
MQSeries® for AS/400®

Application Programming Reference
(ILE RPG)
V5.1

SC34-5559-00

IBM

MQSeries® for AS/400®

Application Programming Reference
(ILE RPG)
V5.1

SC34-5559-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix G.
Notices” on page 483.

First edition (March 2000)

This edition applies to MQSeries for AS/400 Version 5 Release 1 and to any subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
How to use this book xii

Appearance of text in this book xii
Terms used in this book xii

Part 1. Data type descriptions 1

Chapter 1. Elementary data types 3
Conventions used in the descriptions of data types . 3
Elementary data types 3

MQBYTE - Byte 3
MQBYTEn – String of n bytes 4
MQCHAR – character 4
MQCHARn – String of n characters 4
MQHCONN – Connection handle 4
MQHOBJ – Object handle 5
MQLONG – Long integer 5
Elementary data types 5

Chapter 2. Structure data types –
programming considerations 7
Conventions used in the descriptions of data types . 7
Language considerations 8

COPY files 8
Calls 9
Structures 10
Notational conventions 10
MQI procedures 10
Threading considerations 10
MQI call parameters 11
Named constants 11
Commitment control 11
Coding the bound calls 11
Coding the dynamic calls. 12

Chapter 3. MQBO - Begin options . . . 15
Overview 15
Fields 15
Initial values and RPG declaration. 16

RPG declaration 16

Chapter 4. MQCIH - CICS bridge header 17
Overview 18
Fields 19
Initial values and RPG declaration. 28

RPG declaration 29

Chapter 5. MQCNO - Connect options 31
Overview 31

Fields 31
Initial values and RPG declaration. 35

RPG declaration 35

Chapter 6. MQDH - Distribution header 37
Overview 37
Fields 38
Initial values and RPG declaration. 41

RPG declaration 41

Chapter 7. MQDLH - Dead-letter header 43
Overview 43
Fields 45
Initial values and RPG declaration. 49

RPG declaration 49

Chapter 8. MQGMO - Get-message
options 51
Overview 51
Fields 51
Initial values and RPG declaration. 74

RPG declaration 74

Chapter 9. MQIIH - IMS bridge header 77
Overview 77
Fields 78
Initial values and RPG declaration. 81

RPG declaration 82

Chapter 10. MQMD - Message
descriptor 83
Overview 84
Fields 85
Initial values and RPG declaration 129

RPG declaration 130

Chapter 11. MQMDE - Message
descriptor extension 131
Overview. 131
Fields 133
Initial values and RPG declaration 135

RPG declaration 136

Chapter 12. MQOD - Object descriptor 137
Overview. 137
Fields 138
Initial values and RPG declaration 145

RPG declaration 146

Chapter 13. MQOR - Object record 147
Overview. 147
Fields 147
Initial values and RPG declaration 148

© Copyright IBM Corp. 1994, 2000 iii

RPG declaration 148

Chapter 14. MQPMO - Put message
options 149
Overview. 149
Fields 150
Initial values and RPG declaration 163

RPG declaration 164

Chapter 15. MQPMR - Put-message
record 165
Overview. 165
Fields 165
Initial values and RPG declaration 167

RPG declaration 167

Chapter 16. MQRMH - Message
reference header 169
Overview. 169
Fields 170
Initial values and RPG declaration 175

RPG declaration 176

Chapter 17. MQRR - Response record 177
Overview. 177
Fields 177
Initial values and RPG declaration 177

RPG declaration 178

Chapter 18. MQTM - Trigger message 179
Overview. 179
Fields 180
Initial values and RPG declaration 182

RPG declaration 183

Chapter 19. MQTMC2 - Trigger
message (character format) 185
Overview. 185
Fields 186
Initial values and RPG declaration 187

RPG declaration 187

Chapter 20. MQWIH - Work
information header 189
Overview. 189
Fields 189
Initial values and RPG declaration 191

RPG declaration 192

Chapter 21. MQXQH - Transmission
queue header 193
Overview. 193
Fields 196
Initial values and RPG declaration 197

RPG declaration 197

Part 2. Function calls 199

Chapter 22. Call descriptions 201
Conventions used in the call descriptions 201

Chapter 23. MQBACK - Back out
changes 203
Syntax. 203
Parameters 203
Usage notes 204
RPG invocation. 205

Chapter 24. MQBEGIN - Begin unit of
work 207
Syntax. 207
Parameters 207
Usage notes 208
RPG invocation (ILE) 210

Chapter 25. MQCLOSE - Close object 211
Syntax 211
Parameters 211
Usage notes 214
RPG invocation. 215

Chapter 26. MQCMIT - Commit
changes 217
Syntax. 217
Parameters 217
Usage notes 218
RPG invocation. 219

Chapter 27. MQCONN - Connect
queue manager 221
Syntax. 221
Parameters 221
Usage notes 224
RPG invocation. 225

Chapter 28. MQCONNX - Connect
queue manager (extended) 227
Syntax. 227
Parameters 227
RPG invocation. 228

Chapter 29. MQDISC - Disconnect
queue manager 229
Syntax. 229
Parameters 229
Usage notes 230
RPG invocation. 230

Chapter 30. MQGET - Get message 231
Syntax. 231
Parameters 231
Usage notes 235
RPG invocation. 239

iv MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 31. MQINQ - Inquire about
object attributes 241
Syntax. 241
Parameters 241
Usage notes 248
RPG invocation. 250

Chapter 32. MQOPEN - Open object 251
Syntax. 251
Parameters 251
Usage notes 259
RPG invocation. 264

Chapter 33. MQPUT - Put message 265
Syntax. 265
Parameters 265
Usage notes 270
RPG invocation. 273

Chapter 34. MQPUT1 - Put one
message 275
Syntax. 275
Parameters 275
Usage notes 279
RPG invocation. 281

Chapter 35. MQSET - Set object
attributes 283
Syntax. 283
Parameters 283
Usage notes 286
RPG invocation. 287

Part 3. Attributes of objects 289

Chapter 36. Attributes of MQSeries
objects 291

Chapter 37. Attributes for all queues 293

Chapter 38. Attributes for local
queues and model queues 299

Chapter 39. Attributes for local
definitions of remote queues 313

Chapter 40. Attributes for alias
queues 315

Chapter 41. Attributes for namelists 317

Chapter 42. Attributes for process
definitions 319

Chapter 43. Attributes for the queue
manager 323

Part 4. Applications 335

Chapter 44. Building your application 337
MQSeries copy files 337
Preparing your programs to run 337
Interfaces to the AS/400 external syncpoint
manager 338
Syncpoints in CICS for AS/400 applications . . . 339

Chapter 45. Sample programs 341
Features demonstrated in the sample programs . . 342
Preparing and running the sample programs . . . 343

Running the sample programs. 343
The Put sample program 343

Design of the Put sample program 344
The Browse sample program 344

Design of the Browse sample program 344
The Get sample program 345

Design of the Get sample program 345
The Request sample program 346

Using triggering with the Request sample . . . 346
Design of the Request sample program 347

The Echo sample program 348
Design of the Echo sample program 349

The Inquire sample program 349
Design of the Inquire sample program 350

The Set sample program. 351
Design of the Set sample program 351

The Triggering sample programs 352
The AMQ3TRG4 sample trigger monitor . . . 352
The AMQ3SRV4 sample trigger server 352
Ending the Triggering sample programs . . . 353

Running the samples using remote queues . . . 353

Part 5. Appendixes 355

Appendix A. Return codes 357
Completion codes 357
Reason codes 357

Appendix B. MQSeries constants . . . 421
List of constants 421

LN* (Lengths of character string and byte fields) 421
AC* (Accounting token) 422
ATT* (Accounting token type) 422
AT* (Application type) 423
BND* (Binding) 423
BO* (Begin options) 423
BO* (Begin options structure identifier). . . . 423
BO* (Begin options version) 423
CA* (Character attribute selector). 424
AD* (CICS header ADS descriptor) 424
CC* (Completion code) 425
CS* (Coded character set identifier) 425
CT* (CICS header conversational task) 425
FC* (CICS header facility) 425

Contents v

|
||

||

CF* (CICS header function name) 425
WI* (CICS header get-wait interval) 425
CI* (Correlation identifier) 425
MQ* (Call identifier) 426
CIF* (CICS header flags). 426
CI* (CICS header length) 426
CI* (CICS header structure identifier) 426
CI* (CICS header version) 426
LT* (CICS header link type) 426
CMLV* (Command level) 427
CN* (Connect options) 427
CN* (Connect options structure identifier) . . . 427
CN* (Connect options version) 427
CO* (Close options) 427
OL* (CICS header output data length) 427
CRC* (CICS header return code) 427
SC* (CICS header transaction start code) . . . 428
TE* (CICS header task end status) 428
CU* (CICS header unit-of-work control) . . . 428
DCC* (Convert-characters masks and factors) 428
DCC* (Convert-characters options) 428
DH* (Distribution header structure identifier) 429
DH* (Distribution header version) 429
DHF* (Distribution header flags) 429
DL* (Distribution list support). 429
DL* (Dead-letter header structure identifier) . . 429
DL* (Dead-letter header version) 429
DX* (Data-conversion-exit parameter structure
identifier). 430
DX* (Data-conversion-exit parameter structure
version) 430
EI* (Expiry interval) 430
EN* (Encoding). 430
EN* (Encoding masks) 430
EN* (Encoding for packed-decimal integers) . . 430
EN* (Encoding for floating-point numbers) . . 430
EN* (Encoding for binary integers) 431
EV* (Event reporting) 431
FB* (Feedback) 431
FM* (Format) 432
GI* (Group identifier) 432
GM* (Get message options). 432
GM* (Get message options structure identifier) 433
GM* (Get message options version) 433
GS* (Group status) 433
HC* (Connection handle) 433
HO* (Object handle) 433
IA* (Integer attribute selector) 433
IAU* (IMS authenticator) 435
IAV* (Integer attribute value) 435
ICM* (IMS commit mode) 435
II* (IMS header flags). 435
II* (IMS header length) 435
II* (IMS header structure identifier) 435
II* (IMS header version) 435
ISS* (IMS security scope) 435
ITI* (IMS transaction instance identifier) . . . 436
ITS* (IMS transaction state) 436
MD* (Message descriptor structure identifier) 436
MD* (Message descriptor version) 436
ME* (Message descriptor extension length) . . 436

ME* (Message descriptor extension structure
identifier). 436
ME* (Message descriptor extension version) . . 436
MEF* (Message descriptor extension flags) . . 437
MS* (Message delivery sequence). 437
MF* (Message flags) 437
MF* (Message-flags masks) 437
MI* (Message identifier) 437
MO* (Match options) 437
MT* (Message type) 438
MTK* (Message token) 438
NC* (Name count) 438
OD* (Object descriptor length) 438
OD* (Object descriptor structure identifier) . . 438
OD* (Object descriptor version) 438
OII* (Object instance identifier) 438
OL* (Original length) 439
OO* (Open options) 439
OT* (Object type) 439
PE* (Persistence) 439
PL* (Platform) 439
PM* (Put message options) 440
PM* (Put message options structure length) . . 440
PM* (Put message options structure identifier) 440
PM* (Put message options version) 440
PF* (Put message record field flags) 440
PR* (Priority) 441
QA* (Inhibit get) 441
QA* (Inhibit put) 441
QA* (Backout hardening) 441
QA* (Queue shareability) 441
QD* (Queue definition type) 441
QSIE* (Service interval events) 441
QT* (Queue type) 442
RC* (Reason code). 442
RL* (Returned length) 446
RM* (Reference message header structure
identifier). 446
RM* (Reference message header version) . . . 446
RM* (Reference message header flags) 446
RO* (Report options) 446
RO* (Report-options masks) 447
SCO* (Queue scope) 447
SEG* (Segmentation) 447
SI* (Security identifier) 447
SIT* (Security identifier type) 447
SP* (Syncpoint) 448
SS* (Segment status) 448
TC* (Trigger control) 448
TM* (Trigger message structure identifier) . . . 448
TM* (Trigger message version) 448
TC* (Trigger message character format structure
identifier). 448
TC* (Trigger message character format version) 448
TT* (Trigger type) 449
US* (Usage) 449
WI* (Wait interval) 449
WI* (Workload information header flags) . . . 449
WI* (Workload information header structure
length) 449

vi MQSeries for AS/400, V5.1 APR (ILE RPG)

||
||

||

||
||

||
|
||

WI* (Workload information header structure
identifier). 449
WI* (Workload information header version) . . 449
XR* (Data-conversion-exit response) 450
XQ* (Transmission queue header structure
identifier). 450
XQ* (Transmission queue header version) . . . 450

Appendix C. Rules for validating MQI
options 451
MQOPEN call 451
MQPUT call 451
MQPUT1 call 452
MQGET call 452
MQCLOSE call 452

Appendix D. Machine encodings . . . 453
Binary-integer encoding 453
Packed-decimal-integer encoding 454
Floating-point encoding 454
Constructing encodings 455
Analyzing encodings 455

Using arithmetic 455
Summary of machine architecture encodings . . . 456

Appendix E. Report options 457
Structure of the report field. 457
Analyzing the report field 458

Using arithmetic 458
Structure of the message-flags field 459

Appendix F. Data conversion 461
Conversion processing 461
Processing conventions 462
Conversion of report messages 467

MQDXP – Data-conversion exit parameter. . . . 468
Fields 468
RPG declaration (ILE) 473

MQXCNVC - Convert characters 473
Syntax. 473
Parameters 473

RPG invocation. 478
MQCONVX - Data conversion exit 478

Syntax. 479
Parameters 479
Usage notes 480

RPG invocation. 482

Appendix G. Notices 483
Programming interface information 484
Trademarks 485

Glossary of terms and abbreviations 487

Bibliography 499
MQSeries cross-platform publications 499
MQSeries platform-specific publications 501
Softcopy books 502

BookManager format 502
HTML format 502
Portable Document Format (PDF) 502
PostScript format 502
Windows Help format 502

MQSeries information available on the Internet . . 502
Related publications 502

Index 503

Sending your comments to IBM . . . 509

Contents vii

|
||
||

viii MQSeries for AS/400, V5.1 APR (ILE RPG)

Tables

1. Elementary data types 5
2. RPG COPY files 8
3. ILE RPG bound calls supported by each

service program 11
4. Fields in MQBO 15
5. Initial values of fields in MQBO. 16
6. Fields in MQCIH. 17
7. Contents of error information fields in MQCIH

structure 18
8. Initial values of fields in MQCIH 28
9. Fields in MQCNO 31

10. Initial values of fields in MQCNO 35
11. Fields in MQDH 37
12. Initial values of fields in MQDH 41
13. Fields in MQDLH 43
14. Initial values of fields in MQDLH 49
15. Fields in MQGMO 51
16. MQGET options relating to messages in

groups and segments of logical messages . . 63
17. Outcome when MQGET or MQCLOSE call not

consistent with group and segment
information 65

18. Initial values of fields in MQGMO 74
19. Fields in MQIIH 77
20. Initial values of fields in MQIIH 81
21. Fields in MQMD 83
22. Initial values of fields in MQMD 129
23. Fields in MQMDE 131
24. Queue-manager action when MQMDE

specified on MQPUT or MQPUT1. 132
25. Initial values of fields in MQMDE 135
26. Fields in MQOD 137
27. Initial values of fields in MQOD 145
28. Fields in MQOR 147
29. Initial values of fields in MQOR 148
30. Fields in MQPMO 149

31. MQPUT options relating to messages in
groups and segments of logical messages . . 153

32. Outcome when MQPUT or MQCLOSE call
not consistent with group and segment
information 155

33. Initial values of fields in MQPMO 163
34. Fields in MQPMR 165
35. Fields in MQRMH 169
36. Initial values of fields in MQRMH 175
37. Fields in MQRR. 177
38. Initial values of fields in MQRR 177
39. Fields in MQTM 179
40. Initial values of fields in MQTM 182
41. Fields in MQTMC2 185
42. Initial values of fields in MQTMC2 187
43. Fields in MQWIH 189
44. Initial values of fields in MQWIH. 191
45. Fields in MQXQH 193
46. Initial values of fields in MQXQH 197
47. Effect of MQCLOSE options on various types

of object and queue 212
48. Valid MQOPEN options for each queue type 256
49. Attributes for all queues 293
50. Attributes for local and model queues 299
51. Attributes for local definitions of remote

queues 313
52. Attributes for namelists 317
53. Attributes for process definitions 319
54. Attributes for the queue manager 323
55. Names of the sample programs 341
56. Sample programs demonstrating use of the

MQI 342
57. Client/Server sample program details 348
58. Summary of encodings for machine

architectures 456
59. Fields in MQDXP 468

© Copyright IBM Corp. 1994, 2000 ix

||

x MQSeries for AS/400, V5.1 APR (ILE RPG)

About this book

MQSeries for AS/400 Version 5 Release 1 is part of the IBM® MQSeries set of
products. It provides application programming services on the AS/400 platform
that allow a new style of programming. This style enables you to code indirect
program-to-program communication using message queues.

This book:
v Gives a full description of the MQSeries for AS/400 programming interface in

the RPG programming language.
v Contains information on how to build an executable application.
v Contains descriptions of sample programs.

Notes to users

1. This book describes the MQSeries for AS/400 programming interface only
in the RPG–ILE programming language. If you require details of the
RPG–OPM programming language, you should refer to the MQSeries
Application Programming Reference (RPG) V4R2 manual.

2. There are two approaches that can be taken when using the MQI from
within an RPG program:
v Dynamic calls to the QMQM program interface.
v Static Bound Calls to the MQI procedures.

Using bound calls is generally the preferred method, particulary when the
program is making repeated calls to the MQI, as it requires less resource.

New functionality is only available through the Static Bound Call
interface.

For information on how to design and write applications that use the services
MQSeries provides, see the MQSeries Application Programming Guide.

Who this book is for
This book is for the designers of applications that will use message queuing
techniques, and for programmers who have to implement these designs.

What you need to know to understand this book
To write message queuing applications using MQSeries for AS/400, you need to
know how to write programs in the RPG programming language.

To understand this book, you do not need to have written message queuing
programs before.

© Copyright IBM Corp. 1994, 2000 xi

|
|
|
|

|
|
|
|

|
|

|
||

How to use this book
This book contains reference information that enables you to find out quickly, for
example, how to use a particular call or how to correct a particular error situation.

The book is divided into parts:

Part 1. Data type descriptions
Describes the data types that the MQI calls use.

Part 2. Function calls
Describes the parameters and return codes for the calls,

Part 3. Attributes of objects
Describes the attributes of MQSeries for AS/400 objects.

Part 4. Applications
Describes how to build MQSeries for AS/400 programs and the design of
the sample applications that are provided with MQSeries for AS/400.

Appearance of text in this book
This book uses the following type styles:
MQOPEN

Example of the name of a call
CMPCOD Example of the name of a parameter of a call
MQMD

Example of the name of a data type or structure
OOSETA

Example of the name of a value

Terms used in this book
All new terms that this book introduces are defined in the glossary. In the body of
this book, the following shortened names are used for these products:
CICS The CICS® for AS/400 product

Also, we use the following shortened name for this language compiler:
RPG Means the IBM ILE RPG for OS/400™ compiler

About this book

xii MQSeries for AS/400, V5.1 APR (ILE RPG)

Part 1. Data type descriptions

Chapter 1. Elementary data types 3
Conventions used in the descriptions of data types . 3
Elementary data types 3

MQBYTE - Byte 3
MQBYTEn – String of n bytes 4
MQCHAR – character 4
MQCHARn – String of n characters 4
MQHCONN – Connection handle 4
MQHOBJ – Object handle 5
MQLONG – Long integer 5
Elementary data types 5

Chapter 2. Structure data types – programming
considerations 7
Conventions used in the descriptions of data types . 7
Language considerations 8

COPY files 8
Calls 9
Structures 10
Notational conventions 10
MQI procedures 10
Threading considerations 10
MQI call parameters 11
Named constants 11
Commitment control 11
Coding the bound calls 11
Coding the dynamic calls. 12

Chapter 3. MQBO - Begin options 15
Overview 15
Fields 15
Initial values and RPG declaration. 16

RPG declaration 16

Chapter 4. MQCIH - CICS bridge header 17
Overview 18
Fields 19
Initial values and RPG declaration. 28

RPG declaration 29

Chapter 5. MQCNO - Connect options 31
Overview 31
Fields 31
Initial values and RPG declaration. 35

RPG declaration 35

Chapter 6. MQDH - Distribution header 37
Overview 37
Fields 38
Initial values and RPG declaration. 41

RPG declaration 41

Chapter 7. MQDLH - Dead-letter header 43
Overview 43
Fields 45

Initial values and RPG declaration. 49
RPG declaration 49

Chapter 8. MQGMO - Get-message options . . . 51
Overview 51
Fields 51
Initial values and RPG declaration. 74

RPG declaration 74

Chapter 9. MQIIH - IMS bridge header 77
Overview 77
Fields 78
Initial values and RPG declaration. 81

RPG declaration 82

Chapter 10. MQMD - Message descriptor 83
Overview 84
Fields 85
Initial values and RPG declaration 129

RPG declaration 130

Chapter 11. MQMDE - Message descriptor
extension 131
Overview. 131
Fields 133
Initial values and RPG declaration 135

RPG declaration 136

Chapter 12. MQOD - Object descriptor 137
Overview. 137
Fields 138
Initial values and RPG declaration 145

RPG declaration 146

Chapter 13. MQOR - Object record 147
Overview. 147
Fields 147
Initial values and RPG declaration 148

RPG declaration 148

Chapter 14. MQPMO - Put message options . . 149
Overview. 149
Fields 150
Initial values and RPG declaration 163

RPG declaration 164

Chapter 15. MQPMR - Put-message record . . 165
Overview. 165
Fields 165
Initial values and RPG declaration 167

RPG declaration 167

Chapter 16. MQRMH - Message reference
header 169
Overview. 169

© Copyright IBM Corp. 1994, 2000 1

Fields 170
Initial values and RPG declaration 175

RPG declaration 176

Chapter 17. MQRR - Response record 177
Overview. 177
Fields 177
Initial values and RPG declaration 177

RPG declaration 178

Chapter 18. MQTM - Trigger message 179
Overview. 179
Fields 180
Initial values and RPG declaration 182

RPG declaration 183

Chapter 19. MQTMC2 - Trigger message
(character format) 185
Overview. 185
Fields 186
Initial values and RPG declaration 187

RPG declaration 187

Chapter 20. MQWIH - Work information header 189
Overview. 189
Fields 189
Initial values and RPG declaration 191

RPG declaration 192

Chapter 21. MQXQH - Transmission queue
header 193
Overview. 193
Fields 196
Initial values and RPG declaration 197

RPG declaration 197

Data types

2 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 1. Elementary data types

This chapter describes the elementary data types used by the MQI.

The elementary data types are:
v MQBYTE – Byte
v MQBYTEn – String of n bytes
v MQCHAR – Single-byte character
v MQCHARn – String of n single-byte characters
v MQHCONN – Connection handle
v MQHOBJ – Object handle
v MQLONG – Long integer

Conventions used in the descriptions of data types
For each elementary data type, this chapter gives a description of its usage, in a
form that is independent of the programming language. This is followed by a
typical declarations in the ILE version of the RPG programming language. The
definitions of elementary data types are included here to provide consistency. RPG
uses ‘D’ specifications where working fields can be declared using whatever
attributes you need. You can, however, do this in the calculation specifications
where the field is used.

To use the elementary data types, you create:
v A /COPY member containing all the data types, or
v An external data structure (PF) containing all the data types. You then need to

specify your working fields with attributes ‘LIKE’ the appropriate data type
field.

The benefits of the second option are that the definitions can be used as a ‘FIELD
REFERENCE FILE’ for other AS/400 objects. If an MQ data type definition
changes, it is a relatively simple matter to recreate these objects.

Elementary data types
All of the other data types described in this chapter equate either directly to these
elementary data types, or to aggregates of these elementary data types (arrays or
structures).

MQBYTE - Byte
The MQBYTE data type represents a single byte of data. No particular
interpretation is placed on the byte—it is treated as a string of bits, and not as a
binary number or character. No special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage
whose nature is not known to the queue manager. For example, the area may
contain application message data or a structure. The boundary alignment of this
area must be compatible with the nature of the data contained within it.

© Copyright IBM Corp. 1994, 2000 3

MQBYTEn – String of n bytes
Each MQBYTEn data type represents a string of n bytes, where n can take one of
the following values:

16, 24, 32, or 64

Each byte is described by the MQBYTE data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with nulls to fill the string.

When the queue manager returns byte strings to the application (for example, on
the MQGET call), the queue manager always pads with nulls to the defined length
of the string.

Constants are available that define the lengths of byte string fields; see “LN*
(Lengths of character string and byte fields)” on page 421.

MQCHAR – character
The MQCHAR data type represents a single character. The coded character set
identifier of the character is that of the queue manager (see the CodedCharSetId
attribute on page 326). No special alignment is required.

Note: Application message data specified on the MQGET, MQPUT, and MQPUT1
calls is described by the MQBYTE data type, not the MQCHAR data type.

MQCHARn – String of n characters
Each MQCHARn data type represents a string of n characters, where n can take
one of the following values:

4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256

Each character is described by the MQCHAR data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with blanks to fill the string. In some cases a null character can be
used to end the string prematurely, instead of padding with blanks; the null
character and characters following it are treated as blanks, up to the defined length
of the string. The places where a null can be used are identified in the call and
data type descriptions.

When the queue manager returns character strings to the application (for example,
on the MQGET call), the queue manager always pads with blanks to the defined
length of the string; the queue manager does not use the null character to delimit
the string.

Constants are available that define the lengths of character string fields; see “LN*
(Lengths of character string and byte fields)” on page 421.

MQHCONN – Connection handle
The MQHCONN data type represents a connection handle, that is, the connection
to a particular queue manager. A connection handle must be aligned on its natural
boundary.

Elementary data types

4 MQSeries for AS/400, V5.1 APR (ILE RPG)

Note: Applications must test variables of this type for equality only.

MQHOBJ – Object handle
The MQHOBJ data type represents an object handle that gives access to an object.
An object handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

MQLONG – Long integer
The MQLONG data type is a 32-bit signed binary integer that can take any value
in the range −2 147 483 648 through +2 147 483 647, unless otherwise restricted
by the context, aligned on its natural boundary.

Elementary data types
Table 1. Elementary data types

Data type Representation

MQBYTE A 1-byte alphanumeric field.

MQBYTE16 A 16-byte alphanumeric field.

MQBYTE24 A 24-byte alphanumeric field.

MQBYTE32 A 32-byte alphanumeric field.

MQBYTE64 A 64-byte alphanumeric field.

MQCHAR A 1-byte alphanumeric field.

MQCHAR4 A 4-byte alphanumeric field.

MQCHAR8 An 8-byte alphanumeric field.

MQCHAR12 A 12-byte alphanumeric field.

MQCHAR16 A 16-byte alphanumeric field.

MQCHAR20 A 20-byte alphanumeric field.

MQCHAR28 A 28-byte alphanumeric field.

MQCHAR32 A 32-byte alphanumeric field.

MQCHAR48 A 48-byte alphanumeric field.

MQCHAR64 A 64-byte alphanumeric field.

MQCHAR128 A 128-byte alphanumeric field.

MQCHAR256 A 256-byte alphanumeric field.

MQHCONN A 10-digit signed integer.

MQHOBJ A 10-digit signed integer.

MQLONG A 10-digit signed integer.

PMQLONG A 10-digit signed integer.

Elementary data types

Chapter 1. Elementary data types 5

Elementary data types

6 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 2. Structure data types – programming
considerations

This chapter describes the structure data types used by the MQI, which are:
v MQGMO – Get-message options
v MQMD – Message descriptor
v MQMDE – Message descriptor extension
v MQOD – Object descriptor
v MQOR – Object record
v MQPMO – Put-message options
v MQPMR – Put message record
v MQRMH – Message reference header
v MQRR – Response record

The MQI also uses the following structure data types, which are included in this
chapter for completeness, but they are not part of the application programming
interface.
v MQCIH – CICS bridge header
v MQDH – Distribution header
v MQDLH – Dead-letter (undelivered-message) header
v MQIIH – IMS™ bridge header
v MQTM – Trigger message
v MQTMC2 – Trigger message (character format 2)
v MQWIH – Work Information header
v MQXQH – Transmission queue header

Note: The MQDXP – data conversion exit parameter structure is in “Appendix F.
Data conversion” on page 461, together with the associated data conversion
calls.

Conventions used in the descriptions of data types
The description of each structure data type contains the following sections:

Structure name
The name of the structure, followed by a brief description of the purpose
of the structure.

Fields For each field, the name is followed by its elementary data type in
parentheses (); for example:

Version (10-digit signed integer)

There is also a description of the purpose of the field, together with a list
of any values that the field can take. Names of constants are shown in
uppercase; for example, GMSIDV. A set of constants having the same prefix
is shown using the * character, for example: IA*.

In the descriptions of the fields, the following terms are used:

input You supply information in the field when you make a call.

© Copyright IBM Corp. 1994, 2000 7

output
The queue manager returns information in the field when the call
completes or fails.

input/output
You supply information in the field when you make a call, and the
queue manager changes the information when the call completes
or fails.

Initial values
A table showing the initial values for each field in the data definition files
supplied with the MQI.

ILE declaration
Typical declaration of the structure in ILE.

Language considerations
This section contains information to help you use the MQI from the RPG
programming language.

COPY files
Various COPY files are provided as part of the definition of the message queue
interface (MQI), to assist with the writing of RPG application programs that use
message queuing. There are two sets of COPY files:
v COPY files with names ending with the letter “G” are for use with programs

that use static linkage.
v COPY files with names ending with the letter “R” are for use with programs

that use dynamic linkage.

The COPY files reside in QRPGLESRC in the QMQM library.

For each set of COPY files, there are two files containing named constants, and one
file for each of the structures. The COPY files are summarized in Table 2.

Table 2. RPG COPY files

Filename (static
linkage)

Filename
(dynamic
linkage)

Contents

CMQBOG – Begin options structure

CMQCIHG CMQCIHR CICS information header structure

CMQCNOG – Connect options structure

CMQDHG CMQDHR Distribution header structure

CMQDLHG CMQDLHR Dead-letter (undelivered-message) header structure

CMQDXPG CMQDXPR Data-conversion-exit parameter structure

CMQGMOG CMQGMOR Get-message options structure

CMQIIHG CMQIIHR IMS information header structure

CMQMDG CMQMDR Message descriptor structure

CMQMDEG CMQMDER Message descriptor extension structure

CMQMD1G CMQMD1R Message descriptor structure version 1

CMQODG CMQODR Object descriptor structure

CMQORG CMQORR Object record structure

Structure data types

8 MQSeries for AS/400, V5.1 APR (ILE RPG)

Table 2. RPG COPY files (continued)

Filename (static
linkage)

Filename
(dynamic
linkage)

Contents

CMQPMOG CMQPMOR Put-message options structure

CMQRRG CMQRRR Response record structure

CMQTMG CMQTMR Trigger-message structure

CMQTMCG CMQTMCR Trigger message structure (character format)

CMQTMC2G CMQTMC2R Trigger message structure (character format) version 2

CMQWIHG CMQWIHR Work information header structure

CMQXQHG CMQXQHR Transmission-queue header structure

CMQG CMQR Named constants for main MQI

CMQXG CMQXR Named constants for data-conversion exit

Calls
In “Chapter 22. Call descriptions” on page 201, the calls are described using their
individual names. In RPG using dynamic linkage, all calls are made to the single
name QMQM, and the particular function required is specified by coding an
additional parameter which precedes the normal parameters for that call. The
following named constants may be used for this additional parameter, in order to
identify the function required:

Named constant
Function required

MQCLOS
Close object.

MQCONN
Connect queue manager.

MQDISC
Disconnect queue manager.

MQGET
Get message.

MQINQ
Inquire about object attributes.

MQOPEN
Open object.

MQPUT
Put message.

MQPUT1
Put one message.

MQSET
Set object attributes.

These constants have names which are the same as the calls they identify, with the
exception of the constant for the MQCLOSE call, which is abbreviated to
MQCLOS.

Note: The calls MQBACK, MQCMIT, and MQCONNX, are not available to
applications running in compatibility mode.

Language considerations

Chapter 2. Structure data types – programming considerations 9

Structures
With the exception of the MQTMC structure, all MQ structures are defined with
initial values for the fields. These initial values are defined in the relevant table for
each structure.

The structure declarations do not contain DS statements. This allows the
application to declare either a single data structure or a multiple-occurrence data
structure, by coding the DS statement and then using the /COPY statement to
copy in the remainder of the declaration:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7
D* Declare an MQMD data structure with 5 occurrences
DMYMD DS 5
D/COPY CMQMDR

Notational conventions
The sections that follow show how the:
v Calls should be invoked
v Parameters should be declared
v Various data types should be declared

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lower case “n” is used to represent a numeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

MQI procedures
When using the ILE bound calls, you must bind to the MQI procedures when you
create your program. These procedures are exported from the following service
programs as appropriate:

QMQM/AMQZSTUB
This service program provides compatibility bindings for applications
written prior to version 5.1 that do not require access to any of the new
capabilities provided in version 5.1. The signature of this service program
matches that contained in version 4.2.1.

QMQM/LIBMQM
This service program contains the single-threaded bindings for version 5.1.
See below for special considerations when writing threaded applications.

QMQM/LIBMQM_R
This service program contains the multi-threaded bindings for version 5.1.
See below for special considerations when writing threaded applications.

Use the CRTPGM command to create your programs. For example, the following
command would create a single-threaded program that uses the ILE bound calls:
CRTPGM PGM(MYPROGRAM) BNDSRVPGM(QMQM/LIBMQM)

Threading considerations
In general, RPG programs should not use the multi-threaded service programs.
Exceptions are RPG programs created using the version 4.4 ILE RPG compiler and
containing the THREAD(*SERIALIZE) keyword in the control specification. However,
even though these programs are thread-safe, careful consideration must be given to
the overall application design, as THREAD(*SERIALIZE) forces serialization of RPG
procedures at the module level, and this may have an adverse affect on overall
performance.

Language considerations

10 MQSeries for AS/400, V5.1 APR (ILE RPG)

Where RPG programs are used as data-conversion exits, they must be made
thread-safe, and should be recompiled using the version 4.4 ILE RPG compiler
with THREAD(*SERIALIZE) specified in the control specification.

For further information about threading, see the AS/400 ILE RPG/400 Reference, and
the AS/400 ILE RPG/400 Programmer’s Guide.

MQI call parameters
Many parameters passed to the MQI can have more than one concurrent function.
This is because the integer value passed is often tested on the setting of individual
bits within the field, and not on its total value. This allows you to ‘add’ several
functions together and pass them as a single parameter.

Named constants
There are a large number of different integer and character values that provide
data interchange between your application program and the MQI. To facilitate a
more readable and consistent approach to using these values, they have all been
allocated named constants.

You are recommended to use these named constants and not the values they
represent, as this improves the readibility of the program source code. Also, if the
value of any of these constants should change, you will only need to recompile
your program to incorporate the changes.

All named constants are available by referencing the COPY members.

Commitment control
The MQI syncpoint functions MQCMIT and MQBACK are available to ILE RPG
programs running in normal mode; these calls allow the program to commit and
back out changes to MQ resources.

The MQCMIT and MQBACK calls are not available to ILE RPG programs running
in compatibility mode. For these programs you should use the operation codes
COMMIT and ROLBK.

Coding the bound calls
MQI ILE procedures are listed in Table 3.

Table 3. ILE RPG bound calls supported by each service program

Name of call LIBMQM and
LIBMQM_R

AMQZSTUB AMQVSTUB

MQBACK U

MQBEGIN U

MQCMIT U

MQCLOSE U U

MQCONN U U

MQCONNX U

MQDISC U U

MQGET U U

MQINQ U U

Language considerations

Chapter 2. Structure data types – programming considerations 11

Table 3. ILE RPG bound calls supported by each service program (continued)

Name of call LIBMQM and
LIBMQM_R

AMQZSTUB AMQVSTUB

MQOPEN U U

MQPUT U U

MQPUT1 U U

MQSET U U

MQXCNVC U U

To use these procedures you need to:
1. Define the external procedures in your ‘D’ specifications. These are all available

within the COPY file member CMQG containing the named constants.
2. Use the CALLP operation code to call the procedure along with its parameters.

For example the MQOPEN call requires the inclusion of the following code:
D**
D** MQOPEN Call -- Open Object (From COPY file CMQG) **
D**
D*
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQOPEN PR EXTPROC('MQOPEN')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object descriptor
D OBJDSC 224A
D* Options that control the action of MQOPEN
D OPTS 10I 0 VALUE
D* Object handle
D HOBJ 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0
D*

To call the procedure, after initializing the various parameters, you need the
following code:
...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+....8

C CALLP MQOPEN(HCONN : MQOD : OPTS : HOBJ :
C CMPCOD : REASON)

Here, the structure MQOD is defined using the COPY member CMQODG which
breaks it down into its components.

Coding the dynamic calls
To use the MQI through dynamic calls to QMQM, you require the following code.
The example is again MQOPEN:
...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+....8

C Z-ADD MQOPEN CID
C CALL 'QMQM'
C PARM CID 9 0
C PARM HCONN 9 0
C PARM MQOD
C PARM OPTS 9 0
C PARM HOBJ 9 0
C PARM CMPCOD 9 0
C PARM REASON 9 0
*

Language considerations

12 MQSeries for AS/400, V5.1 APR (ILE RPG)

Here, the structure MQOD is defined using the COPY member CMQODR which
splits it into its components.

Note: Function that is new in version 5 release 1 cannot be accessed by calls that
use dynamic linkage. For example, the MQBACK, MQBEGIN, MQCMIT,
and MQCONNX calls can be used only with static linkage.

Language considerations

Chapter 2. Structure data types – programming considerations 13

Language considerations

14 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 3. MQBO - Begin options

The following table summarizes the fields in the structure.

Table 4. Fields in MQBO

Field Description Page

BOSID Structure identifier 15

BOVER Structure version number 15

BOOPT Options that control the action of MQBEGIN 15

Overview
The MQBO structure is an input/output parameter for the MQBEGIN call.

This structure is supported in the following environments: AIX, HP-UX, OS/2,
OS/400, Sun Solaris, Windows NT.

Fields
BOSID (4-byte character string)

Structure identifier.

The value must be:

BOSIDV
Identifier for begin-options structure.

This is always an input field. The initial value of this field is BOSIDV.

BOVER (10-digit signed integer)
Structure version number.

The value must be:

BOVER1
Version number for begin-options structure.

The following constant specifies the version number of the current version:

BOVERC
Current version of begin-options structure.

This is always an input field. The initial value of this field is BOVER1.

BOOPT (10-digit signed integer)
Options that control the action of MQBEGIN.

The value must be:

BONONE
No options specified.

This is always an input field. The initial value of this field is BONONE.

© Copyright IBM Corp. 1994, 2000 15

|

Initial values and RPG declaration
Table 5. Initial values of fields in MQBO

Field name Name of constant Value of constant

BOSID BOSIDV 'BObb' (See note 1)

BOVER BOVER1 1

BOOPT BONONE 0

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQBO Structure
D*
D* Structure identifier
D BOSID 1 4
D* Structure version number
D BOVER 5 8I 0
D* Options that control the action of MQBEGIN
D BOOPT 9 12I 0

MQBO - Begin options

16 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 4. MQCIH - CICS bridge header

The following table summarizes the fields in the structure.

Table 6. Fields in MQCIH

Field Description Page

CISID Structure identifier 19

CIVER Structure version number 19

CILEN Length of MQCIH structure 19

CIENC Reserved 19

CICSI Reserved 19

CIFMT MQ™ format name of data that follows MQCIH 20

CIFLG Flags 20

CIRET Return code from bridge 20

CICC MQ completion code or CICS EIBRESP 21

CIREA MQ reason or feedback code, or CICS EIBRESP2 21

CIUOW Unit-of-work control 21

CIGWI Wait interval for MQGET call issued by bridge
task

21

CILT Link type 22

CIODL Output COMMAREA data length 22

CIFKT Bridge facility release time 22

CIADS Send/receive ADS descriptor 23

CICT Whether task can be conversational 23

CITES Status at end of task 23

CIFAC BVT token value 24

CIFNC MQ call name or CICS EIBFN function 24

CIAC Abend code 24

CIAUT Password or passticket 25

CIRFM MQ format name of reply message 25

CIRSI Remote sysid to use 25

CIRTI Remote transid to attach 25

CITI Transaction to attach 25

CIFL Terminal emulated attributes 26

CIAI AID key 26

CISC Transaction start code 26

CICNC Abend transaction code 26

CINTI Next transaction to attach 27

Note: The remaining fields are not present if CIVER is less than CIVER2.

CICP Cursor position 27

CIEO Offset of error in message 27

© Copyright IBM Corp. 1994, 2000 17

Table 6. Fields in MQCIH (continued)

Field Description Page

CIII Item number of last message read 27

Overview
The MQCIH structure describes the information that can be present at the start of a
message sent to the CICS bridge through MQSeries for OS/390™. The structure can
be omitted if the values required by the application are the same as the initial
values shown in Table 8 on page 28 and the bridge is running with AUTH=LOCAL
or IDENTIFY. The format name of this structure is FMCICS.

The current version of MQCIH is CIVER2. Fields that exist only in the version-2
structure are identified as such in the descriptions that follow. The declaration of
MQCIH provided in the COPY file contains the new fields, with the initial value of
the CIVER field set to GMVER2.

Special conditions apply to the character set and encoding used for the MQCIH
structure and application message data:
v Applications that connect to the queue manager which owns the CICS bridge

queue must provide an MQCIH structure that is in the character set and
encoding of the queue manager. This is because data conversion of the MQCIH
structure is not performed in this case.

v Applications that connect to other queue managers can provide an MQCIH
structure that is in any of the supported character sets and encodings;
conversion of the MQCIH and application message data is performed by the
queue manager as necessary.

Note: There is one exception to this. If the queue manager which owns the CICS
bridge queue is using CICS for distributed queuing, the MQCIH must be
in the character set and encoding of that queue manager.

v The application message data following the MQCIH structure must be in the
same character set and encoding as the MQCIH structure. The CICSI and CIENC
fields in the MQCIH structure cannot be used to specify the character set and
encoding of the application message data.

The application must ensure that fields documented as “request” fields have
appropriate values in the message that the application sends to the CICS bridge;
these fields are input to the bridge. Fields documented as “response” fields are set
by the CICS bridge in the reply message that the bridge sends to the application.

Error information is returned in the CIRET, CIFNC, CICC, CIREA, and CIAC fields.
Which of them is set depends on the value of the CIRET field; see Table 7.

Table 7. Contents of error information fields in MQCIH structure

CIRET CIFNC CICC CIREA CIAC

CRC000 – – – –

CRC003 – – FBC* –

CRC002 CRC008 MQ call name MQ CMPCOD MQ REASON –

CRC001 CRC006 CRC007 CRC009 CICS EIBFN CICS EIBRESP CICS EIBRESP2 –

CRC004 CRC005 – – – CICS ABCODE

MQCIH - CICS bridge header

18 MQSeries for AS/400, V5.1 APR (ILE RPG)

Fields
CISID (4-byte character string)

Structure identifier.

The value must be:

CISIDV
Identifier for CICS information header structure.

This is a request field. The initial value of this field is CISIDV.

CIVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

CIVER1
Version-1 CICS information header structure.

CIVER2
Version-2 CICS information header structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

CIVERC
Current version of CICS information header structure.

This is a request field. The initial value of this field is CIVER2.

CILEN (10-digit signed integer)
Length of MQCIH structure.

The value must be one of the following:

CILEN1
Length of version-1 CICS information header structure.

CILEN2
Length of version-2 CICS information header structure.

The following constant specifies the length of the current version:

CILENC
Length of current version of CICS information header structure.

This is a request field. The initial value of this field is CILEN2.

CIENC (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field
is 0.

CICSI (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field
is 0.

MQCIH - CICS bridge header

Chapter 4. MQCIH - CICS bridge header 19

CIFMT (8-byte character string)
MQ format name of data that follows MQCIH.

This is the MQ format name of the data that follows the MQCIH structure. The
rules for coding this are the same as those for the MDFMT field in MQMD.

This format name is also used for the reply message, if the CIRFM field has the
value FMNONE.

If the request message results in the generation of an error reply message, the
error reply message has a format name of FMSTR.

This is a request field. The length of this field is given by LNFMT. The initial
value of this field is FMNONE.

CIFLG (10-digit signed integer)
Flags.

The value must be:

CIFNON
No flags.

This is a request field. The initial value of this field is CIFNON.

CIRET (10-digit signed integer)
Return code from bridge.

This is the return code from the CICS bridge describing the outcome of the
processing performed by the bridge. The CIFNC, CICC, CIREA, and CIAC fields
may contain additional information (see Table 7 on page 18). The value is one
of the following:

CRC000
(0, X'000') No error.

CRC001
(1, X'001') EXEC CICS statement detected an error.

CRC002
(2, X'002') MQ call detected an error.

CRC003
(3, X'003') CICS bridge detected an error.

CRC004
(4, X'004') CICS bridge ended abnormally.

CRC005
(5, X'005') Application ended abnormally.

CRC006
(6, X'006') Security error occurred.

CRC007
(7, X'007') Program not available.

CRC008
(8, X'008') Second or later message within current unit of work not
received within specified time.

MQCIH - CICS bridge header

20 MQSeries for AS/400, V5.1 APR (ILE RPG)

CRC009
(9, X'009') Transaction not available.

This is a response field. The initial value of this field is CRC000.

CICC (10-digit signed integer)
MQ completion code or CICS EIBRESP.

The value returned in this field is dependent on CIRET; see Table 7 on page 18.

This is a response field. The initial value of this field is CCOK

CIREA (10-digit signed integer)
MQ reason or feedback code, or CICS EIBRESP2.

The value returned in this field is dependent on CIRET; see Table 7 on page 18.

This is a response field. The initial value of this field is RCNONE.

CIUOW (10-digit signed integer)
Unit-of-work control.

This controls the unit-of-work processing performed by the CICS bridge. You
can request the bridge to run a single transaction, or one or more programs
within a unit of work. The field indicates whether the CICS bridge should start
a unit of work, perform the requested function within the current unit of work,
or end the unit of work by committing it or backing it out. Various
combinations are supported, to optimize the data transmission flows.

The value must be one of the following:

CUONLY
Start unit of work, perform function, then commit the unit of work
(DPL and 3270).

CUCONT
Additional data for the current unit of work (3270 only).

CUFRST
Start unit of work and perform function (DPL only).

CUMIDL
Perform function within current unit of work (DPL only).

CULAST
Perform function, then commit the unit of work (DPL only).

CUCMIT
Commit the unit of work (DPL only).

CUBACK
Back out the unit of work (DPL only).

This is a request field. The initial value of this field is CUONLY.

CIGWI (10-digit signed integer)
Wait interval for MQGET call issued by bridge task.

This field is applicable only when CIUOW has the value CUFRST. It allows the
sending application to specify the approximate time in milliseconds that the
MQGET calls issued by the bridge should wait for second and subsequent

MQCIH - CICS bridge header

Chapter 4. MQCIH - CICS bridge header 21

request messages for the unit of work started by this message. This overrides
the default wait interval used by the bridge. The following special values may
be used:

WIDFLT
Default wait interval.

This causes the CICS bridge to wait for the period of time specified
when the bridge was started.

WIULIM
Unlimited wait interval.

This is a request field. The initial value of this field is WIDFLT.

CILT (10-digit signed integer)
Link type.

This indicates the type of object that the bridge should try to link. The value
must be one of the following:

LTPROG
DPL program.

LTTRAN
3270 transaction.

This is a request field. The initial value of this field is LTPROG.

CIODL (10-digit signed integer)
Output COMMAREA data length.

This is the length of the user data to be returned to the client in a reply
message. This length includes the 8-byte program name. The length of the
COMMAREA passed to the linked program is the maximum of this field and
the length of the user data in the request message, minus 8.

Note: The length of the user data in a message is the length of the message
excluding the MQCIH structure.

If the length of the user data in the request message is smaller than CIODL, the
DATALENGTH option of the LINK command is used; this allows the LINK to be
function-shipped efficiently to another CICS region.

The following special value can be used:

OLINPT
Output length is same as input length.

This value may be needed even if no reply is requested, in order to
ensure that the COMMAREA passed to the linked program is of
sufficient size.

This is a request field used only for DPL programs. The initial value of this
field OLINPT.

CIFKT (10-digit signed integer)
Bridge facility release time.

This is the length of time in seconds that the bridge facility will be kept after
the user transaction has ended.

MQCIH - CICS bridge header

22 MQSeries for AS/400, V5.1 APR (ILE RPG)

This is a request field used only for 3270 transactions. The initial value of this
field is 0.

CIADS (10-digit signed integer)
Send/receive ADS descriptor.

This is an indicator specifying whether ADS descriptors should be sent on
SEND and RECEIVE BMS requests. The value must be one of the following:

ADNONE
No ADS descriptor.

ADSEND
Send ADS descriptor.

ADRECV
Receive ADS descriptor.

ADMSGF
Receive ADS descriptor.

This is a request field used only for 3270 transactions. The initial value of this
field is ADNONE.

CICT (10-digit signed integer)
Whether task can be conversational.

This is an indicator specifying whether the task should be allowed to issue
requests for more information, or should abend. The value must be one of the
following:

CTYES
Task is conversational.

CTNO
Task is not conversational.

This is a request field used only for 3270 transactions. The initial value of this
field is CTNO.

CITES (10-digit signed integer)
Status at end of task.

This field shows the status of the user transaction at end of task. One of the
following values is returned:

TENOSY
Not synchronized.

The user transaction has not yet completed and has not syncpointed.

TECMIT
Commit unit of work.

The user transaction has not yet completed, but has syncpointed the
first unit of work.

TEBACK
Back out unit of work.

The user transaction has not yet completed. The current unit of work
will be backed out.

MQCIH - CICS bridge header

Chapter 4. MQCIH - CICS bridge header 23

TEENDT
End task.

The user transaction has ended (or abended).

This is a response field used only for 3270 transactions. The initial value of this
field is TENOSY.

CIFAC (8-byte bit string)
BVT token value.

This is an 8-byte bridge-facility token. The purpose of a bridge-facility token is
to allow multiple transactions in a pseudoconversation to use the same bridge
facility (virtual 3270 terminal). In the first, or only, message in a
pseudoconversation, a value of FCNONE should be set; this tells CICS to
allocate a new bridge facility for this message. A bridge-facility token is
returned in response messages when a nonzero CIFKT is specified on the input
message. Subsequent input messages can then use the same bridge-facility
token.

The following special value is defined:

FCNONE
No BVT token specified.

This is both a request and a response field used only for 3270 transactions. The
length of this field is given by LNFAC. The initial value of this field is
FCNONE.

CIFNC (4-byte character string)
MQ call name or CICS EIBFN function.

The value returned in this field is dependent on CIRET; see Table 7 on page 18.
The following values are possible when CIFNC contains an MQ call name:

CFCONN
MQCONN call.

CFGET
MQGET call.

CFINQ
MQINQ call.

CFOPEN
MQOPEN call.

CFPUT
MQPUT call.

CFPUT1
MQPUT1 call.

CFNONE
No call.

This is a response field. The length of this field is given by LNFUNC. The
initial value of this field is CFNONE.

CIAC (4-byte character string)
Abend code.

MQCIH - CICS bridge header

24 MQSeries for AS/400, V5.1 APR (ILE RPG)

The value returned in this field is dependent on CIRET; see Table 7 on page 18.

This is a response field. The length of this field is given by LNABNC. The
initial value of this field is 4 blank characters.

CIAUT (8-byte character string)
Password or passticket.

This is a password or passticket. If user-identifier authentication is active for
the CICS bridge, CIAUT is used with the user identifier in the MQMD identity
context to authenticate the sender of the message.

This is a request field. The length of this field is given by LNAUTH. The initial
value of this field is 8 blanks.

CIRS1 (8-byte character string)
Reserved.

This is a reserved field. The value must be 8 blanks.

CIRFM (8-byte character string)
MQ format name of reply message.

This is the MQ format name of the reply message which will be sent in
response to the current message. The rules for coding this are the same as
those for the MDFMT field in MQMD.

This is a request field used only for DPL programs. The length of this field is
given by LNFMT. The initial value of this field is FMNONE.

CIRSI (4-byte character string)
Remote sysid to use.

This is a reserved field. The value must be 4 blanks. The length of this field is
given by LNRSID.

CIRTI (4-byte character string)
Remote transid to attach.

This is a reserved field. The value must be 4 blanks. The length of this field is
given by LNTRID.

CITI (4-byte character string)
Transaction to attach.

If CILT has the value LTTRAN, CITI is the transaction identifier of the user
transaction to be run; a nonblank value must be specified in this case.

If CILT has the value LTPROG, CITI is the transaction code under which all
programs within the unit of work are to be run. If the value specified is blank,
the CICS DPL bridge default transaction code (CKBP) is used. If the value is
nonblank, it must have been defined to CICS as a local TRANSACTION whose
initial program is CSQCBP00. This field is applicable only when CIUOW has the
value CUFRST or CUONLY.

This is a request field. The length of this field is given by LNTRID. The initial
value of this field is 4 blanks.

MQCIH - CICS bridge header

Chapter 4. MQCIH - CICS bridge header 25

CIFL (4-byte character string)
Terminal emulated attributes.

This is the name of an installed terminal that is to be used as a model for the
bridge facility. A value of blanks means that CIFL is taken from the bridge
transaction profile definition, or a default value is used.

This is a request field used only for 3270 transactions. The length of this field
is given by LNFACL. The initial value of this field is 4 blanks.

CIAI (4-byte character string)
AID key.

This is the initial value of the AID key when the transaction is started. It is a
1-byte value, left justified.

This is a request field used only for 3270 transactions. The length of this field
is given by LNATID. The initial value of this field is 4 blanks.

CISC (4-byte character string)
Transaction start code.

This is an indicator specifying whether the bridge emulates a terminal
transaction or a STARTed transaction. The value must be one of the following:

SCSTRT
Start.

SCDATA
Start data.

SCTERM
Terminate input.

SCNONE
None.

In the response from the bridge, this field is set to the start code appropriate to
the next transaction ID contained in the CINTI field. The following start codes
are possible in the response:

SCSTRT
SCDATA
SCTERM

For CICS Transaction Server Version 1.2, this field is a request field only; its
value in the response is undefined.

For CICS Transaction Server Version 1.3 and subsequent releases, this is both a
request and a response field.

This field is used only for 3270 transactions. The length of this field is given by
LNSTCO. The initial value of this field is SCNONE.

CICNC (4-byte character string)
Abend transaction code.

This is the abend code to be used to terminate the transaction (normally a
conversational transaction that is requesting more data). Otherwise this field is
set to blanks.

MQCIH - CICS bridge header

26 MQSeries for AS/400, V5.1 APR (ILE RPG)

This is a request field used only for 3270 transactions. The length of this field
is given by LNCNCL. The initial value of this field is 4 blanks.

CINTI (4-byte character string)
Next transaction to attach.

This is the name of the next transaction returned by the user transaction
(usually by EXEC CICS RETURN TRANSID). If there is no next transaction,
this field is set to blanks.

This is a response field used only for 3270 transactions. The length of this field
is given by LNTRID. The initial value of this field is 4 blanks.

CIRS2 (8-byte character string)
Reserved.

This is a reserved field. The value must be 8 blanks.

CIRS3 (8-byte character string)
Reserved.

This is a reserved field. The value must be 8 blanks.

The remaining fields are not present if CIVER is less than CIVER2.

CICP (10-digit signed integer)
Cursor position.

This is the initial cursor position when the transaction is started. Subsequently,
for conversational transactions, the cursor position is in the RECEIVE vector.

This is a request field used only for 3270 transactions. The initial value of this
field is 0. This field is not present if CIVER is less than CIVER2.

CIEO (10-digit signed integer)
Offset of error in message.

This is the position of invalid data detected by the bridge exit. This field
provides the offset from the start of the message to the location of the invalid
data.

This is a response field used only for 3270 transactions. The initial value of this
field is 0. This field is not present if CIVER is less than CIVER2.

CIII (10-digit signed integer)
Item number of last message read.

This is a reserved field. The value must be 0. This field is not present if CIVER
is less than CIVER2.

CIRS4 (10-digit signed integer)
Reserved.

This is a reserved field. The value must be 0. This field is not present if CIVER
is less than CIVER2.

MQCIH - CICS bridge header

Chapter 4. MQCIH - CICS bridge header 27

Initial values and RPG declaration
Table 8. Initial values of fields in MQCIH

Field name Name of constant Value of constant

CISID CISIDV 'CIHb' (See note 1)

CIVER CIVER2 2

CILEN CILEN2 180

CIENC None 0

CICSI None 0

CIFMT FMNONE 'bbbbbbbb'

CIFLG CIFNON 0

CIRET CRC000 0

CICC CCOK 0

CIREA RCNONE 0

CIUOW CUONLY 273

CIGWI WIDFLT -2

CILT LTPROG 1

CIODL OLINPT -1

CIFKT None 0

CIADS ADNONE 0

CICT CTNO 0

CITES TENOSY 0

CIFAC FCNONE Nulls

CIFNC CFNONE 'bbbb'

CIAC None 'bbbb'

CIAUT None 'bbbbbbbb'

CIRS1 None 'bbbbbbbb'

CIRFM FMNONE 'bbbbbbbb'

CIRSI None 'bbbb'

CIRTI None 'bbbb'

CITI None 'bbbb'

CIFL None 'bbbb'

CIAI None 'bbbb'

CISC SCNONE 'bbbb'

CICNC None 'bbbb'

CINTI None 'bbbb'

CIRS2 None 'bbbbbbbb'

CIRS3 None 'bbbbbbbb'

CICP None 0

CIEO None 0

CIII None 0

CIRS4 None 0

RPG declaration

28 MQSeries for AS/400, V5.1 APR (ILE RPG)

|||

|||

|||

|||

|||

|||

Table 8. Initial values of fields in MQCIH (continued)

Field name Name of constant Value of constant

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCIH Structure
D*
D* Structure identifier
D CISID 1 4
D* Structure version number
D CIVER 5 8I 0
D* Length of MQCIH structure
D CILEN 9 12I 0
D* Reserved
D CIENC 13 16I 0
D* Reserved
D CICSI 17 20I 0
D* MQ format name of data that follows MQCIH
D CIFMT 21 28
D* Flags
D CIFLG 29 32I 0
D* Return code from bridge
D CIRET 33 36I 0
D* MQ completion code or CICS EIBRESP
D CICC 37 40I 0
D* MQ reason or feedback code, or CICS EIBRESP2
D CIREA 41 44I 0
D* Unit-of-work control
D CIUOW 45 48I 0
D* Wait interval for MQGET call issued by bridge task
D CIGWI 49 52I 0
D* Link type
D CILT 53 56I 0
D* Output COMMAREA data length
D CIODL 57 60I 0
D* Bridge facility release time
D CIFKT 61 64I 0
D* Send/receive ADS descriptor
D CIADS 65 68I 0
D* Whether task can be conversational
D CICT 69 72I 0
D* Status at end of task
D CITES 73 76I 0
D* BVT token value
D CIFAC 77 84
D* MQ call name or CICS EIBFN function
D CIFNC 85 88
D* Abend code
D CIAC 89 92
D* Password or passticket
D CIAUT 93 100
D* Reserved
D CIRS1 101 108
D* MQ format name of reply message
D CIRFM 109 116
D* Remote sysid to use
D CIRSI 117 120
D* Remote transid to attach
D CIRTI 121 124
D* Transaction to attach
D CITI 125 128

RPG declaration

Chapter 4. MQCIH - CICS bridge header 29

D* Terminal emulated attributes
D CIFL 129 132
D* AID key
D CIAI 133 136
D* Transaction start code
D CISC 137 140
D* Abend transaction code
D CICNC 141 144
D* Next transaction to attach
D CINTI 145 148
D* Reserved
D CIRS2 149 156
D* Reserved
D CIRS3 157 164
D* Cursor position
D CICP 165 168I 0
D* Offset of error in message
D CIEO 169 172I 0
D* Item number of last message read
D CIII 173 176I 0
D* Reserved
D CIRS4 177 180I 0

RPG declaration

30 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 5. MQCNO - Connect options

The following table summarizes the fields in the structure.

Table 9. Fields in MQCNO

Field Description Page

CNSID Structure identifier 31

CNVER Structure version number 31

CNOPT Options that control the action of MQCONNX 31

Note: The remaining fields are not present if CNVER is less than CNVER2.

CNCCO Offset of MQCD structure for client connection 33

CNCCP Address of MQCD structure for client connection 33

Overview
The MQCNO structure is an input/output parameter for the MQCONNX call.

Fields
CNSID (4-byte character string)

Structure identifier.

The value must be:

CNSIDV
Identifier for connect-options structure.

This is always an input field. The initial value of this field is CNSIDV.

CNVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

CNVER1
Version-1 connect-options structure.

CNVER2
Version-2 connect-options structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

CNVERC
Current version of connect-options structure.

This is always an input field. The initial value of this field is CNVER1.

CNOPT (10-digit signed integer)
Options that control the action of MQCONNX.

© Copyright IBM Corp. 1994, 2000 31

Binding options: The following options control the type of MQ binding that
will be used; only one of these options can be specified:

CNSBND
Standard binding.

This option causes the application and the local-queue-manager agent
(the component that manages queuing operations) to run in separate
units of execution (generally, in separate processes). This arrangement
maintains the integrity of the queue manager, that is, it protects the
queue manager from errant programs.

CNSBND should be used in situations where the application may not
have been fully tested, or may be unreliable or untrustworthy.
CNSBND is the default.

CNSBND is defined to aid program documentation. It is not intended
that this option be used with any other option controlling the type of
binding used, but as its value is zero, such use cannot be detected.

CNFBND
Fastpath binding.

This option causes the application and the local-queue-manager agent
to be part of the same unit of execution. This is in contrast to the
normal method of binding, where the application and the
local-queue-manager agent run in separate units of execution.

CNFBND is ignored if specified by an MQ client application;
processing continues as though the option had not been specified.

CNFBND may be of advantage in situations where the use of multiple
processes is a significant performance overhead compared to the
overall resource used by the application. An application that uses the
fastpath binding is known as a trusted application.

The following important points must be considered when deciding
whether to use the fastpath binding:
v Use of the CNFBND option compromises the integrity of the

queue manager, because it permits a rogue application to alter or
corrupt messages and other data areas belonging to the queue
manager. It should therefore be considered for use only in
situations where these issues have been fully evaluated.

v The application must not use asynchronous signals or timer
interrupts (such as sigkill) with CNFBND. There are also
restrictions on the use of shared memory segments. Refer to the
MQSeries Application Programming Guide for more information.

v The application must not have more than one thread connected to
the queue manager at any one time.

v The application must use the MQDISC call to disconnect from the
queue manager.

v The application must finish before ending the queue manager with
the endmqm command.

The following points apply to the use of CNFBND in the environments
indicated:
v On OS/400, the job must run under a user profile that belongs to the

QMQMADM group. Also, the program must not terminate abnormally,
otherwise unpredictable results may occur.

MQCNO - Connect options

32 MQSeries for AS/400, V5.1 APR (ILE RPG)

For more information about the implications of using trusted
applications, see the MQSeries Application Programming Guide.

Default option: If none of the options described above is required, the
following option can be used:

CNNONE
No options specified.

CNNONE is defined to aid program documentation. It is not intended
that this option be used with any other, but as its value is zero, such
use cannot be detected.

This is always an input field. The initial value of this field is CNNONE.

The remaining fields are not present if CNVER is less than CNVER2.

CNCCO (10-digit signed integer)
Offset of MQCD structure for client connection.

This is the offset in bytes of an MQCD channel definition structure from the
start of the MQCNO structure. The offset can be positive or negative.

CNCCO is used only when the application issuing the MQCONNX call is
running as an MQ client. For information on how to use this field, see the
description of the CNCCP field.

This is an input field. The initial value of this field is 0. This field is not
present if CNVER is less than CNVER2.

CNCCP (pointer)
Address of MQCD structure for client connection.

CNCCO and CNCCP are used only when the application issuing the MQCONNX
call is running as an MQ client. By specifying one or other of these fields, the
application can control the definition of the client connection channel by
providing an MQCD channel definition structure that contains the values
required.

If the application is running as an MQ client but the application does not
provide an MQCD structure, the MQSERVER environment variable is used to
select the channel definition. If MQSERVER is not set, the client channel table is
used.

If the application is not running as an MQ client, CNCCO and CNCCP are ignored.

If the application provides an MQCD structure, the fields listed below must be
set to the values required; other fields in MQCD are ignored. Character strings
can be padded with blanks to the length of the field, or terminated by a null
character. Refer to the MQSeries Intercommunication book for more information
about the fields in the MQCD structure.

Field in MQCD Value
CDCHN Channel name.
CDVER Structure version number. Must not be less than CDVER6.
CDTRT Any supported transport type.
CDMOD LU 6.2 mode name.
CDTP LU 6.2 transaction program name.

MQCNO - Connect options

Chapter 5. MQCNO - Connect options 33

Field in MQCD Value
CDSCX Name of channel security exit.
CDSNX Name of channel send exit.
CDRCX Name of channel receive exit.
CDMML Maximum length in bytes of messages that can be sent over the client

connection channel.
CDSCD User data for security exit.
CDSND User data for send exit.
CDRCD User data for receive exit.
CDUID User identifier to be used to establish an LU 6.2 session.
CDPW Password to be used to establish an LU 6.2 session.
CDCON Connection name.
CDHBI Time in seconds between heartbeat flows.
CDLEN Length of the MQCD structure.
CDXNL Length of exit names addressed by CDSXP and CDRXP. Must be greater

than zero if CDSXP or CDRXP is set to a value that is not the null pointer.
CDXDL Length of exit data addressed by CDSUP and CDRUP. Must be greater than

zero if CDSUP or CDRUP is set to a value that is not the null pointer.
CDSXD Number of send exits addressed by CDSXP. If zero, CDSNX and CDSND

provide the exit name and data. If greater than zero, CDSXP and CDSUP
provide the exit names and data, and CDSNX and CDSND must be blank.

CDRXD Number of receive exits addressed by CDRXP. If zero, CDRCX and CDRCD
provide the exit name and data. If greater than zero, CDRXP and CDRUP
provide the exit names and data, and CDRCX and CDRCD must be blank.

CDSXP Address of name of first send exit.
CDSUP Address of data for first send exit.
CDRXP Address of name of first receive exit.
CDRUP Address of data for first receive exit.
CDLRL Length of long remote user identifier.
CDLRP Address of long remote user identifier.
CDRSI Remote security identifier.

The channel definition structure can be provided in one of two ways:
v By using the offset field CNCCO

In this case, the application should declare its own structure containing an
MQCNO followed by the channel definition structure MQCD, and set CNCCO
to the offset of the channel definition structure from the start of the
MQCNO. Care must be taken to ensure that this offset is correct. CNCCP must
be set to the null pointer or null bytes.

v By using the pointer field CNCCP

In this case, the application can declare the channel definition structure
separately from the MQCNO structure, and set CNCCP to the address of the
channel definition structure. CNCCO must be set to zero.

Whichever technique is chosen, only one of CNCCO and CNCCP can be used; the
call fails with reason code RC2278 if both are nonzero.

Once the MQCONNX called has completed, the MQCD structure is not
referenced again.

This is an input field. The initial value of this field is the null pointer. This
field is not present if CNVER is less than CNVER2.

MQCNO - Connect options

34 MQSeries for AS/400, V5.1 APR (ILE RPG)

Initial values and RPG declaration
Table 10. Initial values of fields in MQCNO

Field name Name of constant Value of constant

CNSID CNSIDV 'CNOb' (See note 1)

CNVER CNVER1 1

CNOPT CNNONE 0

CNCCO None 0

CNCCP None Null pointer or null
bytes

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQCNO Structure
D*
D* Structure identifier
D CNSID 1 4
D* Structure version number
D CNVER 5 8I 0
D* Options that control the action of MQCONNX
D CNOPT 9 12I 0
D* Offset of MQCD structure for client connection
D CNCCO 13 16I 0
D* Address of MQCD structure for client connection
D CNCCP 17 32*

MQCNO - Connect options

Chapter 5. MQCNO - Connect options 35

|||

|||
|

MQCNO - Connect options

36 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 6. MQDH - Distribution header

The following table summarizes the fields in the structure.

Table 11. Fields in MQDH

Field Description Page

DHSID Structure identifier 38

DHVER Structure version number 38

DHLEN Length of MQDH structure plus following records 38

DHENC Numeric encoding of data that follows array of
MQPMR records

39

DHCSI Character set identifier of data that follows array
of MQPMR records

39

DHFMT Format name of data that follows array of
MQPMR records

39

DHFLG General flags 39

DHPRF Flags indicating which MQPMR fields are present 40

DHCNT Number of object records present 40

DHORO Offset of first object record from start of MQDH 40

DHPRO Offset of first put-message record from start of
MQDH

40

Overview
The MQDH structure describes the data that is present in a message on a
transmission queue when that message is a distribution-list message (that is, the
message is being sent to multiple destination queues). This structure is for use by
specialized applications that put messages directly on transmission queues, or
which remove messages from transmission queues (for example: message channel
agents).

This structure should not be used by normal applications which simply want to
put messages to distribution lists. Those applications should use the MQOD
structure to define the destinations in the distribution list, and the MQPMO
structure to specify message properties or receive information about the messages
sent to the individual destinations.

This structure is supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

When an application puts a message to a distribution list, and some or all of the
destinations are remote, the queue manager prefixes the application message data
with the MQXQH and MQDH structures, and places the message on the relevant
transmission queue. The data therefore occurs in the following sequence when the
message is on a transmission queue:
v MQXQH structure
v MQDH structure
v Application message data

© Copyright IBM Corp. 1994, 2000 37

Depending on the destinations, more than one such message may be generated by
the queue manager, and placed on different transmission queues. In this case, the
MQDH structures in those messages identify different subsets of the destinations
defined by the distribution list opened by the application.

An application that puts a distribution-list message directly on a transmission
queue must conform to the sequence described above, and must ensure that the
MQDH structure is correct. If the MQDH structure is not valid, the queue manager
may choose to fail the MQPUT or MQPUT1 call with reason code RC2135.

Messages can be stored on a queue in distribution-list form only if the queue is
defined as being able to support distribution list messages (see the DistLists
queue attribute described in “Chapter 38. Attributes for local queues and model
queues” on page 299). If an application puts a distribution-list message directly on
a queue that does not support distribution lists, the queue manager splits the
distribution list message into individual messages, and places those on the queue
instead.

Fields
DHSID (4-byte character string)

Structure identifier.

The value must be:

DHSIDV
Identifier for distribution header structure.

The initial value of this field is DHSIDV.

DHVER (10-digit signed integer)
Structure version number.

The value must be:

DHVER1
Version number for distribution header structure.

The following constant specifies the version number of the current version:

DHVERC
Current version of distribution header structure.

The initial value of this field is DHVER1.

DHLEN (10-digit signed integer)
Length of MQDH structure plus following records.

This is the number of bytes from the start of the MQDH structure to the start
of the message data following the arrays of MQOR and MQPMR records. The
data occurs in the following sequence:
v MQDH structure
v Array of MQOR records
v Array of MQPMR records
v Message data

The arrays of MQOR and MQPMR records are addressed by offsets contained
within the MQDH structure. If these offsets result in unused bytes between one

MQDH - Distribution header

38 MQSeries for AS/400, V5.1 APR (ILE RPG)

or more of the MQDH structure, the arrays of records, and the message data,
those unused bytes must be included in the value of DHLEN, but the content of
those bytes is not preserved by the queue manager. It is valid for the array of
MQPMR records to precede the array of MQOR records.

The initial value of this field is 0.

DHENC (10-digit signed integer)
Numeric encoding of data that follows array of MQPMR records.

The initial value of this field is 0.

DHCSI (10-digit signed integer)
Character set identifier of data that follows array of MQPMR records.

The initial value of this field is 0.

DHFMT (8-byte character string)
Format name of data that follows array of MQPMR records.

The initial value of this field is FMNONE.

DHFLG (10-digit signed integer)
General flags.

The following flag can be specified:

DHFNEW
Generate new message identifiers.

This flag indicates that a new message identifier is to be generated for
each destination in the distribution list. This can be set only when
there are no put-message records present, or when the records are
present but they do not contain the PRMID field.

Using this flag defers generation of the message identifiers until the
last possible moment, namely the moment when the distribution-list
message is finally split into individual messages. This minimizes the
amount of control information that must flow with the distribution-list
message.

When an application puts a message to a distribution list, the queue
manager sets DHFNEW in the MQDH it generates when both of the
following are true:
v There are no put-message records provided by the application, or

the records provided do not contain the PRMID field.
v The MDMID field in MQMD is MINONE, or the PMOPT field in

MQPMO includes PMNMID

If no flags are needed, the following can be specified:

DHFNON
No flags.

This constant indicates that no flags have been specified. DHFNON is
defined to aid program documentation. It is not intended that this
constant be used with any other, but as its value is zero, such use
cannot be detected.

The initial value of this field is DHFNON.

MQDH - Distribution header

Chapter 6. MQDH - Distribution header 39

DHPRF (10-digit signed integer)
Flags indicating which MQPMR fields are present.

Zero or more of the following flags can be specified:

PFMID
Message-identifier field is present.

PFCID
Correlation-identifier field is present.

PFGID
Group-identifier field is present.

PFFB Feedback field is present.

PFACC
Accounting-token field is present.

If no MQPMR fields are present, the following can be specified:

PFNONE
No put-message record fields are present.

PFNONE is defined to aid program documentation. It is not intended
that this constant be used with any other, but as its value is zero, such
use cannot be detected.

The initial value of this field is PFNONE.

DHCNT (10-digit signed integer)
Number of object records present.

This defines the number of destinations. A distribution list must always
contain at least one destination, so DHCNT must always be greater than zero.

The initial value of this field is 0.

DHORO (10-digit signed integer)
Offset of first object record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQOR
object records containing the names of the destination queues. There are DHCNT
records in this array. These records (plus any bytes skipped between the first
object record and the previous field) are included in the length given by the
DHLEN field.

A distribution list must always contain at least one destination, so DHORO must
always be greater than zero.

The initial value of this field is 0.

DHPRO (10-digit signed integer)
Offset of first put message record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQPMR
put message records containing the message properties. If present, there are
DHCNT records in this array. These records (plus any bytes skipped between the
first put message record and the previous field) are included in the length
given by the DHLEN field.

MQDH - Distribution header

40 MQSeries for AS/400, V5.1 APR (ILE RPG)

Put message records are optional; if no records are provided, DHPRO is zero, and
DHPRF has the value PFNONE.

The initial value of this field is 0.

Initial values and RPG declaration
Table 12. Initial values of fields in MQDH

Field name Name of constant Value of constant

DHSID DHSIDV 'DHbb' (See note 1)

DHVER DHVER1 1

DHLEN None 0

DHENC None 0

DHCSI None 0

DHFMT FMNONE 'bbbbbbbb'

DHFLG DHFNON 0

DHPRF PFNONE 0

DHCNT None 0

DHORO None 0

DHPRO None 0

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQDH Structure
D*
D* Structure identifier
D DHSID 1 4
D* Structure version number
D DHVER 5 8I 0
D* Length of MQDH structure plus following records
D DHLEN 9 12I 0
D* Numeric encoding of data that follows array of MQPMR records
D DHENC 13 16I 0
D* Character set identifier of data that follows array of MQPMR
D* records
D DHCSI 17 20I 0
D* Format name of data that follows array of MQPMR records
D DHFMT 21 28
D* General flags
D DHFLG 29 32I 0
D* Flags indicating which MQPMR fields are present
D DHPRF 33 36I 0
D* Number of object records present
D DHCNT 37 40I 0
D* Offset of first object record from start of MQDH
D DHORO 41 44I 0
D* Offset of first put message record from start of MQDH
D DHPRO 45 48I 0

MQDH - Distribution header

Chapter 6. MQDH - Distribution header 41

MQDH - Distribution header

42 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 7. MQDLH - Dead-letter header

The following table summarizes the fields in the structure.

Table 13. Fields in MQDLH

Field Description Page

DLSID Structure identifier 45

DLVER Structure version number 45

DLREA Reason message arrived on dead-letter queue 45

DLDQ Name of original destination queue 46

DLDM Name of original destination queue manager 46

DLENC Numeric encoding of data that follows MQDLH 46

DLCSI Character set identifier of data that follows
MQDLH

47

DLFMT Format name of data that follows MQDLH 47

DLPAT Type of application that put message on
dead-letter queue

47

DLPAN Name of application that put message on
dead-letter queue

48

DLPD Date when message was put on dead-letter queue 48

DLPT Time when message was put on dead-letter queue 48

Overview
The MQDLH structure describes the information that is prefixed to the application
message data of messages on the dead-letter (undelivered-message) queue. A
message can arrive on the dead-letter queue either because the queue manager or
message channel agent has redirected it to the queue, or because an application has
put the message directly on the queue.

Special processing is done when a message which is a segment is put with an
MQDLH structure at the front; see the description of the MQMDE structure for
further details.

This structure is not supported in the following environments: 16-bit Windows,
32-bit Windows.

Applications that put messages directly on the dead-letter queue should prefix the
message data with an MQDLH structure, and initialize the fields with appropriate
values. However, the queue manager does not check that an MQDLH structure is
present, or that valid values have been specified for the fields.

If a message is too long to put on the dead-letter queue, the application should
consider doing one of the following:
v Truncate the message data to fit on the dead-letter queue.
v Record the message on auxiliary storage and place an exception report message

on the dead-letter queue indicating this.

© Copyright IBM Corp. 1994, 2000 43

v Discard the message and return an error to its originator. If the message is (or
might be) a critical message, this should be done only if it is known that the
originator still has a copy of the message—for example, a message received by a
message channel agent from a communication channel.

