.

&DESTQ
Takes the queue name from the DestQName field in the MQDLH
structure.

&REPLYQ
Takes the name from the ReplyToQ field in the message descriptor,
MQMD.

You can specify REPLYQ (?*) in the message pattern to avoid error
messages, when a rule specifying FWDQ (&REPLYQ), matches a
message with a blank ReplyToQ field.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM|' ')
Identifies the queue manager of the queue to which a message is forwarded.

QueueManagerName
This parameter defines the queue manager name, for the queue, to
which the message is forwarded when you select the ACTION (FWD)
keyword.

&DESTQM
Takes the queue manager name from the DestQMgrName field in the
MQDLH structure.

&REPLYQM
Takes the name from the ReplyToQMgr field in the message descriptor,
MQMD.

' ' FWDQM(' '), which is the default value, identifies the local queue
manager.

HEADER (YES|NO)
Specifies whether the MQDLH should remain on a message for which
ACTION (FWD) is requested. By default, the MQDLH remains on the message.
The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
Defines the authority with which messages should be put by the DLQ handler:

DEF Puts messages with the authority of the DLQ handler itself.

CTX Causes the messages to be put with the authority of the user ID in the

DLQ handler

Chapter 6. The MQSeries dead-letter queue handler 61

message context. You must be authorized to assume the identity of
other users, if you specify PUTAUT (CTX).

RETRY (RetryCount|1)
This parameter is the number of times, in the range 1–999 999 999, that an
action should be attempted (at the interval specified on the RETRYINT
keyword of the control data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If you restart the DLQ handler, the
count of attempts made to apply a rule is reset to zero.

Rules table conventions
The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:
v A rules table must contain at least one rule.
v Keywords can occur in any order.
v A keyword can be included once only in any rule.
v Keywords are not case sensitive.
v A keyword and its parameter value must be separated from other keywords by

at least one blank or comma.
v Any number of blanks can occur at the beginning or end of a rule, and between

keywords, punctuation, and values.
v Each rule must begin on a new line.
v For reasons of portability, the significant length of a line should not be greater

than 72 characters.
v Use the plus sign (+) as the last nonblank character on a line to indicate that the

rule continues from the first nonblank character in the next line. Use the minus
sign (−) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.
For example:
APPLNAME(’ABC+

D’)

results in ’ABCD’.
APPLNAME(’ABC-

D’)

results in ’ABC D’.
v Comment lines, which begin with an asterisk (*), can occur anywhere in the

rules table.
v Blank lines are ignored.
v Each entry in the DLQ handler rules table comprises one or more keywords and

their associated parameters. The parameters must follow these syntax rules:
– Each parameter value must include at least one significant character. The

delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:
FORMAT('ABC') 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT('A') 1 significant character

DLQ handler

62 MQSeries for AS/400, V5.1 System Administration

FORMAT(A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant characters:
FORMAT('')
FORMAT()
FORMAT()
FORMAT

– Wildcard characters are supported. You can use the question mark (?) in place
of any single character, except a trailing blank. You can use the asterisk (*) in
place of zero or more adjacent characters. The asterisk (*) and the question
mark (?) are always interpreted as wildcard characters in parameter values.

– You cannot include wildcard characters in the parameters of these keywords:
ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard matches.
However, leading and embedded blanks within strings in quotation marks are
significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard character.
You can include the asterisk (*) in place of an entire numeric parameter, but
the asterisk cannot be included as part of a numeric parameter. For example,
these are valid numeric parameters:
MSGTYPE(2) Only reply messages are eligible
MSGTYPE(*) Any message type is eligible
MSGTYPE('*') Any message type is eligible

However, MSGTYPE(’2*’) is not valid, because it includes an asterisk (*) as part
of a numeric parameter.

– Numeric parameters must be in the range 0–999 999 999. If the parameter
value is in this range, it is accepted, even if it is not currently valid in the
field to which the keyword relates. You can use symbolic names for numeric
parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character
field:
'ABCDEFGH' 8 characters
'A*C*E*G*I' 5 characters excluding asterisks
'*A*C*E*G*I*K*M*O*' 8 characters excluding asterisks

– Strings that contain blanks, lowercase characters, or special characters other
than period (.), forward slash (/), underscore (_), and percent sign (%) must
be enclosed in single quotation marks. Lowercase characters not enclosed in
quotation marks are folded to uppercase. If the string includes a quotation,
two single quotation marks must be used to denote both the beginning and
the end of the quotation. When the length of the string is calculated, each
occurrence of double quotation marks is counted as a single character.

Processing the rules table
The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the rules table attempts the action from that rule. The DLQ handler

DLQ handler

Chapter 6. The MQSeries dead-letter queue handler 63

increments the retry count for a rule by 1 whenever it attempts to apply that rule.
If the first attempt fails, the attempt is repeated until the count of attempts made
matches the number specified on the RETRY keyword. If all attempts fail, the DLQ
handler searches for the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful.
When each matching rule has been attempted the number of times specified on its
RETRY keyword, and all attempts have failed, ACTION (IGNORE) is assumed.
ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can default, so that a rule may consist of an action only.
Note, however, that action-only rules are applied to all messages on the queue
that have MQDLHs and that have not already been processed in accordance
with other rules in the table.

3. The rules table is validated when the DLQ handler starts, and errors flagged at
that time. (Error messages issued by the DLQ handler are described in the
MQSeries Messages book.) You can make changes to the rules table at any time,
but those changes do not come into effect until the DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table may not be recognized because the
validation of the rules table is designed to eliminate the generation of repetitive
errors.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.
7. Multiple instances of the DLQ handler could run concurrently against the same

queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed
The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still keeps a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in first-out (FIFO). Therefore, if the queue is not empty, the DLQ is
periodically rescanned to check all messages. For these reasons, you should try to
ensure that the DLQ contains as few messages as possible. If messages that cannot
be discarded or forwarded to other queues (for whatever reason) are allowed to
accumulate on the queue, the workload of the DLQ handler increases and the DLQ
itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:

DLQ handler

64 MQSeries for AS/400, V5.1 System Administration

Similarly, the final rule in the table should be a catchall to process messages that
have not been addressed by earlier rules in the table. For example, the final rule in
the table could be something like this:

This causes messages that fall through to the final rule in the table to be forwarded
to the queue REALLY.DEAD.QUEUE, where they can be processed manually. If you do
not have such a rule, messages are likely to remain on the DLQ indefinitely.

An example DLQ handler rules table
Here is an example rules table that contains a single control-data entry and several
rules:

* An example rules table for the STRMQMDLQ command *

* Control data entry
* ------------------
* If no queue manager name is supplied as an explicit parameter to
* STRMQMDLQ, use the default queue manager for the machine.
* If no queue name is supplied as an explicit parameter to STRMQMDLQ,
* use the DLQ defined for the local queue manager.
*
inputqm(’ ’) inputq(’ ’)

* Rules
* -----
* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.

* If a message is placed on the DLQ because its destination
* queue is full, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited
* condition, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

* The AAAA corporation are always sending messages with incorrect
* addresses. When we find a request from the AAAA corporation,
* we return it to the DLQ (DEADQ) of the reply-to queue manager
* (&REPLYQM).
* The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

* The CCCC corporation considers itself very security

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

DLQ handler

Chapter 6. The MQSeries dead-letter queue handler 65

* conscious, and believes that none of its messages
* will ever end up on one of our DLQs.
* Whenever we see a message from a CCCC queue manager on our
* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

* Messages that are not persistent run the risk of being
* lost when a queue manager terminates. If an application
* is sending nonpersistent messages, it should be able
* to cope with the message being lost, so we can afford to
* discard the message.

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

* For performance and efficiency reasons, we like to keep
* the number of messages on the DLQ small.
* If we receive a message that has not been processed by
* an earlier rule in the table, we assume that it
* requires manual intervention to resolve the problem.
* Some problems are best solved at the node where the
* problem was detected, and others are best solved where
* the message originated. We do not have the message origin,
* but we can use the REPLYQM to identify a node that has
* some interest in this message.
* Attempt to put the message onto a manual intervention
* queue at the appropriate node. If this fails,
* put the message on the manual intervention queue at
* this node.

REPLYQM(’?*’) +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

DLQ handler

66 MQSeries for AS/400, V5.1 System Administration

Chapter 7. Instrumentation events

You can use MQSeries instrumentation events to monitor the operation of queue
managers. This chapter provides a short introduction to instrumentation events.
For a more complete description, see the MQSeries Programmable System
Management book.

What are instrumentation events?
Instrumentation events cause special messages, called event messages, to be
generated whenever the queue manager detects a predefined set of conditions. For
example, the following conditions give rise to a Queue Full event:
v Queue Full events are enabled for a specified queue, and
v An application issues an MQPUT call to put a message on that queue, but the

call fails because the queue is full.

Other conditions that can give rise to instrumentation events include:
v A predefined limit for the number of messages on a queue being reached
v A queue not being serviced within a specified time
v A channel instance being started or stopped
v An application attempting to open a queue and specifying a user ID that is not

authorized

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

Figure 6 on page 68 summarizes the production of an event message.

© Copyright IBM Corp. 1994, 2000 67

Why use events?
If you define your event queues as remote queues, you can put all the event
queues on a single queue manager (for those nodes that support instrumentation
events). You can then use the events generated to monitor a network of queue
managers from a single node. Figure 7 on page 69 illustrates this.

Queue Manager

For example:
Queue full

+ even t enab led1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user applicat ion

Event message

Event queue

User Application

Figure 6. Understanding instrumentation events. When a queue manager detects that the
conditions for an event have been met, it puts an event message on the appropriate event
queue.

The event message contains information about the conditions giving rise to the event. An
application can retrieve the event message from the event queue for analysis.

Use of events

68 MQSeries for AS/400, V5.1 System Administration

Types of event
MQSeries events are categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue
managers. For example, if an application attempts to update a resource but
the associated user ID is not authorized to perform that operation, a queue
manager event is generated.

Performance events
These events are notifications that a threshold condition has been reached
by a resource. For example, a queue depth limit has been reached or,
following an MQGET request, a queue has not been serviced within a
predefined period of time.

Channel events
These events are reported by channels as a result of conditions detected
during their operation. For example, a channel event is generated when a
channel instance is stopped.

Event monitoring
from a single node

Event
messages

MQSeries
for MVS/ESA

MQSeries
for OS/2

MQSeries for
UNIX
OPERATING SYSTEMS

Figure 7. Monitoring queue managers across different platforms, on a single node

Use of events

Chapter 7. Instrumentation events 69

Trigger events

When we discuss triggering in this and other MQSeries books, we sometimes
refer to a trigger event. This occurs when a queue manager detects that the
conditions for a trigger event have been met. For example, a queue can be
configured to generate a trigger event each time a message arrives. (The
conditions for trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and,
optionally, an application program is started.

Event notification through event queues
When an event occurs, the queue manager puts an event message on the
appropriate event queue (if such a queue has been defined). The event message
contains information about the event that you can retrieve by writing a suitable
MQI application program that:
v Gets the message from the queue.
v Processes the message to extract the event data. For a description of event

message formats, see the MQSeries Programmable System Management book.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

This event queue... Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events

You can define event queues as either local or remote queues. If you define all
your event queues as remote queues on the same queue manager, you can
centralize your monitoring activities.

Using triggered event queues
You can set up the event queues with triggers so that, when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, some events can require that an operator be
informed, while others could start an application that performs some
administration tasks automatically.

Enabling and disabling events
You enable and disable events by specifying the appropriate values for the queue
manager, or queue attributes, or both, depending on the type of event. You do this
using one of the following:
v MQSC commands. For more information, see the MQSeries Command Reference

manual.
v PCF commands. For more information, see the MQSeries Programmable System

Management book.
v MQAI commands. For more information, see the MQSeries Administration

Interface Programming Guide and Reference book.

Use of events

70 MQSeries for AS/400, V5.1 System Administration

Enabling an event depends on the category of the event:
v Queue manager events are enabled by setting attributes of the queue manager.
v Performance events as a whole must be enabled on the queue manager, or no

performance events can occur. You enable the specific performance events by
setting the appropriate queue attribute. You also have to identify the conditions,
such as a queue depth high limit, that give rise to the event,

v Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can inhibit MQPUT requests to the
channel event queue.

Event messages
Event messages contain information relating to the origin of an event, including
the type of event, the name of the application that caused the event and, for
performance events, a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from them by user-written administration programs
using the data structures described in the MQSeries Programmable System
Management book.

Use of events

Chapter 7. Instrumentation events 71

About this book

72 MQSeries for AS/400, V5.1 System Administration

Chapter 8. Backup, recovery, and restart

MQSeries for AS/400 utilizes the OS/400 journaling support to aid in its backup
and restore strategy. You should be familiar with standard AS/400 backup and
recovery methods, and with the use of journals and their associated journal
receivers on AS/400 before reading this section. For information on these topics,
see the AS/400 Backup and Recovery book.

To understand the backup and recovery strategy, you should first understand how
MQSeries for AS/400 organizes its data in the OS/400 file system and the
integrated file system (IFS)

MQSeries for AS/400 holds its data in an individual library for each queue
manager, and in stream files in the IFS file system.

The queue manager specific libraries contain journals, journal receivers, and objects
required to control the work management of the queue manager. The IFS
directories and files contain MQSeries configuration files, the descriptions of
MQSeries objects and the data they contain.

Every change to these objects, that is recoverable across a system failure, is
recorded in a journal before it is applied to the appropriate object. This has the
effect that such changes can be recovered by replaying the information recorded in
the journal.

MQSeries for AS/400 journals
MQSeries for AS/400 uses journals in its operation to control updates to local
objects. Each queue manager library contains a journal for that queue manager,
which has the name QMGRLIB/AMQAJRN, where QMGRLIB is the name of the queue
manager library.

QMGRLIB takes the name QM followed by the name of the queue manager in a
unique form. For example, a queue manager named TEST has a journal receiver
library named QMTEST.

These journals have associated journal receivers that contain the information being
journaled. These receivers are objects to which information can only be appended
and will fill up eventually.

They also use up valuable disk space with out-of-date information. However, you
can place the information in permanent storage, to minimize this problem. One
journal receiver is attached to the journal at any particular time. If the journal
receiver reaches its predetermined threshold size, it will be detached and replaced
by a new journal receiver.

The journal receivers associated with the local MQSeries for AS/400 journal exist
in each queue manager library, and adopt a naming convention as follows:

AMQArnnnnn

where

© Copyright IBM Corp. 1994, 2000 73

nnnnn
is decimal 00000 to 99999

r is decimal 0 to 9

The sequence of the journals is based on date. However, the naming of the next
journal is based on the following rules:
1. AMQArnnnnn goes to AMQAr(nnnnn+1), and nnnnn wraps when it reaches

99999. For example, AMQA000000 goes to AMQA000001, and AMQA999999
goes to AMQA000000.

2. If a journal with a name generated by rule 1 already exists, the message
CPI7OE3 is sent to the QSYSOPR message queue and automatic receiver
switching stops.
The currently attached receiver continues to be used until you investigate the
problem and manually attach a new receiver.

3. If no new name is available in the sequence (that is, all possible journal names
are on the system) you will need to do both the following:
a. Delete journals no longer needed (see “Journal management” on page 78).
b. Record the journal changes into the latest journal receiver using

(RCDMQMIMG) and then repeat the previous step. This will allow the old
journal receiver names to be reused.

The AMQAJRN journal uses the MNGRCV(*SYSTEM) option to enable the
operating system to automatically change journal receivers when the threshold is
reached. More information on how the system manages receivers, see the AS/400
Backup and Recovery book.

The journal receiver’s threshold value is 65,536 KB. This is set when the queue
manager is created and is determined by the MaxReceiverSize value defined in
the LogDefaults stanza of the mqs.ini file. See “Chapter 10. Configuring MQSeries”
on page 101 for further details on configuring the system.

If you need to change the size of journal receivers after the queue manager has
been created, you must create a new journal receiver and set its owner to QMQM
using the following commands:
CRTJRNRCV JRNRCV(QMGRLIB/AMQAnnnnnn) THRESHOLD(xxxxxx) +

TEXT('MQM LOCAL JOURNAL RECEIVER')
CHGOBJOWN OBJ(QMGRLIB/AMQAnnnnnn) OBJTYPE(*JRNRCV) NEWOWN(QMQM)

where

QmgrLib Is the name of your queue manager library

nnnnnnn Is the next journal receiver in the naming sequence described

xxxxxx Is the new receiver threshold (in KB)

The new receiver must now be attached to the AMQAJRN journal with the
command:
CHGJRN JRN(QMGRLIB/AMQAJRN) JRNRCV(QMGRLIB/AMQAnnnnnn)

See “Journal management” on page 78 for details on how to manage these journal
receivers.

Journals

74 MQSeries for AS/400, V5.1 System Administration

MQSeries for AS/400 journal usage
Persistent updates to message queues happen in two stages. The records
representing the update are firstly written to the journal, then the queue file is
updated.

The journal receivers can therefore become more up-to-date than the queue files.
To ensure that restart processing begins from a consistent point, MQSeries uses
checkpoints.

A checkpoint is a point in time when the record described in the journal is the
same as the record in the queue. The checkpoint itself consists of the series of
journal records needed to restart the queue manager. For example, the state of all
transactions (that is, units of work) active at the time of the checkpoint.

Checkpoints are generated automatically by MQSeries. They are taken when the
queue manager starts and shuts down, when logging space is running low, and
after every 1000 operations logged.

As the queues handle further messages, the checkpoint record becomes
inconsistent with the current state of the queues.

When MQSeries is restarted, it locates the latest checkpoint record in the log. This
information is held in the checkpoint file that is updated at the end of every
checkpoint. The checkpoint record represents the most recent point of consistency
between the log and the data. The data from this checkpoint is used to rebuild the
queues as they existed at the checkpoint time. When the queues are recreated, the
log is then played forward to bring the queues back to the state they were in
before system failure or close down.

To understand how MQSeries for AS/400 uses the journal, consider the case of a
local queue called TESTQ in the queue manager TESTQM. This is represented by the
IFS file:
/QIBM/UserData/mqm/qmgrs/TESTQM/queues

.

If a specified message is put on this queue, and then retrieved from the queue, the
actions that take place are shown in Figure 8.

The five points, “A” through “E”, shown in the diagram represent points in time
that define the following states:

Journal entries

MQSeries for Put on Get from
AS/400 Journal TESTQ TESTQ

A B C D E Time

TESTQ Update Update
FILE TESTQ TESTQ

Figure 8. Sequence of events when updating MQM objects

Journals

Chapter 8. Backup, recovery, and restart 75

A The IFS file representation of the queue is consistent with the information
contained in the journal.

B A journal entry is written to the journal defining a Put operation on the
queue.

C The appropriate update is made to the queue.

D A journal entry is written to the journal defining a Get operation from the
queue.

E The appropriate update is made to the queue.

The key to the recovery capabilities of MQSeries for AS/400 is that the user can
save the IFS file representation of TESTQ as at time A, and subsequently recover
the IFS file representation of TESTQ as at time E, simply by restoring the saved
object and replaying the entries in the journal from time A onwards.

This strategy is used by MQSeries for AS/400 to provide recovery of persistent
messages after system failure. MQSeries for AS/400 remembers a particular entry
in the journal receivers, and ensures that on startup it will replay the entries in the
journals from this point onwards. This startup entry is periodically recalculated so
that MQSeries for AS/400 only has to perform the minimum necessary replay on
the next startup.

MQSeries for AS/400 provides individual recovery of objects. All persistent
information relating to an object is recorded in the local MQSeries for AS/400
journals. Any MQSeries for AS/400 object that becomes damaged or corrupt can be
completely rebuilt from the information held in the journal.

For more information on how the system manages receivers, see the AS/400 Backup
and Recovery book.

Media images
For an MQSeries for AS/400 object of long duration, this can represent a large
number of journal entries, going back to the point at which it was created. To
avoid this overhead, MQSeries for AS/400 has the concept of a media image of an
object.

This media image is a complete copy of the MQSeries for AS/400 object recorded
in the journal. If an image of an object is taken, the object can be rebuilt by
replaying journal entries from this image onwards. The entry in the journal that
represents the replay point for each MQSeries for AS/400 object is referred to as its
media recovery entry.

Images of the three important MQM objects, that is, the *CTLG object, the *ADM
object, and the *MQM object, are regularly taken because these objects are required
for MQSeries for AS/400 to run at all.

Images of other objects are taken when convenient, particularly when the
MQSeries for AS/400 queue manager is ended. MQSeries for AS/400 keeps track
of the:
v Media recovery entry for each MQM object
v Oldest entry from within this set

MQSeries for AS/400 automatically records an image of an object, if it finds a
convenient point at which an object can be compactly described by a small entry in

Journals

76 MQSeries for AS/400, V5.1 System Administration

the journal. However, this may never happen for some objects, for example, queues
which consistently contain large numbers of messages.

Rather than allow the date of the oldest media recovery entry to continue for an
unnecessarily long period, you should use the MQSeries for AS/400 command
RCDMQMIMG This command enables you to take an image of selected objects
manually.

Recovery from media images
MQSeries for AS/400 automatically recovers some objects from their media image
if it is found that they are corrupt or damaged. In particular, this applies to the
special *MQM and *CTLG objects as part of the normal queue manager startup. If
any syncpoint transaction was incomplete at the time of the last shutdown of the
queue manager, any queue affected is also recovered automatically, in order to
complete the startup operation.

You must recover other objects manually, using the MQSeries for AS/400
command RCRMQMOBJ.

This command replays the entries in the journal to recreate the MQSeries object.
Should an MQSeries object become damaged, the only valid actions that may be
performed are to delete it or to re-create it by this method. Note, however, that
nonpersistent messages cannot be recovered in this fashion.

Note: The authorities of the recreated object are not reapplied by this method. The
appropriate authorities must be manually set after the object has been
recreated. When an object is recreated, message AMQ7461 is sent to the system
operator as a reminder to recreate the object authorities.

Backups of MQSeries for AS/400 data
There are two general types of MQSeries backup that should be considered:

Data and journal backup of a particular queue manager
This involves a full backup of a queue manager library and its associated
IFS directories. To take a full backup of a queue manager’s data, you must:
1. Use the RCDMQMIMG command to record an MQM image for all

MQSeries objects.
2. End channels and ensure that the queue manager is not running. If

your queue manager is running, stop it with the ENDMQM command.

Note: If you try to take a backup of a running queue manager, the
backup may not be consistent because of updates in progress
when the files were copied.

3. Locate the queue manager library and IFS directories under which the
queue manager places its journals and data.
You can use the information in the configuration files to determine
these directories. For further details see “Chapter 10. Configuring
MQSeries” on page 101.

Note: You may have some difficulty in understanding the names that
appear in the directory. This is because the names are
transformed to ensure that they are compatible with the platform
on which you are using MQSeries. For more information about

Journals

Chapter 8. Backup, recovery, and restart 77

name transformations, see “Understanding MQSeries queue
manager library names” on page 111.

4. Back up the queue manager library by issuing the following AS/400
command, SAVLIB LIB(QMTESTQM).
A save-while-active request cannot complete unless all commitment
definitions with pending changes are committed or rolled back.
Therefore, if this command is used when there are active MQSeries
channels, the channel connections may not end normally.

5. Back up the queue manager IFS directories by issuing the following
AS/400 command:
SAV DEV(...) OBJ(('/QIBM/UserData/mqm/qmgrs/testqm'))

Journal backup of a particular queue manager
Because all relevant information is held in the journals, as long as you
perform a full save at some time, partial backups can be performed by
saving the journal receivers. These record all changes since the time of the
full backup and should be performed by issuing the following command:
SAVOBJ OBJ(AMQ*) LIB(QMGRLIB) OBJTYPE(*JRNRCV)

where QMGRLIB is the library associated with the queue manager that you
are backing up.

A simple backup strategy is to perform a full backup of the MQSeries for AS/400
libraries every week, and perform a daily journal backup. This, of course, depends
on how you have set up your backup strategy for your enterprise.

Journal management
As part of your backup strategy, you should take care of your journal receivers. It
is useful to remove journal receivers from the MQSeries for AS/400 libraries, in
order to:
1. Release space – applies to all journal receivers
2. Improve the performance when starting (STRMQM)
3. Improve the performance of recreating objects (RCRMQMOBJ) –

Before deleting a journal receiver, be sure that:
1. You have a backup copy.
2. You no longer need the journal receiver.

Journal receivers can be removed from the queue manager library after they have
been detached from the journals and saved, provided that they are available for
restoration if needed for a recovery operation.

The concept of journal management is shown in Figure 9 on page 79.

Journals

78 MQSeries for AS/400, V5.1 System Administration

It is important to know how far back in the journals MQSeries for AS/400 is likely
to need to go, in order to determine when a journal receiver that has been backed
up may be removed from the queue manager library, and when the backup itself
may be discarded.

To help determine this time, MQSeries for AS/400 issues two messages to the
queue manager message queue (QMQMMSG in the queue manager library)
whenever it starts up, and whenever it changes a local journal receiver. These
messages are:

AMQ7460
Startup recovery point. This message defines the date and time of the
startup entry from which MQSeries for AS/400 replays the journal in the
event of a startup recovery pass. If the journal receiver that contains this
record is available in the MQSeries for AS/400 libraries, this message also
contains the name of the journal receiver containing the record.

AMQ7462
Oldest media recovery entry. This message defines the date and time of the
oldest entry that may be used for recreating an object from its media
image.

The journal receiver identified is the oldest one required. Any other
MQSeries journal receivers with older creation dates are no longer needed.
If only stars are displayed, you need to restore backups from the date
indicated to determine which is the oldest journal receiver.

Figure 9. MQSeries for AS/400 journaling

Journals

Chapter 8. Backup, recovery, and restart 79

Note: Periodically performing RCDMQMIMG(*ALL) can save startup time for MQSeries
and reduce the number of local journal receivers you need to save and
restore for recovery.

MQSeries for AS/400 does not refer to the journal receivers unless it is performing
a recovery pass either for startup, or for recreating an object. If it finds that a
journal it requires is not present, it issues message AMQ7432 to the queue manager
message queue (QMQMMSG) reporting the time and date of the journal entry it
requires to complete the recovery pass.

If this happens, all journal receivers that were detached after this date should be
restored from the backup, in order to allow the recovery pass to succeed.

The journal receiver that contains the startup entry, and any subsequent journal
receivers should be kept available in the queue manager library.

The journal receiver containing the oldest Media Recovery Entry, and any
subsequent journal receivers, should be available at all times, and either present in
the queue manager library or backed-up.

Restoring a complete queue manager (data and journals)
If you need to recover one or more MQSeries for AS/400 queue managers from a
backup you should perform the following steps.
1. Quiesce the MQSeries for AS/400 queue managers.
2. Locate your latest backup set, consisting of your most recent full backup and

subsequently backed up journal receivers.
3. Perform a RSTLIB operation, from the full backup, to restore the MQSeries for

AS/400 data libraries to their state at the time of the full backup, by issuing the
following commands:
RSTLIB LIB(QMQRLIB1)
RSTLIB LIB(QMQRLIB2)

If a journal receiver was partially saved in one journal backup, and fully saved
in a subsequent backup, the fully saved one only should be restored. You are
recommended to restore journals individually, in chronological order.

4. Perform a RST operation, to restore the MQSeries IFS directories to the IFS file
system, using the following command:
RST DEV(...) OBJ(('/QIBM/UserData/mqm/qmgrs/testqm')) ...

5. Start the message queue manager. This will replay all journal records written
since the full backup and restores all the MQSeries for AS/400 objects to the
consistent state at the time of the journal backup.

Restoring journal receivers for a particular queue manager
The most common action is to restore a backed-up journal receiver to a queue
manager library, if a receiver that has been removed is needed again for a
subsequent recovery function.

This is a simple task, and requires the journal receivers to be restored using the
standard AS/400 RSTOBJ command:
RSTOBJ OBJ(QMQMDATA/AMQA000005) OBJTYPE(*JRNRCV)

Journals

80 MQSeries for AS/400, V5.1 System Administration

It may be that a series of journal receivers needs to be restored, rather than simply
a single receiver. For example, AMQA000007 is the oldest receiver in the MQSeries for
AS/400 libraries, and both AMQA000005 and AMQA000006 need to be restored.

In this case the receivers should be restored individually in reverse chronological
order. This is not always necessary, but is good practice. In severe situations, the
OS/400 command WRKJRNA may be required, in order to associate the restored
journal receivers with the journal.

When restoring journals, the system automatically creates an attached journal
receiver with a new name in the journal receiver sequence. However, the new
name generated may be the same as a journal receiver you need to restore. Manual
intervention is needed to overcome this problem; to create a new name journal
receiver in sequence, and new journal before restoring the journal receiver.

For instance, consider the problem with saved journal AMQAJRN and the
following journal receivers:

AMQA000000
AMQA100000
AMQA200000
AMQA300000
AMQA400000
AMQA500000
AMQA600000
AMQA700000
AMQA800000
AMQA900000

When restoring journal AMQAJRN to a queue manager library, the system
automatically creates journal receiver AMQA000000. This automatically generated
receiver conflicts with one of the existing journal receivers (AMQA000000) you
wish to restore, which you will be unable to restore.

The solution is:
1. Manually create the next journal receiver (see “MQSeries for AS/400 journals”

on page 73).
CRTJRNRCV JRNRCV(QMQRLIB/AMQA900001) THRESHOLD(XXXXX)

2. Manually create the journal with the above journal receiver:
CRTJRN JRN(QMGRLIB/AMQAJRN) MNGRCV(*SYSTEM) +
JRNRCV(QMGRLIB/AMQA9000001) MSGQ(QMGRLIB/AMQAJRNMSG)

3. Restore the local journal receivers AMQA000000 - AMQA900000.

Performance considerations
If you are using a large number of persistent messages or large messages in your
applications, there is an associated overhead due to the journaling of these
messages.

This increases your system disk input/output. If this disk input/output becomes
excessive, performance will suffer.

Ensure that you have sufficient disk activation to cope with this possibility, or
consider a separate ASP in which to hold your queue manager journal receivers.
For more information, see the OS/400 V4R4M0 Backup and Recovery manual.