Which of the above is appropriate (if any) depends on the design of the
application.

When a message is put on the dead-letter queue, all of the fields in the message
descriptor MQMD should be copied from those in the original message descriptor
(if there is one), with the exception of the following:
v The MDCSI and MDENC fields should be set to whatever character set and encoding

are used for fields in the MQDLH structure.
v The MDFMT field should be set to FMDLH to indicate that the data begins with a

MQDLH structure.
v The context fields:

MDUID
MDACC
MDAID
MDPAT
MDPAN
MDPD
MDPT
MDAOD

should be set by using a context option appropriate to the nature of the
program:
– A program putting on the dead-letter queue a message that is not related to

any preceding message should use the PMDEFC option; this causes the queue
manager to set all of the context fields in the message descriptor to their
default values.

– A program putting on the dead-letter queue a message it has just received
should use the PMPASA option, in order to preserve the original context
information.

– A program putting on the dead-letter queue a reply to a message it has just
received should use the PMPASI option; this preserves the identity
information but sets the origin information to be that of the server.

– A message channel agent putting on the dead-letter queue a message it
received from its communication channel should use the PMSETA option, to
preserve the original context information.

In the MQDLH structure itself, the fields should be set as follows:
v The DLCSI, DLENC and DLFMT fields should be set to the values that describe the

application message data that follows the MQDLH structure—usually the values
from the original message descriptor.

v The context fields DLPAT, DLPAN, DLPD, and DLPT should be set to values
appropriate to the application that is putting the message on the dead-letter
queue; these values are not related to the original message.

v Other fields should be set as appropriate.

Character data in the MQDLH structure should be in the character set defined by
the MDCSI field of the message descriptor. Numeric data in the MQDLH structure
should be in the data encoding defined by the MDENC field of the message
descriptor. The application should ensure that all fields have valid values, and that

MQDLH - Dead-letter header

44 MQSeries for AS/400, V5.1 APR (ILE RPG)

character fields are padded with blanks to the defined length of the field; the
character data should not be terminated prematurely by using a null character,
because the queue manager does not convert the null and subsequent characters to
blanks in the MQDLH structure.

Applications that get messages from the dead-letter queue should verify that the
messages begin with an MQDLH structure. The application can determine whether
an MQDLH structure is present by examining the MDFMT field in the message
descriptor MQMD; if the field has the value FMDLH, the message data begins
with an MQDLH structure. Applications that get messages from the dead-letter
queue should also be aware that such messages may have been truncated if they
were originally too long for the queue.

Fields
DLSID (4-byte character string)

Structure identifier.

The value must be:

DLSIDV
Identifier for dead-letter header structure.

The initial value of this field is DLSIDV.

DLVER (10-digit signed integer)
Structure version number.

The value must be:

DLVER1
Version number for dead-letter header structure.

The following constant specifies the version number of the current version:

DLVERC
Current version of dead-letter header structure.

The initial value of this field is DLVER1.

DLREA (10-digit signed integer)
Reason message arrived on dead-letter (undelivered-message) queue.

This identifies the reason why the message was placed on the dead-letter
queue instead of on the original destination queue. It should be one of the FB*
or RC* values (for example, RC2053). See the description of the MDFB field in
“Chapter 10. MQMD - Message descriptor” on page 83 for details of the
common FB* values that can occur.

If the value is in the range FBIFST through FBILST, the actual IMS error code
can be determined by subtracting FBIERR from the value of the DLREA field.

Some FB* values occur only in this field. They relate to repository messages,
trigger messages, or transmission-queue messages that have been transferred to
the dead-letter queue. These are:

FBABEG
Application cannot be started.

MQDLH - Dead-letter header

Chapter 7. MQDLH - Dead-letter header 45

|

An application processing a trigger message was unable to start the
application named in the TMAI field of the trigger message (see
“Chapter 18. MQTM - Trigger message” on page 179).

FBATYP
Application type error.

An application processing a trigger message was unable to start the
application because the TMAT field of the trigger message is not valid
(see “Chapter 18. MQTM - Trigger message” on page 179).

FBNARM
Message is not a repository message.

FBSBCX
Message stopped by channel auto-definition exit.

FBSBMX
Message stopped by channel message exit.

FBTM MQTM structure not valid or missing.

The MDFMT field in MQMD specifies FMTM, but the message does not
begin with a valid MQTM structure. For example, the TMSID mnemonic
eye-catcher may not be valid, the TMVER may not be recognized, or the
length of the trigger message may be insufficient to contain the MQTM
structure.

FBXQME
Message on transmission queue not in correct format.

A message channel agent has found that a message on the transmission
queue is not in the correct format. The message channel agent puts the
message on the dead-letter queue using this feedback code.

The initial value of this field is RCNONE.

DLDQ (48-byte character string)
Name of original destination queue.

This is the name of the message queue that was the original destination for the
message.

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

DLDM (48-byte character string)
Name of original destination queue manager.

This is the name of the queue manager that was the original destination for the
message.

The length of this field is given by LNQMN. The initial value of this field is 48
blank characters.

DLENC (10-digit signed integer)
Numeric encoding of data that follows MQDLH.

This specifies the data encoding used for numeric data in the original message.
It applies to the message data which follows the MQDLH structure; it does not
apply to numeric data in the MQDLH structure itself.

MQDLH - Dead-letter header

46 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|

|
|

When an MQDLH structure is prefixed to the message data, the original data
encoding should be preserved by copying it from the MDENC field in the
message descriptor MQMD to the DLENC field in the MQDLH structure. The
MDENC field in the message descriptor should then be set to the value
appropriate to the numeric data in the MQDLH structure.

The value ENNAT can be used for the DLENC field in both the MQDLH and
MQMD structures.

The initial value of this field is 0.

DLCSI (10-digit signed integer)
Character set identifier of data that follows MQDLH.

This specifies the coded character set identifier of character data in the original
message. It applies to the message data which follows the MQDLH structure; it
does not apply to character data in the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original coded
character set identifier should be preserved by copying it from the MDCSI field
in the message descriptor MQMD to the DLCSI field in the MQDLH structure.
The MDCSI field in the message descriptor should then be set to the value
appropriate to the character data in the MQDLH structure.

The value CSQM can be used for the MDCSI field in the MQMD structure, but
should not be used for the DLCSI field in the MQDLH structure, as the queue
manager does not replace the value CSQM in the latter field by the value that
applies to the queue manager.

The initial value of this field is 0.

DLFMT (8-byte character string)
Format name of data that follows MQDLH.

This is the format name of the application data in the original message. It
applies to the message data which follows the MQDLH structure; it does not
apply to the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original
format name should be preserved by copying it from the MDFMT field in the
message descriptor MQMD to the DLFMT field in the MQDLH structure. The
MDFMT field in the message descriptor should then be set to the value FMDLH.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

DLPAT (10-digit signed integer)
Type of application that put message on dead-letter (undelivered-message)
queue.

This field has the same meaning as the MDPAT field in the message descriptor
MQMD (see “Chapter 10. MQMD - Message descriptor” on page 83 for details).

If it is the queue manager that redirects the message to the dead-letter queue,
DLPAT has the value ATQM.

The initial value of this field is 0.

MQDLH - Dead-letter header

Chapter 7. MQDLH - Dead-letter header 47

DLPAN (28-byte character string)
Name of application that put message on dead-letter (undelivered-message)
queue.

The format of the name depends on the DLPAT field. See, also, the description
of the MDPAN field in “Chapter 10. MQMD - Message descriptor” on page 83.

If it is the queue manager that redirects the message to the dead-letter queue,
DLPAN contains the first 28 characters of the queue-manager name, padded with
blanks if necessary.

The length of this field is given by LNPAN. The initial value of this field is 28
blank characters.

DLPD (8-byte character string)
Date when message was put on dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue
manager is:

YYYYMMDD

where the characters represent:
YYYY year (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to
the system clock being set accurately to GMT.

The length of this field is given by LNPDAT. The initial value of this field is 8
blank characters.

DLPT (8-byte character string)
Time when message was put on the dead-letter (undelivered-message) queue.

The format used for the time when this field is generated by the queue
manager is:

HHMMSSTH

where the characters represent (in order):
HH hours (00 through 23)
MM minutes (00 through 59)
SS seconds (00 through 59; see note below)
T tenths of a second (0 through 9)
H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is
possible on rare occasions for 60 or 61 to be returned for the seconds in
DLPT. This happens when leap seconds are inserted into the global time
standard.

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to
the system clock being set accurately to GMT.

The length of this field is given by LNPTIM. The initial value of this field is 8
blank characters.

MQDLH - Dead-letter header

48 MQSeries for AS/400, V5.1 APR (ILE RPG)

Initial values and RPG declaration
Table 14. Initial values of fields in MQDLH

Field name Name of constant Value of constant

DLSID DLSIDV 'DLHb' (See note 1)

DLVER DLVER1 1

DLREA RCNONE 0

DLDQ None Blanks

DLDM None Blanks

DLENC None 0

DLCSI None 0

DLFMT FMNONE 'bbbbbbbb'

DLPAT None 0

DLPAN None Blanks

DLPD None Blanks

DLPT None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQDLH Structure
D*
D* Structure identifier
D DLSID 1 4
D* Structure version number
D DLVER 5 8I 0
D* Reason message arrived on dead-letter (undelivered-message)
D* queue
D DLREA 9 12I 0
D* Name of original destination queue
D DLDQ 13 60
D* Name of original destination queue manager
D DLDM 61 108
D* Numeric encoding of data that follows MQDLH
D DLENC 109 112I 0
D* Character set identifier of data that follows MQDLH
D DLCSI 113 116I 0
D* Format name of data that follows MQDLH
D DLFMT 117 124
D* Type of application that put message on dead-letter
D* (undelivered-message) queue
D DLPAT 125 128I 0
D* Name of application that put message on dead-letter
D* (undelivered-message) queue
D DLPAN 129 156
D* Date when message was put on dead-letter (undelivered-message)
D* queue
D DLPD 157 164
D* Time when message was put on the dead-letter
D* (undelivered-message) queue
D DLPT 165 172

MQDLH - Dead-letter header

Chapter 7. MQDLH - Dead-letter header 49

MQDLH - Dead-letter header

50 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 8. MQGMO - Get-message options

The following table summarizes the fields in the structure.

Table 15. Fields in MQGMO

Field Description Page

GMSID Structure identifier 51

GMVER Structure version number 52

GMOPT Options that control the action of MQGET 52

GMWI Wait interval 69

GMSG1 Signal 70

GMSG2 Signal identifier 70

GMRQN Resolved name of destination queue 70

Note: The remaining fields are not present if GMVER is less than GMVER2.

GMMO Options controlling selection criteria used for
MQGET

70

GMGST Flag indicating whether message retrieved is in a
group

72

GMSST Flag indicating whether message retrieved is a
segment of a logical message

73

GMSEG Flag indicating whether further segmentation is
allowed for the message retrieved

73

Note: The remaining fields are not present if GMVER is less than GMVER3.

GMTOK Message token 73

GMRL Length of message data returned (bytes) 73

Overview
The current version of MQGMO is given by GMVERC. Fields that exist only in the
more-recent versions of the structure are identified as such in the descriptions that
follow. The declaration of MQGMO provided in the COPY file contains the
additional fields, but the initial value provided for the GMVER field is GMVER1. To
use the additional fields, the application must set the version number to GMVERC.
Applications which are intended to be portable between several environments
should use a more-recent version MQGMO only if all of those environments
support that version.

The MQGMO structure is an input/output parameter for the MQGET call.

Fields
GMSID (4-byte character string)

Structure identifier.

The value must be:

GMSIDV
Identifier for get-message options structure.

© Copyright IBM Corp. 1994, 2000 51

|

|||

|||

This is always an input field. The initial value of this field is GMSIDV.

GMVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

GMVER1
Version-1 get-message options structure.

GMVER2
Version-2 get-message options structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

GMVER3
Version-3 get-message options structure.

Fields that exist only in the version-3 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

GMVERC
Current version of get-message options structure.

This is always an input field. The initial value of this field is GMVER1.

GMOPT (10-digit signed integer)
Options that control the action of MQGET.

Zero or more of the options described below can be specified. If more than one
is required the values can be added together (do not add the same constant
more than once). Combinations of options that are not valid are noted; all
other combinations are valid.

GMWT
Wait for message to arrive.

The application is to wait until a suitable message arrives. The
maximum time the application waits is specified in GMWI.

If MQGET requests are inhibited, or MQGET requests become inhibited
while waiting, the wait is canceled and the call completes with CCFAIL
and reason code RC2016, regardless of whether there are suitable
messages on the queue.

This option can be used with the GMBRWF or GMBRWN options.

If several applications are waiting on the same shared queue, the
application, or applications, that are activated when a suitable message
arrives are described below.

Note: In the description below, a browse MQGET call is one which
specifies one of the browse options, but not GMLK; an MQGET
call specifying the GMLK option is treated as a nonbrowse call.

v If one or more nonbrowse MQGET calls is waiting, one is activated.
v If one or more browse MQGET calls is waiting, but no nonbrowse

MQGET calls are waiting, all are activated.
v If one or more nonbrowse MQGET calls, and one or more browse

MQGET calls are waiting, one nonbrowse MQGET call is activated,

MQGMO - Get-message options

52 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|

and none, some, or all of the browse MQGET calls. (The number of
browse MQGET calls activated cannot be predicted, because it
depends on the scheduling considerations of the operating system,
and other factors.)

If more than one nonbrowse MQGET call is waiting on the same
shared queue, only one is activated; in this situation the queue
manager attempts to give priority to waiting nonbrowse calls in the
following order:
1. Specific get-wait requests that can be satisfied only by certain

messages, for example, ones with a specific MDMID or MDCID (or
both).

2. General get-wait requests that can be satisfied by any message.

The following points should be noted:
v Within the first category, no additional priority is given to more

specific get-wait requests, for example those that specify both MDMID
and MDCID.

v Within either category, it cannot be predicted which application is
selected. In particular, the application waiting longest is not
necessarily the one selected.

v Path length, and priority-scheduling considerations of the operating
system, can mean that a waiting application of lower operating
system priority than expected retrieves the message.

v It may also happen that an application that is not waiting retrieves
the message in preference to one that is.

GMWT is ignored if specified with GMBRWC or GMMUC; no error is
raised.

GMNWT
Return immediately if no suitable message.

The application is not to wait if no suitable message is available. This
is the opposite of the GMWT option, and is defined to aid program
documentation. It is the default if neither is specified.

GMSYP
Get message with syncpoint control.

The request is to operate within the normal unit-of-work protocols. The
message is marked as being unavailable to other applications, but it is
deleted from the queue only when the unit of work is committed. The
message is made available again if the unit of work is backed out.

If neither this option nor GMNSYP is specified, the get request is not
within a unit of work.

This option is not valid with any of the following options:
GMBRWF
GMBRWC
GMBRWN
GMLK
GMNSYP
GMPSYP
GMUNLK

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 53

GMPSYP
Get message with syncpoint control if message is persistent.

The request is to operate within the normal unit-of-work protocols, but
only if the message retrieved is persistent. A persistent message has the
value PEPER in the MDPER field in MQMD.
v If the message is persistent, the queue manager processes the call as

though the application had specified GMSYP (see above for details).
v If the message is not persistent, the queue manager processes the

call as though the application had specified GMNSYP (see below for
details).

This option is not valid with any of the following options:
GMBRWF
GMBRWC
GMBRWN
GMCMPM
GMNSYP
GMSYP
GMUNLK

GMNSYP
Get message without syncpoint control.

The request is to operate outside the normal unit-of-work protocols.
The message is deleted from the queue immediately (unless this is a
browse request). The message cannot be made available again by
backing out the unit of work.

This option is assumed if GMBRWF or GMBRWN is specified.

If neither this option nor GMSYP is specified, the get request is not
within a unit of work.

This option is not valid with any of the following options:
GMSYP
GMPSYP

GMBRWF
Browse from start of queue.

When a queue is opened with the OOBRW option, a browse cursor is
established, positioned logically before the first message on the queue.
Subsequent MQGET calls specifying the GMBRWF, GMBRWN or
GMBRWC option can be used to retrieve messages from the queue
nondestructively. The browse cursor marks the position, within the
messages on the queue, from which the next MQGET call with
GMBRWN will search for a suitable message.

An MQGET call with GMBRWF causes the previous position of the
browse cursor to be ignored. The first message on the queue that
satisfies the conditions specified in the message descriptor is retrieved.
The message remains on the queue, and the browse cursor is
positioned on this message.

After this call, the browse cursor is positioned on the message that has
been returned. If the message is removed from the queue before the
next MQGET call with GMBRWN is issued, the browse cursor remains
at the position in the queue that the message occupied, even though
that position is now empty.

MQGMO - Get-message options

54 MQSeries for AS/400, V5.1 APR (ILE RPG)

The GMMUC option can subsequently be used with a nonbrowse
MQGET call if required, to remove the message from the queue.

Note that the browse cursor is not moved by a nonbrowse MQGET call
using the same HOBJ handle. Nor is it moved by a browse MQGET call
that returns a completion code of CCFAIL, or a reason code of RC2080.

The GMLK option can be specified together with this option, to cause
the message that is browsed to be locked.

GMBRWF can be specified with any valid combination of the GM* and
MO* options that control the processing of messages in groups and
segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If
that option is omitted, the messages are browsed in physical order.
When GMBRWF is specified, it is possible to switch between logical
order and physical order, but subsequent MQGET calls using
GMBRWN must browse the queue in the same order as the
most-recent call that specified GMBRWF for the queue handle.

The group and segment information that the queue manager retains for
MQGET calls that browse messages on the queue is separate from the
group and segment information that the queue manager retains for
MQGET calls that remove messages from the queue. When GMBRWF
is specified, the queue manager ignores the group and segment
information for browsing, and scans the queue as though there were
no current group and no current logical message. If the MQGET call is
successful (completion code CCOK or CCWARN), the group and
segment information for browsing is set to that of the message
returned; if the call fails, the group and segment information remains
the same as it was prior to the call.

This option is not valid with any of the following options:
GMBRWC
GMBRWN
GMMUC
GMSYP
GMPSYP
GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWN
Browse from current position in queue.

The browse cursor is advanced to the next message on the queue that
satisfies the selection criteria specified on the MQGET call. The
message is returned to the application, but remains on the queue.

After a queue has been opened for browse, the first browse call using
the handle has the same effect whether it specifies the GMBRWF or
GMBRWN option.

If the message is removed from the queue before the next MQGET call
with GMBRWN is issued, the browse cursor logically remains at the
position in the queue that the message occupied, even though that
position is now empty.

Messages are stored on the queue in one of two ways:
v FIFO within priority (MSPRIO), or
v FIFO regardless of priority (MSFIFO)

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 55

The MsgDeliverySequence queue attribute indicates which method
applies (see “Chapter 38. Attributes for local queues and model
queues” on page 299 for details).

If the queue has a MsgDeliverySequence of MSPRIO, and a message
arrives on the queue that is of a higher priority than the one currently
pointed to by the browse cursor, that message will not be found during
the current sweep of the queue using GMBRWN. It can only be found
after the browse cursor has been reset with GMBRWF (or by reopening
the queue).

The GMMUC option can subsequently be used with a nonbrowse
MQGET call if required, to remove the message from the queue.

Note that the browse cursor is not moved by nonbrowse MQGET calls
using the same HOBJ handle.

The GMLK option can be specified together with this option, to cause
the message that is browsed to be locked.

GMBRWN can be specified with any valid combination of the GM*
and MO* options that control the processing of messages in groups
and segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If
that option is omitted, the messages are browsed in physical order.
When GMBRWF is specified, it is possible to switch between logical
order and physical order, but subsequent MQGET calls using
GMBRWN must browse the queue in the same order as the
most-recent call that specified GMBRWF for the queue handle. The call
fails with reason code RC2259 if this condition is not satisfied.

Note: Special care is needed if an MQGET call is used to browse
beyond the end of a message group (or logical message not in a
group) when GMLOGO is not specified. For example, if the last
message in the group happens to precede the first message in the
group on the queue, using GMBRWN to browse beyond the end
of the group, specifying MOSEQN with MDSEQ set to 1 (to find
the first message of the next group) would return again the first
message in the group already browsed. This could happen
immediately, or a number of MQGET calls later (if there are
intervening groups).

The possibility of an infinite loop can be avoided by opening the
queue twice for browse:
v Use the first handle to browse only the first message in each

group.
v Use the second handle to browse only the messages within a

specific group.
v Use the MO* options to move the second browse cursor to the

position of the first browse cursor, before browsing the
messages in the group.

v Do not use GMBRWN to browse beyond the end of a group.

MQGMO - Get-message options

56 MQSeries for AS/400, V5.1 APR (ILE RPG)

The group and segment information that the queue manager retains for
MQGET calls that browse messages on the queue is separate from the
group and segment information that it retains for MQGET calls that
remove messages from the queue.

This option is not valid with any of the following options:
GMBRWF
GMBRWC
GMMUC
GMSYP
GMPSYP
GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWC
Browse message under browse cursor.

This option causes the message pointed to by the browse cursor to be
retrieved nondestructively, regardless of the MO* options specified in
the GMMO field in MQGMO.

The message pointed to by the browse cursor is the one that was last
retrieved using either the GMBRWF or the GMBRWN option. The call
fails if neither of these calls has been issued for this queue since it was
opened, or if the message that was under the browse cursor has since
been retrieved destructively.

The position of the browse cursor is not changed by this call.

The GMMUC option can subsequently be used with a nonbrowse
MQGET call if required, to remove the message from the queue.

Note that the browse cursor is not moved by a nonbrowse MQGET call
using the same HOBJ handle. Nor is it moved by a browse MQGET call
that returns a completion code of CCFAIL, or a reason code of RC2080.

If GMBRWC is specified with GMLK:
v If there is already a message locked, it must be the one under the

cursor, so that is returned without unlocking and relocking it; the
message remains locked.

v If there is no locked message, the message under the browse cursor
(if there is one) is locked and returned to the application; if there is
no message under the browse cursor the call fails.

If GMBRWC is specified without GMLK:
v If there is already a message locked, it must be the one under the

cursor. This message is returned to the application and then unlocked.
Because the message is now unlocked, there is no guarantee that it
can be browsed again, or retrieved destructively (it may be retrieved
destructively by another application getting messages from the
queue).

v If there is no locked message, the message under the browse cursor
(if there is one) is returned to the application; if there is no message
under the browse cursor the call fails.

If GMCMPM is specified with GMBRWC, the browse cursor must
identify a message whose MDOFF field in MQMD is zero. If this
condition is not satisfied, the call fails with reason code RC2246.

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 57

The group and segment information that the queue manager retains for
MQGET calls that browse messages on the queue is separate from the
group and segment information that it retains for MQGET calls that
remove messages from the queue.

This option is not valid with any of the following options:
GMBRWF
GMBRWN
GMMUC
GMSYP
GMPSYP
GMUNLK

It is also an error if the queue was not opened for browse.

GMMUC
Get message under browse cursor.

This option causes the message pointed to by the browse cursor to be
retrieved, regardless of the MO* options specified in the GMMO field in
MQGMO. The message is removed from the queue.

The message pointed to by the browse cursor is the one that was last
retrieved using either the GMBRWF or the GMBRWN option.

If GMCMPM is specified with GMMUC, the browse cursor must
identify a message whose MDOFF field in MQMD is zero. If this
condition is not satisfied, the call fails with reason code RC2246.

This option is not valid with any of the following options:
GMBRWF
GMBRWC
GMBRWN
GMUNLK

It is also an error if the queue was not opened both for browse and for
input. If the browse cursor is not currently pointing to a retrievable
message, an error is returned by the MQGET call.

GMLK
Lock message.

This option locks the message that is browsed, so that the message
becomes invisible to any other handle open for the queue. The option
can be specified only if one of the following options is also specified:

GMBRWF
GMBRWN
GMBRWC

Only one message can be locked per handle, but this can be a logical
message or a physical message:
v If GMCMPM is specified, all of the message segments that comprise

the logical message are locked to the queue handle (provided that
they are all present on the queue and available for retrieval).

v If GMCMPM is not specified, only a single physical message is
locked to the queue handle. If this message happens to be a segment
of a logical message, the locked segment prevents other applications
using GMCMPM to retrieve or browse the logical message.

MQGMO - Get-message options

58 MQSeries for AS/400, V5.1 APR (ILE RPG)

The locked message is always the one under the browse cursor, and
the message can be removed from the queue by a later MQGET call
that specifies the GMMUC option. Other MQGET calls for that queue
handle can also remove the message (for example, a call that specifies
the message identifier of the locked message).

If CCFAIL is returned (or CCWARN with RC2080), no message is
locked.

If the application decides not to remove the message from the queue,
the lock is released by:
v Issuing another MQGET call for this handle, with either GMBRWF

or GMBRWN specified (with or without GMLK); the message is
unlocked if the call completes with CCOK or CCWARN, but remains
locked if the call completes with CCFAIL. However, the following
exceptions apply:
– The message is not unlocked if CCWARN is returned with

RC2080.
– The message is unlocked if CCFAIL is returned with RC2033.

If GMLK is also specified, the new message is locked. If GMLK is
not specified, there is no locked message after the call.

If GMWT is specified, and no message is immediately available, the
unlock on the original message occurs before the start of the wait
(providing the call is otherwise free from error).

v Issuing another MQGET call for this handle, with GMBRWC
(without GMLK); the message is unlocked if the call completes with
CCOK or CCWARN, but remains locked if the call completes with
CCFAIL. However, the following exception applies:
– The message is not unlocked if CCWARN is returned with

RC2080.
v Issuing another MQGET call for this handle with GMUNLK.
v Issuing an MQCLOSE call for this handle (either explicitly, or

implicitly by the application ending).

No special open option is required to specify this option, other than
OOBRW, which is needed in order to specify the accompanying browse
option.

This option is not valid with any of the following options:
GMSYP
GMPSYP
GMUNLK

GMUNLK
Unlock message.

The message to be unlocked must have been previously locked by an
MQGET call with the GMLK option. If there is no message locked for
this handle, the call completes with CCWARN and RC2209.

The MSGDSC, BUFLEN, BUFFER, and DATLEN parameters are not checked or
altered if GMUNLK is specified. No message is returned in BUFFER.

No special open option is required to specify this option (although
OOBRW is needed to issue the lock request in the first place).

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 59

This option is not valid with any options except the following:
GMNWT
GMNSYP

Both of these options are assumed whether specified or not.

GMATM
Allow truncation of message data.

If the message buffer is too small to hold the complete message, this
option allows the MQGET call to fill the buffer with as much of the
message as the buffer can hold, issue a warning completion code, and
complete its processing. This means:
v When browsing messages, the browse cursor is advanced to the

returned message.
v When removing messages, the returned message is removed from

the queue.
v Reason code RC2079 is returned if no other error occurs.

Without this option, the buffer is still filled with as much of the
message as it can hold, a warning completion code is issued, but
processing is not completed. This means:
v When browsing messages, the browse cursor is not advanced.
v When removing messages, the message is not removed from the

queue.
v Reason code RC2080 is returned if no other error occurs.

GMFIQ
Fail if queue manager is quiescing.

This option forces the MQGET call to fail if the queue manager is in
the quiescing state.

If this option is specified together with GMWT, and the wait is
outstanding at the time the queue manager enters the quiescing state:
v The wait is canceled and the call returns completion code CCFAIL

with reason code RC2161.

If GMFIQ is not specified and the queue manager enters the quiescing
state, the wait is not canceled.

GMCONV
Convert message data.

This option requests that the application data in the message should be
converted, to conform to the MDCSI and MDENC values specified in the
MSGDSC parameter on the MQGET call, before the data is copied to the
BUFFER parameter.

The MDFMT field specified when the message was put is assumed by the
conversion process to identify the nature of the data in the message.
Conversion of the message data is by the queue manager for built-in
formats, and by a user-written exit for other formats. See “Appendix F.
Data conversion” on page 461 for details of the data-conversion exit.
v If conversion is performed successfully, the MDCSI and MDENC fields

specified in the MSGDSC parameter are unchanged on return from the
MQGET call.

v If conversion cannot be performed successfully (but the MQGET call
otherwise completes without error), the message data is returned

MQGMO - Get-message options

60 MQSeries for AS/400, V5.1 APR (ILE RPG)

unconverted, and the MDCSI and MDENC fields in MSGDSC are set to the
values for the unconverted message. The completion code is
CCWARN in this case.

In either case, therefore, these fields describe the character-set identifier
and encoding of the message data that is returned in the BUFFER
parameter.

See the MDFMT field described in “Chapter 10. MQMD - Message
descriptor” on page 83 for a list of format names for which the queue
manager performs the conversion.

Group and segment options: The options described below control the way
that messages in groups and segments of logical messages are returned by the
MQGET call. The following definitions may be of help in understanding these
options:

Physical message
This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).
Generally, physical messages are distinguished by differing values for
the message identifier (MDMID field in MQMD), although this is not
enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a physical
message. But where logical messages are extremely large, system
constraints may make it advisable or necessary to split a logical
message into two or more physical messages, called segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier (MDGID
field in MQMD), and the same message sequence number (MDSEQ field
in MQMD). The segments are distinguished by differing values for the
segment offset (MDOFF field in MQMD), which gives the offset of the
data in the physical message from the start of the data in the logical
message. Because each segment is a physical message, the segments in
a logical message usually have differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also has a
nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message does
not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a null
group identifier (GINONE), unless the logical message belongs to a
message group.

Message group
This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number of
logical messages in the group. If one or more of the logical messages is
segmented, there will be more than n physical messages in the group.

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 61

GMLOGO
Messages in groups and segments of logical messages are returned in
logical order.

This option controls the order in which messages are returned by
successive MQGET calls for the queue handle. The option must be
specified on each of those calls in order to have an effect.

If GMLOGO is specified for successive MQGET calls for the queue
handle, messages in groups are returned in the order given by their
message sequence numbers, and segments of logical messages are
returned in the order given by their segment offsets. This order may be
different from the order in which those messages and segments occur
on the queue.

Note: Specifying GMLOGO has no adverse consequences on messages
that do not belong to groups and that are not segments. In
effect, such messages are treated as though each belonged to a
message group consisting of only one message. Thus it is
perfectly safe to specify GMLOGO when retrieving messages
from queues that may contain a mixture of messages in groups,
message segments, and unsegmented messages not in groups.

To return the messages in the required order, the queue manager
retains the group and segment information between successive
MQGET calls. This information identifies the current message group
and current logical message for the queue handle, the current position
within the group and logical message, and whether the messages are
being retrieved within a unit of work. Because the queue manager
retains this information, the application does not need to set the group
and segment information prior to each MQGET call. Specifically, it
means that the application does not need to set the MDGID, MDSEQ, and
MDOFF fields in MQMD. However, the application does need to set the
GMSYP or GMNSYP option correctly on each call.

When the queue is opened, there is no current message group and no
current logical message. A message group becomes the current message
group when a message that has the MFMIG flag is returned by the
MQGET call. With GMLOGO specified on successive calls, that group
remains the current group until a message is returned that has:
v MFLMIG without MFSEG (that is, the last logical message in the

group is not segmented), or
v MFLMIG with MFLSEG (that is, the message returned is the last

segment of the last logical message in the group).

When such a message is returned, the message group is terminated,
and on successful completion of that MQGET call there is no longer a
current group. In a similar way, a logical message becomes the current
logical message when a message that has the MFSEG flag is returned
by the MQGET call, and that logical message is terminated when the
message that has the MFLSEG flag is returned.

If no selection criteria are specified, successive MQGET calls return (in
the correct order) the messages for the first message group on the
queue, then the messages for the second message group, and so on,

MQGMO - Get-message options

62 MQSeries for AS/400, V5.1 APR (ILE RPG)

until there are no more messages available. It is possible to select the
particular message groups returned by specifying one or more of the
following options in the GMMO field:

MOMSGI
MOCORI
MOGRPI

However, these options are effective only when there is no current
message group or logical message; see the GMMO field described in
“Chapter 8. MQGMO - Get-message options” on page 51 for further
details.

Table 16 shows the values of the MDMID, MDCID, MDGID, MDSEQ, and MDOFF
fields that the queue manager looks for when attempting to find a
message to return on the MQGET call. This applies both to removing
messages from the queue, and browsing messages on the queue. The
columns in the table have the following meanings:

LOG ORD
A “U” means that the row applies only when the GMLOGO
option is specified.

Cur grp
A “U” means that the row applies only when a current
message group exists prior to the call.

A “(U)” means that the row applies whether or not a current
message group exists prior to the call.

Cur log msg
A “U” means that the row applies only when a current logical
message exists prior to the call.

A “(U)” means that the row applies whether or not a current
logical message exists prior to the call.

Other columns
These show the values that the queue manager looks for.
“Previous” denotes the value returned for the field in the
previous message for the queue handle.

Table 16. MQGET options relating to messages in groups and segments of logical messages

Options
you

specify

Group and log-msg
status prior to call

Values the queue manager looks for

LOG
ORD

Cur grp Cur log
msg

MDMID MDCID MDGID MDSEQ MDOFF

U Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

1 0

U U Any message
identifier

Any correlation
identifier

Previous group
identifier

1 Previous offset +
previous segment

length

U U Any message
identifier

Any correlation
identifier

Previous group
identifier

Previous
sequence number

+ 1

0

U U U Any message
identifier

Any correlation
identifier

Previous group
identifier

Previous
sequence number

Previous offset +
previous segment

length

(U) (U) Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 63

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

When multiple message groups are present on the queue and eligible
for return, the groups are returned in the order determined by the
position on the queue of the first segment of the first logical message
in each group (that is, the physical messages that have message
sequence numbers of 1, and offsets of 0, determine the order in which
eligible groups are returned).

The GMLOGO option affects units of work as follows:
v If the first logical message or segment in a group is retrieved within

a unit of work, all of the other logical messages and segments in the
group must be retrieved within a unit of work, if the same queue
handle is used. However, they need not be retrieved within the same
unit of work. This allows a message group consisting of many
physical messages to be split across two or more consecutive units of
work for the queue handle.

v If the first logical message or segment in a group is not retrieved
within a unit of work, none of the other logical messages and
segments in the group can be retrieved within a unit of work, if the
same queue handle is used.

If these conditions are not satisfied, the MQGET call fails with reason
code RC2245.

When GMLOGO is specified, the MQGMO supplied on the MQGET
call must not be less than GMVER2, and the MQMD must not be less
than MDVER2. If this condition is not satisfied, the call fails with
reason code RC2256 or RC2257, as appropriate.

If GMLOGO is not specified for successive MQGET calls for the queue
handle, messages are returned without regard for whether they belong
to message groups, or whether they are segments of logical messages.
This means that messages or segments from a particular group or
logical message may be returned out of order, or they may be
intermingled with messages or segments from other groups or logical
messages, or with messages that are not in groups and are not
segments. In this situation, the particular messages that are returned by
successive MQGET calls is controlled by the MO* options specified on
those calls (see the GMMO field described in “Chapter 8. MQGMO -
Get-message options” on page 51 for details of these options).

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.
When the system restarts, the application can set the MDGID, MDSEQ,
MDOFF, and GMMO fields to the appropriate values, and then issue the
MQGET call with GMSYP or GMNSYP set as desired, but without
specifying GMLOGO. If this call is successful, the queue manager
retains the group and segment information, and subsequent MQGET
calls using that queue handle can specify GMLOGO as normal.

The group and segment information that the queue manager retains for
the MQGET call is separate from the group and segment information
that it retains for the MQPUT call. In addition, the queue manager
retains separate information for:
v MQGET calls that remove messages from the queue.
v MQGET calls that browse messages on the queue.

MQGMO - Get-message options

64 MQSeries for AS/400, V5.1 APR (ILE RPG)

For any given queue handle, the application is free to mix MQGET
calls that specify GMLOGO with MQGET calls that do not, but the
following points should be noted:
v Each successful MQGET call that does not specify GMLOGO causes

the queue manager to set the saved group and segment information
to the values corresponding to the message returned; this replaces
the existing group and segment information retained by the queue
manager for the queue handle. Only the information appropriate to
the action of the call (browse or remove) is modified.

v If GMLOGO is not specified, the call does not fail if there is a
current message group or logical message, but the message or
segment retrieved is not the next one in the group or logical
message. The call may however succeed with an CCWARN
completion code. Table 17 shows the various cases that can arise. In
these cases, if the completion code is not CCOK, the reason code is
one of the following (as appropriate):

RC2241
RC2242
RC2245

Note: The queue manager does not check the group and segment
information when browsing a queue, or when closing a queue
that was opened for browse but not input; in those cases the
completion code is always CCOK (assuming no other errors).

Table 17. Outcome when MQGET or MQCLOSE call not consistent with group and segment information

Current call Previous call

MQGET with GMLOGO MQGET without GMLOGO

MQGET with GMLOGO CCFAIL CCFAIL

MQGET without GMLOGO CCWARN CCOK

MQCLOSE with an unterminated group
or logical message

CCWARN CCOK

Applications that simply want to retrieve messages and segments in
logical order are recommended to specify GMLOGO, as this is the
simplest option to use. This option relieves the application of the need
to manage the group and segment information, because the queue
manager manages that information. However, specialized applications
may need more control than provided by the GMLOGO option, and
this can be achieved by not specifying that option. If this is done, the
application must ensure that the MDMID, MDCID, MDGID, MDSEQ, and MDOFF
fields in MQMD, and the MO* options in GMMO in MQGMO, are set
correctly, prior to each MQGET call.

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify GMLOGO.
This is because in a complex network with multiple paths between
sending and receiving queue managers, the physical messages may
arrive out of order. By specifying neither GMLOGO, nor the
corresponding PMLOGO on the MQPUT call, the forwarding
application can retrieve and forward each physical message as soon as
it arrives, without having to wait for the next one in logical order to
arrive.

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 65

GMLOGO can be specified with any of the other GM* options, and
with various of the MO* options in appropriate circumstances (see
above).

GMCMPM
Only complete logical messages are retrievable.

This option specifies that only a complete logical message can be
returned by the MQGET call. If the logical message is segmented, the
queue manager reassembles the segments and returns the complete
logical message to the application; the fact that the logical message was
segmented is not apparent to the application retrieving it.

Note: This is the only option that causes the queue manager to
reassemble message segments. If not specified, segments are
returned individually to the application if they are present on
the queue (and they satisfy the other selection criteria specified
on the MQGET call). Applications that do not wish to receive
individual segments should therefore always specify GMCMPM.

To use this option, the application must provide a buffer which is big
enough to accommodate the complete message, or specify the GMATM
option.

If the queue contains segmented messages with some of the segments
missing (perhaps because they have been delayed in the network and
have not yet arrived), specifying GMCMPM prevents the retrieval of
segments belonging to incomplete logical messages. However, those
message segments still contribute to the value of the CurrentQDepth
queue attribute; this means that there may be no retrievable logical
messages, even though CurrentQDepth is greater than zero.

For persistent messages, the queue manager can reassemble the
segments only within a unit of work:
v If the MQGET call is operating within a user-defined unit of work,

that unit of work is used. If the call fails partway through the
reassembly process, the queue manager reinstates on the queue any
segments that were removed during reassembly. However, the
failure does not prevent the unit of work being committed
successfully.

v If the call is operating outside a user-defined unit of work, and there
is no user-defined unit of work in existence, the queue manager
creates a unit of work just for the duration of the call. If the call is
successful, the queue manager commits the unit of work
automatically (the application does not need to do this). If the call
fails, the queue manager backs out the unit of work.

v If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is unable to
perform reassembly. If the message does not require reassembly, the
call can still succeed. But if the message does require reassembly, the
call fails with reason code RC2255.

For nonpersistent messages, the queue manager does not require a unit
of work to be available in order to perform reassembly.

MQGMO - Get-message options

66 MQSeries for AS/400, V5.1 APR (ILE RPG)

Each physical message that is a segment has its own message
descriptor. For the segments constituting a single logical message, most
of the fields in the message descriptor will be the same for all
segments in the logical message – usually it is only the MDMID, MDOFF,
and MDMFL fields that differ between segments in the logical message.
However, if a segment is placed on a dead-letter queue at an
intermediate queue manager, the DLQ handler retrieves the message
specifying the GMCONV option, and this may result in the character
set or encoding of the segment being changed. If the DLQ handler
successfully sends the segment on its way, the segment may have a
character set or encoding that differs from the other segments in the
logical message when the segment finally arrives at the destination
queue manager.

A logical message consisting of segments in which the MDCSI and/or
MDENC fields differ cannot be reassembled by the queue manager into a
single logical message. Instead, the queue manager reassembles and
returns the first few consecutive segments at the start of the logical
message that have the same character-set identifiers and encodings,
and the MQGET call completes with completion code CCWARN and
reason code RC2243 or RC2244, as appropriate. This happens
regardless of whether GMCONV is specified. To retrieve the remaining
segments, the application must reissue the MQGET call without the
GMCMPM option, retrieving the segments one by one. GMLOGO can
be used to retrieve the remaining segments in order.

It is also possible for an application which puts segments to set other
fields in the message descriptor to values that differ between segments.
However, there is no advantage in doing this if the receiving
application uses GMCMPM to retrieve the logical message. When the
queue manager reassembles a logical message, it returns in the
message descriptor the values from the message descriptor for the first
segment; the only exception is the MDMFL field, which the queue
manager sets to indicate that the reassembled message is the only
segment.

If GMCMPM is specified for a report message, the queue manager
performs special processing. The queue manager checks the queue to
see if all of the report messages of that report type relating to the
different segments in the logical message are present on the queue. If
they are, they can be retrieved as a single message by specifying
GMCMPM. For this to be possible, either the report messages must be
generated by a queue manager or MCA which supports segmentation,
or the originating application must request at least 100 bytes of
message data (that is, the appropriate RO*D or RO*F options must be
specified). If less than the full amount of application data is present for
a segment, the missing bytes are replaced by nulls in the report
message returned.

If GMCMPM is specified with GMMUC or GMBRWC, the browse
cursor must be positioned on a message whose MDOFF field in MQMD
has a value of 0. If this condition is not satisfied, the call fails with
reason code RC2246.

GMCMPM implies GMASGA, which need not therefore be specified.

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 67

GMCMPM can be specified with any of the other GM* options apart
from GMPSYP, and with any of the MO* options apart from MOOFFS.

GMAMSA
All messages in group must be available.

This option specifies that messages in a group become available for
retrieval only when all messages in the group are available. If the
queue contains message groups with some of the messages missing
(perhaps because they have been delayed in the network and have not
yet arrived), specifying GMAMSA prevents retrieval of messages
belonging to incomplete groups. However, those messages still
contribute to the value of the CurrentQDepth queue attribute; this
means that there may be no retrievable message groups, even though
CurrentQDepth is greater than zero. If there are no other messages that
are retrievable, reason code RC2033 is returned after the specified wait
interval (if any) has expired.

The processing of GMAMSA depends on whether GMLOGO is also
specified:
v If both options are specified, GMAMSA has an effect only when

there is no current group or logical message. If there is a current
group or logical message, GMAMSA is ignored. This means that
GMAMSA can remain on when processing messages in logical order.

v If GMAMSA is specified without GMLOGO, GMAMSA always has
an effect. This means that the option must be turned off after the
first message in the group has been removed from the queue, in
order to be able to remove the remaining messages in the group.

If this option is not specified, messages belonging to groups can be
retrieved even when the group is incomplete.

GMAMSA implies GMASGA, which need not therefore be specified.

GMAMSA can be specified with any of the other GM* options, and
with any of the MO* options.

GMASGA
All segments in a logical message must be available.

This option specifies that segments in a logical message become
available for retrieval only when all segments in the logical message
are available. If the queue contains segmented messages with some of
the segments missing (perhaps because they have been delayed in the
network and have not yet arrived), specifying GMASGA prevents
retrieval of segments belonging to incomplete logical messages.
However those segments still contribute to the value of the
CurrentQDepth queue attribute; this means that there may be no
retrievable logical messages, even though CurrentQDepth is greater than
zero. If there are no other messages that are retrievable, reason code
RC2033 is returned after the specified wait interval (if any) has expired.

The processing of GMASGA depends on whether GMLOGO is also
specified:
v If both options are specified, GMASGA has an effect only when there

is no current logical message. If there is a current logical message,
GMASGA is ignored. This means that GMASGA can remain on
when processing messages in logical order.

MQGMO - Get-message options

68 MQSeries for AS/400, V5.1 APR (ILE RPG)

v If GMASGA is specified without GMLOGO, GMASGA always has an
effect. This means that the option must be turned off after the first
segment in the logical message has been removed from the queue, in
order to be able to remove the remaining segments in the logical
message.

If this option is not specified, message segments can be retrieved even
when the logical message is incomplete.

While both GMCMPM and GMASGA require all segments to be
available before any of them can be retrieved, the former returns the
complete message, whereas the latter allows the segments to be
retrieved one by one.

If GMASGA is specified for a report message, the queue manager
performs special processing. The queue manager checks the queue to
see if there is at least one report message for each of the segments that
comprise the complete logical message. If there is, the GMASGA
condition is satisfied. However, the queue manager does not check the
type of the report messages present, and so there may be a mixture of
report types in the report messages relating to the segments of the
logical message. As a result, the success of GMASGA does not imply
that GMCMPM will succeed. If there is a mixture of report types
present for the segments of a particular logical message, those report
messages must be retrieved one by one.

GMASGA can be specified with any of the other GM* options, and
with any of the MO* options.

GMNONE
No options specified.

This value can be used to indicate that no other options have been
specified; all options assume their default values. GMNONE is defined
to aid program documentation; it is not intended that this option be
used with any other, but as its value is zero, such use cannot be
detected.

The initial value of the GMOPT field is GMNWT.

GMWI (10-digit signed integer)
Wait interval.

This is the approximate time, expressed in milliseconds, that the MQGET call
waits for a suitable message to arrive (that is, a message satisfying the selection
criteria specified in the MSGDSC parameter of the MQGET call; see the MDMID
field described in “Chapter 10. MQMD - Message descriptor” on page 83 for
more details). If no suitable message has arrived after this time has elapsed,
the call completes with CCFAIL and reason code RC2033.

GMWI is used in conjunction with the GMWT option. It is ignored if this option
is not specified. If it is specified, GMWI must be greater than or equal to zero, or
the following special value:

WIULIM
Unlimited wait interval.

The initial value of this field is 0.

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 69

GMSG1 (10-digit signed integer)
Signal.

This is a reserved field; its value is not significant. The initial value of this field
is 0.

GMSG2 (10-digit signed integer)
Signal identifier.

This is a reserved field; its value is not significant.

GMRQN (48-byte character string)
Resolved name of destination queue.

This is an output field which is set by the queue manager to the local name of
the queue from which the message was retrieved, as defined to the local queue
manager. This will be different from the name used to open the queue if:
v An alias queue was opened (in which case, the name of the local queue to

which the alias resolved is returned), or
v A model queue was opened (in which case, the name of the dynamic local

queue is returned).

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

The remaining fields are not present if GMVER is less than GMVER2.

GMMO (10-digit signed integer)
Options controlling selection criteria used for MQGET.

These options allow the application to choose which fields in the MSGDSC
parameter will be used to select the message returned by the MQGET call. The
application sets the required options in this field, and then sets the
corresponding fields in the MSGDSC parameter to the values required for those
fields. Only messages that have those values in the MQMD for the message are
candidates for retrieval using that MSGDSC parameter on the MQGET call. Fields
for which the corresponding match option is not specified are ignored when
selecting the message to be returned. If no selection criteria are to be used on
the MQGET call (that is, any message is acceptable), GMMO should be set to
MONONE.

If GMLOGO is specified, only certain messages are eligible for return by the
next MQGET call:
v If there is no current group or logical message, only messages that have

MDSEQ equal to 1 and MDOFF equal to 0 are eligible for return. In this situation,
one or more of the following match options can be used to select which of
the eligible messages is the one actually returned:

MOMSGI
MOCORI
MOGRPI

v If there is a current group or logical message, only the next message in the
group or next segment in the logical message is eligible for return, and this
cannot be altered by specifying MO* options.

In both of the above cases, match options which are not applicable can still be
specified, but the value of the relevant field in the MSGDSC parameter must

MQGMO - Get-message options

70 MQSeries for AS/400, V5.1 APR (ILE RPG)

match the value of the corresponding field in the message to be returned; the
call fails with reason code RC2247 is this condition is not satisfied.

GMMO is ignored if either GMMUC or GMBRWC is specified.

One or more of the following match options can be specified:

MOMSGI
Retrieve message with specified message identifier.

This option specifies that the message to be retrieved must have a
message identifier that matches the value of the MDMID field in the
MSGDSC parameter of the MQGET call. This match is in addition to any
other matches that may apply (for example, the correlation identifier).

If this option is not specified, the MDMID field in the MSGDSC parameter is
ignored, and any message identifier will match.

Note: The message identifier MINONE is a special value that matches
any message identifier in the MQMD for the message. Therefore,
specifying MOMSGI with MINONE is the same as not specifying
MOMSGI.

MOCORI
Retrieve message with specified correlation identifier.

This option specifies that the message to be retrieved must have a
correlation identifier that matches the value of the MDCID field in the
MSGDSC parameter of the MQGET call. This match is in addition to any
other matches that may apply (for example, the message identifier).

If this option is not specified, the MDCID field in the MSGDSC parameter is
ignored, and any correlation identifier will match.

Note: The correlation identifier CINONE is a special value that
matches any correlation identifier in the MQMD for the message.
Therefore, specifying MOCORI with CINONE is the same as not
specifying MOCORI.

MOGRPI
Retrieve message with specified group identifier.

This option specifies that the message to be retrieved must have a
group identifier that matches the value of the MDGID field in the MSGDSC
parameter of the MQGET call. This match is in addition to any other
matches that may apply (for example, the correlation identifier).

If this option is not specified, the MDGID field in the MSGDSC parameter is
ignored, and any group identifier will match.

Note: The group identifier GINONE is a special value that matches
any group identifier in the MQMD for the message. Therefore,
specifying MOGRPI with GINONE is the same as not specifying
MOGRPI.

MOSEQN
Retrieve message with specified message sequence number.

This option specifies that the message to be retrieved must have a
message sequence number that matches the value of the MDSEQ field in

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 71

the MSGDSC parameter of the MQGET call. This match is in addition to
any other matches that may apply (for example, the group identifier).

If this option is not specified, the MDSEQ field in the MSGDSC parameter is
ignored, and any message sequence number will match.

MOOFFS
Retrieve message with specified offset.

This option specifies that the message to be retrieved must have an
offset that matches the value of the MDOFF field in the MSGDSC parameter
of the MQGET call. This match is in addition to any other matches that
may apply (for example, the message sequence number).

If this option is not specified, the MDOFF field in the MSGDSC parameter is
ignored, and any offset will match.

If none of the options described above is specified, the following option can be
used:

MONONE
No matches.

This option specifies that no matches are to be used in selecting the
message to be returned; therefore, all messages on the queue are
eligible for retrieval (but subject to control by the GMAMSA,
GMASGA, and GMCMPM options).

MONONE is defined to aid program documentation. It is not intended
that this option be used with any other, but as its value is zero, such
use cannot be detected.

This is an input field. The initial value of this field is MOMSGI with MOCORI.
This field is not present if GMVER is less than GMVER2.

Note: The initial value of the GMMO field is defined for compatibility with
earlier MQSeries queue managers. However, when reading a series of
messages from a queue without using selection criteria, this initial value
requires the application to reset the MDMID and MDCID fields to MINONE
and CINONE prior to each MQGET call. The need to reset MDMID and
MDCID can be avoided by setting GMVER to GMVER2, and GMMO to
MONONE.

GMGST (1-byte character string)
Flag indicating whether message retrieved is in a group.

It has one of the following values:

GSNIG
Message is not in a group.

GSMIG
Message is in a group, but is not the last in the group.

GSLMIG
Message is the last in the group.

This is also the value returned if the group consists of only one
message.

This is an output field. The initial value of this field is GSNIG. This field is not
present if GMVER is less than GMVER2.

MQGMO - Get-message options

72 MQSeries for AS/400, V5.1 APR (ILE RPG)

GMSST (1-byte character string)
Flag indicating whether message retrieved is a segment of a logical message.

It has one of the following values:

SSNSEG
Message is not a segment.

SSSEG
Message is a segment, but is not the last segment of the logical
message.

SSLSEG
Message is the last segment of the logical message.

This is also the value returned if the logical message consists of only
one segment.

This is an output field. The initial value of this field is SSNSEG. This field is
not present if GMVER is less than GMVER2.

GMSEG (1-byte character string)
Flag indicating whether further segmentation is allowed for the message
retrieved.

It has one of the following values:

SEGIHB
Segmentation not allowed.

SEGALW
Segmentation allowed.

This is an output field. The initial value of this field is SEGIHB. This field is
not present if GMVER is less than GMVER2.

GMRE1 (1-byte character string)
Reserved.

This is a reserved field. The initial value of this field is a blank character. This
field is not present if GMVER is less than GMVER2.

The remaining fields are not present if GMVER is less than GMVER3.

GMTOK (16-byte bit string)
Message token.

This is a reserved field; its value is not significant. The following special value
is defined:

MTKNON
No message token.

The value is binary zero for the length of the field.

The length of this field is given by LNMTOK. The initial value of this field is
MTKNON. This field is not present if GMVER is less than GMVER3.

GMRL (10-digit signed integer)
Length of message data returned (bytes).

MQGMO - Get-message options

Chapter 8. MQGMO - Get-message options 73

|

|

|
|

This is a reserved field; its value is not significant. The following special value
is defined:

RLUNDF
Length of returned data not defined.

On OS/390, the value returned for the GMRL field is always RLUNDF.

The initial value of this field is RLUNDF. This field is not present if GMVER is
less than GMVER3.

Initial values and RPG declaration
Table 18. Initial values of fields in MQGMO

Field name Name of constant Value of constant

GMSID GMSIDV 'GMOb' (See note 1)

GMVER GMVER1 1

GMOPT GMNWT 0

GMWI None 0

GMSG1 None 0

GMSG2 None 0

GMRQN None Blanks

GMMO MOMSGI + MOCORI 3

GMGST GSNIG 'b'

GMSST SSNSEG 'b'

GMSEG SEGIHB 'b'

GMRE1 None 'b'

GMTOK MTKNON Nulls

GMRL RLUNDF -1

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQGMO Structure
D*
D* Structure identifier
D GMSID 1 4
D* Structure version number
D GMVER 5 8I 0
D* Options that control the action of MQGET
D GMOPT 9 12I 0
D* Wait interval
D GMWI 13 16I 0
D* Signal
D GMSG1 17 20I 0
D* Signal identifier
D GMSG2 21 24I 0
D* Resolved name of destination queue
D GMRQN 25 72
D* Options controlling selection criteria used for MQGET
D GMMO 73 76I 0

MQGMO - Get-message options

74 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|

|

|
|

|||

|||

D* Flag indicating whether message retrieved is in a group
D GMGST 77 77
D* Flag indicating whether message retrieved is a segment of a
D* logical message
D GMSST 78 78
D* Flag indicating whether further segmentation is allowed for the
D* message retrieved
D GMSEG 79 79
D* Reserved
D GMRE1 80 80
D* Message token
D GMTOK 81 96
D* Length of message data returned (bytes)
D GMRL 97 100I 0

RPG declaration

Chapter 8. MQGMO - Get-message options 75

|
|
|
|

RPG declaration

76 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 9. MQIIH - IMS bridge header

The following table summarizes the fields in the structure.

Table 19. Fields in MQIIH

Field Description Page

IISID Structure identifier 78

IIVER Structure version number 78

IILEN Length of MQIIH structure 78

IIFMT MQ format name of data that follows MQIIH 78

IIFLG Flags 78

IILTO Logical terminal override 79

IIMMN Message format services map name 79

IIRFM MQ format name of reply message 79

IIAUT RACF™ password or passticket 79

IITID Transaction instance identifier 79

IITST Transaction state 80

IICMT Commit mode 80

IISEC Security scope 80

Overview
The MQIIH structure describes the information that must be present at the start of
a message sent to the IMS bridge through MQSeries for OS/390. The format name
of this structure is FMIMS.

Special conditions apply to the character set and encoding used for the MQIIH
structure and application message data:
v Applications that connect to the queue manager which owns the IMS bridge

queue must provide an MQIIH structure that is in the character set and
encoding of the queue manager. This is because data conversion of the MQIIH
structure is not performed in this case.

v Applications that connect to other queue managers can provide an MQIIH
structure that is in any of the supported character sets and encodings;
conversion of the MQIIH and application message data is performed by the
queue manager as necessary.

Note: There is one exception to this. If the queue manager which owns the IMS
bridge queue is using CICS for distributed queuing, the MQIIH must be
in the character set and encoding of that queue manager.

v The application message data following the MQIIH structure must be in the
same character set and encoding as the MQIIH structure. The IICSI and IIENC
fields in the MQIIH structure cannot be used to specify the character set and
encoding of the application message data.

© Copyright IBM Corp. 1994, 2000 77

Fields
IISID (4-byte character string)

Structure identifier.

The value must be:

IISIDV
Identifier for IMS information header structure.

The initial value of this field is IISIDV.

IIVER (10-digit signed integer)
Structure version number.

The value must be:

IIVER1
Version number for IMS information header structure.

The following constant specifies the version number of the current version:

IIVERC
Current version of IMS information header structure.

The initial value of this field is IIVER1.

IILEN (10-digit signed integer)
Length of MQIIH structure.

The value must be:

IILEN1
Length of IMS information header structure.

The initial value of this field is IILEN1.

IIENC (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field
is 0.

IICSI (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field
is 0.

IIFMT (8-byte character string)
MQ format name of data that follows MQIIH.

This is the MQ format name of the application message data which follows the
MQIIH structure. The rules for coding this are the same as those for the MDFMT
field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

IIFLG (10-digit signed integer)
Flags.

MQIIH - IMS bridge header

78 MQSeries for AS/400, V5.1 APR (ILE RPG)

The value must be:

IINONE
No flags.

The initial value of this field is IINONE.

IILTO (8-byte character string)
Logical terminal override.

This is placed in the IO PCB field. It is optional; if it is not specified the TPIPE
name is used. It is ignored if the first byte is blank, or null.

The length of this field is given by LNLTOV. The initial value of this field is 8
blank characters.

IIMMN (8-byte character string)
Message format services map name.

This is placed in the IO PCB field. It is optional. On input it represents the
MID, on output it represents the MOD. It is ignored if the first byte is blank or
null.

The length of this field is given by LNMFMN. The initial value of this field is 8
blank characters.

IIRFM (8-byte character string)
MQ format name of reply message.

This is the MQ format name of the reply message which will be sent in
response to the current message. The rules for coding this are the same as
those for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

IIAUT (8-byte character string)
RACF password or passticket.

This is optional; if specified, it is used with the user ID in the MQMD security
context to build a Utoken that is sent to IMS to provide a security context. If it
is not specified, the user ID is used without verification. This depends on the
setting of the RACF switches, which may require an authenticator to be
present.

This is ignored if the first byte is blank or null. The following special value
may be used:

IAUNON
No authentication.

The length of this field is given by LNAUTH. The initial value of this field is
IAUNON.

IITID (16-byte bit string)
Transaction instance identifier.

This field is used by output messages from IMS so is ignored on first input. If
IITST is set to ITSIC, this must be provided in the next input, and all

MQIIH - IMS bridge header

Chapter 9. MQIIH - IMS bridge header 79

subsequent inputs, to enable IMS to correlate the messages to the correct
conversation. The following special value may be used:

ITINON
No transaction instance id.

The length of this field is given by LNTIID. The initial value of this field is
ITINON.

IITST (1-byte character string)
Transaction state.

This indicates the IMS conversation state. This is ignored on first input because
no conversation exists. On subsequent inputs it indicates whether a
conversation is active or not. On output it is set by IMS. The value must be
one of the following:

ITSIC In conversation.

ITSNIC
Not in conversation.

ITSARC
Return transaction state data in architected form.

This value is used only with the IMS /DISPLAY TRAN command. It
causes the transaction state data to be returned in the IMS architected
form instead of character form. See the MQSeries Application
Programming Guide for further details.

The initial value of this field is ITSNIC.

IICMT (1-byte character string)
Commit mode.

See the OTMA Reference for more information about IMS commit modes. The
value must be one of the following:

ICMCTS
Commit then send.

This mode implies double queuing of output, but shorter region
occupancy times. Fast-path and conversational transactions cannot run
with this mode.

ICMSTC
Send then commit.

The initial value of this field is ICMCTS.

IISEC (1-byte character string)
Security scope.

This indicates the desired IMS security processing. The following values are
defined:

ISSCHK
Check security scope.

An ACEE is built in the control region, but not in the dependent
region.

MQIIH - IMS bridge header

80 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

ISSFUL
Full security scope.

A cached ACEE is built in the control region and a non-cached ACEE
is built in the dependent region. If you use ISSFUL, you must ensure
that the user ID for which the ACEE is built has access to the resources
used in the dependent region.

If neither ISSCHK nor ISSFUL is specified for this field, ISSCHK is assumed.

The initial value of this field is ISSCHK.

IIRSV (1-byte character string)
Reserved.

This is a reserved field; it must be blank.

Initial values and RPG declaration
Table 20. Initial values of fields in MQIIH

Field name Name of constant Value of constant

IISID IISIDV 'IIHb' (See note 1)

IIVER IIVER1 1

IILEN IILEN1 84

IIENC None 0

IICSI None 0

IIFMT FMNONE 'bbbbbbbb'

IIFLG IINONE 0

IILTO None 'bbbbbbbb'

IIMMN None 'bbbbbbbb'

IIRFM FMNONE 'bbbbbbbb'

IIAUT IAUNON 'bbbbbbbb'

IITID ITINON Nulls

IITST ITSNIC 'b'

IICMT ICMCTS '0'

IISEC ISSCHK 'C'

IIRSV None 'b'

Notes:

1. The symbol ‘b’ represents a single blank character.

MQIIH - IMS bridge header

Chapter 9. MQIIH - IMS bridge header 81

|

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQIIH Structure
D*
D* Structure identifier
D IISID 1 4
D* Structure version number
D IIVER 5 8I 0
D* Length of MQIIH structure
D IILEN 9 12I 0
D* Reserved
D IIENC 13 16I 0
D* Reserved
D IICSI 17 20I 0
D* MQ format name of data that follows MQIIH
D IIFMT 21 28
D* Flags
D IIFLG 29 32I 0
D* Logical terminal override
D IILTO 33 40
D* Message format services map name
D IIMMN 41 48
D* MQ format name of reply message
D IIRFM 49 56
D* RACF password or passticket
D IIAUT 57 64
D* Transaction instance identifier
D IITID 65 80
D* Transaction state
D IITST 81 81
D* Commit mode
D IICMT 82 82
D* Security scope
D IISEC 83 83
D* Reserved
D IIRSV 84 84

MQIIH - IMS bridge header

82 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 10. MQMD - Message descriptor

The following table summarizes the fields in the structure.

Table 21. Fields in MQMD

Field Description Page

MDSID Structure identifier 85

MDVER Structure version number 85

MDREP Options for report messages 85

MDMT Message type 95

MDEXP Message lifetime 96

MDFB Feedback or reason code 98

MDENC Numeric encoding of message data 102

MDCSI Character set identifier of message data 102

MDFMT Format name of message data 103

MDPRI Message priority 107

MDPER Message persistence 108

MDMID Message identifier 109

MDCID Correlation identifier 111

MDBOC Backout counter 112

MDRQ Name of reply queue 112

MDRM Name of reply queue manager 113

MDUID User identifier 114

MDACC Accounting token 115

MDAID Application data relating to identity 116

MDPAT Type of application that put the message 117

MDPAN Name of application that put the message 119

MDPD Date when message was put 119

MDPT Time when message was put 120

MDAOD Application data relating to origin 121

Note: The remaining fields are not present if MDVER is less than MDVER2.

MDGID Group identifier 121

MDSEQ Sequence number of logical message within group 122

MDOFF Offset of data in physical message from start of
logical message

123

MDMFL Message flags 124

MDOLN Length of original message 128

© Copyright IBM Corp. 1994, 2000 83

Overview
The MQMD structure contains the control information that accompanies the
application data when a message travels between the sending and receiving
applications.

Character data in the message descriptor is in the character set of the queue
manager to which the application is connected; this is given by the CodedCharSetId
queue-manager attribute. Numeric data in the message descriptor is in the native
machine encoding (given by ENNAT).

If the sending and receiving queue managers use different character sets or
encodings, the data in the message descriptor is converted automatically—it is not
necessary for the receiving application to perform these conversions.

If the application message data requires conversion, this can be accomplished by
means of a user-written exit invoked when the message is retrieved using the
MQGET call. For further information, see:
v The GMCONV option described in “Chapter 8. MQGMO - Get-message options”

on page 51
v The usage note describing GMCONV in “Chapter 30. MQGET - Get message” on

page 231
v The MQSeries Application Programming Guide

When a message is on a transmission queue, some of the fields in MQMD are set
to particular values; see “Chapter 21. MQXQH - Transmission queue header” on
page 193 for details.

The current version of MQMD is MDVER2. Fields that exist only in the version-2
structure are identified as such in the descriptions that follow. The declaration of
MQMD provided in the COPY file contains the new fields, but the initial value
provided for the MDVER field is MDVER1; this ensures compatibility with existing
applications. To use the new fields, the application must set the version number to
MDVER2. A declaration for the version-1 structure is available with the name
MQMD1. Applications which are intended to be portable between several
environments should use a version-2 MQMD only if all of those environments
support version 2.

A version-2 MQMD is generally equivalent to using a version-1 MQMD and
prefixing the application message data with an MQMDE structure. However, if all
of the fields in the MQMDE structure have their default values, the MQMDE can
be omitted. A version-1 MQMD plus MQMDE are used as follows:
v On the MQPUT and MQPUT1 calls, if the application provides a version-1

MQMD, the application can optionally prefix the message data with an
MQMDE, setting the MDFMT field in MQMD to FMMDE to indicate that an
MQMDE is present. If the application does not provide an MQMDE, the queue
manager assumes default values for the fields in the MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the
version-1 MQMD are input/output fields on MQPUT and MQPUT1.
However, the queue manager does not return any values in the equivalent
fields in the MQMDE on output from the MQPUT and MQPUT1 calls; if
the application requires those output values, it must use a version-2
MQMD.

MQMD - Message descriptor

84 MQSeries for AS/400, V5.1 APR (ILE RPG)

v On the MQGET call, if the application provides a version-1 MQMD, the queue
manager prefixes the message returned with an MQMDE, but only if one or
more of the fields in the MQMDE has a non-default value. The MDFMT field in
MQMD will have the value FMMDE to indicate that an MQMDE is present.

The default values that the queue manager used for the fields in the MQMDE are
the same as the initial values of those fields, shown in Table 25 on page 135.

This structure is an input/output parameter for the MQGET, MQPUT, and
MQPUT1 calls.

Fields
MDSID (4-byte character string)

Structure identifier.

The value must be:

MDSIDV
Identifier for message descriptor structure.

This is always an input field. The initial value of this field is MDSIDV.

MDVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

MDVER1
Version-1 message descriptor structure.

MDVER2
Version-2 message descriptor structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

Note: When a version-2 MQMD is used, the queue manager performs
additional checks on any MQ header structures that may be
present at the beginning of the application message data; for
further details see usage note 4 on page 272 for the MQPUT call.

The following constant specifies the version number of the current version:

MDVERC
Current version of message descriptor structure.

This is always an input field. The initial value of this field is MDVER1.

MDREP (10-digit signed integer)
Options for report messages.

A report message is a message about another message, used to inform an
application about expected or unexpected events that relate to the original
message. The MDREP field enables the application sending the original message
to specify which report messages are required, whether the application
message data is to be included in them, and also (for both reports and replies)
how the message and correlation identifiers in the report or reply message are
to be set. Any or all (or none) of the following report types can be requested:

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 85

v Exception
v Expiration
v Confirm on arrival (COA)
v Confirm on delivery (COD)
v Positive action notification (PAN)
v Negative action notification (NAN)

If more than one type of report message is required, or other report options are
needed, the values can be added together (do not add the same constant more
than once).

The application that receives the report message can determine the reason the
report was generated by examining the MDFB field in the MQMD; see the MDFB
field for more details.

Exception options: You can specify one of the options listed below to request
an exception report message.

ROEXC
Exception reports required.

This type of report can be generated by a message channel agent when
a message is sent to another queue manager and the message cannot
be delivered to the specified destination queue. For example, the
destination queue or an intermediate transmission queue might be full,
or the message might be too big for the queue.

Generation of the exception report message depends on the persistence
of the original message, and the speed of the message channel (normal
or fast) through which the original message travels:
v For all persistent messages, and for nonpersistent messages traveling

through normal message channels, the exception report is generated
only if the action specified by the sending application for the error
condition can be completed successfully. The sending application can
specify one of the following actions to control the disposition of the
original message when the error condition arises:
– RODLQ (this causes the original message to be placed on the

dead-letter queue).
– RODISC (this causes the original message to be discarded).

If the action specified by the sending application cannot be
completed successfully, the original message is left on the
transmission queue, and no exception report message is generated.

v For nonpersistent messages traveling through fast message channels,
the original message is removed from the transmission queue and
the exception report generated even if the specified action for the
error condition cannot be completed successfully. For example, if
RODLQ is specified, but the original message cannot be placed on
the dead-letter queue because (say) that queue is full, the exception
report message is generated and the original message discarded.
Refer to the MQSeries Intercommunication book for more information
about normal and fast message channels.

An exception report is not generated if the application that put the
original message can be notified synchronously of the problem by
means of the reason code returned by the MQPUT or MQPUT1 call.

MQMD - Message descriptor

86 MQSeries for AS/400, V5.1 APR (ILE RPG)

Applications can also send exception reports, to indicate that a
message that it has received cannot be processed (for example, because
it is a debit transaction that would cause the account to exceed its
credit limit).

Message data from the original message is not included with the report
message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCD
Exception reports with data required.

This is the same as ROEXC, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCF
Exception reports with full data required.

This is the same as ROEXC, except that all of the application message
data from the original message is included in the report message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

Expiration options: You can specify one of the options listed below to request
an expiration report message.

ROEXP
Expiration reports required.

This type of report is generated by the queue manager if the message
is discarded prior to delivery to an application because its expiry time
has passed (see the MDEXP field). If this option is not set, no report
message is generated if a message is discarded for this reason (even if
one of the ROEXC* options is specified).

Message data from the original message is not included with the report
message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

ROEXPD
Expiration reports with data required.

This is the same as ROEXP, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

ROEXPF
Expiration reports with full data required.

This is the same as ROEXP, except that all of the application message
data from the original message is included in the report message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 87

Confirm-on-arrival options: You can specify one of the options listed below to
request a confirm-on-arrival report message.

ROCOA
Confirm-on-arrival reports required.

This type of report is generated by the queue manager that owns the
destination queue, when the message is placed on the destination
queue. Message data from the original message is not included with
the report message.

If the message is put as part of a unit of work, and the destination
queue is a local queue, the COA report message generated by the
queue manager becomes available for retrieval only if and when the
unit of work is committed.

A COA report is not generated if the MDFMT field in the message
descriptor is FMXQH or FMDLH. This prevents a COA report being
generated if the message is put on a transmission queue, or is
undeliverable and put on a dead-letter queue.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAD
Confirm-on-arrival reports with data required.

This is the same as ROCOA, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAF
Confirm-on-arrival reports with full data required.

This is the same as ROCOA, except that all of the application message
data from the original message is included in the report message.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

Confirm-on-delivery options: You can specify one of the options listed below
to request a confirm-on-delivery report message.

ROCOD
Confirm-on-delivery reports required.

This type of report is generated by the queue manager when an
application retrieves the message from the destination queue in a way
that causes the message to be deleted from the queue. Message data
from the original message is not included with the report message.

If the message is retrieved as part of a unit of work, the report
message is generated within the same unit of work, so that the report
is not available until the unit of work is committed. If the unit of work
is backed out, the report is not sent.

A COD report is not generated if the MDFMT field in the message
descriptor is FMDLH. This prevents a COD report being generated if
the message is undeliverable and put on a dead-letter queue.

ROCOD is not valid if the destination queue is an XCF queue.

MQMD - Message descriptor

88 MQSeries for AS/400, V5.1 APR (ILE RPG)

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODD
Confirm-on-delivery reports with data required.

This is the same as ROCOD, except that the first 100 bytes of the
application message data from the original message are included in the
report message. If the length of the message data in the original
message is less than 100 bytes, the length of the message data in the
report is the same length as the original message.

If GMATM is specified on the MQGET call for the original message,
and the message returned is truncated, the amount of message data
placed in the report message depends on the environment:
v On OS/390, it is the minimum of:

– The length of the original message
– The length of the buffer used to retrieve the message
– 100 bytes.

v In other environments, it is the minimum of:
– The length of the original message
– 100 bytes.

ROCODD is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODF
Confirm-on-delivery reports with full data required.

This is the same as ROCOD, except that all of the application message
data from the original message is included in the report message.

ROCODF is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

Action-notification options: You can specify one or both of the options listed
below to request that the receiving application send a positive-action or
negative-action report message.

ROPAN
Positive action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in the
message has been performed successfully. The application generating
the report determines whether or not any data is to be included with
the report.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this option. It
is the responsibility of the retrieving application to generate the report
if appropriate.

RONAN
Negative action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in the
message has not been performed successfully. The application
generating the report determines whether or not any data is to be

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 89

|
|
|

|
|
|
|

|
|
|

|

included with the report. For example, it may be desirable to include
some data indicating why the request could not be performed.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this option. It
is the responsibility of the retrieving application to generate the report
if appropriate.

Determination of which conditions correspond to a positive action and which
correspond to a negative action is the responsibility of the application.
However, it is recommended that if the request has been only partially
performed, a NAN report rather than a PAN report should be generated if
requested. It is also recommended that every possible condition should
correspond to either a positive action, or a negative action, but not both.

Message-identifier options: You can specify one of the options listed below to
control how the MDMID of the report message (or of the reply message) is to be
set.

RONMI
New message identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, a new MDMID is to be generated
for the report or reply message.

ROPMI
Pass message identifier.

If a report or reply is generated as a result of this message, the MDMID
of this message is to be copied to the MDMID of the report or reply
message.

If this option is not specified, RONMI is assumed.

Correlation-identifier options: You can specify one of the options listed below
to control how the MDCID of the report message (or of the reply message) is to
be set.

ROCMTC
Copy message identifier to correlation identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, the MDMID of this message is to be
copied to the MDCID of the report or reply message.

ROPCI
Pass correlation identifier.

If a report or reply is generated as a result of this message, the MDCID
of this message is to be copied to the MDCID of the report or reply
message.

If this option is not specified, ROCMTC is assumed.

Servers replying to requests or generating report messages are recommended
to check whether the ROPMI or ROPCI options were set in the original
message. If they were, the servers should take the action described for those
options. If neither is set, the servers should take the corresponding default
action.

MQMD - Message descriptor

90 MQSeries for AS/400, V5.1 APR (ILE RPG)

Disposition options: You can specify one of the options listed below to control
the disposition of the original message when it cannot be delivered to the
destination queue. These options apply only to those situations that would
result in an exception report message being generated if one had been
requested by the sending application. The application can set the disposition
options independently of requesting exception reports.

RODLQ
Place message on dead-letter queue.

This is the default action, and indicates that the message should be
placed on the dead-letter queue, if the message cannot be delivered to
the destination queue. An exception report message will be generated,
if one was requested by the sender.

RODISC
Discard message.

This indicates that the message should be discarded if it cannot be
delivered to the destination queue. An exception report message will
be generated, if one was requested by the sender.

If it is desired to return the original message to the sender, without the
original message being placed on the dead-letter queue, the sender
should specify RODISC with ROEXCF.

Default option: You can specify the following if no report options are required:

RONONE
No reports required.

This value can be used to indicate that no other options have been
specified. RONONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

General information: All report types required must be specifically requested
by the application sending the original message. For example, if a COA report
is requested but an exception report is not, a COA report is generated when
the message is placed on the destination queue, but no exception report is
generated if the destination queue is full when the message arrives there. If no
MDREP options are set, no report messages are generated by the queue manager
or message channel agent (MCA).

Some report options can be specified even though the local queue manager
does not recognize them; this is useful when the option is to be processed by
the destination queue manager. See “Appendix E. Report options” on page 457
for more details.

If a report message is requested, the name of the queue to which the report
should be sent must be specified in the MDRQ field. When a report message is
received, the nature of the report can be determined by examining the MDFB
field in the message descriptor.

If the queue manager or MCA that generates a report message is unable to put
the report message on the reply queue (for example, because the reply queue
or transmission queue is full), the report message is placed instead on the
dead-letter queue. If that also fails, or there is no dead-letter queue, the action
taken depends on the type of the report message:

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 91

v If the report message is an exception report, the message which caused the
exception report to be generated is left on its transmission queue; this
ensures that the message is not lost.

v For all other report types, the report message is discarded and processing
continues normally. This is done because either the original message has
already been delivered safely (for COA or COD report messages), or is no
longer of any interest (for an expiration report message).

Once a report message has been placed successfully on a queue (either the
destination queue or an intermediate transmission queue), the message is no
longer subject to special processing — it is treated just like any other message.

When the report is generated, the MDRQ queue is opened and the report
message put using the authority of the MDUID in the MQMD of the message
causing the report, except in the following cases:
v Exception reports generated by a receiving MCA are put with whatever

authority the MCA used when it tried to put the message causing the report.
The CDPA channel attribute determines the user identifier used.

v COA reports generated by the queue manager are put with whatever
authority was used when the message causing the report was put on the
queue manager generating the report. For example, if the message was put
by a receiving MCA using the MCA’s user identifier, the queue manager
puts the COA report using the MCA’s user identifier.

Applications generating reports should normally use the same authority as
they would have used to generate a reply; this should normally be the
authority of the user identifier in the original message.

If the report has to travel to a remote destination, senders and receivers can
decide whether or not to accept it, in the same way as they do for other
messages.

If a report message with data is requested:
v The report message is always generated with the amount of data requested

by the sender of the original message. If the report message is too big for the
reply queue, the processing described above occurs; the report message is
never truncated in order to fit on the reply queue.

v If the MDFMT of the original message is FMXQH, the data included in the
report does not include the MQXQH. The report data starts with the first
byte of the data beyond the MQXQH in the original message. This occurs
whether or not the queue is a transmission queue.

If a COA, COD, or expiration report message is received at the reply queue, it
is guaranteed that the original message arrived, was delivered, or expired, as
appropriate. However, if one or more of these report messages is requested
and is not received, the reverse cannot be assumed, since one of the following
may have occurred:
1. The report message is held up because a link is down.
2. The report message is held up because a blocking condition exists at an

intermediate transmission queue or at the reply queue (for example, the
queue is full or inhibited for puts).

3. The report message is on a dead-letter queue.
4. When the queue manager was attempting to generate the report message, it

was unable to put it on the appropriate queue, and was also unable to put
it on the dead-letter queue, so the report message could not be generated.

MQMD - Message descriptor

92 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|

|
|
|

|
|
|
|
|

5. A failure of the queue manager occurred between the action being reported
(arrival, delivery or expiry), and generation of the corresponding report
message. (This does not happen for COD report messages if the application
retrieves the original message within a unit of work, as the COD report
message is generated within the same unit of work.)

Exception report messages may be held up in the same way for reasons 1, 2,
and 3 above. However, when an MCA is unable to generate an exception
report message (the report message cannot be put either on the reply queue or
the dead-letter queue), the original message remains on the transmission queue
at the sender, and the channel is closed. This occurs irrespective of whether the
report message was to be generated at the sending or the receiving end of the
channel.

If the original message is temporarily blocked (resulting in an exception report
message being generated and the original message being put on a dead-letter
queue), but the blockage clears and an application then reads the original
message from the dead-letter queue and puts it again to its destination, the
following may occur:
v Even though an exception report message has been generated, the original

message eventually arrives successfully at its destination.
v More than one exception report message is generated in respect of a single

original message, since the original message may encounter another
blockage later.

Report messages for message segments: Report messages can be requested for
messages that have segmentation allowed (see the description of the MFSEGA
flag). If the queue manager finds it necessary to segment the message, a report
message can be generated for each of the segments that subsequently
encounters the relevant condition. Applications should therefore be prepared to
receive multiple report messages for each type of report message requested.
The MDGID field in the report message can be used to correlate the multiple
reports with the group identifier of the original message, and the MDFB field
used to identify the type of each report message.

If GMLOGO is used to retrieve report messages for segments, be aware that
reports of different types may be returned by the successive MQGET calls. For
example, if both COA and COD reports are requested for a message that is
segmented by the queue manager, the MQGET calls for the report messages
may return the COA and COD report messages interleaved in an unpredictable
fashion. This can be avoided by using the GMCMPM option (optionally with
GMATM). GMCMPM causes the queue manager to reassemble report messages
that have the same report type. For example, the first MQGET call might
reassemble all of the COA messages relating to the original message, and the
second MQGET call might reassemble all of the COD messages. Which is
reassembled first depends on which type of report message happens to occur
first on the queue.

Applications that themselves put segments can specify different report options
for each segment. However, the following points should be noted:
v If the segments are retrieved using the GMCMPM option, only the report

options in the first segment are honored by the queue manager.
v If the segments are retrieved one by one, and most of them have one of the

ROCOD* options, but at least one segment does not, it will not be possible

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 93

to use the GMCMPM option to retrieve the report messages with a single
MQGET call, or use the GMASGA option to detect when all of the report
messages have arrived.

In an MQ network, it is possible for the queue managers to have differing
capabilities. If a report message for a segment is generated by a queue
manager or MCA that does not support segmentation, the queue manager or
MCA will not by default include the necessary segment information in the
report message, and this may make it difficult to identify the original message
that caused the report to be generated. This difficulty can be avoided by
requesting data with the report message, that is, by specifying the appropriate
RO*D or RO*F options. However, be aware that if RO*D is specified, less than
100 bytes of application message data may be returned to the application
which retrieves the report message, if the report message is generated by a
queue manager or MCA that does not support segmentation.

Contents of the message descriptor for a report message: When the queue
manager or message channel agent (MCA) generates a report message, it sets
the fields in the message descriptor to the following values, and then puts the
message in the normal way:

Field in MQMD
Value used

MDSID MDSIDV
MDVER MDVER2
MDREP RONONE
MDMT MTRPRT
MDEXP EIULIM
MDFB As appropriate for the nature of the report (FBCOA, FBCOD, FBEXP,

or an RC* value)
MDENC Copied from the original message descriptor
MDCSI Copied from the original message descriptor
MDFMT Copied from the original message descriptor
MDPRI Copied from the original message descriptor
MDPER Copied from the original message descriptor
MDMID As specified by the report options in the original message descriptor
MDCID As specified by the report options in the original message descriptor
MDBOC 0
MDRQ Blanks
MDRM Name of queue manager
MDUID As set by the PMPASI option
MDACC As set by the PMPASI option
MDAID As set by the PMPASI option
MDPAT ATQM, or as appropriate for the message channel agent
MDPAN First 28 bytes of the queue-manager name or message channel agent

name. For report messages generated by the IMS bridge, this field
contains the XCF group name and XCF member name of the IMS
system to which the message relates.

MDPD Date when report message is sent
MDPT Time when report message is sent
MDAOD Blanks
MDGID Copied from the original message descriptor
MDSEQ Copied from the original message descriptor
MDOFF Copied from the original message descriptor
MDMFL Copied from the original message descriptor

MQMD - Message descriptor

94 MQSeries for AS/400, V5.1 APR (ILE RPG)

MDOLN Copied from the original message descriptor if not OLUNDF, and set
to the length of the original message data otherwise

An application generating a report is recommended to set similar values,
except for the following:
v The MDRM field can be set to blanks (the queue manager will change this to

the name of the local queue manager when the message is put).
v The context fields should be set using the option that would have been used

for a reply, normally PMPASI.

Analyzing the report field: The MDREP field contains subfields; because of this,
applications that need to check whether the sender of the message requested a
particular report should use one of the techniques described in “Analyzing the
report field” on page 458.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The initial value of this field is RONONE.

MDMT (10-digit signed integer)
Message type.

This indicates the type of the message. Message types are grouped as follows:

MTSFST
Lowest value for system-defined message types.

MTSLST
Highest value for system-defined message types.

The following values are currently defined within the system range:

MTDGRM
Message not requiring a reply.

The message is one that does not require a reply.

MTRQST
Message requiring a reply.

The message is one that requires a reply.

The name of the queue to which the reply should be sent must be
specified in the MDRQ field. The MDREP field indicates how the MDMID and
MDCID of the reply are to be set.

MTRPLY
Reply to an earlier request message.

The message is the reply to an earlier request message (MTRQST). The
message should be sent to the queue indicated by the MDRQ field of the
request message. The MDREP field of the request should be used to
control how the MDMID and MDCID of the reply are set.

Note: The queue manager does not enforce the request-reply
relationship; this is an application responsibility.

MTRPRT
Report message.

The message is reporting on some expected or unexpected occurrence,
usually related to some other message (for example, a request message

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 95

was received which contained data that was not valid). The message
should be sent to the queue indicated by the MDRQ field of the message
descriptor of the original message. The MDFB field should be set to
indicate the nature of the report. The MDREP field of the original
message can be used to control how the MDMID and MDCID of the report
message should be set.

Report messages generated by the queue manager or message channel
agent are always sent to the MDRQ queue, with the MDFB and MDCID fields
set as described above.

Other values within the system range may be defined in future versions of the
MQI, and are accepted by the MQPUT and MQPUT1 calls without error.

Application-defined values can also be used. They must be within the
following range:

MTAFST
Lowest value for application-defined message types.

MTALST
Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MDMT value must be within either the
system-defined range or the application-defined range; if it is not, the call fails
with reason code RC2029.

This is an output field for the MQGET call, and an input field for MQPUT and
MQPUT1 calls. The initial value of this field is MTDGRM.

MDEXP (10-digit signed integer)
Message lifetime.

This is a period of time expressed in tenths of a second, set by the application
that puts the message. The message becomes eligible to be discarded if it has
not been removed from the destination queue before this period of time
elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if the put
is to a remote queue. It may also be decremented by message channel agents
to reflect transmission times, if these are significant. Likewise, an application
forwarding this message to another queue might decrement the value if
necessary, if it has retained the message for a significant time. However, the
expiration time is treated as approximate, and the value need not be
decremented to reflect small time intervals.

When the message is retrieved by an application using the MQGET call, the
MDEXP field represents the amount of the original expiry time that still remains.

After a message’s expiry time has elapsed, it becomes eligible to be discarded
by the queue manager. In the current implementations, the message is
discarded when a browse or nonbrowse MQGET call occurs that would have
returned the message had it not already expired. For example, a nonbrowse
MQGET call with the GMMO field in MQGMO set to MONONE reading from a
FIFO ordered queue will cause all the expired messages to be discarded up to
the first unexpired message. With a priority ordered queue, the same call will

MQMD - Message descriptor

96 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|
|
|

discard expired messages of higher priority and messages of an equal priority
that arrived on the queue before the first unexpired message.

A message that has expired is never returned to an application (either by a
browse or a non-browse MQGET call), so the value in the MDEXP field of the
message descriptor after a successful MQGET call is either greater than zero, or
the special value EIULIM.

If a message is put on a remote queue, the message may expire (and be
discarded) whilst it is on an intermediate transmission queue, before the
message reaches the destination queue.

A report is generated when an expired message is discarded, if the message
specified one of the ROEXP* report options. If none of these options is
specified, no such report is generated; the message is assumed to be no longer
relevant after this time period (perhaps because a later message has
superseded it).

Any other program that discards messages based on expiry time must also
send an appropriate report message if one was requested.

Notes:

1. If a message is put with an MDEXP time of zero, the MQPUT or MQPUT1
call fails with reason code RC2013; no report message is generated in this
case.

2. Since a message whose expiry time has elapsed may not actually be
discarded until later, there may be messages on a queue that have passed
their expiry time, and which are not therefore eligible for retrieval. These
messages nevertheless count towards the number of messages on the queue
for all purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is
actually discarded, not when it becomes eligible for discarding.

4. Discarding of an expired message, and the generation of an expiration
report if requested, are never part of the application’s unit of work, even if
the message was scheduled for discarding as a result of an MQGET call
operating within a unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a unit of
work, and the unit of work is subsequently backed out, the message may
become eligible to be discarded before it can be retrieved again.

6. If a nearly-expired message is locked by an MQGET call with GMLK, the
message may become eligible to be discarded before it can be retrieved by
an MQGET call with GMMUC; reason code RC2034 is returned on this
subsequent MQGET call if that happens.

7. When a request message with an expiry time greater than zero is retrieved,
the application can take one of the following actions when it sends the
reply message:
v Copy the remaining expiry time from the request message to the reply

message.
v Set the expiry time in the reply message to an explicit value greater than

zero.
v Set the expiry time in the reply message to EIULIM.

The action to take depends on the design of the application suite. However,
the default action for putting messages to a dead-letter

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 97

|
|

(undelivered-message) queue should be to preserve the remaining expiry
time of the message, and to continue to decrement it.

8. Trigger messages are always generated with EIULIM.
9. A message (normally on a transmission queue) which has a MDFMT name of

FMXQH has a second message descriptor within the MQXQH. It therefore
has two MDEXP fields associated with it. The following additional points
should be noted in this case:
v When an application puts a message on a remote queue, the queue

manager places the message initially on a local transmission queue, and
prefixes the application message data with an MQXQH structure. The
queue manager sets the values of the two MDEXP fields to be the same as
that specified by the application.
If an application puts a message directly on a local transmission queue,
the message data must already begin with an MQXQH structure, and the
format name must be FMXQH (but the queue manager does not enforce
this). In this case the application need not set the values of these two
MDEXP fields to be the same. (The queue manager does not check that the
MDEXP field within the MQXQH contains a valid value, or even that the
message data is long enough to include it.)

v When a message with a MDFMT name of FMXQH is retrieved from a
queue (whether this is a normal or a transmission queue), the queue
manager decrements both these MDEXP fields with the time spent waiting
on the queue. No error is raised if the message data is not long enough
to include the MDEXP field in the MQXQH.

v The queue manager uses the MDEXP field in the separate message
descriptor (that is, not the one in the message descriptor embedded
within the MQXQH structure) to test whether the message is eligible for
discarding.

v If the initial values of the two MDEXP fields were different, it is therefore
possible for the MDEXP time in the separate message descriptor when the
message is retrieved to be greater than zero (so the message is not
eligible for discarding), while the time according to the MDEXP field in the
MQXQH has elapsed. In this case the MDEXP field in the MQXQH is set to
zero.

The following special value is recognized:

EIULIM
Unlimited lifetime.

The message has an unlimited expiration time.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The initial value of this field is EIULIM.

MDFB (10-digit signed integer)
Feedback or reason code.

This is used with a message of type MTRPRT to indicate the nature of the
report, and is only meaningful with that type of message. The field can contain
one of the FB* values, or one of the RC* values. Feedback codes are grouped as
follows:

FBNONE
No feedback provided.

MQMD - Message descriptor

98 MQSeries for AS/400, V5.1 APR (ILE RPG)

FBSFST
Lowest value for system-generated feedback.

FBSLST
Highest value for system-generated feedback.

The range of system-generated feedback codes FBSFST through
FBSLST includes the general feedback codes listed below (FB*), and
also the reason codes (RC*) that can occur when the message cannot be
put on the destination queue.

FBAFST
Lowest value for application-generated feedback.

FBALST
Highest value for application-generated feedback.

Applications that generate report messages should not use feedback codes in
the system range (other than FBQUIT), unless they wish to simulate report
messages generated by the queue manager or message channel agent.

On the MQPUT or MQPUT1 calls, the value specified must either be FBNONE,
or be within the system range or application range. This is checked whatever
the value of MDMT.

General feedback codes:

FBCOA
Confirmation of arrival on the destination queue (see ROCOA).

FBCOD
Confirmation of delivery to the receiving application (see ROCOD).

FBEXP
Message expired.

Message was discarded because it had not been removed from the
destination queue before its expiry time had elapsed.

FBPAN
Positive action notification (see ROPAN).

FBNAN
Negative action notification (see RONAN).

FBQUIT
Application should end.

This can be used by a workload scheduling program to control the
number of instances of an application program that are running.
Sending an MTRPRT message with this feedback code to an instance of
the application program indicates to that instance that it should stop
processing. However, adherence to this convention is a matter for the
application; it is not enforced by the queue manager.

IMS-bridge feedback codes: When the IMS bridge receives a nonzero
IMS-OTMA sense code, the IMS bridge converts the sense code from
hexadecimal to decimal, adds the value FBIERR (300), and places the result in
the MDFB field of the reply message. This results in the feedback code having a
value in the range FBIFST (301) through FBILST (399) when an IMS-OTMA
error has occurred.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 99

|
|
|
|
|
|

The following feedback codes can be generated by the IMS bridge:

FBDLZ
Data length zero.

A segment length was zero in the application data of the message.

FBDLN
Data length negative.

A segment length was negative in the application data of the message.

FBDLTB
Data length too big.

A segment length was too big in the application data of the message.

FBBUFO
Buffer overflow.

The value of one of the length fields would cause the data to overflow
the MQSeries message buffer.

FBLOB1
Length in error by one.

The value of one of the length fields was one byte too short.

FBIIH MQIIH structure not valid or missing.

The MDFMT field in MQMD specifies FMIMS, but the message does not
begin with a valid MQIIH structure.

FBNAFI
Userid not authorized for use in IMS.

The user ID contained in the message descriptor MQMD, or the
password contained in the IIAUT field in the MQIIH structure, failed
the validation performed by the IMS bridge. As a result the message
was not passed to IMS.

FBIERR
Unexpected error returned by IMS.

An unexpected error was returned by IMS. Consult the MQSeries error
log on the system on which the IMS bridge resides for more
information about the error.

FBIFST
Lowest value for IMS-generated feedback.

IMS-generated feedback codes occupy the range FBIFST (300) through
FBILST (399). The IMS-OTMA sense code itself is MDFB minus FBIERR.

FBILST
Highest value for IMS-generated feedback.

CICS-bridge feedback codes: The following feedback codes can be generated
by the CICS bridge:

FBCAAB
Application abended.

The application program specified in the message abended. This
feedback code occurs only in the DLREA field of the MQDLH structure.

MQMD - Message descriptor

100 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|

|
|

FBCANS
Application cannot be started.

The EXEC CICS LINK for the application program specified in the
message failed. This feedback code occurs only in the DLREA field of the
MQDLH structure.

FBCBRF
CICS bridge terminated abnormally without completing normal error
processing.

FBCCSE
Character set identifier not valid.

FBCIHE
CICS information header structure missing or not valid.

FBCCAE
Length of CICS commarea not valid.

FBCCIE
Correlation identifier not valid.

FBCDLQ
Dead-letter queue not available.

The CICS bridge task was unable to copy a reply to this request to the
dead-letter queue. The request was backed out.

FBCENE
Encoding not valid.

FBCINE
CICS bridge encountered an unexpected error.

This feedback code occurs only in the DLREA field of the MQDLH
structure.

FBCNTA
User identifier not authorized or password not valid.

This feedback code occurs only in the DLREA field of the MQDLH
structure.

FBCUBO
Unit of work backed out.

The unit of work was backed out, for one of the following reasons:
v A failure was detected while processing another request within the

same unit of work.
v A CICS abend occurred while the unit of work was in progress.

FBCUWE
Unit-of-work control field CIUOW not valid.

MQ reason codes: For exception report messages, MDFB contains an MQ reason
code. Among possible reason codes are:

RC2051
(2051, X'803') Put calls inhibited for the queue.

RC2053
(2053, X'805') Queue already contains maximum number of messages.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 101

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

RC2035
(2035, X'7F3') Not authorized for access.

RC2056
(2056, X'808') No space available on disk for queue.

RC2048
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

RC2031
(2031, X'7EF') Message length greater than maximum for queue
manager.

RC2030
(2030, X'7EE') Message length greater than maximum for queue.

For a full list of reason codes, see “Reason codes” on page 357.

This is an output field for the MQGET call, and an input field for MQPUT and
MQPUT1 calls. The initial value of this field is FBNONE.

MDENC (10-digit signed integer)
Numeric encoding of message data.

This identifies the representation used for numeric values in the application
message data; this applies to binary integer data, packed-decimal integer data,
and floating-point data. The following value is defined:

ENNAT
Native machine encoding.

The encoding is the default for the programming language and
machine on which the application is running.

Note: The value of this constant is programming-language and
environment specific.

The queue manager does not validate the contents of this field.

Applications that put messages should normally specify ENNAT. Applications
that retrieve messages should compare this field against the value ENNAT; if
the values differ, the application may need to convert numeric data in the
message. See “Appendix D. Machine encodings” on page 453 for details of how
this field is constructed.

If the GMCONV option is specified on the MQGET call, this field is an
input/output field. The value specified by the application is the encoding to
which the message data should be converted if necessary. If conversion is
successful or unnecessary, the value is unchanged. If conversion is
unsuccessful, the value after the MQGET call represents the encoding of the
unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is ENNAT.

MDCSI (10-digit signed integer)
Character set identifier of message data.

MQMD - Message descriptor

102 MQSeries for AS/400, V5.1 APR (ILE RPG)

This specifies the coded character set identifier of character data in the
application message data.

Note that character data in the message descriptor and the other MQI data
structures must be in the character set used by the queue manager. This is
defined by the queue manager’s CodedCharSetId attribute; see “Chapter 43.
Attributes for the queue manager” on page 323 for details of this attribute.

The following values are defined:

CSQM
Queue manager’s character set identifier.

Character data in the message is in the queue manager’s character set.

CSINHT
Inherit character-set identifier of this structure.

Character data in the message is in the same character set as MQMD;
this is the queue-manager’s character set.

CSEMBD
Embedded character set identifier.

Character data in the message is in a character set whose identifier is
contained within the message data itself. There can be any number of
character-set identifiers embedded within the message data, applying
to different parts of the data. This value must be used for PCF
messages that contain data in a mixture of character sets. PCF
messages have a format name of FMPCF.

Specify this value only on the MQPUT and MQPUT1 calls. If it is
specified on the MQGET call, it prevents conversion of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the value
CSQM in the MDCSI field in the MQMD sent with the message to the value of
the queue manager’s CodedCharSetId attribute; as a result, the value CSQM is
never returned by the MQGET call. The MDCSI field in the MQMD specified on
the MQPUT or MQPUT1 call is not altered. No other check is carried out on
the value specified.

Applications that retrieve messages should compare this field against the value
the application is expecting; if the values differ, the application may need to
convert character data in the message.

If the GMCONV option is specified on the MQGET call, this field is an
input/output field. The value specified by the application is the coded
character-set identifier to which the message data should be converted if
necessary. If conversion is successful or unnecessary, the value is unchanged
(except that the value CSQM is converted to the actual value). If conversion is
unsuccessful, the value after the MQGET call represents the coded character-set
identifier of the unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is CSQM.

MDFMT (8-byte character string)
Format name of message data.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 103

This is a name that the sender of the message may use to indicate to the
receiver the nature of the data in the message. Any characters that are in the
queue manager’s character set may be specified for the name, but it is
recommended that the name be restricted to the following:
v Uppercase A through Z
v Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name
between the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field, or a null
character used to terminate the name before the end of the field; the null and
any subsequent characters are treated as blanks. Do not specify a name with
leading or embedded blanks. For the MQGET call, the queue manager returns
the name padded with blanks to the length of the field.

The queue manager does not check that the name complies with the
recommendations described above.

Names beginning “MQ” have meanings that are defined by the queue
manager; you should not use names beginning with these letters for your own
formats. The queue manager built-in formats are:

FMNONE
No format name.

The nature of the application message data is undefined. This means
that the data cannot be converted when the message is retrieved from
a queue.

Note: If GMCONV is specified on the MQGET call for a message that
has a format name of FMNONE, and the character set or
encoding of the message differs from that specified in the MSGDSC
parameter, the message is still returned in the BUFFER parameter
(assuming no other errors), but the call completes with
completion code CCWARN and reason code RC2110.

FMADMN
Command server request/reply message.

The message is a command-server request or reply message in
programmable command format (PCF). Messages of this format can be
converted if the GMCONV option is specified on the MQGET call.
Refer to the MQSeries Programmable System Management book for more
information about using programmable command format messages.

FMCICS
CICS information header.

The message data begins with the CICS information header MQCIH,
which is followed by the application data. The format name of the
application data is given by the CIFMT field in the MQCIH structure.

FMCMD1
Type 1 command reply message.

The message is an MQSC command-server reply message containing
the object count, completion code, and reason code. Messages of this
format can be converted if the GMCONV option is specified on the
MQGET call.

MQMD - Message descriptor

104 MQSeries for AS/400, V5.1 APR (ILE RPG)

FMCMD2
Type 2 command reply message.

The message is an MQSC command-server reply message containing
information about the object(s) requested. Messages of this format can
be converted if the GMCONV option is specified on the MQGET call.

FMDLH
Dead-letter header.

The message data begins with the dead-letter header MQDLH. The
data from the original message immediately follows the MQDLH
structure. The format name of the original message data is given by the
DLFMT field in the MQDLH structure; see “Chapter 7. MQDLH -
Dead-letter header” on page 43 for details of this structure. Messages of
this format can be converted if the GMCONV option is specified on
the MQGET call.

COA and COD reports are not generated for messages which have a
MDFMT of FMDLH.

FMDH
Distribution-list header.

The message data begins with the distribution-list header MQDH; this
includes the arrays of MQOR and MQPMR records. The
distribution-list header may be followed by additional data. The format
of the additional data (if any) is given by the DHFMT field in the MQDH
structure; see “Chapter 6. MQDH - Distribution header” on page 37 for
details of this structure. Messages with format FMDH can be converted
if the GMCONV option is specified on the MQGET call.

FMEVNT
Event message.

The message is an MQ event message that reports an event that
occurred. Messages of this format can be converted if the GMCONV
option is specified on the MQGET call. Event messages have the same
structure as programmable commands; Refer to the MQSeries
Programmable System Management book for more information about this
structure.

FMIMS
IMS information header.

The message data begins with the IMS information header MQIIH,
which is followed by the application data. The format name of the
application data is given by the IIFMT field in the MQIIH structure.
Messages of this format can be converted if the GMCONV option is
specified on the MQGET call.

FMIMVS
IMS variable string.

The message is an IMS variable string, which is a string of the form
llzzccc, where:

ll is a 2-byte length field specifying the total length of the IMS
variable string item. This length is equal to the length of ll (2
bytes), plus the length of zz (2 bytes), plus the length of the
character string itself. ll is a 2-byte binary integer in the
encoding specified by the MDENC field.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 105

zz is a 2-byte field containing flags that are significant to IMS. zz
is a byte string consisting of two 1-byte bit string fields, and is
transmitted without change from sender to receiver (that is, zz
is not subject to any conversion).

ccc is a variable-length character string containing ll-4 characters.
ccc is in the character set specified by the MDCSI field.

Messages of this format can be converted if the GMCONV option is
specified on the MQGET call.

FMMDE
Message-descriptor extension.

The message data begins with the message-descriptor extension
MQMDE, and is optionally followed by other data (usually the
application message data). The format name, character set, and
encoding of the data which follows the MQMDE is given by the MEFMT,
MECSI, and MEENC fields in the MQMDE. See “Chapter 11. MQMDE -
Message descriptor extension” on page 131 for details of this structure.
Messages of this format can be converted if the GMCONV option is
specified on the MQGET call.

FMPCF
User-defined message in programmable command format (PCF).

The message is a user-defined message that conforms to the structure
of a programmable command format (PCF) message. Messages of this
format can be converted if the GMCONV option is specified on the
MQGET call. Refer to the MQSeries Programmable System Management
book for more information about using programmable command
format messages.

FMRMH
Reference message header.

The message data begins with the reference message header MQRMH,
and is optionally followed by other data. The format name, character
set, and encoding of the data is given by the RMFMT, RMCSI, and RMENC
fields in the MQRMH. See “Chapter 16. MQRMH - Message reference
header” on page 169 for details of this structure. Messages of this
format can be converted if the GMCONV option is specified on the
MQGET call.

FMRFH
Rules and formatting header.

The message data begins with the rules and formatting header
MQRFH, and is optionally followed by other data. The format name,
character set, and encoding of the data (if any) is given by the RFFMT,
RFCSI, and RFENC fields in the MQRFH.

FMSTR
Message consisting entirely of characters.

The application message data can be either an SBCS string (single-byte
character set), or a DBCS string (double-byte character set). Messages
of this format can be converted if the GMCONV option is specified on
the MQGET call.

FMTM
Trigger message.

MQMD - Message descriptor

106 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|
|
|

The message is a trigger message, described by the MQTM structure;
see “Chapter 18. MQTM - Trigger message” on page 179 for details of
this structure. Messages of this format can be converted if the
GMCONV option is specified on the MQGET call.

FMWIH
Work information header.

The message data begins with the work information header MQWIH,
which is followed by the application data. The format name of the
application data is given by the WIFMT field in the MQWIH structure.

FMXQH
Transmission queue header.

The message data begins with the transmission queue header MQXQH.
The data from the original message immediately follows the MQXQH
structure. The format name of the original message data is given by the
MDFMT field in the MQMD structure which is part of the transmission
queue header MQXQH. See “Chapter 21. MQXQH - Transmission
queue header” on page 193 for details of this structure.

COA and COD reports are not generated for messages which have a
MDFMT of FMXQH.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The length of this field is given by LNFMT. The initial
value of this field is FMNONE.

MDPRI (10-digit signed integer)
Message priority.

For the MQPUT and MQPUT1 calls, the value must be greater than or equal to
zero; zero is the lowest priority.

The following special value can also be used:

PRQDEF
Default priority for queue.
v If the queue is a cluster queue, the priority for the message is taken

from the DefPriority attribute as defined at the destination queue
manager that owns the particular instance of the queue on which the
message is placed. Usually, all of the instances of a cluster queue
have the same value for the DefPriority attribute, although this is
not mandated.
The value of DefPriority is copied into the MDPRI field when the
message is placed on the destination queue. If DefPriority is
changed subsequently, messages that have already been placed on
the queue are not affected.

v If the queue is not a cluster queue, the priority for the message is
taken from theDefPriority attribute as defined at thelocal queue
manager, even if the destination queue manager is remote.
If there is more than one definition in the queue-name resolution
path, the default priority is taken from the value of this attribute in
the first definition in the path. This could be:
– An alias queue
– A local queue
– A local definition of a remote queue

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 107

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

– A queue-manager alias
– A transmission queue (for example, the DefXmitQName queue)

The value of DefPriority is copied into the MDPRI field when the
message is put. If DefPriority is changed subsequently, messages
that have already been put are not affected.

When replying to a message, applications should normally use for the reply
message the priority of the request message. In other situations, defaulting to
the queue definition allows priority tuning to be carried out without changing
the application.

If a message is put with a priority greater than the maximum supported by the
local queue manager (this maximum is given by the MaxPriority
queue-manager attribute), the message is accepted by the queue manager, but
placed on the queue at the queue manager’s maximum priority; the MQPUT
or MQPUT1 call completes with CCWARN and reason code RC2049. However,
the MDPRI field retains the value specified by the application which put the
message.

The value returned by the MQGET call is always greater than or equal to zero;
the value PRQDEF is never returned.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The initial value of this field is PRQDEF.

MDPER (10-digit signed integer)
Message persistence.

For the MQPUT and MQPUT1 calls, the value must be one of the following:

PEPER
Message is persistent.

The message survives restarts of the queue manager. Because
temporary dynamic queues do not survive restarts of the queue
manager, persistent messages cannot be placed on temporary dynamic
queues; persistent messages can however be placed on permanent
dynamic queues, and predefined queues.

Once a persistent message has been put (or the unit of work
committed, if the MQPUT or MQPUT1 call is part of a unit of work),
the message is available on auxiliary storage until such time as the
message is removed from the queue (or the unit of work committed, if
the MQGET call is part of a unit of work).

When a persistent message is sent to a remote queue, a
store-and-forward mechanism is used to hold the message at each
queue manager along the route to the destination, until the message is
known to have arrived at the next queue manager.

PENPER
Message is not persistent.

The message does not survive restarts of the queue manager. This
applies even if an intact copy of the message is found on auxiliary
storage during the restart procedure.

PEQDEF
Message has default persistence.

MQMD - Message descriptor

108 MQSeries for AS/400, V5.1 APR (ILE RPG)

v If the queue is a cluster queue, the persistence of the message is
taken from the DefPersistence attribute defined at the destination
queue manager that owns the particular instance of the queue on
which the message is placed.
Usually, all of the instances of a cluster queue have the same value
for the DefPersistence attribute, although this is not mandated.
The value of DefPersistence is copied into the MDPER field when the
message is placed on the destination queue. If DefPersistence is
changed subsequently, messages that have already been placed on
the queue are not affected.

v If the queue is not a cluster queue, the persistence of the message is
taken from theDefPersistence attribute defined at thelocal queue
manager, even if the destination queue manager is remote.
If there is more than one definition in the queue-name resolution
path, the default persistence is taken from the value of this attribute
in the first definition in the path. This could be:
– An alias queue
– A local queue
– A local definition of a remote queue
– A queue-manager alias
– A transmission queue (for example, the DefXmitQName queue)

The value of DefPersistence is copied into the MDPER field when the
message is put. If DefPersistence is changed subsequently, messages
that have already been put are not affected.

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications should normally use for the reply
message the persistence of the request message. In other situations, defaulting
to the queue definition allows persistence to be changed without changing the
application.

For an MQGET call, the value returned is either PEPER or PENPER.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The initial value of this field is PEQDEF.

MDMID (24-byte bit string)
Message identifier.

This is a byte string that is used to distinguish one message from another.
Generally, no two messages should have the same message identifier, although
this is not disallowed by the queue manager. The message identifier is a
permanent property of the message, and persists across restarts of the queue
manager. Because the message identifier is a byte string and not a character
string, the message identifier is not converted between character sets when the
message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, if MINONE or PMNMID is specified by
the application, the queue manager generates a unique message identifier 1

1. A MDMID generated by the queue manager consists of a 4-byte product identifier (‘AMQb’ or ‘CSQb’ in either ASCII or EBCDIC,
where ‘b’ represents a blank), followed by a product-specific implementation of a unique string. In MQSeries this contains the
first 12 characters of the queue-manager name, and a value derived from the system clock. All queue managers that can

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 109

|
|
|
|

|
|

|
|
|
|

|
|
|

when the message is put, and places it in the message descriptor sent with the
message. The queue manager also returns this message identifier in the
message descriptor belonging to the sending application. The application can
use this value to record information about particular messages, and to respond
to queries from other parts of the application.

If the message is being put to a distribution list, the queue manager generates
unique message identifiers as necessary, but the value of the MDMID field in
MQMD is unchanged on return from the call, even if MINONE or PMNMID
was specified. If the application needs to know the message identifiers
generated by the queue manager, the application must provide MQPMR
records containing the PRMID field.

The sending application can also specify a particular value for the message
identifier, other than MINONE; this stops the queue manager generating a
unique message identifier. An application that is forwarding a message can use
this facility to propagate the message identifier of the original message.

The queue manager does not itself make any use of this field except to:
v Generate a unique value if requested, as described above
v Deliver the value to the application that issues the get request for the

message
v Copy the value to the MDCID field of any report message that it generates

about this message (depending on the MDREP options)

When the queue manager or a message channel agent generates a report
message, it sets the MDMID field in the way specified by the MDREP field of the
original message, either RONMI or ROPMI. Applications that generate report
messages should also do this.

For the MQGET call, MDMID is one of the five fields that can be used to select a
particular message to be retrieved from the queue. Normally the MQGET call
returns the next message on the queue, but if a particular message is required,
this can be obtained by specifying one or more of the five selection criteria, in
any combination; these fields are:

MDMID
MDCID
MDGID
MDSEQ
MDOFF

The application sets one or more of these field to the values required, and then
sets the corresponding MO* match options in the GMMO field in MQGMO to
indicate that those fields should be used as selection criteria. Only messages
that have the specified values in those fields are candidates for retrieval. The
default for the GMMO field (if not altered by the application) is to match both the
message identifier and the correlation identifier.

Normally, the message returned is the first message on the queue that satisfies
the selection criteria. But if GMBRWN is specified, the message returned is the

intercommunicate must therefore have names that differ in the first 12 characters, in order to ensure that message identifiers are
unique. The ability to generate a unique string also depends upon the system clock not being changed backward. To eliminate the
possibility of a message identifier generated by the queue manager duplicating one generated by the application, the application
should avoid generating identifiers with initial characters in the range A through I in ASCII or EBCDIC (X'41' through X'49' and
X'C1' through X'C9'). However, the application is not prevented from generating identifiers with initial characters in these ranges.

MQMD - Message descriptor

110 MQSeries for AS/400, V5.1 APR (ILE RPG)

next message that satisfies the selection criteria; the scan for this message starts
with the message following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the
selection criteria, so retrieval times will be slower than if no selection
criteria are specified, especially if many messages have to be scanned
before a suitable one is found.

See Table 16 on page 63 for more information about how selection criteria are
used in various situations.

Specifying MINONE as the message identifier has the same effect as not
specifying MOMSGI, that is, any message identifier will match.

This field is ignored if the GMMUC option is specified in the GMO parameter on
the MQGET call.

On return from an MQGET call, the MDMID field is set to the message identifier
of the message returned (if any).

The following special value may be used:

MINONE
No message identifier is specified.

The value is binary zero for the length of the field.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls.
The length of this field is given by LNMID. The initial value of this field is
MINONE.

MDCID (24-byte bit string)
Correlation identifier.

This is a byte string that the application can use to relate one message to
another, or to relate the message to other work that the application is
performing. The correlation identifier is a permanent property of the message,
and persists across restarts of the queue manager. Because the correlation
identifier is a byte string and not a character string, the correlation identifier is
not converted between character sets when the message flows from one queue
manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value. The
queue manager transmits this value with the message and delivers it to the
application that issues the get request for the message.

If the application specifies PMNCID, the queue manager generates a unique
correlation identifier which is sent with the message, and also returned to the
sending application on output from the MQPUT or MQPUT1 call.

When the queue manager or a message channel agent generates a report
message, it sets the MDCID field in the way specified by the MDREP field of the
original message, either ROCMTC or ROPCI. Applications which generate
report messages should also do this.

For the MQGET call, MDCID is one of the five fields that can be used to select a
particular message to be retrieved from the queue. See the description of the
MDMID field for details of how to specify values for this field.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 111

Specifying CINONE as the correlation identifier has the same effect as not
specifying MOCORI, that is, any correlation identifier will match.

If the GMMUC option is specified in the GMO parameter on the MQGET call,
this field is ignored.

On return from an MQGET call, the MDCID field is set to the correlation
identifier of the message returned (if any).

The following special values may be used:

CINONE
No correlation identifier is specified.

The value is binary zero for the length of the field.

CINEWS
Message is the start of a new session.

This value is recognized by the CICS bridge as indicating the start of a
new session, that is, the start of a new sequence of messages.

For the MQGET call, this is an input/output field. For the MQPUT and
MQPUT1 calls, this is an input field if PMNCID is not specified, and an output
field if PMNCID is specified. The length of this field is given by LNCID. The
initial value of this field is CINONE.

MDBOC (10-digit signed integer)
Backout counter.

This is a count of the number of times the message has been previously
returned by the MQGET call as part of a unit of work, and subsequently
backed out. It is provided as an aid to the application in detecting processing
errors that are based on message content. The count excludes MQGET calls
that specified any of the GMBRW* options.

The accuracy of this count is affected by the HardenGetBackout local queue
attribute; see “Chapter 38. Attributes for local queues and model queues” on
page 299.

This is an output field for the MQGET call. It is ignored for the MQPUT and
MQPUT1 calls. The initial value of this field is 0.

MDRQ (48-byte character string)
Name of reply queue.

This is the name of the message queue to which the application that issued the
get request for the message should send MTRPLY and MTRPRT messages. The
name is the local name of a queue that is defined on the queue manager
identified by MDRM. This queue should not be a model queue, although the
sending queue manager does not verify this when the message is put.

For the MQPUT and MQPUT1 calls, this field must not be blank if the MDMT
field has the value MTRQST, or if any reports are requested by the MDREP field.
However, the value specified (or substituted; see below) is passed on to the
application that issues the get request for the message, whatever the message
type.

MQMD - Message descriptor

112 MQSeries for AS/400, V5.1 APR (ILE RPG)

If the MDRM field is blank, the local queue manager looks up the MDRQ name in
its own queue definitions. If a local definition of a remote queue exists with
this name, the MDRQ value in the transmitted message is replaced by the value
of the RemoteQName attribute from the definition of the remote queue, and this
value will be returned in the message descriptor when the receiving
application issues an MQGET call for the message. If a local definition of a
remote queue does not exist, MDRQ is unchanged.

If the name is specified, it may contain trailing blanks; the first null character
and characters following it are treated as blanks. Otherwise, however, no check
is made that the name satisfies the naming rules for queues; this is also true
for the name transmitted, if the MDRQ is replaced in the transmitted message.
The only check made is that a name has been specified, if the circumstances
require it.

If a reply-to queue is not required, it is recommended (although this is not
checked) that the MDRQ field should be set to blanks; the field should not be left
uninitialized.

For the MQGET call, the queue manager always returns the name padded with
blanks to the length of the field.

If a message that requires a report message cannot be delivered, and the report
message also cannot be delivered to the queue specified, both the original
message and the report message go to the dead-letter (undelivered-message)
queue (see the DeadLetterQName attribute described in “Chapter 43. Attributes
for the queue manager” on page 323).

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The length of this field is given by LNQN. The initial
value of this field is 48 blank characters.

MDRM (48-byte character string)
Name of reply queue manager.

This is the name of the queue manager to which the reply message or report
message should be sent. MDRQ is the local name of a queue that is defined on
this queue manager.

If the MDRM field is blank, the local queue manager looks up the MDRQ name in
its queue definitions. If a local definition of a remote queue exists with this
name, the MDRM value in the transmitted message is replaced by the value of
the RemoteQMgrName attribute from the definition of the remote queue, and this
value will be returned in the message descriptor when the receiving
application issues an MQGET call for the message. If a local definition of a
remote queue does not exist, the MDRM that is transmitted with the message is
the name of the local queue manager.

If the name is specified, it may contain trailing blanks; the first null character
and characters following it are treated as blanks. Otherwise, however, no check
is made that the name satisfies the naming rules for queue managers, or that
this name is known to the sending queue manager; this is also true for the
name transmitted, if the MDRM is replaced in the transmitted message. For more
information about names, see the MQSeries Application Programming Guide.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 113

If a reply-to queue is not required, it is recommended (although this is not
checked) that the MDRM field should be set to blanks; the field should not be left
uninitialized.

For the MQGET call, the queue manager always returns the name padded with
blanks to the length of the field.

This is an output field for the MQGET call, and an input field for the MQPUT
and MQPUT1 calls. The length of this field is given by LNQMN. The initial
value of this field is 48 blank characters.

MDUID (12-byte character string)
User identifier.

The fields from MDUID to MDAOD contain the identity context and origin context
of the message. Usually:
v Identity context relates to the application that originally put the message
v Origin context relates to the application that most-recently put the message.

These two applications can be the same application, but they can also be
different applications (for example, when a message is forwarded from one
application to another).

Although identity and origin context usually have the meanings described
above, the content of both types of context actually depends on the PM*
options that are specified when the message is put. As a result, identity context
does not necessarily relate to the application that originally put the message,
and origin context does not necessarily relate to the application that
most-recently put the message — it depends on the design of the application
suite.

There is one class of application that never alters message context, namely the
message channel agent (MCA). MCAs that receive messages from remote
queue managers use the context option PMSETA on the MQPUT or MQPUT1
call. This allows the receiving MCA to preserve exactly the message context
that travelled with the message from the sending MCA. However, the result is
that the origin context does not relate to the application that most-recently put
the message (the receiving MCA), but instead relates to an earlier application
that put the message (possibly the originating application itself).

In the descriptions that follow, the context fields are described as though they
are used in the normal way. For more information about message context, see
the MQSeries Application Programming Guide.

MDUID is part of the identity context of the message. It specifies the user
identifier of the application that originated the message. The queue manager
treats this information as character data, but does not define the format of it.

After a message has been received, MDUID can be used in the ODAU field of the
OBJDSC parameter of a subsequent MQOPEN or MQPUT1 call, so that the
authorization check is performed for the MDUID user instead of the application
performing the open.

When the queue manager generates this information for an MQPUT or
MQPUT1 call:

MQMD - Message descriptor

114 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

v On OS/390, the queue manager uses the ODAU from the OBJDSC parameter of
the MQOPEN or MQPUT1 call if the OOALTU or PMALTU option was
specified. If the relevant option was not specified, the queue manager uses a
user identifier determined from the environment.

v In other environments, the queue manager always uses a user identifier
determined from the environment.

When the user identifier is determined from the environment:
v On OS/400, the queue manager uses the name of the user profile associated

with the application job.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or
PMSETA is specified in the PMO parameter. Any information following a null
character within the field is discarded. The null character and any following
characters are converted to blanks by the queue manager. If PMSETI or
PMSETA is not specified, this field is ignored on input and is an output-only
field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDUID that was transmitted with the message. If the message has
no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by
LNUID. The initial value of this field is 12 blank characters.

MDACC (32-byte bit string)
Accounting token.

This is part of the identity context of the message. For more information about
message context, see the description of the MDUID field above; also see the
MQSeries Application Programming Guide.

MDACC allows an application to cause work done as a result of the message to
be appropriately charged. The queue manager treats this information as a
string of bits and does not check its content.

When the queue manager generates this information, it is set as follows:
v The first byte of the field is set to the length of the accounting information

present in the bytes that follow; this length is in the range zero through 30,
and is stored in the first byte as a binary integer.

v The second and subsequent bytes (as specified by the length field) are set to
the accounting information appropriate to the environment.
– On OS/400, the accounting information is set to the accounting code for

the job.
v The last byte is set to the accounting-token type, one of the following values:

ATTCIC
CICS LUOW identifier.

ATTDOS
DOS client default accounting token.

ATTWNT
Windows NT security identifier.

ATTOS2
OS/2 default accounting token.

ATT400
OS/400 accounting token.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 115

|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

ATTUNX
UNIX systems numeric identifier.

ATTWIN
Windows client, 16-bit Windows, or 32-bit Windows default
accounting token.

ATTUSR
User-defined accounting token.

ATTUNK
Unknown accounting-token type.

The accounting-token type is set to an explicit value only in the following
environments: AIX, DOS client, HP-UX, OS/2, Sun Solaris, Windows client,
and Windows NT. In other environments, the accounting-token type is set to
the value ATTUNK. In these environments the MDPAT field can be used to
deduce the type of accounting token received.

v All other bytes are set to binary zero.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or
PMSETA is specified in the PMO parameter. If neither PMSETI nor PMSETA is
specified, this field is ignored on input and is an output-only field. For more
information on message context, see the MQSeries Application Programming
Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDACC that was transmitted with the message. If the message has
no context, the field is entirely binary zero.

This is an output field for the MQGET call.

This field is not subject to any translation based on the character set of the
queue manager—the field is treated as a string of bits, and not as a string of
characters.

The queue manager does nothing with the information in this field. The
application must interpret the information if it wants to use the information for
accounting purposes.

The following special value may be used for the MDACC field:

ACNONE
No accounting token is specified.

The value is binary zero for the length of the field.

The length of this field is given by LNACCT. The initial value of this field is
ACNONE.

MDAID (32-byte character string)
Application data relating to identity.

This is part of the identity context of the message. For more information about
message context, see the description of the MDUID field above; also see the
MQSeries Application Programming Guide.

MDAID is information that is defined by the application suite, and can be used
to provide additional information about the message or its originator. The

MQMD - Message descriptor

116 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|
|
|
|
|

|
|
|
|
|

queue manager treats this information as character data, but does not define
the format of it. When the queue manager generates this information, it is
entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or
PMSETA is specified in the PMO parameter. If a null character is present, the
null and any following characters are converted to blanks by the queue
manager. If neither PMSETI nor PMSETA is specified, this field is ignored on
input and is an output-only field. For more information on message context,
see the MQSeries Application Programming Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDAID that was transmitted with the message. If the message has
no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNAIDD. The initial value of this field is 32 blank characters.

MDPAT (10-digit signed integer)
Type of application that put the message.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the
MQSeries Application Programming Guide.

MDPAT may have one of the following standard types. User-defined types can
also be used but should be restricted to values in the range ATUFST through
ATULST.

ATAIX
AIX application (same value as ATUNIX).

ATCICS
CICS transaction.

ATCICB
CICS bridge.

ATVSE
CICS/VSE transaction.

ATDOS
DOS client application.

ATGUAR
Tandem Guardian application (same value as ATNSK).

ATIMS
IMS application.

ATIMSB
IMS bridge.

ATMVS
OS/390 or TSO application (same value as AT390).

ATNOTE
Lotus Notes Agent application.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 117

|

|
|

|
|

|
|

|
|

ATNSK
Tandem NonStop Kernel application.

ATOS2
OS/2 or Presentation Manager application.

AT390 OS/390 application.

AT400 OS/400 application.

ATQM
Queue-manager-generated message.

ATUNIX
UNIX application.

ATVMS
Digital OpenVMS application.

ATVOS
Stratus VOS application.

ATWIN
Windows client or 16-bit Windows application.

ATWINT
Windows NT or 32-bit Windows application.

ATXCF
XCF.

ATDEF
Default application type.

This is the default application type for the platform on which the
application is running.

Note: The value of this constant is environment-specific.

ATUNK
Unknown application type.

This value can be used to indicate that the application type is
unknown, even though other context information is present.

ATUFST
Lowest value for user-defined application type.

ATULST
Highest value for user-defined application type.

The following special value can also occur:

ATNCON
No context information present in message.

This value is set by the queue manager when a message is put with no
context (that is, the PMNOC context option is specified).

When a message is retrieved, MDPAT can be tested for this value to
decide whether the message has context (it is recommended that MDPAT
is never set to ATNCON, by an application using PMSETA, if any of
the other context fields are nonblank).

MQMD - Message descriptor

118 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

||

|
|

|
|

When the queue manager generates this information as a result of an
application put, the field is set to a value that is determined by the
environment. Note that on OS/400, it is set to AT400; the queue manager never
uses ATCICS on OS/400.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is
specified in the PMO parameter. If PMSETA is not specified, this field is ignored
on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDPAT that was transmitted with the message. If the message has
no context, the field is set to ATNCON.

This is an output field for the MQGET call. The initial value of this field is
ATNCON.

MDPAN (28-byte character string)
Name of application that put the message.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the
MQSeries Application Programming Guide.

The format of the MDPAN depends on the value of MDPAT.

When this field is set by the queue manager (that is, for all options except
PMSETA), it is set to value which is determined by the environment:
v On OS/400, the queue manager uses the fully-qualified job name.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is
specified in the PMO parameter. Any information following a null character
within the field is discarded. The null character and any following characters
are converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDPAN that was transmitted with the message. If the message has
no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by
LNPAN. The initial value of this field is 28 blank characters.

MDPD (8-byte character string)
Date when message was put.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the
MQSeries Application Programming Guide.

The format used for the date when this field is generated by the queue
manager is:

YYYYMMDD

where the characters represent:
YYYY year (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 119

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to
the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the date is that when the
message was put, and not the date when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is
specified in the PMO parameter. The contents of the field are not checked by the
queue manager, except that any information following a null character within
the field is discarded. The null character and any following characters are
converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDPD that was transmitted with the message. If the message has no
context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNPDAT. The initial value of this field is 8 blank characters.

MDPT (8-byte character string)
Time when message was put.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the
MQSeries Application Programming Guide.

The format used for the time when this field is generated by the queue
manager is:

HHMMSSTH

where the characters represent (in order):
HH hours (00 through 23)
MM minutes (00 through 59)
SS seconds (00 through 59; see note below)
T tenths of a second (0 through 9)
H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is
possible on rare occasions for 60 or 61 to be returned for the seconds in
MDPT. This happens when leap seconds are inserted into the global time
standard.

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to
the system clock being set accurately to GMT.

If the message was put as part of a unit of work, the time is that when the
message was put, and not the time when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is
specified in the PMO parameter. The contents of the field are not checked by the
queue manager, except that any information following a null character within
the field is discarded. The null character and any following characters are
converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

MQMD - Message descriptor

120 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDPT that was transmitted with the message. If the message has no
context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNPTIM. The initial value of this field is 8 blank characters.

MDAOD (4-byte character string)
Application data relating to origin.

This is part of the origin context of the message. For more information about
message context, see the description of the MDUID field above; also see the
MQSeries Application Programming Guide.

MDAOD is information that is defined by the application suite that can be used to
provide additional information about the origin of the message. For example, it
could be set by suitably authorized applications to indicate whether the
identity data is trusted.

The queue manager treats this information as character data, but does not
define the format of it. When the queue manager generates this information, it
is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is
specified in the PMO parameter. Any information following a null character
within the field is discarded. The null character and any following characters
are converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the MDAOD that was transmitted with the message. If the message has
no context, the field is entirely blank.

On VSE/ESA, this is a reserved field.

This is an output field for the MQGET call. The length of this field is given by
LNAORD. The initial value of this field is 4 blank characters.

The remaining fields are not present if MDVER is less than MDVER2.

MDGID (24-byte bit string)
Group identifier.

This is a byte string that is used to identify the particular message group or
logical message to which the physical message belongs. MDGID is also used if
segmentation is allowed for the message. In all of these cases, MDGID has a
non-null value, and one or more of the following flags is set in the MDMFL field:

MFMIG
MFLMIG
MFSEG
MFLSEG
MFSEGA

If none of these flags is set, MDGID has the special null value GINONE.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 121

|

|

This field need not be set by the application on the MQPUT or MQGET call if:
v On the MQPUT call, PMLOGO is specified.
v On the MQGET call, MOGRPI is not specified.

These are the recommended ways of using these calls for messages that are not
report messages. However, if the application requires more control, or the call
is MQPUT1, the application must ensure that MDGID is set to an appropriate
value.

Message groups and segments can be processed correctly only if the group
identifier is unique. For this reason, applications should not generate their own
group identifiers; instead, applications should do one of the following:
v If PMLOGO is specified, the queue manager automatically generates a

unique group identifier for the first message in the group or segment of the
logical message, and uses that group identifier for the remaining messages
in the group or segments of the logical message, so the application does not
need to take any special action. This is the recommended procedure.

v If PMLOGO is not specified, the application should request the queue
manager to generate the group identifier, by setting MDGID to GINONE on
the first MQPUT or MQPUT1 call for a message in the group or segment of
the logical message. The group identifier returned by the queue manager on
output from that call should then be used for the remaining messages in the
group or segments of the logical message. If a message group contains
segmented messages, the same group identifier must be used for all
segments and messages in the group.
When PMLOGO is not specified, messages in groups and segments of
logical messages can be put in any order (for example, in reverse order), but
the group identifier must be allocated by the first MQPUT or MQPUT1 call
that is issued for any of those messages.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value
detailed in Table 31 on page 153. On output from the MQPUT and MQPUT1
calls, the queue manager sets this field to the value that was sent with the
message if the object opened is a single queue and not a distribution list, but
leaves it unchanged if the object opened is a distribution list. In the latter case,
if the application needs to know the group identifiers generated, the
application must provide MQPMR records containing the PRGID field.

On input to the MQGET call, the queue manager uses the value detailed in
Table 16 on page 63. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The following special value is defined:

GINONE
No group identifier specified.

The value is binary zero for the length of the field. This is the value
that is used for messages that are not in groups, not segments of
logical messages, and for which segmentation is not allowed.

The length of this field is given by LNGID. The initial value of this field is
GINONE. This field is not present if MDVER is less than MDVER2.

MDSEQ (10-digit signed integer)
Sequence number of logical message within group.

MQMD - Message descriptor

122 MQSeries for AS/400, V5.1 APR (ILE RPG)

Sequence numbers start at 1, and increase by 1 for each new logical message in
the group, up to a maximum of 999 999 999. A physical message which is not
in a group has a sequence number of 1.

This field need not be set by the application on the MQPUT or MQGET call if:
v On the MQPUT call, PMLOGO is specified.
v On the MQGET call, MOSEQN is not specified.

These are the recommended ways of using these calls for messages that are not
report messages. However, if the application requires more control, or the call
is MQPUT1, the application must ensure that MDSEQ is set to an appropriate
value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value
detailed in Table 31 on page 153. On output from the MQPUT and MQPUT1
calls, the queue manager sets this field to the value that was sent with the
message.

On input to the MQGET call, the queue manager uses the value detailed in
Table 16 on page 63. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The initial value of this field is one. This field is not present if MDVER is less
than MDVER2.

MDOFF (10-digit signed integer)
Offset of data in physical message from start of logical message.

This is the offset in bytes of the data in the physical message from the start of
the logical message of which the data forms part. This data is called a segment.
The offset is in the range 0 through 999 999 999. A physical message which is
not a segment of a logical message has an offset of zero.

This field need not be set by the application on the MQPUT or MQGET call if:
v On the MQPUT call, PMLOGO is specified.
v On the MQGET call, MOOFFS is not specified.

These are the recommended ways of using these calls for messages that are not
report messages. However, if the application does not comply with these
conditions, or the call is MQPUT1, the application must ensure that MDOFF is set
to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value
detailed in Table 31 on page 153. On output from the MQPUT and MQPUT1
calls, the queue manager sets this field to the value that was sent with the
message.

For a report message reporting on a segment of a logical message, the MDOLN
field (provided it is not OLUNDF) is used to update the offset in the segment
information retained by the queue manager.

On input to the MQGET call, the queue manager uses the value detailed in
Table 16 on page 63. On output from the MQGET call, the queue manager sets
this field to the value for the message retrieved.

The initial value of this field is zero. This field is not present if MDVER is less
than MDVER2.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 123

MDMFL (10-digit signed integer)
Message flags.

These are flags that specify attributes of the message, or control its processing.
The flags are divided into the following categories:
v Segmentation flag
v Status flags

These are described in turn.

Segmentation flag: When a message is too big for a queue, an attempt to put
the message on the queue usually fails. Segmentation is a technique whereby
the queue manager or application splits the message into smaller pieces called
segments, and places each segment on the queue as a separate physical
message. The application which retrieves the message can either retrieve the
segments one by one, or request the queue manager to reassemble the
segments into a single message which is returned by the MQGET call. The
latter is achieved by specifying the GMCMPM option on the MQGET call, and
supplying a buffer that is big enough to accommodate the complete message.
(See “Chapter 8. MQGMO - Get-message options” on page 51 for details of the
GMCMPM option.) Segmentation of a message can occur at the sending queue
manager, at an intermediate queue manager, or at the destination queue
manager.

You can specify one of the following to control the segmentation of a message:

MFSEGI
Segmentation inhibited.

This option prevents the message being broken into segments by the
queue manager. If specified for a message that is already a segment,
this option prevents the segment being broken into smaller segments.

The value of this flag in binary zero. This is the default.

MFSEGA
Segmentation allowed.

This option allows the message to be broken into segments by the
queue manager. If specified for a message that is already a segment,
this option allows the segment to be broken into smaller segments.
MFSEGA can be set without either MFSEG or MFLSEG being set.

When the queue manager segments a message, the queue manager
turns on the MFSEG flag in the copy of the MQMD that is sent with
each segment, but does not alter the settings of these flags in the
MQMD provided by the application on the MQPUT or MQPUT1 call.
For the last segment in the logical message, the queue manager also
turns on the MFLSEG flag in the MQMD that is sent with the segment.

Note: Care is needed when messages are put with MFSEGA but
without PMLOGO. If the message is:
v Not a segment, and
v Not in a group, and
v Not being forwarded,

the application must remember to reset the MDGID field to
GINONE prior to each MQPUT or MQPUT1 call, in order to
cause a unique group identifier to be generated by the queue
manager for each message. If this is not done, unrelated

MQMD - Message descriptor

124 MQSeries for AS/400, V5.1 APR (ILE RPG)

messages could inadvertently end up with the same group
identifier, which might lead to incorrect processing subsequently.
See the descriptions of the MDGID field and the PMLOGO option
for more information about when the MDGID field must be reset.

The queue manager splits messages into segments as necessary in
order to ensure that the segments (plus any header data that may be
required) fit on the queue. However, there is a lower limit for the size
of a segment generated by the queue manager (see below), and only
the last segment created from a message can be smaller than this limit.
The lower limit for the size of an application-generated segment is one
byte. Segments generated by the queue manager may be of unequal
length. The queue-manager processes the message as follows:
v User-defined formats are split on boundaries which are multiples of

16 bytes. This means that the queue manager will not generate
segments that are smaller than 16 bytes (other than the last
segment).

v Built-in formats other than FMSTR are split at points appropriate to
the nature of the data present. However, the queue manager never
splits a message in the middle of an MQ header structure. This
means that a segment containing a single MQ header structure
cannot be split further by the queue manager, and as a result the
minimum possible segment size for that message is greater than 16
bytes.
The second or later segment generated by the queue manager will
begin with one of the following:
– An MQ header structure
– The start of the application message data
– Part-way through the application message data

v FMSTR is split without regard for the nature of the data present
(SBCS, DBCS, or mixed SBCS/DBCS). When the string is DBCS or
mixed SBCS/DBCS, this may result in segments which cannot be
converted from one character set to another (see below). The queue
manager never splits FMSTR messages into segments that are
smaller than 16 bytes (other than the last segment).

v The MDFMT, MDCSI, and MDENC fields in the MQMD of each segment
are set by the queue manager to describe correctly the data present
at the start of the segment; the format name will be either the name
of a built-in format, or the name of a user-defined format.

v The MDREP field in the MQMD of segments with MDOFF greater than
zero are modified as follows:
– For each report type, if the report option is RO*D, but the

segment cannot possibly contain any of the first 100 bytes of user
data (that is, the data following any MQ header structures that
may be present), the report option is changed to RO*.

The queue manager follows the above rules, but otherwise splits
messages as it thinks fit; no assumptions should be made about the
way that the queue manager will choose to split a particular message.

For persistent messages, the queue manager can perform segmentation
only within a unit of work:
v If the MQPUT or MQPUT1 call is operating within a user-defined

unit of work, that unit of work is used. If the call fails partway

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 125

through the segmentation process, the queue manager removes any
segments that were placed on the queue as a result of the failing
call. However, the failure does not prevent the unit of work being
committed successfully.

v If the call is operating outside a user-defined unit of work, and there
is no user-defined unit of work in existence, the queue manager
creates a unit of work just for the duration of the call. If the call is
successful, the queue manager commits the unit of work
automatically (the application does not need to do this). If the call
fails, the queue manager backs out the unit of work.

v If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is unable to
perform segmentation. If the message does not require segmentation,
the call can still succeed. But if the message does require
segmentation, the call fails with reason code RC2255.

For nonpersistent messages, the queue manager does not require a unit
of work to be available in order to perform segmentation.

Special consideration must be given to data conversion of messages
which may be segmented:
v If data conversion is performed only by the receiving application on

the MQGET call, and the application specifies the GMCMPM option,
the data-conversion exit will be passed the complete message for the
exit to convert, and the fact that the message was segmented will
not be apparent to the exit.

v If the receiving application retrieves one segment at a time, the
data-conversion exit will be invoked to convert one segment at a
time. The exit must therefore be capable of converting the data in a
segment independently of the data in any of the other segments.
If the nature of the data in the message is such that arbitrary
segmentation of the data on 16-byte boundaries may result in
segments which cannot be converted by the exit, or the format is
FMSTR and the character set is DBCS or mixed SBCS/DBCS, the
sending application should itself create and put the segments,
specifying MFSEGI to suppress further segmentation. In this way,
the sending application can ensure that each segment contains
sufficient information to allow the data-conversion exit to convert
the segment successfully.

v If sender conversion is specified for a sending message channel
agent (MCA), the MCA converts only messages which are not
segments of logical messages; the MCA never attempts to convert
messages which are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output
flag on the MQGET call. On the latter call, the queue manager also echoes the
value of the flag to the GMSEG field in MQGMO.

The initial value of this flag is MFSEGI.

Status flags: These are flags that indicate whether the physical message
belongs to a message group, is a segment of a logical message, both, or neither.
One or more of the following can be specified on the MQPUT or MQPUT1 call,
or returned by the MQGET call:

MQMD - Message descriptor

126 MQSeries for AS/400, V5.1 APR (ILE RPG)

MFMIG
Message is a member of a group.

MFLMIG
Message is the last logical message in a group.

If this flag is set, the queue manager turns on MFMIG in the copy of
MQMD that is sent with the message, but does not alter the settings of
these flags in the MQMD provided by the application on the MQPUT
or MQPUT1 call.

It is valid for a group to consist of only one logical message. If this is
the case, MFLMIG is set, but the MDSEQ field has the value one.

MFSEG
Message is a segment of a logical message.

When MFSEG is specified without MFLSEG, the length of the
application message data in the segment (excluding the lengths of any
MQ header structures that may be present) must be at least one. If the
length is zero, the MQPUT or MQPUT1 call fails with reason code
RC2253.

MFLSEG
Message is the last segment of a logical message.

If this flag is set, the queue manager turns on MFSEG in the copy of
MQMD that is sent with the message, but does not alter the settings of
these flags in the MQMD provided by the application on the MQPUT
or MQPUT1 call.

It is valid for a logical message to consist of only one segment. If this
is the case, MFLSEG is set, but the MDOFF field has the value zero.

When MFLSEG is specified, it is permissible for the length of the
application message data in the segment (excluding the lengths of any
header structures that may be present) to be zero.

The application must ensure that these flags are set correctly when putting
messages. If PMLOGO is specified, or was specified on the preceding MQPUT
call for the queue handle, the settings of the flags must be consistent with the
group and segment information retained by the queue manager for the queue
handle. The following conditions apply to successive MQPUT calls for the
queue handle when PMLOGO is specified:
v If there is no current group or logical message, all of these flags (and

combinations of them) are valid.
v Once MFMIG has been specified, it must remain on until MFLMIG is

specified. The call fails with reason code RC2241 if this condition is not
satisfied.

v Once MFSEG has been specified, it must remain on until MFLSEG is
specified. The call fails with reason code RC2242 if this condition is not
satisfied.

v Once MFSEG has been specified without MFMIG, MFMIG must remain off
until after MFLSEG has been specified. The call fails with reason code
RC2242 if this condition is not satisfied.

Table 31 on page 153 shows the valid combinations of the flags, and the values
used for various fields.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 127

These flags are input flags on the MQPUT and MQPUT1 calls, and output
flags on the MQGET call. On the latter call, the queue manager also echoes the
values of the flags to the GMGST and GMSST fields in MQGMO.

Default flags: The following can be specified to indicate that the message has
default attributes:

MFNONE
No message flags (default message attributes).

This inhibits segmentation, and indicates that the message is not in a
group and is not a segment of a logical message. MFNONE is defined
to aid program documentation. It is not intended that this flag be used
with any other, but as its value is zero, such use cannot be detected.

The MDMFL field is partitioned into subfields; for details see “Appendix E.
Report options” on page 457.

The initial value of this field is MFNONE. This field is not present if MDVER is
less than MDVER2.

MDOLN (10-digit signed integer)
Length of original message.

This field is of relevance only for report messages; it specifies the length of the
message to which the report relates. If the report message is reporting on a
segment, MDOLN is the length of the segment, and not the length of the logical
message of which the segment forms part, nor the length of the data in the
report message.

MDOLN should be set by the program which generates the report, but if that
program does not set the field, MDOLN has the following special value:

OLUNDF
Original length of message not defined.

This is an input field on the MQPUT and MQPUT1 calls, but the value
provided by the application is used only in particular circumstances:
v If the message being put is a segment but not a report message, the queue

manager ignores the field and uses the length of the application message
data instead.

v If the message being put is a report message reporting on a segment, the
queue manager accepts the value specified. The value must be:
– Greater than zero if the segment is not the last segment
– Not less than zero if the segment is the last segment
– Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code RC2252.
v In all other cases, the queue manager ignores the field and uses the value

OLUNDF instead.

This is an output field on the MQGET call.

The initial value of this field is OLUNDF. This field is not present if MDVER is
less than MDVER2.

MQMD - Message descriptor

128 MQSeries for AS/400, V5.1 APR (ILE RPG)

Initial values and RPG declaration
Table 22. Initial values of fields in MQMD

Field name Name of constant Value of constant

MDSID MDSIDV 'MDbb' (See note 1)

MDVER MDVER1 1

MDREP RONONE 0

MDMT MTDGRM 8

MDEXP EIULIM -1

MDFB FBNONE 0

MDENC ENNAT See note 2

MDCSI CSQM 0

MDFMT FMNONE 'bbbbbbbb'

MDPRI PRQDEF -1

MDPER PEQDEF 2

MDMID MINONE Nulls

MDCID CINONE Nulls

MDBOC None 0

MDRQ None Blanks

MDRM None Blanks

MDUID None Blanks

MDACC ACNONE Nulls

MDAID None Blanks

MDPAT ATNCON 0

MDPAN None Blanks

MDPD None Blanks

MDPT None Blanks

MDAOD None Blanks

MDGID GINONE Nulls

MDSEQ None 1

MDOFF None 0

MDMFL MFNONE 0

MDOLN OLUNDF -1

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

MQMD - Message descriptor

Chapter 10. MQMD - Message descriptor 129

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQMD Structure
D*
D* Structure identifier
D MDSID 1 4
D* Structure version number
D MDVER 5 8I 0
D* Options for report messages
D MDREP 9 12I 0
D* Message type
D MDMT 13 16I 0
D* Message lifetime
D MDEXP 17 20I 0
D* Feedback or reason code
D MDFB 21 24I 0
D* Numeric encoding of message data
D MDENC 25 28I 0
D* Character set identifier of message data
D MDCSI 29 32I 0
D* Format name of message data
D MDFMT 33 40
D* Message priority
D MDPRI 41 44I 0
D* Message persistence
D MDPER 45 48I 0
D* Message identifier
D MDMID 49 72
D* Correlation identifier
D MDCID 73 96
D* Backout counter
D MDBOC 97 100I 0
D* Name of reply queue
D MDRQ 101 148
D* Name of reply queue manager
D MDRM 149 196
D* User identifier
D MDUID 197 208
D* Accounting token
D MDACC 209 240
D* Application data relating to identity
D MDAID 241 272
D* Type of application that put the message
D MDPAT 273 276I 0
D* Name of application that put the message
D MDPAN 277 304
D* Date when message was put
D MDPD 305 312
D* Time when message was put
D MDPT 313 320
D* Application data relating to origin
D MDAOD 321 324
D* Group identifier
D MDGID 325 348
D* Sequence number of logical message within group
D MDSEQ 349 352I 0
D* Offset of data in physical message from start of logical message
D MDOFF 353 356I 0
D* Message flags
D MDMFL 357 360I 0
D* Length of original message
D MDOLN 361 364I 0

MQMD - Message descriptor

130 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 11. MQMDE - Message descriptor extension

The following table summarizes the fields in the structure.

Table 23. Fields in MQMDE

Field Description Page

MESID Structure identifier 133

MEVER Structure version number 133

MELEN Length of MQMDE structure 134

MEENC Numeric encoding of data that follows MQMDE 134

MECSI Character set identifier of data that follows
MQMDE

134

MEFMT Format name of data that follows MQMDE 134

MEFLG General flags 134

MEGID Group identifier 134

MESEQ Sequence number of logical message within group 134

MEOFF Offset of data in physical message from start of
logical message

135

MEMFL Message flags 135

MEOLN Length of original message 135

Overview
The MQMDE structure describes the data that sometimes occurs preceding the
application message data. Normal applications should use a version-2 MQMD, in
which case they will not encounter an MQMDE structure. However, specialized
applications, and applications that continue to use a version-1 MQMD, may
encounter an MQMDE in some situations.

The MQMDE structure contains those MQMD fields that exist in the version-2
MQMD, but not in the version-1 MQMD. It can occur in the following
circumstances:
v Specified on the MQPUT and MQPUT1 calls
v Returned by the MQGET call
v In messages on transmission queues

These are described below.

MQMDE specified on MQPUT and MQPUT1 calls: On the MQPUT and
MQPUT1 calls, if the application provides a version-1 MQMD, the application can
optionally prefix the message data with an MQMDE, setting the MDFMT field in
MQMD to FMMDE to indicate that an MQMDE is present. If the application does
not provide an MQMDE, the queue manager assumes default values for the fields
in the MQMDE. The default values that the queue manager uses are the same as
the initial values for the structure – see Table 25 on page 135.

If the application provides a version-2 MQMD and prefixes the application message
data with an MQMDE, the structures are processed as shown in Table 24 on
page 132.

© Copyright IBM Corp. 1994, 2000 131

There is one special case. If the application uses a version-2 MQMD to put a
message that is a segment (that is, the MFSEG or MFLSEG flag is set), and the
format name in the MQMD is FMDLH, the queue manager generates an MQMDE
structure and inserts it between the MQDLH structure and the data that follows it.
In the MQMD that the queue manager retains with the message, the version-2
fields are set to their default values.

Table 24. Queue-manager action when MQMDE specified on MQPUT or MQPUT1. This
table shows the action taken by the queue manager when the application specifies an
MQMDE structure at the start of the application message data on the MQPUT or MQPUT1
call.

MQMD version Values of
version-2 fields

Values of corresponding fields
in MQMDE

Action taken by queue
manager

1 – Valid MQMDE is honored

1 – Not valid Call fails with an appropriate
reason code

1 – MQMDE is in the wrong
character set or encoding, or is
an unsupported version

MQMDE is treated as message
data

2 Default Valid MQMDE is honored

2 Default Not valid Call fails with an appropriate
reason code

2 Default MQMDE is in the wrong
character set or encoding, or is
an unsupported version

MQMDE is treated as message
data

2 Not default Valid, and same as MQMD MQMDE is honored

2 Not default Valid, but different from MQMD MQMDE is treated as message
data

2 Not default Not valid Call fails with an appropriate
reason code

2 Not default MQMDE is in the wrong
character set or encoding, or is
an unsupported version

MQMDE is treated as message
data

The data in the MQMDE structure must be in the queue manager’s character set
and encoding. The former is given by the CodedCharSetId queue-manager attribute
(see “Chapter 43. Attributes for the queue manager” on page 323), while in most
cases the latter is given by the value of ENNAT. If this condition is not satisfied,
the MQMDE is accepted but not honored, that is, the MQMDE is treated as
message data.

Note: On OS/2 and Windows NT, applications compiled with Micro Focus
COBOL use a value of ENNAT that is different from the queue-manager’s
encoding. Although numeric fields in the MQMD structure on the MQPUT,
MQPUT1, and MQGET calls must be in the Micro Focus COBOL encoding,
numeric fields in the MQMDE structure must be in the queue-manager’s
encoding. This latter is given by ENNAT for the C programming language,
and has the value 546.

Several of the fields that exist in the version-2 MQMD but not the version-1
MQMD are input/output fields on MQPUT and MQPUT1. However, the queue
manager does not return any values in the equivalent fields in the MQMDE on
output from the MQPUT and MQPUT1 calls; if the application requires those
output values, it must use a version-2 MQMD.

MQMDE - Message descriptor extension

132 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQMDE returned by MQGET call: On the MQGET call, if the application
provides a version-1 MQMD, the queue manager prefixes the message returned
with an MQMDE, but only if one or more of the fields in the MQMDE has a
nondefault value. The queue manager sets the MDFMT field in MQMD to the value
FMMDE to indicate that an MQMDE is present.

If the application provides an MQMDE at the start of the BUFFER parameter, the
MQMDE is ignored. On return from the MQGET call, it is replaced by the
MQMDE for the message (if one is needed), or overwritten by the application
message data (if the MQMDE is not needed).

If an MQMDE is returned by the MQGET call, the data in the MQMDE is usually
in the queue manager’s character set and encoding. However the MQMDE may be
in some other character set and encoding if:
v The MQMDE was treated as data on the MQPUT or MQPUT1 call (see Table 24

on page 132 for the circumstances that can cause this).
v The message was received from a remote queue manager connected by a TCP

connection, and the receiving message channel agent (MCA) was not set up
correctly (see the MQSeries Intercommunication manual for further information).

Note: On OS/2 and Windows NT, applications compiled with Micro Focus
COBOL use a value of ENNAT that is different from the queue-manager’s
encoding (see above).

MQMDE in messages on transmission queues: Messages on transmission queues
are prefixed with the MQXQH structure, which contains within it a version-1
MQMD. An MQMDE may also be present, positioned between the MQXQH
structure and application message data, but it will usually be present only if one or
more of the fields in the MQMDE has a nondefault value.

Other MQ header structures can also occur between the MQXQH structure and the
application message data. For example, when the dead-letter header MQDLH is
present, and the message is not a segment, the order is:
v MQXQH (containing a version-1 MQMD)
v MQMDE
v MQDLH
v application message data

Fields
MESID (4-byte character string)

Structure identifier.

The value must be:

MESIDV
Identifier for message descriptor extension structure.

The initial value of this field is MESIDV.

MEVER (10-digit signed integer)
Structure version number.

The value must be:

MEVER2
Version-2 message descriptor extension structure.

MQMDE - Message descriptor extension

Chapter 11. MQMDE - Message descriptor extension 133

The following constant specifies the version number of the current version:

MEVERC
Current version of message descriptor extension structure.

The initial value of this field is MEVER2.

MELEN (10-digit signed integer)
Length of MQMDE structure.

The following value is defined:

MELEN2
Length of version-2 message descriptor extension structure.

The initial value of this field is MELEN2.

MEENC (10-digit signed integer)
Numeric encoding of data that follows MQMDE.

The queue manager does not check the value of this field. See the MDENC field
described in “Chapter 10. MQMD - Message descriptor” on page 83 for more
information about data encodings.

The initial value of this field is ENNAT.

MECSI (10-digit signed integer)
Character-set identifier of data that follows MQMDE.

The queue manager does not check the value of this field.

The initial value of this field is 0.

MEFMT (8-byte character string)
Format name of data that follows MQMDE.

The queue manager does not check the value of this field. See the MDFMT field
described in “Chapter 10. MQMD - Message descriptor” on page 83 for more
information about format names.

The initial value of this field is FMNONE.

MEFLG (10-digit signed integer)
General flags.

The following flag can be specified:

MEFNON
No flags.

The initial value of this field is MEFNON.

MEGID (24-byte bit string)
Group identifier.

See the MDGID field described in “Chapter 10. MQMD - Message descriptor” on
page 83. The initial value of this field is GINONE.

MESEQ (10-digit signed integer)
Sequence number of logical message within group.

MQMDE - Message descriptor extension

134 MQSeries for AS/400, V5.1 APR (ILE RPG)

See the MDSEQ field described in “Chapter 10. MQMD - Message descriptor” on
page 83 . The initial value of this field is 1.

MEOFF (10-digit signed integer)
Offset of data in physical message from start of logical message.

See the MDOFF field described in “Chapter 10. MQMD - Message descriptor” on
page 83. The initial value of this field is 0.

MEMFL (10-digit signed integer)
Message flags.

See the MDMFL field described in “Chapter 10. MQMD - Message descriptor” on
page 83. The initial value of this field is MFNONE.

MEOLN (10-digit signed integer)
Length of original message.

See the MDOLN field described in “Chapter 10. MQMD - Message descriptor” on
page 83. The initial value of this field is OLUNDF.