Journals

Chapter 8. Backup, recovery, and restart 81

About this book

82 MQSeries for AS/400, V5.1 System Administration

Chapter 9. Analyzing problems

This chapter suggests reasons for problems you may have with MQSeries for
AS/400. This process is called problem determination. You usually start with a
symptom, or set of symptoms, and trace them back to their cause.

You should not confuse problem determination with problem solving; however, the
process of problem determination often enables you to solve a problem. For
example, if you find that the cause of the problem is an error in an application
program, you can solve the problem by correcting the error.

However, you may not always be able to solve a problem after determining its
cause. For example:
v A performance problem may be caused by a limitation of your hardware.
v You may find that the cause of the problem is in the MQSeries for AS/400 code.

If this happens, you need to contact your IBM support center for a solution.

This chapter is divided into the following sections:
v “Preliminary checks”
v “Problem characteristics” on page 85
v “Determining problems with MQSeries applications” on page 88
v “Obtaining diagnostic information” on page 91
v “Error logs” on page 94
v “Dead-letter queues” on page 96
v “First-failure support technology (FFST)” on page 97
v “Performance considerations” on page 98

Preliminary checks
Before you start problem determination in detail, it is worth considering the facts
to see if there is an obvious cause of the problem, or an area likely, in which to
start your investigation. This approach to debugging can often save a lot of work
by highlighting a simple error, or by narrowing down the range of possibilities.

The cause of your problem could be in any of the following:
v Hardware
v Operating system
v Related software, for example, a language compiler
v The network
v MQSeries product
v Your MQSeries application
v Other applications
v Site operating procedures

The sections that follow raise some fundamental questions that you will need to
consider.

As you go through the questions, make a note of anything that might be relevant
to the problem. Even if your observations do not suggest a cause immediately, they
could be useful later if you have to carry out a systematic problem determination
exercise.

© Copyright IBM Corp. 1994, 2000 83

The following steps are intended to help you isolate the problem and are taken
from the viewpoint of an MQSeries application. You are recommended to check all
the suggestions at each stage.
1. Has MQSeries for AS/400 run successfully before?

Yes Proceed to Step 2.

No It is likely you have not installed or setup MQSeries correctly.
2. Has the MQSeries application run successfully before?

Yes Proceed to Step 3.

No Consider the following:
a. The application may have failed to compile or link, and fails if you

attempt to invoke it. Check the output from the compiler or linker.
Refer to the appropriate programming language reference manual,
or the MQSeries Application Programming Guide for information on
how to build your application.

b. Consider the logic of the application. For example, do the
symptoms of the problem indicate that a function is failing and,
therefore, that a piece of code is in error.
Check the following common programming errors:
v Assuming that queues can be shared, when they are in fact

exclusive.
v Trying to access queues and data without the correct security

authorization.
v Passing incorrect parameters in an MQI call; if the wrong number

of parameters is passed, no attempt can be made to complete the
completion code and reason code fields, and the task is ended
abnormally.

v Failing to check return codes from MQI requests.
v Using incorrect addresses.
v Passing variables with incorrect lengths specified.
v Passing parameters in the wrong order.
v Failing to initialize MsgId and CorrelId correctly.

3. Has the MQSeries application changed since the last successful run?

Yes It is likely that the error lies in the new or modified part of the
application. Check all the changes and see if you can find an obvious
reason for the problem.
a. Have all the functions of the application been fully exercised before?

Could it be that the problem occurred when part of the application
that had never been invoked before was used for the first time? If
so, it is likely that the error lies in that part of the application. Try
to find out what the application was doing when it failed, and
check the source code in that part of the program for errors.

b. If the program has been run successfully before check the current
queue status and files that were being processed when the error
occurred. It is possible that they contain some unusual data value
that causes a rarely used path in the program to be invoked.

c. The application received an unexpected MQI return code. For
example:

Preliminary checks

84 MQSeries for AS/400, V5.1 System Administration

v Does your application assume that the queues it accesses are
shareable? If a queue has been redefined as exclusive, can your
application deal with return codes indicating that it can no longer
access that queue?

v Have any queue definition or security profiles been changed? An
MQOPEN call could fail because of a security violation; can your
application recover from the resulting return code?

Refer to the appropriate MQSeries Application Programming Reference
for your programming language for a description of each return
code.

d. If you have applied any PTF to MQSeries for AS/400, check that
you received no error messages when you installed the PTF.

No Ensure that you have eliminated all the preceding suggestions and
proceed to Step 4.

4. Has the AS/400 system remain unchanged since the last successful run?

Yes Proceed to “Problem characteristics”.

No Consider all aspects of the system and review the appropriate
documentation on how the change may have impacted the MQSeries
application. For example :
v Interfaces with other applications
v Installation of new operating system or hardware
v Application of PTFs
v Changes in operating procedures

Problem characteristics
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the MQSeries library, and in the libraries of other licensed programs.

If you have not yet found the cause, you must start to look at the problem in
greater detail. The following questions should be used as pointers to the problem.
Answering the appropriate question, or questions, should lead you to the cause of
the problem.

Can the problem be reproduced?
If the problem is reproducible, consider the conditions under which it can be
reproduced:
v Is it caused by a command?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

v Is it caused by a program? If so, does it fail in batch? Does it fail on all
MQSeries for AS/400 systems, or only on some?

v Can you identify any application that always seems to be running in the system
when the problem occurs? If so, examine the application to see if it is in error.

v Does the problem occur with any queue manager, or when connected to one
specific queue manager?

Preliminary checks

Chapter 9. Analyzing problems 85

v Does the problem occur with the same type of object on any queue manager, or
only one particular object? What happens after this object has been cleared or
redefined?

v Is the problem independent of any message persistence settings?
v Does the problem occur only when syncpoints are used?
v Does the problem occur only when one or more queue-manager events are

enabled?

Is the problem intermittent?
An intermittent problem could be caused by failing to take into account the fact
that processes can run independently of each other. For example, a program may
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. You might also encounter this if your application tries to get a
message from a queue while the call that put the message is in-doubt (that is,
before it has been committed or backed out).

Problems with commands
You should be careful when including special characters, for example, back slash
(\) and double quote (”) characters, in descriptive text for some commands. If you
use either of these characters in descriptive text, precede them with a \, that is,
enter \\ or \” if you want \ or ” in your text.

Queue managers and their associated object names are case sensitive. By default,
the AS/400 uses uppercase characters, unless you surround the name in quotes.

For example, MYQUEUE and myqueue translate to MYQUEUE, whereas ‘myqueue’
translates to myqueue.

Does the problem affect all users of the MQSeries for AS/400
application?

If the problem only affects some users, look for differences in how the users
configure their systems and queue manager settings.

Check the library lists and user profiles. Can the problem be circumvented by
having *ALLOBJ authority?

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check the following:
v Is the connection between the two systems available, and has the

intercommunication component of MQSeries for AS/400 been started?
Check that messages are reaching the transmission queue, and the local queue
definition of the transmission queue, and any remote queues.

v Have you made any network-related changes that might account for the
problem or changed any MQSeries for AS/400 definitions?

v Can you distinguish between a channel definition problem and a channel
message problem?
For example, redefine the channel to use an empty transmission queue. If the
channel starts correctly, the definition is correctly configured.

Problem characteristics

86 MQSeries for AS/400, V5.1 System Administration

Does the problem occur only on MQSeries V5R1
If the problem occurs on this version of MQSeries, check the appropriate database
on RETAIN, or the web site
http://www.ibm.com/software/ts/mqseries/support/summary/400.html, to ensure
that you have applied all the relevant PTFs.

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at midmorning and
midafternoon, and so these are the times when load-dependent problems are most
likely to occur. (If your MQSeries for AS/400 network extends across more than
one time zone, peak system loading might seem to occur at some other time of
day.)

Have you failed to receive a response from a command?
If you have issued a command but you have not received a response, consider the
following questions:
v Is the command server running?

Work with the DSPMQMCSVR command to check the status of the command
server.
– If the response to this command indicates that the command server is not

running, use the STRMQMCSVR command to start it.
– If the response to the command indicates that the

SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

v Has a reply been sent to the dead-letter queue?
The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the MQSeries Application Programming Reference
manual for information about the dead-letter queue header structure (MQDLH).
If the dead-letter queue contains messages, you can use the provided browse
sample application (amqsbcg) to browse the messages using the MQGET call.
The sample application steps through all the messages on a named queue for a
named queue manager, displaying both the message descriptor and the message
context fields for all the messages on the named queue.

v Has a message been sent to the error log?
See “Error logs” on page 94 for further information.

v Are the queues enabled for put and get operations?
v Is the WaitInterval long enough?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a
reason code of MQRC_NO_MSG_AVAILABLE are returned. (See the MQSeries
Application Programming Reference manual for information about the WaitInterval
field, and completion and reason codes from MQGET.)

v If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?
Unless you have specifically excluded your request message from syncpoint, you
need to take a syncpoint before attempting to receive reply messages.

v Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

v Are you using the CorrelId and MsgId fields correctly?

Problem characteristics

Chapter 9. Analyzing problems 87

Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the MQSeries system. First try stopping individual queue
managers to try and isolate a failing queue manager. If this does not reveal the
problem, try stopping and restarting MQSeries, responding to any messages that
are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

If you have still not identified the cause of the problem, see “Determining
problems with MQSeries applications”.

Determining problems with MQSeries applications
This section discusses problems you may encounter with MQSeries applications,
commands, and messages.

Are some of your queues working?
If you suspect that the problem occurs with only a subset of queues, select the
name of a local queue that you think is having problems.
1. Display the information about this queue.
2. Use the data displayed to do the following checks:
v If CURDEPTH is at MAXDEPTH this indicates that the queue is not being

processed. Check that all applications are running normally.
v If CURDEPTH is not at MAXDEPTH check the following queue attributes to

ensure that they are correct:
– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth too big?
- Is the process name correct?

– Can the queue be shared? If not, another application could already have it
open for input.

– Is the queue enabled appropriately for GET and PUT?
v If there are no application processes getting messages from the queue,

determine why this is so (for example, because the applications need to be
started, a connection has been disrupted, or because the MQOPEN call has
failed for some reason).

If you are unable to solve the problem, contact your IBM support center for help.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:
1. Check that the programs that should be putting messages to the remote queues

have run successfully.
2. If you use triggering to start the distributed queuing process, check that the

transmission queue has triggering set on. Also, check that the trigger monitor is
running.

Problem characteristics

88 MQSeries for AS/400, V5.1 System Administration

3. If necessary, start the channel manually. See the MQSeries Intercommunication
book for information about how to do this.

4. Check the channel with a PING command.

See the MQSeries Intercommunication book for information about how to define
channels.

Does the problem affect messages?
This section deals with:
v “Messages do not appear on the queue”
v “Messages contain unexpected or corrupted information” on page 90
v “Receiving unexpected messages when using distributed queues” on page 90

Messages do not appear on the queue
If messages do not appear when you are expecting them, check for the following:
v Have you selected the correct queue manager, that is, the default queue manager

or a named queue manager?
v Has the message been put on the queue successfully?

– Has the queue been defined correctly, for example is MAXMSGLEN
sufficiently large?

– Are applications able to put messages on the queue (is the queue enabled for
putting)?

– Is the queue already full? This could mean that an application was unable to
put the required message on the queue.

v Are you able to get the message from the queue?
– Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not available
to other tasks until the unit of recovery has been committed.

– Is your timeout interval long enough?
– Are you waiting for a specific message that is identified by a message or

correlation identifier (MsgId or CorrelId)?
Check that you are waiting for a message with the correct MsgId or Correlid.
A successful MQGET call will set both these values to that of the message
retrieved, so you may need to reset these values in order to get another
message successfully.
Also check if you can get other messages from the queue.

– Can other applications get messages from the queue?
– Was the message you are expecting defined as persistent?

If not, and MQSeries for AS/400 has been restarted, the message will have
been lost.

If you are unable to find anything wrong with the queue, and the queue manager
itself is running, make the following checks on the process that you expected to
put the message on to the queue:
v Did the application get started?

If it should have been triggered, check that the correct trigger options were
specified.

v Is a trigger monitor running?
v Was the trigger process defined correctly?
v Did it complete correctly?

Look for evidence of an abnormal end in the job log.

MQSeries application problems

Chapter 9. Analyzing problems 89

v Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they might occasionally conflict with
one another. For example, one transaction might issue an MQGET call with a
buffer length of zero to find out the length of the message, and then issue a
specific MQGET call specifying the MsgId of that message. However, in the
meantime, another transaction might have issued a successful MQGET call for that
message, so the first application receives a completion code of
MQRC_NO_MSG_AVAILABLE. Applications that are expected to run in a
multi-server environment must be designed to cope with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages contain unexpected or corrupted information”.

Messages contain unexpected or corrupted information
If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:
v Has your application, or the application that put the message on to the queue

changed?
Ensure that all changes are simultaneously reflected on all systems that need to
be aware of the change.
For example, a copyfile formatting the message may have been changed, in
which case, both applications will have to be recompiled to pick up the changes.
If one application has not been recompiled, the data will appear corrupt to the
other.

v Is an application sending messages to the wrong queue?
Check that the messages your application is receiving are not really intended for
an application servicing a different queue. If necessary, change your security
definitions to prevent unauthorized applications from putting messages on to
the wrong queues.
If your application has used an alias queue, check that the alias points to the
correct queue.

v Has the trigger information been specified correctly for this queue?
Check that your application should have been started, or should a different
application have been started?

v Has the CCSID been set correctly, or is the message format incorrect due to data
conversion.

If these checks do not enable you to solve the problem, you should check your
application logic, both for the program sending the message, and for the program
receiving it.

Receiving unexpected messages when using distributed
queues

If your application uses distributed queues, you should also consider the following
points:
v Has distributed queuing been correctly installed on both the sending and

receiving systems?
v Are the links available between the two systems?

MQSeries application problems

90 MQSeries for AS/400, V5.1 System Administration

Check that both systems are available, and connected to MQSeries for AS/400.
Check that the connection between the two systems is active.

v Is triggering set on in the sending system?
v Is the message you are waiting for, a reply message from a remote system?

Check that triggering is activated in the remote system.
v Is the queue already full?

This could mean that an application was unable to put the required message on
to the queue. If this is so, check if the message has been put onto the
undelivered-message queue.
The dead-letter queue message header (dead-letter header structure) will contain
a reason or feedback code explaining why the message could not be put on to
the target queue. See the MQSeries Application Programming Reference manual or
the MQSeries for AS/400 Application Programming Reference (ILE RPG), as
appropriate, for information about the dead-letter header structure.

v Is there a mismatch between the sending and receiving queue managers?
For example, the message length could be longer than the receiving queue
manager can handle.

v Are the channel definitions of the sending and receiving channels compatible?
For example, a mismatch in sequence number wrap stops the distributed
queuing component. See the MQSeries Intercommunication book for more
information about distributed queuing.

Obtaining diagnostic information
This sections tells you where to find diagnostic information about MQSeries.
1. User’s Job Log: The job log records the commands processed by the job and

the messages returned from running those commands.
Reviewing the job log of a user who experiences a problem, by issuing the
DSPJOBLOG command, identifies the MQSeries commands issued and the
sequence of those commands.