Initial values and RPG declaration
Table 25. Initial values of fields in MQMDE

Field name Name of constant Value of constant

MESID MESIDV 'MDEb' (See note 1)

MEVER MEVER2 2

MELEN MELEN2 72

MEENC ENNAT See note 2

MECSI None 0

MEFMT FMNONE 'bbbbbbbb'

MEFLG MEFNON 0

MEGID GINONE Nulls

MESEQ None 1

MEOFF None 0

MEMFL MFNONE 0

MEOLN OLUNDF -1

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

MQMDE - Message descriptor extension

Chapter 11. MQMDE - Message descriptor extension 135

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQMDE Structure
D*
D* Structure identifier
D MESID 1 4
D* Structure version number
D MEVER 5 8I 0
D* Length of MQMDE structure
D MELEN 9 12I 0
D* Numeric encoding of data that follows MQMDE
D MEENC 13 16I 0
D* Character-set identifier of data that follows MQMDE
D MECSI 17 20I 0
D* Format name of data that follows MQMDE
D MEFMT 21 28
D* General flags
D MEFLG 29 32I 0
D* Group identifier
D MEGID 33 56
D* Sequence number of logical message within group
D MESEQ 57 60I 0
D* Offset of data in physical message from start of logical message
D MEOFF 61 64I 0
D* Message flags
D MEMFL 65 68I 0
D* Length of original message
D MEOLN 69 72I 0

RPG declaration

136 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 12. MQOD - Object descriptor

The following table summarizes the fields in the structure.

Table 26. Fields in MQOD

Field Description Page

ODSID Structure identifier 138

ODVER Structure version number 138

ODOT Object type 138

ODON Object name 138

ODMN Object queue manager name 139

ODDN Dynamic queue name 140

ODAU Alternate user identifier 140

Note: The remaining fields are not present if ODVER is less than ODVER2.

ODREC Number of object records present 141

ODKDC Number of local queues opened successfully 141

ODUDC Number of remote queues opened successfully 141

ODIDC Number of queues that failed to open 141

ODORO Offset of first object record from start of MQOD 142

ODRRO Offset of first response record from start of
MQOD

142

ODORP Address of first object record 143

ODRRP Address of first response record 143

Note: The remaining fields are not present if ODVER is less than ODVER3.

ODASI Alternate security identifier 143

ODRQN Resolved queue name 144

ODRMN Resolved queue manager name 144

Overview
The MQOD structure is used to specify an object by name. The following types of
object are valid:
v Queue or distribution list
v Process definition
v Queue manager

The current version of MQOD is given by ODVERC. Fields that exist only in the
more-recent versions of the structure are identified as such in the descriptions that
follow. The declaration of MQOD provided in the COPY file contains the
additional fields, but the initial value provided for the ODVER field is ODVER1. To
use the additional fields, the application must set the version number to ODVERC.
Applications which are intended to be portable between several environments
should use a more-recent version MQOD only if all of those environments support
that version.

To open a distribution list, ODVER must be ODVER2 or greater.

© Copyright IBM Corp. 1994, 2000 137

|

|||

|||

|||

This structure is an input/output parameter for the MQOPEN and MQPUT1 calls.

Fields
ODSID (4-byte character string)

Structure identifier.

The value must be:

ODSIDV
Identifier for object descriptor structure.

This is always an input field. The initial value of this field is ODSIDV.

ODVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

ODVER1
Version-1 object descriptor structure.

ODVER2
Version-2 object descriptor structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

ODVER3
Version-3 object descriptor structure.

Fields that exist only in the version-3 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

ODVERC
Current version of object descriptor structure.

This is always an input field. The initial value of this field is ODVER1.

ODOT (10-digit signed integer)
Object type.

Type of object being named in ODON. Possible values are:

OTQ Queue.

OTNLST
Namelist.

OTPRO
Process definition.

OTQM
Queue manager.

This is always an input field. The initial value of this field is OTQ.

ODON (48-byte character string)
Object name.

MQOD - Object descriptor

138 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|

This is the local name of the object as defined on the queue manager identified
by ODMN. The name can contain the following characters:
v Uppercase alphabetic characters (A through Z)
v Lowercase alphabetic characters (a through z)
v Numeric digits (0 through 9)
v Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but may contain
trailing blanks. A null character can be used to indicate the end of significant
data in the name; the null and any characters following it are treated as blanks.

The following restrictions apply in the environments indicated:
v On systems that use EBCDIC Katakana, lowercase characters cannot be used.
v On OS/400, names containing lowercase characters, forward slash, or

percent, must be enclosed in quotation marks when specified on commands.
These quotation marks must not be specified in the QMNAME parameter.

If ODOT is OTQM, special rules apply; in this case the name must be entirely
blank up to the first null character or the end of the field.

If ODON is the name of a model queue, the queue manager creates a dynamic
queue with the attributes of the model queue, and returns in the ODON field the
name of the queue created. A model queue can be specified only for the
MQOPEN call.

If a distribution list is being opened (that is, ODREC is present and greater than
zero), ODON must be blank or the null string. If this condition is not satisfied,
the call fails with reason code RC2152.

This is an input/output field for the MQOPEN call when ODON is the name of a
model queue, and an input-only field in all other cases. The length of this field
is given by LNQN. The initial value of this field is 48 blank characters.

ODMN (48-byte character string)
Object queue manager name.

This is the name of the queue manager on which the ODON object is defined.
The characters that are valid in the name are the same as those for ODON (see
above).

A name that is entirely blank up to the first null character or the end of the
field denotes the queue manager to which the application is connected.

If ODOT is OTNLST, OTPRO, or OTQM, the name of the local queue manager
must either be specified explicitly, or specified as blank.

If ODON is the name of a model queue, the queue manager creates a dynamic
queue with the attributes of the model queue, and returns in the ODMN field the
name of the queue manager on which the queue is created; this is the name of
the local queue manager. A model queue can be specified only for the
MQOPEN call.

If ODON is the name of a cluster queue, and ODMN is blank, the actual destination
of messages sent using the queue handle returned by the MQOPEN call is
chosen by the queue manager (or by a cluster workload exit if there is one):

MQOD - Object descriptor

Chapter 12. MQOD - Object descriptor 139

|

|
|
|

v If OOBNDO is specified, the queue manager selects a particular instance of
the cluster queue during the processing of the MQOPEN call, and all
messages put using this queue handle are sent to that instance.

v If OOBNDN is specified, the queue manager may choose a different instance
of the destination queue (residing on a different queue manager in the
cluster) on each successive MQPUT call that uses this queue handle.

If the application needs to send a message to a specific instance of a cluster
queue (that is, a queue instance that resides on a particular queue manager),
the application should specify the name of that queue manager in the ODMN
field. This forces the local queue manager to send the message to the specified
destination queue manager.

If a distribution list is being opened (that is, ODREC is greater than zero), ODMN
must be blank or the null string. If this condition is not satisfied, the call fails
with reason code RC2153.

This is an input/output field for the MQOPEN call when ODON is the name of a
model queue, and an input-only field in all other cases. The length of this field
is given by LNQMN. The initial value of this field is 48 blank characters.

ODDN (48-byte character string)
Dynamic queue name.

This is the name of a dynamic queue that is to be created by the MQOPEN
call. This is of relevance only when ODON specifies the name of a model queue;
in all other cases ODDN is ignored.

The characters that are valid in the name are the same as those for ODON (see
above), except that an asterisk is also valid (see below). A name that is
completely blank (or one in which only blanks appear before the first null
character) is not valid if ODON is the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue manager
replaces the asterisk with a string of characters that guarantees that the name
generated for the queue is unique at the local queue manager. To allow a
sufficient number of characters for this, the asterisk is valid only in positions 1
through 33. There must be no characters other than blanks or a null character
following the asterisk.

It is valid for the asterisk to appear in the first character position, in which
case the name consists solely of the characters generated by the queue
manager.

This is an input field. The length of this field is given by LNQN. The initial
value of this field is 'AMQ.*', padded with blanks.

ODAU (12-byte character string)
Alternate user identifier.

If OOALTU is specified for the MQOPEN call, or PMALTU for the MQPUT1
call, this field contains an alternate user identifier that is to be used to check
the authorization for the open, in place of the user identifier that the
application is currently running under. Some checks, however, are still carried
out with the current user identifier (for example, context checks).

MQOD - Object descriptor

140 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|

|
|
|

|
|
|
|
|

If OOALTU or PMALTU is specified and this field is entirely blank up to the
first null character or the end of the field, the open can succeed only if no user
authorization is needed to open this object with the options specified.

If neither OOALTU nor PMALTU is specified, this field is ignored.

This is an input field. The length of this field is given by LNUID. The initial
value of this field is 12 blank characters.

The remaining fields are not present if ODVER is less than ODVER2.

ODREC (10-digit signed integer)
Number of object records present.

This is the number of MQOR object records that have been provided by the
application. If this number is greater than zero, it indicates that a distribution
list is being opened, with ODREC being the number of destination queues in the
list. It is valid for a distribution list to contain only one destination.

The value of ODREC must not be less than zero, and if it is greater than zero
ODOT must be OTQ; the call fails with reason code RC2154 if these conditions
are not satisfied.

This is an input field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER2.

ODKDC (10-digit signed integer)
Number of local queues opened successfully.

This is the number of queues in the distribution list that resolve to local
queues and that were opened successfully. The count does not include queues
that resolve to remote queues (even though a local transmission queue is used
initially to store the message). If present, this field is also set when opening a
single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER2.

ODUDC (10-digit signed integer)
Number of remote queues opened successfully

This is the number of queues in the distribution list that resolve to remote
queues and that were opened successfully. If present, this field is also set when
opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER2.

ODIDC (10-digit signed integer)
Number of queues that failed to open.

This is the number of queues in the distribution list that failed to open
successfully. If present, this field is also set when opening a single queue which
is not in a distribution list.

Note: If present, this field is set only if the CMPCOD parameter on the MQOPEN
or MQPUT1 call is CCOK or CCWARN; it is not set if the CMPCOD
parameter is CCFAIL.

MQOD - Object descriptor

Chapter 12. MQOD - Object descriptor 141

This is an output field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER2.

ODORO (10-digit signed integer)
Offset of first object record from start of MQOD.

This is the offset in bytes of the first MQOR object record from the start of the
MQOD structure. The offset can be positive or negative. ODORO is used only
when a distribution list is being opened. The field is ignored if ODREC is zero.

When a distribution list is being opened, an array of one or more MQOR object
records must be provided in order to specify the names of the destination
queues in the distribution list. This can be done in one of two ways:
v By using the offset field ODORO

In this case, the application should declare its own structure containing an
MQOD followed by the array of MQOR records (with as many array
elements as are needed), and set ODORO to the offset of the first element in
the array from the start of the MQOD. Care must be taken to ensure that
this offset is correct.

v By using the pointer field ODORP

In this case, the application can declare the array of MQOR structures
separately from the MQOD structure, and set ODORP to the address of the
array.

Whichever technique is chosen, one of ODORO and ODORP must be used; the call
fails with reason code RC2155 if both are zero, or both are nonzero.

This is an input field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER2.

ODRRO (10-digit signed integer)
Offset of first response record from start of MQOD.

This is the offset in bytes of the first MQRR response record from the start of
the MQOD structure. The offset can be positive or negative. ODRRO is used only
when a distribution list is being opened. The field is ignored if ODREC is zero.

When a distribution list is being opened, an array of one or more MQRR
response records can be provided in order to identify the queues that failed to
open (RRCC field in MQRR), and the reason for each failure (RRREA field in
MQRR). The data is returned in the array of response records in the same
order as the queue names occur in the array of object records. The queue
manager sets the response records only when the outcome of the call is mixed
(that is, some queues were opened successfully while others failed, or all failed
but for differing reasons); reason code RC2136 from the call indicates this case.
If the same reason code applies to all queues, that reason is returned in the
REASON parameter of the MQOPEN or MQPUT1 call, and the response records
are not set. Response records are optional, but if they are supplied there must
be ODREC of them.

The response records can be provided in the same way as the object records,
either by specifying an offset in ODRRO, or by specifying an address in ODRRP;
see the description of ODORO above for details of how to do this. However, no
more than one of ODRRO and ODRRP can be used; the call fails with reason code
RC2156 if both are nonzero.

MQOD - Object descriptor

142 MQSeries for AS/400, V5.1 APR (ILE RPG)

For the MQPUT1 call, these response records are used to return information
about errors that occur when the message is sent to the queues in the
distribution list, as well as errors that occur when the queues are opened. The
completion code and reason code from the put operation for a queue replace
those from the open operation for that queue only if the completion code from
the latter was CCOK or CCWARN.

This is an input field. The initial value of this field is 0. This field is not
present if ODVER is less than ODVER2.

ODORP (pointer)
Address of first object record.

This is the address of the first MQOR object record. ODORP is used only when a
distribution list is being opened. The field is ignored if ODREC is zero.

Either ODORP or ODORO can be used to specify the object records, but not both;
see the description of the ODORO field above for details. If ODORP is not used, it
must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This
field is not present if ODVER is less than ODVER2.

ODRRP (pointer)
Address of first response record.

This is the address of the first MQRR response record. ODRRP is used only when
a distribution list is being opened. The field is ignored if ODREC is zero.

Either ODRRP or ODRRO can be used to specify the response records, but not both;
see the description of the ODRRO field above for details. If ODRRP is not used, it
must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This
field is not present if ODVER is less than ODVER2.

The remaining fields are not present if ODVER is less than ODVER3.

ODASI (40-byte bit string)
Alternate security identifier.

This is a security identifier that is passed with the ODAU to the authorization
service to allow appropriate authorization checks to be performed. ODASI is
used only if:
v OOALTU is specified on the MQOPEN call, or
v PMALTU is specified on the MQPUT1 call,

and the ODAU field is not entirely blank up to the first null character or the end
of the field.

The ODASI field has the following structure:
v The first byte is a binary integer containing the length of the significant data

that follows; the length excludes the length byte itself. If no security
identifier is present, the length is zero.

v The second byte indicates the type of security identifier that is present; the
following values are possible:

MQOD - Object descriptor

Chapter 12. MQOD - Object descriptor 143

|

SITWNT
Windows NT security identifier.

SITNON
No security identifier.

v The third and subsequent bytes up to the length defined by the first byte
contain the security identifier itself.

v Remaining bytes in the field are set to binary zero.

The following special value may be used:

SINONE
No security identifier specified.

The value is binary zero for the length of the field.

This is an input field. The length of this field is given by LNSCID. The initial
value of this field is SINONE. This field is not present if ODVER is less than
ODVER3.

ODRQN (48-byte character string)
Resolved queue name.

This is the name of the final destination queue, as known to the local queue
manager. It is set to a nonblank value by the queue manager only for queues
that are opened for browse, input, or output (or any combination).

ODRQN is set to blanks if the object opened is any of the following:
v A distribution list
v Not opened for browse, input, or output
v Not a queue

This is an output field. The length of this field is given by LNQN. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages. This field is not present if ODVER is less than
ODVER3.

ODRMN (48-byte character string)
Resolved queue manager name.

This is the name of the final destination queue manager, as known to the local
queue manager. It is set to a nonblank value by the queue manager only for
queues that are opened for browse, input, or output (or any combination).

ODRMN is set to blanks if the object opened is any of the following:
v A cluster queue with OOBNDN specified (or with OOBNDQ in effect when

the DefBind queue attribute has the value BNDNOT)
v A distribution list
v Not opened for browse, input, or output
v Not a queue

This is an output field. The length of this field is given by LNQN. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages. This field is not present if ODVER is less than
ODVER3.

MQOD - Object descriptor

144 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

Initial values and RPG declaration
Table 27. Initial values of fields in MQOD

Field name Name of constant Value of constant

ODSID ODSIDV 'ODbb' (See note 1)

ODVER ODVER1 1

ODOT OTQ 1

ODON None Blanks

ODMN None Blanks

ODDN None 'AMQ.*'

ODAU None Blanks

ODREC None 0

ODKDC None 0

ODUDC None 0

ODIDC None 0

ODORO None 0

ODRRO None 0

ODORP None Null pointer or null
bytes

ODRRP None Null pointer or null
bytes

ODASI SINONE Nulls

ODRQN None Blanks

ODRMN None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

MQOD - Object descriptor

Chapter 12. MQOD - Object descriptor 145

|||

|||

|||

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQOD Structure
D*
D* Structure identifier
D ODSID 1 4
D* Structure version number
D ODVER 5 8I 0
D* Object type
D ODOT 9 12I 0
D* Object name
D ODON 13 60
D* Object queue manager name
D ODMN 61 108
D* Dynamic queue name
D ODDN 109 156
D* Alternate user identifier
D ODAU 157 168
D* Number of object records present
D ODREC 169 172I 0
D* Number of local queues opened successfully
D ODKDC 173 176I 0
D* Number of remote queues opened successfully
D ODUDC 177 180I 0
D* Number of queues that failed to open
D ODIDC 181 184I 0
D* Offset of first object record from start of MQOD
D ODORO 185 188I 0
D* Offset of first response record from start of MQOD
D ODRRO 189 192I 0
D* Address of first object record
D ODORP 193 208*
D* Address of first response record
D ODRRP 209 224*
D* Alternate security identifier
D ODASI 225 264
D* Resolved queue name
D ODRQN 265 312
D* Resolved queue manager name
D ODRMN 313 360

MQOD - Object descriptor

146 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|
|

Chapter 13. MQOR - Object record

The following table summarizes the fields in the structure.

Table 28. Fields in MQOR

Field Description Page

ORON Object name 147

ORMN Object queue manager name 147

Overview
The MQOR structure is used to specify the queue name and queue-manager name
of a single destination queue. By providing an array of these structures on the
MQOPEN call, it is possible to open a list of queues; this list is called a distribution
list. Each message put using the queue handle returned by that MQOPEN call is
placed on each of the queues in the list, provided that the queue was opened
successfully.

The character data in the MQOR structure must be in the queue-manager’s
character set. MQOR is an input structure for the MQOPEN and MQPUT1 calls.

Fields
ORON (48-byte character string)

Object name.

This is the same as the ODON field in the MQOD structure (see MQOD for
details), except that:
v It must be the name of a queue.
v It must not be the name of a model queue.

This is always an input field. The initial value of this field is 48 blank
characters.

ORMN (48-byte character string)
Object queue manager name.

This is the same as the ODMN field in the MQOD structure (see MQOD for
details).

This is always an input field. The initial value of this field is 48 blank
characters.

© Copyright IBM Corp. 1994, 2000 147

Initial values and RPG declaration
Table 29. Initial values of fields in MQOR

Field name Name of constant Value of constant

ORON None Blanks

ORMN None Blanks

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQOR Structure
D*
D* Object name
D ORON 1 48
D* Object queue manager name
D ORMN 49 96

RPG declaration

148 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 14. MQPMO - Put message options

The following table summarizes the fields in the structure.

Table 30. Fields in MQPMO

Field Description Page

PMSID Structure identifier 150

PMVER Structure version number 150

PMOPT Options that control the action of MQPUT and
MQPUT1

150

PMCT Object handle of input queue 158

PMKDC Number of messages sent successfully to local
queues

158

PMUDC Number of messages sent successfully to remote
queues

159

PMIDC Number of messages that could not be sent 159

PMRQN Resolved name of destination queue 159

PMRMN Resolved name of destination queue manager 159

Note: The remaining fields are not present if PMVER is less than PMVER2.

PMREC Number of put message records or response
records present

160

PMPRF Flags indicating which MQPMR fields are present 160

PMPRO Offset of first put-message record from start of
MQPMO

161

PMRRO Offset of first response record from start of
MQPMO

162

PMPRP Address of first put message record 163

PMRRP Address of first response record 163

Overview
The current version of MQPMO is given by PMVERC. Fields that exist only in the
more-recent versions of the structure are identified as such in the descriptions that
follow. The declaration of MQPMO provided in the COPY file contains the
additional fields, but the initial value provided for the PMVER field is PMVER1. To
use the additional fields, the application must set the version number to PMVERC.
Applications which are intended to be portable between several environments
should use a more-recent version MQPMO only if all of those environments
support that version.

The MQPMO structure is an input/output parameter for the MQPUT and
MQPUT1 calls.

© Copyright IBM Corp. 1994, 2000 149

Fields
PMSID (4-byte character string)

Structure identifier.

The value must be:

PMSIDV
Identifier for put-message options structure.

This is always an input field. The initial value of this field is PMSIDV.

PMVER (10-digit signed integer)
Structure version number.

The value must be one of the following:

PMVER1
Version-1 put-message options structure.

PMVER2
Version-2 put-message options structure.

Fields that exist only in the version-2 structure are identified as such in
the descriptions that follow.

The following constant specifies the version number of the current version:

PMVERC
Current version of put-message options structure.

This is always an input field. The initial value of this field is PMVER1.

PMOPT (10-digit signed integer)
Options that control the action of MQPUT and MQPUT1.

Any or none of the following can be specified. If more than one is required the
values can be added together (do not add the same constant more than once).
Combinations that are not valid are noted; any other combinations are valid.

PMSYP
Put message with syncpoint control.

The request is to operate within the normal unit-of-work protocols. The
message is not visible outside the unit of work until the unit of work is
committed. If the unit of work is backed out, the message is deleted.

If neither this option nor PMNSYP is specified, the put request is not
within a unit of work.

PMSYP must not be specified with PMNSYP.

PMNSYP
Put message without syncpoint control.

The request is to operate outside the normal unit-of-work protocols.
The message is available immediately, and it cannot be deleted by
backing out a unit of work.

If neither this option nor PMSYP is specified, the put request is not
within a unit of work.

PMNSYP must not be specified with PMSYP.

MQPMO - Put-message options

150 MQSeries for AS/400, V5.1 APR (ILE RPG)

PMNMID
Generate a new message identifier.

This option causes the queue manager to replace the contents of the
MDMID field in MQMD with a new message identifier. This message
identifier is sent with the message, and returned to the application on
output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a
distribution list; see the description of the PRMID field in the MQPMR
structure for details.

Using this option relieves the application of the need to reset the MDMID
field to MINONE prior to each MQPUT or MQPUT1 call.

PMNCID
Generate a new correlation identifier.

This option causes the queue manager to replace the contents of the
MDCID field in MQMD with a new correlation identifier. This correlation
identifier is sent with the message, and returned to the application on
output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a
distribution list; see the description of the PRCID field in the MQPMR
structure for details.

PMNCID is useful in situations where the application requires a
unique correlation identifier.

Group and segment option: The option described below relates to messages in
groups and segments of logical messages. The following definitions may be of
help in understanding this option:

Physical message
This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).
Generally, physical messages are distinguished by differing values for
the message identifier (MDMID field in MQMD), although this is not
enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a physical
message. But where logical messages are extremely large, system
constraints may make it advisable or necessary to split a logical
message into two or more physical messages, called segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier (MDGID
field in MQMD), and the same message sequence number (MDSEQ field
in MQMD). The segments are distinguished by differing values for the
segment offset (MDOFF field in MQMD), which gives the offset of the
data in the physical message from the start of the data in the logical
message. Because each segment is a physical message, the segments in
a logical message usually have differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also has a

MQPMO - Put-message options

Chapter 14. MQPMO - Put message options 151

nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message does
not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a null
group identifier (GINONE), unless the logical message belongs to a
message group.

Message group
This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number of
logical messages in the group. If one or more of the logical messages is
segmented, there will be more than n physical messages in the group.

PMLOGO
Messages in groups and segments of logical messages will be put in
logical order.

This option tells the queue manager how the application will put
messages in groups and segments of logical messages. It can be
specified only on the MQPUT call; it is not valid on the MQPUT1 call.

If PMLOGO is specified, it indicates that the application will use
successive MQPUT calls to:
v Put the segments in each logical message in the order of increasing

segment offset, starting from 0, with no gaps.
v Put all of the segments in one logical message before putting the

segments in the next logical message.
v Put the logical messages in each message group in the order of

increasing message sequence number, starting from 1, with no gaps.
v Put all of the logical messages in one message group before putting

logical messages in the next message group.

The above order is called “logical order”.

Because the application has told the queue manager how it will put
messages in groups and segments of logical messages, the application
does not have to maintain and update the group and segment
information on each MQPUT call, as the queue manager does this.
Specifically, it means that the application does not need to set the
MDGID, MDSEQ, and MDOFF fields in MQMD, as the queue manager sets
these to the appropriate values. The application need set only the
MDMFL field in MQMD, to indicate when messages belong to groups or
are segments of logical messages, and to indicate the last message in a
group or last segment of a logical message.

Once a message group or logical message has been started, subsequent
MQPUT calls must specify the appropriate MF* flags in MDMFL in
MQMD. If the application tries to put a message not in a group when
there is an unterminated message group, or put a message which is not
a segment when there is an unterminated logical message, the call fails
with reason code RC2241 or RC2242, as appropriate. However, the
queue manager retains the information about the current message
group and/or current logical message, and the application can
terminate them by sending a message (possibly with no application

MQPMO - Put-message options

152 MQSeries for AS/400, V5.1 APR (ILE RPG)

message data) specifying MFLMIG and/or MFLSEG as appropriate,
before reissuing the MQPUT call to put the message that is not in the
group or not a segment.

Table 31 shows the combinations of options and flags that are valid,
and the values of the MDGID, MDSEQ, and MDOFF fields that the queue
manager uses in each case. Combinations of options and flags that are
not shown in the table are not valid. The columns in the table have the
following meanings:

LOG ORD
A “U” means that the row applies only when the PMLOGO
option is specified.

MIG A “U” means that the row applies only when the MFMIG or
MFLMIG option is specified.

SEG A “U” means that the row applies only when the MFSEG or
MFLSEG option is specified.

A “(U)” means that the row applies whether or not the
MFSEG or MFLSEG option is specified.

SEG OK
A “U” means that the row applies only when the MFSEGA
option is specified.

A “(U)” means that the row applies whether or not the
MFSEGA option is specified.

Cur grp
A “U” means that the row applies only when a current
message group exists prior to the call.

A “(U)” means that the row applies whether or not a current
message group exists prior to the call.

Cur log msg
A “U” means that the row applies only when a current logical
message exists prior to the call.

A “(U)” means that the row applies whether or not a current
logical message exists prior to the call.

Other columns
These show the values that the queue manager uses.
“Previous” denotes the value used for the field in the previous
message for the queue handle.

Table 31. MQPUT options relating to messages in groups and segments of logical messages
Options you specify Group and log-msg

status prior to call
Values the queue manager uses

LOG
ORD

MIG SEG SEG OK Cur grp Cur log
msg

MDGID MDSEQ MDOFF

U GINONE 1 0

U U New group id 1 0

U U (U) New group id 1 0

U U (U) U Previous group id 1 Previous offset +
previous segment length

U U (U) (U) New group id 1 0

U U (U) (U) U Previous group id Previous sequence
number + 1

0

MQPMO - Put-message options

Chapter 14. MQPMO - Put message options 153

|
|

|
|
|

||
|

||
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

Table 31. MQPUT options relating to messages in groups and segments of logical messages (continued)
Options you specify Group and log-msg

status prior to call
Values the queue manager uses

U U U (U) U U Previous group id Previous sequence
number

Previous offset +
previous segment length

(U) (U) GINONE 1 0

U (U) (U) New group id if
GINONE, else value in

field

1 0

U (U) (U) (U) New group id if
GINONE, else value in

field

1 Value in field

U (U) (U) (U) New group id if
GINONE, else value in

field

Value in field 0

U U (U) (U) (U) New group id if
GINONE, else value in

field

Value in field Value in field

Notes:

v PMLOGO is not valid on the MQPUT1 call.

v For the MDMID field, the queue manager generates a new message identifier if PMNMID or MINONE is specified, and uses the value in the field
otherwise.

v For the MDCID field, the queue manager generates a new correlation identifier if PMNCID is specified, and uses the value in the field otherwise.

When PMLOGO is specified, the queue manager requires that all
messages in a group and segments in a logical message be put with
the same value in the MDPER field in MQMD, that is, all must be
persistent, or all must be nonpersistent. If this condition is not
satisfied, the MQPUT call fails with reason code RC2185.

The PMLOGO option affects units of work as follows:
v If the first physical message in a group or logical message is put

within a unit of work, all of the other physical messages in the
group or logical message must be put within a unit of work, if the
same queue handle is used. However, they need not be put within
the same unit of work. This allows a message group or logical
message consisting of many physical messages to be split across two
or more consecutive units of work for the queue handle.

v If the first physical message in a group or logical message is not put
within a unit of work, none of the other physical messages in the
group or logical message can be put within a unit of work, if the
same queue handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason
code RC2245.

When PMLOGO is specified, the MQMD supplied on the MQPUT call
must not be less than MDVER2. If this condition is not satisfied, the
call fails with reason code RC2257.

If PMLOGO is not specified, messages in groups and segments of
logical messages can be put in any order, and it is not necessary to put
complete message groups or complete logical messages. It is the
application’s responsibility to ensure that the MDGID, MDSEQ, MDOFF, and
MDMFL fields have appropriate values.

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.

MQPMO - Put-message options

154 MQSeries for AS/400, V5.1 APR (ILE RPG)

When the system restarts, the application can set the MDGID, MDSEQ,
MDOFF, MDMFL, and MDPER fields to the appropriate values, and then issue
the MQPUT call with PMSYP or PMNSYP set as desired, but without
specifying PMLOGO. If this call is successful, the queue manager
retains the group and segment information, and subsequent MQPUT
calls using that queue handle can specify PMLOGO as normal.

The group and segment information that the queue manager retains for
the MQPUT call is separate from the group and segment information
that it retains for the MQGET call.

For any given queue handle, the application is free to mix MQPUT
calls that specify PMLOGO with MQPUT calls that do not, but the
following points should be noted:
v Each successful MQPUT call that does not specify PMLOGO causes

the queue manager to set the group and segment information for the
queue handle to the values specified by the application; this replaces
the existing group and segment information retained by the queue
manager for the queue handle.

v If PMLOGO is not specified, the call does not fail if there is a current
message group or logical message, but the message or segment put
is not the next one in the group or logical message. The call may
however succeed with an CCWARN completion code. Table 32
shows the various cases that can arise. In these cases, if the
completion code is not CCOK, the reason code is one of the
following (as appropriate):

RC2241
RC2242
RC2185
RC2245

Note: The queue manager does not check the group and segment
information for the MQPUT1 call.

Table 32. Outcome when MQPUT or MQCLOSE call not consistent with group and segment information

Current call Previous call

MQPUT with PMLOGO MQPUT without PMLOGO

MQPUT with PMLOGO CCFAIL CCFAIL

MQPUT without PMLOGO CCWARN CCOK

MQCLOSE with an unterminated group
or logical message

CCWARN CCOK

Applications that simply want to put messages and segments in logical
order are recommended to specify PMLOGO, as this is the simplest
option to use. This option relieves the application of the need to
manage the group and segment information, because the queue
manager manages that information. However, specialized applications
may need more control than provided by the PMLOGO option, and
this can be achieved by not specifying that option. If this is done, the
application must ensure that the MDGID, MDSEQ, MDOFF, and MDMFL fields
in MQMD are set correctly, prior to each MQPUT or MQPUT1 call.

MQPMO - Put-message options

Chapter 14. MQPMO - Put message options 155

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify PMLOGO.
There are two reasons for this:
v If the messages are retrieved and put in order, specifying PMLOGO

will cause a new group identifier to be assigned to the messages,
and this may make it difficult or impossible for the originator of the
messages to correlate any reply or report messages that result from
the message group.

v In a complex network with multiple paths between sending and
receiving queue managers, the physical messages may arrive out of
order. By specifying neither PMLOGO, nor the corresponding
GMLOGO on the MQGET call, the forwarding application can
retrieve and forward each physical message as soon as it arrives,
without having to wait for the next one in logical order to arrive.

Applications that generate report messages for messages in groups or
segments of logical messages should also not specify PMLOGO when
putting the report message.

PMLOGO can be specified with any of the other PM* options.

PMNOC
No context is to be associated with the message.

Both identity and origin context are set to indicate no context. This
means that the context fields in MQMD are set to:
v Blanks for character fields
v Nulls for byte fields
v Zeros for numeric fields

PMDEFC
Use default context.

The message is to have default context information associated with it,
for both identity and origin. The queue manager sets the context fields
in the message descriptor as follows:

Field in MQMD
Value used

MDUID Determined from the environment if possible; set to blanks
otherwise.

MDACC Determined from the environment if possible; set to ACNONE
otherwise.

MDAID Set to blanks.
MDPAT Determined from the environment.
MDPAN Determined from the environment if possible; set to blanks

otherwise.
MDPD Set to date when message is put.
MDPT Set to time when message is put.
MDAOD Set to blanks.

For more information on message context, see the MQSeries Application
Programming Guide.

This is the default action if no context options are specified.

MQPMO - Put-message options

156 MQSeries for AS/400, V5.1 APR (ILE RPG)

PMPASI
Pass identity context from an input queue handle.

The message is to have context information associated with it. Identity
context is taken from the queue handle specified in the PMCT field.
Origin context information is generated by the queue manager in the
same way that it is for PMDEFC (see above for values). For more
information on message context, see the MQSeries Application
Programming Guide.

For the MQPUT call, the queue must have been opened with the
OOPASI option (or an option that implies it). For the MQPUT1 call, the
same authorization check is carried out as for the MQOPEN call with
the OOPASI option.

PMPASA
Pass all context from an input queue handle.

The message is to have context information associated with it. Both
identity and origin context are taken from the queue handle specified
in the PMCT field. For more information on message context, see the
MQSeries Application Programming Guide.

For the MQPUT call, the queue must have been opened with the
OOPASA option (or an option that implies it). For the MQPUT1 call,
the same authorization check is carried out as for the MQOPEN call
with the OOPASA option.

PMSETI
Set identity context from the application.

The message is to have context information associated with it. The
application specifies the identity context in the MQMD structure.
Origin context information is generated by the queue manager in the
same way that it is for PMDEFC (see above for values). For more
information on message context, see the MQSeries Application
Programming Guide.

For the MQPUT call, the queue must have been opened with the
OOSETI option (or an option that implies it). For the MQPUT1 call, the
same authorization check is carried out as for the MQOPEN call with
the OOSETI option.

PMSETA
Set all context from the application.

The message is to have context information associated with it. The
application specifies the identity and origin context in the MQMD
structure. For more information on message context, see the MQSeries
Application Programming Guide.

For the MQPUT call, the queue must have been opened with the
OOSETA option. For the MQPUT1 call, the same authorization check is
carried out as for the MQOPEN call with the OOSETA option.

Only one of the PM* context options can be specified. If none of these options
is specified, PMDEFC is assumed.

PMALTU
Validate with specified user identifier.

MQPMO - Put-message options

Chapter 14. MQPMO - Put message options 157

This indicates that the ODAU field in the OBJDSC parameter of the
MQPUT1 call contains a user identifier that is to be used to validate
authority to put messages on the queue. The call can succeed only if
this ODAU is authorized to open the queue with the specified options,
regardless of whether the user identifier under which the application is
running is authorized to do so. (This does not apply to the context
options specified, however, which are always checked against the user
identifier under which the application is running.)

This option is valid only with the MQPUT1 call.

PMFIQ
Fail if queue manager is quiescing.

This option forces the MQPUT or MQPUT1 call to fail if the queue
manager is in the quiescing state.

The call returns completion code CCFAIL with reason code RC2161.

PMNONE
No options specified.

This value can be used to indicate that no other options have been
specified; all options assume their default values. PMNONE is defined
to aid program documentation; it is not intended that this option be
used with any other, but as its value is zero, such use cannot be
detected.

This is an input field. The initial value of the PMOPT field is PMNONE.

PMTO (10-digit signed integer)
Reserved.

This is a reserved field; its value is not significant. The initial value of this field
is −1.

PMCT (10-digit signed integer)
Object handle of input queue.

If PMPASI or PMPASA is specified, this field must contain the input queue
handle from which context information to be associated with the message
being put is taken.

If neither PMPASI nor PMPASA is specified, this field is ignored.

This is an input field. The initial value of this field is 0.

PMKDC (10-digit signed integer)
Number of messages sent successfully to local queues.

This is the number of messages that the current MQPUT or MQPUT1 call has
sent successfully to queues in the distribution list that are local queues. The
count does not include messages sent to queues that resolve to remote queues
(even though a local transmission queue is used initially to store the message).
This field is also set when putting a message to a single queue which is not in
a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if
PMVER is less than PMVER2.

MQPMO - Put-message options

158 MQSeries for AS/400, V5.1 APR (ILE RPG)

PMUDC (10-digit signed integer)
Number of messages sent successfully to remote queues.

This is the number of messages that the current MQPUT or MQPUT1 call has
sent successfully to queues in the distribution list that resolve to remote
queues. Messages that the queue manager retains temporarily in
distribution-list form count as the number of individual destinations that those
distribution lists contain. This field is also set when putting a message to a
single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if
PMVER is less than PMVER2.

PMIDC (10-digit signed integer)
Number of messages that could not be sent.

This is the number of messages that could not be sent to queues in the
distribution list. The count includes queues that failed to open, as well as
queues that were opened successfully but for which the put operation failed.
This field is also set when putting a message to a single queue which is not in
a distribution list.

Note: This field is set only if the CMPCOD parameter on the MQPUT or MQPUT1
call is CCOK or CCWARN; it is not set if the CMPCOD parameter is
CCFAIL.

This is an output field. The initial value of this field is 0. This field is not set if
PMVER is less than PMVER2.

PMRQN (48-byte character string)
Resolved name of destination queue.

This is an output field that is set by the queue manager to the name of the
queue (after alias resolution) on which the message will be placed. This can be
either the name of a local queue, or the name of a remote queue. If the
destination queue opened was a model queue, the name of the dynamic local
queue that was created is returned. In all cases, the name returned is the name
of a queue that is defined on the queue manager identified by PMRMN.

If the MQPUT or MQPUT1 call is used to put the message to a distribution
list, the value returned in this field is undefined.

This is an output field. The length of this field is given by LNQN. The initial
value of this field is 48 blank characters.

PMRMN (48-byte character string)
Resolved name of destination queue manager.

This is the name of the queue manager (after alias resolution) that owns the
queue specified by PMRQN.

If the MQPUT or MQPUT1 call is used to put the message to a distribution
list, the value returned in this field is undefined.

This is an output field. The length of this field is given by LNQMN. The initial
value of this field is 48 blank characters.

MQPMO - Put-message options

Chapter 14. MQPMO - Put message options 159

The remaining fields are not present if PMVER is less than PMVER2.

PMREC (10-digit signed integer)
Number of put message records or response records present.

This is the number of MQPMR put message records or MQRR response
records that have been provided by the application. This number can be
greater than zero only if the message is being put to a distribution list. Put
message records and response records are optional – the application need not
provide any records, or it can choose to provide records of only one type.
However, if the application provides records of both types, it must provide
PMREC records of each type.

The value of PMREC need not be the same as the number of destinations in the
distribution list. If too many records are provided, the excess are not used; if
too few records are provided, default values are used for the message
properties for those destinations that do not have put message records (see
PMPRO below).

If PMREC is less than zero, or is greater than zero but the message is not being
put to a distribution list, the call fails with reason code RC2154.

This is an input field. The initial value of this field is 0. This field is not
present if PMVER is less than PMVER2.

PMPRF (10-digit signed integer)
Flags indicating which MQPMR fields are present.

This field contains flags that must be set to indicate which MQPMR fields are
present in the put message records provided by the application. PMPRF is used
only when the message is being put to a distribution list. The field is ignored if
PMREC is zero, or both PMPRO and PMPRP are zero.

For fields that are present, the queue manager uses for each destination the
values from the fields in the corresponding put message record. For fields that
are absent, the queue manager uses the values from the MQMD structure.

One or more of the following flags can be specified to indicate which fields are
present in the put message records:

PFMID
Message-identifier field is present.

PFCID
Correlation-identifier field is present.

PFGID
Group-identifier field is present.

PFFB Feedback field is present.

PFACC
Accounting-token field is present.

If this flag is specified, either PMSETI or PMSETA must be specified in
the PMOPT field; if this condition is not satisfied, the call fails with
reason code RC2158.

If no MQPMR fields are present, the following can be specified:

MQPMO - Put-message options

160 MQSeries for AS/400, V5.1 APR (ILE RPG)

PFNONE
No put-message record fields are present.

If this value is specified, either PMREC must be zero, or both PMPRO and
PMPRP must be zero.

PFNONE is defined to aid program documentation. It is not intended
that this constant be used with any other, but as its value is zero, such
use cannot be detected.

If PMPRF contains flags which are not valid, or put message records are
provided but PMPRF has the value PFNONE, the call fails with reason code
RC2158.

This is an input field. The initial value of this field is PFNONE. This field is
not present if PMVER is less than PMVER2.

PMPRO (10-digit signed integer)
Offset of first put message record from start of MQPMO.

This is the offset in bytes of the first MQPMR put message record from the
start of the MQPMO structure. The offset can be positive or negative. PMPRO is
used only when the message is being put to a distribution list. The field is
ignored if PMREC is zero.

When the message is being put to a distribution list, an array of one or more
MQPMR put message records can be provided in order to specify certain
properties of the message for each destination individually; these properties
are:
v message identifier
v correlation identifier
v group identifier
v feedback value
v accounting token

It is not necessary to specify all of these properties, but whatever subset is
chosen, the fields must be specified in the correct order. See the description of
the MQPMR structure for further details.

Usually, there should be as many put message records as there are object
records specified by MQOD when the distribution list is opened; each put
message record supplies the message properties for the queue identified by the
corresponding object record. Queues in the distribution list which fail to open
must still have put message records allocated for them at the appropriate
positions in the array, although the message properties are ignored in this case.

It is possible for the number of put message records to differ from the number
of object records. If there are fewer put message records than object records,
the message properties for the destinations which do not have put message
records are taken from the corresponding fields in the message descriptor
MQMD. If there are more put message records than object records, the excess
are not used (although it must still be possible to access them). Put message
records are optional, but if they are supplied there must be PMREC of them.

The put message records can be provided in a similar way to the object records
in MQOD, either by specifying an offset in PMPRO, or by specifying an address

MQPMO - Put-message options

Chapter 14. MQPMO - Put message options 161

in PMPRP; for details of how to do this, see the ODORO field described in
“Chapter 12. MQOD - Object descriptor” on page 137.

No more than one of PMPRO and PMPRP can be used; the call fails with reason
code RC2159 if both are nonzero.

This is an input field. The initial value of this field is 0. This field is not
present if PMVER is less than PMVER2.

PMRRO (10-digit signed integer)
Offset of first response record from start of MQPMO.

This is the offset in bytes of the first MQRR response record from the start of
the MQPMO structure. The offset can be positive or negative. PMRRO is used
only when the message is being put to a distribution list. The field is ignored if
PMREC is zero.

When the message is being put to a distribution list, an array of one or more
MQRR response records can be provided in order to identify the queues to
which the message was not sent successfully (RRCC field in MQRR), and the
reason for each failure (RRREA field in MQRR). The message may not have been
sent either because the queue failed to open, or because the put operation
failed. The queue manager sets the response records only when the outcome of
the call is mixed (that is, some messages were sent successfully while others
failed, or all failed but for differing reasons); reason code RC2136 from the call
indicates this case. If the same reason code applies to all queues, that reason is
returned in the REASON parameter of the MQPUT or MQPUT1 call, and the
response records are not set.

Usually, there should be as many response records as there are object records
specified by MQOD when the distribution list is opened; when necessary, each
response record is set to the completion code and reason code for the put to
the queue identified by the corresponding object record. Queues in the
distribution list which fail to open must still have response records allocated
for them at the appropriate positions in the array, although they are set to the
completion code and reason code resulting from the open operation, rather
than the put operation.

It is possible for the number of response records to differ from the number of
object records. If there are fewer response records than object records, it may
not be possible for the application to identify all of the destinations for which
the put operation failed, or the reasons for the failures. If there are more
response records than object records, the excess are not used (although it must
still be possible to access them). Response records are optional, but if they are
supplied there must be PMREC of them.

The response records can be provided in a similar way to the object records in
MQOD, either by specifying an offset in PMRRO, or by specifying an address in
PMRRP; for details of how to do this, see the ODORO field described in
“Chapter 12. MQOD - Object descriptor” on page 137. However, no more than
one of PMRRO and PMRRP can be used; the call fails with reason code RC2156 if
both are nonzero.

For the MQPUT1 call, this field must be zero. This is because the response
information (if requested) is returned in the response records specified by the
object descriptor MQOD.

MQPMO - Put-message options

162 MQSeries for AS/400, V5.1 APR (ILE RPG)

This is an input field. The initial value of this field is 0. This field is not
present if PMVER is less than PMVER2.

PMPRP (pointer)
Address of first put message record.

This is the address of the first MQPMR put message record. PMPRP is used only
when the message is being put to a distribution list. The field is ignored if
PMREC is zero.

Either PMPRP or PMPRO can be used to specify the put message records, but not
both; see the description of the PMPRO field above for details. If PMPRP is not
used, it must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer. This
field is not present if PMVER is less than PMVER2.

PMRRP (pointer)
Address of first response record.

This is the address of the first MQRR response record. PMRRP is used only when
the message is being put to a distribution list. The field is ignored if PMREC is
zero.

Either PMRRP or PMRRO can be used to specify the response records, but not both;
see the description of the PMRRO field above for details. If PMRRP is not used, it
must be set to the null pointer or null bytes.

For the MQPUT1 call, this field must be the null pointer or null bytes. This is
because the response information (if requested) is returned in the response
records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is the null pointer. This
field is not present if PMVER is less than PMVER2.

Initial values and RPG declaration
Table 33. Initial values of fields in MQPMO

Field name Name of constant Value of constant

PMSID PMSIDV 'PMOb' (See note 1)

PMVER PMVER1 1

PMOPT PMNONE 0

PMTO None -1

PMCT None 0

PMKDC None 0

PMUDC None 0

PMIDC None 0

PMRQN None Blanks

PMRMN None Blanks

PMREC None 0

PMPRF PFNONE 0

PMPRO None 0

MQPMO - Put-message options

Chapter 14. MQPMO - Put message options 163

Table 33. Initial values of fields in MQPMO (continued)

Field name Name of constant Value of constant

PMRRO None 0

PMPRP None Null pointer or null
bytes

PMRRP None Null pointer or null
bytes

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQPMO Structure
D*
D* Structure identifier
D PMSID 1 4
D* Structure version number
D PMVER 5 8I 0
D* Options that control the action of MQPUT and MQPUT1
D PMOPT 9 12I 0
D* Reserved
D PMTO 13 16I 0
D* Object handle of input queue
D PMCT 17 20I 0
D* Number of messages sent successfully to local queues
D PMKDC 21 24I 0
D* Number of messages sent successfully to remote queues
D PMUDC 25 28I 0
D* Number of messages that could not be sent
D PMIDC 29 32I 0
D* Resolved name of destination queue
D PMRQN 33 80
D* Resolved name of destination queue manager
D PMRMN 81 128
D* Number of put message records or response records present
D PMREC 129 132I 0
D* Flags indicating which MQPMR fields are present
D PMPRF 133 136I 0
D* Offset of first put message record from start of MQPMO
D PMPRO 137 140I 0
D* Offset of first response record from start of MQPMO
D PMRRO 141 144I 0
D* Address of first put message record
D PMPRP 145 160*
D* Address of first response record
D PMRRP 161 176*

RPG declaration

164 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 15. MQPMR - Put-message record

The following table summarizes the fields in the structure.

Table 34. Fields in MQPMR

Field Description Page

PRMID Message identifier 165

PRCID Correlation identifier 166

PRGID Group identifier 166

PRFB Feedback or reason code 166

PRACC Accounting token 167

Overview
The MQPMR structure is used to specify various message properties for a single
destination. By providing an array of these structures on the MQPUT or MQPUT1
call, it is possible to specify different values for each destination queue in a
distribution list. Some of the fields are input only, others are input/output.

Note: This structure is unusual in that it does not have a fixed layout. The fields
in this structure are optional, and the presence or absence of each field is
indicated by the flags in the PMPRF field in MQPMO. Fields that are present
must occur in the order shown below. Fields that are absent occupy no space
in the record.

Because MQPMR does not have a fixed layout, no declaration is provided
for it in a COPY file. The application programmer should create a
declaration containing the fields that are required by the application, and set
the flags in PMPRF to indicate the fields that are present.

MQPMR is an input/output structure for the MQPUT and MQPUT1 calls.

Fields
PRMID (24-byte bit string)

Message identifier.

This is the message identifier to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed
in the same way as the MDMID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR
records than destinations, the value in MQMD is used for those destinations
that do not have an MQPMR record containing a PRMID field. If that value is
MINONE, a new message identifier is generated for each of those destinations
(that is, no two of those destinations have the same message identifier).

© Copyright IBM Corp. 1994, 2000 165

If PMNMID is specified, new message identifiers are generated for all of the
destinations in the distribution list, regardless of whether they have MQPMR
records. This is different from the way that PMNCID is processed (see below).

This is an input/output field.

PRCID (24-byte bit string)
Correlation identifier.

This is the correlation identifier to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed
in the same way as the MDCID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR
records than destinations, the value in MQMD is used for those destinations
that do not have an MQPMR record containing a PRCID field.

If PMNCID is specified, a single new correlation identifier is generated and
used for all of the destinations in the distribution list, regardless of whether
they have MQPMR records. This is different from the way that PMNMID is
processed (see above).

This is an input/output field.

PRGID (24-byte bit string)
Group identifier.

This is the group identifier to be used for the message sent to the queue whose
name was specified by the corresponding element in the array of MQOR
structures provided on the MQOPEN or MQPUT1 call. It is processed in the
same way as the MDGID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR
records than destinations, the value in MQMD is used for those destinations
that do not have an MQPMR record containing a PRGID field. The value is
processed as documented in Table 31 on page 153, but with the following
differences:
v In those cases where a new group identifier would be used, the queue

manager generates a different group identifier for each destination (that is,
no two destinations have the same group identifier).

v In those cases where the value in the field would be used, the call fails with
reason code RC2258.

This is an input/output field.

PRFB (10-digit signed integer)
Feedback or reason code.

This is the feedback code to be used for the message sent to the queue whose
name was specified by the corresponding element in the array of MQOR
structures provided on the MQOPEN or MQPUT1 call. It is processed in the
same way as the MDFB field in MQMD for a put to a single queue. If this field
is not present, the value in MQMD is used.

This is an input field.

MQPMR - Put-message record

166 MQSeries for AS/400, V5.1 APR (ILE RPG)

PRACC (32-byte bit string)
Accounting token.

This is the accounting token to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is processed
in the same way as the MDACC field in MQMD for a put to a single queue. See
the description of MDACC in “Chapter 10. MQMD - Message descriptor” on
page 83 for information about the content of this field.

If this field is not present, the value in MQMD is used.

This is an input field.

Initial values and RPG declaration
There are no initial values defined for this structure, as no structure declaration is
provided. The sample declaration below shows how the structure should be
declared by the application programmer if all of the fields are required.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQPMR Structure
D*
D* Message identifier
D PRMID 1 24
D* Correlation identifier
D PRCID 25 48
D* Group identifier
D PRGID 49 72
D* Feedback or reason code
D PRFB 73 76I 0
D* Accounting token
D PRACC 77 108

MQPMR - Put-message record

Chapter 15. MQPMR - Put-message record 167

|
|
|

RPG declaration

168 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 16. MQRMH - Message reference header

The following table summarizes the fields in the structure.

Table 35. Fields in MQRMH

Field Description Page

RMSID Structure identifier 170

RMVER Structure version number 170

RMLEN Total length of MQRMH, including strings at end
of fixed fields, but not the bulk data

171

RMENC Numeric encoding of bulk data 171

RMCSI Character set identifier of bulk data 171

RMFMT Format name of bulk data 171

RMFLG Reference message flags 171

RMOT Object type 172

RMOII Object instance identifier 172

RMSEL Length of source environment data 172

RMSEO Offset of source environment data 172

RMSNL Length of source object name 173

RMSNO Offset of source object name 173

RMDEL Length of destination environment data 173

RMDEO Offset of destination environment data 173

RMDNL Length of destination object name 173

RMDNO Offset of destination object name 174

RMDL Length of bulk data 174

RMDO Low offset of bulk data 174

RMDO2 High offset of bulk data 175

Overview
The MQRMH structure defines the format of a reference message header. An
application can put a message in this format, omitting the bulk data. When the
message is read from the transmission queue by a message channel agent (MCA), a
user-supplied message exit is invoked to process the reference message header. The
exit can append to the reference message the bulk data identified by the MQRMH
structure, before the MCA sends the message through the channel to the next
queue manager.

At the receiving end, a message exit that waits for reference messages should exist.
When a reference message is received, the exit should create the object from the
bulk data that follows the MQRMH in the message, and then pass on the reference
message without the bulk data. The reference message can later be retrieved by an
application reading the reference message (without the bulk data) from a queue.

© Copyright IBM Corp. 1994, 2000 169

Normally, the MQRMH structure (optionally with the bulk data) is all that is in the
message. However, if the message is on a transmission queue, one or more
additional headers will precede the MQRMH structure.

A reference message can also be sent to a distribution list. In this case, the MQDH
structure and its related records precede the MQRMH structure when the message
is on a transmission queue.

Note: A reference message should not be sent as a segmented message, because
the message exit cannot process it correctly.

For data conversion purposes, conversion of the MQRMH structure includes
conversion of the source environment data, source object name, destination
environment data, and destination object name. Any other bytes within RMLEN are
either discarded or have undefined values after data conversion. The bulk data will
be converted provided that all of the following are true:
v The bulk data is present in the message when the data conversion is performed.
v The RMFMT field in MQRMH has a value other than FMNONE.
v A user-written data-conversion exit exists with the format name specified.

Be aware, however, that usually the bulk data is not present in the message when
the message is on a queue, and that as a result the bulk data will not be converted
by the GMCONV option.

The format name of an MQRMH structure is FMRMH. The fields in the MQRMH
structure, and the strings addressed by the offset fields, are in the character set and
encoding given by the MDCSI and MDENC fields in the header structure that precedes
the MQRMH, or by those fields in the MQMD structure if the MQRMH is at the
start of the application message data.

Fields
RMSID (4-byte character string)

Structure identifier.

The value must be:

RMSIDV
Identifier for reference message header structure.

The initial value of this field is RMSIDV.

RMVER (10-digit signed integer)
Structure version number.

The value must be:

RMVER1
Version-1 reference message header structure.

The following constant specifies the version number of the current version:

RMVERC
Current version of reference message header structure.

The initial value of this field is RMVER1.

MQRMH - Message reference header

170 MQSeries for AS/400, V5.1 APR (ILE RPG)

RMLEN (10-digit signed integer)
Total length of MQRMH, including strings at end of fixed fields, but not the
bulk data.

The initial value of this field is zero.

RMENC (10-digit signed integer)
Numeric encoding of bulk data.

This identifies the representation used for numeric values in the bulk data; this
applies to binary integer data, packed-decimal integer data, and floating-point
data.

The initial value of this field is ENNAT.

RMCSI (10-digit signed integer)
Character set identifier of bulk data.

This specifies the coded character set identifier of character data in the bulk
data.

Note that character data in the MQ data structures must be in the character set
used by the queue manager. This is defined by the queue manager’s
CodedCharSetId attribute; see “Chapter 43. Attributes for the queue manager”
on page 323 for details of this attribute.

The initial value of this field is 0.

RMFMT (8-byte character string)
Format name of bulk data.

This is a name that the sender of the message may use to indicate to the
receiver the nature of the bulk data. Any characters that are in the queue
manager’s character set may be specified for the name, but it is recommended
that the name be restricted to the following:
v Uppercase A through Z
v Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name
between the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field. Do not use
a null character to terminate the name before the end of the field, as the queue
manager does not change the null and subsequent characters to blanks in the
MQRMH structure. Do not specify a name with leading or embedded blanks.

The initial value of this field is FMNONE.

RMFLG (10-digit signed integer)
Reference message flags.

The following flags are defined:

RMLAST
Reference message contains or represents last part of object.

This flag indicates that the reference message represents or contains the
last part of the referenced object.

MQRMH - Message reference header

Chapter 16. MQRMH - Message reference header 171

RMNLST
Reference message does not contain or represent last part of object.

RMNLST is defined to aid program documentation. It is not intended
that this option be used with any other, but as its value is zero, such
use cannot be detected.

The initial value of this field is RMNLST.

RMOT (8-byte character string)
Object type.

This is a name that can be used by the message exit to recognize types of
reference message that it supports. It is recommended that the name conform
to the same rules as the RMFMT field described above.

The initial value of this field is 8 blanks.

RMOII (24-byte bit string)
Object instance identifier.

This field can be used to identify a specific instance of an object. If it is not
needed, it should be set to the following value:

OIINON
No object instance identifier specified.

The value is binary zero for the length of the field.

The length of this field is given by LNOIID. The initial value of this field is
OIINON.

RMSEL (10-digit signed integer)
Length of source environment data.

If this field is zero, there is no source environment data, and RMSEO is ignored.

The initial value of this field is 0.

RMSEO (10-digit signed integer)
Offset of source environment data.

This field specifies the offset of the source environment data from the start of
the MQRMH structure. Source environment data can be specified by the
creator of the reference message, if that data is known to the creator. For
example, on OS/2 the source environment data might be the directory path of
the object containing the bulk data. However, if the creator does not know the
source environment data, it is the responsibility of the user-supplied message
exit to determine any environment information needed.

The length of the source environment data is given by RMSEL; if this length is
zero, there is no source environment data, and RMSEO is ignored. If present, the
source environment data must reside completely within RMLEN bytes from the
start of the structure.

Applications should not assume that the environment data starts immediately
after the last fixed field in the structure or that it is contiguous with any of the
data addressed by the RMSNO, RMDEO, and RMDNO fields.

MQRMH - Message reference header

172 MQSeries for AS/400, V5.1 APR (ILE RPG)

The initial value of this field is 0.

RMSNL (10-digit signed integer)
Length of source object name.

If this field is zero, there is no source object name, and RMSNO is ignored.

The initial value of this field is 0.

RMSNO (10-digit signed integer)
Offset of source object name.

This field specifies the offset of the source object name from the start of the
MQRMH structure. The source object name can be specified by the creator of
the reference message, if that data is known to the creator. However, if the
creator does not know the source object name, it is the responsibility of the
user-supplied message exit to identify the object to be accessed.

The length of the source object name is given by RMSNL; if this length is zero,
there is no source object name, and RMSNO is ignored. If present, the source
object name must reside completely within RMLEN bytes from the start of the
structure.

Applications should not assume that the source object name is contiguous with
any of the data addressed by the RMSEO, RMDEO, and RMDNO fields.

The initial value of this field is 0.

RMDEL (10-digit signed integer)
Length of destination environment data.

If this field is zero, there is no destination environment data, and RMDEO is
ignored.

RMDEO (10-digit signed integer)
Offset of destination environment data.

This field specifies the offset of the destination environment data from the start
of the MQRMH structure. Destination environment data can be specified by
the creator of the reference message, if that data is known to the creator. For
example, on OS/2 the destination environment data might be the directory
path of the object where the bulk data is to be stored. However, if the creator
does not know the destination environment data, it is the responsibility of the
user-supplied message exit to determine any environment information needed.

The length of the destination environment data is given by RMDEL; if this length
is zero, there is no destination environment data, and RMDEO is ignored. If
present, the destination environment data must reside completely within RMLEN
bytes from the start of the structure.

Applications should not assume that the destination environment data is
contiguous with any of the data addressed by the RMSEO, RMSNO, and RMDNO
fields.

The initial value of this field is 0.

RMDNL (10-digit signed integer)
Length of destination object name.

MQRMH - Message reference header

Chapter 16. MQRMH - Message reference header 173

If this field is zero, there is no destination object name, and RMDNO is ignored.

RMDNO (10-digit signed integer)
Offset of destination object name.

This field specifies the offset of the destination object name from the start of
the MQRMH structure. The destination object name can be specified by the
creator of the reference message, if that data is known to the creator. However,
if the creator does not know the destination object name, it is the responsibility
of the user-supplied message exit to identify the object to be created or
modified.

The length of the destination object name is given by RMDNL; if this length is
zero, there is no destination object name, and RMDNO is ignored. If present, the
destination object name must reside completely within RMLEN bytes from the
start of the structure.

Applications should not assume that the destination object name is contiguous
with any of the data addressed by the RMSEO, RMSNO, and RMDEO fields.

The initial value of this field is 0.

RMDL (10-digit signed integer)
Length of bulk data.

The RMDL field specifies the length of the bulk data referenced by the MQRMH
structure.

If the bulk data is actually present in the message, the data begins at an offset
of RMLEN bytes from the start of the MQRMH structure. The length of the entire
message minus RMLEN gives the length of the bulk data present.

If data is present in the message, RMDL specifies the amount of that data that is
relevant. The normal case is for RMDL to have the same value as the length of
data actually present in the message.

If the MQRMH structure represents the remaining data in the object (starting
from the specified logical offset), the value zero can be used for RMDL, provided
that the bulk data is not actually present in the message.

If no data is present, the end of MQRMH coincides with the end of the
message.

The initial value of this field is 0.

RMDO (10-digit signed integer)
Low offset of bulk data.

This field specifies the low offset of the bulk data from the start of the object of
which the bulk data forms part. The offset of the bulk data from the start of
the object is called the logical offset. This is not the physical offset of the bulk
data from the start of the MQRMH structure – that offset is given by RMLEN.

To allow large objects to be sent using reference messages, the logical offset is
divided into two fields, and the actual logical offset is given by the sum of
these two fields:

MQRMH - Message reference header

174 MQSeries for AS/400, V5.1 APR (ILE RPG)

v RMDO represents the remainder obtained when the logical offset is divided by
1 000 000 000. It is thus a value in the range 0 through 999 999 999.

v RMDO2 represents the result obtained when the logical offset is divided by
1 000 000 000. It is thus the number of complete multiples of 1 000 000 000
that exist in the logical offset. The number of multiples is in the range 0
through 999 999 999.

The initial value of this field is 0.

RMDO2 (10-digit signed integer)
High offset of bulk data.

This field specifies the high offset of the bulk data from the start of the object
of which the bulk data forms part. It is a value in the range 0 through
999 999 999. See RMDO for details.

The initial value of this field is 0.

Initial values and RPG declaration
Table 36. Initial values of fields in MQRMH

Field name Name of constant Value of constant

RMSID RMSIDV 'RMHb' (See note 1)

RMVER RMVER1 1

RMLEN None 0

RMENC ENNAT See note 2

RMCSI None 0

RMFMT FMNONE 'bbbbbbbb'

RMFLG RMNLST 0

RMOT None 'bbbbbbbb'

RMOII OIINON Nulls

RMSEL None 0

RMSEO None 0

RMSNL None 0

RMSNO None 0

RMDEL None 0

RMDEO None 0

RMDNL None 0

RMDNO None 0

RMDL None 0

RMDO None 0

RMDO2 None 0

Notes:

1. The symbol ‘b’ represents a single blank character.

2. The value of this constant is environment-specific.

MQRMH - Message reference header

Chapter 16. MQRMH - Message reference header 175

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQRMH Structure
D*
D* Structure identifier
D RMSID 1 4
D* Structure version number
D RMVER 5 8I 0
D* Total length of MQRMH, including strings at end of fixed fields,
D* but not the bulk data
D RMLEN 9 12I 0
D* Numeric encoding of bulk data
D RMENC 13 16I 0
D* Character set identifier of bulk data
D RMCSI 17 20I 0
D* Format name of bulk data
D RMFMT 21 28
D* Reference message flags
D RMFLG 29 32I 0
D* Object type
D RMOT 33 40
D* Object instance identifier
D RMOII 41 64
D* Length of source environment data
D RMSEL 65 68I 0
D* Offset of source environment data
D RMSEO 69 72I 0
D* Length of source object name
D RMSNL 73 76I 0
D* Offset of source object name
D RMSNO 77 80I 0
D* Length of destination environment data
D RMDEL 81 84I 0
D* Offset of destination environment data
D RMDEO 85 88I 0
D* Length of destination object name
D RMDNL 89 92I 0
D* Offset of destination object name
D RMDNO 93 96I 0
D* Length of bulk data
D RMDL 97 100I 0
D* Low offset of bulk data
D RMDO 101 104I 0
D* High offset of bulk data
D RMDO2 105 108I 0

RPG declaration

176 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 17. MQRR - Response record

The following table summarizes the fields in the structure.

Table 37. Fields in MQRR

Field Description Page

RRCC Completion code for queue 177

RRREA Reason code for queue 177

Overview
The MQRR structure is used to receive the completion code and reason code
resulting from the open or put operation for a single destination queue. By
providing an array of these structures on the MQOPEN and MQPUT calls, or on
the MQPUT1 call, it is possible to determine the completion codes and reason
codes for all of the queues in a distribution list, when the outcome of the call is
mixed, that is, when the call succeeds for some queues in the list, but fails for
others. Reason code RC2136 from the call indicates that the response records (if
provided by the application) have been set by the queue manager.

MQRR is an output structure for the MQOPEN, MQPUT, and MQPUT1 calls.

Fields
RRCC (10-digit signed integer)

Completion code for queue.

This is the completion code resulting from the open or put operation for the
queue whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is CCOK.

RRREA (10-digit signed integer)
Reason code for queue.

This is the reason code resulting from the open or put operation for the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is RCNONE.

Initial values and RPG declaration
Table 38. Initial values of fields in MQRR

Field name Name of constant Value of constant

RRCC CCOK 0

RRREA RCNONE 0

© Copyright IBM Corp. 1994, 2000 177

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQRR Structure
D*
D* Completion code for queue
D RRCC 1 4I 0
D* Reason code for queue
D RRREA 5 8I 0

RPG declaration

178 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 18. MQTM - Trigger message

The following table summarizes the fields in the structure.

Table 39. Fields in MQTM

Field Description Page

TMSID Structure identifier 180

TMVER Structure version number 180

TMQN Name of triggered queue 180

TMPN Name of process object 181

TMTD Trigger data 181

TMAT Application type 181

TMAI Application identifier 182

TMED Environment data 182

TMUD User data 182

Overview
The MQTM structure describes the data in the trigger message that is sent by the
queue manager to a trigger-monitor application when a trigger event occurs for a
queue. This structure is part of the MQSeries Trigger Monitor Interface (TMI),
which is one of the MQSeries framework interfaces.

A trigger-monitor application may need to pass some or all of the information in
the trigger message to the application which is started by the trigger-monitor
application. Information which may be needed by the started application includes
TMQN, TMTD, and TMUD. The trigger-monitor application can pass the MQTM structure
directly to the started application, or pass an MQTMC2 structure, depending on
what is most convenient for the started application. For information about
MQTMC2, see “Chapter 19. MQTMC2 - Trigger message (character format)” on
page 185.

For information about triggers, see the MQSeries Application Programming Guide.

The fields in the message descriptor of the trigger message are set as follows:

Field in MQMD
Value used

MDSID MDSIDV
MDVER MDVER1
MDREP RONONE
MDMT MTDGRM
MDEXP EIULIM
MDFB FBNONE
MDENC ENNAT
MDCSI Queue manager’s CodedCharSetId attribute
MDFMT FMTM
MDPRI Initiation queue’s DefPriority attribute
MDPER PENPER

© Copyright IBM Corp. 1994, 2000 179

MDMID A unique value
MDCID CINONE
MDBOC 0
MDRQ Blanks
MDRM Name of queue manager
MDUID Blanks
MDACC ACNONE
MDAID Blanks
MDPAT ATQM, or as appropriate for the message channel agent
MDPAN First 28 bytes of the queue-manager name
MDPD Date when trigger message is sent
MDPT Time when trigger message is sent
MDAOD Blanks

An application that generates a trigger message is recommended to set similar
values, except for the following:
v The MDPRI field can be set to PRQDEF (the queue manager will change this to

the default priority for the initiation queue when the message is put).
v The MDRM field can be set to blanks (the queue manager will change this to the

name of the local queue manager when the message it put).
v The context fields should be set as appropriate for the application.

Fields
TMSID (4-byte character string)

Structure identifier.

The value must be:

TMSIDV
Identifier for trigger message structure.

The initial value of this field is TMSIDV.

TMVER (10-digit signed integer)
Structure version number.

The value must be:

TMVER1
Version number for trigger message structure.

The following constant specifies the version number of the current version:

TMVERC
Current version of trigger message structure.

The initial value of this field is TMVER1.

TMQN (48-byte character string)
Name of triggered queue.

This is the name of the queue for which a trigger event occurred, and is used
by the application started by the trigger-monitor application. The queue
manager initializes this field with the value of the QName attribute of the
triggered queue; see “Chapter 37. Attributes for all queues” on page 293 for
details of this attribute.

MQTM - Trigger message

180 MQSeries for AS/400, V5.1 APR (ILE RPG)

Names that are shorter than the defined length of the field are padded to the
right with blanks; they are not ended prematurely by a null character.

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

TMPN (48-byte character string)
Name of process object.

This is the name of the queue-manager process object specified for the
triggered queue, and can be used by the trigger-monitor application that
receives the trigger message. The queue manager initializes this field with the
value of the ProcessName attribute of the queue identified by the TMQN field; see
“Chapter 38. Attributes for local queues and model queues” on page 299 for
details of this attribute.

Names that are shorter than the defined length of the field are always padded
to the right with blanks; they are not ended prematurely by a null character.

The length of this field is given by LNPRON. The initial value of this field is
48 blank characters.

TMTD (64-byte character string)
Trigger data.

This is free-format data for use by the trigger-monitor application that receives
the trigger message. The queue manager initializes this field with the value of
the TriggerData attribute of the queue identified by the TMQN field; see
“Chapter 38. Attributes for local queues and model queues” on page 299 for
details of this attribute. The content of this data is of no significance to the
queue manager.

The length of this field is given by LNTRGD. The initial value of this field is
64 blank characters.

TMAT (10-digit signed integer)
Application type.

This identifies the nature of the program to be started, and is used by the
trigger-monitor application that receives the trigger message. The queue
manager initializes this field with the value of the ApplType attribute of the
process object identified by the TMPN field; see “Chapter 42. Attributes for
process definitions” on page 319 for details of this attribute. The content of this
data is of no significance to the queue manager.

TMAT can have one of the following standard values. User-defined types can
also be used, but should be restricted to values in the range ATUFST through
ATULST:
ATCICS

CICS transaction.
ATVSE

CICS/VSE transaction.
AT400 OS/400 application.
ATUFST

Lowest value for user-defined application type.
ATULST

Highest value for user-defined application type.

MQTM - Trigger message

Chapter 18. MQTM - Trigger message 181

|
|

The initial value of this field is 0.

TMAI (256-byte character string)
Application identifier.

This is a character string that identifies the application to be started, and is
used by the trigger-monitor application that receives the trigger message. The
queue manager initializes this field with the value of the ApplId attribute of
the process object identified by the TMPN field; see “Chapter 42. Attributes for
process definitions” on page 319 for details of this attribute. The content of this
data is of no significance to the queue manager.

The meaning of TMAI is determined by the trigger-monitor application. The
trigger monitor provided by MQSeries requires TMAI to be the name of an
executable program.

The length of this field is given by LNPROA. The initial value of this field is
256 blank characters.

TMED (128-byte character string)
Environment data.

This is a character string that contains environment-related information
pertaining to the application to be started, and is used by the trigger-monitor
application that receives the trigger message. The queue manager initializes
this field with the value of the EnvData attribute of the process object identified
by the TMPN field; see “Chapter 42. Attributes for process definitions” on
page 319 for details of this attribute. The content of this data is of no
significance to the queue manager.

The length of this field is given by LNPROE. The initial value of this field is
128 blank characters.

TMUD (128-byte character string)
User data.

This is a character string that contains user information relevant to the
application to be started, and is used by the trigger-monitor application that
receives the trigger message. The queue manager initializes this field with the
value of the UserData attribute of the process object identified by the TMPN
field; see “Chapter 42. Attributes for process definitions” on page 319 for details
of this attribute. The content of this data is of no significance to the queue
manager.

The length of this field is given by LNPROU. The initial value of this field is
128 blank characters.

Initial values and RPG declaration
Table 40. Initial values of fields in MQTM

Field name Name of constant Value of constant

TMSID TMSIDV 'TMbb' (See note 1)

TMVER TMVER1 1

TMQN None Blanks

TMPN None Blanks

MQTM - Trigger message

182 MQSeries for AS/400, V5.1 APR (ILE RPG)

Table 40. Initial values of fields in MQTM (continued)

Field name Name of constant Value of constant

TMTD None Blanks

TMAT None 0

TMAI None Blanks

TMED None Blanks

TMUD None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQTM Structure
D*
D* Structure identifier
D TMSID 1 4
D* Structure version number
D TMVER 5 8I 0
D* Name of triggered queue
D TMQN 9 56
D* Name of process object
D TMPN 57 104
D* Trigger data
D TMTD 105 168
D* Application type
D TMAT 169 172I 0
D* Application identifier
D TMAI 173 428
D* Environment data
D TMED 429 556
D* User data
D TMUD 557 684

MQTM - Trigger message

Chapter 18. MQTM - Trigger message 183

MQTM - Trigger message

184 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 19. MQTMC2 - Trigger message (character format)

The following table summarizes the fields in the structure.

Table 41. Fields in MQTMC2

Field Description Page

TC2SID Structure identifier 186

TC2VER Structure version number 186

TC2QN Name of triggered queue 186

TC2PN Name of process object 186

TC2TD Trigger data 186

TC2AT Application type 186

TC2AI Application identifier 186

TC2ED Environment data 186

TC2UD User data 186

TC2QMN Queue manager name 186

Overview
When a trigger-monitor application retrieves a trigger message (MQTM) from an
initiation queue, the trigger monitor may need to pass some or all of the
information in the trigger message to the application that is started by the trigger
monitor. Information that may be needed by the started application includes TC2QN,
TC2TD, and TC2UD. The trigger monitor application can pass the MQTM structure
directly to the started application, or an MQTMC2 structure, depending on what is
most convenient for the started application.

This structure is part of the MQSeries Trigger Monitor Interface (TMI), which is
one of the MQSeries framework interfaces.
v On OS/390, for an ATIMS application that is started using the CSQQTRMN

application, an MQTMC2 structure is made available to the started application.
v On VSE/ESA, this structure is not supported.
v On 16-bit Windows and 32-bit Windows, there is no trigger monitor application,

and this structure is not supported.

The MQTMC2 structure is very similar to the format of the trigger message
(MQTM structure). The difference is that the non-character fields in MQTM are
changed in MQTMC2 to character fields of the same length, and the queue
manager name is added at the end of the structure.

See “Chapter 18. MQTM - Trigger message” on page 179 for details of the fields
that are the same in this structure.

© Copyright IBM Corp. 1994, 2000 185

|

Fields
TC2SID (4-byte character string)

Structure identifier.

The value must be:

TCSIDV
Identifier for trigger message (character format) structure.

TC2VER (4-byte character string)
Structure version number.

The value must be:

TCVER2
Version 2 trigger message (character format) structure.

The following constant specifies the version number of the current version:

TCVERC
Current version of trigger message (character format) structure.

TC2QN (48-byte character string)
Name of triggered queue.

See the TMQN field in the MQTM structure.

TC2PN (48-byte character string)
Name of process object.

See the TMPN field in the MQTM structure.

TC2TD (64-byte character string)
Trigger data.

See the TMTD field in the MQTM structure.

TC2AT (4-byte character string)
Application type.

This field always contains blanks, whatever the value in the TMAT field in the
MQTM structure of the original trigger message.

TC2AI (256-byte character string)
Application identifier.

See the TMAI field in the MQTM structure.

TC2ED (128-byte character string)
Environment data.

See the TMED field in the MQTM structure.

TC2UD (128-byte character string)
User data.

See the TMUD field in the MQTM structure.

TC2QMN (48-byte character string)
Queue manager name.

MQTMC2 - Trigger message (character format)

186 MQSeries for AS/400, V5.1 APR (ILE RPG)

This is the name of the queue manager at which the trigger event occurred.

Initial values and RPG declaration
Table 42. Initial values of fields in MQTMC2

Field name Name of constant Value of constant

TC2SID TCSIDV 'TMCb' (See note 1)

TC2VER TCVER2 'bbb2'

TC2QN None Blanks

TC2PN None Blanks

TC2TD None Blanks

TC2AT None 'bbbb'

TC2AI None Blanks

TC2ED None Blanks

TC2UD None Blanks

TC2QMN None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQTMC2 Structure
D*
D* Structure identifier
D TC2SID 1 4
D* Structure version number
D TC2VER 5 8
D* Name of triggered queue
D TC2QN 9 56
D* Name of process object
D TC2PN 57 104
D* Trigger data
D TC2TD 105 168
D* Application type
D TC2AT 169 172
D* Application identifier
D TC2AI 173 428
D* Environment data
D TC2ED 429 556
D* User data
D TC2UD 557 684
D* Queue manager name
D TC2QMN 685 732

MQTMC2 - Trigger message (character format)

Chapter 19. MQTMC2 - Trigger message (character format) 187

RPG declaration

188 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 20. MQWIH - Work information header

The following table summarizes the fields in the structure.

Table 43. Fields in MQWIH

Field Description Page

WISID Structure identifier 189

WIVER Structure version number 189

WILEN Length of MQWIH structure 190

WIENC Numeric encoding of data that follows MQWIH 190

WICSI Character-set identifier of data that follows
MQWIH

190

WIFMT Format name of data that follows MQWIH 190

WIFLG Flags 190

WISNM Service name 190

WISST Service step name 190

WITOK Message token 191

Overview
The MQWIH structure describes the information that must be present at the start
of a message that is to be handled by the OS/390 workload manager. The format
name of this structure is FMWIH.

Fields
WISID (4-byte character string)

Structure identifier.

The value must be:

WISIDV
Identifier for work information header structure.

The initial value of this field is WISIDV.

WIVER (10-digit signed integer)
Structure version number.

The value must be:

WIVER1
Version-1 work information header structure.

The following constant specifies the version number of the current version:

WIVERC
Current version of work information header structure.

The initial value of this field is WIVER1.

© Copyright IBM Corp. 1994, 2000 189

WILEN (10-digit signed integer)
Length of MQWIH structure.

The value must be:

WILEN1
Length of version-1 work information header structure.

The following constant specifies the length of the current version:

WILENC
Length of current version of work information header structure.

The initial value of this field is WILEN1.

WIENC (10-digit signed integer)
Numeric encoding of data that follows MQWIH.