2. MQSeries Job Log: MQSeries specific jobs, for example, the command server
and channel programs, run under the MQSeries profile QMQM. If you have a
problem in these areas, review these joblogs by issuing the command
WRKSPLF QMQM to display them.

3. System history log: Reviewing the history log, by issuing the DSPLOG
command, displays information about the operation of the system and system
status. This can be useful for identifying channel connection problems.

4. AS/400 Message Queue: It is useful to view messages sent to various AS/400
message queues using the DSPMSG command. Use the command
DSPMSG QSYSOPR to check the system operator message queue, used for
MQSeries journaling messages, and job completion messages in particular.

5. Queue Manager Message Queue: It is useful to view messages sent to a
particular queue manager, called QMQMMSG and stored in the queue manager
library, using the DSPMSG command.

6. Work with Problems: Use the WRKPRB command to display descriptions of
system problems. MQSeries reports problems related to unusual usage and
internal code by using this command.

7. Error logs in the IFS: See “Error logs” on page 94 for further information on
using the error logs generated.

MQSeries application problems

Chapter 9. Analyzing problems 91

8. Generation of FFSTs: See “First-failure support technology (FFST)” on page 97
for further information on First Failure Support Technology and an example of
an MQSeries for AS/400 FFST report.

Using MQSeries for AS/400 trace
Although it will be necessary to use certain traces on occasion, running the trace
facility will slow your systems.

You should also consider to what destination you want your trace information
sent.

Notes:

1. To run the MQSeries for AS/400 trace commands, you must have the
appropriate authority.

2. Trace data is only written when trace is ended, with option *OFF

Lifetime of trace data
Trace data remains in the system until you delete it by issuing the command
TRCMQM *END.

Unless you delete it, the trace data remains until the storage monitor is ended, at
which point the trace files are written out to the QMQM spool.

Trace usage
A trace can be obtained using TRCMQM *ON, doing some MQ work, and
TRCMQM *OFF at the end of the MQ work being traced.

Batch jobs inherit the trace attributes of the calling program. Setting trace before
you issue the command that starts a batch job, has the advantage that the batch job
will be traced from its start.

Selective trace
By default, TRCMQM traces all MQSeries product components saving the
maximum amount of trace data and using the *WRAP option in cases where the
trace file becomes full.

You can reduce the amount of trace data being saved, thereby improving run-time
performance, using the command TRCMQM *ON with F4=prompt to customize the
TRCTYPE parameter.

The options available are:

*ALL All the trace data as specified by the following keywords is stored in the
trace file.

trace-type-list
You can specify more than one option from the following keywords, but
each option can only appear once.

*API Output data for trace points associated with the MQI and major queue
manager components.

*CMTRY
Output data for trace points associated with comments in the MQSeries
components.

*COMMS
Output data for trace points associated with data flowing over
communications networks.

Diagnostic information

92 MQSeries for AS/400, V5.1 System Administration

*CSDATA
Output data for trace points associated with internal data buffers in
common services.

*CSFLOW
Output data for trace points associated with processing flow in common
services.

*DETAIL
Activates tracing at high-detail level for flow processing trace points.

*LQMDATA
Output data for trace points associated with internal data buffers in the
local queue manager.

*LQMFLOW
Output data for trace points associated with processing flow in the local
queue manager.

*OTHDATA
Output data for trace points associated with internal data buffers in other
components.

*OTHFLOW
Output data for trace points associated with processing flow in other
components.

*PARMS
Activates tracing at default-detail level for flow processing trace points.

*RMTDATA
Output data for trace points associated with internal data buffers in the
communications component.

*RMTFLOW
Output data for trace points associated with processing flow in the
communications component.

*SVCDATA
Output data for trace points associated with internal data buffers in the
service component.

*SVCFLOW
Output data for trace points associated with processing flow in the service
component.

*VSNDATA
Output data for trace points associated with the version of MQSeries
running.

Trace files appear in the /QIBM/UserData/mqm/trace directory.

Formatting trace output
To format any trace output:
v Enter the QShell
v Enter the command

dspmqtrc [-t Format] [-h] [-o OutputFileName] InputFileName

where:

Diagnostic information

Chapter 9. Analyzing problems 93

InputFileName
Is a required parameter specifying the name of the file containing the
unformatted trace. For example /QIBM/UserData/mqm/trace/AMQ12345.TRC.

-t FormatTemplate
Specifies the name of the template file containing details of how to display
the trace. The default value is /QIBM/ProdData/mqm/lib/amqtrc.fmt.

-h Omit header information from the report.

-o output_filename
The name of the file into which to write formatted data.

Error logs
MQSeries uses a number of error logs to capture messages concerning the
operation of MQSeries itself, any queue managers that you start, and error data
coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known.

In the IFS:
v If the queue manager name is known and the queue manager is available, error

logs are located in:
/QIBM/UserData/mqm/qmname/errors

v If the queue manager is not available, error logs are located in:
/QIBM/UserData/mqm/@SYSTEM/errors

You can use the system utility EDTF to browse the errors directories and files. For
example:

EDTF '/QIBM/UsedData/mqm/errors'

Log files
At installation time an @SYSTEM errors subdirectory is created in the IFS. The
errors subdirectory can contain up to three error log files named:
v AMQERR01.LOG
v AMQERR02.LOG
v AMQERR03.LOG

After you have created a queue manager, three error log files are created when
they are needed by the queue manager. These files have the same names as the
@SYSTEM ones, that is AMQERR01, AMQERR02, and AMQERR03, and each has a
capacity of 256 KB. The files are placed in the errors subdirectory of each queue
manager that you create, that is /QIBM/UserData/mqm/qmname/errors.

As error messages are generated, they are placed in AMQERR01. When
AMQERR01 gets bigger than 256 KB it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager’s errors files unless the name of their queue manager is unknown or the

Diagnostic information

94 MQSeries for AS/400, V5.1 System Administration

queue manager is unavailable. When the queue manager name is unavailable or its
name cannot be determined, channel-related messages are placed in the @SYSTEM
errors subdirectory.

To examine the contents of any error log file, use your usual system editor,EDTF,
to view the stream files in the IFS.

Early errors
There are a number of special cases where the above error logs have not yet been
established and an error occurs. MQSeries attempts to record any such errors in an
error log. The location of the log depends on how much of a queue manager has
been established.

If, due to a corrupt configuration file for example, no location information can be
determined, errors are logged to an errors directory that is created at installation
time.

If the MQSeries configuration file is readable, and the DefaultPrefix attribute of the
AllQueueManagers stanza is readable, errors are logged in the errors subdirectory
of the directory identified by the DefaultPrefix attribute.

Operator messages
Operator messages identify normal errors, typically caused directly by users doing
things like using parameters that are not valid on a command. Operator messages
are national language enabled, with message catalogs installed in standard
locations.

These messages are written to the joblog, if any. In addition, some operator
messages are written to the AMQERR01.LOG file in the queue manager directory,
and others to the @SYSTEM directory copy of the error log.

An example MQSeries error log
Figure 10 on page 96 shows a typical extract from an MQSeries error log.

Error logs

Chapter 9. Analyzing problems 95

Dead-letter queues
Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing an
DSPMQMQ command. If the queue contains messages, you can use the
WRKMQMMSG command to display a list of messages on a queue. Option 5
displays the details of the messages and option 8 displays the message data.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being put on the queue.

Problems may occur if you do not associate a dead-letter queue with each queue
manager. For more information about dead-letter queues, see “Chapter 6. The
MQSeries dead-letter queue handler” on page 57.

...
08/01/97 11:41:56 AMQ8003: MQSeries queue manager started.
EXPLANATION: MQSeries queue manager janet started.
ACTION: None.

08/01/97 11:56:52 AMQ9002: Channel program started.
EXPLANATION: Channel program 'JANET' started.
ACTION: None.

08/01/97 11:57:26 AMQ9208: Error on receive from host 'camelot
(9.20.12.34)'.
EXPLANATION: An error occurred receiving data from 'camelot
(9.20.12.34)' over TCP/IP. This may be due to a communications failure.
ACTION: Record the TCP/IP return code 232 (X'E8') and tell the
systems administrator.

08/01/97 11:57:27 AMQ9999: Channel program ended abnormally.
EXPLANATION: Channel program 'JANET' ended abnormally.
ACTION: Look at previous error messages for channel program
'JANET' in the error files to determine the cause of the failure.

08/01/97 14:28:57 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.
ACTION: None.

08/02/97 15:02:49 AMQ9002: Channel program started.
EXPLANATION: Channel program 'JANET' started.
ACTION: None.

08/02/97 15:02:51 AMQ9001: Channel program ended normally.
EXPLANATION: Channel program 'JANET' ended normally.
ACTION: None.
08/02/97 15:09:27 AMQ7030: Request to quiesce the queue manager
accepted. The queue manager will stop when there is no further
work for it to perform.
EXPLANATION: You have requested that the queue manager end when
there is no more work for it. In the meantime, it will refuse
new applications that attempt to start, although it allows those
already running to complete their work.
ACTION: None.

08/02/97 15:09:32 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.
ACTION: None.
...

Figure 10. Extract from an MQSeries error log

Dead-letter queues

96 MQSeries for AS/400, V5.1 System Administration

First-failure support technology (FFST)
This section describes the role of first-failure support technology (FFST).

For AS/400, FFST information is recorded in a stream file in the
/QIBM/UserData/mqm/errors directory, and in the problem database accessed using
the AS/400 command WRKPRB.

The stream files are named AMQnnnnn.mm.FDC, where:
nnnnn Is the ID of the process reporting the error
mm Is a sequence number, normally 0

FFST errors can be classified as:
v Informational

These MQSeries errors report inconsistencies which are recoverable, or
performance related. For example:
– Message AMQ6125 with identifier X'20807412' (axE_OBJECT_MISSING) is

reported by STRMQM when a journal replay recreates a missing object.
– Message AMQ6150 (MQMRESOURCE BUSY) indicates that a job is waiting

for more than six minutes for a mutex lock. This is usually because the
machine is heavily loaded.

v Severe
These MQSeries errors report internal errors which can often be resolved by
quiescing and restarting the queue manager. For example:
– Message AMQ6110 (xecSTOP_ALL) can indicate that commit processing has

failed and that the unit of work needs to be rolled back when the queue
manager is restarted.

v Unexpected
These MQSeries errors report a complex variety of internal errors. If the probe
identifier ends with 99, the FFST has been caused by an unmonitored OS/400
exception. These errors cannot be fully evaluated without using the associated
job log.

Some typical FFST data is shown in Figure 11 on page 98.

FFST

Chapter 9. Analyzing problems 97

The Function Stack and Trace History are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do
when an FFST report is generated, apart from raising problems through the IBM
Support Centers.

Performance considerations
This section discusses:
v General design considerations - see “Application design considerations”
v Specific performance problems - see “Specific performance problems” on

page 100

Application design considerations
There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making MQSeries for AS/400 calls are discussed in the following
sections.

| |
| MQSeries First Failure Symptom Report |
| ===================================== |
| |
| Date/Time :- Tuesday January 11 13:19:12 2000 |
| Host Name :- test7 |
| PIDS :- 5733A38 |
| LVLS :- 510 |
| Product Long Name :- MQSeries for AS400 |
| Vendor :- IBM |
| Probe Id :- XC027028 |
| Application Name :- MQM |
| Component :- xcsRequestMutexSem |
| Build Date :- Jan 10 2000 (Collector) |
| File Descriptor :- 3 |
| UserID :- 00000159 |
| Job Name :- 284235/QP0ZSPWT |
| Process :- 00002729 |
| Thread :- 00000001 |
| Major Errorcode :-xecL_W_LONG_LOCK_WAIT |
| Minor Errorcode :- OK |
| Probe Type :- MSGAMQ6150 |
| Probe Severity :- 3 |
Probe Description :- MQM resource busy.

MQM Function Stack
xcsRequestMutexSem
xcsFFST

Owning PID
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84330:2:9f 00000AAA

Owning TID

SPP:0000 :1aefQP0ZSPWT 000159 284235 :84320:3:9f 00000001

SCB

SPP:0000 :1aefQP0ZSPWT 000159 284235 :843c0:4:9f 40000000 00000000 93E2EB80 000830F0.......lS.....0
SPP:0000 :1aefQP0ZSPWT 000159 284235 :843d0:5:9f 80000000 00000000 EEFE2487 FA0023B0...........g...¬
SPP:0000 :1aefQP0ZSPWT 000159 284235 :843e0:6:9f 80000000 00000000 EEFE2487 FA0023B0...........g...¬
SPP:0000 :1aefQP0ZSPWT 000159 284235 :843f0:7:9f 00000000 00000000 DFE25AE3 640B8AE0.........S!T...\
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84400:8:9f 80000000 00000000 EEFE2487 FA0023B0...........g...¬
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84410:9:9f 00000000 00000000 DFE25AE3 64050648.........S!T....
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84420:a:9f 01000000 00000000 EEFE2487 FA0023B0...........g...¬
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84430:b:9f 00000040 00000040 00000AAA 00000001...
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84440:c:9f 00000000 00000000 00000000 00000000................
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84450:d:9f 00000AAA 00000AA9 00000AA9 10000000.......z...z....
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84460:e:9f 00000000 00000014 00000000 00000000................
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84470:f:9f 00000000 00000000 00000000 00000000................
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84480:10:9f 00000000 00000000 00000000 00000000................
SPP:0000 :1aefQP0ZSPWT 000159 284235 :84490:11:9f 20000000 01000000 00000000 00000000................
SPP:0000 :1aefQP0ZSPWT 000159 284235 :844a0:12:9f 00000BD1 00000000 EEFE2487 FA0023B0...J.......g...¬
SPP:0000 :1aefQP0ZSPWT 000159 284235 :844b0:13:9f 80000000 00000000 EEFE2487 FA0023B0...........g...¬
SPP:0000 :1aefQP0ZSPWT 000159 284235 :844c0:14:9f 80000000 00000000 DFE25AE3 640C131C.........S!T....
SPP:0000 :1aefQP0ZSPWT 000159 284235 :844d0:15:9f 00000001 00000000 EEFE2487 FA0023B0...........g...¬
SPP:0000 :1aefQP0ZSPWT 000159 284235 :844e0:16:9f 80000000 00000000 EEFE2487 FA0023B0...........g...¬

Figure 11. FFST report

FFST

98 MQSeries for AS/400, V5.1 System Administration

For more information about application design, see the MQSeries Application
Programming Guide.

Effect of message length
Although MQSeries for AS/400 allows messages to hold up to 100 MB of data, the
amount of data in a message affects the performance of the application that
processes the message. To achieve the best performance from your application, you
should send only the essential data in a message; for example, in a request to debit
a bank account, the only information that may need to be passed from the client to
the server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are journaled. Journaling messages reduces the performance of
your application, so you should use persistent messages for essential data only. If
the data in a message can be discarded if the queue manager stops or fails, use a
nonpersistent message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. The use of the MQGET call in this way affects the performance
of your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLen attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be as high as 2 GB, the maximum allowed by MQSeries for
AS/400.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with messages
that are currently unusable, while other tasks might be waiting to get these
messages. This has implications in terms of storage, and in terms of threads tied
up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Performance considerations

Chapter 9. Analyzing problems 99

Number of threads in use
An application may require a large number of threads. Each queue manager
process is allocated a maximum allowable number of threads.

If some applications are troublesome, it could be due to their design using too
many threads. Consider whether the application takes into account this possibility
and that it takes actions either to stop or to report this type of occurrence.

The maximum number of threads that AS/400 allows is 4095. However, the default
is 64. MQSeries makes available up to 63 threads to its processes.

Specific performance problems
This section discusses the problems of storage and poor performance.

Storage problems
If you receive the system message CPF0907. Serious storage condition may exist
it is possible that you are filling up the space associated with the MQSeries for
AS/400 queue managers.

Is your application or MQSeries for AS/400 running slowly?
If your application is running slowly, this could indicate that it is in a loop, or
waiting for a resource that is not available.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity. This type of problem is probably
worst at peak system load times, typically at midmorning and midafternoon. (If
your network extends across more than one time zone, peak system load might
seem to you to occur at some other time.)

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, then a poorly designed
application program is probably to blame. This could manifest itself as a problem
that only occurs when certain queues are accessed.

QTOTJOB and QADLTOTJ are system values worth investigating.

The following symptoms might indicate that MQSeries for AS/400 is running
slowly:
v If your system is slow to respond to MQSeries for AS/400 commands.
v If repeated displays of the queue depth indicate that the queue is being

processed slowly for an application with which you would expect a large
amount of queue activity.

v Is MQ Trace being run?

Performance considerations

100 MQSeries for AS/400, V5.1 System Administration

Chapter 10. Configuring MQSeries

This chapter explains how to change the behavior of one or more queue managers,
to suit your installation’s needs.

You change MQSeries configuration information by modifying the values specified
on a set of configuration attributes (or parameters) that govern MQSeries.

You change this configuration information by editing the MQSeries configuration
files.

This chapter:
v Describes the AS/400 methods for reconfiguring MQSeries in MQSeries

configuration files.
v Describes the attributes you can use to modify MQSeries configuration

information in “Attributes for changing MQSeries configuration information” on
page 103.

v Describes the attributes you can use to modify queue manager configuration
information in “Changing queue manager configuration information” on page
106.

v Provides examples of mqs.ini and qm.ini files for MQSeries for AS/400 in
“Example mqs.ini and qm.ini files” on page 109.

MQSeries configuration files
You modify MQSeries configuration attributes within:
v An MQSeries configuration file (mqs.ini) to effect changes for MQSeries on the

node as a whole. There is one mqs.ini file for each MQSeries installation.
v A queue manager configuration file (qm.ini) to effect changes for specific queue

managers. There is one qm.ini file for each queue manager on the node.

Note that .ini files are stream files resident in the IFS.

A configuration file (which can be referred to as a stanza file) contains one or
more stanzas, which are groups of lines in the .ini file that together have a
common function or define part of a system, for example, log functions and
channel functions.

Any changes you make to a configuration file will not take effect until the next
time the queue manager is started.

Editing configuration files
Before attempting to edit a configuration file, back it up so that you have a copy
you can revert to if the need arises.

You can edit configuration files either:
v Automatically, using commands that change the configuration of queue

managers on the node
v Manually, using the EDTF CL editor

© Copyright IBM Corp. 1994, 2000 101

You can edit the default values in the MQSeries configuration files after
installation.

If you set an incorrect value on a configuration file attribute, the value is ignored
and an operator message is issued to indicate the problem. (The effect is the same
as missing out the attribute entirely.)

When you create a new queue manager, you should:
v Back up the MQSeries configuration file
v Back up the new queue manager configuration file

When do you need to edit a configuration file?
You may need to edit a configuration file if, for example you:
v Lose a configuration file; recover from backup if possible.
v Need to move one or more queue managers to a new directory.
v Need to change your default queue manager; this could happen if you

accidentally delete the existing queue manager.
v Are advised to do so by your IBM Support Center.

Configuration file priorities
The attribute values of a configuration file are set according to the following
priorities:
v Parameters entered on the command line take precedence over values defined in

the configuration files.
v Values defined in the qm.ini files take precedence over values defined in the

mqs.ini file.

The MQSeries configuration file, mqs.ini
The MQSeries configuration file, mqs.ini, contains information relevant to all the
queue managers on an MQSeries installation. It is created automatically during
installation. In particular, the mqs.ini file is used to locate the data associated with
each queue manager.

The mqs.ini file is stored in /QIBM/UserData/mqm

The mqs.ini file contains:
v The names of the queue managers
v The name of the default queue manager
v The location of the files associated with each of them

Queue manager configuration files, qm.ini
A queue manager configuration file, qm.ini, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. The qm.ini file is automatically created when the queue manager
with which it is associated is created.

A qm.ini file is held in the <mqmdata directory>/QMNAME/qm.ini, where the:
v <mqmdata directory> is /QIBM/UserData/mqm by default.
v QMNAME is the name of the queue manager to which the initialization file applies.

Notes:

1. You can change the <mqmdata directory> in the mqs.ini file.

Configuration files

102 MQSeries for AS/400, V5.1 System Administration

2. The queue manager name can be up to 48 characters in length. However, this
does not guarantee that the name is valid or unique. Therefore, a directory
name is generated based on the queue manager name. This process is known
as name transformation. See “Understanding MQSeries queue manager library
names” on page 111 for further information.

Attributes for changing MQSeries configuration information
The following groups of attributes appear in mqs.ini:
v The AllQueueManagers stanza
v “The DefaultQueueManager stanza” on page 104
v “The ExitProperties stanza” on page 104
v “The QueueManager stanza” on page 105

Note: In the descriptions of the stanzas, the value underlined is the default value
and the “|” symbol means “or”.

The AllQueueManagers stanza
The AllQueueManagers stanza can specify:
v The path to the qmgrs directory where the files associated with a queue

manager are stored
v The path to the executable library
v The method for converting EBCDIC-format data to ASCII format

DefaultPrefix=directory_name
This attribute specifies the path to the qmgrs directory, below which the queue
manager data is kept.

If you change the default prefix for the queue manager, you must replicate the
directory structure that was created at installation time.

In particular, the qmgrs structure must be created. You must stop MQSeries
before changing the default prefix, and restart MQSeries only after the
structures have been moved to the new location and the default prefix has
been changed.

As an alternative to changing the default prefix, you can use the environment
variable MQSPREFIX to override the DefaultPrefix for the crtmqm command.

ConvEBCDICNewline=NL_TO_LF|TABLE|ISO
EBCDIC code pages contain a new line (NL) character that is not supported by
ASCII code pages; although some ISO variants of ASCII do contain an
equivalent.

Use the ConvEBCDICNewline attribute to specify the method MQSeries is to
use when converting the EBCDIC NL character into ASCII format.

NL_TO_LF
Specify NL_TO_LF if you want the EBCDIC NL character (X'15') converted
to the ASCII line feed character, LF (X'0A'), for all EBCDIC to ASCII
conversions.

NL_TO_LF is the default.

Queue manager configuration file

Chapter 10. Configuring MQSeries 103

TABLE
Specify TABLE if you want the EBCDIC NL character converted according
to the conversion tables used on your platform for all EBCDIC to ASCII
conversions.

Note that the effect of this type of conversion may vary from platform to
platform and from language to language; while on the same platform, the
behavior may vary if you use different CCSIDs.

ISO
Specify ISO if you want:
v ISO CCSIDs to be converted using the TABLE method
v All other CCSIDs to be converted using the NL_TO_CF method.

Possible ISO CCSIDs are shown in Table 11.

Table 11. List of possible ISO CCSIDs

CCSID Code Set

819 ISO8859-1

912 ISO8859-2

915 ISO8859-5

1089 ISO8859-6

813 ISO8859-7

916 ISO8859-8

920 ISO8859-9

1051 roman8

If the ASCII CCSID is not an ISO subset, ConvEBCDICNewline defaults to
NL_TO_LF.

The DefaultQueueManager stanza
The DefaultQueueManager stanza specifies the default queue manager for the node.

Name=default_queue_manager
The default queue manager processes any commands for which a queue
manager name is not explicitly specified. The DefaultQueueManager attribute is
automatically updated if you create a new default queue manager. If you
inadvertently create a new default queue manager and then want to revert to
the original, you must alter the DefaultQueueManager attribute manually.

The ExitProperties stanza
The ExitProperties stanza specifies configuration options used by queue manager
exit programs.

CLWLmode=SAFE|FAST
The cluster workload exit, CLWL, allows you to specify which cluster queue in
the cluster is to be opened in response to an MQI call (MQOPEN or MQPUT
and so on). The CLWL exit runs either in FAST mode or SAFE mode
depending on the value you specify on the CLWLMode attribute. If the
CLWLMode attribute is not specified, the cluster workload exit runs in SAFE
mode.

Queue manager configuration file

104 MQSeries for AS/400, V5.1 System Administration

SAFE
The SAFE option specifies that the CLWL exit is to run in a separate
process to the queue manager. This is the default.

If a problem arises with the user-written CLWL exit when running in SAFE
mode, the following happens:
v The CLWL server process (amqzlwa0) fails.
v The queue manager restarts the CLWL server process.
v The error is reported to you in the error log. If an MQI call is in

progress, you receive notification in the form of a bad return code.

The integrity of the queue manager is preserved.

Note: There is a possible performance overhead associated with running
the CLWL exit in a separate process.

FAST
Specify FAST if you want the cluster exit to run inline in the queue
manager process.

Specifying this option improves performance by avoiding the overheads
associated with running in SAFE mode, but does so at the expense of
queue manager integrity. Therefore, you should run the CLWL exit in FAST
mode only if you are convinced that there are no problems with your
CLWL exit, and you are particularly concerned about performance
overheads.

If a problem arises when the CLWL exit is running in FAST mode, the
queue manager will fail and you run the risk of the integrity of the queue
manager being compromised.

The QueueManager stanza
There is one QueueManager stanza for every queue manager. These attributes
specify the queue manager name, and the name of the directory containing the
files associated with that queue manager. The name of the directory is based on the
queue manager name, but is transformed if the queue manager name is not a valid
file name.

See “Understanding MQSeries queue manager library names” on page 111 for more
information about name transformation.

Name=queue_manager_name
This attribute specifies the name of the queue manager.

Prefix=prefix
This attribute specifies where the queue manager files are stored. By default,
this is the same as the value specified on the DefaultPrefix attribute of the
AllQueueManager stanza in the mqs.ini file.

Directory=name
This attribute specifies the name of the subdirectory under the <prefix>\QMGRS
directory where the queue manager files are stored. This name is based on the
queue manager name but can be transformed if there is a duplicate name, or if
the queue manager name is not a valid file name.

Library=name
This attribute specifies the name of the library where OS/400 objects that apply

Queue manager configuration file

Chapter 10. Configuring MQSeries 105

to this queue manager, for example, journals and journal receivers, are stored.
This name is based on the queue manager name but can be transformed if
there is a duplicate name, or if the queue manager name is not a valid library
name.

Changing queue manager configuration information
The following groups of attributes can appear in a qm.ini file particular to a given
queue manager, or used to override values set in mqs.ini.
v “The Log stanza” on page 106
v “The Channels stanza” on page 106
v “The TCP stanza” on page 108

The Log stanza
The Log stanza specifies the log attributes for a particular queue manager. By
default, these are inherited from the settings specified in the LogDefaults stanza in
the mqs.ini file when the queue manager is created.

Only change attributes of this stanza if this particular queue manager needs to be
configured differently from your other ones.

The values specified on the attributes in the qm.ini file are read when the queue
manager is started. The file is created when the queue manager is created.

LogPath=library_name
The name of the library used to store journals and journal receivers for this
queue manager.

LogReceiverSize
Journal receiver size.

The Channels stanza
The Channels stanza contains information about the channels.

MaxChannels=100|number
This attribute specifies the maximum number of channels allowed. The default
is 100.

MaxActiveChannels=MaxChannels_value
This attribute specifies the maximum number of channels allowed to be active
at any time. The default is the value specified on the MaxChannels attribute.

MaxInitiators=3|number
This attribute specifies the maximum number of initiators.

MQIBINDTYPE=FASTPATH|STANDARD
This attribute specifies the binding for applications.

FASTPATH
Channels connect using MQCONNX FASTPATH. That is, there is no agent
process.

STANDARD
Channels connect using STANDARD.

AdoptNewMCA=NO|SVR|SNDR|RCVR|CLUSRCVR|ALL|FASTPATH
If MQSeries receives a request to start a channel but finds that an amqcrsta
process already exists for the same channel, the existing process must be

Queue manager configuration file

106 MQSeries for AS/400, V5.1 System Administration

stopped before the new one can start. The AdoptNewMCA attribute allows you to
control the termination of an existing process and the startup of a new one for
a specified channel type.

If you specify the AdoptNewMCA attribute for a given channel type but the new
channel fails to start because the channel is already running:
1. The new channel tries to stop the previous one by politely inviting it to

end.
2. If the previous channel server does not respond to this invitation by the

time the AdoptNewMCATimeout wait interval expires, the process (or the
thread) for the previous channel server is killed.

3. If the previous channel server has not ended after step 2, and after the
AdoptNewMCATimeout wait interval expires for a second time, MQSeries
ends the channel with a “CHANNEL IN USE” error.

You specify one or more values, separated by commas or blanks, from the
following list:

NO The AdoptNewMCA feature is not required. This is the default.

SVR Adopt server channels.

SNDR Adopt sender channels.

RCVR Adopt receiver channels.

CLUSRCVR
Adopt cluster receiver channels.

ALL Adopt all channel types, except for FASTPATH channels.

FASTPATH
Adopt the channel if it is a FASTPATH channel. This happens only if
the appropriate channel type is also specified, for example,
AdoptNewMCA=RCVR,SVR,FASTPATH.

Note
The AdoptNewMCA attribute may behave in an unpredictable
fashion with FASTPATH channels because of the internal design
of the queue manager. Therefore exercise great caution when
enabling the AdoptNewMCA attribute for FASTPATH channels.

AdoptNewMCATimeout=60|1—3600
This attribute specifies the amount of time, in seconds, that the new process
should wait for the old process to end. Specify a value, in seconds, in the
range 1—3600. The default value is 60.

AdoptNewMCACheck=QM|ADDRESS|NAME|ALL
The AdoptNewMCACheck attribute allows you to specify the type checking
required when enabling the AdoptNewMCA attribute. It is important for you to
perform all three of the following checks, if possible, to protect your channels
from being, inadvertently or maliciously, shut down. At the very least check
that the channel names match.

Specify one or more values, separated by commas or blanks, from the
following:

Queue manager configuration file

Chapter 10. Configuring MQSeries 107

QM
This means that listener process should check that the queue manager
names match.

ADDRESS
This means that the listener process should check the communications
address. For example, the TCP/IP address.

NAME
This means that the listener process should check that the channel names
match.

ALL
You want the listener process to check for matching queue manager names,
the communications address, and for matching channel names.