This is the numeric encoding of the data that follows the MQWIH structure.
The initial value of this field is 0.

WICSI (10-digit signed integer)
Character-set identifier of data that follows MQWIH.

This is the coded character-set identifier of the data that follows the MQWIH
structure. The initial value of this field is 0.

WIFMT (8-byte character string)
Format name of data that follows MQWIH.

This is the MQ format name of the data that follows the MQWIH structure.
The rules for coding this are the same as those for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

WIFLG (10-digit signed integer)
Flags

The value must be:

WINONE
No flags.

The initial value of this field is WINONE.

WISNM (32-byte character string)
Service name.

This is the name of the service that is to process the message.

The length of this field is given by LNSVNM. The initial value of this field is
32 blank characters.

WISST (8-byte character string)
Service step name.

This is the name of the step of WISNM to which the message relates.

MQWIH - Work information header

190 MQSeries for AS/400, V5.1 APR (ILE RPG)

The length of this field is given by LNSVST. The initial value of this field is 8
blank characters.

WITOK (16-byte bit string)
Message token.

This is a message token that uniquely identifies the message.

For the MQPUT and MQPUT1 calls, this field is ignored. The length of this
field is given by LNMTOK. The initial value of this field is MTKNON.

WIRSV (32-byte character string)
Reserved.

This is a reserved field; it must be blank.

Initial values and RPG declaration
Table 44. Initial values of fields in MQWIH

Field name Name of constant Value of constant

WISID WISIDV 'WIHb' (See note 1)

WIVER WIVER1 1

WILEN WILEN1 120

WIENC None 0

WICSI None 0

WIFMT FMNONE 'bbbbbbbb'

WIFLG WINONE 0

WISNM None Blanks

WISST None Blanks

WITOK MTKNON Nulls

WIRSV None Blanks

Notes:

1. The symbol ‘b’ represents a single blank character.

MQWIH - Work information header

Chapter 20. MQWIH - Work information header 191

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|
|
|

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQWIH Structure
D*
D* Structure identifier
D WISID 1 4
D* Structure version number
D WIVER 5 8I 0
D* Length of MQWIH structure
D WILEN 9 12I 0
D* Numeric encoding of data that follows MQWIH
D WIENC 13 16I 0
D* Character-set identifier of data that follows MQWIH
D WICSI 17 20I 0
D* Format name of data that follows MQWIH
D WIFMT 21 28
D* Flags
D WIFLG 29 32I 0
D* Service name
D WISNM 33 64
D* Service step name
D WISST 65 72
D* Message token
D WITOK 73 88
D* Reserved
D WIRSV 89 120

RPG declaration

192 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 21. MQXQH - Transmission queue header

The following table summarizes the fields in the structure.

Table 45. Fields in MQXQH

Field Description Page

XQSID Structure identifier 196

XQVER Structure version number 196

XQRQ Name of destination queue 196

XQRQM Name of destination queue manager 196

XQMD Original message descriptor 196

Overview
The MQXQH structure describes the information that is prefixed to the application
message data of messages when they are on transmission queues. A transmission
queue is a special type of local queue that temporarily holds messages destined for
remote queues (that is, destined for queues that do not belong to the local queue
manager). A transmission queue is denoted by the Usage queue attribute having
the value USTRAN.

A message that is on a transmission queue has two message descriptors:
v One message descriptor is stored separately from the message data; this is called

the separate message descriptor, and is a modified version of the message
descriptor provided by the application in the MSGDSC parameter of the MQPUT
or MQPUT1 call (see below for details).
The message put by the application may be a message in a group, or a segment
of a logical message, or may have segmentation allowed, but these properties are
not propagated into the separate message descriptor – the version-2 fields in the
separate message descriptor always have their default values.
The separate message descriptor is the one that is returned to the application in
the MSGDSC parameter of the MQGET call when the message is removed from the
transmission queue.

v A second message descriptor is stored within the MQXQH structure, as part of
the message data; this is called the embedded message descriptor, and is a close
copy of the message descriptor that was provided by the application in the
MSGDSC parameter of the MQPUT or MQPUT1 call (see below for details).
The embedded message descriptor is always a version-1 MQMD. If the message
put by the application has nondefault values for one or more of the version-2
fields in the MQMD, an MQMDE structure follows the MQXQH, and is in turn
followed by the application message data (if any). The MQMDE is either:
– Generated by the queue manager (if the application uses a version-2 MQMD

to put the message), or
– Already present at the start of the application message data (if the application

uses a version-1 MQMD to put the message).

© Copyright IBM Corp. 1994, 2000 193

The embedded message descriptor is the one that is returned to the application
in the MSGDSC parameter of the MQGET call when the message is removed from
the final destination queue.

Putting messages on remote queues: When an application puts a message on a
remote queue (either by specifying the name of the remote queue directly, or by
using a local definition of the remote queue), the local queue manager:
v Creates an MQXQH structure containing the embedded message descriptor
v Appends an MQMDE if one is needed and is not already present
v Appends the application message data
v Places the message on an appropriate transmission queue

Character data in the MQXQH structure is in the character set of the local queue
manager (defined by the CodedCharSetId queue manager attribute), and integer
data is in the native machine encoding. These values are stored in the separate
message descriptor, and may be different from the values of the MDCSI and MDENC
fields in the embedded message descriptor, because the latter fields relate to the
application message data and not the MQXQH structure itself.

The fields in the embedded message descriptor have the same values as those in
the MSGDSC parameter of the MQPUT or MQPUT1 call, with the exception of the
following:
v The MDVER field always has the value MDVER1.
v If the MDPRI field has the value PRQDEF, it is replaced by the value of the

queue’s DefPriority attribute.
v If the MDPER field has the value PEQDEF, it is replaced by the value of the

queue’s DefPersistence attribute.
v If the MDMID field has the value MINONE, or the PMNMID option was specified,

or the message is a distribution-list message, MDMID is replaced by a new
message identifier generated by the queue manager.
When a distribution-list message is split into smaller distribution-list messages
placed on different transmission queues, the MDMID field in each of the new
embedded message descriptors is the same as that in the original distribution-list
message.

v If the PMNCID option was specified, MDCID is replaced by a new correlation
identifier generated by the queue manager.

v The context fields are set as indicated by the PM* context options specified in
the PMO parameter; the context fields are the fields MDUID through MDAOD in the
list below.

v The version-2 fields (if they were present) are removed from the MQMD, and
moved into an MQMDE structure, if one or more of the version-2 fields has a
nondefault value.

The fields in the separate message descriptor are set by the queue manager as
shown below. If the queue manager does not support the version-2 MQMD, a
version-1 MQMD is used without loss of function.

Field in separate MQMD Value used
MDSID MDSIDV
MDVER MDVER2
MDREP Copied from the embedded message descriptor, but with the bits

identified by ROAUXM set to zero. (This prevents a COA or COD report
message being generated when a message is placed on or removed from
a transmission queue.)

MDMT Copied from the embedded message descriptor.

MQXQH - Transmission-queue header

194 MQSeries for AS/400, V5.1 APR (ILE RPG)

Field in separate MQMD Value used
MDEXP Copied from the embedded message descriptor.
MDFB Copied from the embedded message descriptor.
MDENC ENNAT
MDCSI Queue manager’s CodedCharSetId attribute.
MDFMT FMXQH
MDPRI Copied from the embedded message descriptor.
MDPER Copied from the embedded message descriptor.
MDMID A new value is generated by the queue manager. This message identifier

is different from the MDMID that the queue manager may have generated
for the embedded message descriptor (see above).

MDCID The MDMID from the embedded message descriptor.
MDBOC 0
MDRQ Copied from the embedded message descriptor.
MDRM Copied from the embedded message descriptor.
MDUID Copied from the embedded message descriptor.
MDACC Copied from the embedded message descriptor.
MDAID Copied from the embedded message descriptor.
MDPAT ATQM
MDPAN First 28 bytes of the queue-manager name.
MDPD Date when message was put on transmission queue.
MDPT Time when message was put on transmission queue.
MDAOD Blanks
MDGID GINONE
MDSEQ 1
MDOFF 0
MDMFL MFNONE
MDOLN OLUNDF

Putting messages directly on transmission queues: It is also possible for an
application to put a message directly on a transmission queue. In this case the
application must prefix the application message data with an MQXQH structure,
and initialize the fields with appropriate values. In addition, the MDFMT field in the
MSGDSC parameter of the MQPUT or MQPUT1 call must have the value FMXQH.

Character data in the MQXQH structure created by the application must be in the
character set of the local queue manager (defined by the CodedCharSetId
queue-manager attribute), and integer data must be in the native machine
encoding. In addition, character data in the MQXQH structure must be padded
with blanks to the defined length of the field; the data must not be ended
prematurely by using a null character, because the queue manager does not
convert the null and subsequent characters to blanks in the MQXQH structure.

Note however that the queue manager does not check that an MQXQH structure is
present, or that valid values have been specified for the fields.

Getting messages from transmission queues: Applications that get messages from
a transmission queue must process the information in the MQXQH structure in an
appropriate fashion. The presence of the MQXQH structure at the beginning of the
application message data is indicated by the value FMXQH being returned in the
MDFMT field in the MSGDSC parameter of the MQGET call. The values returned in the
MDCSI and MDENC fields in the MSGDSC parameter indicate the character set and
encoding of the character and integer data in the MQXQH structure, respectively.
The character set and encoding of the application message data are defined by the
MDCSI and MDENC fields in the embedded message descriptor.

MQXQH - Transmission-queue header

Chapter 21. MQXQH - Transmission queue header 195

Fields
XQSID (4-byte character string)

Structure identifier.

The value must be:

XQSIDV
Identifier for transmission-queue header structure.

The initial value of this field is XQSIDV.

XQVER (10-digit signed integer)
Structure version number.

The value must be:

XQVER1
Version number for transmission-queue header structure.

The following constant specifies the version number of the current version:

XQVERC
Current version of transmission-queue header structure.

The initial value of this field is XQVER1.

XQRQ (48-byte character string)
Name of destination queue.

This is the name of the message queue that is the apparent eventual
destination for the message (this may prove not to be the actual eventual
destination if, for example, this queue is defined at XQRQM to be a local
definition of another remote queue).

If the message is a distribution-list message (that is, the MDFMT field in the
embedded message descriptor is FMDH), XQRQ is blank.

The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

XQRQM (48-byte character string)
Name of destination queue manager.

This is the name of the queue manager that owns the queue that is the
apparent eventual destination for the message.

If the message is a distribution-list message, XQRQM is blank.

The length of this field is given by LNQMN. The initial value of this field is 48
blank characters.

XQMD (MQMD1)
Original message descriptor.

This is the embedded message descriptor, and is a close copy of the message
descriptor MQMD that was specified as the MSGDSC parameter on the MQPUT
or MQPUT1 call when the message was originally put to the remote queue.

MQXQH - Transmission-queue header

196 MQSeries for AS/400, V5.1 APR (ILE RPG)

Note: This is a version-1 MQMD.

The initial values of the fields in this structure are the same as those in the
MQMD structure.

Initial values and RPG declaration
Table 46. Initial values of fields in MQXQH

Field name Name of constant Value of constant

XQSID XQSIDV 'XQHb' (See note 1)

XQVER XQVER1 1

XQRQ None Blanks

XQRQM None Blanks

XQMD Same names and values as for MQMD; see
Table 22 on page 129

Notes:

1. The symbol ‘b’ represents a single blank character.

RPG declaration
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQXQH Structure
D*
D* Structure identifier
D XQSID 1 4
D* Structure version number
D XQVER 5 8I 0
D* Name of destination queue
D XQRQ 9 56
D* Name of destination queue manager
D XQRQM 57 104
D* Original message descriptor
D*
D* Structure identifier
D XQ1SID 105 108
D* Structure version number
D XQ1VER 109 112I 0
D* Report options
D XQ1REP 113 116I 0
D* Message type
D XQ1MT 117 120I 0
D* Expiry time
D XQ1EXP 121 124I 0
D* Feedback or reason code
D XQ1FB 125 128I 0
D* Numeric encoding of message data
D XQ1ENC 129 132I 0
D* Character set identifier of message data
D XQ1CSI 133 136I 0
D* Format name of message data
D XQ1FMT 137 144
D* Message priority
D XQ1PRI 145 148I 0
D* Message persistence
D XQ1PER 149 152I 0
D* Message identifier
D XQ1MID 153 176
D* Correlation identifier
D XQ1CID 177 200

MQXQH - Transmission-queue header

Chapter 21. MQXQH - Transmission queue header 197

D* Backout counter
D XQ1BOC 201 204I 0
D* Name of reply-to queue
D XQ1RQ 205 252
D* Name of reply queue manager
D XQ1RM 253 300
D* User identifier
D XQ1UID 301 312
D* Accounting token
D XQ1ACC 313 344
D* Application data relating to identity
D XQ1AID 345 376
D* Type of application that put the message
D XQ1PAT 377 380I 0
D* Name of application that put the message
D XQ1PAN 381 408
D* Date when message was put
D XQ1PD 409 416
D* Time when message was put
D XQ1PT 417 424
D* Application data relating to origin
D XQ1AOD 425 428

RPG declaration

198 MQSeries for AS/400, V5.1 APR (ILE RPG)

Part 2. Function calls

Chapter 22. Call descriptions 201
Conventions used in the call descriptions 201

Chapter 23. MQBACK - Back out changes . . . 203
Syntax. 203
Parameters 203
Usage notes 204
RPG invocation. 205

Chapter 24. MQBEGIN - Begin unit of work . . 207
Syntax. 207
Parameters 207
Usage notes 208
RPG invocation (ILE) 210

Chapter 25. MQCLOSE - Close object 211
Syntax 211
Parameters 211
Usage notes 214
RPG invocation. 215

Chapter 26. MQCMIT - Commit changes . . . 217
Syntax. 217
Parameters 217
Usage notes 218
RPG invocation. 219

Chapter 27. MQCONN - Connect queue manager 221
Syntax. 221
Parameters 221
Usage notes 224
RPG invocation. 225

Chapter 28. MQCONNX - Connect queue
manager (extended) 227
Syntax. 227
Parameters 227
RPG invocation. 228

Chapter 29. MQDISC - Disconnect queue
manager 229
Syntax. 229
Parameters 229
Usage notes 230
RPG invocation. 230

Chapter 30. MQGET - Get message 231
Syntax. 231
Parameters 231
Usage notes 235
RPG invocation. 239

Chapter 31. MQINQ - Inquire about object
attributes 241
Syntax. 241

Parameters 241
Usage notes 248
RPG invocation. 250

Chapter 32. MQOPEN - Open object 251
Syntax. 251
Parameters 251
Usage notes 259
RPG invocation. 264

Chapter 33. MQPUT - Put message 265
Syntax. 265
Parameters 265
Usage notes 270
RPG invocation. 273

Chapter 34. MQPUT1 - Put one message . . . 275
Syntax. 275
Parameters 275
Usage notes 279
RPG invocation. 281

Chapter 35. MQSET - Set object attributes . . . 283
Syntax. 283
Parameters 283
Usage notes 286
RPG invocation. 287

© Copyright IBM Corp. 1994, 2000 199

Function calls

200 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 22. Call descriptions

This chapter describes the MQI calls:
v MQCLOSE – Close object
v MQCONN – Connect to queue manager
v MQDISC – Disconnect from queue manager
v MQGET – Get message
v MQINQ – Inquire about object attributes
v MQOPEN – Open object
v MQPUT – Put message
v MQPUT1 – Put one message
v MQSET – Set object attributes

Note: The calls associated with data conversion, MQXCNVC and
MQDATACONVEXIT, are in “Appendix F. Data conversion” on page 461.

Conventions used in the call descriptions
For each call, this chapter gives a description of the parameters and usage of the
call. This is followed by typical invocations of the call, and typical declarations of
its parameters, in the RPG programming language.

The description of each call contains the following sections:

Call name
The call name, followed by a brief description of the purpose of the call.

Parameters
For each parameter, the name is followed by its data type in parentheses
() and its direction; for example:

CMPCOD (9-digit decimal integer) — output

There is more information about the structure data types in “Chapter 1.
Elementary data types” on page 3.

The direction of the parameter can be:

Input You (the programmer) must provide this parameter.

Output
The call returns this parameter.

Input/output
You must provide this parameter, but it is modified by the call.

There is also a brief description of the purpose of the parameter, together
with a list of any values that the parameter can take.

The last two parameters in each call are a completion code and a reason
code. The completion code indicates whether the call completed
successfully, partially, or not at all. Further information about the partial
success or the failure of the call is given in the reason code. You will find
more information about each completion and reason code in “Appendix A.
Return codes” on page 357.

© Copyright IBM Corp. 1994, 2000 201

Usage notes
Additional information about the call, describing how to use it and any
restrictions on its use.

RPG invocation
Typical invocation of the call, and declaration of its parameters, in RPG.

Other notational conventions are:

Constants
Names of constants are shown in uppercase; for example, OOOUT.

Arrays
In some calls, parameters are arrays of character strings whose size is not
fixed. In the descriptions of these parameters, a lowercase “n” represents a
numeric constant. When you code the declaration for that parameter,
replace the “n” with the numeric value you require.

Call descriptions

202 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 23. MQBACK - Back out changes

The MQBACK call indicates to the queue manager that all of the message gets and
puts that have occurred since the last syncpoint are to be backed out. Messages put
as part of a unit of work are deleted; messages retrieved as part of a unit of work
are reinstated on the queue.
v On OS/400, this call is not supported for applications running in compatibility

mode.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

COMCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying COMCOD.

If COMCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If COMCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2101

(2101, X'835') Object damaged.
RC2123

(2123, X'84B') Result of commit or back-out operation is mixed.
RC2162

(2162, X'872') Queue manager shutting down.
RC2102

(2102, X'836') Insufficient system resources available.

MQBACK (HCONN, COMCOD, REASON)

© Copyright IBM Corp. 1994, 2000 203

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

See “Appendix A. Return codes” on page 357 for more details.

Usage notes
1. This call can be used only when the queue manager itself coordinates the unit

of work. This is a local unit of work, where the changes affect only MQ
resources.
In environments where the queue manager does not coordinate the unit of
work, the appropriate back-out call must be used instead of MQBACK. The
environment may also support an implicit back out caused by the application
terminating abnormally.
v On OS/400, this call can be used for local units of work coordinated by the

queue manager. This means that a commitment definition must not exist at
job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter
must not have been issued for the job.

2. When an application puts or gets messages in groups or segments of logical
messages, the queue manager retains information relating to the message group
and logical message for the last successful MQPUT and MQGET calls. This
information is associated with the queue handle, and includes such things as:
v The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.
v Whether the message is part of a unit of work.
v For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set
for each of the following:
v The last successful MQPUT call (this can be part of a unit of work).
v The last successful MQGET call that removed a message from the queue (this

can be part of a unit of work).
v The last successful MQGET call that browsed a message on the queue (this

cannot be part of a unit of work).

If the application puts or gets the messages as part of a unit of work, and the
application then decides to back out the unit of work, the group and segment
information is restored to the value that it had previously:
v The information associated with the MQPUT call is restored to the value that

it had prior to the first successful MQPUT call for that queue handle in the
current unit of work.

v The information associated with the MQGET call is restored to the value that
it had prior to the first successful MQGET call for that queue handle in the
current unit of work.

Queues which were updated by the application after the unit of work had
started, but outside the scope of the unit of work, do not have their group and
segment information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit
of work is backed out allows the application to spread a large message group
or large logical message consisting of many segments across several units of
work, and to restart at the correct point in the message group or logical

MQBACK — Back out changes

204 MQSeries for AS/400, V5.1 APR (ILE RPG)

message if one of the units of work fails. Using several units of work may be
advantageous if the local queue manager has only limited queue storage.
However, the application must maintain sufficient information to be able to
restart putting or getting messages at the correct point in the event that a
system failure occurs. For details of how to restart at the correct point after a
system failure, see the PMLOGO option described in “Chapter 14. MQPMO -
Put message options” on page 149, and the GMLOGO option described in
“Chapter 8. MQGMO - Get-message options” on page 51.

The remaining usage notes apply only when the queue manager coordinates the
units of work:
3. A unit of work has the same scope as a connection handle. This means that all

MQ calls which affect a particular unit of work must be performed using the
same connection handle. Calls issued using a different connection handle (for
example, calls issued by another application) affect a different unit of work. See
the HCONN parameter described in “Chapter 27. MQCONN - Connect queue
manager” on page 221 for information about the scope of connection handles.

4. Only messages that were put or retrieved as part of the current unit of work
are affected by this call.

5. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls
within a unit of work, but which never issues a commit or backout call, will
cause queues to fill up with messages that are not available to other
applications.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQBACK(HCONN : COMCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQBACK PR EXTPROC('MQBACK')
D* Connection handle
D HCONN 10I 0 VALUE
D* Completion code
D COMCOD 10I 0
D* Reason code qualifying COMCOD
D REASON 10I 0

Usage notes

Chapter 23. MQBACK - Back out changes 205

RPG invocation

206 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 24. MQBEGIN - Begin unit of work

The MQBEGIN call begins a unit of work that is coordinated by the queue
manager, and that may involve external resource managers.

This call is supported in the following environments: AIX, HP-UX, OS/2, OS/400,
Sun Solaris, Windows NT.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

BEGOP (MQBO) – input/output
Options that control the action of MQBEGIN.

See “Chapter 3. MQBO - Begin options” on page 15 for details.

BEGOP is a reserved parameter. Programs written in C or S/390 assembler can
specify a null parameter address, instead of specifying the address of an
MQBO structure.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2121

(2121, X'849') No participating resource managers registered.
RC2122

(2122, X'84A') Participating resource manager not available.

MQBEGIN (HCONN, BEGOP, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 207

|

If CMPCOD is CCFAIL:
RC2134

(2134, X'856') Begin-options structure not valid.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2012

(2012, X'7DC') Call not valid in environment.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2046

(2046, X'7FE') Options not valid or not consistent.
RC2162

(2162, X'872') Queue manager shutting down.
RC2102

(2102, X'836') Insufficient system resources available.
RC2071

(2071, X'817') Insufficient storage available.
RC2195

(2195, X'893') Unexpected error occurred.
RC2128

(2128, X'850') Unit of work already started.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. The MQBEGIN call can be used to start a unit of work that is coordinated by

the queue manager and that may involve changes to resources owned by other
resource managers.
The queue manager supports three types of unit-of-work:

Queue-manager-coordinated local unit of work
This is a unit of work in which the queue manager is the only resource
manager participating, and so the queue manager acts as the
unit-of-work coordinator.
v To start this type of unit of work, the PMSYP or GMSYP option

should be specified on the first MQPUT, MQPUT1, or MQGET call in
the unit of work.
It is not necessary for the application to issue the MQBEGIN call to
start the unit of work. However, if MQBEGIN is used, the unit of
work is started but the call completes with CCWARN and reason
code RC2121.

v To commit or back out this type of unit of work, the MQCMIT and
MQBACK calls must be used. If the application issues neither call,
the unit of work is committed if the application issues the MQDISC
call, but backed out if the application ends without issuing the
MQDISC call.

Queue-manager-coordinated global unit of work
This is a unit of work in which the queue manager acts as the
unit-of-work coordinator, both for MQ resources and for resources
belonging to other resource managers. Those resource managers

MQBEGIN — Begin unit of work

208 MQSeries for AS/400, V5.1 APR (ILE RPG)

cooperate with the queue manager to ensure that all changes to
resources in the unit of work are committed or backed out together.
v To start this type of unit of work, the MQBEGIN call must be used.
v To commit or back out this type of unit of work, the MQCMIT and

MQBACK calls must be used. If the application issues neither call,
the unit of work is committed if the application issues the MQDISC
call, but backed out if the application ends without issuing the
MQDISC call.

Externally-coordinated global unit of work
This is a unit of work in which the queue manager is a participant, but
the queue manager does not act as the unit-of-work coordinator.
Instead, there is an external unit-of-work coordinator with whom the
queue manager cooperates.
v To start this type of unit of work, the relevant call provided by the

external unit-of-work coordinator must be used.
If the MQBEGIN call is used to try to start the unit of work, the call
fails with reason code RC2012.

v To commit or back out this type of unit of work, the commit and
back-out calls provided by the external unit-of-work coordinator
must be used; the MQCMIT and MQBACK calls cannot be used.

2. An application can participate in only one unit of work at a time. The
MQBEGIN call fails with reason code RC2128 if there is already a unit of work
in existence for the application, regardless of which type of unit of work it is.

3. The MQBEGIN call is not valid in an MQ client environment. An attempt to
use the call fails with reason code RC2012.

4. When the queue manager is acting as the unit-of-work coordinator for global
units of work, the resource managers that can participate in the unit of work
are defined in the queue manager’s configuration file.

5. On OS/400, the three types of unit of work are supported as follows:
v Queue-manager-coordinated local units of work can be used only when a

commitment definition does not exist at the job level, that is, the STRCMTCTL
command with the CMTSCOPE(*JOB) parameter must not have been issued for
the job.

v Queue-manager-coordinated global units of work are not supported.
v Externally-coordinated global units of work can be used only when a

commitment definition exists at job level, that is, the STRCMTCTL command
with the CMTSCOPE(*JOB) parameter must have been issued for the job. If this
has been done, the OS/400 COMMIT and ROLLBACK operations apply to MQ
resources as well as to resources belonging to other participating resource
managers.

Usage notes

Chapter 24. MQBEGIN - Begin unit of work 209

|

|
|
|
|

|

|
|
|
|
|
|

|

RPG invocation (ILE)
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQBEGIN(HCONN : BEGOP : CMPCOD :
C REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQBEGIN PR EXTPROC('MQBEGIN')
D* Connection handle
D HCONN 10I 0 VALUE
D* Options that control the action of MQBEGIN
D BEGOP 12A
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

RPG invocation

210 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 25. MQCLOSE - Close object

The MQCLOSE call relinquishes access to an object, and is the inverse of the
MQOPEN call.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) – input/output
Object handle.

This handle represents the object that is being closed. The object can be of any
type. The value of HOBJ was returned by a previous MQOPEN call.

On successful completion of the call, the queue manager sets this parameter to
a value that is not a valid handle for the environment. This value is:

HOUNUH
Unusable object handle.

OPTS (10-digit signed integer) – input
Options that control the action of MQCLOSE.

The OPTS parameter controls how the object is closed. Only permanent
dynamic queues can be closed in more than one way, being either retained or
deleted; these are queues whose DefinitionType attribute has the value
QDPERM (see the DefinitionType attribute described in “Chapter 38.
Attributes for local queues and model queues” on page 299). The close options
are summarized in Table 47 on page 212.

One (and only one) of the following must be specified:

CONONE
No optional close processing required.

This must be specified for:
v Objects other than queues
v Predefined queues

MQCLOSE (HCONN, HOBJ, OPTS, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 211

|

v Temporary dynamic queues (but only in those cases where HOBJ is
not the handle returned by the MQOPEN call that created the
queue).

v Distribution lists

In all of the above cases, the object is retained and not deleted.

If this option is specified for a temporary dynamic queue:
v The queue is deleted, if it was created by the MQOPEN call that

returned HOBJ; any messages that are on the queue are purged.
v In all other cases the queue (and any messages on it) are retained.

If this option is specified for a permanent dynamic queue, the queue is
retained and not deleted.

CODEL
Delete the queue.

The queue is deleted if either of the following is true:
v It is a permanent dynamic queue, and there are no messages on the

queue and no uncommitted get or put requests outstanding for the
queue (either for the current task or any other task).

v It is the temporary dynamic queue that was created by the
MQOPEN call that returned HOBJ. In this case, all the messages on
the queue are purged.

In all other cases the call fails with reason code RC2045, and the object
is not deleted.

COPURG
Delete the queue, purging any messages on it.

The queue is deleted if either of the following is true:
v It is a permanent dynamic queue and there are no uncommitted get

or put requests outstanding for the queue (either for the current task
or any other task).

v It is the temporary dynamic queue that was created by the
MQOPEN call that returned HOBJ.

In all other cases the call fails with reason code RC2045, and the object
is not deleted.

Table 47. Effect of MQCLOSE options on various types of object and queue. This table shows which close options are
valid, and whether the object is retained or deleted.

Type of object or queue CONONE CODEL COPURG

Object other than a queue retained not valid not valid

Predefined queue retained not valid not valid

Permanent dynamic queue retained deleted if empty and no
pending updates

messages deleted; queue
deleted if no pending updates

Temporary dynamic queue (call issued by
creator of queue)

deleted deleted deleted

Temporary dynamic queue (call not issued
by creator of queue)

retained not valid not valid

Distribution list retained not valid not valid

CMPCOD (10-digit signed integer) – output
Completion code.

MQCLOSE — Close object

212 MQSeries for AS/400, V5.1 APR (ILE RPG)

It is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2241

(2241, X'8C1') Message group not complete.
RC2242

(2242, X'8C2') Logical message not complete.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2035

(2035, X'7F3') Not authorized for access.
RC2101

(2101, X'835') Object damaged.
RC2045

(2045, X'7FD') Option not valid for object type.
RC2046

(2046, X'7FE') Options not valid or not consistent.
RC2058

(2058, X'80A') Queue manager name not valid or not known.
RC2059

(2059, X'80B') Queue manager not available for connection.
RC2162

(2162, X'872') Queue manager shutting down.
RC2055

(2055, X'807') Queue contains one or more messages or uncommitted
put or get requests.

RC2102
(2102, X'836') Insufficient system resources available.

RC2063
(2063, X'80F') Security error occurred.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

See “Appendix A. Return codes” on page 357 for more details.

MQCLOSE — Close object

Chapter 25. MQCLOSE - Close object 213

Usage notes
1. When an application issues the MQDISC call, or ends either normally or

abnormally, any objects that were opened by the application and are still open
are closed automatically with the CONONE option.

2. The following points apply if the object being closed is a queue:
v If operations on the queue were performed as part of a unit of work, the

queue can be closed before or after the syncpoint occurs without affecting the
outcome of the syncpoint.

v If the queue was opened with the OOBRW option, the browse cursor is
destroyed. If the queue is subsequently reopened with the OOBRW option, a
new browse cursor is created (see the OOBRW option described in
MQOPEN).

v If a message is currently locked for this handle at the time of the MQCLOSE
call, the lock is released (see the GMLK option described in “Chapter 8.
MQGMO - Get-message options” on page 51).

3. The following points apply if the object being closed is a dynamic queue (either
permanent or temporary):
v For a dynamic queue, the options CODEL or COPURG can be specified

regardless of the options specified on the corresponding MQOPEN call.
v When a dynamic queue is deleted, all MQGET calls with the GMWT option

that are outstanding against the queue are canceled and reason code RC2052
is returned. See the GMWT option described in “Chapter 8. MQGMO -
Get-message options” on page 51.
After a dynamic queue has been deleted, any call (other than MQCLOSE)
that attempts to reference the queue using a previously acquired HOBJ handle
fails with reason code RC2052.
Be aware that although a deleted queue cannot be accessed by applications,
the queue is not removed from the system, and associated resources are not
freed, until such time as all handles that reference the queue have been
closed, and all units of work that affect the queue have been either
committed or backed out.

v When a permanent dynamic queue is deleted, if the HOBJ handle specified on
the MQCLOSE call is not the one that was returned by the MQOPEN call
that created the queue, a check is made that the user identifier which was
used to validate the MQOPEN call is authorized to delete the queue. If the
OOALTU option was specified on the MQOPEN call, the user identifier
checked is the ODAU.
This check is not performed if:
– The handle specified is the one returned by the MQOPEN call that created

the queue.
– The queue being deleted is a temporary dynamic queue.

v When a temporary dynamic queue is closed, if the HOBJ handle specified on
the MQCLOSE call is the one that was returned by the MQOPEN call that
created the queue, the queue is deleted. This occurs regardless of the close
options specified on the MQCLOSE call. If there are messages on the queue,
they are discarded; no report messages are generated.
If there are uncommitted units of work that affect the queue, the queue and
its messages are still deleted, but this does not cause the units of work to fail.
However, as described above, the resources associated with the units of work
are not freed until each of the units of work has been either committed or
backed out.

Usage notes

214 MQSeries for AS/400, V5.1 APR (ILE RPG)

4. The following points apply if the object being closed is a distribution list:
v The only valid close option for a distribution list is CONONE; the call fails

with reason code RC2046 or RC2045 if any other options are specified.
v When a distribution list is closed, individual completion codes and reason

codes are not returned for the queues in the list – only the CMPCOD and REASON
parameters of the call are available for diagnostic purposes.
If a failure occurs closing one of the queues, the queue manager continues
processing and attempts to close the remaining queues in the distribution
list. The CMPCOD and REASON parameters of the call are then set to return
information describing the failure. Thus it is possible for the completion code
to be CCFAIL, even though most of the queues were closed successfully. The
queue that encountered the error is not identified.
If there is a failure on more than one queue, it is not defined which failure is
reported in the CMPCOD and REASON parameters.

5. On OS/400, if the application was connected implicitly when the first
MQOPEN call was issued, an implicit MQDISC occurs when the last
MQCLOSE is issued.
Only applications running in compatibility mode can be connected implicitly;
other applications must issue the MQCONN or MQCONNX call to connect to
the queue manager explicitly.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQCLOSE(HCONN : HOBJ : OPTS :
C CMPCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQCLOSE PR EXTPROC('MQCLOSE')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object handle
D HOBJ 10I 0
D* Options that control the action of MQCLOSE
D OPTS 10I 0 VALUE
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

Usage notes

Chapter 25. MQCLOSE - Close object 215

Usage notes

216 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 26. MQCMIT - Commit changes

The MQCMIT call indicates to the queue manager that the application has reached
a syncpoint, and that all of the message gets and puts that have occurred since the
last syncpoint are to be made permanent. Messages put as part of a unit of work
are made available to other applications; messages retrieved as part of a unit of
work are deleted.
v On OS/400, this call is not supported for applications running in compatibility

mode.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

COMCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying COMCOD.

If COMCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If COMCOD is CCWARN:
RC2003

(2003, X'7D3') Unit of work encountered fatal error or backed out.
RC2124

(2124, X'84C') Result of commit operation is pending.

If COMCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.

MQCMIT (HCONN, COMCOD, REASON)

© Copyright IBM Corp. 1994, 2000 217

RC2018
(2018, X'7E2') Connection handle not valid.

RC2101
(2101, X'835') Object damaged.

RC2123
(2123, X'84B') Result of commit or back-out operation is mixed.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

See “Appendix A. Return codes” on page 357 for more details.

Usage notes
1. This call can be used only when the queue manager itself coordinates the unit

of work. This is a local unit of work, where the changes affect only MQ
resources.
In environments where the queue manager does not coordinate the unit of
work, the appropriate commit call must be used instead of MQCMIT. The
environment may also support an implicit commit caused by the application
terminating normally.
v On OS/400, this call can be used for local units of work coordinated by the

queue manager. This means that a commitment definition must not exist at
job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter
must not have been issued for the job.

2. When an application puts or gets messages in groups or segments of logical
messages, the queue manager retains information relating to the message group
and logical message for the last successful MQPUT and MQGET calls. This
information is associated with the queue handle, and includes such things as:
v The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.
v Whether the message is part of a unit of work.
v For the MQPUT call: whether the message is persistent or nonpersistent.

When a unit of work is committed, the queue manager retains the group and
segment information, and the application can continue putting or getting
messages in the current message group or logical message.

Retaining the group and segment information when a unit of work is
committed allows the application to spread a large message group or large
logical message consisting of many segments across several units of work.
Using several units of work may be advantageous if the local queue manager
has only limited queue storage. However, the application must maintain
sufficient information to be able to restart putting or getting messages at the
correct point in the event that a system failure occurs. For details of how to
restart at the correct point after a system failure, see the PMLOGO option
described in “Chapter 14. MQPMO - Put message options” on page 149, and the
GMLOGO option described in “Chapter 8. MQGMO - Get-message options” on
page 51.

MQCMIT — Commit changes

218 MQSeries for AS/400, V5.1 APR (ILE RPG)

The remaining usage notes apply only when the queue manager coordinates the
units of work:
3. A unit of work has the same scope as a connection handle. This means that all

MQ calls which affect a particular unit of work must be performed using the
same connection handle. Calls issued using a different connection handle (for
example, calls issued by another application) affect a different unit of work. See
the HCONN parameter described in MQCONN for information about the scope of
connection handles.

4. Only messages that were put or retrieved as part of the current unit of work
are affected by this call.

5. If an application ends without issuing the MQCMIT or MQBACK call when
there are uncommitted changes within a unit of work, the disposition of those
changes depends on how the application ends:
v If the application issues the MQDISC call before ending, that call causes the

unit of work to be committed.
v If the application does not issue the MQDISC call but otherwise ends

normally, the unit of work is backed out.
v If the application ends abnormally, the unit of work is backed out; this has

the same effect as the application issuing the MQBACK call.
6. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls

within a unit of work, but which never issues a commit or back-out call, will
cause queues to fill up with messages that are not available to other
applications.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQCMIT(HCONN : COMCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQCMIT PR EXTPROC('MQCMIT')
D* Connection handle
D HCONN 10I 0 VALUE
D* Completion code
D COMCOD 10I 0
D* Reason code qualifying COMCOD
D REASON 10I 0

Usage notes

Chapter 26. MQCMIT - Commit changes 219

RPG invocation

220 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 27. MQCONN - Connect queue manager

The MQCONN call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent message queuing calls.
v On OS/400®, applications running in compatibility mode do not have to issue

this call. These applications are connected automatically to the queue manager
when they issue the first MQOPEN call. However, the MQCONN and MQDISC
calls are still accepted from OS/400 applications.
Other applications (that is, applications not running in compatibility mode) must
use the MQCONN or MQCONNX call to connect to the queue manager, and the
MQDISC call to disconnect from the queue manager. This is the recommended
style of programming.

Syntax

Parameters
QMNAME (48-byte character string) – input

Name of queue manager.

This is the name of the queue manager to which the application wishes to
connect. The name can contain the following characters:
v Uppercase alphabetic characters (A through Z)
v Lowercase alphabetic characters (a through z)
v Numeric digits (0 through 9)
v Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but may contain
trailing blanks. A null character can be used to indicate the end of significant
data in the name; the null and any characters following it are treated as blanks.

The following restrictions apply in the environments indicated:
v On OS/400, names containing lowercase characters, forward slash, or

percent must be enclosed in quotation marks when specified on commands.
These quotation marks must not be specified in the QMNAME parameter.

If the name consists entirely of blanks, the name of the default queue manager
is used.

The name specified for QMNAME must be the name of a connectable queue
manager.

MQ client applications: For MQ client applications, a connection is attempted
for each client-connection channel definition with the specified queue-manager
name, until one is successful. The queue manager, however, must have the
same name as the specified name. If an all-blank name is specified, each

MQCONN (QMNAME, HCONN, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 221

client-connection channel with an all-blank queue-manager name is tried until
one is successful; in this case there is no check against the actual name of the
queue manager.

Queue-manager groups: If the specified name starts with an asterisk (*), the
actual queue manager to which connection is made may have a name that is
different from that specified by the application. The specified name (without
the asterisk) defines a group of queue managers that are eligible for connection.
The implementation selects one from the group by trying each one in turn (in
no defined order) until one is found to which a connection can be made. If
none of the queue managers in the group is available for connection, the call
fails. Each queue manager is tried once only. If an asterisk alone is specified for
the name, an implementation-defined default queue-manager group is used.

Queue-manager groups are supported only for applications running in a client
environment; the call fails if a non-client application specifies a queue-manager
name beginning with an asterisk. A group is defined by providing several
client connection channel definitions with the same queue-manager name (the
specified name without the asterisk), to communicate with each of the queue
managers in the group. The default group is defined by providing one or more
client connection channel definitions, each with a blank queue-manager name
(specifying an all-blank name therefore has the same effect as specifying a
single asterisk for the name for a client application).

After connecting to one queue manager of a group, an application can specify
blanks in the usual way in the queue-manager name fields in the message and
object descriptors to mean the name of the queue manager to which the
application has actually connected (the local queue manager). If the application
needs to know this name, the MQINQ call can be issued to inquire the
QMgrName queue-manager attribute.

Prefixing an asterisk to the connection name in this way implies that the
application is not sensitive to which queue manager in the group the
application is connected. This will not be suitable for certain types of
application, for example those which need to get messages from a particular
queue at a particular queue manager; such applications should not prefix the
name with an asterisk. Use of queue-manager groups is suitable for
applications that put messages, and/or get messages from temporary dynamic
queues which they have created.

Note that if an asterisk is specified, the maximum length of the remainder of
the name is 47 characters.

The length of this parameter is given by LNQMN.

HCONN (10-digit signed integer) – output
Connection handle.

This handle represents the connection to the queue manager. It must be
specified on all subsequent message queuing calls issued by the application. It
ceases to be valid when the MQDISC call is issued, or when the unit of
processing that defines the scope of the handle terminates.

MQCONN — Connect queue manager

222 MQSeries for AS/400, V5.1 APR (ILE RPG)

The scope of the handle is restricted to the smallest unit of parallel processing
supported by the platform on which the application is running; the handle is
not valid outside the unit of parallel processing from which the MQCONN call
was issued.
v On OS/400, the scope of the handle is the job issuing the call.

On OS/400 for applications running in compatibility mode, the value returned
is:

HCDEFH
Default connection handle.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2002

(2002, X'7D2') Application already connected.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2267

(2267, X'8DB') Unable to load cluster workload exit.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2273

(2273, X'8E1') Error processing MQCONN call.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2035

(2035, X'7F3') Not authorized for access.
RC2137

(2137, X'859') Object not opened successfully.
RC2058

(2058, X'80A') Queue manager name not valid or not known.
RC2059

(2059, X'80B') Queue manager not available for connection.
RC2161

(2161, X'871') Queue manager quiescing.
RC2162

(2162, X'872') Queue manager shutting down.

MQCONN — Connect queue manager

Chapter 27. MQCONN - Connect queue manager 223

|
|

|
|

|
|

RC2102
(2102, X'836') Insufficient system resources available.

RC2063
(2063, X'80F') Security error occurred.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. The queue manager to which connection is made using the MQCONN call is

called the local queue manager.
2. Queues that belong to the local queue manager appear to the application as

local queues. It is possible to put messages on and get messages from local
queues.
Queues belonging to remote queue managers appear as remote queues. It is
possible to put messages on remote queues, but not possible to get messages
from remote queues.

3. If the queue manager fails while an application is running, the application must
issue the MQCONN call again in order to obtain a new connection handle to
use on subsequent MQ calls. The application can issue the MQCONN call
periodically until the call succeeds.
If an application is not sure whether it is connected to the queue manager, the
application can safely issue an MQCONN call in order to obtain a connection
handle. If the application is already connected, the handle returned is the same
as that returned by the previous MQCONN call, but with completion code
CCWARN and reason code RC2002.

4. When the application has finished using MQ calls, the application should use
the MQDISC call to disconnect from the queue manager.

5. On OS/400, applications written for previous releases of the queue manager
can run without the need for recompilation. This is called compatibility mode.
This mode of operation provides a compatible run-time environment for
applications. It comprises the following:
v The service program AMQZSTUB residing in the library QMQM.

AMQZSTUB provides the same public interface as previous releases, and has
the same signature. This service program can be used to access the MQI
through bound procedure calls.

v The program QMQM residing in the library QMQM.
QMQM provides a means of accessing the MQI through dynamic program
calls.

v Programs MQCLOSE, MQCONN, MQDISC, MQGET, MQINQ, MQOPEN,
MQPUT, MQPUT1, and MQSET residing in the library QMQM.
These programs also provide a means of accessing the MQI through dynamic
program calls, but with a parameter list that corresponds to the standard
descriptions of the MQ calls.

MQCONN — Connect queue manager

224 MQSeries for AS/400, V5.1 APR (ILE RPG)

These three interfaces do not include capabilities that were introduced in
version 5.1. For example, the MQBACK, MQCMIT, and MQCONNX calls are
not supported. The support provided by these interfaces is for single-threaded
applications only.

Support for the new MQ calls in single-threaded applications, and for all MQ
calls in multi-threaded applications, is provided through the service programs
LIBMQM and LIBMQM_R respectively.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQCONN(QMNAME : HCONN : CMPCOD :
C REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQCONN PR EXTPROC('MQCONN')
D* Name of queue manager
D QMNAME 48A
D* Connection handle
D HCONN 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

Usage notes

Chapter 27. MQCONN - Connect queue manager 225

Usage notes

226 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 28. MQCONNX - Connect queue manager (extended)

The MQCONNX call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent MQ calls.

The MQCONNX call is similar to the MQCONN call, except that MQCONNX
allows options to be specified to control the way that the call works.
v On OS/400, this call is not supported for applications running in compatibility

mode.

Syntax

Parameters
QMNAME (48-byte character string) – input

Name of queue manager.

See the QMNAME parameter described in “Chapter 27. MQCONN - Connect
queue manager” on page 221 for details.

CNOPT (MQCNO) – input/output
Options that control the action of MQCONNX.

See “Chapter 5. MQCNO - Connect options” on page 31 for details.

HCONN (10-digit signed integer) – output
Connection handle.

See the HCONN parameter described in “Chapter 27. MQCONN - Connect queue
manager” on page 221 for details.

CMPCOD (10-digit signed integer) – output
Completion code.

See the CMPCOD parameter described in “Chapter 27. MQCONN - Connect
queue manager” on page 221 for details.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

See the REASON parameter described in “Chapter 27. MQCONN - Connect
queue manager” on page 221 for details of possible reason codes.

The following additional reason codes can be returned by the MQCONNX call:

If CMPCOD is CCFAIL:
RC2278

(2278, X'8E6') Client connection fields not valid.
RC2139

(2139, X'85B') Connect-options structure not valid.

MQCONNX (QMNAME, CNOPT, HCONN, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 227

RC2046
(2046, X'7FE') Options not valid or not consistent.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQCONNX(QMNAME : CNOPT : HCONN :
C CMPCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQCONNX PR EXTPROC('MQCONNX')
D* Name of queue manager
D QMNAME 48A
D* Options that control the action of MQCONNX
D CNOPT 32A
D* Connection handle
D HCONN 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

MQCONNX — Connect queue manager (extended)

228 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 29. MQDISC - Disconnect queue manager

The MQDISC call breaks the connection between the queue manager and the
application program, and is the inverse of the MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, this call is not
necessary. See “Chapter 27. MQCONN - Connect queue manager” on page 221 for
more information.

Syntax

Parameters
HCONN (10-digit signed integer) – input/output

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

On successful completion of the call, the queue manager sets HCONN to a value
that is not a valid handle for the environment. This value is:

HCUNUH
Unusable connection handle.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:

MQDISC (HCONN, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 229

|

RC2219
(2219, X'8AB') MQI call reentered before previous call complete.

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. If an MQDISC call is issued when the application still has objects open, these

objects are implicitly closed, with the close options set to CONONE.
2. On OS/400 for applications running in compatibility mode, this call need not

be used; see the MQCONN call for more details.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQDISC(HCONN : CMPCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQDISC PR EXTPROC('MQDISC')
D* Connection handle
D HCONN 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

MQDISC — Disconnect queue manager

230 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 30. MQGET - Get message

The MQGET call retrieves a message from a local queue that has been opened
using the MQOPEN call.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) – input
Object handle.

This handle represents the queue from which a message is to be retrieved. The
value of HOBJ was returned by a previous MQOPEN call. The queue must have
been opened with one or more of the following options (see “Chapter 32.
MQOPEN - Open object” on page 251 for details):

OOINPS
OOINPX
OOINPQ
OOBRW

MSGDSC (MQMD) – input/output
Message descriptor.

This structure describes the attributes of the message required, and the
attributes of the message retrieved. See “Chapter 10. MQMD - Message
descriptor” on page 83 for details.

If BUFLEN is less than the message length, MSGDSC is still filled in by the queue
manager, whether or not GMATM is specified on the GMO parameter (see the
GMOPT field described in “Chapter 8. MQGMO - Get-message options” on
page 51).

If the application provides a version-1 MQMD, the message returned has an
MQMDE prefixed to the application message data, but only if one or more of
the fields in the MQMDE has a nondefault value. If all of the fields in the
MQMDE have default values, the MQMDE is omitted. A format name of
FMMDE in the MDFMT field in MQMD indicates that an MQMDE is present.

MQGET (HCONN, HOBJ, MSGDSC, GMO, BUFLEN, BUFFER, DATLEN,
CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 231

|

GMO (MQGMO) – input/output
Options that control the action of MQGET.

See “Chapter 8. MQGMO - Get-message options” on page 51 for details.

BUFLEN (10-digit signed integer) – input
Length in bytes of the BUFFER area.

Zero can be specified for messages that have no data, or if the message is to be
removed from the queue and the data discarded (GMATM must be specified in
this case).

Note: The length of the longest message that it is possible to read from the
queue is given by the MaxMsgLength local queue attribute; see
“Chapter 38. Attributes for local queues and model queues” on page 299.

BUFFER (1-byte bit string×BUFLEN) – output
Area to contain the message data.

If BUFLEN is less than the message length, as much of the message as possible is
moved into BUFFER; this happens whether or not GMATM is specified on the
GMO parameter (see the GMOPT field described in “Chapter 8. MQGMO -
Get-message options” on page 51 for more information).

The character set and encoding of the data in BUFFER are given (respectively)
by the MDCSI and MDENC fields returned in the MSGDSC parameter. If these are
different from the values required by the receiver, the receiver must convert the
application message data to the character set and encoding required. The
GMCONV option can be used with a user-written exit to perform the
conversion of the message data (see “Chapter 8. MQGMO - Get-message
options” on page 51 for details of this option).

Note: All of the other parameters on the MQGET call are in the character set
and encoding of the local queue manager (given by the CodedCharSetId
queue-manager attribute and ENNAT, respectively).

If the call fails, the contents of the buffer may still have changed.

DATLEN (10-digit signed integer) – output
Length of the message.

This is the length in bytes of the application data in the message. If this is
greater than BUFLEN, only BUFLEN bytes are returned in the BUFFER parameter
(that is, the message is truncated). If the value is zero, it means that the
message contains no application data.

If BUFLEN is less than the message length, DATLEN is still filled in by the queue
manager, whether or not GMATM is specified on the GMO parameter (see the
GMOPT field described in “Chapter 8. MQGMO - Get-message options” on
page 51 for more information). This allows the application to determine the
size of the buffer required to accommodate the message data, and then reissue
the call with a buffer of the appropriate size.

However, if the GMCONV option is specified, and the converted message data
is too long to fit in BUFFER, the value returned for DATLEN is:
v The length of the unconverted data, for queue-manager defined formats.

MQGET — Get message

232 MQSeries for AS/400, V5.1 APR (ILE RPG)

In this case, if the nature of the data causes it to expand during conversion,
the application must allocate a buffer somewhat bigger than the value
returned by the queue manager for DATLEN.

v The value returned by the data-conversion exit, for application-defined
formats.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

The reason codes listed below are the ones that the queue manager can return
for the REASON parameter. If the application specifies the GMCONV option, and
a user-written exit is invoked to convert some or all of the message data, it is
the exit that decides what value is returned for the REASON parameter. As a
result, values other than those documented below are possible.

If CMPCOD is CCOK :
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2120

(2120, X'848') Converted data too big for buffer.
RC2190

(2190, X'88E') Converted string too big for field.
RC2150

(2150, X'866') DBCS string not valid.
RC2110

(2110, X'83E') Message format not valid.
RC2243

(2243, X'8C3') Message segments have differing CCSIDs.
RC2244

(2244, X'8C4') Message segments have differing encodings.
RC2209

(2209, X'8A1') No message locked.
RC2119

(2119, X'847') Message data not converted.
RC2145

(2145, X'861') Source buffer parameter not valid.
RC2111

(2111, X'83F') Source coded character set identifier not valid.
RC2113

(2113, X'841') Packed-decimal encoding in message not recognized.
RC2114

(2114, X'842') Floating-point encoding in message not recognized.
RC2112

(2112, X'840') Source integer encoding not recognized.

MQGET — Get message

Chapter 30. MQGET - Get message 233

|
|
|
|

|
|

RC2143
(2143, X'85F') Source length parameter not valid.

RC2146
(2146, X'862') Target buffer parameter not valid.

RC2115
(2115, X'843') Target coded character set identifier not valid.

RC2117
(2117, X'845') Packed-decimal encoding specified by receiver not
recognized.

RC2118
(2118, X'846') Floating-point encoding specified by receiver not
recognized.

RC2116
(2116, X'844') Target integer encoding not recognized.

RC2079
(2079, X'81F') Truncated message returned (processing completed).

RC2080
(2080, X'820') Truncated message returned (processing not completed).

If CMPCOD is CCFAIL:
RC2004

(2004, X'7D4') Buffer parameter not valid.
RC2005

(2005, X'7D5') Buffer length parameter not valid.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2010

(2010, X'7DA') Data length parameter not valid.
RC2016

(2016, X'7E0') Gets inhibited for the queue.
RC2186

(2186, X'88A') Get-message options structure not valid.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2241

(2241, X'8C1') Message group not complete.
RC2242

(2242, X'8C2') Logical message not complete.
RC2259

(2259, X'8D3') Inconsistent browse specification.
RC2245

(2245, X'8C5') Inconsistent unit-of-work specification.
RC2246

(2246, X'8C6') Message under cursor not valid for retrieval.
RC2247

(2247, X'8C7') Match options not valid.
RC2026

(2026, X'7EA') Message descriptor not valid.
RC2250

(2250, X'8CA') Message sequence number not valid.
RC2033

(2033, X'7F1') No message available.

MQGET — Get message

234 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|

RC2034
(2034, X'7F2') Browse cursor not positioned on message.

RC2036
(2036, X'7F4') Queue not open for browse.

RC2037
(2037, X'7F5') Queue not open for input.

RC2041
(2041, X'7F9') Object definition changed since opened.

RC2101
(2101, X'835') Object damaged.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2052
(2052, X'804') Queue has been deleted.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2071
(2071, X'817') Insufficient storage available.

RC2024
(2024, X'7E8') No more messages can be handled within current unit of
work.

RC2072
(2072, X'818') Syncpoint support not available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2090
(2090, X'82A') Wait interval in MQGMO not valid.

RC2256
(2256, X'8D0') Wrong version of MQGMO supplied.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. The message retrieved is normally deleted from the queue. This deletion can

occur as part of the MQGET call itself, or as part of a syncpoint. Message
deletion does not occur if an GMBRWF or GMBRWN option is specified on the
GMO parameter (see the GMOPT field described in “Chapter 8. MQGMO -
Get-message options” on page 51).
If the GMLK option is specified with one of the browse options, the browsed
message is locked so that it is visible only to this handle.

MQGET — Get message

Chapter 30. MQGET - Get message 235

If the GMUNLK option is specified, a previously-locked message is unlocked.
No message is retrieved in this case, and the MSGDSC, BUFLEN, BUFFER and DATLEN
parameters are not checked or altered.

2. If the application issuing the MQGET call is running as an MQ client, it is
possible for the message retrieved to be lost if during the processing of the
MQGET call the MQ client terminates abnormally or the client connection is
severed. This arises because the surrogate that is running on the
queue-manager’s platform and which issues the MQGET call on the client’s
behalf cannot detect the loss of the client until the surrogate is about to return
the message to the client; this is after the message has been removed from the
queue. This can occur for both persistent messages and nonpersistent messages.
The risk of losing messages in this way can be eliminated by always retrieving
messages within units of work (that is, by specifying the GMSYP option on the
MQGET call, and using the MQCMIT or MQBACK calls to commit or back out
the unit of work when processing of the message is complete). If GMSYP is
specified, and the client terminates abnormally or the connection is severed, the
surrogate backs out the unit of work on the queue manager and the message is
reinstated on the queue.
In principle, the same situation can arise with applications that are running on
the queue-manager’s platform, but in this case the window during which a
message can be lost is very small. However, as with MQ clients the risk can be
eliminated by retrieving the message within a unit of work.

3. If an application puts a sequence of messages on the same queue without using
message groups, the order of those messages is preserved provided that certain
conditions are satisfied. See the usage notes in the description of the MQPUT
call for details. If the conditions are satisfied, the messages will be presented to
the receiving application in the order in which they were sent, provided that:
v Only one receiver is getting messages from the queue.

If there are two or more applications getting messages from the queue, they
must agree with the sender the mechanism to be used to identify messages
that belong to a sequence. For example, the sender could set all of the MDCID
fields in the messages in a sequence to a value that was unique to that
sequence of messages.

v The receiver does not deliberately change the order of retrieval, for example
by specifying a particular MDMID or MDCID.

If the sending application put the messages as a message group, the messages
will be presented to the receiving application in the correct order provided that
the receiving application specifies the GMLOGO option on the MQGET call.
For more information about message groups, see:
v MDMFL field in MQMD
v PMLOGO option in MQPMO
v GMLOGO option in MQGMO

4. Applications should test for the feedback code FBQUIT in the MDFB field of the
MSGDSC parameter. If this value is found, the application should end. See the
MDFB field described in “Chapter 10. MQMD - Message descriptor” on page 83
for more information.

5. If the queue identified by HOBJ was opened with the OOSAVA option, and the
completion code from the MQGET call is CCOK or CCWARN, the context
associated with the queue handle HOBJ is set to the context of the message that
has been retrieved (unless the GMBRWF or GMBRWN option is set, in which
case it is marked as not available). This context can be used on a subsequent

Usage notes

236 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPUT or MQPUT1 call (for example, when a message is forwarded to
another queue). For more information on message context, see the MQSeries
Application Programming Guide.

6. If the GMCONV option is included in the GMO parameter, the application
message data is converted to the representation requested by the receiving
application, before the data is placed in the BUFFER parameter:
v The MDFMT field in the control information in the message identifies the

structure of the application data, and the MDCSI and MDENC fields in the
control information in the message specify its character-set identifier and
encoding.

v The application issuing the MQGET call specifies in the MDCSI and MDENC
fields in the MSGDSC parameter the character-set identifier and encoding to
which the application message data should be converted.

v If the MDCSI and MDENC values in the control information in the message are
identical to those in the MSGDSC parameter, no conversion is necessary.

When conversion of the message data is necessary, the conversion is performed
either by the queue manager itself or by a user-written exit, depending on the
value of the MDFMT field in the control information in the message:
v The format names listed below are formats that are converted automatically

by the queue manager; these are called “built-in” formats:
FMADMN
FMCICS
FMCMD1
FMCMD2
FMDLH
FMDH
FMEVNT
FMIMS
FMIMVS
FMMDE
FMPCF
FMRMH
FMSTR
FMTM
FMXQH

v The format name FMNONE is a special value that indicates that the nature
of the data in the message is undefined. As a consequence, the queue
manager does not attempt conversion when the message is retrieved from
the queue.

Note: If GMCONV is specified on the MQGET call for a message that has a
format name of FMNONE, and the character set or encoding of the
message differs from that specified in the MSGDSC parameter, the
message is still returned in the BUFFER parameter (assuming no other
errors), but the call completes with completion code CCWARN and
reason code RC2110.

FMNONE can be used either when the nature of the message data means
that it does not require conversion, or when the sending and receiving
applications have agreed between themselves the form in which the message
data should be sent.

v All other format names cause the message to be passed to a user-written exit
for conversion. The exit has the same name as the format, apart from

Usage notes

Chapter 30. MQGET - Get message 237

|

environment-specific additions. User-specified format names should not
begin with the letters “MQ”, as such names may conflict with format names
supported in the future.
See “Appendix F. Data conversion” on page 461 for details of the
data-conversion exit.

User data in the message can be converted between any supported character
sets and encodings. However, be aware that if the message contains one or
more MQ header structures, the message cannot be converted from or to a
character set that has double-byte or multi-byte characters for any of the
characters that are valid in queue names. Reason code RC2111 or RC2115
results if this is attempted, and the message is returned unconverted. Unicode
character set UCS-2 is an example of such a character set.

On return from MQGET, the following reason code indicates that the message
was converted successfully:

RCNONE

The following reason code indicates that the message may have been converted
successfully; the application should check the MDCSI and MDENC fields in the
MSGDSC parameter to find out:

RC2079

All other reason codes indicate that the message was not converted.

Note: The interpretation of the reason code described above will be true for
conversions performed by user-written exits only if the exit conforms to
the processing guidelines described in “Appendix F. Data conversion” on
page 461.

7. For the built-in formats listed above, the queue manager may perform default
conversion of character strings in the message when the GMCONV option is
specified. Default conversion allows the queue manager to use an
installation-specified default character set that approximates the actual
character set, when converting string data. As a result, the MQGET call can
succeed with completion code CCOK, instead of completing with CCWARN
and reason code RC2111 or RC2115.

Note: The result of using an approximate character set to convert string data is
that some characters may be converted incorrectly. This can be avoided
by using in the string only characters which are common to both the
actual character set and the default character set.

Default conversion applies both to the application message data and to
character fields in the MQMD and MQMDE structures:
v Default conversion of the application message data occurs only when all of

the following are true:
– The application specifies GMCONV.
– The message contains data that must be converted either from or to a

character set which is not supported.
– Default conversion was enabled when the queue manager was installed or

restarted.
v Default conversion of the character fields in the MQMD and MQMDE

structures occurs as necessary, provided that default conversion is enabled
for the queue manager. The conversion is performed even if the GMCONV
option is not specified by the application on the MQGET call.

Usage notes

238 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|
|
|

8. The BUFFER parameter shown in the RPG programming example is declared as
a string; this restricts the maximum length of the parameter to 256 bytes. If a
larger buffer is required, the parameter should be declared instead as a
structure, or as a field in a physical file.
Declaring the parameter as a structure increases the maximum length possible
to 9999 bytes, while declaring the parameter as a field in a physical file
increases the maximum length possible to approximately 32K bytes.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQGET(HCONN : HOBJ : MSGDSC : GMO :
C BUFLEN : BUFFER : DATLEN :
C CMPCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQGET PR EXTPROC('MQGET')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object handle
D HOBJ 10I 0 VALUE
D* Message descriptor
D MSGDSC 364A
D* Options that control the action of MQGET
D GMO 100A
D* Length in bytes of the BUFFER area
D BUFLEN 10I 0 VALUE
D* Area to contain the message data
D BUFFER * VALUE
D* Length of the message
D DATLEN 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

Usage notes

Chapter 30. MQGET - Get message 239

Usage notes

240 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 31. MQINQ - Inquire about object attributes

The MQINQ call returns an array of integers and a set of character strings
containing the attributes of an object. The following types of object are valid:
v Queue
v Namelist
v Process definition
v Queue manager

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) – input
Object handle.

This handle represents the object (of any type) whose attributes are required.
The handle must have been returned by a previous MQOPEN call that
specified the OOINQ option.

SELCNT (10-digit signed integer) – input
Count of selectors.

This is the count of selectors that are supplied in the SELS array. It is the
number of attributes that are to be returned. Zero is a valid value. The
maximum number allowed is 256.

SELS (10-digit signed integer×SELCNT) – input
Array of attribute selectors.

This is an array of SELCNT attribute selectors; each selector identifies an
attribute (integer or character) whose value is required.

Each selector must be valid for the type of object that HOBJ represents,
otherwise the call fails with completion code CCFAIL and reason code RC2067.

In the special case of queues:
v If the selector is not valid for queues of any type, the call fails with

completion code CCFAIL and reason code RC2067.

MQINQ (HCONN, HOBJ, SELCNT, SELS, IACNT, INTATR, CALEN,
CHRATR, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 241

|

|

v If the selector is applicable only to queues of type or types other than that of
the object, the call succeeds with completion code CCWARN and reason
code RC2068.

Selectors can be specified in any order. Attribute values that correspond to
integer attribute selectors (IA* selectors) are returned in INTATR in the same
order in which these selectors occur in SELS. Attribute values that correspond
to character attribute selectors (CA* selectors) are returned in CHRATR in the
same order in which those selectors occur. IA* selectors can be interleaved with
the CA* selectors; only the relative order within each type is important.

Notes:

1. The integer and character attribute selectors are allocated within two
different ranges; the IA* selectors reside within the range IAFRST through
IALAST, and the CA* selectors within the range CAFRST through CALAST.
For each range, the constants IALSTU and CALSTU define the highest
value that the queue manager will accept.

2. If all of the IA* selectors occur first, the same element numbers can be used
to address corresponding elements in the SELS and INTATR arrays.

For the CA* selectors in the following descriptions, the constant that defines
the length in bytes of the resulting string in CHRATR is given in parentheses.

Selectors for queue manager
CAALTD

Date of most-recent alteration (LNDATE).
CAALTT

Time of most-recent alteration (LNTIME).
CACADX

Automatic channel definition exit name (LNEXN).
CACLWD

Data passed to cluster workload exit (LNEXDA).
CACLWX

Name of cluster workload exit (LNEXN).
CACMDQ

System command input queue name (LNQN).
CADLQ

Name of dead-letter queue (LNQN).
CADXQN

Default transmission queue name (LNQN).
CAQMD

Queue manager description (LNQMD).
CAQMID

Queue-manager identifier (LNQMID).
CAQMN

Name of local queue manager (LNQMN).
CARPN

Name of cluster for which queue manager provides repository
services (LNQMN).

CARPNL
Name of namelist object containing names of clusters for which
queue manager provides repository services (LNNLN).

IAAUTE
Control attribute for authority events.

IACAD
Control attribute for automatic channel definition.

MQINQ — Inquire about object attributes

242 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

IACADE
Control attribute for automatic channel definition events.

IACLWL
Cluster workload length.

IACCSI
Coded character set identifier.

IACMDL
Command level supported by queue manager.

IADIST
Distribution list support.

IAINHE
Control attribute for inhibit events.

IALCLE
Control attribute for local events.

IAMHND
Maximum number of handles.

IAMLEN
Maximum message length.

IAMPRI
Maximum priority.

IAMUNC
Maximum number of uncommitted messages within a unit of
work.

IAPFME
Control attribute for performance events.

IAPLAT
Platform on which the queue manager resides.

IARMTE
Control attribute for remote events.

IASSE Control attribute for start stop events.
IASYNC

Syncpoint availability.
IATRGI

Trigger interval.

Selectors for namelists
CAALTD

Date of most-recent alteration (LNDATE).
CAALTT

Time of most-recent alteration (LNTIME).
CALSTD

Namelist description (LNNLD).
CALSTN

Name of namelist object (LNNLN).
CANAMS

Names in the namelist (LNQN × Number of names in the
list).

IANAMC
Number of names in the namelist.

Selectors for all types of queue
If the queue being inquired is a cluster queue, the selectors that are
valid depend on how the queue was resolved; see usage note 4 for
further details.
CAALTD

Date of most-recent alteration (LNDATE).

MQINQ — Inquire about object attributes

Chapter 31. MQINQ - Inquire about object attributes 243

|
|

|
|
|
|

|
|
|
|
|

CAALTT
Time of most-recent alteration (LNTIME).

CAQD
Queue description (LNQD).

CAQN
Queue name (LNQN).

IADPER
Default message persistence.

IADPRI
Default message priority.

IAIPUT
Whether put operations are allowed.

IAQTYP
Queue type.

Selectors for local queues
If the queue being inquired is a cluster queue, the selectors that are
valid depend on how the queue was resolved; see usage note 4 for
further details.
CABRQN

Excessive backout requeue name (LNQN).
CACLN

Cluster name (LNCLUN).
CACLNL

Cluster namelist (LNNLN).
CACRTD

Queue creation date (LNCRTD).
CACRTT

Queue creation time (LNCRTT).
CAINIQ

Initiation queue name (LNQN).
CAPRON

Name of process definition (LNPRON).
CATRGD

Trigger data (LNTRGD).
IABTHR

Backout threshold.
IACDEP

Number of messages on queue.
IADBND

Default binding.
IADINP

Default open-for-input option.
IADEFT

Queue definition type.
IADIST

Distribution list support.
IAHGB

Whether to harden backout count.
IAIGET

Whether get operations are allowed.
IAMLEN

Maximum message length.
IAMDEP

Maximum number of messages allowed on queue.

MQINQ — Inquire about object attributes

244 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|
|

|
|
|
|

|
|

IAMDS
Whether message priority is relevant.

IAOIC
Number of MQOPEN calls that have the queue open for input.

IAOOC
Number of MQOPEN calls that have the queue open for
output.

IAQDHE
Control attribute for queue depth high events.

IAQDHL
High limit for queue depth.

IAQDLE
Control attribute for queue depth low events.

IAQDLL
Low limit for queue depth.

IAQDME
Control attribute for queue depth max events.

IAQSI Limit for queue service interval.
IAQSIE

Control attribute for queue service interval events.
IARINT

Queue retention interval.
IASCOP

Queue definition scope.
IASHAR

Whether queue can be shared.
IATRGC

Trigger control.
IATRGD

Trigger depth.
IATRGP

Threshold message priority for triggers.
IATRGT

Trigger type.
IAUSAG

Usage.

Selectors for local definitions of remote queues
CACLN

Cluster name (LNCLUN).
CACLNL

Cluster namelist (LNNLN).
CARQMN

Name of remote queue manager (LNQMN).
CARQN

Name of remote queue as known on remote queue manager
(LNQN).

CAXQN
Transmission queue name (LNQN).

IADBND
Default binding.

IASCOP
Queue definition scope.

Selectors for alias queues
CABASQ

Name of queue that alias resolves to (LNQN).

MQINQ — Inquire about object attributes

Chapter 31. MQINQ - Inquire about object attributes 245

|
|
|
|

|
|

CACLN
Cluster name (LNCLUN).

CACLNL
Cluster namelist (LNNLN).

IADBND
Default binding.

IAIGET
Whether get operations are allowed.

IASCOP
Queue definition scope.

Selectors for process definitions
CAALTD

Date of most-recent alteration (LNDATE).
CAALTT

Time of most-recent alteration (LNTIME).
CAAPPI

Application identifier (LNPROA).
CAENVD

Environment data (LNPROE).
CAPROD

Description of process definition (LNPROD).
CAPRON

Name of process definition (LNPRON).
CAUSRD

User data (LNPROU).
IAAPPT

Application type.

IACNT (10-digit signed integer) – input
Count of integer attributes.

This is the number of elements in the INTATR array. Zero is a valid value.

If this is at least the number of IA* selectors in the SELS parameter, all integer
attributes requested are returned.

INTATR (10-digit signed integer×IACNT) – output
Array of integer attributes.

This is an array of IACNT integer attribute values.

Integer attribute values are returned in the same order as the IA* selectors in
the SELS parameter. If the array contains more elements than the number of
IA* selectors, the excess elements are unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that
type of queue, the specific value IAVNA is returned for the corresponding
element in the INTATR array.

CALEN (10-digit signed integer) – input
Length of character attributes buffer.

This is the length in bytes of the CHRATR parameter.

This must be at least the sum of the lengths of the requested character
attributes (see SELS). Zero is a valid value.

MQINQ — Inquire about object attributes

246 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|
|

|
|
|
|

CHRATR (1-byte character string×CALEN) – output
Character attributes.

This is the buffer in which the character attributes are returned, concatenated
together. The length of the buffer is given by the CALEN parameter.

Character attributes are returned in the same order as the CA* selectors in the
SELS parameter. The length of each attribute string is fixed for each attribute
(see SELS), and the value in it is padded to the right with blanks if necessary. If
the buffer is larger than that needed to contain all of the requested character
attributes (including padding), the bytes beyond the last attribute value
returned are unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that
type of queue, a character string consisting entirely of asterisks (*) is returned
as the value of that attribute in CHRATR.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2008

(2008, X'7D8') Not enough space allowed for character attributes.
RC2022

(2022, X'7E6') Not enough space allowed for integer attributes.
RC2068

(2068, X'814') Selector not applicable to queue type.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2006

(2006, X'7D6') Length of character attributes not valid.
RC2007

(2007, X'7D7') Character attributes string not valid.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.

MQINQ — Inquire about object attributes

Chapter 31. MQINQ - Inquire about object attributes 247

RC2021
(2021, X'7E5') Count of integer attributes not valid.

RC2023
(2023, X'7E7') Integer attributes array not valid.

RC2038
(2038, X'7F6') Queue not open for inquire.

RC2041
(2041, X'7F9') Object definition changed since opened.

RC2101
(2101, X'835') Object damaged.

RC2052
(2052, X'804') Queue has been deleted.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2065
(2065, X'811') Count of selectors not valid.

RC2067
(2067, X'813') Attribute selector not valid.

RC2066
(2066, X'812') Count of selectors too big.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. The values returned are a snapshot of the selected attributes. There is no

guarantee that the attributes will not change before the application can act
upon the returned values.

2. When you open a model queue, even for inquiring about its attributes, a
dynamic queue is created. The attributes of the dynamic queue (except for
CreationDate, CreationTime, and DefinitionType) are the same as those of the
model queue at the time the dynamic queue is created. If you subsequently use
the MQINQ call with the same object handle, the queue manager returns the
attributes of the dynamic queue, not those of the model queue.

3. If the object being inquired is an alias queue, the attribute values returned by
the MQINQ call are those of the alias queue, and not those of the base queue to
which the alias resolves.

4. If the object being inquired is a cluster queue, the attributes that can be
inquired depend on how the queue is opened:
v If the cluster queue is opened for inquire plus one or more of input, browse,

or set, there must be a local instance of the cluster queue in order for the
open to succeed. In this case the attributes that can be inquired are those
valid for local queues.

MQINQ — Inquire about object attributes

248 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|
|
|

v If the cluster queue is opened for inquire alone, or inquire and output, only
the attributes listed below can be inquired; the QType attribute has the value
QTCLUS in this case:

CAQD
CAQN
IADBND
IADPER
IADPRI
IAIPUT
IAQTYP

If the cluster queue is opened with no fixed binding (that is, OOBNDN
specified on the MQOPEN call, or OOBNDQ specified when the DefBind
attribute has the value BNDNOT), successive MQINQ calls for the queue
may inquire different instances of the cluster queue, although usually all of
the instances have the same attribute values.

For more information about cluster queues, refer to the MQSeries Queue
Manager Clusters book.

5. If a number of attributes are to be inquired, and subsequently some of them are
to be set using the MQSET call, it may be convenient to position at the
beginning of the selector arrays the attributes that are to be set, so that the
same arrays (with reduced counts) can be used for MQSET.

6. If more than one of the warning situations arise (see the CMPCOD parameter), the
reason code returned is the first one in the following list that applies:
a. RC2068
b. RC2022
c. RC2008

7. For more information about object attributes, see Chapter 36. Attributes of
MQSeries objects.

Usage notes

Chapter 31. MQINQ - Inquire about object attributes 249

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQINQ(HCONN : HOBJ : SELCNT :
C SELS(1) : IACNT : INTATR(1) :
C CALEN : CHRATR : CMPCOD :
C REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQINQ PR EXTPROC('MQINQ')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object handle
D HOBJ 10I 0 VALUE
D* Count of selectors
D SELCNT 10I 0 VALUE
D* Array of attribute selectors
D SELS 10I 0
D* Count of integer attributes
D IACNT 10I 0 VALUE
D* Array of integer attributes
D INTATR 10I 0
D* Length of character attributes buffer
D CALEN 10I 0 VALUE
D* Character attributes
D CHRATR * VALUE
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

RPG invocation

250 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 32. MQOPEN - Open object

The MQOPEN call establishes access to an object. The following types of object are
valid:
v Queue (including distribution lists)
v Namelist
v Process definition
v Queue manager

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

OBJDSC (MQOD) – input/output
Object descriptor.

This is a structure that identifies the object to be opened; see “Chapter 12.
MQOD - Object descriptor” on page 137 for details.

If the ODON field in the OBJDSC parameter is the name of a model queue, a
dynamic local queue is created with the attributes of the model queue; this
happens irrespective of the open options specified by the OPTS parameter.
Subsequent operations using the HOBJ returned by the MQOPEN call are
performed on the new dynamic queue, and not on the model queue. This is
true even for the MQINQ and MQSET calls. The name of the model queue in
the OBJDSC parameter is replaced with the name of the dynamic queue created.
The type of the dynamic queue is determined by the value of the
DefinitionType attribute of the model queue (see “Chapter 38. Attributes for
local queues and model queues” on page 299). For information about the close
options applicable to dynamic queues, see the description of the MQCLOSE
call.

OPTS (10-digit signed integer) – input
Options that control the action of MQOPEN.

At least one of the following options must be specified:
OOBRW
OOINP* (only one of these)

MQOPEN (HCONN, OBJDSC, OPTS, HOBJ, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 251

|

|

OOINQ
OOOUT
OOSET

See below for details of these options; other options can be specified as
required. If more than one option is required, the values can be added together
(do not add the same constant more than once). Combinations that are not
valid are noted; all other combinations are valid. Only options that are
applicable to the type of object specified by OBJDSC are allowed (see Table 48 on
page 256).

Access options: The following options control the type of operations that can
be performed on the object:

OOINPQ
Open queue to get messages using queue-defined default.

The queue is opened for use with subsequent MQGET calls. The type
of access is either shared or exclusive, depending on the value of the
DefInputOpenOption queue attribute; see “Chapter 38. Attributes for
local queues and model queues” on page 299 for details.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

OOINPS
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call
can succeed if the queue is currently open by this or another
application with OOINPS, but fails with reason code RC2042 if the
queue is currently open with OOINPX.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

OOINPX
Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call
fails with reason code RC2042 if the queue is currently open by this or
another application for input of any type (OOINPS or OOINPX).

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

The following notes apply to these options:
v Only one of these options can be specified.
v An MQOPEN call with one of these options can succeed even if the

InhibitGet queue attribute is set to QAGETI (although subsequent MQGET
calls will fail while the attribute is set to this value).

v If the queue is defined as not being shareable (that is, the Shareability
local-queue attribute has the value QANSHR), attempts to open the queue
for shared access are treated as attempts to open the queue with exclusive
access.

MQOPEN — Open object

252 MQSeries for AS/400, V5.1 APR (ILE RPG)

v If an alias queue is opened with one of these options, the test for exclusive
use (or for whether another application has exclusive use) is against the base
queue to which the alias resolves.

v These options are not valid if ODMN is the name of a queue manager alias;
this is true even if the value of the RemoteQMgrName attribute in the local
definition of a remote queue used for queue-manager aliasing is the name of
the local queue manager.

OOBRW
Open queue to browse messages.

The queue is opened for use with subsequent MQGET calls with one
of the following options:

GMBRWF
GMBRWN
GMBRWC

This is allowed even if the queue is currently open for OOINPX. An
MQOPEN call with the OOBRW option establishes a browse cursor,
and positions it logically before the first message on the queue; see the
GMOPT field described in “Chapter 8. MQGMO - Get-message options”
on page 51 for further information.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects which are not
queues. It is also not valid if ODMN is the name of a queue manager
alias; this is true even if the value of the RemoteQMgrName attribute in
the local definition of a remote queue used for queue-manager aliasing
is the name of the local queue manager.

OOOUT
Open queue to put messages.

The queue is opened for use with subsequent MQPUT calls.

An MQOPEN call with this option can succeed even if the InhibitPut
queue attribute is set to QAPUTI (although subsequent MQPUT calls
will fail while the attribute is set to this value).

This option is valid for all types of queue, including distribution lists.

OOINQ
Open object to inquire attributes.

The queue, namelist, process definition, or queue manager is opened
for use with subsequent MQINQ calls.

This option is valid for all types of object other than distribution lists.
It is not valid if ODMN is the name of a queue manager alias; this is true
even if the value of the RemoteQMgrName attribute in the local definition
of a remote queue used for queue-manager aliasing is the name of the
local queue manager.

OOSET
Open queue to set attributes.

The queue is opened for use with subsequent MQSET calls.

This option is valid for all types of queue other than distribution lists.
It is not valid if ODMN is the name of a local definition of a remote
queue; this is true even if the value of the RemoteQMgrName attribute in

MQOPEN — Open object

Chapter 32. MQOPEN - Open object 253

the local definition of a remote queue used for queue-manager aliasing
is the name of the local queue manager.

Binding options: The following options apply when the object being opened is
a cluster queue; these options control the binding of the queue handle to a
particular instance of the cluster queue:

OOBNDO
Bind handle to destination when queue is opened.

This causes the local queue manager to bind the queue handle to a
particular instance of the destination queue when the queue is opened.
As a result, all messages put using this handle are sent to the same
instance of the destination queue, and by the same route.

This option is valid only for queues, and affects only cluster queues. If
specified for a queue that is not a cluster queue, the option is ignored.

OOBNDN
Do not bind to a specific destination.

This stops the local queue manager binding the queue handle to a
particular instance of the destination queue. As a result, successive
MQPUT calls using this handle may result in the messages being sent
to different instances of the destination queue, or being sent to the same
instance but by different routes. It also allows the instance selected to
be changed subsequently by the local queue manager, by a remote
queue manager, or by a message channel agent (MCA), according to
network conditions.

Note: Client and server applications which need to exchange a series of
messages in order to complete a transaction should not use
OOBNDN (or OOBNDQ when DefBind has the value
BNDNOT), because successive messages in the series may be
sent to different instances of the server application.

If OOBRW or one of the OOINP* options is specified for a cluster
queue, the queue manager is forced to select the local instance of the
cluster queue. As a result, the binding of the queue handle is fixed,
even if OOBNDN is specified.

If OOINQ is specified with OOBNDN, successive MQINQ calls using
that handle may inquire different instances of the cluster queue,
although usually all of the instances have the same attribute values.

OOBNDN is valid only for queues, and affects only cluster queues. If
specified for a queue that is not a cluster queue, the option is ignored.

OOBNDQ
Use default binding for queue.

This causes the local queue manager to bind the queue handle in the
way defined by the DefBind queue attribute. The value of this attribute
is either BNDOPN or BNDNOT.

OOBNDQ is the default if neither OOBNDO nor OOBNDN is
specified.

MQOPEN — Open object

254 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

OOBNDQ is defined to aid program documentation. It is not intended
that this option be used with either of the other two bind options, but
because its value is zero such use cannot be detected.

Context options: The following options control the processing of message
context:

OOSAVA
Save context when message retrieved.

Context information is associated with this queue handle. This
information is set from the context of any message retrieved using this
handle. For more information on message context, see the MQSeries
Application Programming Guide.

This context information can be passed to a message that is
subsequently put on a queue using the MQPUT or MQPUT1 calls. See
the PMPASI and PMPASA options described in “Chapter 14. MQPMO -
Put message options” on page 149.

Until a message has been successfully retrieved, context cannot be
passed to a message being put on a queue.

A message retrieved using one of the GMBRW* browse options does
not have its context information saved (although the context fields in
the MSGDSC parameter are set after a browse).

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects which are not
queues. One of the OOINP* options must be specified.

OOPASI
Allow identity context to be passed.

This allows the PMPASI option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
context information from an input queue that was opened with the
OOSAVA option. For more information on message context, see the
MQSeries Application Programming Guide.

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOPASA
Allow all context to be passed.

This allows the PMPASA option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
and origin context information from an input queue that was opened
with the OOSAVA option. For more information on message context,
see the MQSeries Application Programming Guide.

This option implies OOPASI, which need not therefore be specified.
The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOSETI
Allow identity context to be set.

This allows the PMSETI option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
context information contained in the MSGDSC parameter specified on the

MQOPEN — Open object

Chapter 32. MQOPEN - Open object 255

|
|
|

MQPUT or MQPUT1 call. For more information on message context,
see the MQSeries Application Programming Guide.

This option implies OOPASI, which need not therefore be specified.
The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOSETA
Allow all context to be set.

This allows the PMSETA option to be specified in the PMO parameter
when a message is put on a queue; this gives the message the identity
and origin context information contained in the MSGDSC parameter
specified on the MQPUT or MQPUT1 call. For more information on
message context, see the MQSeries Application Programming Guide.

This option implies the following options, which need not therefore be
specified:

OOPASI
OOPASA
OOSETI

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

Other options: The following options control authorization checking, and what
happens when the queue manager is quiescing:

OOALTU
Validate with specified user identifier.

This indicates that the ODAU field in the OBJDSC parameter contains a
user identifier that is to be used to validate this MQOPEN call. The call
can succeed only if this ODAU is authorized to open the object with the
specified options, regardless of whether the user identifier under which
the application is running is authorized to do so. (This does not apply
to any context options specified, however, which are always checked
against the user identifier under which the application is running.)

This option is valid for all types of object.

OOFIQ
Fail if queue manager is quiescing.

This option forces the MQOPEN call to fail if the queue manager is in
quiescing state.

This option is valid for all types of object.

Table 48. Valid MQOPEN options for each queue type

Option Alias (see
note 1)

Local and
Model

Remote Nonlocal
Cluster

Distribution
list

OOINPQ U U — — —

OOINPS U U — — —

OOINPX U U — — —

OOBRW U U — — —

OOOUT U U U U U

OOINQ U U see note 2 U —

OOSET U U see note 2 — —

MQOPEN — Open object

256 MQSeries for AS/400, V5.1 APR (ILE RPG)

||||||

||||||

||||||

||||||

||||||

||||||

||||||

Table 48. Valid MQOPEN options for each queue type (continued)

Option Alias (see
note 1)

Local and
Model

Remote Nonlocal
Cluster

Distribution
list

OOBNDO (see note 3) U U U U U

OOBNDN (see note 3) U U U U U

OOBNDQ (see note 3) U U U U U

OOSAVA U U — — —

OOPASI U U U U U

OOPASA U U U U U

OOSETI U U U U U

OOSETA U U U U U

OOALTU U U U U U

OOFIQ U U U U U

Notes:

1. The validity of options for aliases depends on the validity of the option for the queue to which the alias resolves.

2. This option is valid only for the local definition of a remote queue.

3. This option can be specified for any queue type, but is ignored if the queue is not a cluster queue.

HOBJ (10-digit signed integer) – output
Object handle.

This handle represents the access that has been established to the object. It
must be specified on subsequent message queuing calls that operate on the
object. It ceases to be valid when the MQCLOSE call is issued, or when the
unit of processing that defines the scope of the handle terminates.

The scope of the handle is restricted to the smallest unit of parallel processing
supported by the platform on which the application is running; the handle is
not valid outside the unit of parallel processing from which the MQOPEN call
was issued:
v On OS/400, the scope of the handle is the job issuing the call.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2136

(2136, X'858') Multiple reason codes returned.

MQOPEN — Open object

Chapter 32. MQOPEN - Open object 257

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

|

If CMPCOD is CCFAIL:
RC2001

(2001, X'7D1') Alias base queue not a valid type.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2266

(2266, X'8DA') Cluster workload exit failed.
RC2268

(2268, X'8DC') Put calls inhibited for all queues in cluster.
RC2189

(2189, X'88D') Cluster name resolution failed.
RC2269

(2269, X'8DD') Cluster resource error.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2198

(2198, X'896') Default transmission queue not local.
RC2199

(2199, X'897') Default transmission queue usage error.
RC2011

(2011, X'7DB') Name of dynamic queue not valid.
RC2017

(2017, X'7E1') No more handles available.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2194

(2194, X'892') Object name not valid for object type.
RC2035

(2035, X'7F3') Not authorized for access.
RC2100

(2100, X'834') Object already exists.
RC2101

(2101, X'835') Object damaged.
RC2042

(2042, X'7FA') Object already open with conflicting options.
RC2043

(2043, X'7FB') Object type not valid.
RC2044

(2044, X'7FC') Object descriptor structure not valid.
RC2045

(2045, X'7FD') Option not valid for object type.
RC2046

(2046, X'7FE') Options not valid or not consistent.
RC2052

(2052, X'804') Queue has been deleted.
RC2058

(2058, X'80A') Queue manager name not valid or not known.
RC2059

(2059, X'80B') Queue manager not available for connection.
RC2161

(2161, X'871') Queue manager quiescing.
RC2162

(2162, X'872') Queue manager shutting down.

MQOPEN — Open object

258 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|
|

RC2057
(2057, X'809') Queue type not valid.

RC2184
(2184, X'888') Remote queue name not valid.

RC2102
(2102, X'836') Insufficient system resources available.

RC2063
(2063, X'80F') Security error occurred.

RC2188
(2188, X'88C') Call rejected by cluster workload exit.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2082
(2082, X'822') Unknown alias base queue.

RC2197
(2197, X'895') Unknown default transmission queue.

RC2085
(2085, X'825') Unknown object name.

RC2086
(2086, X'826') Unknown object queue manager.

RC2087
(2087, X'827') Unknown remote queue manager.

RC2196
(2196, X'894') Unknown transmission queue.

RC2091
(2091, X'82B') Transmission queue not local.

RC2092
(2092, X'82C') Transmission queue with wrong usage.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. The object opened is one of the following:
v A queue, in order to:

– Get or browse messages (using the MQGET call)
– Put messages (using the MQPUT call)
– Inquire about the attributes of the queue (using the MQINQ call)
– Set the attributes of the queue (using the MQSET call)

If the queue named is a model queue, a dynamic local queue is created. See
the OBJDSC parameter described in “Chapter 32. MQOPEN - Open object” on
page 251.

A distribution list is a special type of queue object that contains a list of
queues. It can be opened to put messages, but not to get or browse
messages, or to inquire or set attributes.

v A namelist, in order to:
– Inquire about the names of the queues in the list (using the MQINQ call).

v A process definition, in order to:
– Inquire about the process attributes (using the MQINQ call).

v The queue manager, in order to:

MQOPEN — Open object

Chapter 32. MQOPEN - Open object 259

|
|

|
|

|

– Inquire about the attributes of the local queue manager (using the
MQINQ call).

2. It is valid for an application to open the same object more than once. A
different object handle is returned for each open. Each handle that is returned
can be used for the functions for which the corresponding open was
performed.

3. If the object being opened is a queue but not a cluster queue, all name
resolution within the local queue manager takes place at the time of the
MQOPEN call. This may include one or more of the following for a given
MQOPEN call:
v Alias resolution to the name of a base queue
v Resolution of the name of a local definition of a remote queue to the remote

queue-manager name and the name by which that queue is known at the
remote queue manager

v Resolution of the remote queue-manager name to the name of a
transmission queue

However, be aware that subsequent MQINQ or MQSET calls for the handle
relate solely to the name that has been opened, and not to the object resulting
after name resolution has occurred. For example, if the object opened is an
alias, the attributes returned by the MQINQ call are the attributes of the alias,
not the attributes of the base queue to which the alias resolves. Name
resolution checking is still carried out, however, regardless of what is specified
for the OPTS parameter on the corresponding MQOPEN.

If the object being opened is a cluster queue, name resolution can occur at the
time of the MQOPEN call, or be deferred until later. The point at which
resolution occurs is controlled by the OOBND* options specified on the
MQOPEN call:

OOBNDO
OOBNDN
OOBNDQ

Refer to the MQSeries Queue Manager Clusters book for more information
about name resolution for cluster queues.

4. The attributes of an object can change while an application has the object
open. In many cases, the application does not notice this, but for certain
attributes the queue manager marks the handle as no longer valid. These are:
v Any attribute that affects the name resolution of the object. This applies

regardless of the open options used, and includes the following:
– A change to the BaseQName attribute of an alias queue that is open.
– A change to the RemoteQName or RemoteQMgrName remote-queue attributes,

for any handle that is open for this queue, or for a queue which resolves
through this definition as a queue-manager alias.

– Any change that causes a currently-open handle for a remote queue to
resolve to a different transmission queue, or to fail to resolve to one at all.
For example, a change to the XmitQName attribute of the local definition of
a remote queue, whether the definition is being used for a queue, or for
a queue-manager alias.
There is one exception to this, namely the creation of a new transmission
queue. A handle that would have resolved to this queue had it been
present when the handle was opened, but instead resolved to the default
transmission queue, is not made invalid.

Usage notes

260 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|
|
|
|
|
|
|

|
|

– A change to the DefXmitQName queue-manager attribute. In this case all
open handles that resolved to the previously-named queue (that resolved
to it only because it was the default transmission queue) are marked as
invalid. Handles that resolved to this queue for other reasons are not
affected.

v The Shareability local-queue attribute, if there are two or more handles
that are currently providing OOINPS access for this queue, or for a queue
that resolves to this queue. If this is the case, all handles that are open for
this queue, or for a queue that resolves to this queue, are marked as invalid,
regardless of the open options.

v The Usage local-queue attribute, for all handles that are open for this queue,
or for a queue that resolves to this queue, regardless of the open options.

When a handle is marked as invalid, all subsequent calls (other than
MQCLOSE) using this handle fail with reason code RC2041; the application
should issue an MQCLOSE call (using the original handle) and then reopen
the queue. Any uncommitted updates against the old handle from previous
successful calls can still be committed or backed out, as required by the
application logic.

If changing an attribute will cause this to happen, a special “force” version of
the command must be used.

5. The queue manager performs security checks when an MQOPEN call is
issued, to verify that the user identifier under which the application is
running has the appropriate level of authority before access is permitted. The
authority check is made on the name of the object being opened, and not on
the name, or names, resulting after a name has been resolved.

6. If the object being opened is a model queue, the queue manager performs a
full security check against both the name of the model queue and the name of
the dynamic queue that is created. If the resulting dynamic queue is
subsequently opened explicitly, a further resource security check is performed
against the name of the dynamic queue.

7. A remote queue can be specified in one of two ways in the OBJDSC parameter
of this call (see the ODON and ODMN fields described in “Chapter 12. MQOD -
Object descriptor” on page 137):
v By specifying for ODON the name of a local definition of the remote queue. In

this case, ODMN refers to the local queue manager, and can be specified as
blanks.
The security validation performed by the local queue manager verifies that
the application is authorized to open the local definition of the remote
queue.

v By specifying for ODON the name of the remote queue as known to the
remote queue manager. In this case, ODMN is the name of the remote queue
manager.
The security validation performed by the local queue manager verifies that
the application is authorized to send messages to the transmission queue
resulting from the name resolution process.

In either case:
v No messages are sent by the local queue manager to the remote queue

manager in order to check that the application is authorized to put
messages on the queue.

Usage notes

Chapter 32. MQOPEN - Open object 261

v When a message arrives at the remote queue manager, the remote queue
manager may reject it because the user originating the message is not
authorized.

8. The following notes apply to the use of distribution lists.
a. Fields in the MQOD structure must be set as follows when opening a

distribution list:
v ODVER must be ODVER2 or greater.
v ODOT must be OTQ.
v ODON must be blank or the null string.
v ODMN must be blank or the null string.
v ODREC must be greater than zero.
v One of ODORO and ODORP must be zero and the other nonzero.
v No more than one of ODRRO and ODRRP can be nonzero.
v There must be ODREC object records, addressed by either ODORO or ODORP.

The object records must be set to the names of the destination queues to
be opened.

v If one of ODRRO and ODRRP is nonzero, there must be ODREC response
records present. They are set by the queue manager if the call completes
with reason code RC2136.

A version-2 MQOD can also be used to open a single queue that is not in
a distribution list, by ensuring that ODREC is zero.

b. Only the following open options are valid in the OPTS parameter:
OOOUT
OOPAS*
OOSET*
OOALTU
OOFIQ

c. The destination queues in the distribution list can be local, alias, or remote
queues, but they cannot be model queues. If a model queue is specified,
that queue fails to open, with reason code RC2057. However, this does not
prevent other queues in the list being opened successfully.

d. The completion code and reason code parameters are set as follows:
v If the open operations for the queues in the distribution list all succeed

or fail in the same way, the completion code and reason code
parameters are set to describe the common result. The MQRR response
records (if provided by the application) are not set in this case.
For example, if every open succeeds, the completion code and reason
code are set to CCOK and RCNONE respectively; if every open fails
because none of the queues exists, the parameters are set to CCFAIL and
RC2085.

v If the open operations for the queues in the distribution list do not all
succeed or fail in the same way:
– The completion code parameter is set to CCWARN if at least one

open succeeded, and to CCFAIL if all failed.
– The reason code parameter is set to RC2136.
– The response records (if provided by the application) are set to the

individual completion codes and reason codes for the queues in the
distribution list.

e. When a distribution list has been opened successfully, the handle HOBJ
returned by the call can be used on subsequent MQPUT calls to put
messages to queues in the distribution list, and on an MQCLOSE call to
relinquish access to the distribution list. The only valid close option for a
distribution list is CONONE.

Usage notes

262 MQSeries for AS/400, V5.1 APR (ILE RPG)

The MQPUT1 call can also be used to put a message to a distribution list;
the MQOD structure defining the queues in the list is specified as a
parameter on that call.

f. Each successfully-opened destination in the distribution list counts as a
separate handle when checking whether the application has exceeded the
permitted maximum number of handles (see the MaxHandles
queue-manager attribute). This is true even when two or more of the
destinations in the distribution list actually resolve to the same physical
queue. If the MQOPEN or MQPUT1 call for a distribution list would cause
the number of handles in use by the application to exceed MaxHandles, the
call fails with reason code RC2017.

g. Each destination that is opened successfully has the value of its
OpenOutputCount attribute incremented by one. If two or more of the
destinations in the distribution list actually resolve to the same physical
queue, that queue has its OpenOutputCount attribute incremented by the
number of destinations in the distribution list that resolve to that queue.

h. Any change to the queue definitions that would have caused a handle to
become invalid had the queues been opened individually (for example, a
change in the resolution path), does not cause the distribution-list handle
to become invalid. However, it does result in a failure for that particular
queue when the distribution-list handle is used on a subsequent MQPUT
call.

i. It is valid for a distribution list to contain only one destination.
9. An MQOPEN call with the OOBRW option establishes a browse cursor, for use

with MQGET calls that specify the object handle and one of the browse
options. This allows the queue to be scanned without altering its contents. A
message that has been found by browsing can subsequently be removed from
the queue by using the GMMUC option.
Multiple browse cursors can be active for a single application by issuing several
MQOPEN requests for the same queue.

10. The following notes apply to the use of cluster queues.
a. When a cluster queue is opened for the first time, and the local queue

manager is not a full repository queue manager, the local queue manager
obtains information about the cluster queue from a full repository queue
manager. When the network is busy, it may take several seconds for the
local queue manager to receive the needed information from the repository
queue manager. As a result, the application issuing the MQOPEN call may
have to wait for up to 10 seconds before control returns from the
MQOPEN call. If the local queue manager does not receive the needed
information about the cluster queue within this time, the call fails with
reason code RC2189.

b. When a cluster queue is opened and there are multiple instances of the
queue in the cluster, the instance actually opened depends on the options
specified on the MQOPEN call:
v If the options specified include any of the following:

OOBRW
OOINPQ
OOINPX
OOINPS
OOSET

the instance of the cluster queue opened is required to be the local
instance. If there is no local instance of the queue, the MQOPEN call
fails.

Usage notes

Chapter 32. MQOPEN - Open object 263

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

v If the options specified include none of the above, but do include one or
both of the following:

OOINQ
OOOUT

the instance opened is the local instance if there is one, and a remote
instance otherwise. The instance chosen by the queue manager can,
however, be altered by a cluster workload exit (if there is one).

For more information about cluster queues, refer to the MQSeries Queue
Manager Clusters book.

11. Applications started by a trigger monitor are passed the name of the queue
that is associated with the application when the application is started. This
queue name can be specified in the OBJDSC parameter to open the queue. See
the description of the MQTMC structure for further details.

12. On OS/400, applications running in compatibility mode are connected
automatically to the queue manager by the first MQOPEN call issued by the
application (if the application has not already connected to the queue manager
by using the MQCONN call).
Applications not running in compatibility mode must issue the MQCONN or
MQCONNX call to connect to the queue manager explicitly, before using the
MQOPEN call to open an object.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQOPEN(HCONN : OBJDSC : OPTS :
C HOBJ : CMPCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQOPEN PR EXTPROC('MQOPEN')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object descriptor
D OBJDSC 360A
D* Options that control the action of MQOPEN
D OPTS 10I 0 VALUE
D* Object handle
D HOBJ 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

Usage notes

264 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|

|
|
|

|
|

Chapter 33. MQPUT - Put message

The MQPUT call puts a message on a queue or distribution list. The queue or
distribution list must already be open.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) – input
Object handle.

This handle represents the queue to which the message is added. The value of
HOBJ was returned by a previous MQOPEN call that specified the OOOUT
option.

MSGDSC (MQMD) – input/output
Message descriptor.

This structure describes the attributes of the message being sent, and receives
information about the message after the put request is complete. See
“Chapter 10. MQMD - Message descriptor” on page 83 for details.

If the application provides a version-1 MQMD, the message data can be
prefixed with an MQMDE structure in order to specify values for the fields
that exist in the version-2 MQMD but not the version-1. The MDFMT field in the
MQMD must be set to FMMDE to indicate that an MQMDE is present. See
“Chapter 11. MQMDE - Message descriptor extension” on page 131 for more
details.

PMO (MQPMO) – input/output
Options that control the action of MQPUT.

See “Chapter 14. MQPMO - Put message options” on page 149 for details.

BUFLEN (10-digit signed integer) – input
Length of the message in BUFFER.

Zero is valid, and indicates that the message contains no application data.

MQPUT (HCONN, HOBJ, MSGDSC, PMO, BUFLEN, BUFFER, CMPCOD,
REASON)

© Copyright IBM Corp. 1994, 2000 265

|

If the destination is a local queue, or resolves to a local queue, the upper limit
for BUFLEN depends on whether:
v The local queue manager supports segmentation.
v The sending application specifies the flag that allows the queue manager to

segment the message. This flag is MFSEGA, and can be specified either in a
version-2 MQMD, or in an MQMDE used with a version-1 MQMD.

If both of these conditions are satisfied, BUFLEN cannot exceed 999 999 999
minus the value of the MDOFF field in MQMD. The longest logical message that
can be put is therefore 999 999 999 bytes (when MDOFF is zero). However,
resource constraints imposed by the operating system or environment in which
the application is running may result in a lower limit.

If one or both of the above conditions is not satisfied, BUFLEN cannot exceed the
smaller of the queue’s MaxMsgLength attribute and queue-manager’s
MaxMsgLength attribute.

If the destination is a remote queue, or resolves to a remote queue, the same
conditions apply, but at each queue manager through which the message must pass
in order to reach the destination queue; in particular:
1. The local transmission queue used to store the message temporarily at the

local queue manager
2. Intermediate transmission queues (if any) used to store the message at

queue managers on the route between the local and destination queue
managers

3. The destination queue at the destination queue manager

The longest message that can be put is therefore governed by the most
restrictive of these queues and queue managers.

When a message is on a transmission queue, additional information resides
with the message data, and this reduces the amount of application data that
can be carried. In this situation it is recommended that LNMHD bytes be
subtracted from the MaxMsgLength values of the transmission queues when
determining the limit for BUFLEN.

Note: Only failure to comply with condition 1 can be diagnosed synchronously
(with reason code RC2030 or RC2031) when the message is put. If
conditions 2 or 3 are not satisfied, the message is redirected to a
dead-letter (undelivered-message) queue, either at an intermediate
queue manager or at the destination queue manager. If this happens, a
report message is generated if one was requested by the sender.

BUFFER (1-byte bit string×BUFLEN) – input
Message data.

This is a buffer containing the application data to be sent.

If BUFFER contains character and/or numeric data, the MDCSI and MDENC fields in
the MSGDSC parameter should be set to the values appropriate to the data; this
will enable the receiver of the message to convert the data (if necessary) to the
character set and encoding used by the receiver.

Note: All of the other parameters on the MQPUT call must be in the character
set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and ENNAT, respectively).

MQPUT — Put message

266 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2136

(2136, X'858') Multiple reason codes returned.
RC2049

(2049, X'801') Message Priority exceeds maximum value supported.
RC2104

(2104, X'838') Report option(s) in message descriptor not recognized.

If CMPCOD is CCFAIL:
RC2004

(2004, X'7D4') Buffer parameter not valid.
RC2005

(2005, X'7D5') Buffer length parameter not valid.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2266

(2266, X'8DA') Cluster workload exit failed.
RC2189

(2189, X'88D') Cluster name resolution failed.
RC2269

(2269, X'8DD') Cluster resource error.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2097

(2097, X'831') Queue handle referred to does not save context.
RC2098

(2098, X'832') Context not available for queue handle referred to.
RC2135

(2135, X'857') Distribution header structure not valid.
RC2013

(2013, X'7DD') Expiry time not valid.
RC2014

(2014, X'7DE') Feedback code not valid.
RC2258

(2258, X'8D2') Group identifier not valid.
RC2018

(2018, X'7E2') Connection handle not valid.

MQPUT — Put message

Chapter 33. MQPUT - Put message 267

|
|
|
|

RC2019
(2019, X'7E3') Object handle not valid.

RC2241
(2241, X'8C1') Message group not complete.

RC2242
(2242, X'8C2') Logical message not complete.

RC2185
(2185, X'889') Inconsistent persistence specification.

RC2245
(2245, X'8C5') Inconsistent unit-of-work specification.

RC2026
(2026, X'7EA') Message descriptor not valid.

RC2248
(2248, X'8C8') Message descriptor extension not valid.

RC2027
(2027, X'7EB') Missing reply-to queue.

RC2249
(2249, X'8C9') Message flags not valid.

RC2250
(2250, X'8CA') Message sequence number not valid.

RC2030
(2030, X'7EE') Message length greater than maximum for queue.

RC2031
(2031, X'7EF') Message length greater than maximum for queue
manager.

RC2029
(2029, X'7ED') Message type in message descriptor not valid.

RC2136
(2136, X'858') Multiple reason codes returned.

RC2270
(2270, X'8DE') No destination queues available.

RC2039
(2039, X'7F7') Queue not open for output.

RC2093
(2093, X'82D') Queue not open for pass all context.

RC2094
(2094, X'82E') Queue not open for pass identity context.

RC2095
(2095, X'82F') Queue not open for set all context.

RC2096
(2096, X'830') Queue not open for set identity context.

RC2041
(2041, X'7F9') Object definition changed since opened.

RC2101
(2101, X'835') Object damaged.

RC2251
(2251, X'8CB') Message segment offset not valid.

RC2137
(2137, X'859') Object not opened successfully.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2252
(2252, X'8CC') Original length not valid.

RC2149
(2149, X'865') PCF structures not valid.

MQPUT — Put message

268 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|

RC2047
(2047, X'7FF') Persistence not valid.

RC2048
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

RC2173
(2173, X'87D') Put-message options structure not valid.

RC2158
(2158, X'86E') Put message record flags not valid.

RC2050
(2050, X'802') Message priority not valid.

RC2051
(2051, X'803') Put calls inhibited for the queue.

RC2159
(2159, X'86F') Put message records not valid.

RC2052
(2052, X'804') Queue has been deleted.

RC2053
(2053, X'805') Queue already contains maximum number of messages.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2056
(2056, X'808') No space available on disk for queue.

RC2154
(2154, X'86A') Number of records present not valid.

RC2061
(2061, X'80D') Report options in message descriptor not valid.

RC2156
(2156, X'86C') Response records not valid.

RC2102
(2102, X'836') Insufficient system resources available.

RC2253
(2253, X'8CD') Length of data in message segment is zero.

RC2188
(2188, X'88C') Call rejected by cluster workload exit.

RC2071
(2071, X'817') Insufficient storage available.

RC2024
(2024, X'7E8') No more messages can be handled within current unit of
work.

RC2072
(2072, X'818') Syncpoint support not available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

MQPUT — Put message

Chapter 33. MQPUT - Put message 269

|
|

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. Both the MQPUT and MQPUT1 calls can be used to put messages on a queue;

which call to use depends on the circumstances:
v The MQPUT call should be used when multiple messages are to be placed

on the same queue.
An MQOPEN call specifying the OOOUT option is issued first, followed by
one or more MQPUT requests to add messages to the queue; finally the
queue is closed with an MQCLOSE call. This gives better performance than
repeated use of the MQPUT1 call.

v The MQPUT1 call should be used when only one message is to be put on a
queue.
This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a
single call, thereby minimizing the number of calls that must be issued.

2. If an application puts a sequence of messages on the same queue without using
message groups, the order of those messages is preserved provided that the
conditions detailed below are satisfied. Some conditions apply to both local and
remote destination queues; other conditions apply only to remote destination
queues.
Conditions for local and remote destination queues

v All of the MQPUT calls are within the same unit of work, or none of them is
within a unit of work.
Be aware that when messages are put onto a particular queue within a single
unit of work, messages from other applications may be interspersed with the
sequence of messages on the queue.

v All of the MQPUT calls are made using the same object handle HOBJ.
In some environments, message sequence is also preserved when different
object handles are used, provided the calls are made from the same
application. The meaning of “same application” is determined by the
environment:
– On OS/400, the application is the job.

v The messages all have the same priority.

Additional conditions for remote destination queues

v There is only one path from the sending queue manager to the destination
queue manager.
If there is a possibility that some messages in the sequence may go on a
different path (for example, because of reconfiguration, traffic balancing, or
path selection based on message size), the order of the messages at the
destination queue manager cannot be guaranteed.

v Messages are not placed temporarily on dead-letter queues at the sending,
intermediate, or destination queue managers.
If one or more of the messages is put temporarily on a dead-letter queue (for
example, because a transmission queue or the destination queue is
temporarily full), the messages can arrive on the destination queue out of
sequence.

v The messages are either all persistent or all nonpersistent.
If a channel on the route between the sending and destination queue
managers has its CDNPM attribute set to NPFAST, nonpersistent messages can

MQPUT — Put message

270 MQSeries for AS/400, V5.1 APR (ILE RPG)

jump ahead of persistent messages, resulting in the order of persistent
messages relative to nonpersistent messages not being preserved. However,
the order of persistent messages relative to each other, and of nonpersistent
messages relative to each other, is preserved.

If these conditions are not satisfied, message groups can be used to preserve
message order, but note that this requires both the sending and receiving
applications to use the message-grouping support. For more information about
message groups, see:
v MDMFL field in MQMD
v PMLOGO option in MQPMO
v GMLOGO option in MQGMO

3. The following notes apply to the use of distribution lists.
a. Messages can be put to a distribution list using either a version-1 or a

version-2 MQPMO. If a version-1 MQPMO is used (or a version-2 MQPMO
with PMREC equal to zero), no put message records or response records can
be provided by the application. This means that it will not be possible to
identify the queues which encounter errors, if the message is sent
successfully to some queues in the distribution list and not others.
If put message records or response records are provided by the application,
the PMVER field must be set to PMVER2.
A version-2 MQPMO can also be used to send messages to a single queue
that is not in a distribution list, by ensuring that PMREC is zero.

b. The completion code and reason code parameters are set as follows:
v If the puts to the queues in the distribution list all succeed or fail in the

same way, the completion code and reason code parameters are set to
describe the common result. The MQRR response records (if provided by
the application) are not set in this case.
For example, if every put succeeds, the completion code and reason code
are set to CCOK and RCNONE respectively; if every put fails because all
of the queues are inhibited for puts, the parameters are set to CCFAIL
and RC2051.

v If the puts to the queues in the distribution list do not all succeed or fail
in the same way:
– The completion code parameter is set to CCWARN if at least one put

succeeded, and to CCFAIL if all failed.
– The reason code parameter is set to RC2136.
– The response records (if provided by the application) are set to the

individual completion codes and reason codes for the queues in the
distribution list.

If the put to a destination fails because the open for that destination
failed, the fields in the response record are set to CCFAIL and RC2137;
that destination is included in PMIDC.

c. If a destination in the distribution list resolves to a local queue, the message
is placed on that queue in normal form (that is, not as a distribution-list
message). If more than one destination resolves to the same local queue, one
message is placed on the queue for each such destination.
If a destination in the distribution list resolves to a remote queue, a message
is placed on the appropriate transmission queue. Where several destinations
resolve to the same transmission queue, a single distribution-list message
containing those destinations may be placed on the transmission queue,
even if those destinations were not adjacent in the list of destinations

Usage notes

Chapter 33. MQPUT - Put message 271

provided by the application. However, this can be done only if the
transmission queue supports distribution-list messages (see the DistLists
queue attribute described in “Chapter 38. Attributes for local queues and
model queues” on page 299).
If the transmission queue does not support distribution lists, one copy of
the message in normal form is placed on the transmission queue for each
destination that uses that transmission queue.
If a distribution list with the application message data is too big for a
transmission queue, the distribution list message is split up into smaller
distribution-list messages, each containing fewer destinations. If the
application message data only just fits on the queue, distribution-list
messages cannot be used at all, and the queue manager generates one copy
of the message in normal form for each destination that uses that
transmission queue.
If different destinations have different message priority or message
persistence (this can occur when the application specifies PRQDEF or
PEQDEF), the messages are not held in the same distribution-list message.
Instead, the queue manager generates as many distribution-list messages as
are necessary to accommodate the differing priority and persistence values.

d. A put to a distribution list may result in:
v A single distribution-list message, or
v A number of smaller distribution-list messages, or
v A mixture of distribution list messages and normal messages, or
v Normal messages only.

Which of the above occurs depends on whether:
v The destinations in the list are local, remote, or a mixture.
v The destinations have the same message priority and message

persistence.
v The transmission queues can hold distribution-list messages.
v The transmission queues’ maximum message lengths are large enough to

accommodate the message in distribution-list form.

However, regardless of which of the above occurs, each physical message
resulting (that is, each normal message or distribution-list message resulting
from the put) counts as only one message when:
v Checking whether the application has exceeded the permitted maximum

number of messages in a unit of work (see the MaxUncommittedMsgs
queue-manager attribute).

v Checking whether the triggering conditions are satisfied.
v Incrementing queue depths and checking whether the queues’ maximum

queue depth would be exceeded.
e. Any change to the queue definitions that would have caused a handle to

become invalid had the queues been opened individually (for example, a
change in the resolution path), does not cause the distribution-list handle to
become invalid. However, it does result in a failure for that particular queue
when the distribution-list handle is used on a subsequent MQPUT call.

4. If a message is put with one or more MQ header structures at the beginning of
the application message data, the queue manager performs certain checks on
the header structures to verify that they are valid. If the queue manager detects
an error, the call fails with an appropriate reason code. The checks performed
vary according to the particular structures that are present. In addition, the
checks are performed only if a version-2 or later MQMD is used on the

Usage notes

272 MQSeries for AS/400, V5.1 APR (ILE RPG)

MQPUT or MQPUT1 call; the checks are not performed if a version-1 MQMD
is used, even if an MQMDE is present at the start of the application message
data.
The following MQ header structures are validated completely by the queue
manager: MQDH, MQMDE.
For other MQ header structures, the queue manager performs some validation,
but does not check every field. Structures that are not supported by the local
queue manager, and structures following the first MQDLH in the message, are
not validated.
In addition to general checks on the fields in MQ structures, the following
conditions must be satisfied:
v An MQ structure must not be split over two or more segments – the

structure must be entirely contained within one segment.
v The sum of the lengths of the structures in a PCF message must equal the

length specified by the BUFLEN parameter on the MQPUT or MQPUT1 call. A
PCF message is a message that has one of the following format names:

FMADMN
FMEVNT
FMPCF

v MQ structures must not be truncated, except in the following situations
where truncated structures are permitted:
– Messages which are report messages.
– PCF messages.
– Messages containing an MQDLH structure. (Structures following the first

MQDLH can be truncated; structures preceding the MQDLH cannot.)
5. The BUFFER parameter shown in the RPG programming example is declared as

a string; this restricts the maximum length of the parameter to 256 bytes. If a
larger buffer is required, the parameter should be declared instead as a
structure, or as a field in a physical file. This will increase the maximum length
possible to approximately 32 KB.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQPUT(HCONN : HOBJ : MSGDSC : PMO :
C BUFLEN : BUFFER : CMPCOD :
C REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQPUT PR EXTPROC('MQPUT')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object handle
D HOBJ 10I 0 VALUE
D* Message descriptor
D MSGDSC 364A
D* Options that control the action of MQPUT
D PMO 176A
D* Length of the message in BUFFER
D BUFLEN 10I 0 VALUE
D* Message data
D BUFFER * VALUE
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

Usage notes

Chapter 33. MQPUT - Put message 273

Usage notes

274 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 34. MQPUT1 - Put one message

The MQPUT1 call puts one message on a queue. The queue need not be open.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

OBJDSC (MQOD) – input/output
Object descriptor.

This is a structure which identifies the queue to which the message is added.
See “Chapter 12. MQOD - Object descriptor” on page 137 for details.

The application must be authorized to open the queue for output. The queue
must not be a model queue.

MSGDSC (MQMD) – input/output
Message descriptor.

This structure describes the attributes of the message being sent, and receives
feedback information after the put request is complete. See “Chapter 10.
MQMD - Message descriptor” on page 83 for details.

If the application provides a version-1 MQMD, the message data can be
prefixed with an MQMDE structure in order to specify values for the fields
that exist in the version-2 MQMD but not the version-1. The MDFMT field in the
MQMD must be set to FMMDE to indicate that an MQMDE is present. See
“Chapter 11. MQMDE - Message descriptor extension” on page 131 for more
details.

PMO (MQPMO) – input/output
Options that control the action of MQPUT1.

See “Chapter 14. MQPMO - Put message options” on page 149 for details.

BUFLEN (10-digit signed integer) – input
Length of the message in BUFFER.

MQPUT1 (HCONN, OBJDSC, MSGDSC, PMO, BUFLEN, BUFFER, CMPCOD,
REASON)

© Copyright IBM Corp. 1994, 2000 275

|

Zero is valid, and indicates that the message contains no application data. The
upper limit depends on various factors; see the description of the BUFLEN
parameter of the MQPUT call for further details.

BUFFER (1-byte bit string×BUFLEN) – input
Message data.

This is a buffer containing the application message data to be sent.

If BUFFER contains character and/or numeric data, the MDCSI and MDENC fields in
the MSGDSC parameter should be set to the values appropriate to the data; this
will enable the receiver of the message to convert the data (if necessary) to the
character set and encoding used by the receiver.

Note: All of the other parameters on the MQPUT1 call must be in the
character set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and ENNAT, respectively).

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2136

(2136, X'858') Multiple reason codes returned.
RC2241

(2241, X'8C1') Message group not complete.
RC2242

(2242, X'8C2') Logical message not complete.
RC2049

(2049, X'801') Message Priority exceeds maximum value supported.
RC2104

(2104, X'838') Report option(s) in message descriptor not recognized.

If CMPCOD is CCFAIL:
RC2001

(2001, X'7D1') Alias base queue not a valid type.
RC2004

(2004, X'7D4') Buffer parameter not valid.
RC2005

(2005, X'7D5') Buffer length parameter not valid.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.

MQPUT1 — Put one message

276 MQSeries for AS/400, V5.1 APR (ILE RPG)

RC2266
(2266, X'8DA') Cluster workload exit failed.

RC2189
(2189, X'88D') Cluster name resolution failed.

RC2269
(2269, X'8DD') Cluster resource error.

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2097
(2097, X'831') Queue handle referred to does not save context.

RC2098
(2098, X'832') Context not available for queue handle referred to.

RC2198
(2198, X'896') Default transmission queue not local.

RC2199
(2199, X'897') Default transmission queue usage error.

RC2135
(2135, X'857') Distribution header structure not valid.

RC2013
(2013, X'7DD') Expiry time not valid.

RC2014
(2014, X'7DE') Feedback code not valid.

RC2258
(2258, X'8D2') Group identifier not valid.

RC2017
(2017, X'7E1') No more handles available.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2026
(2026, X'7EA') Message descriptor not valid.

RC2248
(2248, X'8C8') Message descriptor extension not valid.

RC2027
(2027, X'7EB') Missing reply-to queue.

RC2249
(2249, X'8C9') Message flags not valid.

RC2250
(2250, X'8CA') Message sequence number not valid.

RC2030
(2030, X'7EE') Message length greater than maximum for queue.

RC2031
(2031, X'7EF') Message length greater than maximum for queue
manager.

RC2029
(2029, X'7ED') Message type in message descriptor not valid.

RC2136
(2136, X'858') Multiple reason codes returned.

RC2270
(2270, X'8DE') No destination queues available.

RC2035
(2035, X'7F3') Not authorized for access.

RC2101
(2101, X'835') Object damaged.

RC2042
(2042, X'7FA') Object already open with conflicting options.

MQPUT1 — Put one message

Chapter 34. MQPUT1 - Put one message 277

|
|
|
|

|
|

RC2155
(2155, X'86B') Object records not valid.

RC2043
(2043, X'7FB') Object type not valid.

RC2044
(2044, X'7FC') Object descriptor structure not valid.

RC2251
(2251, X'8CB') Message segment offset not valid.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2252
(2252, X'8CC') Original length not valid.

RC2149
(2149, X'865') PCF structures not valid.

RC2047
(2047, X'7FF') Persistence not valid.

RC2048
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

RC2173
(2173, X'87D') Put-message options structure not valid.

RC2158
(2158, X'86E') Put message record flags not valid.

RC2050
(2050, X'802') Message priority not valid.

RC2051
(2051, X'803') Put calls inhibited for the queue.

RC2159
(2159, X'86F') Put message records not valid.

RC2052
(2052, X'804') Queue has been deleted.

RC2053
(2053, X'805') Queue already contains maximum number of messages.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2056
(2056, X'808') No space available on disk for queue.

RC2057
(2057, X'809') Queue type not valid.

RC2154
(2154, X'86A') Number of records present not valid.

RC2184
(2184, X'888') Remote queue name not valid.

RC2061
(2061, X'80D') Report options in message descriptor not valid.

RC2102
(2102, X'836') Insufficient system resources available.

RC2156
(2156, X'86C') Response records not valid.

MQPUT1 — Put one message

278 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

RC2063
(2063, X'80F') Security error occurred.

RC2253
(2253, X'8CD') Length of data in message segment is zero.

RC2188
(2188, X'88C') Call rejected by cluster workload exit.

RC2071
(2071, X'817') Insufficient storage available.

RC2024
(2024, X'7E8') No more messages can be handled within current unit of
work.

RC2072
(2072, X'818') Syncpoint support not available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2082
(2082, X'822') Unknown alias base queue.

RC2197
(2197, X'895') Unknown default transmission queue.

RC2085
(2085, X'825') Unknown object name.

RC2086
(2086, X'826') Unknown object queue manager.

RC2087
(2087, X'827') Unknown remote queue manager.

RC2196
(2196, X'894') Unknown transmission queue.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

RC2091
(2091, X'82B') Transmission queue not local.

RC2092
(2092, X'82C') Transmission queue with wrong usage.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. Both the MQPUT and MQPUT1 calls can be used to put messages on a queue;

which call to use depends on the circumstances:
v The MQPUT call should be used when multiple messages are to be placed

on the same queue.
An MQOPEN call specifying the OOOUT option is issued first, followed by
one or more MQPUT requests to add messages to the queue; finally the
queue is closed with an MQCLOSE call. This gives better performance than
repeated use of the MQPUT1 call.

v The MQPUT1 call should be used when only one message is to be put on a
queue.
This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a
single call, thereby minimizing the number of calls that must be issued.

2. If an application puts a sequence of messages on the same queue without using
message groups, the order of those messages is preserved provided that certain

MQPUT1 — Put one message

Chapter 34. MQPUT1 - Put one message 279

|
|

conditions are satisfied. However, in most environments the MQPUT1 call does
not satisfy these conditions, and so does not preserve message order. The
MQPUT call must be used instead in these environments. See the usage notes
in the description of the MQPUT call for details.

3. The MQPUT1 call can be used to put messages to distribution lists. For general
information about this, see usage note 8 on page 262 for the MQOPEN call, and
usage note 3 on page 271 for the MQPUT call.
The following differences apply when using the MQPUT1 call:
a. If MQRR response records are provided by the application, they must be

provided using the MQOD structure; they cannot be provided using the
MQPMO structure.

b. The reason code RC2137 is never returned by MQPUT1 in the response
records; if a queue fails to open, the response record for that queue contains
the actual reason code resulting from the open operation.
If an open operation for a queue succeeds with a completion code of
CCWARN, the completion code and reason code in the response record for
that queue are replaced by the completion and reason codes resulting from
the put operation.
As with the MQOPEN and MQPUT calls, the queue manager sets the
response records (if provided) only when the outcome of the call is not the
same for all queues in the distribution list; this is indicated by the call
completing with reason code RC2136.

4. If the MQPUT1 call is used to put a message on a cluster queue, the call
behaves as though OOBNDN had been specified on the MQOPEN call.

5. If a message is put with one or more MQ header structures at the beginning of
the application message data, the queue manager performs certain checks on
the header structures to verify that they are valid. For more information about
this, see usage note 4 on page 272 for the MQPUT call.

6. If more than one of the warning situations arise (see the CMPCOD parameter), the
reason code returned is the first one in the following list that applies:
a. RC2136
b. RC2242
c. RC2241
d. RC2049 or RC2104

7. The BUFFER parameter shown in the RPG programming example is declared as
a string; this restricts the maximum length of the parameter to 256 bytes. If a
larger buffer is required, the parameter should be declared instead as a
structure, or as a field in a physical file. This will increase the maximum length
possible to approximately 32 KB.

Usage notes

280 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQPUT1(HCONN : OBJDSC : MSGDSC :
C PMO : BUFLEN : BUFFER :
C CMPCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQPUT1 PR EXTPROC('MQPUT1')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object descriptor
D OBJDSC 360A
D* Message descriptor
D MSGDSC 364A
D* Options that control the action of MQPUT1
D PMO 176A
D* Length of the message in BUFFER
D BUFLEN 10I 0 VALUE
D* Message data
D BUFFER * VALUE
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

Usage notes

Chapter 34. MQPUT1 - Put one message 281

Usage notes

282 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 35. MQSET - Set object attributes

The MQSET call is used to change the attributes of an object represented by a
handle. The object must be a queue.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. The value of
HCONN was returned by a previous MQCONN or MQCONNX call.

On OS/400 for applications running in compatibility mode, the MQCONN call
can be omitted, and the following value specified for HCONN:

HCDEFH
Default connection handle.

HOBJ (10-digit signed integer) – input
Object handle.

This handle represents the queue object whose attributes are to be set. The
handle was returned by a previous MQOPEN call that specified the OOSET
option.

SELCNT (10-digit signed integer) – input
Count of selectors.

This is the count of selectors that are supplied in the SELS array. It is the
number of attributes that are to be set. Zero is a valid value. The maximum
number allowed is 256.

SELS (10-digit signed integer×SELCNT) – input
Array of attribute selectors.

This is an array of SELCNT attribute selectors; each selector identifies an
attribute (integer or character) whose value is to be set.

Each selector must be valid for the type of queue that HOBJ represents. Only
certain IA* and CA* values are allowed; these values are listed below.

Selectors can be specified in any order. Attribute values that correspond to
integer attribute selectors (IA* selectors) must be specified in INTATR in the
same order in which these selectors occur in SELS. Attribute values that
correspond to character attribute selectors (CA* selectors) must be specified in
CHRATR in the same order in which those selectors occur. IA* selectors can be
interleaved with the CA* selectors; only the relative order within each type is
important.

MQSET (HCONN, HOBJ, SELCNT, SELS, IACNT, INTATR, CALEN,
CHRATR, CMPCOD, REASON)

© Copyright IBM Corp. 1994, 2000 283

|

It is not an error to specify the same selector more than once; if this is done,
the last value specified for a given selector is the one that takes effect.

Notes:

1. The integer and character attribute selectors are allocated within two
different ranges; the IA* selectors reside within the range IAFRST through
IALAST, and the CA* selectors within the range CAFRST through CALAST.
For each range, the constants IALSTU and CALSTU define the highest
value that the queue manager will accept.

2. If all the IA* selectors occur first, the same element numbers can be used to
address corresponding elements in the SELS and INTATR arrays.

For the CA* selectors in the following descriptions, the constant that defines
the length in bytes of the string that is required in CHRATR is given in
parentheses.

Selectors for all types of queue
IAIPUT

Whether put operations are allowed.

Selectors for local queues
CATRGD

Trigger data (LNTRGD).
IADIST

Distribution list support.
IAIGET

Whether get operations are allowed.
IATRGC

Trigger control.
IATRGD

Trigger depth.
IATRGP

Threshold message priority for triggers.
IATRGT

Trigger type.

Selectors for alias queues
IAIGET

Whether get operations are allowed.

No other attributes can be set using this call.

IACNT (10-digit signed integer) – input
Count of integer attributes.

This is the number of elements in the INTATR array, and must be at least the
number of IA* selectors in the SELS parameter. Zero is a valid value if there are
none.

INTATR (10-digit signed integer×IACNT) – input
Array of integer attributes.

This is an array of IACNT integer attribute values. These attribute values must
be in the same order as the IA* selectors in the SELS array.

CALEN (10-digit signed integer) – input
Length of character attributes buffer.

MQSET — Set object attributes

284 MQSeries for AS/400, V5.1 APR (ILE RPG)

This is the length in bytes of the CHRATR parameter, and must be at least the
sum of the lengths of the character attributes specified in the SELS array. Zero
is a valid value if there are no CA* selectors in SELS.

CHRATR (1-byte character string×CALEN) – input
Character attributes.

This is the buffer containing the character attribute values, concatenated
together. The length of the buffer is given by the CALEN parameter.

The characters attributes must be specified in the same order as the CA*
selectors in the SELS array. The length of each character attribute is fixed (see
SELS). If the value to be set for an attribute contains fewer nonblank characters
than the defined length of the attribute, the value in CHRATR must be padded to
the right with blanks to make the attribute value match the defined length of
the attribute.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2006

(2006, X'7D6') Length of character attributes not valid.
RC2007

(2007, X'7D7') Character attributes string not valid.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2020

(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute not
valid.

RC2021
(2021, X'7E5') Count of integer attributes not valid.

RC2023
(2023, X'7E7') Integer attributes array not valid.

RC2040
(2040, X'7F8') Queue not open for set.

RC2041
(2041, X'7F9') Object definition changed since opened.

MQSET — Set object attributes

Chapter 35. MQSET - Set object attributes 285

RC2101
(2101, X'835') Object damaged.

RC2052
(2052, X'804') Queue has been deleted.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2065
(2065, X'811') Count of selectors not valid.

RC2067
(2067, X'813') Attribute selector not valid.

RC2066
(2066, X'812') Count of selectors too big.

RC2071
(2071, X'817') Insufficient storage available.

RC2075
(2075, X'81B') Value for trigger-control attribute not valid.

RC2076
(2076, X'81C') Value for trigger-depth attribute not valid.

RC2077
(2077, X'81D') Value for trigger-message-priority attribute not valid.

RC2078
(2078, X'81E') Value for trigger-type attribute not valid.

RC2195
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

Usage notes
1. Using this call, the application can specify an array of integer attributes, or a

collection of character attribute strings, or both. The attributes specified are all
set simultaneously, if no errors occur. If an error does occur (for example, if a
selector is not valid, or an attempt is made to set an attribute to a value that is
not valid), the call fails and no attributes are set.

2. The values of attributes can be determined using the MQINQ call; see
“Chapter 31. MQINQ - Inquire about object attributes” on page 241 for details.

Note: Not all attributes whose values can be inquired using the MQINQ call
can have their values changed using the MQSET call. For example, no
process-object or queue-manager attributes can be set with this call.

3. Attribute changes are preserved across restarts of the queue manager (other
than alterations to temporary dynamic queues, which do not survive restarts of
the queue manager).

4. It is not possible to change the attributes of a model queue using the MQSET
call. However, if you open a model queue using the MQOPEN call with the
OOSET option, you can use the MQSET call to set the attributes of the dynamic
queue that is created by the MQOPEN call.

MQSET — Set object attributes

286 MQSeries for AS/400, V5.1 APR (ILE RPG)

5. If the object being set is a cluster queue, there must be a local instance of the
cluster queue for the open to succeed.

6. For more information about object attributes, see Chapter 36. Attributes of
MQSeries objects.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQSET(HCONN : HOBJ : SELCNT :
C SELS(1) : IACNT : INTATR(1) :
C CALEN : CHRATR : CMPCOD :
C REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQSET PR EXTPROC('MQSET')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object handle
D HOBJ 10I 0 VALUE
D* Count of selectors
D SELCNT 10I 0 VALUE
D* Array of attribute selectors
D SELS 10I 0
D* Count of integer attributes
D IACNT 10I 0 VALUE
D* Array of integer attributes
D INTATR 10I 0
D* Length of character attributes buffer
D CALEN 10I 0 VALUE
D* Character attributes
D CHRATR * VALUE
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

Usage notes

Chapter 35. MQSET - Set object attributes 287

|
|

RPG invocation

288 MQSeries for AS/400, V5.1 APR (ILE RPG)

Part 3. Attributes of objects

Chapter 36. Attributes of MQSeries objects . . 291

Chapter 37. Attributes for all queues 293

Chapter 38. Attributes for local queues and
model queues 299

Chapter 39. Attributes for local definitions of
remote queues 313

Chapter 40. Attributes for alias queues 315

Chapter 41. Attributes for namelists 317

Chapter 42. Attributes for process definitions 319

Chapter 43. Attributes for the queue manager 323

© Copyright IBM Corp. 1994, 2000 289

Object attributes

290 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 36. Attributes of MQSeries objects

MQSeries objects consist of:
v Channels
v Queues
v Queue managers
v Namelists
v Processes

This part of the book describes the attributes (or properties) of MQSeries objects
that are accessible through the API, which are queues, queue managers, namelists,
and processes.

Namelists are supported in the following environments: AIX, DOS client, HP-UX,
OS/390, OS/2, OS/400, Sun Solaris, Windows client, and Windows NT.

Process definitions are not supported in the following environments: 16-bit
Windows, 32-bit Windows, and VSE/ESA.

The attributes are grouped according to the type of object to which they apply; see:
v “Chapter 37. Attributes for all queues” on page 293
v “Chapter 38. Attributes for local queues and model queues” on page 299
v “Chapter 39. Attributes for local definitions of remote queues” on page 313
v “Chapter 40. Attributes for alias queues” on page 315
v “Chapter 41. Attributes for namelists” on page 317
v “Chapter 42. Attributes for process definitions” on page 319
v “Chapter 43. Attributes for the queue manager” on page 323

Within each section, the attributes are listed in alphabetic order.

Note: The names of the attributes of objects are shown in this book in the form
that you use them with the MQINQ and MQSET calls. When you use
MQSeries commands to define, alter, or display the attributes, you use the
keywords shown in the descriptions of the commands in the MQSeries
Command Reference.

© Copyright IBM Corp. 1994, 2000 291

|

Attributes

292 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 37. Attributes for all queues

The following table summarizes the attributes that are common to all queue types
(except where noted). The attributes are described in alphabetic order.

Table 49. Attributes for all queues

Attribute Description Page

AlterationDate Date when definition was last changed 293

AlterationTime Time when definition was last changed 293

ClusterName Name of cluster to which queue belongs 293

ClusterNamelist Name of namelist object containing names of
clusters to which queue belongs

294

DefBind Default binding 294

DefPersistence Default message persistence 294

DefPriority Default message priority 295

InhibitGet Controls whether get operations for the queue are
allowed

295

InhibitPut Controls whether put operations for the queue are
allowed

296

QDesc Queue description 296

QName Queue name 297

QType Queue type 297

Scope Controls whether an entry for the queue also
exists in a cell directory

297

AlterationDate (12-byte character string)
Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is
YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the
MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)
Time when definition was last changed.

This is the time when the definition was last changed. The format of the time
is HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the
MQINQ call. The length of this attribute is given by LNTIME.

ClusterName (48-byte character string)
Name of cluster to which queue belongs.

This is the name of the cluster to which the queue belongs. If the queue
belongs to more than one cluster, ClusterNamelist specifies the name of a

© Copyright IBM Corp. 1994, 2000 293

|||

|||

|||

||
|
|

|||

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

namelist object that identifies the clusters, and ClusterName is blank. At least
one of ClusterName and ClusterNamelist must be blank. This attribute does
not apply to model queues.

To determine the value of this attribute, use the CACLN selector with the
MQINQ call. The length of this attribute is given by LNCLUN.

ClusterNamelist (48-byte character string)
Name of namelist object containing names of clusters to which queue belongs.

This is the name of a namelist object that contains the names of clusters to
which this queue belongs. If the queue belongs to only one cluster, the
namelist object contains only one name. Alternatively, ClusterName can be used
to specify the name of the cluster, in which case ClusterNamelist is blank. At
least one of ClusterName and ClusterNamelist must be blank. This attribute
does not apply to model queues.

To determine the value of this attribute, use the CACLNL selector with the
MQINQ call. The length of this attribute is given by LNNLN.

DefBind (10-digit signed integer)
Default binding.

This is the default binding that is used when OOBNDQ is specified on the
MQOPEN call and the queue is a cluster queue. This attribute does not apply
to model queues.

The value is one of the following:

BNDOPN
Binding fixed by MQOPEN call.

BNDNOT
Binding not fixed.

To determine the value of this attribute, use the IADBND selector with the
MQINQ call.

DefPersistence (10-digit signed integer)
Default message persistence.

This is the default persistence of messages on the queue. It applies if PEQDEF
is specified in the message descriptor when the message is put.

If there is more than one definition in the queue-name resolution path, the
default persistence is taken from the value of this attribute in the first
definition in the path at the time of the MQPUT or MQPUT1 call. This could
be:
v An alias queue
v A local queue
v A local definition of a remote queue
v A queue-manager alias
v A transmission queue (for example, the DefXmitQName queue)

The value is one of the following:

PEPER
Message is persistent.

Attributes - all queues

294 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

The message survives restarts of the queue manager. Because
temporary dynamic queues do not survive restarts of the queue
manager, persistent messages cannot be placed on temporary dynamic
queues; persistent messages can however be placed on permanent
dynamic queues, and predefined queues.

PENPER
Message is not persistent.

The message does not survive restarts of the queue manager. This
applies even if an intact copy of the message is found on auxiliary
storage during the restart procedure.

Both persistent and nonpersistent messages can exist on the same queue.

To determine the value of this attribute, use the IADPER selector with the
MQINQ call.

DefPriority (10-digit signed integer)
Default message priority

This is the default priority for messages on the queue. This applies if PRQDEF
is specified in the message descriptor when the message is put on the queue.

If there is more than one definition in the queue-name resolution path, the
default priority for the message is taken from the value of this attribute in the
first definition in the path at the time of the put operation. This could be:
v An alias queue
v A local queue
v A local definition of a remote queue
v A queue-manager alias
v A transmission queue (for example, the DefXmitQName queue)

The way in which a message is placed on a queue depends on the value of the
queue’s MsgDeliverySequence attribute:
v If the MsgDeliverySequence attribute is MSPRIO, the logical position at

which a message is placed on the queue is dependent on the value of the
MDPRI field in the message descriptor.

v If the MsgDeliverySequence attribute is MSFIFO, messages are placed on the
queue as though they had a priority equal to the DefPriority of the
resolved queue, regardless of the value of the MDPRI field in the message
descriptor. However, the MDPRI field retains the value specified by the
application that put the message. See the MsgDeliverySequence attribute
described in “Chapter 38. Attributes for local queues and model queues” on
page 299 for more information.

Priorities are in the range zero (lowest) through MaxPriority (highest); see the
MaxPriority attribute described in “Chapter 43. Attributes for the queue
manager” on page 323.

To determine the value of this attribute, use the IADPRI selector with the
MQINQ call.

InhibitGet (10-digit signed integer)
Controls whether get operations for this queue are allowed.

This attribute applies only to local, model, and alias queues.

Attributes - all queues

Chapter 37. Attributes for all queues 295

If the queue is an alias queue, get operations must be allowed for both the
alias and the base queue at the time of the get operation, in order for the
MQGET call to succeed.

The value is one of the following:

QAGETI
Get operations are inhibited.

MQGET calls fail with reason code RC2016. This includes MQGET calls
that specify GMBRWF or GMBRWN.

Note: If an MQGET call operating within a unit of work completes
successfully, changing the value of the InhibitGet attribute
subsequently to QAGETI does not prevent the unit of work
being committed.

QAGETA
Get operations are allowed.

To determine the value of this attribute, use the IAIGET selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

InhibitPut (10-digit signed integer)
Controls whether put operations for this queue are allowed.

If there is more than one definition in the queue-name resolution path, put
operations must be allowed for every definition in the path (including any
queue-manager alias definitions) at the time of the put operation, in order for
the MQPUT or MQPUT1 call to succeed.

The value is one of the following:

QAPUTI
Put operations are inhibited.

MQPUT and MQPUT1 calls fail with reason code RC2051.

Note: If an MQPUT call operating within a unit of work completes
successfully, changing the value of the InhibitPut attribute
subsequently to QAPUTI does not prevent the unit of work
being committed.

QAPUTA
Put operations are allowed.

To determine the value of this attribute, use the IAIPUT selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

QDesc (64-byte character string)
Queue description.

This is a field that may be used for descriptive commentary. The content of the
field is of no significance to the queue manager, but the queue manager may
require that the field contain only characters that can be displayed. It cannot
contain any null characters; if necessary, it is padded to the right with blanks.
In a DBCS installation, the field can contain DBCS characters (subject to a
maximum field length of 64 bytes).

Attributes - all queues

296 MQSeries for AS/400, V5.1 APR (ILE RPG)

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field is
sent to another queue manager.

To determine the value of this attribute, use the CAQD selector with the
MQINQ call. The length of this attribute is given by LNQD.

QName (48-byte character string)
Queue name.

This is the name of a queue defined on the local queue manager. For more
information about queue names, see the MQSeries Application Programming
Guide. All queues defined on a queue manager share the same queue name
space. Therefore, a QTLOC queue and a QTALS queue cannot have the same
name.

To determine the value of this attribute, use the CAQN selector with the
MQINQ call. The length of this attribute is given by LNQN.

QType (10-digit signed integer)
Queue type.

This attribute has one of the following values:
QTALS

Alias queue definition.
QTCLUS

Cluster queue.
QTLOC

Local queue.
QTREM

Local definition of a remote queue.

To determine the value of this attribute, use the IAQTYP selector with the
MQINQ call.

Scope (10-digit signed integer)
Controls whether an entry for this queue also exists in a cell directory.

A cell directory is provided by an installable Name service. This attribute
applies only to local and alias queues, and to local definitions of remote
queues. It does not apply to model queues.

The value is one of the following:

SCOQM
Queue-manager scope.

The queue definition has queue-manager scope. This means that the
definition of the queue does not extend beyond the queue manager
which owns it. To open the queue for output from some other queue
manager, either the name of the owning queue manager must be
specified, or the other queue manager must have a local definition of
the queue.

SCOCEL
Cell scope.

Attributes - all queues

Chapter 37. Attributes for all queues 297

|
|

The queue definition has cell scope. This means that the queue
definition is also placed in a cell directory available to all of the queue
managers in the cell. The queue can be opened for output from any of
the queue managers in the cell merely by specifying the name of the
queue; the name of the queue manager which owns the queue need
not be specified. However, the queue definition is not available to any
queue manager in the cell which also has a local definition of a queue
with that name, as the local definition takes precedence.

A cell directory is provided by an installable Name service. For
example, the DCE Name service inserts the queue definition into the
DCE directory.

Model and dynamic queues cannot have cell scope.

This value is only valid if a name service supporting a cell directory
has been configured.

To determine the value of this attribute, use the IASCOP selector with the
MQINQ call.

Support for this attribute is subject to the following restrictions:
v On OS/400, the attribute is supported, but only SCOQM is valid.

Attributes - all queues

298 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 38. Attributes for local queues and model queues

The following table summarizes the attributes that are specific to local queues and
model queues (except where noted). The attributes are described in alphabetic
order.

Table 50. Attributes for local and model queues

Attribute Description Page

BackoutRequeueQName Excessive backout requeue queue name 300

BackoutThreshold Backout threshold 300

CreationDate Date the queue was created 300

CreationTime Time the queue was created 300

CurrentQDepth Current queue depth 300

DefinitionType Queue definition type 301

DefInputOpenOption Default input open option 302

DistLists Distribution list support 302

HardenGetBackout Whether to maintain an accurate backout count 303

InitiationQName Name of initiation queue 304

MaxMsgLength Maximum message length in bytes 304

MaxQDepth Maximum queue depth 304

MsgDeliverySequence Message delivery sequence 305

OpenInputCount Number of opens for input 306

OpenOutputCount Number of opens for output 306

ProcessName Process name 306

QDepthHighEvent Controls whether Queue Depth High events are
generated

307

QDepthHighLimit High limit for queue depth 307

QDepthLowEvent Controls whether Queue Depth Low events are
generated

307

QDepthLowLimit Low limit for queue depth 308

QDepthMaxEvent Controls whether Queue Full events are generated 308

QServiceInterval Target for queue service interval 308

QServiceIntervalEvent Controls whether Service Interval High or Service
Interval OK events are generated

308

RetentionInterval Retention interval 309

Shareability Queue shareability 310

TriggerControl Trigger control 310

TriggerData Trigger data 310

TriggerDepth Trigger depth 311

TriggerMsgPriority Threshold message priority for triggers 311

TriggerType Trigger type 311

Usage Queue usage 312

© Copyright IBM Corp. 1994, 2000 299

BackoutRequeueQName (48-byte character string)
Excessive backout requeue queue name.

Apart from allowing its value to be queried, the queue manager takes no
action based on the value of this attribute.

To determine the value of this attribute, use the CABRQN selector with the
MQINQ call. The length of this attribute is given by LNQN.

BackoutThreshold (10-digit signed integer)
Backout threshold.

Apart from allowing its value to be queried, the queue manager takes no
action based on the value of this attribute.

To determine the value of this attribute, use the IABTHR selector with the
MQINQ call.

CreationDate (12-byte character string)
Date this queue was created.

The format is
YYYY-MM-DD

with 2 bytes of blank padding to the right to make the length 12 bytes. For
example:
1992-09-23bb

is 23 September 1992 (“bb” represents 2 blank characters).

On OS/400, the creation date of a queue may differ from that of the
underlying operating system entity (file or userspace) that represents the
queue.

To determine the value of this attribute, use the CACRTD selector with the
MQINQ call. The length of this attribute is given by LNCRTD.

CreationTime (8-byte character string)
Time this queue was created.

The format is
HH.MM.SS

using the 24-hour clock, with a leading zero if the hour is less than 10. For
example:
21.10.20

This is an 8-character string. The time is local time.
v On OS/400, the creation time of a queue may differ from that of the

underlying operating system entity (file or userspace) that represents the
queue.

To determine the value of this attribute, use the CACRTT selector with the
MQINQ call. The length of this attribute is given by LNCRTT.

CurrentQDepth (10-digit signed integer)
Current queue depth.

Attributes - local and model queues

300 MQSeries for AS/400, V5.1 APR (ILE RPG)

This is the number of messages currently on the queue. It is incremented
during an MQPUT call, and during backout of an MQGET call. It is
decremented during a nonbrowse MQGET call, and during backout of an
MQPUT call. The effect of this is that the count includes messages that have
been put on the queue within a unit of work, but which have not yet been
committed, even though they are not eligible to be retrieved by the MQGET
call. Similarly, it excludes messages that have been retrieved within a unit of
work using the MQGET call, but which have yet to be committed.

The count also includes messages which have passed their expiry time but
have not yet been discarded, although these messages are not eligible to be
retrieved. See the MDEXP field described in “Chapter 10. MQMD - Message
descriptor” on page 83.

The value of this attribute fluctuates as the queue manager operates.

This attribute does not apply to model queues, but it does apply to the
dynamically-defined queues created from the model queue definitions using
the MQOPEN call.

To determine the value of this attribute, use the IACDEP selector with the
MQINQ call.

DefinitionType (10-digit signed integer)
Queue definition type.

This indicates how the queue was defined. It is one of the following:

QDPRE
Predefined permanent queue.

The queue is a permanent queue created by the system administrator;
only the system administrator can delete it.

Predefined queues are created using the DEFINE command, and can
be deleted only by using the DELETE command. Predefined queues
cannot be created from model queues.

Commands can be issued either by an operator, or by an authorized
application sending a command message to the command input queue
(see the CommandInputQName attribute described in “Chapter 43.
Attributes for the queue manager” on page 323).

QDPERM
Dynamically defined permanent queue.

The queue is a permanent queue that was created by an application
issuing an MQOPEN call with the name of a model queue specified in
the object descriptor. The model queue definition has the value
QDPERM for the DefinitionType attribute. This type of queue can be
deleted using the MQCLOSE call. See “Chapter 25. MQCLOSE - Close
object” on page 211 for more details.

QDTEMP
Dynamically defined temporary queue.

The queue is a temporary queue that was created by an application
issuing an MQOPEN call with the name of a model queue specified in
the object descriptor. The model queue definition has the value

Attributes - local and model queues

Chapter 38. Attributes for local queues and model queues 301

QDTEMP for the DefinitionType attribute. This type of queue is
deleted automatically by the MQCLOSE call when it is closed by the
application that created it.

This attribute in a model queue definition does not indicate how the model
queue was defined, because model queues are always predefined. Instead, the
value of this attribute in the model queue is used to determine the
DefinitionType of each of the dynamic queues created from the model queue
definition using the MQOPEN call.

To determine the value of this attribute, use the IADEFT selector with the
MQINQ call.

DefInputOpenOption (10-digit signed integer)
Default input open option.

This is the default way in which the queue should be opened for input. It
applies if the OOINPQ option is specified on the MQOPEN call when the
queue is opened. It is one of the following:

OOINPX
Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call
fails with reason code RC2042 if the queue is currently open by this or
another application for input of any type (OOINPS or OOINPX).

OOINPS
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call
can succeed if the queue is currently open by this or another
application with OOINPS, but fails with reason code RC2042 if the
queue is currently open with OOINPX.

To determine the value of this attribute, use the IADINP selector with the
MQINQ call.

DistLists (10-digit signed integer)
Distribution list support.

This indicates whether distribution-list messages can be placed on the queue.
The attribute is set by a message channel agent (MCA) to inform the local
queue manager whether the queue manager at the other end of the channel
supports distribution lists. This latter queue manager (called the “partnering
queue manager”) is the one which next receives the message, after it has been
removed from the local transmission queue by a sending MCA.

The attribute is set by the sending MCA whenever it establishes a connection
to the receiving MCA on the partnering queue manager. In this way, the
sending MCA can cause the local queue manager to place on the transmission
queue only messages which the partnering queue manager is capable of
processing correctly.

This attribute is primarily for use with transmission queues, but the processing
described is performed regardless of the usage defined for the queue (see the
Usage attribute).

The value is one of the following:

Attributes - local and model queues

302 MQSeries for AS/400, V5.1 APR (ILE RPG)

DLSUPP
Distribution lists supported.

This indicates that distribution-list messages can be stored on the
queue, and transmitted to the partnering queue manager in that form.
This reduces the amount of processing required to send the message to
multiple destinations.

DLNSUP
Distribution lists not supported.

This indicates that distribution-list messages cannot be stored on the
queue, because the partnering queue manager does not support
distribution lists. If an application puts a distribution-list message, and
that message is to be placed on this queue, the queue manager splits
the distribution-list message and places the individual messages on the
queue instead. This increases the amount of processing required to
send the message to multiple destinations, but ensures that the
messages will be processed correctly by the partnering queue manager.

To determine the value of this attribute, use the IADIST selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

HardenGetBackout (10-digit signed integer)
Whether to maintain an accurate backout count.

For each message, a count is kept of the number of times that the message is
retrieved by an MQGET call within a unit of work, and that unit of work
subsequently backed out. This count is available in the MDBOC field in the
message descriptor after the MQGET call has completed.

The message backout count survives restarts of the queue manager. However,
to ensure that the count is accurate, information has to be “hardened”
(recorded on disk or other permanent storage device) each time a message is
retrieved by an MQGET call within a unit of work for this queue. If this is not
done, and a failure of the queue manager occurs together with backout of the
MQGET call, the count may or may not be incremented.

Hardening information for each MQGET call within a unit of work, however,
imposes a performance overhead, and the HardenGetBackout attribute should
be set to QABH only if it is essential that the count is accurate.

On OS/400, the message backout count is always hardened, regardless of the
setting of this attribute.

The following values are possible:

QABH
Backout count remembered.

Hardening is used to ensure that the backout count for messages on
this queue is accurate.

QABNH
Backout count may not be remembered.

Hardening is not used to ensure that the backout count for messages
on this queue is accurate. The count may therefore be lower than it
should be.

Attributes - local and model queues

Chapter 38. Attributes for local queues and model queues 303

To determine the value of this attribute, use the IAHGB selector with the
MQINQ call.

InitiationQName (48-byte character string)
Name of initiation queue.

This is the name of a queue defined on the local queue manager; the queue
must be of type QTLOC. The queue manager sends a trigger message to the
initiation queue when application start-up is required as a result of a message
arriving on the queue to which this attribute belongs. The initiation queue
must be monitored by a trigger monitor application which will start the
appropriate application after receipt of the trigger message.

To determine the value of this attribute, use the CAINIQ selector with the
MQINQ call. The length of this attribute is given by LNQN.

MaxMsgLength (10-digit signed integer)
Maximum message length in bytes.

This is an upper limit for the length of the longest physical message that can be
placed on the queue. However, because the MaxMsgLength local-queue attribute
can be set independently of the MaxMsgLength queue-manager attribute, the
actual upper limit for the length of the longest physical message that can be
placed on the queue is the lesser of those two values.

If the queue manager supports segmentation, it is possible for an application to
put a logical message that is longer than the lesser of the two MaxMsgLength
attributes, but only if the application specifies the MFSEGA flag in MQMD. If
that flag is specified, the upper limit for the length of a logical message is
999 999 999 bytes, but usually resource constraints imposed by the operating
system, or by the environment in which the application is running, will result
in a lower limit.

An attempt to place on the queue a message that is too long fails with reason
code:
v RC2030 if the message to too big for the queue
v RC2031 if the message to too big for the queue manager, but not too big for

the queue

The lower limit for the MaxMsgLength attribute is zero. The upper limit is
determined by the environment:
v On OS/400, the maximum message length is 100 MB (104 857 600 bytes).

For more information, see the BUFLEN parameter described in “Chapter 33.
MQPUT - Put message” on page 265.

To determine the value of this attribute, use the IAMLEN selector with the
MQINQ call.

MaxQDepth (10-digit signed integer)
Maximum queue depth.

This is the defined upper limit for the number of physical messages that can
exist on the queue at any one time. An attempt to put a message on a queue
that already contains MaxQDepth messages fails with reason code RC2053.

Attributes - local and model queues

304 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|
|
|
|
|
|

Unit-of-work processing and the segmentation of messages can both cause the
actual number of physical messages on the queue to exceed MaxQDepth.
However, this does not affect the retrievability of the messages – all messages
on the queue can be retrieved using the MQGET call in the normal way.

The value of this attribute is zero or greater. The upper limit is determined by
the environment:
v On OS/400, the value cannot exceed 640 000.

Note: It is possible for the storage space available to the queue to be exhausted
even if there are fewer than MaxQDepth messages on the queue.

To determine the value of this attribute, use the IAMDEP selector with the
MQINQ call.

MsgDeliverySequence (10-digit signed integer)
Message delivery sequence.

This determines the order in which messages are returned to the application by
the MQGET call:

MSFIFO
Messages are returned in FIFO order (first in, first out).

This means that an MQGET call will return the first message that
satisfies the selection criteria specified on the call, regardless of the
priority of the message.

MSPRIO
Messages are returned in priority order.

This means that an MQGET call will return the highest-priority message
that satisfies the selection criteria specified on the call. Within each
priority level, messages are returned in FIFO order (first in, first out).

If the relevant attributes are changed while there are messages on the queue,
the delivery sequence is as follows:

The order in which messages are returned by the MQGET call is
determined by the values of the MsgDeliverySequence and DefPriority
attributes in force for the queue at the time the message arrives on the
queue:
– If MsgDeliverySequence is MSFIFO when the message arrives, the

message is placed on the queue as though its priority were DefPriority.
This does not affect the value of the MDPRI field in the message
descriptor of the message; that field retains the value it had when the
message was first put.

– If MsgDeliverySequence is MSPRIO when the message arrives, the
message is placed on the queue at the place appropriate to the priority
given by the MDPRI field in the message descriptor.

If the value of the MsgDeliverySequence attribute is changed while there are
messages on the queue, the order of the messages on the queue is not
changed.