AdoptNewMCACheck=NAME,ADDRESS is the default for FAP1, FAP2, and FAP3,
while AdoptNewMCACheck=NAME,ADDRESS,QM is the default for FAP4 and later.

The TCP stanza
This stanza specifies network protocol configuration parameters. They override the
default attributes for channels.

Note: Only attributes representing changes to the default values need to be
specified.

TCP
The following attributes can be specified:

Port=1414|port_number
This attribute specifies the default port number, in decimal notation, for
TCP/IP sessions. The “well known” port number for MQSeries is 1414.

KeepAlive=YES|NO
Use this attribute to switch the KeepAlive function on or off.
KeepAlive=YES causes TCP/IP to check periodically that the other end of
the connection is still available. If it is not, the channel is closed.

ListenerBacklog=number
When receiving on TCP/IP, a maximum number of outstanding connection
requests is set. This can be considered to be a backlog of requests waiting
on the TCP/IP port for the listener to accept the request. The default
listener backlog value for AS/400 is 255.

If the backlog reaches the value of 255, the TCP/IP connection is rejected
and the channel will not be able to start.

For MCA channels, this results in the channel going into a RETRY state
and retrying the connection at a later time.

For client connections, the client receives an
MQRC_Q_MGR_NOT_AVAILABLE reason code from MQCONN and
should retry the connection at a later time.

The ListenerBacklog attribute allows you to override the default number
of outstanding requests for the TCP/IP listener.

Queue manager configuration file

108 MQSeries for AS/400, V5.1 System Administration

Note: Some operating systems support a larger value than the default
shown. If necessary, this can be used to avoid reaching the
connection limit.

Example mqs.ini and qm.ini files
Figure 12 shows an example of an mqs.ini file.

Figure 13 on page 110 shows how groups of attributes might be arranged in a
queue manager configuration file.

#***#
#* Module Name: mqs.ini *#
#* Type : MQSeries Configuration File *#
#* Function : Define MQSeries resources for the node *#
#* *#
#***#
#* Notes : *#
#* 1) This is an example MQSeries configuration file *#
#* *#
#***#
AllQueueManagers:
#***#
#* The path to the qmgrs directory, below which queue manager data *#
#* is stored *#
#***#
DefaultPrefix=/QIBM/UserData/mqm

QueueManager:
Name=saturn.queue.manager
Prefix=/QIBM/UserData/mqm
Library=QMSATURN.Q
Directory=saturn!queue!manager

QueueManager:
Name=pluto.queue.manager
Prefix=/QIBM/UserData/mqm
Library=QMPLUTO.QU
Directory=pluto!queue!manager

DefaultQueueManager:
Name=saturn.queue.manager

Figure 12. Example of an MQSeries configuration file

Queue manager configuration file

Chapter 10. Configuring MQSeries 109

Notes:

1. MQSeries on the node is using the default locations for queue managers and
the journals.

2. The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the file system.

3. Because the MQSeries configuration file is used to locate the data associated
with queue managers, a nonexistent or incorrect configuration file can cause
some or all MQSeries commands to fail. Also, applications cannot connect to a
queue manager that is not defined in the MQSeries configuration file.

#***#
#* Module Name: qm.ini *#
#* Type : MQSeries queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* *#
#***#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#
#* *#
#***#
Log:

LogPath=QMSATURN.Q
LogReceiverSize=65536

CHANNELS:
MaxChannels = 20 ; Maximum number of Channels allowed.

; Default is 100.
MaxActiveChannels = 10 ; Maximum number of Channels allowed to be

; active at any time. The default is the
; value of MaxChannels.

TCP: ; TCP/IP entries.
KeepAlive = Yes ; Switch KeepAlive on

Figure 13. Example queue manager configuration file

Queue manager configuration file

110 MQSeries for AS/400, V5.1 System Administration

Appendix A. MQSeries names and default objects

This appendix describes the requirements for MQSeries object names, queue
manager name transformations, and lists the system default objects.

MQSeries object names
The names of the following MQSeries objects can have up to 48 single-byte
characters:
v Queue manager
v Queues
v Process definitions
v Namelists

The names of channels are restricted to 20 single-byte characters.

The characters that can be used for all MQSeries names are:
v Uppercase A–Z
v Numerics 0–9
v Period (.)
v Underscore (_)
v Lowercase a–z (see note 1)
v Forward slash (/) (see note 1)
v Percent sign (%) (see note 1)

Notes:

1. Lowercase a–z, forward slash, and percent are special characters. If you use any
of these characters in a name, the name must be enclosed in quotation marks.
(Lowercase a–z characters are changed to uppercase if the name is not enclosed
in quotation marks.)
You cannot use lowercase characters on systems using EBCDIC Katakana.

2. Leading or embedded blanks are not allowed.

Understanding MQSeries queue manager library names
A library is associated with each queue manager and library names can not be
more than 10 characters long. However in MQSeries, you can give a queue
manager a name containing up to 48 characters.

For example, you can name a queue manager:
ACCOUNTING.SERVICES.QUEUE.MANAGER

The queue manager name must therefore be transformed to give a unique library
name. The rules for governing this transformation are:
1. Add QM to the start of the name
v Truncate the name to 10 characters.
v Convert individual characters so that ‘%’ becomes ‘_”, and ‘/’ becomes ‘#’.

After this transformation, ACCOUNTING.SERVICES.QUEUE.MANAGER becomes
QMACCOUNTI.

2. If the name is still not valid, or the library exists:
v Truncate the name transformed above to 8 characters.

© Copyright IBM Corp. 1994, 2000 111

v Append a two-character numeric suffix.

After this transformation, ACCOUNTING.SERVICES.QUEUE.MGR2 also becomes
QMACCOUNTI, but if a library already exists with this name, it becomes
QMACCOUN00.

3. If the name is still not valid, increment the two-character numeric suffix by one
and apply rule 2 on page 111 again.
This suffix can be incremented up to 99 times to find a valid name.

Understanding MQSeries IFS directories and files
The AS/400 Integrated File System is used extensively by MQSeries to store data.
For more information about the IFS see the Integrated File System Introduction

Each MQSeries queue, queue manager, namelist, and process object is represented
by a file. Because object names are not necessarily valid file names, the queue
manager converts the object name into a valid file name where necessary.

The path to a queue manager directory is formed from the following:
v A prefix, which is defined in the queue manager configuration file, qm.ini. The

default prefix is /QIBM/UserData/mqm.
v A literal – qmgrs.
v A coded queue manager name, which is the queue manager name transformed

into a valid directory name. For example, the queue manager queue.manager is
represented by queue!manager.

This process is referred to as name transformation.

IFS Queue manager name transformation
In MQSeries, you can give a queue manager a name containing up to 48
characters.

For example, you can name a queue manager QUEUE.MANAGER.ACCOUNTING.SERVICES.

In the same way that a library is created for each queue manager, each queue
manager is also represented by a file. There are limitations to the maximum length
a file name can have, and to the characters that can be used in the name. As a
result, the names of IFS files representing objects are automatically transformed to
meet the requirements of the file system.

The rules governing the transformation of a queue manager name, using the
example of a queue manager with the name queue.manager, are as follows:
1. Transform individual characters: .becomes! and / becomes &.
2. If the name is still not valid:

a. Truncate it to eight characters
b. Append a three-character numeric suffix

For example, assuming the default prefix, the queue manager name in MQSeries
for AS/400 becomes /QIBM/UserData/mqm/qmgrs/queue!manager.

Object name transformation
Object names are not necessarily valid file system names, therefore, the object
names may need to be transformed. The method used is different from that for
queue manager names because, although there only a few queue manager names

MQSeries file names

112 MQSeries for AS/400, V5.1 System Administration

for each machine, there can be a large number of other objects for each queue
manager. Only process definitions, queues, and namelists are represented in the file
system; channels are not affected by these considerations.

When a new name is generated by the transformation process there is no simple
relationship with the original object name. You can use the DSPMQMOBJN
command to view the transformed names for MQSeries objects.

System and default objects
When you create a queue manager using the CRTMQM command, the system
objects and the default objects are created automatically.
v The system objects are those MQSeries objects required for the operation of a

queue manager or channel.
v The default objects define all of the attributes of an object. When you create an

object, such as a local queue, any attributes that you do not specify explicitly are
inherited from the default object.

The following tables list the system and default objects created by CRTMQM:
v Table 12 lists the system and default queue objects.
v Table 13 lists the system and default channel objects.
v Table 14 lists the system and default process objects.

Table 12. System and default objects - queues

Object name Description

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for
remote MQSC commands and PCF
commands.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue which holds the
synchronization data for channels.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the
repository queue manager.

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository
information.

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to
all clusters.

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered message queue).

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

MQSeries file names

Appendix A. MQSeries names and default objects 113

Table 13. System and default objects - channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster
used to supply default values for any
attributes not specified when a
CLUSRCVR channel is created on a queue
manager in the cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster used
to supply default values for any attributes
not specified when a CLUSSDR channel is
created on a queue manager in the cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.SVRCONN Default server-connection channel.

Table 14. System and default objects - processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Default objects

114 MQSeries for AS/400, V5.1 System Administration

Appendix B. Sample resource definitions

This appendix contains the AMQSAMP4 sample AS/400 CL program.
/**/
/* */
/* Program name: AMQSAMP4 */
/* */
/* Description: Sample CL program defining MQM queues */
/* to use with the sample programs */
/* Can be run, with changes as needed, after */
/* starting the MQM */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 5763-MQ2 */
/* (C) Copyright IBM Corporation 1993, 1996. */
/* */
/* Status: Version 3 Release 2.0 */
/* */
/**/
/* */
/* Function: */
/* */
/* */
/* AMQSAMP4 is a sample CL program to create or reset the */
/* MQI resources to use with the sample programs. */
/* */
/* This program, or a similar one, can be run when the MQM */
/* is started - it creates the objects if missing, or resets */
/* their attributes to the prescribed values. */
/* */
/* */
/* */
/* */
/* Exceptions signaled: none */
/* Exceptions monitored: none */
/* */
/* AMQSAMP4 has no parameters. */
/* */
/**/

PGM

/**/
/* EXAMPLES OF DIFFERENT QUEUE TYPES */
/* */
/* Create local, alias and remote queues */
/* */
/* Uses system defaults for most attributes */
/* */
/**/
/* Create a local queue */

CRTMQMQ QNAME(’SYSTEM.SAMPLE.LOCAL’) +
QTYPE(*LCL) REPLACE(*YES) +

+
TEXT(’Sample local queue’) /* description */+
SHARE(*YES) /* Shareable */+
DFTMSGPST(*YES) /* Persistent messages OK */

/* Create an alias queue */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.ALIAS’) +

QTYPE(*ALS) REPLACE(*YES) +

© Copyright IBM Corp. 1994, 2000 115

+
TEXT(’Sample alias queue’) +
DFTMSGPST(*YES) /* Persistent messages OK */+
TGTQNAME(’SYSTEM.SAMPLE.LOCAL’)

/* Create a remote queue - in this case, an indirect reference */
/* is made to the sample local queue on OTHER queue manager */

CRTMQMQ QNAME(’SYSTEM.SAMPLE.REMOTE’) +
QTYPE(*RMT) REPLACE(*YES) +

+
TEXT(’Sample remote queue’)/* description */+
DFTMSGPST(*YES) /* Persistent messages OK */+
RMTQNAME(’SYSTEM.SAMPLE.LOCAL’) +
RMTMQMNAME(OTHER) /* Queue is on OTHER */

/* Create a transmission queue for messages to queues at OTHER */
/* By default, use remote node name */

CRTMQMQ QNAME(’OTHER’) /* transmission queue name */+
QTYPE(*LCL) REPLACE(*YES) +
TEXT(’transmision queue to OTHER’) +
USAGE(*TMQ) /* transmission queue */

/**/
/* SPECIFIC QUEUES AND PROCESS USED BY SAMPLE PROGRAMS */
/* */
/* Create local queues used by sample programs */
/* Create MQI process associated with sample initiation queue */
/* */
/**/
/* General reply queue */

CRTMQMQ QNAME(’SYSTEM.SAMPLE.REPLY’) +
QTYPE(*LCL) REPLACE(*YES) +

+
TEXT(’General reply queue’) +
DFTMSGPST(*YES) /* Persistent messages OK */

/* Queue used by AMQSINQA */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.INQ’) +

QTYPE(*LCL) REPLACE(*YES) +
+

TEXT(’queue for AMQSINQA’) +
SHARE(*YES) /* Shareable */+
DFTMSGPST(*YES)/* Persistent messages OK */+

+
TRGENBL(*YES) /* Trigger control on */+
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME(’SYSTEM.SAMPLE.INQPROCESS’) +
INITQNAME(’SYSTEM.SAMPLE.TRIGGER’)

/* Queue used by AMQSSETA */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.SET’) +

QTYPE(*LCL) REPLACE(*YES) +
+

TEXT(’queue for AMQSSETA’) +
SHARE(*YES) /* Shareable */ +
DFTMSGPST(*YES)/* Persistent messages OK */ +

+
TRGENBL(*YES) /* Trigger control on */ +
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME(’SYSTEM.SAMPLE.SETPROCESS’) +
INITQNAME(’SYSTEM.SAMPLE.TRIGGER’)

/* Queue used by AMQSECHA */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.ECHO’) +

QTYPE(*LCL) REPLACE(*YES) +
+

TEXT(’queue for AMQSECHA’) +

AMQSAMP4

116 MQSeries for AS/400, V5.1 System Administration

SHARE(*YES) /* Shareable */ +
DFTMSGPST(*YES)/* Persistent messages OK */ +

+
TRGENBL(*YES) /* Trigger control on */ +
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME(’SYSTEM.SAMPLE.ECHOPROCESS’) +
INITQNAME(’SYSTEM.SAMPLE.TRIGGER’)

/* Initiation Queue used by AMQSTRG4, sample trigger process */
CRTMQMQ QNAME(’SYSTEM.SAMPLE.TRIGGER’) +

QTYPE(*LCL) REPLACE(*YES) +
TEXT(’trigger queue for sample programs’)

/* MQI Processes associated with triggered sample programs */
/* */
/***** Note - there are versions of the triggered samples ******/
/***** in different languages - set APPID for these ******/
/***** process to the variation you want to trigger ******/
/* */

CRTMQMPRC PRCNAME(’SYSTEM.SAMPLE.INQPROCESS’) +
REPLACE(*YES) +

+
TEXT(’trigger process for AMQSINQA’) +
ENVDATA(’JOBPTY(3)’) /* Submit parameter */ +

/** Select the triggered program here **/ +
APPID(’AMQSINQA’) /* C */ +

/* APPID(’AMQ0INQA’) /* COBOL */ +
/* APPID(’AMQ1INQ4’) /* RPG - OPM */ +
/* APPID(’AMQ2INQ4’) /* RPG - ILE */

CRTMQMPRC PRCNAME(’SYSTEM.SAMPLE.SETPROCESS’) +
REPLACE(*YES) +

+
TEXT(’trigger process for AMQSSETA’) +
ENVDATA(’JOBPTY(3)’) /* Submit parameter */ +

/** Select the triggered program here **/ +
APPID(’AMQSSETA’) /* C */ +

/* APPID(’AMQ0SETA’) /* COBOL */ +
/* APPID(’AMQ1SET4’) /* RPG - OPM */ +
/* APPID(’AMQ2SET4’) /* RPG - ILE */

CRTMQMPRC PRCNAME(’SYSTEM.SAMPLE.ECHOPROCESS’) +
REPLACE(*YES) +

+
TEXT(’trigger process for AMQSECHA’) +
ENVDATA(’JOBPTY(3)’) /* Submit parameter */ +

/** Select the triggered program here **/ +
APPID(’AMQSECHA’) /* C */ +

/* APPID(’AMQ0ECHA’) /* COBOL */ +
/* APPID(’AMQ1ECH4’) /* RPG - OPM */ +
/* APPID(’AMQ2ECH4’) /* RPG - ILE */

/**/
/* Normal return. */
/**/

RETURN
ENDPGM

/**/
/* END OF AMQSAMP4 */
/**/

AMQSAMP4

Appendix B. Sample resource definitions 117

AMQSAMP4

118 MQSeries for AS/400, V5.1 System Administration

Appendix C. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

© Copyright IBM Corp. 1994, 2000 119

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

120 MQSeries for AS/400, V5.1 System Administration

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:

AIX Application System/400 AS/400
BookManager C/400 CICS
COBOL/400 FFST First Failure Support

Technology
IBM IMS MQSeries
MQSeries Three Tier MVS/ESA OS/2
OS/400 RACF VisualAge

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Intel is a trademark of Intel Corporation in the United States and/or other
countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service
marks of others.