If the value of the DefPriority attribute is changed while there are
messages on the queue, the messages will not necessarily be delivered in

Attributes - local and model queues

Chapter 38. Attributes for local queues and model queues 305

FIFO order, even though the MsgDeliverySequence attribute is set to
MSFIFO; those that were placed on the queue at the higher priority are
delivered first.

To determine the value of this attribute, use the IAMDS selector with the
MQINQ call.

OpenInputCount (10-digit signed integer)
Number of opens for input.

This is the number of handles that are currently valid for removing messages
from the queue by means of the MQGET call. It is the total number of such
handles known to the local queue manager.

The count includes handles where an alias queue which resolves to this queue
was opened for input. The count does not include handles where the queue
was opened for action(s) which did not include input (for example, a queue
opened only for browse).

The value of this attribute fluctuates as the queue manager operates.

This attribute does not apply to model queues, but it does apply to the
dynamically-defined queues created from the model queue definitions using
the MQOPEN call.

To determine the value of this attribute, use the IAOIC selector with the
MQINQ call.

OpenOutputCount (10-digit signed integer)
Number of opens for output.

This is the number of handles that are currently valid for adding messages to
the queue by means of the MQPUT call. It is the total number of such handles
known to the local queue manager; it does not include opens for output that
were performed for this queue at remote queue managers.

The count includes handles where an alias queue which resolves to this queue
was opened for output. The count does not include handles where the queue
was opened for action(s) which did not include output (for example, a queue
opened only for inquire).

The value of this attribute fluctuates as the queue manager operates.

This attribute does not apply to model queues, but it does apply to the
dynamically-defined queues created from the model queue definitions using
the MQOPEN call.

To determine the value of this attribute, use the IAOOC selector with the
MQINQ call.

ProcessName (48-byte character string)
Process name.

This is the name of a process object that is defined on the local queue manager.
The process object identifies a program that can service the queue.

Attributes - local and model queues

306 MQSeries for AS/400, V5.1 APR (ILE RPG)

To determine the value of this attribute, use the CAPRON selector with the
MQINQ call. The length of this attribute is given by LNPRON.

QDepthHighEvent (10-digit signed integer)
Controls whether Queue Depth High events are generated.

A Queue Depth High event indicates that an application has put a message on
a queue, and this has caused the number of messages on the queue to become
greater than or equal to the queue depth high threshold (see the
QDepthHighLimit attribute).

Note: The value of this attribute can change dynamically. See the description
of the Queue Depth High event for more details.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IAQDHE selector with the
MQINQ call.

QDepthHighLimit (10-digit signed integer)
High limit for queue depth.

The threshold against which the queue depth is compared to generate a Queue
Depth High event.

This event indicates that an application has put a message on a queue, and this
has caused the number of messages on the queue to become greater than or
equal to the queue depth high threshold. See the QDepthHighEvent attribute.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and is greater than or equal to 0 and less than or equal
to 100. The default value is 80.

To determine the value of this attribute, use the IAQDHL selector with the
MQINQ call.

QDepthLowEvent (10-digit signed integer)
Controls whether Queue Depth Low events are generated.

A Queue Depth Low event indicates that an application has retrieved a
message from a queue, and this has caused the number of messages on the
queue to become less than or equal to the queue depth low threshold (see the
QDepthLowLimit attribute).

Note: The value of this attribute can change dynamically. See the description
of the Queue Depth Low event for more details.

It is one of the following:

EVRDIS
Event reporting disabled.

Attributes - local and model queues

Chapter 38. Attributes for local queues and model queues 307

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IAQDLE selector with the
MQINQ call.

QDepthLowLimit (10-digit signed integer)
Low limit for queue depth.

The threshold against which the queue depth is compared to generate a Queue
Depth Low event.

This event indicates that an application has retrieved a message from a queue,
and this has caused the number of messages on the queue to become less than
or equal to the queue depth low threshold. See the QDepthLowEvent attribute.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and is greater than or equal to 0 and less than or equal
to 100. The default value is 20.

To determine the value of this attribute, use the IAQDLL selector with the
MQINQ call.

QDepthMaxEvent (10-digit signed integer)
Controls whether Queue Full events are generated.

A Queue Full event indicates that a put to a queue has been rejected because
the queue is full, that is, the queue depth has already reached its maximum
value.

Note: The value of this attribute can change dynamically. See the description
of the Queue Full event for more details.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IAQDME selector with the
MQINQ call.

QServiceInterval (10-digit signed integer)
Target for queue service interval.

The service interval used for comparison to generate Service Interval High and
Service Interval OK events. See the QServiceIntervalEvent attribute.

The value is in units of milliseconds, and is greater than or equal to zero, and
less than or equal to 999 999 999.

To determine the value of this attribute, use the IAQSI selector with the
MQINQ call.

QServiceIntervalEvent (10-digit signed integer)
Controls whether Service Interval High or Service Interval OK events are
generated.

Attributes - local and model queues

308 MQSeries for AS/400, V5.1 APR (ILE RPG)

A Service Interval High event is generated when a check indicates that no
messages have been retrieved from the queue for at least the time indicated by
the QServiceInterval attribute.

A Service Interval OK event is generated when a check indicates that messages
have been retrieved from the queue within the time indicated by the
QServiceInterval attribute.

Note: The value of this attribute can change dynamically. See the description
of the Service Interval High and Service Interval OK events for more
details.

It is one of the following:

QSIEHI
Queue Service Interval High events enabled.
v Queue Service Interval High events are enabled and
v Queue Service Interval OK events are disabled.

QSIEOK
Queue Service Interval OK events enabled.
v Queue Service Interval High events are disabled and
v Queue Service Interval OK events are enabled.

QSIENO
No queue service interval events enabled.
v Queue Service Interval High events are disabled and
v Queue Service Interval OK events are also disabled.

To determine the value of this attribute, use the IAQSIE selector with the
MQINQ call.

RetentionInterval (10-digit signed integer)
Retention interval.

This is the period of time for which the queue should be retained. After this
time has elapsed, the queue is eligible for deletion.

The time is measured in hours, counting from the date and time when the
queue was created. The creation date and time of the queue are recorded in the
CreationDate and CreationTime attributes, respectively.

This information is provided to enable a housekeeping application or the
operator to identify and delete queues that are no longer required.

Note: The queue manager never takes any action to delete queues based on
this attribute, or to prevent the deletion of queues whose retention
interval has not expired; it is the user’s responsibility to cause any
required action to be taken.

A realistic retention interval should be used to prevent the accumulation of
permanent dynamic queues (see DefinitionType). However, this attribute can
also be used with predefined queues.

To determine the value of this attribute, use the IARINT selector with the
MQINQ call.

Attributes - local and model queues

Chapter 38. Attributes for local queues and model queues 309

Shareability (10-digit signed integer)
Queue shareability.

This indicates whether the queue can be opened for input multiple times
concurrently. It is one of the following:

QASHR
Queue is shareable.

Multiple opens with the OOINPS option are allowed.

QANSHR
Queue is not shareable.

An MQOPEN call with the OOINPS option is treated as OOINPX.

To determine the value of this attribute, use the IASHAR selector with the
MQINQ call.

TriggerControl (10-digit signed integer)
Trigger control.

This controls whether trigger messages are written to an initiation queue, in
order to cause an application to be started to service the queue.

This is one of the following:

TCOFF
Trigger messages not required.

No trigger messages are to be written for this queue. The value of
TriggerType is irrelevant in this case.

TCON
Trigger messages required.

Trigger messages are to be written for this queue, when the
appropriate trigger events occur.

To determine the value of this attribute, use the IATRGC selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

TriggerData (64-byte character string)
Trigger data.

This is free-format data that the queue manager inserts into the trigger
message when a message arriving on this queue causes a trigger message to be
written to the initiation queue.

The content of this data is of no significance to the queue manager. It is
meaningful either to the trigger-monitor application which processes the
initiation queue, or to the application which is started by the trigger monitor.

The character string cannot contain any nulls. It is padded to the right with
blanks if necessary.

To determine the value of this attribute, use the CATRGD selector with the
MQINQ call. To change the value of this attribute, use the MQSET call. The
length of this attribute is given by LNTRGD.

Attributes - local and model queues

310 MQSeries for AS/400, V5.1 APR (ILE RPG)

TriggerDepth (10-digit signed integer)
Trigger depth.

This is the number of messages of priority TriggerMsgPriority or greater that
must be on the queue before a trigger message is written. This applies when
TriggerType is set to TTDPTH. The value of TriggerDepth is one or greater.
This attribute is not used otherwise.

To determine the value of this attribute, use the IATRGD selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

TriggerMsgPriority (10-digit signed integer)
Threshold message priority for triggers.

This is the message priority below which messages do not contribute to the
generation of trigger messages (that is, the queue manager ignores these
messages when deciding whether a trigger message should be generated).
TriggerMsgPriority can be in the range zero (lowest) through MaxPriority
(highest; see “Chapter 43. Attributes for the queue manager” on page 323); a
value of zero causes all messages to contribute to the generation of trigger
messages.

To determine the value of this attribute, use the IATRGP selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

TriggerType (10-digit signed integer)
Trigger type.

This controls the conditions under which trigger messages are written as a
result of messages arriving on this queue.

It is one of the following:

TTNONE
No trigger messages.

No trigger messages are written as a result of messages on this queue.
This has the same effect as setting TriggerControl to TCOFF.

TTFRST
Trigger message when queue depth goes from 0 to 1.

A trigger message is written whenever the number of messages of
priority TriggerMsgPriority or greater on the queue changes from 0 to
1.

TTEVRY
Trigger message for every message.

A trigger message is written whenever a message of priority
TriggerMsgPriority or greater arrives on the queue.

TTDPTH
Trigger message when depth threshold exceeded.

A trigger message is written whenever the number of messages of
priority TriggerMsgPriority or greater on the queue equals or exceeds
TriggerDepth. After the trigger message has been written,
TriggerControl is set to TCOFF to prevent further triggering until it is
explicitly turned on again.

Attributes - local and model queues

Chapter 38. Attributes for local queues and model queues 311

|

|
|
|

|
|

|
|
|

To determine the value of this attribute, use the IATRGT selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

Usage (10-digit signed integer)
Queue usage.

This indicates what the queue is used for. It is one of the following:

USNORM
Normal usage.

This is a queue that normal applications use when putting and getting
messages; the queue is not a transmission queue.

USTRAN
Transmission queue.

This is a queue used to hold messages destined for remote queue
managers. When a normal application sends a message to a remote
queue, the local queue manager stores the message temporarily on the
appropriate transmission queue in a special format. A message channel
agent then reads the message from the transmission queue, and
transports the message to the remote queue manager. For more
information about transmission queues, see the MQSeries Application
Programming Guide.

Only privileged applications can open a transmission queue for
OOOUT to put messages on it directly. Only utility applications would
normally be expected to do this. Care must be taken that the message
data format is correct (see “Chapter 21. MQXQH - Transmission queue
header” on page 193), otherwise errors may occur during the
transmission process. Context is not passed or set unless one of the
PM* context options is specified.

To determine the value of this attribute, use the IAUSAG selector with the
MQINQ call.

Attributes - local and model queues

312 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 39. Attributes for local definitions of remote queues

The following table summarizes the attributes that are specific to the local
definitions of remote queues. The attributes are described in alphabetic order.

Table 51. Attributes for local definitions of remote queues

Attribute Description Page

RemoteQMgrName Name of remote queue manager 313

RemoteQName Name of remote queue 314

XmitQName Transmission queue name 314

A local definition of a remote queue is normally used to refer to a queue that exists
on a remote queue manager. It specifies the name of the queue manager at which
the queue exists, and optionally the name of the transmission queue to be used to
convey messages destined for that queue at that queue manager.

However, the same type of definition can also be used for the following purposes:
v Reply queue aliasing

The name of the definition is the name of a reply-to queue. For more
information, see the MQSeries Intercommunication book.

v Queue-manager aliasing
The name of the definition is actually the alias name of a queue manager, not
the name of a queue. For more information, see the MQSeries Intercommunication
book.

RemoteQMgrName (48-byte character string)
Name of remote queue manager.

The name of the remote queue manager on which the queue RemoteQName is
defined.

If an application opens the local definition of a remote queue, RemoteQMgrName
must not be blank and must not be the name of the local queue manager. If
XmitQName is blank, the local queue whose name is the same as RemoteQMgrName
is used as the transmission queue. If there is no queue with the name
RemoteQMgrName, the queue identified by the DefXmitQName queue-manager
attribute is used.

If this definition is used for a queue-manager alias, RemoteQMgrName is the name
of the queue manager that is being aliased. It can be the name of the local
queue manager. Otherwise, if XmitQName is blank when the open occurs, there
must be a local queue whose name is the same as RemoteQMgrName; this queue
is used as the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the queue
manager which is to be the MDRM.

Note: No validation is performed on the value specified for this attribute
when the queue definition is created or modified.

© Copyright IBM Corp. 1994, 2000 313

To determine the value of this attribute, use the CARQMN selector with the
MQINQ call.

The length of this attribute is given by LNQMN.

RemoteQName (48-byte character string)
Name of remote queue.

The name of the queue as it is known on the remote queue manager
RemoteQMgrName.

If an application opens the local definition of a remote queue, when the open
occurs RemoteQName must not be blank.

If this definition is used for a queue-manager alias definition, when the open
occurs RemoteQName must be blank.

If the definition is used for a reply-to alias, this name is the name of the queue
that is to be the MDRQ.

Note: No validation is performed on the value specified for this attribute
when the queue definition is created or modified.

To determine the value of this attribute, use the CARQN selector with the
MQINQ call.

The length of this attribute is given by LNQN.

XmitQName (48-byte character string)
Transmission queue name.

If this attribute is nonblank when an open occurs, either for a remote queue or
for a queue-manager alias definition, it specifies the name of the local
transmission queue to be used for forwarding the message.

If XmitQName is blank, the local queue whose name is the same as
RemoteQMgrName is used as the transmission queue. If there is no queue with
the name RemoteQMgrName, the queue identified by the DefXmitQName
queue-manager attribute is used.

This attribute is ignored if the definition is being used as a queue-manager
alias and RemoteQMgrName is the name of the local queue manager.

It is also ignored if the definition is used as a reply-to queue alias definition.

To determine the value of this attribute, use the CAXQN selector with the
MQINQ call.

The length of this attribute is given by LNQN.

Attributes - remote queues

314 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 40. Attributes for alias queues

The following attribute is associated with alias queues:

BaseQName (48-byte character string)
The queue name to which the alias resolves.

This is the name of a queue that is defined to the local queue manager. (For
more information on queue names, see the MQSeries Application Programming
Guide. The queue is one of the following types:
QTLOC

Local queue.
QTREM

Local definition of a remote queue.
QTCLUS

Cluster queue.

To determine the value of this attribute, use the CABASQ selector with the
MQINQ call.

The length of this attribute is given by LNQN.

© Copyright IBM Corp. 1994, 2000 315

|
|

Attributes - alias queues

316 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 41. Attributes for namelists

Namelists are supported in the following environments: AIX, DOS client, HP-UX,
OS/390, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

The following table summarizes the attributes that are specific to namelists. The
attributes are described in alphabetic order.

Table 52. Attributes for namelists

Attribute Description Page

AlterationDate Date when definition was last changed 317

AlterationTime Time when definition was last changed 317

NameCount Number of names in namelist 317

NamelistDesc Namelist description 317

NamelistName Namelist name 318

Names A list of NameCount names 318

AlterationDate (12-byte character string)
Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is
YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the
MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)
Time when definition was last changed.

This is the time when the definition was last changed. The format of the time
is HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the
MQINQ call. The length of this attribute is given by LNTIME.

NameCount (10-digit signed integer)
Number of names in namelist.

This is greater than or equal to zero. The following value is defined:

NCMXNL
Maximum number of names in a namelist.

To determine the value of this attribute, use the IANAMC selector with the
MQINQ call.

NamelistDesc (64-byte character string)
Namelist description.

This is a field that may be used for descriptive commentary; its value is
established by the definition process. The content of the field is of no
significance to the queue manager, but the queue manager may require that the

© Copyright IBM Corp. 1994, 2000 317

|
|

|||

|||

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

field contain only characters that can be displayed. It cannot contain any null
characters; if necessary, it is padded to the right with blanks. In a DBCS
installation, this field can contain DBCS characters (subject to a maximum field
length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field is
sent to another queue manager.

To determine the value of this attribute, use the CALSTD selector with the
MQINQ call.

The length of this attribute is given by LNNLD.

NamelistName (48-byte character string)
Namelist name.

This is the name of a namelist that is defined on the local queue manager. For
more information about namelist names, see the MQSeries Application
Programming Guide.

Each namelist has a name that is different from the names of other namelists
belonging to the queue manager, but may duplicate the names of other queue
manager objects of different types (for example, queues).

To determine the value of this attribute, use the CALSTN selector with the
MQINQ call.

The length of this attribute is given by LNNLN.

Names (48-byte character string×NameCount)
A list of NameCount names.

Each name is the name of an object that is defined to the local queue manager.
For more information about object names, see the MQSeries Application
Programming Guide.

To determine the value of this attribute, use the CANAMS selector with the
MQINQ call.

The length of each name in the list is given by LNOBJN.

Attributes - namelists

318 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|

Chapter 42. Attributes for process definitions

The following table summarizes the attributes that are specific to process
definitions. The attributes are described in alphabetic order.

Table 53. Attributes for process definitions

Attribute Description Page

AlterationDate Date when definition was last changed 319

AlterationTime Time when definition was last changed 319

ApplId Application identifier 319

ApplType Application type 320

EnvData Environment data 320

ProcessDesc Process description 320

ProcessName Process name 321

UserData User data 321

AlterationDate (12-byte character string)
Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is
YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the
MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)
Time when definition was last changed.

This is the time when the definition was last changed. The format of the time
is HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the
MQINQ call. The length of this attribute is given by LNTIME.

ApplId (256-byte character string)
Application identifier.

This is a character string that identifies the application to be started. This
information is for use by a trigger-monitor application that processes messages
on the initiation queue; the information is sent to the initiation queue as part of
the trigger message.

The meaning of ApplId is determined by the trigger-monitor application. The
trigger monitor provided by MQSeries requires ApplId to be the name of an
executable program.

The character string cannot contain any nulls. It is padded to the right with
blanks if necessary.

To determine the value of this attribute, use the CAAPPI selector with the
MQINQ call. The length of this attribute is given by LNPROA.

© Copyright IBM Corp. 1994, 2000 319

|||

|||

|
|

|
|

|
|

|
|

|
|

|
|

ApplType (10-digit signed integer)
Application type.

This identifies the nature of the program to be started in response to the
receipt of a trigger message. This information is for use by a trigger-monitor
application that processes messages on the initiation queue; the information is
sent to the initiation queue as part of the trigger message.

ApplType can have any value, but the following values are recommended for
standard types; user-defined application types should be restricted to values in
the range ATUFST through ATULST:
ATCICS

CICS transaction.
AT400 OS/400 application.
ATUFST

Lowest value for user-defined application type.
ATULST

Highest value for user-defined application type.

To determine the value of this attribute, use the IAAPPT selector with the
MQINQ call.

EnvData (128-byte character string)
Environment data.

This is a character string that contains environment-related information
pertaining to the application to be started. This information is for use by a
trigger-monitor application that processes messages on the initiation queue; the
information is sent to the initiation queue as part of the trigger message.

The meaning of EnvData is determined by the trigger-monitor application. The
trigger monitor provided by MQSeries appends EnvData to the parameter list
passed to the started application. The parameter list consists of the MQTMC2
structure, followed by one blank, followed by EnvData with trailing blanks
removed.

The character string cannot contain any nulls. It is padded to the right with
blanks if necessary.

To determine the value of this attribute, use the CAENVD selector with the
MQINQ call. The length of this attribute is given by LNPROE.

ProcessDesc (64-byte character string)
Process description.

This is a field that may be used for descriptive commentary. The content of the
field is of no significance to the queue manager, but the queue manager may
require that the field contain only characters that can be displayed. It cannot
contain any null characters; if necessary, it is padded to the right with blanks.
In a DBCS installation, the field can contain DBCS characters (subject to a
maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field is
sent to another queue manager.

Attributes - process definitions

320 MQSeries for AS/400, V5.1 APR (ILE RPG)

To determine the value of this attribute, use the CAPROD selector with the
MQINQ call.

The length of this attribute is given by LNPROD.

ProcessName (48-byte character string)
Process name.

This is the name of a process definition that is defined on the local queue
manager.

Each process definition has a name that is different from the names of other
process definitions belonging to the queue manager. But the name of the
process definition may be the same as the names of other queue manager
objects of different types (for example, queues).

To determine the value of this attribute, use the CAPRON selector with the
MQINQ call.

The length of this attribute is given by LNPRON.

UserData (128-byte character string)
User data.

This is a character string that contains user information pertaining to the
application to be started. This information is for use by a trigger-monitor
application that processes messages on the initiation queue, or the application
which is started by the trigger monitor. The information is sent to the initiation
queue as part of the trigger message.

The meaning of UserData is determined by the trigger-monitor application. The
trigger monitor provided by MQSeries simply passes UserData to the started
application as part of the parameter list. The parameter list consists of the
MQTMC2 structure (containing UserData), followed by one blank, followed by
EnvData with trailing blanks removed.

The character string cannot contain any nulls. It is padded to the right with
blanks if necessary.

To determine the value of this attribute, use the CAUSRD selector with the
MQINQ call. The length of this attribute is given by LNPROU.

Attributes - process definitions

Chapter 42. Attributes for process definitions 321

Attributes - process definitions

322 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 43. Attributes for the queue manager

The following table summarizes the attributes that are specific to the queue
manager. The attributes are described in alphabetic order.

Table 54. Attributes for the queue manager

Attribute Description Page

AlterationDate Date when definition was last changed 324

AlterationTime Time when definition was last changed 324

AuthorityEvent Controls whether authorization (Not Authorized)
events are generated

324

ChannelAutoDef Controls whether automatic channel definition is
permitted

324

ChannelAutoDefEvent Controls whether channel automatic-definition
events are generated

325

ChannelAutoDefExit Name of user exit for automatic channel definition 325

ClusterWorkloadData User data for cluster workload exit 325

ClusterWorkloadExit Name of user exit for cluster workload
management

325

ClusterWorkloadLength Maximum length of message data passed to
cluster workload exit

326

CodedCharSetId Coded character set identifier 326

CommandInputQName Command input queue name 326

CommandLevel Command level 326

DeadLetterQName Name of dead-letter queue 327

DefXmitQName Default transmission queue name 328

DistLists Distribution list support 328

InhibitEvent Controls whether inhibit (Inhibit Get and Inhibit
Put) events are generated

329

LocalEvent Controls whether local error events are generated 329

MaxHandles Maximum number of handles 329

MaxMsgLength Maximum message length in bytes 330

MaxPriority Maximum priority 330

MaxUncommittedMsgs Maximum number of uncommitted messages
within a unit of work

330

PerformanceEvent Controls whether performance-related events are
generated

331

Platform Platform on which the queue manager is running 331

QMgrDesc Queue manager description 331

QMgrIdentifier Unique internally-generated identifier of queue
manager

332

QMgrName Queue manager name 332

RemoteEvent Controls whether remote error events are
generated

332

© Copyright IBM Corp. 1994, 2000 323

|||

|||

|||

||
|
|

||
|
|

||
|
|

Table 54. Attributes for the queue manager (continued)

Attribute Description Page

RepositoryName Name of cluster for which this queue manager
provides repository services

332

RepositoryNamelist Name of namelist object containing names of
clusters for which this queue manager provides
repository services

332

StartStopEvent Controls whether start and stop events are
generated

333

SyncPoint Syncpoint availability 333

TriggerInterval Trigger-message interval 333

Some of these attributes are fixed for particular implementations, others can be
changed with the ALTER QMGR command. All can be inquired by opening a
special OTQM object, and using the MQINQ call with the handle returned. They
can also all be displayed with the DISPLAY QMGR command.

AlterationDate (12-byte character string)
Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is
YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the
MQINQ call. The length of this attribute is given by LNDATE.

AlterationTime (8-byte character string)
Time when definition was last changed.

This is the time when the definition was last changed. The format of the time
is HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the
MQINQ call. The length of this attribute is given by LNTIME.

AuthorityEvent (10-digit signed integer)
Controls whether authorization (Not Authorized) events are generated.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IAAUTE selector with the
MQINQ call.

ChannelAutoDef (10-digit signed integer)
Controls whether automatic channel definition is permitted.

This attribute controls the automatic definition of channels of type CTRCVR
and CTSVCN. Note that the automatic definition of CTCLSD channels is
always enabled. The value is one of the following:

Attributes - queue manager

324 MQSeries for AS/400, V5.1 APR (ILE RPG)

||
|
|

||
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

CHADDI
Channel auto-definition disabled.

CHADEN
Channel auto-definition enabled.

To determine the value of this attribute, use the IACAD selector with the
MQINQ call.

ChannelAutoDefEvent (10-digit signed integer)
Controls whether channel automatic-definition events are generated.

This applies to channels of type CTRCVR, CTSVCN, and CTCLSD. The value
is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IACADE selector with the
MQINQ call.

ChannelAutoDefExit (n-byte character string)
Name of user exit for automatic channel definition.

If this name is nonblank, and ChannelAutoDef has the value CHADEN, the exit
is called each time that the queue manager is about to create a channel
definition. This applies to channels of type CTRCVR, CTSVCN, and CTCLSD.
The exit can then do one of the following:
v Allow the creation of the channel definition to proceed without change.
v Modify the attributes of the channel definition that is created.
v Suppress creation of the channel entirely.

Note: Both the length and the value of this attribute are environment specific.
See the introduction to the MQCD structure in the MQSeries
Intercommunication book for details of the value of this attribute in
various environments.

To determine the value of this attribute, use the CACADX selector with the
MQINQ call. The length of this attribute is given by LNEXN.

ClusterWorkloadData (32-byte character string)
User data for cluster workload exit.

This is a user-defined 32-byte character string that is passed to the cluster
workload exit when it is called. If there is no data to pass to the exit, the string
is blank.

To determine the value of this attribute, use the CACLWD selector with the
MQINQ call.

ClusterWorkloadExit (n-byte character string)
Name of user exit for cluster workload management.

If this name is nonblank, the exit is called each time that a message is put to a
cluster queue or moved from one cluster-sender queue to another. The exit can

Attributes - queue manager

Chapter 43. Attributes for the queue manager 325

|

|

|
|

|
|
|

|
|

|
|

|
|

then decide whether to accept the queue instance selected by the queue
manager as the destination for the message, or choose another queue instance.

Note: Both the length and the value of this attribute are environment specific.
See the MQSeries Intercommunication manual for details of the value of
this attribute in various environments.

To determine the value of this attribute, use the CACLWX selector with the
MQINQ call. The length of this attribute is given by LNEXN.

ClusterWorkloadLength (10-digit signed integer)
Maximum length of message data passed to cluster workload exit.

This is the maximum length of message data that is passed to the cluster
workload exit. The actual length of data passed to the exit is the minimum of
the following:
v The length of the message.
v The queue-manager’s MaxMsgLength attribute.
v The ClusterWorkloadLength attribute.

To determine the value of this attribute, use the IACLWL selector with the
MQINQ call.

CodedCharSetId (10-digit signed integer)
Coded character set identifier.

This defines the character set used by the queue manager for all character
string fields defined in the MQI, including the names of objects, and queue
creation date and time. It must be the identifier of a single-byte character set
(SBCS). It does not apply to application data carried in the message. The value
depends on the environment:
v On OS/400, the value is that which is set in the environment when the

queue manager is first created.

To determine the value of this attribute, use the IACCSI selector with the
MQINQ call.

CommandInputQName (48-byte character string)
Command input queue name.

This is the name of the command input queue defined on the local queue
manager. This is a queue to which applications can send commands, if
authorized to do so. The name of the queue depends on the environment:
v On OS/400, the name of the queue is

SYSTEM.ADMIN.COMMAND.QUEUE, and only PCF commands can be
sent to it. However, an MQSC command can be sent to this queue if the
MQSC command is enclosed within a PCF command of type CMESC. Refer
to the MQSeries Programmable System Management. book for details of the
Escape command.

To determine the value of this attribute, use the CACMDQ selector with the
MQINQ call. The length of this attribute is given by LNQN.

CommandLevel (10-digit signed integer)
Command Level.

Attributes - queue manager

326 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|
|
|

|
|

|
|

|
|
|

|

|

|

|
|

This indicates the level of system control commands supported by the queue
manager. The value is one of the following:

CMLVL1
Level 1 of system control commands.

This value is returned by the following:
v MQSeries for OS/400

– Version 2 Release 3
– Version 3 Release 1
– Version 3 Release 6

CML320
Level 320 of system control commands.

This value is returned by the following:
v MQSeries for OS/400

– Version 3 Release 2
– Version 3 Release 7

CML420
Level 420 of system control commands.

This value is returned by the following:
v MQSeries for AS/400

– Version 4 Release 2.0
– Version 4 Release 2.1

CML510
Level 510 of system control commands.

This value is returned by the following:
v MQSeries for AS/400 Version 5 Release 1

The set of system control commands that corresponds to a particular value of
the CommandLevel attribute varies according to the value of the Platform
attribute; both must be used to decide which system control commands are
supported.

To determine the value of this attribute, use the IACMDL selector with the
MQINQ call.

DeadLetterQName (48-byte character string)
Name of dead-letter (undelivered-message) queue.

This is the name of a queue defined on the local queue manager. Messages are
sent to this queue if they cannot be routed to their correct destination.

For example, messages are put on this queue when:
v A message arrives at a queue manager, destined for a queue that is not yet

defined on that queue manager
v A message arrives at a queue manager, but the queue for which it is

destined cannot receive it because, possibly:
– The queue is full
– Put requests are inhibited
– The sending node does not have authority to put messages on the queue

Applications can also put messages on the dead-letter queue.

Attributes - queue manager

Chapter 43. Attributes for the queue manager 327

|
|

|
|
|
|

|
|

|
|

|

Report messages are treated in the same way as ordinary messages; if the
report message cannot be delivered to its destination queue (usually the queue
specified by the MDRQ field in the message descriptor of the original message),
the report message is placed on the dead-letter (undelivered-message) queue.

Note: Messages that have passed their expiry time (see the MDEXP field
described in “Chapter 10. MQMD - Message descriptor” on page 83) are
not transferred to this queue when they are discarded. However, an
expiration report message (ROEXP) is still generated and sent to the
MDRQ queue, if requested by the sending application.

Messages are not put on the dead-letter (undelivered-message) queue when the
application that issued the put request has been notified synchronously of the
problem by means of the reason code returned by the MQPUT or MQPUT1
call (for example, a message put on a local queue for which put requests are
inhibited).

Messages on the dead-letter (undelivered-message) queue sometimes have
their application message data prefixed with an MQDLH structure. This
structure contains extra information that indicates why the message was placed
on the dead-letter (undelivered-message) queue. See “Chapter 7. MQDLH -
Dead-letter header” on page 43 for more details of this structure.

This queue must be a local queue, with a Usage attribute of USNORM.

If a dead-letter (undelivered-message) queue is not supported by a queue
manager, or one has not been defined, the name is all blanks. All MQSeries
queue managers support a dead-letter (undelivered-message) queue, but by
default it is not defined.

If the dead-letter (undelivered-message) queue is not defined, or it is full, or
unusable for some other reason, a message which would have been transferred
to it by a message channel agent is retained instead on the transmission queue.

To determine the value of this attribute, use the CADLQ selector with the
MQINQ call. The length of this attribute is given by LNQN.

DefXmitQName (48-byte character string)
Default transmission queue name.

This is the name of the transmission queue that is used for the transmission of
messages to remote queue managers, if there is no other indication of which
transmission queue to use.

If there is no default transmission queue, the name is entirely blank. The initial
value of this attribute is blank.

To determine the value of this attribute, use the CADXQN selector with the
MQINQ call. The length of this attribute is given by LNQN.

DistLists (10-digit signed integer)
Distribution list support.

This indicates whether the local queue manager supports distribution lists on
the MQPUT and MQPUT1 calls. The value is one of the following:

Attributes - queue manager

328 MQSeries for AS/400, V5.1 APR (ILE RPG)

DLSUPP
Distribution lists supported.

DLNSUP
Distribution lists not supported.

To determine the value of this attribute, use the IADIST selector with the
MQINQ call.

InhibitEvent (10-digit signed integer)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IAINHE selector with the
MQINQ call.

LocalEvent (10-digit signed integer)
Controls whether local error events are generated.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IALCLE selector with the
MQINQ call.

MaxHandles (10-digit signed integer)
Maximum number of handles.

This is the maximum number of open handles that any one task can use
concurrently. Each successful MQOPEN call for a single queue (or for an object
that is not a queue) uses one handle. That handle becomes available for reuse
when the object is closed. However, when a distribution list is opened, each
queue in the distribution list is allocated a separate handle, and so that
MQOPEN call uses as many handles as there are queues in the distribution
list. This must be taken into account when deciding on a suitable value for
MaxHandles.

The MQPUT1 call performs an MQOPEN call as part of its processing; as a
result, MQPUT1 uses as many handles as MQOPEN would, but the handles
are used only for the duration of the MQPUT1 call itself.

The value is in the range 1 through 999 999 999. The default value is
determined by the environment:
v On OS/400, the default value is 256.

To determine the value of this attribute, use the IAMHND selector with the
MQINQ call.

Attributes - queue manager

Chapter 43. Attributes for the queue manager 329

MaxMsgLength (10-digit signed integer)
Maximum message length in bytes.

This is the length of the longest physical message that can be handled by the
queue manager. However, because the MaxMsgLength queue-manager attribute
can be set independently of the MaxMsgLength local-queue attribute, the longest
physical message that can be placed on a queue is the lesser of those two
values.

If the queue manager supports segmentation, it is possible for an application to
put a logical message that is longer than the lesser of the two MaxMsgLength
attributes, but only if the application specifies the MFSEGA flag in MQMD. If
that flag is specified, the upper limit for the length of a logical message is
999 999 999 bytes, but usually resource constraints imposed by the operating
system, or by the environment in which the application is running, will result
in a lower limit.

The lower limit for the MaxMsgLength attribute is 32 KB (32 768 bytes). The
upper limit is determined by the environment:
v On OS/400, the maximum message length is 100 MB (104 857 600 bytes).

To determine the value of this attribute, use the IAMLEN selector with the
MQINQ call.

MaxPriority (10-digit signed integer)
Maximum priority.

This is the maximum message priority supported by the queue manager.
Priorities range from zero (lowest) to MaxPriority (highest).

To determine the value of this attribute, use the IAMPRI selector with the
MQINQ call.

MaxUncommittedMsgs (10-digit signed integer)
Maximum number of uncommitted messages within a unit of work.

This is the maximum number of uncommitted messages that can exist within a
unit of work. The number of uncommitted messages is the sum of the
following since the start of the current unit of work:
v Messages put by the application with the PMSYP option
v Messages retrieved by the application with the GMSYP option
v Trigger messages and COA report messages generated by the queue

manager for messages put with the PMSYP option
v COD report messages generated by the queue manager for messages

retrieved with the GMSYP option

The following are not counted as uncommitted messages:
v Messages put or retrieved by the application outside a unit of work
v Trigger messages or COA/COD report messages generated by the queue

manager as a result of messages put or retrieved outside a unit of work
v Expiration report messages generated by the queue manager (even if the call

causing the expiration report message specified GMSYP)
v Event messages generated by the queue manager (even if the call causing

the event message specified PMSYP or GMSYP)

Attributes - queue manager

330 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|
|
|

Notes:

1. Exception report messages are generated by the Message Channel Agent
(MCA), or by the application, and so are treated in the same way as
ordinary messages put or retrieved by the application.

2. When a message or segment is put with the PMSYP option, the number of
uncommitted messages is incremented by one regardless of how many
physical messages actually result from the put. (More than one physical
message may result if the queue manager needs to subdivide the message
or segment.)

3. When a distribution list is put with the PMSYP option, the number of
uncommitted messages is incremented by one for each physical message that
is generated. This can be as small as one, or as great as the number of
destinations in the distribution list.

The lower limit for this attribute is 1; the upper limit is 999 999 999.

To determine the value of this attribute, use the IAMUNC selector with the
MQINQ call.

PerformanceEvent (10-digit signed integer)
Controls whether performance-related events are generated.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IAPFME selector with the
MQINQ call.

Platform (10-digit signed integer)
Platform on which the queue manager is running.

This indicates the architecture of the platform on which the queue manager is
running. The value is:

PL400 OS/400.

QMgrDesc (64-byte character string)
Queue manager description.

This is a field that may be used for descriptive commentary. The content of the
field is of no significance to the queue manager, but the queue manager may
require that the field contain only characters that can be displayed. It cannot
contain any null characters; if necessary, it is padded to the right with blanks.
In a DBCS installation, this field can contain DBCS characters (subject to a
maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field is
sent to another queue manager.

On OS/400, the default value is blanks.

Attributes - queue manager

Chapter 43. Attributes for the queue manager 331

To determine the value of this attribute, use the CAQMD selector with the
MQINQ call. The length of this attribute is given by LNQMD.

QMgrIdentifier (48-byte character string)
Unique internally-generated identifier of queue manager.

This is an internally-generated unique name for the queue manager.

To determine the value of this attribute, use the CAQMID selector with the
MQINQ call. The length of this attribute is given by LNQMID.

QMgrName (48-byte character string)
Queue manager name.

This is the name of the local queue manager, that is, the name of the queue
manager to which the application is connected.

The first 12 characters of the name are used to construct a unique message
identifier (see the MDMID field described in “Chapter 10. MQMD - Message
descriptor” on page 83). Queue managers that can intercommunicate must
therefore have names that differ in the first 12 characters, in order for message
identifiers to be unique in the queue-manager network.

To determine the value of this attribute, use the CAQMN selector with the
MQINQ call. The length of this attribute is given by LNQMN.

RemoteEvent (10-digit signed integer)
Controls whether remote error events are generated.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IARMTE selector with the
MQINQ call.

RepositoryName (48-byte character string)
Name of cluster for which this queue manager provides repository services.

This is the name of a cluster for which this queue manager provides a
repository-manager service. If the queue manager provides this service for
more than one cluster, RepositoryNamelist specifies the name of a namelist
object that identifies the clusters, and RepositoryName is blank. At least one of
RepositoryName and RepositoryNamelist must be blank.

To determine the value of this attribute, use the CARPN selector with the
MQINQ call. The length of this attribute is given by LNQMN.

RepositoryNamelist (48-byte character string)
Name of namelist object containing names of clusters for which this queue
manager provides repository services.

This is the name of a namelist object that contains the names of clusters for
which this queue manager provides a repository-manager service. If the queue
manager provides this service for only one cluster, the namelist object contains

Attributes - queue manager

332 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

only one name. Alternatively, RepositoryName can be used to specify the name
of the cluster, in which case RepositoryNamelist is blank. At least one of
RepositoryName and RepositoryNamelist must be blank.

To determine the value of this attribute, use the CARPNL selector with the
MQINQ call. The length of this attribute is given by LNNLN.

StartStopEvent (10-digit signed integer)
Controls whether start and stop events are generated.

It is one of the following:

EVRDIS
Event reporting disabled.

EVRENA
Event reporting enabled.

To determine the value of this attribute, use the IASSE selector with the
MQINQ call.

SyncPoint (10-digit signed integer)
Syncpoint availability.

This indicates whether the local queue manager supports units of work and
syncpointing with the MQGET, MQPUT, and MQPUT1 calls.

SPAVL
Units of work and syncpointing available.

SPNAVL
Units of work and syncpointing not available.

To determine the value of this attribute, use the IASYNC selector with the
MQINQ call.

TriggerInterval (10-digit signed integer)
Trigger-message interval.

This is a time interval (in milliseconds) used to restrict the number of trigger
messages. This is relevant only when the TriggerType is TTFRST. In this case
trigger messages are normally generated only when a suitable message arrives
on the queue, and the queue was previously empty. Under certain
circumstances, however, an additional trigger message can be generated with
TTFRST triggering even if the queue was not empty. These additional trigger
messages are not generated more often than every TriggerInterval
milliseconds.

For more information on triggering, see the MQSeries Application Programming
Guide.

The value is not less than 0 and not greater than 999 999 999. The default value
is 999 999 999.

To determine the value of this attribute, use the IATRGI selector with the
MQINQ call.

Attributes - queue manager

Chapter 43. Attributes for the queue manager 333

|
|
|

|
|

Attributes - queue manager

334 MQSeries for AS/400, V5.1 APR (ILE RPG)

Part 4. Applications

Chapter 44. Building your application 337
MQSeries copy files 337
Preparing your programs to run 337
Interfaces to the AS/400 external syncpoint
manager 338
Syncpoints in CICS for AS/400 applications . . . 339

Chapter 45. Sample programs 341
Features demonstrated in the sample programs . . 342
Preparing and running the sample programs . . . 343

Running the sample programs. 343
The Put sample program 343

Design of the Put sample program 344
The Browse sample program 344

Design of the Browse sample program 344
The Get sample program 345

Design of the Get sample program 345
The Request sample program 346

Using triggering with the Request sample . . . 346
Design of the Request sample program 347

The Echo sample program 348
Design of the Echo sample program 349

The Inquire sample program 349
Design of the Inquire sample program 350

The Set sample program. 351
Design of the Set sample program 351

The Triggering sample programs 352
The AMQ3TRG4 sample trigger monitor . . . 352

Design of the trigger monitor 352
The AMQ3SRV4 sample trigger server 352

Design of the trigger server 353
Ending the Triggering sample programs . . . 353

Running the samples using remote queues . . . 353

© Copyright IBM Corp. 1994, 2000 335

|
||

Applications

336 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 44. Building your application

The OS/400 publications describe how to build executable applications from the
programs you write. This chapter describes the additional tasks, and the changes
to the standard tasks, you must perform when building MQSeries for AS/400
applications to run under OS/400.

In addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for AS/400 copy files for
the RPG language. You should make yourself familiar with the contents of these
files—their names, and a brief description of their contents are given in the
following text.

MQSeries copy files
MQSeries for AS/400 provides copy files to assist you with writing your
applications in the RPG programming language. They are suitable for use with the
IBM ILE RPG/400™ Compiler (5716-RG1).

The copy files that MQSeries for AS/400 provides to assist with the writing of
channel exits are described in the MQSeries Intercommunication book.

The names of the MQSeries for AS/400 copy files for RPG have the prefix CMQ.
They have a suffix of G. There are separate copy files containing the named
constants, and one file for each of the structures. The copy files are listed in Table 2
on page 8.

Note: For ILE RPG/400 they are supplied as members of file QRPGLESRC in
library QMQM.

The structure declarations do not contain DS statements. This allows the
application to declare a data structure (or a multiple-occurrence data structure) by
coding the DS statement and using the /COPY statement to copy in the remainder
of the declaration:

For ILE RPG/400 the statement is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7
D* Declare an MQMD data structure
D MQMD DS
D/COPY CMQMDG

Preparing your programs to run
To create an executable MQSeries for AS/400 application, you have to compile the
source code you have written.

To do this for ILE RPG/400, you can use the usual OS/400 commands,
CRTRPGMOD and CRTPGM.

After creating your *MODULE, you also need to reference the service program
QMQM/AMQZSTUB when creating your ILE RPG/400 program using the
CRTPGM command.

© Copyright IBM Corp. 1994, 2000 337

Make sure that the library containing the copy files (QMQM) is in the library list
when you perform the compilation. QMQM must also be in the library list when
you run the application.

Interfaces to the AS/400 external syncpoint manager
MQSeries for AS/400 uses native OS/400 commitment control as an external
syncpoint coordinator. See the AS/400 Programming: Backup and Recovery Guide for
more information about the commitment control capabilities of OS/400.

To start the OS/400 commitment control facilities, use the STRCMTCTL system
command. To end commitment control, use the ENDCMTCTL system command.

Note: The default value of Commitment definition scope is *ACTGRP. This must be
defined as *JOB for MQSeries for AS/400. For example:
STRCMTCTL LCKLVL(*ALL) CMTSCOPE(*JOB)

If you call MQPUT, MQPUT1, or MQGET, specifying MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT, after starting commitment control, MQSeries for AS/400
adds itself as an API commitment resource to the commitment definition. This is
typically the first such call in a job. While there are any API commitment resources
registered under a particular commitment definition, you cannot end commitment
control for that definition.

MQSeries for AS/400 removes its registration as an API commitment resource
when you disconnect from the queue manager, provided there are no pending MQI
operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT,
MQPUT1, or MQGET operations in the current unit of work, MQSeries for AS/400
remains registered as an API commitment resource so that it is notified of the next
commit or rollback. When the next syncpoint is reached, MQSeries for AS/400
commits or rolls back the changes as required. It is possible for an application to
disconnect and reconnect to a queue manager during an active unit of work and
perform further MQGET and MQPUT operations inside the same unit of work
(this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment
definition, message CPF8355 is issued, indicating that pending changes were active.
This message also appears in the job log when the job ends. To avoid this, ensure
that you commit or roll back all pending MQSeries for AS/400 operations, and that
you disconnect from the queue manager. Thus, using COMMIT or ROLLBACK
commands before ENDCMTCTL should enable end-commitment control to
complete successfully.

When OS/400 commitment control is used as an external syncpoint coordinator,
MQCMIT, MQBACK, and MQBEGIN calls may not be issued. Calls to these
functions fail with the reason code MQRC_ENVIRONMENT_ERROR.

To commit or roll back (that is, to back out) your unit of work, use one of the
programming languages that supports the commitment control. For example:
v CL commands: COMMIT and ROLLBACK
v ILE C Programming Functions: _Rcommit and _Rrollback
v RPG/400: COMIT and ROLBK
v COBOL/400: COMMIT and ROLLBACK

Preparing programs

338 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|

Syncpoints in CICS for AS/400 applications
MQSeries for AS/400 participates in units of work with CICS. You can use the
MQI within a CICS application to put and get messages inside the current unit of
work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that
includes the MQSeries for AS/400 operations. To back out all changes up to the
previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK
command.

If you use MQPUT, MQPUT1, or MQGET with the MQPMO_SYNCPOINT, or
MQGMO_SYNCPOINT, option set in a CICS application, you cannot log off CICS
until MQSeries for AS/400 has removed its registration as an API commitment
resource. Therefore, you should commit or back out any pending put or get
operations before you disconnect from the queue manager. This will allow you to
log off CICS.

Syncpointing

Chapter 44. Building your application 339

|

Applications

340 MQSeries for AS/400, V5.1 APR (ILE RPG)

Chapter 45. Sample programs

This chapter describes the sample programs delivered with MQSeries for AS/400
for RPG. The samples demonstrate typical uses of the Message Queue Interface
(MQI).

The samples are not intended to demonstrate general programming techniques, so
some error checking that you may want to include in a production program has
been omitted. However, these samples are suitable for use as a base for your own
message queuing programs.

The source code for all the samples is provided with the product; this source
includes comments that explain the message queuing techniques demonstrated in
the programs.

There are two sets of ILE sample programs:
1. Programs using the MQI through a call to QMQM

The source exists in QMQMSAMP/QRPGLESRC. The members are named
AMQ2xxx4, where xxx indicates the sample function. Copy members exist in
QMQM/QRPGLESRC. Each member name has a suffix of “R”.

2. Programs using prototyped calls to the MQI

The source exists in QMQMSAMP/QRPGLESRC. The members are named
AMQ3xxx4, where xxx indicates the sample function. Copy members exist in
QMQM/QRPGLESRC. Each member name has a suffix of “G”.

Notes:

a. In Table 55 and Table 56 on page 342 the character “n” is used to represent
the appropriate numeric value.

b. Sample trigger programs only exist for programs using prototyped calls.

Table 55 gives a complete list of the sample programs delivered with MQSeries for
AS/400 V3R1 or later, and shows the names of the programs in each of the
supported programming languages. Notice that their names all start with the
prefix AMQ, the fourth character in the name indicates the programming language.

Note: This chapter tells you how to use the ILE RPG/400 compiler. with
prototyped calls to the MQI.

Table 55. Names of the sample programs

RPG (ILE)

Put samples AMQnPUT4

Browse samples AMQnGBR4

Get samples AMQnGET4

Request samples AMQnREQ4

Echo samples AMQnECH4

Inquire samples AMQnINQ4

Set samples AMQnSET4

Trigger Monitor sample AMQ3TRG4

© Copyright IBM Corp. 1994, 2000 341

Table 55. Names of the sample programs (continued)

RPG (ILE)

Trigger Server sample AMQ3SRV4

In addition to these, the MQSeries for AS/400 sample option includes a sample
data file, AMQSDATA, which can be used as input to certain sample programs.
and sample CL programs that demonstrate administration tasks. The CL samples
are described in the MQSeries for AS/400 V5.1 System Administration. You could use
the sample CL program to create queues to use with the sample programs
described in this chapter.

For information on how to run the sample programs, see “Preparing and running
the sample programs” on page 343.

Features demonstrated in the sample programs
Table 56 shows the techniques demonstrated by the MQSeries for AS/400 sample
programs. Some techniques occur in more than one sample program, but only one
program is listed in the table. All the samples open and close queues using the
MQOPEN and MQCLOSE calls, so these techniques are not listed separately in the
table.

Table 56. Sample programs demonstrating use of the MQI

Technique RPG (ILE)

Using the MQCONN and MQDISC calls AMQnECH4 or
AMQnINQ4

Implicitly connecting and disconnecting AMQnPUT4

Putting messages using the MQPUT call AMQnPUT4

Putting a single message using the MQPUT1 call AMQnECH4 or
AMQnINQ4

Replying to a request message AMQnINQ4

Getting messages (no wait) AMQnGBR4

Getting messages (wait with a time limit) AMQnGET4

Getting messages (with data conversion) AMQnECH4

Browsing a queue AMQnGBR4

Using a shared input queue AMQnINQ4

Using an exclusive input queue AMQnREQ4

Using the MQINQ call AMQnINQ4

Using the MQSET call AMQnSET4

Using a reply-to queue AMQnREQ4

Requesting exception messages AMQnREQ4

Accepting a truncated message AMQnGBR4

Using a resolved queue name AMQnGBR4

Trigger processing AMQ3SRV4 or
AMQ3TRG4

Note: All the sample programs produce a spool file that contains the results of the
processing.

Sample programs

342 MQSeries for AS/400, V5.1 APR (ILE RPG)

Preparing and running the sample programs
Before you can run the MQSeries for AS/400 sample programs, you must compile
them as you would any other MQSeries for AS/400 applications. To do this, you
can use the OS/400 commands CRTRPGMOD and CRTPGM.

When you create the AMQ3xxx4 programs, you need to specify
BNDSRVPGM(QMQM/LIBMQM) in the CRTPGM command. This includes the
various MQ procedures in your program.

The sample programs are provided in library QMQMSAMP as members of
QRPGLESRC. They use the copy files provided in library QMQM, so make sure
this library is in the library list when you compile them. The RPG compiler gives
information messages because the samples do not use many of the variables that
are declared in the copy files.

Running the sample programs
You can use your own queues when you run the samples, or you can run
AMQSAMP4 to create some sample queues. The source for this program is
shipped in file QCLSRC in library QMQMSAMP. It can be compiled using the
CRTCLPGM command.

To call one of the sample programs, use a command like:
CALL PGM(QMQMSAMP/AMQ3PUT4) PARM('Queue Name')

where Queue Name must be 48 characters in length, which you achieve by padding
the queue name with the required number of blanks.

Note that for the Inquire and Set sample programs, the sample definitions created
by AMQSAMP4 cause the C versions of these samples to be triggered. If you want
to trigger the RPG versions, you must change the process definitions
SYSTEM.SAMPLE.ECHOPROCESS and SYSTEM.SAMPLE.INQPROCESS and
SYSTEM.SAMPLE.SETPROCESS. You can use the CHGMQMPRC command
(described in the MQSeries for AS/400 V5.1 System Administration book) to do this,
or edit and run AMQSAMP4 with the alternative definition.

The Put sample program
The Put sample program, AMQnPUT4, puts messages on a queue using the
MQPUT call.

To start the program, call the program and give the name of your target queue as a
program parameter. The program puts a set of fixed messages on the queue; these
messages are taken from the data block at the end of the program source code. A
sample put program is AMQ3PUT4 in library QMQMSAMP.

Using this example program, the command is:
CALL PGM(QMQMSAMP/AMQ3PUT4) PARM('Queue Name')

where Queue Name must be 48 characters in length, which you achieve by padding
the queue name with the required number of blanks.

Preparing and running

Chapter 45. Sample programs 343

|
|
|

Design of the Put sample program
The program uses the MQOPEN call with the OOOUT option to open the target
queue for putting messages. The results are output to a spool file. If it cannot open
the queue, the program writes an error message containing the reason code
returned by the MQOPEN call. To keep the program simple, on this and on
subsequent MQI calls, the program uses default values for many of the options.

For each line of data contained in the source code, the program reads the text into
a buffer and uses the MQPUT call to create a datagram message containing the
text of that line. The program continues until either it reaches the end of the input
or the MQPUT call fails. If the program reaches the end of the input, it closes the
queue using the MQCLOSE call.

The Browse sample program
The Browse sample program, AMQnGBR4, browses messages on a queue using the
MQGET call.

The program retrieves copies of all the messages on the queue you specify when
you call the program; the messages remain on the queue. You could use the
supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to
put some messages on the queue. You could use the queue
SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue. The
program continues until it reaches the end of the queue or an MQI call fails.

An example of a command to call the RPG program is:
CALL PGM(QMQMSAMP/AMQ3GBR4) PARM('Queue Name')

where Queue Name must be 48 characters in length, which you achieve by padding
the queue name with the required number of blanks. Therefore, if you are using
SYSTEM.SAMPLE.LOCAL as your target queue, you will need 29 blank characters.

Design of the Browse sample program
The program opens the target queue using the MQOPEN call with the OOBRW
option. If it cannot open the queue, the program writes an error message to its
spool file, containing the reason code returned by the MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the
message from the queue, then displays the data contained in the message. The
MQGET call uses these options:

GMBRWN
After the MQOPEN call, the browse cursor is positioned logically before
the first message in the queue, so this option causes the first message to be
returned when the call is first made.

GMNWT
The program does not wait if there are no messages on the queue.

GMATM
The MQGET call specifies a buffer of fixed size. If a message is longer than
this buffer, the program displays the truncated message, together with a
warning that the message has been truncated.

The program demonstrates how you must clear the MDMID and MDCID fields of the
MQMD structure after each MQGET call because the call sets these fields to the

Put sample

344 MQSeries for AS/400, V5.1 APR (ILE RPG)

values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The program continues to the end of the queue; at this point the MQGET call
returns the RC2033 (no message available) reason code and the program displays a
warning message. If the MQGET call fails, the program writes an error message
that contains the reason code in its spool file.

The program then closes the queue using the MQCLOSE call.

The Get sample program
The Get sample program, AMQnGET4, gets messages from a queue using the
MQGET call.

When the program is called, it removes messages from the specified queue. You
could use the supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample
program first to put some messages on the queue. You could use the
SYSTEM.SAMPLE.ALIAS queue, which is an alias name for the same local queue.
The program continues until the queue is empty or an MQI call fails.

An example of a command to call the RPG program is:
CALL PGM(QMQMSAMP/AMQ3GET4) PARM('Queue Name')

where Queue Name must be 48 characters in length, which you achieve by padding
the queue name with the required number of blanks. Therefore, if you are using
SYSTEM.SAMPLE.LOCAL as your target queue, you will need 29 blank characters.

Design of the Get sample program
The program opens the target queue for getting messages; it uses the MQOPEN
call with the OOINPQ option. If it cannot open the queue, the program writes an
error message containing the reason code returned by the MQOPEN call in its
spool file.

For each message on the queue, the program uses the MQGET call to remove the
message from the queue; it then displays the data contained in the message. The
MQGET call uses the GMWT option, specifying a wait interval (GMWI) of 15
seconds, so that the program waits for this period if there is no message on the
queue. If no message arrives before this interval expires, the call fails and returns
the RC2033 (no message available) reason code.

The program demonstrates how you must clear the MDMID and MDCID fields of the
MQMD structure after each MQGET call because the call sets these fields to the
values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this
buffer, the call fails and the program stops.

The program continues until either the MQGET call returns the RC2033 (no
message available) reason code or the MQGET call fails. If the call fails, the
program displays an error message that contains the reason code.

Browse sample

Chapter 45. Sample programs 345

The program then closes the queue using the MQCLOSE call.

The Request sample program
The Request sample program, AMQnREQ4, demonstrates client/server processing.
The sample is the client that puts request messages on a queue that is processed by
a server program. It waits for the server program to put a reply message on a
reply-to queue.

The Request sample puts a series of request messages on a queue using the
MQPUT call. These messages specify SYSTEM.SAMPLE.REPLY as the reply-to
queue. The program waits for reply messages, then displays them. Replies are sent
only if the target queue (which we will call the server queue) is being processed by
a server application, or if an application is triggered for that purpose (the Inquire
and Set sample programs are designed to be triggered). The sample waits 5
minutes for the first reply to arrive (to allow time for a server application to be
triggered) and 15 seconds for subsequent replies, but it can end without getting
any replies.

To start the program, call the program and give the name of your target queue as a
program parameter. The program puts a set of fixed messages on the queue; these
messages are taken from the data block at the end of the program source code.

Using triggering with the Request sample
To run the sample using triggering, start the trigger server program, AMQ3SRV4,
against the required initiation queue in one job, then start AMQnREQ4 in another
job. This means that the trigger server is ready when the Request sample program
sends a message.

Notes:

1. The samples use the SYSTEM SAMPLE TRIGGER queue as the initiation queue
for SYSTEM.SAMPLE.ECHO, SYSTEM.SAMPLE.INQ, or SYSTEM.SAMPLE.SET
local queues. Alternatively, you can define your own initiation queue.

2. The sample definitions created by AMQSAMP4 cause the C version of the
sample to be triggered. If you want to trigger the RPG version, you must
change the process definitions SYSTEM.SAMPLE.ECHOPROCESS and
SYSTEM.SAMPLE.INQPROCESS and SYSTEM.SAMPLE.SETPROCESS. You can
use the CHGMQMPRC command (described in the MQSeries for AS/400 V5.1
System Administration) to do this, or edit and run your own version of
AMQSAMP4.

3. You need to compile the trigger server program from the source provided in
QMQMSAMP/QRPGLESRC.

Depending on the trigger process you want to run, AMQ3REQ4 should be called
with the parameter specifying request messages to be placed on one of these
sample server queues:
v SYSTEM.SAMPLE.ECHO (for the Echo sample programs)
v SYSTEM.SAMPLE.INQ (for the Inquire sample programs)
v SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 1 on
page 348. Using the example the command to issue the RPG program request to
this server is:

CALL PGM(QMQMSAMP/AMQ3REQ4) PARM('SYSTEM.SAMPLE.ECHO
+ 30 blank characters')

Get sample

346 MQSeries for AS/400, V5.1 APR (ILE RPG)

because the queue name must be 48 characters in length.

Note: This sample queue has a trigger type of FIRST, so if there are already
messages on the queue before you run the Request sample, server
applications are not triggered by the messages you send.

If you want to attempt further examples, you can try the following variations:
v Use AMQ3TRG4 instead of AMQ3SRV4 to submit the job instead, but potential

job submission delays could make it less easy to follow what is happening.
v Use the SYSTEM.SAMPLE.INQ and SYSTEM.SAMPLE.SET sample queues.

Using the example data file the commands to issue the RPG program requests to
these servers are, respectively:

CALL PGM(QMQMSAMP/AMQ3INQ4) PARM('SYSTEM.SAMPLE.INQ
+ 31 blank characters')
CALL PGM(QMQMSAMP/AMQ3SET4) PARM('SYSTEM.SAMPLE.SET
+ 31 blank characters')

because the queue name must be 48 characters in length.

These sample queues also have a trigger type of FIRST.

Design of the Request sample program
The program opens the server queue so that it can put messages. It uses the
MQOPEN call with the OOOUT option. If it cannot open the queue, the program
displays an error message containing the reason code returned by the MQOPEN
call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so
that it can get reply messages. For this, the program uses the MQOPEN call with
the OOINPX option. If it cannot open the queue, the program displays an error
message containing the reason code returned by the MQOPEN call.

For each line of input, the program then reads the text into a buffer and uses the
MQPUT call to create a request message containing the text of that line. On this
call the program uses the ROEXCD report option to request that any report
messages sent about the request message will include the first 100 bytes of the
message data. The program continues until either it reaches the end of the input or
the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the queue,
and displays the data contained in the replies. The MQGET call uses the GMWT
option, specifying a wait interval (GMWI) of 5 minutes for the first reply (to allow
time for a server application to be triggered) and 15 seconds for subsequent replies.
The program waits for these periods if there is no message on the queue. If no
message arrives before this interval expires, the call fails and returns the RC2033
(no message available) reason code. The call also uses the GMATM option, so
messages longer than the declared buffer size are truncated.

The program demonstrates how you must clear the MDMID and MDCOD fields of the
MQMD structure after each MQGET call because the call sets these fields to the
values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

Get sample

Chapter 45. Sample programs 347

The program continues until either the MQGET call returns the RC2033 (no
message available) reason code or the MQGET call fails. If the call fails, the
program displays an error message that contains the reason code.

The program then closes both the server queue and the reply-to queue using the
MQCLOSE call. 57 shows the changes to the Echo sample program that are
necessary to run the Inquire and Set sample programs.

Note: The details for the Echo sample program are included as a reference.

Table 57. Client/Server sample program details

Program name SYSTEM/SAMPLE queue Program started

Echo ECHO AMQ3ECH4

Inquire INQ AMQ3INQ4

Set SET AMQ3SET4

The Echo sample program
The Echo sample programs return the message send to a reply queue. The
program is named AMQnECH4

The programs are intended to run as triggered programs, so their only input is the
data read from the queue named in the trigger message structure.

For the triggering process to work, you must ensure that the Echo sample program
you want to use is triggered by messages arriving on queue

Figure 1. Sample Client/Server (Echo) program flowchart

Get sample

348 MQSeries for AS/400, V5.1 APR (ILE RPG)

SYSTEM.SAMPLE.ECHO. To do this, specify the name of the Echo sample
program you want to use in the ApplId field of the process definition
SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC
command, described in the MQSeries for AS/400 V5.1 System Administration.) The
sample queue has a trigger type of FIRST, so if there are already messages on the
queue before you run the Request sample, the Echo sample is not triggered by the
messages you send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then
start AMQnREQ4 in another. You could use AMQ3TRG4 instead of AMQ3SRV4,
but potential job submission delays could make it less easy to follow what is
happening.

Use the Request sample programs to send messages to queue
SYSTEM.SAMPLE.ECHO. The Echo sample programs send a reply message
containing the data in the request message to the reply-to queue specified in the
request message.

Design of the Echo sample program
When the program is triggered, it explicitly connects to the default queue manager
using the MQCONN call. Although this is not necessary for MQSeries for AS/400,
this means you could use the same program on other platforms without changing
the source code.

The program then opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The program
uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the GMATM and GMWT options, with a wait interval of 5 seconds. The
program tests the descriptor of each message to see if it is a request message; if it
is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program uses the
MQPUT call to put a reply message on the reply-to queue. This message contains
the contents of the request message.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

This program can also respond to messages sent to the queue from platforms other
than MQSeries for AS/400, although no sample is supplied for this situation. To
make the ECHO program work, you:
v Write a program, correctly specifying the Format, Encoding, and CCSID fields, to

send text request messages.
The ECHO program requests the queue manager to perform message data
conversion, if this is needed.

v Specify CONVERT(*YES) on the MQSeries for AS/400 sending channel, if the
program you have written does not provide similar conversion for the reply.

The Inquire sample program
The Inquire sample program, AMQnINQ4, inquires about some of the attributes of
a queue using the MQINQ call.

Echo sample

Chapter 45. Sample programs 349

The program is intended to run as a triggered program, so its only input is an
MQTMC (trigger message) structure that contains the name of a target queue
whose attributes are to be inquired.

For the triggering process to work, you must ensure that the Inquire sample
program is triggered by messages arriving on queue SYSTEM.SAMPLE.INQ. To do
this, specify the name of the Inquire sample program in the ApplId field of the
SYSTEM.SAMPLE.INQPROCESS process definition. (For this, you can use the
CHGMQMPRC command, described in the MQSeries for AS/400 V5.1 System
Administration book.) The sample queue has a trigger type of FIRST, so if there are
already messages on the queue before you run the Request sample, the Inquire
sample is not triggered by the messages you send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then
start AMQnREQ4 in another. You could use AMQ3TRG4 instead of AMQ3SRV4,
but potential job submission delays could make it less easy to follow what is
happening.

Use the Request sample program to send request messages, each containing just a
queue name, to queue SYSTEM.SAMPLE.INQ. For each request message, the
Inquire sample program sends a reply message containing information about the
queue specified in the request message. The replies are sent to the reply-to queue
specified in the request message.

Design of the Inquire sample program
When the program is triggered, it explicitly connects to the default queue manager
using the MQCONN call. Although this is not necessary for MQSeries for AS/400,
this means you could use the same program on other platforms without changing
the source code.

The program then opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The program
uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the GMATM and GMWT options, with a wait interval of 5 seconds. The
program tests the descriptor of each message to see if it is a request message; if it
is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program reads the
name of the queue (which we will call the target queue) contained in the data and
opens that queue using the MQOPEN call with the OOINQ option. The program
then uses the MQINQ call to inquire about the values of the InhibitGet,
CurrentQDepth, and OpenInputCount attributes of the target queue.

If the MQINQ call is successful, the program uses the MQPUT call to put a reply
message on the reply-to queue. This message contains the values of the 3
attributes.

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT call
to put a report message on the reply-to queue. In the MDFB field of the message
descriptor of this report message is the reason code returned by either the
MQOPEN or MQINQ call, depending on which one failed.

Inquire sample

350 MQSeries for AS/400, V5.1 APR (ILE RPG)

After the MQINQ call, the program closes the target queue using the MQCLOSE
call.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

The Set sample program
The Set sample program, AMQnSET4, inhibits put operations on a queue by using
the MQSET call to change the queue’s InhibitPut attribute.

The program is intended to run as a triggered program, so its only input is an
MQTMC (trigger message) structure that contains the name of a target queue
whose attributes are to be inquired.

For the triggering process to work, you must ensure that the Set sample program is
triggered by messages arriving on queue SYSTEM.SAMPLE.SET. To do this, specify
the name of the Set sample program in the ApplId field of the process definition
SYSTEM.SAMPLE.SETPROCESS. (For this, you can use the CHGMQMPRC
command, described in the MQSeries for AS/400 V5.1 System Administration.) The
sample queue has a trigger type of FIRST, so if there are already messages on the
queue before you run the Request sample, the Set sample is not triggered by the
messages you send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then
start AMQnREQ4 in another. You could use AMQ3TRG4 instead of AMQ3SRV4,
but potential job submission delays could make it less easy to follow what is
happening.

Use the Request sample program to send request messages, each containing just a
queue name, to queue SYSTEM.SAMPLE.SET. For each request message, the Set
sample program sends a reply message containing a confirmation that put
operations have been inhibited on the specified queue. The replies are sent to the
reply-to queue specified in the request message.

Design of the Set sample program
When the program is triggered, it explicitly connects to the default queue manager
using the MQCONN call. Although this is not necessary for MQSeries for AS/400,
this means you could use the same program on other platforms without changing
the source code.

The program then opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The program
uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the GMATM and GMWT options, with a wait interval of 5 seconds. The
program tests the descriptor of each message to see if it is a request message; if it
is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program reads the
name of the queue (which we will call the target queue) contained in the data and
opens that queue using the MQOPEN call with the OOSET option. The program
then uses the MQSET call to set the value of the InhibitPut attribute of the target
queue to QAPUTI.

Inquire sample

Chapter 45. Sample programs 351

If the MQSET call is successful, the program uses the MQPUT call to put a reply
message on the reply-to queue. This message contains the string PUT inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT call
to put a report message on the reply-to queue. In the MDFB field of the message
descriptor of this report message is the reason code returned by either the
MQOPEN or MQSET call, depending on which one failed.

After the MQSET call, the program closes the target queue using the MQCLOSE
call.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

The Triggering sample programs
MQSeries for AS/400 supplies two Triggering sample programs that are written in
ILE/RPG. The programs are:

AMQ3TRG4
This is a trigger monitor for the OS/400 environment. It submits an
OS/400 job for the application to be started, but this means there is a
processing overhead associated with each trigger message.

AMQ3SRV4
This is a trigger server for the OS/400 environment. For each trigger
message, this server runs the start command in its own job to start the
specified application. The trigger server can call CICS transactions.

C language versions of these samples are also available as executable programs in
library QMQM, called AMQSTRG4 and AMQSERV4.

The AMQ3TRG4 sample trigger monitor
AMQ3TRG4 is a trigger monitor. It takes one parameter: the name of the initiation
queue it is to serve. AMQSAMP4 defines a sample initiation queue,
SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

AMQ3TRG4 submits an OS/400 job for each valid trigger message it gets from the
initiation queue.

Design of the trigger monitor
The trigger monitor opens the initiation queue and gets messages from the queue,
specifying an unlimited wait interval.

The trigger monitor submits an OS/400 job to start the application specified in the
trigger message, and passes an MQTMC (a character version of the trigger
message) structure. The environment data in the trigger message is used as job
submission parameters.

Finally, the program closes the initiation queue.

The AMQ3SRV4 sample trigger server
AMQ3SRV4 is a trigger server. It takes one parameter: the name of the initiation
queue it is to serve. AMQSAMP4 defines a sample initiation queue,
SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

Set sample

352 MQSeries for AS/400, V5.1 APR (ILE RPG)

For each trigger message, AMQ3SRV4 runs a start command in its own job to start
the specified application.

Using the example trigger queue the command to issue is:
CALL PGM(QMQM/AMQ3SRV4) PARM('Queue Name')

where Queue Name must be 48 characters in length, which you achieve by padding
the queue name with the required number of blanks. Therefore, if you are using
SYSTEM.SAMPLE.TRIGGER as your target queue, you will need 28 blank
characters.

Design of the trigger server
The design of the trigger server is similar to that of the trigger monitor, except the
trigger server:
v Allows CICS as well as OS/400 applications
v Does not use the environment data from the trigger message
v Calls OS/400 applications in its own job (or uses STRCICSUSR to start CICS

applications) rather than submitting an OS/400 job
v Opens the initiation queue for shared input, so many trigger servers can run at

the same time

Note: Programs started by AMQ3SRV4 must not use the MQDISC call because this
will stop the trigger server. If programs started by AMQ3SRV4 use the
MQCONN call, they will get the RC2002 reason code.

Ending the Triggering sample programs
A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or
by inhibiting gets from the trigger queue. If the sample trigger queue is used the
command is:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(*NO)

Note: To start triggering again on this queue, you must enter the command:
CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(*YES)

Running the samples using remote queues
You can demonstrate remote queuing by running the samples on connected
message queue managers.

Program AMQSAMP4 provides a local definition of a remote queue
(SYSTEM.SAMPLE.REMOTE) that uses a remote queue manager named OTHER. To
use this sample definition, change OTHER to the name of the second message queue
manager you want to use. You must also set up a message channel between your
two message queue managers; for information on how to do this, see the MQSeries
Intercommunication book.

The Request sample program puts its own local queue manager name in the MDRM
field of messages it sends. The Inquire and Set samples send reply messages to the
queue and message queue manager named in the MDRQ and MDRM fields of the
request messages they process.

Triggering sample

Chapter 45. Sample programs 353

Applications

354 MQSeries for AS/400, V5.1 APR (ILE RPG)

Part 5. Appendixes

© Copyright IBM Corp. 1994, 2000 355

356 MQSeries for AS/400, V5.1 APR (ILE RPG)

Appendix A. Return codes

For each call, a completion code and a reason code are returned by the queue
manager or by an exit routine, to indicate the success or failure of the call.

Applications must not depend upon errors being checked for in a specific order,
except where specifically noted. If more than one completion code or reason code
could arise from a call, the particular error reported depends on the
implementation.

Completion codes
The completion code parameter (CMPCOD) allows the caller to see quickly whether
the call completed successfully, completed partially, or failed.

The following is a list of completion codes, with more detail than is given in the
call descriptions:

CCOK
Successful completion.

The call completed fully; all output parameters have been set. The REASON
parameter always has the value RCNONE in this case.

CCWARN
Warning (partial completion).

The call completed partially. Some output parameters may have been set in
addition to the CMPCOD and REASON output parameters. The REASON
parameter gives additional information about the partial completion.

CCFAIL
Call failed.

The processing of the call did not complete, and the state of the queue
manager is normally unchanged; exceptions are specifically noted. The
CMPCOD and REASON output parameters have been set; other parameters are
unchanged, except where noted.

The reason may be a fault in the application program, or it may be a result
of some situation external to the program, for example the application’s
authority may have been revoked. The REASON parameter gives additional
information about the error.

Reason codes
The reason code parameter (REASON) is a qualification to the completion code
parameter (CMPCOD).

If there is no special reason to report, RCNONE is returned. A successful call
returns CCOK and RCNONE.

If the completion code is either CCWARN or CCFAIL, the queue manager always
reports a qualifying reason; details are given under each call description.

© Copyright IBM Corp. 1994, 2000 357

Where user exit routines set completion codes and reasons, they should adhere to
these rules.

Any special reason values defined by user exits should be less than zero, to ensure
that they do not conflict with values defined by the queue manager. Exits can set
reasons already defined by the queue manager, where these are appropriate.

Reason codes also occur in:
v The DLREA field of the MQDLH structure (for messages on the dead-letter queue)
v The MDFB field of the MQMD structure (message descriptor)

The following is a list of reason codes, in alphabetic order, with more detail than is
given in the call descriptions.

RCNONE
(0, X'000') No reason to report.

The call completed normally. The completion code (CMPCOD) is CCOK.

Corrective action: None.

RC0900
(900, X'384') Lowest value for an application-defined reason code returned
by a data-conversion exit.

Data-conversion exits can return reason codes in the range RC0900 through
RC0999 to indicate particular conditions that the exit has detected.

Corrective action: As defined by the writer of the data-conversion exit.

RC0999
(999, X'3E7') Highest value for application-defined reason code returned by
a data-conversion exit.

Data-conversion exits can return reason codes in the range RC0900 through
RC0999 to indicate particular conditions that the exit has detected.

Corrective action: As defined by the writer of the data-conversion exit.

RC2001
(2001, X'7D1') Alias base queue not a valid type.

An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseQName in the alias queue definition resolves to a
queue that is not a local queue, a local definition of a remote queue, or a
cluster queue.

Corrective action: Correct the queue definitions.

RC2002
(2002, X'7D2') Application already connected.

An MQCONN call was issued, but the application is already connected to
the queue manager.

Corrective action: None. The HCONN parameter returned has the same value
as was returned for the previous MQCONN call.

Note: An MQCONN call that returns this reason code does not mean that
an additional MQDISC call must be issued in order to disconnect
from the queue manager. If this reason code is returned because the
application (or portion thereof) has been called in a situation where
the connect has already been done, a corresponding MQDISC

Return codes

358 MQSeries for AS/400, V5.1 APR (ILE RPG)

should not be issued, because this will cause the application that
issued the original MQCONN call to be disconnected as well.

RC2003
(2003, X'7D3') Unit of work encountered fatal error or backed out.

This occurs in the following cases:
v On an MQCMIT or MQDISC call, when the commit operation has failed

and the unit of work has been backed out. All protected resources have
been returned to their state at the start of the unit of work. The
MQCMIT call returns completion code CCFAIL; the MQDISC call
returns completion code CCWARN.
– On OS/390, this reason code occurs only for batch applications.

v On an MQGET, MQPUT, or MQPUT1 call that is operating within a unit
of work, when the unit of work has already encountered an error that
prevents the unit of work being committed (for example, when the log
space is exhausted). The application must issue the appropriate call to
back out the unit of work. For a unit of work coordinated by the queue
manager, this call is the MQBACK call, although the MQCMIT call has
the same effect in these circumstances.
– On OS/390 this case does not occur.

Corrective action: Check the returns from previous calls to the queue
manager. For example, a previous MQPUT call may have failed.

RC2004
(2004, X'7D4') Buffer parameter not valid.

The BUFFER parameter is not valid for one of the following reasons:
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The parameter pointer points to storage that cannot be accessed for the
entire length specified by BUFLEN.

v For calls where BUFFER is an output parameter: the parameter pointer
points to read-only storage.

Corrective action: Correct the parameter.

RC2005
(2005, X'7D5') Buffer length parameter not valid.

The BUFLEN parameter is not valid, or the parameter pointer is not valid. (It
is not always possible to detect parameter pointers that are not valid; if not
detected, unpredictable results occur.)

This reason can also be returned to an MQ client program on the
MQCONN call if the negotiated maximum message size for the channel is
smaller than the fixed part of any call structure.

Corrective action: Specify a value that is zero or greater. For the
mqAddString and mqSetString calls, the special value
MQBL_NULL_TERMINATED is also valid.

RC2006
(2006, X'7D6') Length of character attributes not valid.

CALEN is negative (for MQINQ or MQSET calls), or is not large enough to
hold all selected attributes (MQSET calls only). This reason also occurs if

Return codes

Appendix A. Return codes 359

the parameter pointer is not valid. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Corrective action: Specify a value large enough to hold the concatenated
strings for all selected attributes.

RC2007
(2007, X'7D7') Character attributes string not valid.

CHRATR is not valid. The parameter pointer is not valid, or points to
read-only storage for MQINQ calls or to storage that is not as long as
implied by CALEN. (It is not always possible to detect parameter pointers
that are not valid; if not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

RC2008
(2008, X'7D8') Not enough space allowed for character attributes.

For MQINQ calls, CALEN is not large enough to contain all of the character
attributes for which CA* selectors are specified in the SELS parameter.