Notices

Appendix C. Notices 121

About this book

122 MQSeries for AS/400, V5.1 System Administration

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
administration bag. In the MQAI, a type of data bag
that is created for administering MQSeries by implying
that it can change the order of data items, create lists,
and check selectors within a message.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

Advanced Program-to-Program Communication
(APPC). The general facility characterizing the LU 6.2
architecture and its various implementations in
products.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

APPC. Advanced Program-to-Program
Communication.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

bag. See data bag.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

© Copyright IBM Corp. 1994, 2000 123

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CICS transaction. In CICS, a unit of application
processing, usually comprising one or more units of
work.

circular logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command bag. In the MQAI, a type of bag that is
created for administering MQSeries objects, but cannot
change the order of data items nor create lists within a
message.

command processor. The MQSeries component that
processes commands.

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

completion code. A return code indicating how an
MQI call has ended.

configuration file. In MQSeries on UNIX systems,
MQSeries for AS/400, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a file that contains
configuration information related to, for example, logs,
communications, or installable services. Synonymous
with .ini file. See also stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

controlled shutdown. See quiesced shutdown.

D
data bag. In the MQAI, a bag that allows you to
handle properties (or parameters) of objects.

124 MQSeries for AS/400, V5.1 System Administration

data item. In the MQAI, an item contained within a
data bag. This can be an integer item or a
character-string item, and a user item or a system item.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written
programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE).
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log. See application log.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer. A tool provided by Windows NT to
examine and manage log files.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST). Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

v MQSeries data conversion interface (DCI)

v MQSeries message channel interface (MCI)

v MQSeries name service interface (NSI)

v MQSeries security enabling interface (SEI)

v MQSeries trigger monitor interface (TMI)

G
get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

H
handle. See connection handle and object handle.

I
ILE. Integrated Language Environment.

Glossary of terms and abbreviations 125

immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

Integrated Language Environment (ILE). The AS/400
Integrated Language Environment. This replaces the
AS/400 Original Program Model (OPM).

.ini file. See configuration file.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

installable services. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name service,
and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Internet Protocol (IP). A protocol used to route data
from its source to its destination in an Internet
environment. This is the base layer, on which other
protocol layers, such as TCP and UDP are built.

IP. Internet Protocol.

L
linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence of
files. New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale. On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log control file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW). See unit of work.

LU 6.2. A type of logical unit (LU) that supports
general communication between programs in a
distributed processing environment.

M
MCA. Message channel agent.

MCI. Message channel interface.

media image. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows

126 MQSeries for AS/400, V5.1 System Administration

NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message. In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

name service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

name transformation. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system
being used. Externally, the queue manager name
remains unchanged.

NetBIOS. Network Basic Input/Output System. An
operating system interface for application programs
used on IBM personal computers that are attached to
the IBM Token-Ring Network.

New Technology File System (NTFS). A Windows NT
recoverable file system that provides security for files.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

Glossary of terms and abbreviations 127

NTFS. New Technology File System.

null character. The character that is represented by
X'00'.

O
OAM. Object authority manager.

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for AS/400, and MQSeries for
Windows NT, the default authorization service for
command and object management. The OAM can be
replaced by, or run in combination with, a
customer-supplied security service.

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

OPM. Original Program Model.

Original Program Model (OPM). The AS/400
Original Program Model. This is no longer supported
on MQSeries. It is replaced by the Integrated Language
Environment (ILE).

OTMA. Open Transaction Manager Access.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P
PCF. Programmable command format.

PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly

requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal. In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

128 MQSeries for AS/400, V5.1 System Administration

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

Registry. In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor. In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive. In Windows NT, the structure of the
data stored in the Registry.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

repository. A collection of information about the
queue managers that are members of a cluster. This
information includes queue manager names, their
locations, their channels, what queues they host, and so
on.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

Glossary of terms and abbreviations 129

S
security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

shell. In the AIX and UNIX environments, a software
interface between a user and the operating system of a
computer. Shell programs interpret commands and
communicate them to the operating system.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SNA. Systems Network Architecture.

SPX. Sequenced Packet Exchange transmission
protocol.

stanza. A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

system bag. A type of data bag that is created by the
MQAI.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

130 MQSeries for AS/400, V5.1 System Administration

T
TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

tranid. See transaction identifier.

transaction. See unit of work and CICS transaction.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

Transmission Control Protocol (TCP). Part of the
TCP/IP protocol suite. A host-to-host protocol between
hosts in packet-switched communications networks.
TCP provides connection-oriented data stream delivery.
Delivery is reliable and orderly.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A suite of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UDP. User Datagram Protocol.

UIS. User identifier service.

undelivered-message queue. See dead-letter queue.

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user bag. In the MQAI, a type of data bag that is
created by the user.

User Datagram Protocol (UDP). Part of the TCP/IP
protocol suite. A packet-level protocol built directly on
the Internet Protocol layer. UDP is a connectionless and
less reliable alternative to TCP. It is used for
application-to-application programs between TCP/IP
host systems.

user identifier service (UIS). In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
X/Open XA. The X/Open Distributed Transaction
Processing XA interface. A proposed standard for
distributed transaction communication. The standard
specifies a bidirectional interface between resource
managers that provide access to shared resources

Glossary of terms and abbreviations 131

within transactions, and between a transaction service
that monitors and resolves transactions.

132 MQSeries for AS/400, V5.1 System Administration

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS,

V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64

UNIX), V2.2.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V2.1
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT, V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a
brief introduction to the benefits of
MQSeries. It is intended to support the
purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing

An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what
MQSeries is, how it works, and how it
can solve some classic interoperability
problems. This book is intended for a
more technical audience than the
MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349,
describes some key MQSeries concepts,
identifies items that need to be considered
before MQSeries is installed, including

storage requirements, backup and
recovery, security, and migration from
earlier releases, and specifies hardware
and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book,
SC33-1872, defines the concepts of
distributed queuing and explains how to
set up a distributed queuing network in a
variety of MQSeries environments. In
particular, it demonstrates how to (1)
configure communications to and from a
representative sample of MQSeries
products, (2) create required MQSeries
objects, and (3) create and configure
MQSeries channels. The use of channel
exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters,
SC34-5349, describes MQSeries clustering.
It explains the concepts and terminology
and shows how you can benefit by taking
advantage of clustering. It details changes
to the MQI, and summarizes the syntax of
new and changed MQSeries commands. It
shows a number of examples of tasks you
can perform to set up and maintain
clusters of queue managers.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632,
describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book,
SC33-1873, supports day-to-day
management of local and remote
MQSeries objects. It includes topics such
as security, recovery and restart,
transactional support, problem

© Copyright IBM Corp. 1994, 2000 133

determination, and the dead-letter queue
handler. It also includes the syntax of the
MQSeries control commands.

This book applies to the following
MQSeries products only:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

MQSeries Command Reference
The MQSeries Command Reference,
SC33-1369, contains the syntax of the
MQSC commands, which are used by
MQSeries system operators and
administrators to manage MQSeries
objects.

MQSeries Programmable System Management
The MQSeries Programmable System
Management book, SC33-1482, provides
both reference and guidance information
for users of MQSeries events,
Programmable Command Format (PCF)
messages, and installable services.

MQSeries Administration Interface
Programming Guide and Reference

The MQSeries Administration Interface
Programming Guide and Reference,
SC34-5390, provides information for users
of the MQAI. The MQAI is a
programming interface that simplifies the
way in which applications manipulate
Programmable Command Format (PCF)
messages and their associated data
structures.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876,
which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries
products only:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

v MQSeries for Windows V2.0
v MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the
messages are supplied with the system.
They do not appear in softcopy manual
form.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference
Summary

The MQSeries Application Programming
Reference Summary, SX33-6095,
summarizes the information in the
MQSeries Application Programming
Reference manual.

MQSeries Using C++
MQSeries Using C++, SC33-1877, provides
both guidance and reference information
for users of the MQSeries C++
programming-language binding to the
MQI. MQSeries C++ is supported by
these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for OS/390, V2.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

MQSeries C++ is also supported by
MQSeries clients supplied with these
products and installed in the following
environments:
v AIX
v HP-UX

134 MQSeries for AS/400, V5.1 System Administration

v OS/2
v Sun Solaris
v Windows NT
v Windows 3.1
v Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides
both guidance and reference information
for users of the MQSeries Bindings for
Java and the MQSeries Client for Java.
MQSeries classes for Java are supported
by these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for MVS/ESA V1.2
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1

This book is available in softcopy only.

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX

MQSeries for AIX, V5.1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64
UNIX)

MQSeries for Digital UNIX System
Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX, V5.1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp, V5.1 Quick
Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1
Licensed Program Specifications,
GC34-5377
MQSeries for OS/390 Version 2 Release 1
Program Directory

MQSeries for OS/390 System
Management Guide, SC34-5374
MQSeries for OS/390 Messages and
Codes, GC34-5375
MQSeries for OS/390 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris, V5.1 Quick
Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows V2.0 User’s
Guide, GC33-1822
MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT, V5.1 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387

Bibliography 135

MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

BookManager format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:
http://www.ibm.com/software/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:
http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1

v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:
http://www.ibm.com/software/ts/mqseries/

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Related publications
AS/400 CL Reference Common CL Information,
SC41-5722
AS/400 Backup and Recovery, SC41-5304
AS/400 Security - Reference, SC41-5302
AS/400 National Language Support, SC41-5101
AS/400 System API Reference, SC41-5801

136 MQSeries for AS/400, V5.1 System Administration

Index

A
ACTION keyword, rules table 60
action keywords, rules table 60
administration

authorizations 50
description of 32
introduction to 29
local, definition of 29
MQAI, using 32
MQSeries (MQSC) commands 30
PCF commands 31
queue manager name

transformation 111
remote administration, definition

of 29
understanding MQSeries file

names 111
using PCF commands 30

alias queues
authorizations to 53
defining alias queues 23
working with alias queues 23

AllQueueManagers stanza, mqs.ini 103
alternate-user authority 54
application design, performance

considerations 98
application programming errors,

examples of 84
application programs

receiving messages 2
retrieving messages from queues 3
sending messages 2
time-independent applications 1

application queues
creating and copying, restrict access

to 53
defining application queues for

triggering 25
description of 6

APPLIDAT keyword, rules table 59
APPLNAME keyword, rules table 59
APPLTYPE keyword, rules table 59
attributes

changing local queue attributes 22
queue manager 20
queues 5

authority
alternate-user 54
context authority 54

authorizations
administration 50
for object types 52
MQI 47
specification tables 47

B
backups of data 77
bibliography 133
BookManager 136

C
changing

local queue attributes 22
queue manager attributes 20

channels
channel command security 55
Channels stanza, qm.ini 106
command security requirements 55
description of 8
escape command authorizations 50
events 69
exits 10
security, MQSC channel

commands 55
security requirements for PCF

commands 55
Channels stanza, qm.ini 106
characters allowed in object names 111
CL commands

creating a queue
alias 20
initiation 20
model 20
remote 18
transmission 19
using CRTMQMQ for local

queues 16
using WRKMQMQ for local

queues 17
creating MQSeries objects 15, 99
starting a local queue manager 15

clearing a local queue 22
clients and servers

definitions 9
clusters

cluster transmission queues 7
description of 8
ExitProperties stanza attributes 104

command files 30
command queues

command server status 34
description of 7
SYSTEM.ADMIN.COMMAND.QUEUE 7

command server
displaying status 34
remote administration 34
starting a command server 34
stopping a command server 35

commands, PCF 31
configuration files

AllQueueManagers stanza,
mqs.ini 103

Channels stanza, qm.ini 106
DefaultQueueManager stanza,

mqs.ini 104
editing 101
example mqs.ini file 109
example qm.ini file 109
ExitProperties stanza, mqs.ini 104
Log stanza, qm.ini 106
mqs.ini, description of 102

configuration files (continued)
priorities 102
queue manager configuration file,

qm.ini 102
QueueManager stanza, mqs.ini 105
TCP stanza, qm.ini 108

configuring logs 106
context authority 54
CorrelId, performance considerations 99
creating

a dynamic (temporary) queue 3
a model queue 3
a predefined (permanent) queue 3
a process definition 26

D
data conversion

ConvEBCDICNewline attribute,
AllQueueManagers stanza 103

EBCDIC NL character conversion to
ASCII 103

dead-letter header, MQDLH 57
dead-letter queues

defining a dead-letter queue 21
description of 7

default objects 9, 113
DefaultQueueManager stanza,

mqs.ini 104
defining

a model queue 24
an alias queue 23
an initiation queue 26
MQSeries queues 5

deleting a local queue 23
DESTQ keyword, rules table 59
DESTQM keyword, rules table 60
diagnostic information, obtaining 91
directories, queue manager 53
display

default object attributes 22
process definitions 26
status of command server 34

distributed queuing example 27
DLQ handler

invoking 57
rules table 58

dynamic queues
authorizations 53
description of 3

E
EBCDIC NL character conversion to

ASCII 103
environment variables

MQSPREFIX 103
error logs

errors occurring before log
established 95

© Copyright IBM Corp. 1994, 2000 137

error logs (continued)
example, MQSeries 95
log files 94

escape PCFs 31
event queues

description of 8
event notification through event

queue 70
triggered event queues 70

events
channel 69
enabling and disabling 70
event messages 71
event notification 70
instrumentation 67
performance events 69
queue manager events 69
trigger 70
types of 69

examples
creating a transmission queue 19
creating an alias queue 20
creating local queues

using the CRTMQMQ
command 16

using the WRKMQMQ
command 17

creating remote queues
as a queue manager alias 18
as a remote queue definition 18
as an alias to a reply-to queue 19

error log, MQSeries 95
mqs.ini file 109
qm.ini file 109

ExitProperties stanza,mqs.ini 104
extending queue manager facilities 10

F
FEEDBACK keyword, rules table 60
FFST (first-failure support

technology) 97
file names 111
files

IFS directories 112
log files, in problem

determination 94
MQSeries configuration 102
queue manager configuration 102
understanding names 111

FORMAT keyword, rules table 60
formatting trace 93
FWDQ keyword, rules table 61
FWDQM keyword, rules table 61

G
glossary 123

H
HEADER keyword, rules table 61
HTML (Hypertext Markup

Language) 136
Hypertext Markup Language

(HTML) 136

I
initiation queues

defining 26

initiation queues (continued)
description of 6

INPUTQ keyword, rules table 58
INPUTQM keyword, rules table 58
instrumentation events

description 67
event messages 71
types of 69
why use them 68

J
journal management 78
journal usage 75
journals 73

L
length of object names 111
local administration, definition of 29
local queues 20

changing queue attributes, commands
to use 22

clearing 22
copying a local queue definition 22
defining 20
defining application queues for

triggering 25
deleting 23
description of 5
specific queues used by MQSeries 6
working with local queues 20

Log stanza, qm.ini 106
logical unit of work, definition of 11
logs

configuring 106
errors occurring before error log

established 95
log files, in problem

determination 94
Log stanza, qm.ini 106

M
managing objects for triggering 25
maximum line length, MQSC

commands 30
media images 76
message-driven processing 1
message length, decreasing 22
message persistence, performance

considerations 99
message queuing 1
messages

application data 2
containing unexpected

information 90
definition of 2
event messages 71
message descriptor 2
message-driven processing 1
message lengths 2
not appearing on queues 89
operator messages 95
queuing 1
retrieval algorithms 3
retrieving messages from queues 3

messages (continued)
sending and receiving 2
undelivered 96

model queues
creating a model queue 3
defining 24
working with 24

monitoring queue managers 68
MQAI, description of 31
MQDLH, dead-letter header 57
MQI (message-queuing interface)

authorization specification tables 47
authorizations 47
definition of 1
queue manager calls 5
receiving messages 2
sending messages 2

MQI authorizations 47
MQOPEN authorizations 47
MQPUT and MQPUT1, performance

considerations 99
MQPUT authorizations 47
mqs.ini configuration file

AllQueueManagers stanza 103
DefaultQueueManager stanza 104
definition of 101
editing 101
ExitProperties stanza 104
priorities 102
QueueManager stanza 105

MQSC commands
authorization 50
command files, input 30
escape PCFs 31
maximum line length 30
object attribute names 4
overview 30
security requirements, channel

commands 55
MQSeries Explorer

description of 32
prerequisite software 33
required resource definitions 33

MQSeries for AS/400
backups of data 77
CL commands 13
journal management 78
journal usage 75
journals 73
media images 76
recovery from media images 77
restoring a complete queue

manager 80
restoring journal receivers 80

MQSeries publications 133
MQSPREFIX, environment variable 103
MQZAO, constants and authority 48
MsgId, performance considerations 99
MSGTYPE keyword, rules table 60

N
namelists, description of 9
naming conventions 3
national language support

EBCDIC NL character conversion to
ASCII 103

operator messages 95

138 MQSeries for AS/400, V5.1 System Administration

NL character, EBCDIC conversion to
ASCII 103

notification of events 70

O
OAM (Object Authority Manager)

description of 44
guidelines for using 53
resources protected by 44
sensitive operations 53

object names 4
objects

access to 43
administration of 29
attributes of 4
automation of administration

tasks 30
default object attributes,

displaying 22
description of 8
local queues 5
managing objects for triggering 25
multiple queues 5
naming conventions 4
process definitions 8
queue manager objects used by MQI

calls 5
queue managers 4
queue objects, using 6
remote queues 5
system default objects 9
using MQSC commands to

administer 30
operator

commands, no response from 87
messages 95

P
pattern-matching keywords, rules

table 59
PCF (programmable command format)

administration tasks 30
attributes in PCFs 31
authorization specification tables 47
automating administrative tasks using

PCF 31
channel security, requirements 55
escape PCFs 31
MQAI, using to simplify use of 32
object attribute names 4

PDF (Portable Document Format) 136
performance considerations

application design 98
CorrelId 99
message persistence 99
MQPUT and MQPUT1 99
MsgId 99
syncpoint 99
trace 92
variable length 99

performance events 69
permanent (predefined) queues 3
PERSIST keyword, rules table 60
Portable Document Format (PDF) 136
PostScript format 136

predefined (permanent) queues 3
problem determination

command errors 86
log files 94
no response from commands 87
preliminary checks

operating system 87
problem affects all users 86
problem intermittent 86
problem occurs at specific

times 87
problem reproducible 85

programming errors 84
trace 92
undelivered messages 96

process definitions
creating 26
description of 8
displaying 26

processing, message-driven 1
programming errors, examples of 84
protected resources 44
publications

MQSeries 133
related 136

PUTAUT keyword, rules table 61

Q
qm.ini configuration file

Channels stanza 106
definition of 102
editing 101
Log stanza 106
priorities 102
TCP stanza 108

queue managers
attributes, changing 20
authorizations 53
command server 34
description of 4
directories 53
extending queue manager

facilities 10
monitoring 68
name transformation 111
object authority manager,

description 44
objects used in MQI calls 5
qm.ini files 102
queue manager events 69

QueueManager stanza, mqs.ini 105
queues

alias 23
application queues 25
attributes 5
authorizations to 53
changing queue attributes 22
clearing local queues 22
dead-letter, defining 21
defining MQSeries queues 5
definition of 2
deleting a local queue 23
dynamic (temporary) queues 3
extending queue manager

facilities 10
initiation queues 26
local, working with 20

queues (continued)
local queues 5
model queues 3, 24
multiple queues 5
predefined (permanent) queues 3
queue managers, description of 4
queue objects, using 6
retrieving messages from 3
specific local queues used by

MQSeries 6

R
REASON keyword, rules table 60
recovery from media images 77
remote administration

command server 34
definition of remote

administration 29
remote queues

authorizations to 53
examples of creating 18
security considerations 54

reply-to queues,.description of 7

REPLYQ keyword, rules table 60

REPLYQM keyword, rules table 60

resources, updating under syncpoint
control 10

restoring a complete queue manager 80

restoring journal receivers 80

restricting access to MQM objects 43

retrieval algorithms for messages 3

RETRY keyword, rules table 62

RETRYINT keyword, rules table 58

rules table, DLQ handler

control data entry
INPUTQ keyword 58
INPUTQM keyword 58
RETRYINT keyword 58
WAIT keyword 58

example of 65
patterns and actions (rules) 59

ACTION keyword 60
APPLIDAT keyword 59
APPLNAME keyword 59
APPLTYPE keyword 59
DESTQ keyword 59
DESTQM keyword 60
FEEDBACK keyword 60
FORMAT keyword 60
FWDQ keyword 61
FWDQM keyword 61
HEADER keyword 61
MSGTYPE keyword 60
PERSIST keyword 60
PUTAUT keyword 61
REASON keyword 60
REPLYQ keyword 60
REPLYQM keyword 60
RETRY keyword 62
USERID keyword 60

processing 63
syntax 62

Index 139

S
security

administration authorizations 50
command security requirements 55
considerations 43
context authority 54
MQI authorizations 47
MQSC channel commands 55
MQSeries authorities 44
object authority manager (OAM) 44
remote queues 54
resources protected by the OAM 44
security requirements for PCF

commands 55
sensitive operations, OAM 53

sensitive operations, OAM 53
servers 9
softcopy books 136
stanzas

AllQueueManagers, mqs.ini 103
Channels, qm.ini 106
DefaultQueueManager, mqs.ini 104
ExitProperties, mqs.ini 104
Log, qm.ini 106
QueueManager, mqs.ini 105
TCP, qm.ini 108

starting a command server 34
stopping a command server 35
storage problems 100
STRMQMDLQ command 57
syncpoint, performance

considerations 99
system default objects 9
system objects 113

T
TCP stanza, qm.ini 108
temporary (dynamic) queues 3
terminology used in this book 123
time-independent applications 1
trace, performance considerations 92
trace data

formatting 93
lifetime of 92
selective 92
usage of 92

transactional support, updating under
syncpoint control 10

transmission queues
cluster transmission queues 7
description of 7

triggering
defining an application queue for

triggering 25
event queues 70
managing objects for triggering 25
message-driven processing 1
trigger events 70

types of event 69

U
user exits

channel exits 10
data conversion exits 10

USERID keyword, rules table 60

using CL commands 13

V
variable length, performance

considerations 99

W
WAIT keyword, rules table 58

Windows Help 136

work management

objects 38
tasks 38
using 39

140 MQSeries for AS/400, V5.1 System Administration

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2000 141

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5558-00

Spine information:

IBM MQSeries® for AS/400® MQSeries for AS/400, V5.1 System Administration V5.1

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book

	Chapter 1. Introduction to MQSeries
	MQSeries and message queuing
	Time-independent applications
	Message-driven processing

	Messages and queues
	What is a message?
	Message lengths

	What is a queue?
	How do applications send and receive messages?
	Predefined queues and dynamic queues
	Retrieving messages from queues

	Objects
	Object names
	Managing objects
	Object attributes
	MQSeries queue managers
	MQSeries queues
	Using queue objects
	Specific local queue types and their uses

	Process definitions
	Channels
	Clusters
	Namelists

	System default objects
	Clients and servers
	MQSeries applications in a client-server environment

	Extending queue manager facilities
	User exits

	Security
	Transactional support

	Chapter 2. Managing MQSeries for AS/400 using CLcommands
	MQSeries applications
	MQSeries for AS/400 CL commands
	Starting a local queue manager
	Creating MQSeries objects
	Examples of creating a local queue
	Creating a local queue using the CRTMQMQ command
	Creating a local queue using the WRKMQMQ command

	Examples of creating a remote queue
	Creating a remote queue as a remote queue definition
	Creating a remote queue as a queue manager alias
	Creating a remote queue as an alias to a reply-to queue

	Creating a transmission queue
	Creating an initiation queue
	Creating an alias queue
	Creating a model queue
	Altering queue manager attributes

	Working with local queues
	Defining a local queue
	Defining a dead-letter queue
	Displaying default object attributes
	Copying a local queue definition
	Changing local queue attributes
	Clearing a local queue
	Deleting a local queue

	Working with alias queues
	Defining an alias queue
	Using other commands with alias queues

	Working with model queues
	Defining a model queue
	Using other commands with model queues

	Managing objects for triggering
	Defining an application queue for triggering
	Defining an initiation queue
	Creating a process definition
	Displaying your process definition

	Communicating between two systems

	Chapter 3. Alternative methods for MQSeries administration
	Local and remote administration
	Performing administrative tasks using MQSC commands
	MQSC command files

	Performing administrative tasks using PCF commands
	Attributes in MQSC and PCFs
	Escape PCFs
	Using the MQAI to simplify the use of PCFs

	Using the MQSeries Explorer
	What you can do with the MQSeries Explorer
	Prerequisite software
	Required definitions for administration

	Managing the command server for remote administration
	Starting the command server
	Displaying the status of the command server
	Stopping a command server

	Chapter 4. Work management
	Description of MQSeries Tasks
	MQSeries work management objects
	How MQSeries uses the work management objects
	The MQSeries message queue
	Default system examples

	Configuring Work Management
	Configuration examples

	Chapter 5. Protecting MQSeries objects
	Security considerations
	Understanding the Object Authority Manager
	Resources you can protect with the OAM

	MQSeries authorities
	Granting MQSeries authorities to MQSeries objects
	Access authorizations
	Using the GRTMQMAUT command
	Using the RVKMQMAUT command
	Using the DSPMQMAUT command

	Understanding the authorization specification tables
	MQI authorizations
	Administration authorizations
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands

	Authorizations for different types of object
	Authorizations for MQI calls
	Authorizations for context
	Authorizations for commands
	Authorizations for generic operations

	Object Authority Manager guidelines
	Queue manager directories
	Queues
	Alternate-user authority
	Context authority
	Remote security considerations
	Channel command security
	PCF commands
	MQSC channel commands

	Chapter 6. The MQSeries dead-letter queue handler
	Invoking the DLQ handler
	The DLQ handler rules table
	Control data
	Rules (patterns and actions)
	The pattern-matching keywords
	The action keywords

	Rules table conventions

	Processing the rules table
	Ensuring that all DLQ messages are processed

	An example DLQ handler rules table

	Chapter 7. Instrumentation events
	What are instrumentation events?
	Why use events?
	Types of event
	Event notification through event queues
	Using triggered event queues

	Enabling and disabling events
	Event messages

	Chapter 8. Backup, recovery, and restart
	MQSeries for AS/400 journals
	MQSeries for AS/400 journal usage
	Media images
	Recovery from media images

	Backups of MQSeries for AS/400 data
	Journal management
	Restoring a complete queue manager (data and journals)
	Restoring journal receivers for a particular queue manager

	Performance considerations

	Chapter 9. Analyzing problems
	Preliminary checks
	Problem characteristics
	Can the problem be reproduced?
	Is the problem intermittent?
	Problems with commands
	Does the problem affect all users of the MQSeries for AS/400application?
	Does the problem affect specific parts of the network?
	Does the problem occur only on MQSeries V5R1
	Does the problem occur at specific times of the day?
	Have you failed to receive a response from a command?

	Determining problems with MQSeries applications
	Are some of your queues working?
	Does the problem affect only remote queues?
	Does the problem affect messages?
	Messages do not appear on the queue
	Messages contain unexpected or corrupted information

	Receiving unexpected messages when using distributedqueues

	Obtaining diagnostic information
	Using MQSeries for AS/400 trace
	Lifetime of trace data
	Trace usage
	Selective trace

	Formatting trace output

	Error logs
	Log files
	Early errors
	Operator messages
	An example MQSeries error log

	Dead-letter queues
	First-failure support technology (FFST)
	Performance considerations
	Application design considerations
	Effect of message length
	Effect of message persistence
	Searching for a particular message
	Queues that contain messages of different lengths
	Frequency of syncpoints
	Use of the MQPUT1 call

	Number of threads in use
	Specific performance problems
	Storage problems
	Is your application or MQSeries for AS/400 running slowly?

	Chapter 10. Configuring MQSeries
	MQSeries configuration files
	Editing configuration files
	When do you need to edit a configuration file?
	Configuration file priorities

	The MQSeries configuration file, mqs.ini
	Queue manager configuration files, qm.ini

	Attributes for changing MQSeries configuration information
	The AllQueueManagers stanza
	The DefaultQueueManager stanza
	The ExitProperties stanza
	The QueueManager stanza

	Changing queue manager configuration information
	The Log stanza
	The Channels stanza
	The TCP stanza

	Example mqs.ini and qm.ini files

	Appendix A. MQSeries names and default objects
	MQSeries object names
	Understanding MQSeries queue manager library names
	Understanding MQSeries IFS directories and files
	IFS Queue manager name transformation
	Object name transformation

	System and default objects

	Appendix B. Sample resource definitions
	Appendix C. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	BookManager format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications

	Index
	Sending your comments to IBM