The call still completes, with the CHRATR parameter string filled in with as
many character attributes as there is room for. Only complete attribute
strings are returned: if there is insufficient space remaining to
accommodate an attribute in its entirety, that attribute and subsequent
character attributes are omitted. Any space at the end of the string not
used to hold an attribute is unchanged.

Corrective action: Specify a large enough value, unless only a subset of the
values is needed.

RC2009
(2009, X'7D9') Connection to queue manager lost.

Connection to the queue manager has been lost. This can occur because the
queue manager has ended. If the call is an MQGET call with the GMWT
option, the wait has been canceled.

If this reason occurs with MQCONN, the queue manager may have been
stopped and restarted, and now be available again. All previous handles
are now invalid, but the application can attempt to reestablish connection
by issuing MQCONN again.

Note that for MQ client applications it is possible that the call did
complete successfully, even though this reason code is returned with a
CMPCOD of CCFAIL.

Corrective action: Applications can attempt to reestablish connection by
issuing the MQCONN call. It may be necessary to poll until a successful
response is received.

Applications should ensure that any uncommitted updates are backed out.
Any unit of work that is coordinated by the queue manager is backed out
automatically.

RC2010
(2010, X'7DA') Data length parameter not valid.

The DATLEN parameter is not valid. Either the parameter pointer is not
valid, or it points to read-only storage. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Return codes

360 MQSeries for AS/400, V5.1 APR (ILE RPG)

This reason can also be returned to an MQ client program that is putting
and getting messages, if the application message data is longer than the
negotiated maximum message size for the channel.

Corrective action: Correct the parameter.

If the error occurs for an MQ client program, also check that the maximum
message size for the channel is big enough to accommodate the message
being sent; if it is not big enough, increase the maximum message size for
the channel.

RC2011
(2011, X'7DB') Name of dynamic queue not valid.

On the MQOPEN call, a model queue is specified in the ODON field of the
OBJDSC parameter, but the ODDN field is not valid, for one of the following
reasons:
v ODDN is completely blank (or blank up to the first null character in the

field).
v Characters are present that are not valid for a queue name.
v An asterisk is present beyond the 33rd position (and before any null

character).
v An asterisk is present followed by characters which are not null and not

blank.

This reason code can sometimes occur when a server application opens the
reply queue specified by the MDRQ and MDRM fields in the MQMD of a
message that the server has just received. In this case the reason code
indicates that the application that sent the original message placed
incorrect values into the MDRQ and MDRM fields in the MQMD of the original
message.

Corrective action: Specify a valid name.

RC2012
(2012, X'7DC') Call not valid in environment.

The call is not valid for the current environment.
v On OS/390, one of the following applies:

– An MQCONN call was issued, but the application had been linked
with an adapter that is not supported in the environment in which
the application is running. For example, this can arise when the
application is linked with the MQ RRS adapter, but the application is
running in a DB2 Stored Procedure address space. RRS is not
supported in this environment. Stored Procedures wishing to use the
MQ RRS adapter must run in a DB2 WLM-managed Stored Procedure
address space.

– An MQCMIT or MQBACK call was issued in the CICS or IMS
environment.

v On Compaq (DIGITAL) OpenVMS, OS/2, OS/400, Tandem NonStop
Kernel, UNIX systems, and Windows NT, one of the following applies:
– The application is linked to the wrong libraries (threaded or

nonthreaded).
– An MQBEGIN, MQCMIT, or MQBACK call was issued, but an

external unit-of-work manager is in use or the queue manager does
not support units of work.

– The MQBEGIN call was issued in an MQ client environment.

Return codes

Appendix A. Return codes 361

|

Corrective action: Do one of the following (as appropriate):
v On OS/390:

– Link the application with the correct adapter.
– For a CICS or IMS application, issue the appropriate CICS or IMS call

to commit or backout the unit of work.
v In the other environments:

– Link the application with the correct libraries (threaded or
nonthreaded).

– Remove from the application the call that is not supported.

RC2013
(2013, X'7DD') Expiry time not valid.

On an MQPUT or MQPUT1 call, the value specified for the MDEXP field in
the message descriptor MQMD is not valid.

Corrective action: Specify a value which is greater than zero, or the special
value EIULIM.

RC2014
(2014, X'7DE') Feedback code not valid.

On an MQPUT or MQPUT1 call, the value specified for the MDFB field in
the message descriptor MQMD is not valid. The value is not FBNONE,
and is outside both the range defined for system feedback codes and the
range defined for application feedback codes.

Corrective action: Specify FBNONE, or a value in the range FBSFST
through FBSLST, or FBAFST through FBALST.

RC2016
(2016, X'7E0') Gets inhibited for the queue.

MQGET calls are currently inhibited for the queue (see the InhibitGet
queue attribute described in “Chapter 37. Attributes for all queues” on
page 293), or for the queue to which this queue resolves (see “Chapter 40.
Attributes for alias queues” on page 315).

Corrective action: If the system design allows get requests to be inhibited
for short periods, retry the operation later.

RC2017
(2017, X'7E1') No more handles available.

An MQOPEN or MQPUT1 call was issued, but the maximum number of
open handles allowed for the current task has already been reached. Be
aware that when a distribution list is specified on the MQOPEN or
MQPUT1 call, each queue in the distribution list uses one handle.

Corrective action: Check whether the application is issuing MQOPEN calls
without corresponding MQCLOSE calls. If it is, modify the application to
issue the MQCLOSE call for each open object as soon as that object is no
longer needed.

Also check whether the application is specifying a distribution list
containing a large number of queues that are consuming all of the
available handles. If it is, increase the maximum number of handles that
the task can use, or reduce the size of the distribution list. The maximum
number of open handles that a task can use is given by the MaxHandles
queue manager attribute (see “Chapter 43. Attributes for the queue
manager” on page 323).

Return codes

362 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|

RC2018
(2018, X'7E2') Connection handle not valid.

The connection handle HCONN is not valid. This reason also occurs if the
parameter pointer is not valid, or (for the MQCONN call) points to
read-only storage. (It is not always possible to detect parameter pointers
that are not valid; if not detected, unpredictable results occur.)

Corrective action: Ensure that a successful MQCONN call is performed for
the queue manager, and that an MQDISC call has not already been
performed for it. Ensure that the handle is being used within its valid
scope (see the MQCONN call described in “Chapter 27. MQCONN -
Connect queue manager” on page 221).

RC2019
(2019, X'7E3') Object handle not valid.

The object handle HOBJ is not valid. This reason also occurs if the
parameter pointer is not valid, or (for the MQOPEN call) points to
read-only storage. (It is not always possible to detect parameter pointers
that are not valid; if not detected, unpredictable results occur.)

Corrective action: Ensure that a successful MQOPEN call is performed for
this object, and that an MQCLOSE call has not already been performed for
it. For MQGET and MQPUT calls, also ensure that the handle represents a
queue object. Ensure that the handle is being used within its valid scope
(see the MQOPEN call described in “Chapter 32. MQOPEN - Open object”
on page 251).

RC2020
(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute not valid.

On an MQSET call, the value specified for either the IAIGET attribute or
the IAIPUT attribute is not valid.

Corrective action: Specify a valid value. See the InhibitGet or InhibitPut
attribute described in “Chapter 37. Attributes for all queues” on page 293.

RC2021
(2021, X'7E5') Count of integer attributes not valid.

On an MQINQ or MQSET call, the IACNT parameter is negative (MQINQ
or MQSET), or smaller than the number of integer attribute selectors (IA*)
specified in the SELS parameter (MQSET only). This reason also occurs if
the parameter pointer is not valid. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Corrective action: Specify a value large enough for all selected integer
attributes.

RC2022
(2022, X'7E6') Not enough space allowed for integer attributes.

On an MQINQ call, the IACNT parameter is smaller than the number of
integer attribute selectors (IA*) specified in the SELS parameter.

The call completes with CCWARN, with the INTATR array filled in with as
many integer attributes as there is room for.

Corrective action: Specify a large enough value, unless only a subset of the
values is needed.

Return codes

Appendix A. Return codes 363

RC2023
(2023, X'7E7') Integer attributes array not valid.

On an MQINQ or MQSET call, the INTATR parameter is not valid. The
parameter pointer is not valid (MQINQ and MQSET), or points to
read-only storage or to storage that is not as long as indicated by the IACNT
parameter (MQINQ only). (It is not always possible to detect parameter
pointers that are not valid; if not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

RC2024
(2024, X'7E8') No more messages can be handled within current unit of
work.

An MQGET, MQPUT, or MQPUT1 call failed because it would have
caused the number of uncommitted messages in the current unit of work
to exceed the limit defined for the queue manager (see the
MaxUncommittedMsgs queue-manager attribute). The number of
uncommitted messages is the sum of the following since the start of the
current unit of work:
v Messages put by the application with the PMSYP option
v Messages retrieved by the application with the GMSYP option
v Trigger messages and COA report messages generated by the queue

manager for messages put with the PMSYP option
v COD report messages generated by the queue manager for messages

retrieved with the GMSYP option

Corrective action: Check whether the application is looping. If it is not,
consider reducing the complexity of the application. Alternatively, increase
the queue-manager limit for the maximum number of uncommitted
messages within a unit of work.
v On OS/400, the limit for the maximum number of uncommitted

messages can be changed by using the CHGMQM command.

RC2026
(2026, X'7EA') Message descriptor not valid.

MQMD structure is not valid. Either the MDSID mnemonic eye-catcher is
not valid, or the MDVER is not recognized.

This reason also occurs if:
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example, if
the pointer points to read-only storage.

Corrective action: Correct the definition of the message descriptor. Ensure
that required input fields are correctly set.

RC2027
(2027, X'7EB') Missing reply-to queue.

On an MQPUT or MQPUT1 call, the MDRQ field in the message descriptor
MQMD is blank, but one or both of the following is true:

Return codes

364 MQSeries for AS/400, V5.1 APR (ILE RPG)

v A reply was requested (that is, MTRQST was specified in the MDMT field
of the message descriptor).

v A report message was requested in the MDREP field of the message
descriptor.

Corrective action: Specify the name of the queue to which the reply
message or report message is to be sent.

RC2029
(2029, X'7ED') Message type in message descriptor not valid.

On an MQPUT or MQPUT1 call, the value specified for the MDMT field in
the message descriptor (MQMD) is not valid.

Corrective action: Specify a valid value. See the MDMT field described in
“Chapter 10. MQMD - Message descriptor” on page 83 for details.

RC2030
(2030, X'7EE') Message length greater than maximum for queue.

An MQPUT or MQPUT1 call was issued to put a message on a queue, but
the message was too long for the queue and MFSEGA was not specified in
the MDMFL field in MQMD. If segmentation is not allowed, the length of the
message cannot exceed the lesser of the queue and queue-manager
MaxMsgLength attributes.

This reason code can also occur when MFSEGA is specified, but the nature
of the data present in the message prevents the queue manager splitting it
into segments that are small enough to place on the queue:
v For a user-defined format, the smallest segment that the queue manager

can create is 16 bytes.
v For a built-in format, the smallest segment that the queue manager can

create depends on the particular format, but is greater than 16 bytes in
all cases other than FMSTR (for FMSTR the minimum segment size is 16
bytes).

RC2030 can also occur in the MDFB field in the message descriptor of a
report message; in this case it indicates that the error was encountered by a
message channel agent when it attempted to put the message on a remote
queue.

Corrective action: Check whether the BUFLEN parameter is specified
correctly; if it is, do one of the following:
v Increase the value of the queue’s MaxMsgLength attribute; the

queue-manager’s MaxMsgLength attribute may also need increasing.
v Break the message into several smaller messages.
v Specify MFSEGA in the MDMFL field in MQMD; this will allow the queue

manager to break the message into segments.

RC2031
(2031, X'7EF') Message length greater than maximum for queue manager.

An MQPUT or MQPUT1 call was issued to put a message on a queue, but
the message was too long for the queue manager and MFSEGA was not
specified in the MDMFL field in MQMD. If segmentation is not allowed, the
length of the message cannot exceed the lesser of the queue and
queue-manager MaxMsgLength attributes.

Return codes

Appendix A. Return codes 365

This reason code can also occur when MFSEGA is specified, but the nature
of the data present in the message prevents the queue manager splitting it
into segments that are small enough for the queue-manager limit:
v For a user-defined format, the smallest segment that the queue manager

can create is 16 bytes.
v For a built-in format, the smallest segment that the queue manager can

create depends on the particular format, but is greater than 16 bytes in
all cases other than FMSTR (for FMSTR the minimum segment size is 16
bytes).

RC2031 can also occur in the MDFB field in the message descriptor of a
report message; in this case it indicates that the error was encountered by a
message channel agent when it attempted to put the message on a remote
queue.

This reason also occurs if a channel, through which the message is to pass,
has restricted the maximum message length to a value that is actually less
than that supported by the queue manager, and the message length is
greater than this value.

Corrective action: Check whether the BUFLEN parameter is specified
correctly; if it is, do one of the following:
v Increase the value of the queue-manager’s MaxMsgLength attribute; the

queue’s MaxMsgLength attribute may also need increasing.
v Break the message into several smaller messages.
v Specify MFSEGA in the MDMFL field in MQMD; this will allow the queue

manager to break the message into segments.
v Check the channel definitions.

RC2033
(2033, X'7F1') No message available.

An MQGET call was issued, but there is no message on the queue
satisfying the selection criteria specified in MQMD (the MDMID and MDCID
fields), and in MQGMO (the GMOPT and GMMO fields). Either the GMWT
option was not specified, or the time interval specified by the GMWI field in
MQGMO has expired. This reason is also returned for an MQGET call for
browse, when the end of the queue has been reached.

This reason code can also be returned by the mqGetBag and mqExecute
calls. mqGetBag is similar to MQGET. For the mqExecute call, the
completion code can be either MQCC_WARNING or MQCC_FAILED:
v If the completion code is MQCC_WARNING, some response messages

were received during the specified wait interval, but not all. The
response bag contains system-generated nested bags for the messages
that were received.

v If the completion code is MQCC_FAILED, no response messages were
received during the specified wait interval.

Corrective action: If this is an expected condition, no corrective action is
required.

If this is an unexpected condition, check whether the message was put on
the queue successfully, and whether the options controlling the selection

Return codes

366 MQSeries for AS/400, V5.1 APR (ILE RPG)

criteria are specified correctly. All of the following can affect the eligibility
of a message for return on the MQGET call:

GMLOGO
GMAMSA
GMASGA
GMCMPM
MOMSGI
MOCORI
MOGRPI
MOSEQN
MOOFFS
MDMID field
MDCID field

Consider waiting longer for the message.

RC2034
(2034, X'7F2') Browse cursor not positioned on message.

An MQGET call was issued with either the GMMUC or the GMBRWC
option. However, the browse cursor is not positioned at a retrievable
message. This is caused by one of the following:
v The cursor is positioned logically before the first message (as it is before

the first MQGET call with a browse option has been successfully
performed), or

v The message the browse cursor was positioned on has been locked or
removed from the queue (probably by some other application) since the
browse operation was performed.

v The message the browse cursor was positioned on has expired.

Corrective action: Check the application logic. This may be an expected
reason if the application design allows multiple servers to compete for
messages after browsing. Consider also using the GMLK option with the
preceding browse MQGET call.

RC2035
(2035, X'7F3') Not authorized for access.

The user is not authorized to perform the operation attempted:
v On an MQCONN call, the user is not authorized to connect to the queue

manager.
v On an MQOPEN or MQPUT1 call, the user is not authorized to open the

object for the option(s) specified.
v On an MQCLOSE call, the user is not authorized to delete the object,

which is a permanent dynamic queue, and the HOBJ parameter specified
on the MQCLOSE call is not the handle returned by the MQOPEN call
that created the queue.

This reason code can also occur in the MDFB field in the message descriptor
of a report message; in this case it indicates that the error was encountered
by a message channel agent when it attempted to put the message on a
remote queue.

Corrective action: Ensure that the correct queue manager or object was
specified, and that appropriate authority exists.

Return codes

Appendix A. Return codes 367

RC2036
(2036, X'7F4') Queue not open for browse.

An MQGET call was issued with one of the following options:
GMBRWF
GMBRWN
GMBRWC
GMMUC

but the queue had not been opened for browse.

Corrective action: Specify OOBRW when the queue is opened.

RC2037
(2037, X'7F5') Queue not open for input.

An MQGET call was issued to retrieve a message from a queue, but the
queue had not been opened for input.

Corrective action: Specify one of the following when the queue is opened:
OOINPS
OOINPX
OOINPQ

RC2038
(2038, X'7F6') Queue not open for inquire.

An MQINQ call was issued to inquire object attributes, but the object had
not been opened for inquire.

Corrective action: Specify OOINQ when the object is opened.

RC2039
(2039, X'7F7') Queue not open for output.

An MQPUT call was issued to put a message on a queue, but the queue
had not been opened for output.

Corrective action: Specify OOOUT when the queue is opened.

RC2040
(2040, X'7F8') Queue not open for set.

An MQSET call was issued to set queue attributes, but the queue had not
been opened for set.

Corrective action: Specify OOSET when the object is opened.

RC2041
(2041, X'7F9') Object definition changed since opened.

Since the HOBJ handle used on this call was returned by the MQOPEN call,
object definitions that affect this object have been changed. See
“Chapter 32. MQOPEN - Open object” on page 251 for more information.

This reason does not occur if the object handle is specified in the PMCT field
of the PMO parameter on the MQPUT or MQPUT1 call.

Corrective action: Issue an MQCLOSE call to return the handle to the
system. It is then usually sufficient to reopen the object and retry the
operation. However, if the object definitions are critical to the application
logic, an MQINQ call can be used after reopening the object, to find out
what has changed.

Return codes

368 MQSeries for AS/400, V5.1 APR (ILE RPG)

RC2042
(2042, X'7FA') Object already open with conflicting options.

An MQOPEN call was issued, but the object in question has already been
opened by this or another application with options that conflict with those
specified in the OPTS parameter. This arises if the request is for shared
input, but the object is already open for exclusive input; it also arises if the
request is for exclusive input, but the object is already open for input (of
any sort).

Note: MCAs for receiver channels may keep the destination queues open
even when messages are not being transmitted; this results in the
queues appearing to be “in use”.

Corrective action: System design should specify whether an application is
to wait and retry, or take other action.

RC2043
(2043, X'7FB') Object type not valid.

On the MQOPEN or MQPUT1 call, the ODOT field in the object descriptor
MQOD specifies a value which is not valid. For the MQPUT1 call, the
object type must be OTQ.

Corrective action: Specify a valid object type.

RC2044
(2044, X'7FC') Object descriptor structure not valid.

On the MQOPEN or MQPUT1 call, the object descriptor MQOD is not
valid. Either the ODSID mnemonic eye-catcher is not valid, or the ODVER is
not recognized.

This reason also occurs if:
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example, if
the pointer points to read-only storage.

Corrective action: Correct the definition of the object descriptor. Ensure
that required input fields are set correctly.

RC2045
(2045, X'7FD') Option not valid for object type.

On an MQOPEN or MQCLOSE call, an option is specified that is not valid
for the type of object or queue being opened or closed.

For the MQOPEN call, this includes the following cases:
v An option that is inappropriate for the object type (for example, OOOUT

for an OTPRO object).
v An option that is unsupported for the queue type (for example, OOINQ

for a remote queue that has no local definition).
v One or more of the following options:

OOINPQ
OOINPS
OOINPX
OOBRW

Return codes

Appendix A. Return codes 369

OOINQ
OOSET

when either:
– the queue name is resolved through a cell directory, or
– ODMN in the object descriptor specifies the name of a local definition of

a remote queue (in order to specify a queue-manager alias), and the
queue named in the RemoteQMgrName attribute of the definition is the
name of the local queue manager.

For the MQCLOSE call, this includes the following case:
v The CODEL or COPURG option when the queue is not a dynamic

queue.

This reason code can also occur on the MQOPEN call when the object
being opened is of type OTNLST, OTPRO, or OTQM, but the ODMN field in
MQOD is neither blank nor the name of the local queue manager.

Corrective action: Specify the correct option; see Table 48 on page 256 for
open options, and Table 47 on page 212 for close options. For the MQOPEN
call, ensure that the ODMN field is set correctly. For the MQCLOSE call,
either correct the option or change the definition type of the model queue
that is used to create the new queue.

RC2046
(2046, X'7FE') Options not valid or not consistent.

The OPTS parameter or field contains options that are not valid, or a
combination of options that is not valid.
v For the MQOPEN, MQCLOSE, MQXCNVC, mqBagToBuffer,

mqBufferToBag, mqCreateBag, and mqExecute calls, GMOPT is a separate
parameter on the call.
This reason also occurs if the parameter pointer is not valid. (It is not
always possible to detect parameter pointers that are not valid; if not
detected, unpredictable results occur.)

v For the MQCONNX, MQGET, MQPUT, and MQPUT1 calls, GMOPT is a
field in the relevant options structure (MQGMO or MQPMO).

Corrective action: Specify valid options. Check the description of the OPTS
parameter or field to determine which options and combinations of options
are valid. If multiple options are being set by adding the individual
options together, ensure that the same option is not added twice.

RC2047
(2047, X'7FF') Persistence not valid.

On an MQPUT or MQPUT1 call, the value specified for the MDPER field in
the message descriptor MQMD is not valid.

Corrective action: Specify one of the following values:
PEPER
PENPER
PEQDEF

RC2048
(2048, X'800') Message on a temporary dynamic queue cannot be persistent.

Return codes

370 MQSeries for AS/400, V5.1 APR (ILE RPG)

On an MQPUT or MQPUT1 call, the value specified for the MDPER field in
the message descriptor MQMD specifies PEPER, but the queue on which
the message is being placed is a temporary dynamic queue. Persistent
messages cannot be put on temporary queues.

This reason code can also occur in the MDFB field in the message descriptor
of a report message; in this case it indicates that the error was encountered
by a message channel agent when it attempted to put the message on a
remote queue.

Corrective action: Specify PENPER if the message is to be placed on a
temporary dynamic queue. If persistence is required, use a permanent
dynamic queue, or a predefined queue.

Be aware that server applications are recommended to send reply messages
(message type MTRPLY) with the same persistence as the original request
message (message type MTRQST). If the request message is persistent, the
reply queue specified in the MDRQ field in the message descriptor MQMD
cannot be a temporary dynamic queue; a permanent dynamic or
predefined queue must be used as the reply queue in this situation.

RC2049
(2049, X'801') Message Priority exceeds maximum value supported.

On an MQPUT or MQPUT1 call, the value of the MDPRI field in the
message descriptor MQMD exceeds the maximum priority supported by
the local queue manager (see the MaxPriority queue-manager attribute
described in “Chapter 43. Attributes for the queue manager” on page 323).
The message is accepted by the queue manager, but is placed on the queue
at the queue manager’s maximum priority. The MDPRI field in the message
descriptor retains the value specified by the application that put the
message.

Corrective action: None required, unless this reason code was not expected
by the application that put the message.

RC2050
(2050, X'802') Message priority not valid.

On an MQPUT or MQPUT1 call, the value of the MDPRI field in the
message descriptor MQMD is not valid.

Corrective action: Specify a value which is zero or greater, or the special
value PRQDEF.

RC2051
(2051, X'803') Put calls inhibited for the queue.

MQPUT and MQPUT1 calls are currently inhibited for the queue (see the
InhibitPut queue attribute described in “Chapter 37. Attributes for all
queues” on page 293), or for the queue to which this queue resolves (see
“Chapter 40. Attributes for alias queues” on page 315).

This reason code can also occur in the MDFB field in the message descriptor
of a report message; in this case it indicates that the error was encountered
by a message channel agent when it attempted to put the message on a
remote queue.

Corrective action: If the system design allows put requests to be inhibited
for short periods, retry the operation later.

RC2052
(2052, X'804') Queue has been deleted.

Return codes

Appendix A. Return codes 371

An HOBJ queue handle specified on a call refers to a dynamic queue that
has been deleted since the queue was opened. (See “Chapter 25.
MQCLOSE - Close object” on page 211 for information about the deletion
of dynamic queues.)

Corrective action: Issue an MQCLOSE call to return the handle and
associated resources to the system (the MQCLOSE call will succeed in this
case). Check the design of the application that caused the error.

RC2053
(2053, X'805') Queue already contains maximum number of messages.

On an MQPUT or MQPUT1 call, the call failed because the queue is full,
that is, it already contains the maximum number of messages possible (see
the MaxQDepth local-queue attribute described in “Chapter 38. Attributes for
local queues and model queues” on page 299).

This reason code can also occur in the MDFB field in the message descriptor
of a report message; in this case it indicates that the error was encountered
by a message channel agent when it attempted to put the message on a
remote queue.

Corrective action: Retry the operation later. Consider increasing the
maximum depth for this queue, or arranging for more instances of the
application to service the queue.

RC2055
(2055, X'807') Queue contains one or more messages or uncommitted put or
get requests.

An MQCLOSE call was issued for a permanent dynamic queue, with
either:
v The CODEL option specified, but there are messages still on the queue,

or
v The CODEL or COPURG option specified, but there are uncommitted

get or put calls outstanding against the queue.

See the usage notes pertaining to dynamic queues for the MQCLOSE call
for more information.

This reason code is also returned from a Programmable Command Format
(PCF) command to clear or delete a queue, if the queue contains
uncommitted messages (or committed messages in the case of delete queue
without the purge option).

Corrective action: Check why there might be messages on the queue. Be
aware that the CurrentQDepth local-queue attribute might be zero even
though there are one or more messages on the queue; this can happen if
the messages have been retrieved as part of a unit of work which has not
yet been committed. If the messages can be discarded, try using the
MQCLOSE call with the COPURG option. Consider retrying the call later.

RC2056
(2056, X'808') No space available on disk for queue.

An MQPUT or MQPUT1 call was issued, but there is no space available
for the queue on disk or other storage device.

Return codes

372 MQSeries for AS/400, V5.1 APR (ILE RPG)

This reason code can also occur in the MDFB field in the message descriptor
of a report message; in this case it indicates that the error was encountered
by a message channel agent when it attempted to put the message on a
remote queue.

Corrective action: Check whether an application is putting messages in an
infinite loop. If not, make more disk space available for the queue.

RC2057
(2057, X'809') Queue type not valid.

One of the following occurred:
v On an MQOPEN call, the ODMN field in the object descriptor MQOD or

object record MQOR specifies the name of a local definition of a remote
queue (in order to specify a queue-manager alias), and in that local
definition the RemoteQMgrName attribute is the name of the local queue
manager. However, the ODON field in MQOD or MQOR specifies the
name of a model queue on the local queue manager; this is not allowed.
See the MQSeries Application Programming Guide for more information.

v On an MQPUT1 call, the object descriptor MQOD or object record
MQOR specifies the name of a model queue.

v On a previous MQPUT or MQPUT1 call, the MDRQ field in the message
descriptor specified the name of a model queue, but a model queue
cannot be specified as the destination for reply or report messages. Only
the name of a predefined queue, or the name of the dynamic queue
created from the model queue, can be specified as the destination. In this
situation the reason code RC2057 is returned in the DLREA field of the
MQDLH structure when the reply message or report message is placed
on the dead-letter queue.

Corrective action: Specify a valid queue.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

On an MQCONN call, the value specified for the QMNAME parameter is not
valid. This reason also occurs if the parameter pointer is not valid. (It is
not always possible to detect parameter pointers that are not valid; if not
detected, unpredictable results occur.)

This reason also occurs if an application attempts to connect to a queue
manager within a group (see the QMNAME parameter of MQCONN), and
either:
v Queue-manager groups are not supported (they are only supported for

MQ client applications), or
v There is no queue-manager group with the specified name.

Corrective action: Use an all-blank name if possible, or verify that the
name used is valid.

RC2059
(2059, X'80B') Queue manager not available for connection.

On an MQCONN call, the queue manager identified by the QMNAME
parameter is not available for connection at this time.
v On OS/400, this reason can also be returned by the MQOPEN and

MQPUT1 calls, when HCDEFH is specified for the HCONN parameter by
an application running in compatibility mode.

Return codes

Appendix A. Return codes 373

|
|

If the connection is from an MQ client application, this reason code can
occur if there is an error with the client-connection or the corresponding
server-connection channel definitions.

This reason also occurs if an application attempts to connect to a queue
manager within a group (see the QMNAME parameter of MQCONN), when
none of the queue managers in the group is available for connection at this
time.

Corrective action: Ensure that the queue manager has been started. If the
connection is from a client application, check the channel definitions.

RC2061
(2061, X'80D') Report options in message descriptor not valid.

An MQPUT or MQPUT1 call was issued, but the MDREP field in the
message descriptor MQMD contains one or more options which are not
recognized by the local queue manager. The options that cause this reason
code to be returned depend on the destination of the message; see
“Appendix E. Report options” on page 457 for more details.

This reason code can also occur in the MDFB field in the MQMD of a report
message, or in the DLREA field in the MQDLH structure of a message on the
dead-letter queue; in both cases it indicates that the destination queue
manager does not support one or more of the report options specified by
the sender of the message.

Corrective action: Do the following:
1. Ensure that the MDREP field in the message descriptor is initialized with

a value when the message descriptor is declared, or is assigned a value
prior to the MQPUT or MQPUT1 call.
Specify RONONE if no report options are required.

2. Ensure that the report options specified are ones which are documented
in this book; see the MDREP field described in “Chapter 10. MQMD -
Message descriptor” on page 83 for valid report options. Remove any
report options which are not documented in this book.

3. If multiple report options are being set by adding the individual report
options together, ensure that the same report option is not added twice.

4. Check that conflicting report options are not specified. For example, do
not add both ROEXC and ROEXCD to the MDREP field; only one of
these can be specified.

RC2063
(2063, X'80F') Security error occurred.

An MQOPEN, MQPUT1, or MQCLOSE call was issued, but it failed
because a security error occurred.

Corrective action: Note the error from the security manager, and contact
your system programmer or security administrator.
v On OS/400, the FFST log will contain the error information.

RC2065
(2065, X'811') Count of selectors not valid.

On an MQINQ or MQSET call, the SELCNT parameter specifies a value that
is not valid. This reason also occurs if the parameter pointer is not valid.
(It is not always possible to detect parameter pointers that are not valid; if
not detected, unpredictable results occur.)

Return codes

374 MQSeries for AS/400, V5.1 APR (ILE RPG)

Corrective action: Specify a value in the range 0 through 256.

RC2066
(2066, X'812') Count of selectors too big.

On an MQINQ or MQSET call, the SELCNT parameter specifies a value that
is larger than the maximum supported (256).

Corrective action: Reduce the number of selectors specified on the call; the
valid range is 0 through 256.

RC2067
(2067, X'813') Attribute selector not valid.

On an MQINQ or MQSET call, a selector in the SELS array is either:
v not valid, or
v not applicable to the type of the object whose attributes are being

inquired or set, or
v (MQSET only) not an attribute which can be set.

This reason also occurs if the parameter pointer is not valid. (It is not
always possible to detect parameter pointers that are not valid; if not
detected, unpredictable results occur.)

Corrective action: Ensure that the value specified for the selector is valid
for the object type represented by HOBJ. For the MQSET call, also ensure
that the selector represents an integer attribute that can be set.

RC2068
(2068, X'814') Selector not applicable to queue type.

On the MQINQ call, one or more selectors in the SELS array is not
applicable to the type of the queue whose attributes are being inquired.

This reason also occurs when the queue is a cluster queue that resolved to
a remote instance of the queue. In this case only a subset of the attributes
that are valid for local queues can be inquired. See the usage notes in
“Chapter 31. MQINQ - Inquire about object attributes” on page 241 for
further details.

The call completes with CCWARN, with the attribute values for the
inapplicable selectors set as follows:
v For integer attributes, the corresponding elements of INTATR are set to

IAVNA.
v For character attributes, the appropriate parts of the CHRATR string are set

to a character string consisting entirely of asterisks (*).

Corrective action: Verify that the selector specified is the one that was
intended.

If the queue is a cluster queue, specifying one of the OOBRW, OOINP*, or
OOSET options in addition to OOINQ forces the queue to resolve to the
local instance of the queue. However, if there is no local instance of the
queue the MQOPEN call fails.

RC2071
(2071, X'817') Insufficient storage available.

The call failed because there is insufficient main storage available.

Return codes

Appendix A. Return codes 375

Corrective action: Ensure that active applications are behaving correctly, for
example, that they are not looping unexpectedly. If no problems are found,
make more main storage available.

RC2072
(2072, X'818') Syncpoint support not available.

Either GMSYP was specified on an MQGET call or PMSYP was specified
on an MQPUT or MQPUT1 call, but the local queue manager was unable
to honor the request. If the queue manager does not support units of work,
the SyncPoint queue-manager attribute will have the value SPNAVL.

This reason code can also occur on the MQGET, MQPUT, and MQPUT1
calls when an external unit-of-work coordinator is being used. If that
coordinator requires an explicit call to start the unit of work, but the
application has not issued that call prior to the MQGET, MQPUT, or
MQPUT1 call, reason code RC2072 is returned.
v On OS/400, this reason codes means that OS/400 Commitment Control

is not started, or is unavailable for use by the queue manager.

Corrective action: Remove the specification of GMSYP or PMSYP, as
appropriate.
v On OS/400, if Commitment Control has not been started, start it. If this

reason code occurs after Commitment Control has been started, contact
your systems programmer.

RC2075
(2075, X'81B') Value for trigger-control attribute not valid.

On an MQSET call, the value specified for the IATRGC attribute selector is
not valid.

Corrective action: Specify a valid value. See “Chapter 38. Attributes for
local queues and model queues” on page 299.

RC2076
(2076, X'81C') Value for trigger-depth attribute not valid.

On an MQSET call, the value specified for the IATRGD attribute selector is
not valid.

Corrective action: Specify a value which is greater than zero. See
“Chapter 38. Attributes for local queues and model queues” on page 299.

RC2077
(2077, X'81D') Value for trigger-message-priority attribute not valid.

On an MQSET call, the value specified for the IATRGP attribute selector is
not valid.

Corrective action: Specify a value in the range 0 through the value of
MaxPriority queue-manager attribute. See “Chapter 38. Attributes for local
queues and model queues” on page 299.

RC2078
(2078, X'81E') Value for trigger-type attribute not valid.

On an MQSET call, the value specified for the IATRGT attribute selector is
not valid.

Corrective action: Specify a valid value. See “Chapter 38. Attributes for
local queues and model queues” on page 299.

Return codes

376 MQSeries for AS/400, V5.1 APR (ILE RPG)

RC2079
(2079, X'81F') Truncated message returned (processing completed).

On an MQGET call, the message length was too large to fit into the
supplied buffer. The GMATM option was specified, so the call completes.
The message is removed from the queue (subject to unit-of-work
considerations), or, if this was a browse operation, the browse cursor is
advanced to this message.

The DATLEN parameter is set to the length of the message before truncation,
the BUFFER parameter contains as much of the message as fits, and the
MQMD structure is filled in.

Corrective action: None, because the application expected this situation.

RC2080
(2080, X'820') Truncated message returned (processing not completed).

On an MQGET call, the message length was too large to fit into the
supplied buffer. The GMATM option was not specified, so the message has
not been removed from the queue. If this was a browse operation, the
browse cursor remains where it was before this call, but if GMBRWF was
specified, the browse cursor is positioned logically before the
highest-priority message on the queue.

The DATLEN field is set to the length of the message before truncation, the
BUFFER parameter contains as much of the message as fits, and the MQMD
structure is filled in.

Corrective action: Supply a buffer that is at least as large as DATLEN, or
specify GMATM if not all of the message data is required.

RC2082
(2082, X'822') Unknown alias base queue.

An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
target, but the BaseQName in the alias queue attributes is not recognized as a
queue name.

This reason code can also occur when BaseQName is the name of a cluster
queue that cannot be resolved successfully.

Corrective action: Correct the queue definitions.

RC2085
(2085, X'825') Unknown object name.

On an MQOPEN or MQPUT1 call, the ODMN field in the object descriptor
MQOD is set to one of the following:
v Blank
v The name of the local queue manager
v The name of a local definition of a remote queue (a queue-manager

alias) in which the RemoteQMgrName attribute is the name of the local
queue manager

However, the ODON field in the object descriptor is not recognized for the
specified object type.

This reason code can also occur when the queue is a cluster queue that is
hosted on a remote queue manager, but the local queue manager does not
have a defined route to the remote queue manager.

Return codes

Appendix A. Return codes 377

See also RC2052.

Corrective action: Specify a valid object name. Ensure that the name is
padded to the right with blanks if necessary. If this is correct, check the
queue definitions.

RC2086
(2086, X'826') Unknown object queue manager.

On an MQOPEN or MQPUT1 call, the ODMN field in the object descriptor
MQOD does not satisfy the naming rules for objects. For more information,
see the MQSeries Application Programming Guide for

This reason also occurs if the ODOT field in the object descriptor has the
value OTQM, and the ODMN field is not blank, but the name specified is not
the name of the local queue manager.

Corrective action: Specify a valid queue manager name (or all blanks or an
initial null character to refer to the local queue manager). Ensure that the
name is padded to the right with blanks or terminated with a null
character if necessary.

RC2087
(2087, X'827') Unknown remote queue manager.

On an MQOPEN or MQPUT1 call, an error occurred with the queue-name
resolution, for one of the following reasons:
v ODMN is blank or the name of the local queue manager, ODON is the name

of a local definition of a remote queue (or an alias to one), and one of
the following is true:
– RemoteQMgrName is blank or the name of the local queue manager.

Note that this error occurs even if XmitQName is not blank.
– XmitQName is blank, but there is no transmission queue defined with

the name of RemoteQMgrName, and the DefXmitQName queue-manager
attribute is blank.

– RemoteQMgrName and RemoteQName specify a cluster queue that cannot
be resolved successfully, and the DefXmitQName queue-manager
attribute is blank.

v ODMN is the name of a local definition of a remote queue (containing a
queue-manager alias definition), and one of the following is true:
– RemoteQName is not blank.
– XmitQName is blank, but there is no transmission queue defined with

the name of RemoteQMgrName, and the DefXmitQName queue-manager
attribute is blank.

v ODMN is not:
– Blank
– The name of the local queue manager
– The name of a transmission queue
– The name of a queue-manager alias definition (that is, a local

definition of a remote queue with a blank RemoteQName)

but the DefXmitQName queue-manager attribute is blank.
v ODMN is the name of a model queue.
v The queue name is resolved through a cell directory. However, there is

no queue defined with the same name as the remote queue manager
name obtained from the cell directory, and the DefXmitQName
queue-manager attribute is blank.

Return codes

378 MQSeries for AS/400, V5.1 APR (ILE RPG)

Corrective action: Check the values specified for ODMN and ODON. If these are
correct, check the queue definitions.

RC2090
(2090, X'82A') Wait interval in MQGMO not valid.

On the MQGET call, the value specified for the GMWI field in the GMO
parameter is not valid.

Corrective action: Specify a value greater than or equal to zero, or the
special value WIULIM if an indefinite wait is required.

RC2091
(2091, X'82B') Transmission queue not local.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote
queue manager. The ODON or ODMN field in the object descriptor specifies the
name of a local definition of a remote queue but one of the following
applies to the XmitQName attribute of the definition:
v XmitQName is not blank, but specifies a queue that is not a local queue
v XmitQName is blank, but RemoteQMgrName specifies a queue that is not a

local queue

This reason also occurs if the queue name is resolved through a cell
directory, and the remote queue manager name obtained from the cell
directory is the name of a queue, but this is not a local queue.

Corrective action: Check the values specified for ODON and ODMN. If these are
correct, check the queue definitions. For more information on transmission
queues, see the MQSeries Application Programming Guide.

RC2092
(2092, X'82C') Transmission queue with wrong usage.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote
queue manager, but one of the following occurred:
v ODMN specifies the name of a local queue, but it does not have a Usage

attribute of USTRAN.
v The ODON or ODMN field in the object descriptor specifies the name of a

local definition of a remote queue but one of the following applies to the
XmitQName attribute of the definition:
– XmitQName is not blank, but specifies a queue that does not have a

Usage attribute of USTRAN
– XmitQName is blank, but RemoteQMgrName specifies a queue that does

not have a Usage attribute of USTRAN
v The queue name is resolved through a cell directory, and the remote

queue manager name obtained from the cell directory is the name of a
local queue, but it does not have a Usage attribute of USTRAN.

Corrective action: Check the values specified for ODON and ODMN. If these are
correct, check the queue definitions. For more information on transmission
queues, see the MQSeries Application Programming Guide.

RC2093
(2093, X'82D') Queue not open for pass all context.

An MQPUT call was issued with the PMPASA option specified in the PMO
parameter, but the queue had not been opened with the OOPASA option.

Return codes

Appendix A. Return codes 379

Corrective action: Specify OOPASA (or another option that implies it)
when the queue is opened.

RC2094
(2094, X'82E') Queue not open for pass identity context.

An MQPUT call was issued with the PMPASI option specified in the PMO
parameter, but the queue had not been opened with the OOPASI option.

Corrective action: Specify OOPASI (or another option that implies it) when
the queue is opened.

RC2095
(2095, X'82F') Queue not open for set all context.

An MQPUT call was issued with the PMSETA option specified in the PMO
parameter, but the queue had not been opened with the OOSETA option.

Corrective action: Specify OOSETA when the queue is opened.

RC2096
(2096, X'830') Queue not open for set identity context.

An MQPUT call was issued with the PMSETI option specified in the PMO
parameter, but the queue had not been opened with the OOSETI option.

Corrective action: Specify OOSETI (or another option that implies it) when
the queue is opened.

RC2097
(2097, X'831') Queue handle referred to does not save context.

On an MQPUT or MQPUT1 call, PMPASI or PMPASA was specified, but
the handle specified in the PMCT field of the PMO parameter is either not a
valid queue handle, or it is a valid queue handle but the queue was not
opened with OOSAVA.

Corrective action: Specify OOSAVA when the queue referred to is opened.

RC2098
(2098, X'832') Context not available for queue handle referred to.

On an MQPUT or MQPUT1 call, PMPASI or PMPASA was specified, but
the queue handle specified in the PMCT field of the PMO parameter has no
context associated with it. This arises if no message has yet been
successfully retrieved with the queue handle referred to, or if the last
successful MQGET call was a browse.

This condition does not arise if the message that was last retrieved had no
context associated with it.

Corrective action: Ensure that a successful nonbrowse get call has been
issued with the queue handle referred to.

RC2100
(2100, X'834') Object already exists.

An MQOPEN call was issued to create a dynamic queue, but a queue with
the same name as the dynamic queue already exists.

Corrective action: If supplying a dynamic queue name in full, ensure that it
obeys the naming conventions for dynamic queues; if it does, either supply
a different name, or delete the existing queue if it is no longer required.
Alternatively, allow the queue manager to generate the name.

Return codes

380 MQSeries for AS/400, V5.1 APR (ILE RPG)

If the queue manager is generating the name (either in part or in full),
reissue the MQOPEN call.

RC2101
(2101, X'835') Object damaged.

The object accessed by the call is damaged and cannot be used. For
example, this may be because the definition of the object in main storage is
not consistent, or because it differs from the definition of the object on
disk, or because the definition on disk cannot be read.

The object cannot be used until the problem is corrected. The object can be
deleted, although it may not be possible to delete the associated user
space.

Corrective action: It may be necessary to stop and restart the queue
manager, or to restore the queue-manager data from back-up storage.

Consult the FFST™ record to obtain more detail about the problem.

RC2102
(2102, X'836') Insufficient system resources available.

There are insufficient system resources to complete the call successfully.

Corrective action: Run the application when the machine is less heavily
loaded.

Consult the FFST record to obtain more detail about the problem.

RC2104
(2104, X'838') Report option(s) in message descriptor not recognized.

An MQPUT or MQPUT1 call was issued, but the MDREP field in the
message descriptor MQMD contains one or more options which are not
recognized by the local queue manager. The options are accepted.

The options that cause this reason code to be returned depend on the
destination of the message; see “Appendix E. Report options” on page 457
for more details.

Corrective action: If this reason code is expected, no corrective action is
required.

If this reason code is not expected, do the following:
1. Ensure that the MDREP field in the message descriptor is initialized with

a value when the message descriptor is declared, or is assigned a value
prior to the MQPUT or MQPUT1 call.

2. Ensure that the report options specified are ones which are documented
in this book; see the MDREP field described in “Chapter 10. MQMD -
Message descriptor” on page 83 for valid report options. Remove any
report options which are not documented in this book.

3. If multiple report options are being set by adding the individual report
options together, ensure that the same report option is not added twice.

4. Check that conflicting report options are not specified. For example, do
not add both ROEXC and ROEXCD to the MDREP field; only one of
these can be specified.

RC2110
(2110, X'83E') Message format not valid.

On an MQGET call with the GMCONV option included in the GMO
parameter, one or both of the MDCSI and MDENC fields in the message differs

Return codes

Appendix A. Return codes 381

from the corresponding field in the MSGDSC parameter, but the message
cannot be converted successfully due to an error associated with the
message format. Possible errors include:
v A user-written exit with the name specified by the MDFMT field in the

message cannot be found.
v The format name in the message is FMNONE.
v The message contains data that is not consistent with the format

definition.

The message is returned unconverted to the application issuing the
MQGET call, the values of the MDCSI and MDENC fields in the MSGDSC
parameter are set to those of the message returned, and the call completes
with CCWARN.

If the message consists of several parts, each of which is described by its
own character-set and encoding fields (for example, a message with format
name FMDLH), some parts may be converted and other parts not
converted. However, the values returned in the various character-set and
encoding fields always correctly describe the relevant message data.

Corrective action: Check the format name that was specified when the
message was put. If this is not one of the built-in formats, check that a
suitable exit with the same name as the format is available for the queue
manager to load. Verify that the data in the message corresponds to the
format expected by the exit.

RC2111
(2111, X'83F') Source coded character set identifier not valid.

The coded character-set identifier from which character data is to be
converted is not valid or not supported.

This can occur on the MQGET call when the GMCONV option is included
in the GMO parameter; the coded character-set identifier in error is the MDCSI
field in the message being retrieved. In this case, the message data is
returned unconverted, the values of the MDCSI and MDENC fields in the
MSGDSC parameter are set to those of the message returned, and the call
completes with CCWARN.

This reason can also occur on the MQGET call when the message contains
one or more of the data-related MQ header structures (MQCIH, MQDLH,
MQIIH, MQRMH), and the MDCSI field in the message specifies a character
set that does not have SBCS characters for the characters that are valid in
queue names. MQ header structures containing such characters are not
valid, and so the message is returned unconverted. The Unicode character
set UCS-2 is an example of such a character set.

If the message consists of several parts, each of which is described by its
own character-set and encoding fields (for example, a message with format
name FMDLH), some parts may be converted and other parts not
converted. However, the values returned in the various character-set and
encoding fields always correctly describe the relevant message data.

This reason can also occur on the MQXCNVC call; the coded character-set
identifier in error is the SRCCSI parameter. Either the SRCCSI parameter
specifies a value which is not valid or not supported, or the SRCCSI
parameter pointer is not valid. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Return codes

382 MQSeries for AS/400, V5.1 APR (ILE RPG)

Corrective action: Check the character-set identifier that was specified
when the message was put, or that was specified for the SRCCSI parameter
on the MQXCNVC call. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is
not supported for the specified character set, conversion must be carried
out by the application.

RC2112
(2112, X'840') Source integer encoding not recognized.

On an MQGET call, with the GMCONV option included in the GMO
parameter, the MDENC value in the message being retrieved specifies an
integer encoding that is not recognized. The message data is returned
unconverted, the values of the MDCSI and MDENC fields in the MSGDSC
parameter are set to those of the message returned, and the call completes
with CCWARN.

If the message consists of several parts, each of which is described by its
own character-set and encoding fields (for example, a message with format
name FMDLH), some parts may be converted and other parts not
converted. However, the values returned in the various character-set and
encoding fields always correctly describe the relevant message data.

This reason code can also occur on the MQXCNVC call, when the OPTS
parameter contains an unsupported DCCS* value, or when DCCSUN is
specified for a UCS2 code page.

Corrective action: Check the integer encoding that was specified when the
message was put. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is
not supported for the required integer encoding, conversion must be
carried out by the application.

RC2113
(2113, X'841') Packed-decimal encoding in message not recognized.

On an MQGET call with the GMCONV option included in the GMO
parameter, the MDENC value in the message being retrieved specifies a
decimal encoding that is not recognized. The message data is returned
unconverted, the values of the MDCSI and MDENC fields in the MSGDSC
parameter are set to those of the message returned, and the call completes
with CCWARN.

If the message consists of several parts, each of which is described by its
own character-set and encoding fields (for example, a message with format
name FMDLH), some parts may be converted and other parts not
converted. However, the values returned in the various character-set and
encoding fields always correctly describe the relevant message data.

Corrective action: Check the decimal encoding that was specified when the
message was put. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is
not supported for the required decimal encoding, conversion must be
carried out by the application.

RC2114
(2114, X'842') Floating-point encoding in message not recognized.

On an MQGET call, with the GMCONV option included in the GMO
parameter, the MDENC value in the message being retrieved specifies a
floating-point encoding that is not recognized. The message data is

Return codes

Appendix A. Return codes 383

returned unconverted, the values of the MDCSI and MDENC fields in the
MSGDSC parameter are set to those of the message returned, and the call
completes with CCWARN.

If the message consists of several parts, each of which is described by its
own character-set and encoding fields (for example, a message with format
name FMDLH), some parts may be converted and other parts not
converted. However, the values returned in the various character-set and
encoding fields always correctly describe the relevant message data.

Corrective action: Check the floating-point encoding that was specified
when the message was put. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is
not supported for the required floating-point encoding, conversion must be
carried out by the application.

RC2115
(2115, X'843') Target coded character set identifier not valid.

The coded character-set identifier to which character data which is to be
converted is not valid or not supported.

This can occur on the MQGET call when the GMCONV option is included
in the GMO parameter; the coded character-set identifier in error is the MDCSI
field in the MSGDSC parameter. In this case, the message data is returned
unconverted, the values of the MDCSI and MDENC fields in the MSGDSC
parameter are set to those of the message returned, and the call completes
with CCWARN.

This reason can also occur on the MQGET call when the message contains
one or more of the data-related MQ header structures (MQCIH, MQDLH,
MQIIH, MQRMH), and the MDCSI field in the MSGDSC parameter specifies a
character set that does not have SBCS characters for the characters that are
valid in queue names. The Unicode character set UCS-2 is an example of
such a character set.

This reason can also occur on the MQXCNVC call; the coded character-set
identifier in error is the TGTCSI parameter. Either the TGTCSI parameter
specifies a value which is not valid or not supported, or the TGTCSI
parameter pointer is not valid. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Corrective action: Check the character-set identifier that was specified for
the MDCSI field in the MSGDSC parameter on the MQGET call, or that was
specified for the SRCCSI parameter on the MQXCNVC call. If this is correct,
check that it is one for which queue-manager conversion is supported. If
queue-manager conversion is not supported for the specified character set,
conversion must be carried out by the application.

RC2116
(2116, X'844') Target integer encoding not recognized.

On an MQGET call with the GMCONV option included in the GMO
parameter, the MDENC value in the MSGDSC parameter specifies an integer
encoding that is not recognized. The message data is returned
unconverted, the values of the MDCSI and MDENC fields in the MSGDSC
parameter are set to those of the message being retrieved, and the call
completes with CCWARN.

Return codes

384 MQSeries for AS/400, V5.1 APR (ILE RPG)

This reason code can also occur on the MQXCNVC call, when the OPTS
parameter contains an unsupported DCCT* value, or when DCCTUN is
specified for a UCS2 code page.

Corrective action: Check the integer encoding that was specified. If this is
correct, check that it is one for which queue-manager conversion is
supported. If queue-manager conversion is not supported for the required
integer encoding, conversion must be carried out by the application.

RC2117
(2117, X'845') Packed-decimal encoding specified by receiver not
recognized.

On an MQGET call with the GMCONV option included in the GMO
parameter, the MDENC value in the MSGDSC parameter specifies a decimal
encoding that is not recognized. The message data is returned
unconverted, the values of the MDCSI and MDENC fields in the MSGDSC
parameter are set to those of the message returned, and the call completes
with CCWARN.

Corrective action: Check the decimal encoding that was specified. If this is
correct, check that it is one for which queue-manager conversion is
supported. If queue-manager conversion is not supported for the required
decimal encoding, conversion must be carried out by the application.

RC2118
(2118, X'846') Floating-point encoding specified by receiver not recognized.

On an MQGET call with the GMCONV option included in the GMO
parameter, the MDENC value in the MSGDSC parameter specifies a
floating-point encoding that is not recognized. The message data is
returned unconverted, the values of the MDCSI and MDENC fields in the
MSGDSC parameter are set to those of the message returned, and the call
completes with CCWARN.

Corrective action: Check the floating-point encoding that was specified. If
this is correct, check that it is one for which queue-manager conversion is
supported. If queue-manager conversion is not supported for the required
floating-point encoding, conversion must be carried out by the application.

RC2119
(2119, X'847') Message data not converted.

On an MQGET call with the GMCONV option included in the GMO
parameter, an error occurred during conversion of the data in the message.
The message data is returned unconverted, the values of the MDCSI and
MDENC fields in the MSGDSC parameter are set to those of the message
returned, and the call completes with CCWARN.

If the message consists of several parts, each of which is described by its
own character-set and encoding fields (for example, a message with format
name FMDLH), some parts may be converted and other parts not
converted. However, the values returned in the various character-set and
encoding fields always correctly describe the relevant message data.

This error may also indicate that a parameter to the data-conversion
service is not supported.

Corrective action: Check that the message data is correctly described by the
MDFMT, MDCSI and MDENC parameters that were specified when the message
was put. Also check that these values, and the MDCSI and MDENC specified in
the MSGDSC parameter on the MQGET call, are supported for

Return codes

Appendix A. Return codes 385

queue-manager conversion. If the required conversion is not supported,
conversion must be carried out by the application.

RC2120
(2120, X'848') Converted data too big for buffer.

On an MQGET call with the GMCONV option included in the GMO
parameter, the message data expanded during data conversion and
exceeded the size of the buffer provided by the application. However, the
message had already been removed from the queue because prior to
conversion the message data could be accommodated in the application
buffer without truncation.

The message is returned unconverted, with the CMPCOD parameter of the
MQGET call set to CCWARN. If the message consists of several parts, each
of which is described by its own character-set and encoding fields (for
example, a message with format name FMDLH), some parts may be
converted and other parts not converted. However, the values returned in
the various character-set and encoding fields always correctly describe the
relevant message data.

This reason can also occur on the MQXCNVC call, when the TGTBUF
parameter is too small too accommodate the converted string, and the
string has been truncated to fit in the buffer. The length of valid data
returned is given by the DATLEN parameter; in the case of a DBCS string or
mixed SBCS/DBCS string, this length may be less than the length of
TGTBUF.

Corrective action: For the MQGET call, check that the exit is converting the
message data correctly and setting the output length DATLEN to the
appropriate value. If it is, the application issuing the MQGET call must
provide a larger buffer for the BUFFER parameter.

For the MQXCNVC call, if the string must be converted without
truncation, provide a larger output buffer.

RC2121
(2121, X'849') No participating resource managers registered.

An MQBEGIN call was issued to start a unit of work coordinated by the
queue manager, but no participating resource managers have been
registered with the queue manager. As a result, only changes to MQ
resources can be coordinated by the queue manager in the unit of work.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
OS/400, Sun Solaris, Windows NT.

Corrective action: If the application does not require non-MQ resources to
participate in the unit of work, this reason code can be ignored or the
MQBEGIN call removed. Otherwise consult your system support
programmer to determine why the required resource managers have not
been registered with the queue manager; the queue manager’s
configuration file may be in error.

RC2122
(2122, X'84A') Participating resource manager not available.

An MQBEGIN call was issued to start a unit of work coordinated by the
queue manager, but one or more of the participating resource managers
that had been registered with the queue manager is not available. As a
result, changes to those resources cannot be coordinated by the queue
manager in the unit of work.

Return codes

386 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
OS/400, Sun Solaris, Windows NT.

Corrective action: If the application does not require non-MQ resources to
participate in the unit of work, this reason code can be ignored. Otherwise
consult your system support programmer to determine why the required
resource managers are not available. The resource manager may have been
halted temporarily, or there may be an error in the queue manager’s
configuration file.

RC2123
(2123, X'84B') Result of commit or back-out operation is mixed.

The queue manager is acting as the unit-of-work coordinator for a unit of
work that involves other resource managers, but one of the following
occurred:
v An MQCMIT or MQDISC call was issued to commit the unit of work,

but one or more of the participating resource managers backed-out the
unit of work instead of committing it. As a result, the outcome of the
unit of work is mixed.

v An MQBACK call was issued to back out a unit of work, but one or
more of the participating resource managers had already committed the
unit of work.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
Sun Solaris, Windows NT.

Corrective action: Examine the queue-manager error logs for messages
relating to the mixed outcome; these messages identify the resource
managers that are affected. Use procedures local to the affected resource
managers to resynchronize the resources.

Note: This reason code does not prevent the application initiating further
units of work.

RC2124
(2124, X'84C') Result of commit operation is pending.

The queue manager is acting as the unit-of-work coordinator for a unit of
work that involves other resource managers, and an MQCMIT or MQDISC
call was issued to commit the unit of work, but one or more of the
participating resource managers has not confirmed that the unit of work
was committed successfully.

The completion of the commit operation will happen at some point in the
future, but there remains the possibility that the outcome will be mixed.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
Sun Solaris, Windows NT.

Corrective action: Use the normal error-reporting mechanisms to determine
whether the outcome was mixed. If it was, take appropriate action to
resynchronize the resources.

Note: This reason code does not prevent the application initiating further
units of work.

RC2125
(2125, X'84D') Bridge started.

Return codes

Appendix A. Return codes 387

|

The IMS bridge has been started.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2126
(2126, X'84E') Bridge stopped.

The IMS bridge has been stopped.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2128
(2128, X'850') Unit of work already started.

An MQBEGIN call was issued to start a unit of work coordinated by the
queue manager, but a unit of work is already in existence for the
connection handle specified. This may be a global unit of work started by a
previous MQBEGIN call, or a unit of work that is local to the queue
manager or one of the cooperating resource managers. No more than one
unit of work can exist concurrently for a connection handle.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
OS/400, Sun Solaris, Windows NT.

Corrective action: Review the application logic to determine why there is a
unit of work already in existence. Move the MQBEGIN call to the
appropriate place in the application.

RC2134
(2134, X'856') Begin-options structure not valid.

On an MQBEGIN call, the begin-options structure MQBO is not valid, for
one of the following reasons:
v The BOSID mnemonic eye-catcher is not BOSIDV.
v The BOVER field is not BOVER1.
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example, if
the pointer points to read-only storage.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQBO structure. Ensure
that required input fields are set correctly.

RC2135
(2135, X'857') Distribution header structure not valid.

On an MQPUT or MQPUT1 call, the distribution header structure MQDH
in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQDH structure. Ensure
that the fields are set correctly.

Return codes

388 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|

RC2136
(2136, X'858') Multiple reason codes returned.

An MQOPEN, MQPUT or MQPUT1 call was issued to open a distribution
list or put a message to a distribution list, but the result of the call was not
the same for all of the destinations in the list. One of the following applies:
v The call succeeded for some of the destinations but not others. The

completion code is CCWARN in this case.
v The call failed for all of the destinations, but for differing reasons. The

completion code is CCFAIL in this case.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Examine the MQRR response records to identify the
destinations for which the call failed, and the reason for the failure. Ensure
that sufficient response records are provided by the application on the call
to enable the error(s) to be determined. For the MQPUT1 call, the response
records must be specified using the MQOD structure, and not the MQPMO
structure.

RC2137
(2137, X'859') Object not opened successfully.

A queue or other MQ object could not be opened successfully, for one of
the following reasons:
v An MQCONN or MQCONNX call was issued, but the queue manager

was unable to open an object that is used internally by the queue
manager. As a result, processing cannot continue. The error log will
contain the name of the object that could not be opened.

v An MQPUT call was issued to put a message to a distribution list, but
the message could not be sent to the destination to which this reason
code applies because that destination was not opened successfully by the
MQOPEN call. This reason occurs only in the RRREA field of the MQRR
response record.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action:
v If the error occurred on the MQCONN or MQCONNX call, ensure that

the required objects exist by running the following command and then
retrying the application:
STRMQM -c qmgr

where qmgr should be replaced by the name of the queue manager.
v If the error occurred on the MQPUT call, examine the MQRR response

records specified on the MQOPEN call to determine the reason that the
queue failed to open. Ensure that sufficient response records are
provided by the application on the call to enable the error(s) to be
determined.

RC2139
(2139, X'85B') Connect-options structure not valid.

On an MQCONNX call, the connect-options structure MQCNO is not
valid, for one of the following reasons:

Return codes

Appendix A. Return codes 389

v The CNSID mnemonic eye-catcher is not CNSIDV.
v The CNVER field is not CNVER1.
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example, if
the parameter pointer points to read-only storage.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCNO structure. Ensure
that required input fields are set correctly.

RC2141
(2141, X'85D') Dead letter header structure not valid.

On an MQPUT or MQPUT1 call, the dead letter header structure MQDLH
in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQDLH structure. Ensure
that the fields are set correctly.

RC2142
(2142, X'85E') MQ header structure not valid.

The MQPUT or MQPUT1 call was used to put a message containing an
MQ header structure, but the header structure is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQ header structure.
Ensure that the fields are set correctly.

RC2143
(2143, X'85F') Source length parameter not valid.

On the MQXCNVC call, the SRCLEN parameter specifies a length that is less
than zero or not consistent with the string’s character set or content (for
example, the character set is a double-byte character set, but the length is
not a multiple of two). This reason also occurs if the SRCLEN parameter
pointer is not valid. (It is not always possible to detect parameter pointers
that are not valid; if not detected, unpredictable results occur.)

This reason code can also occur on the MQGET call when the GMCONV
option is specified. In this case it indicates that the RC2143 reason was
returned by an MQXCNVC call issued by the data conversion exit.

Corrective action: Specify a length that is zero or greater.

If the reason code occurs on the MQGET call, check that the logic in the
data-conversion exit is correct.

RC2144
(2144, X'860') Target length parameter not valid.

On the MQXCNVC call, the TGTLEN parameter is not valid for one of the
following reasons:

Return codes

390 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

v TGTLEN is less than zero.
v The TGTLEN parameter pointer is not valid. (It is not always possible to

detect parameter pointers that are not valid; if not detected,
unpredictable results occur.)

v The DCCFIL option is specified, but the value of TGTLEN is such that the
target buffer cannot be filled completely with valid characters. This can
occur when TGTCSI is a pure DBCS character set (such as UCS-2), but
TGTLEN specifies a length that is an odd number of bytes.

This reason code can also occur on the MQGET call when the GMCONV
option is specified. In this case it indicates that the RC2144 reason was
returned by an MQXCNVC call issued by the data conversion exit.

Corrective action: Specify a length that is zero or greater. If the DCCFIL
option is specified, and TGTCSI is a pure DBCS character set, ensure that
TGTLEN specifies a length that is a multiple of two.

If the reason code occurs on the MQGET call, check that the logic in the
data-conversion exit is correct.

RC2145
(2145, X'861') Source buffer parameter not valid.

On the MQXCNVC call, the SRCBUF parameter pointer is not valid, or
points to storage that cannot be accessed for the entire length specified by
SRCLEN. (It is not always possible to detect parameter pointers that are not
valid; if not detected, unpredictable results occur.)

This reason code can also occur on the MQGET call when the GMCONV
option is specified. In this case it indicates that the RC2145 reason was
returned by an MQXCNVC call issued by the data conversion exit.

Corrective action: Specify a valid buffer.

If the reason code occurs on the MQGET call, check that the logic in the
data-conversion exit is correct.

RC2146
(2146, X'862') Target buffer parameter not valid.

On the MQXCNVC call, the TGTBUF parameter pointer is not valid, or
points to read-only storage, or to storage that cannot be accessed for the
entire length specified by TGTLEN. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

This reason code can also occur on the MQGET call when the GMCONV
option is specified. In this case it indicates that the RC2146 reason was
returned by an MQXCNVC call issued by the data conversion exit.

Corrective action: Specify a valid buffer.

If the reason code occurs on the MQGET call, check that the logic in the
data-conversion exit is correct.

RC2148
(2148, X'864') IMS information header structure not valid.

On an MQPUT or MQPUT1 call, the IMS information header structure
MQIIH in the message data is not valid.

Return codes

Appendix A. Return codes 391

Corrective action: Correct the definition of the MQIIH structure. Ensure
that the fields are set correctly.

RC2149
(2149, X'865') PCF structures not valid.

An MQPUT or MQPUT1 call was issued to put a message containing PCF
data, but the length of the message does not equal the sum of the lengths
of the PCF structures present in the message. This can occur for messages
with the following format names:

FMADMN
FMEVNT
FMPCF

Corrective action: Ensure that the length of the message specified on the
MQPUT or MQPUT1 call equals the sum of the lengths of the PCF
structures contained within the message data.

RC2150
(2150, X'866') DBCS string not valid.

On the MQXCNVC call, the SRCCSI parameter specifies the coded
character-set identifier of a double-byte character set (DBCS), but the
SRCBUF parameter does not contain a valid DBCS string. This may be
because the string contains characters which are not valid DBCS characters,
or because the string is a mixed SBCS/DBCS string and the
shift-out/shift-in characters are not correctly paired.

This reason code can also occur on the MQGET call when the GMCONV
option is specified. In this case it indicates that the RC2150 reason was
returned by an MQXCNVC call issued by the data conversion exit.

Corrective action: Specify a valid string.

If the reason code occurs on the MQGET call, check that the data in the
message is valid, and that the logic in the data-conversion exit is correct.

RC2152
(2152, X'868') Object name not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that
is, the ODREC field in MQOD is greater than zero), but the ODON field is
neither blank nor the null string.

Corrective action: If it is intended to open a distribution list, set the ODON
field to blanks or the null string. If it is not intended to open a distribution
list, set the ODREC field to zero.

RC2153
(2153, X'869') Object queue-manager name not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that
is, the ODREC field in MQOD is greater than zero), but the ODMN field is
neither blank nor the null string.

Corrective action: If it is intended to open a distribution list, set the ODMN
field to blanks or the null string. If it is not intended to open a distribution
list, set the ODREC field to zero.

RC2154
(2154, X'86A') Number of records present not valid.

Return codes

392 MQSeries for AS/400, V5.1 APR (ILE RPG)

An MQOPEN or MQPUT1 call was issued, but the call failed for one of the
following reasons:
v ODREC in MQOD is less than zero.
v ODOT in MQOD is not OTQ, and ODREC is not zero. ODREC must be zero if

the object being opened is not a queue.

Corrective action: If it is intended to open a distribution list, set the ODOT
field to OTQ and ODREC to the number of destinations in the list. If it is not
intended to open a distribution list, set the ODREC field to zero.

RC2155
(2155, X'86B') Object records not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that
is, the ODREC field in MQOD is greater than zero), but the MQOR object
records are not specified correctly. One of the following applies:
v ODORO is zero and ODORP is the null pointer or zero.
v ODORO is not zero and ODORP is neither the null pointer nor zero.
v ODORP is not a valid pointer.
v ODORP or ODORO points to storage that is not accessible.

Corrective action: Ensure that one of ODORO and ODORP is zero and the other
nonzero. Ensure that the field used points to accessible storage.

RC2156
(2156, X'86C') Response records not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that
is, the ODREC field in MQOD is greater than zero), but the MQRR response
records are not specified correctly. One of the following applies:
v ODRRO is not zero and ODRRP is neither the null pointer nor zero.
v ODRRP is not a valid pointer.
v ODRRP or ODRRO points to storage that is not accessible.

Corrective action: Ensure that at least one of ODRRO and ODRRP is zero.
Ensure that the field used points to accessible storage.

RC2158
(2158, X'86E') Put message record flags not valid.

An MQPUT or MQPUT1 call was issued to put a message, but the PMPRF
field in the MQPMO structure is not valid, for one of the following
reasons:
v The field contains flags which are not valid.
v The message is being put to a distribution list, and put message records

have been provided (that is, PMREC is greater than zero, and one of PMPRO
or PMPRP is nonzero), but PMPRF has the value PFNONE.

v PFACC is specified without either PMSETI or PMSETA.

Corrective action: Ensure that PMPRF is set with the appropriate PF* flags to
indicate which fields are present in the put message records. If PFACC is
specified, ensure that either PMSETI or PMSETA is also specified.
Alternatively, set both PMPRO and PMPRP to zero.

RC2159
(2159, X'86F') Put message records not valid.

Return codes

Appendix A. Return codes 393

An MQPUT or MQPUT1 call was issued to put a message to a distribution
list, but the MQPMR put message records are not specified correctly. One
of the following applies:
v PMPRO is not zero and PMPRP is neither the null pointer nor zero.
v PMPRP is not a valid pointer.
v PMPRP or PMPRO points to storage that is not accessible.

Corrective action: Ensure that at least one of PMPRO and PMPRP is zero.
Ensure that the field used points to accessible storage.

RC2161
(2161, X'871') Queue manager quiescing.

The application attempted to connect to the queue manager, but the queue
manager is in the quiescing state.
v On OS/400, the application either issued the MQCONN call, or issued

the MQOPEN call when no connection was established.

This reason code also occurs if the queue manager is in the quiescing state
and an application issues one of the following calls:
v MQOPEN, with OOFIQ included in the OPTS parameter
v MQGET, with GMFIQ included in the GMOPT field of the GMO parameter
v MQPUT or MQPUT1, with PMFIQ included in the PMOPT field of the PMO

parameter

Corrective action: The application should tidy up and stop. If the OOFIQ,
PMFIQ, and GMFIQ options are not used, the application may continue
working in order to complete and commit the current unit of work; but it
should not start another unit of work.

RC2162
(2162, X'872') Queue manager shutting down.

A call has been issued when the queue manager is shutting down. If the
call is an MQGET call with the GMWT option, the wait has been canceled.
No more message-queuing calls can be issued.

Corrective action: The application should tidy up and stop. Applications
should ensure that any uncommitted updates are backed out; any unit of
work that is coordinated by the queue manager is backed out
automatically.

RC2173
(2173, X'87D') Put-message options structure not valid.

On an MQPUT or MQPUT1 call, the MQPMO structure is not valid. Either
the PMSID mnemonic eye-catcher is not valid, or the PMVER is not
recognized.

This reason also occurs if:
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example, if
the pointer points to read-only storage.

Return codes

394 MQSeries for AS/400, V5.1 APR (ILE RPG)

Corrective action: Correct the definition of the MQPMO structure. Ensure
that required input fields are correctly set.

RC2184
(2184, X'888') Remote queue name not valid.

On an MQOPEN or MQPUT1 call, one of the following occurred:
v A local definition of a remote queue (or an alias to one) was specified,

but the RemoteQName attribute in the remote queue definition is entirely
blank. Note that this error occurs even if the XmitQName in the definition
is not blank.

v The ODMN field in the object descriptor was not blank and not the name
of the local queue manager, but the ODON field is blank.

Corrective action: Alter the local definition of the remote queue and supply
a valid remote queue name, or supply a nonblank ODON in the object
descriptor, as appropriate.

RC2185
(2185, X'889') Inconsistent persistence specification.

The MQPUT call was issued to put a message that has a value for the
MDPER field in MQMD that is different from the previous message put
using that queue handle. This is not permitted when the PMLOGO option
is specified and there is already a current message group or logical
message. All messages in a group and all segments in a logical message
must be persistent, or all must be nonpersistent.

Corrective action: Modify the application to ensure that all of the messages
in the group or logical message are put with the same value for the MDPER
field in MQMD.

RC2186
(2186, X'88A') Get-message options structure not valid.

On an MQGET call, the MQGMO structure is not valid. Either the GMSID
mnemonic eye-catcher is not valid, or the GMVER is not recognized.

This reason also occurs if:
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example, if
the pointer points to read-only storage.

Corrective action: Correct the definition of the MQGMO structure. Ensure
that required input fields are correctly set.

RC2187
(2187, X'88B') Requested function not supported by CICS bridge.

It is not permitted to use the MQI from user transactions that are run in an
MQSeries-CICS bridge environment where the bridge exit also uses the
MQI. The MQI request fails. If this occurs in the bridge exit, it will result
in a transaction abend. If it occurs in the user transaction, this may result
in a transaction abend.

Return codes

Appendix A. Return codes 395

Corrective action: The transaction cannot be run using the MQSeries-CICS
bridge. Refer to the appropriate CICS manual for information about
restrictions in the MQSeries-CICS bridge environment.

RC2188
(2188, X'88C') Call rejected by cluster workload exit.

An MQOPEN, MQPUT, or MQPUT1 call was issued to open or put a
message on a cluster queue, but the cluster workload exit rejected the call.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Check the cluster workload exit to ensure that it has
been written correctly. Determine why it rejected the call and correct the
problem.

RC2189
(2189, X'88D') Cluster name resolution failed.

An MQOPEN, MQPUT, or MQPUT1 call was issued to open or put a
message on a cluster queue, but the queue definition could not be resolved
correctly because a response was required from the repository manager but
none was available.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Check that the repository manager is operating and that
the queue and channel definitions are correct.

RC2190
(2190, X'88E') Converted string too big for field.

On an MQGET call with the GMCONV option included in the GMO
parameter, a string in a fixed-length field in the message expanded during
data conversion and exceeded the size of the field. When this happens, the
queue manager tries discarding trailing blank characters and characters
following the first null character, in order to make the string fit, but in this
case there were insufficient characters that could be discarded.

This reason code can also occur for messages with a format name of
FMIMVS. When this happens, it indicates that the IMS variable string
expanded such that its length exceeded the capacity of the 2-byte binary
length field contained within the structure of the IMS variable string. (The
queue manager never discards trailing blanks in an IMS variable string.)

The message is returned unconverted, with the CMPCOD parameter of the
MQGET call set to CCWARN. If the message consists of several parts, each
of which is described by its own character-set and encoding fields (for
example, a message with format name FMDLH), some parts may be
converted and other parts not converted. However, the values returned in
the various character-set and encoding fields always correctly describe the
relevant message data.

This reason code does not occur if the string could be made to fit by
discarding trailing blank characters.

Corrective action: Check that the fields in the message contain the correct
values, and that the character-set identifiers specified by the sender and
receiver of the message are correct. If they are, the layout of the data in the
message must be modified to increase the lengths of the field(s) so that
there is sufficient space to allow the string(s) to expand when converted.

Return codes

396 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|

RC2191
(2191, X'88F') Character trigger message structure not valid.

On an MQPUT or MQPUT1 call, the character trigger message structure
MQTMC in the message data is not valid.

Corrective action: Correct the definition of the MQTMC structure. Ensure
that the fields are set correctly.

RC2194
(2194, X'892') Object name not valid for object type.

An MQOPEN call was issued to open the queue manager definition, but
the ODON field in the OBJDSC parameter is not blank.

Corrective action: Ensure that the ODON field is set to blanks.

RC2195
(2195, X'893') Unexpected error occurred.

The call was rejected because an unexpected error occurred.

Corrective action: Check the application’s parameter list to ensure, for
example, that the correct number of parameters was passed, and that data
pointers and storage keys are valid. If the problem cannot be resolved,
contact your system programmer.

Consult the FFST record to obtain more detail about the problem.

RC2196
(2196, X'894') Unknown transmission queue.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote
queue manager. The ODON or the ODMN in the object descriptor specifies the
name of a local definition of a remote queue (in the latter case
queue-manager aliasing is being used), but the XmitQName attribute of the
definition is not blank and not the name of a locally-defined queue.

Corrective action: Check the values specified for ODON and ODMN. If these are
correct, check the queue definitions. For more information on transmission
queues, see the MQSeries Application Programming Guide

RC2197
(2197, X'895') Unknown default transmission queue.

An MQOPEN or MQPUT1 call was issued specifying a remote queue as
the destination. If a local definition of the remote queue was specified, or if
a queue-manager alias is being resolved, the XmitQName attribute in the
local definition is blank.

Because there is no queue defined with the same name as the destination
queue manager, the queue manager has attempted to use the default
transmission queue. However, the name defined by the DefXmitQName
queue-manager attribute is not the name of a locally-defined queue.

Corrective action: Correct the queue definitions, or the queue-manager
attribute. See the MQSeries Application Programming Guide for more
information.

RC2198
(2198, X'896') Default transmission queue not local.

An MQOPEN or MQPUT1 call was issued specifying a remote queue as
the destination. Either a local definition of the remote queue was specified,

Return codes

Appendix A. Return codes 397

or a queue-manager alias was being resolved, but in either case the
XmitQName attribute in the local definition is blank.

Because there is no transmission queue defined with the same name as the
destination queue manager, the local queue manager has attempted to use
the default transmission queue. However, although there is a queue
defined by the DefXmitQName queue-manager attribute, it is not a local
queue.

Corrective action: Do one of the following:
v Specify a local transmission queue as the value of the XmitQName

attribute in the local definition of the remote queue.
v Define a local transmission queue with a name which is the same as that

of the remote queue manager.
v Specify a local transmission queue as the value of the DefXmitQName

queue-manager attribute.

See the MQSeries Application Programming Guide for more information.

RC2199
(2199, X'897') Default transmission queue usage error.

An MQOPEN or MQPUT1 call was issued specifying a remote queue as
the destination. Either a local definition of the remote queue was specified,
or a queue-manager alias was being resolved, but in either case the
XmitQName attribute in the local definition is blank.

Because there is no transmission queue defined with the same name as the
destination queue manager, the local queue manager has attempted to use
the default transmission queue. However, the queue defined by the
DefXmitQName queue-manager attribute does not have a Usage attribute of
USTRAN.

Corrective action: Do one of the following:
v Specify a local transmission queue as the value of the XmitQName

attribute in the local definition of the remote queue.
v Define a local transmission queue with a name which is the same as that

of the remote queue manager.
v Specify a different local transmission queue as the value of the

DefXmitQName queue-manager attribute.
v Change the Usage attribute of the DefXmitQName queue to USTRAN.

See the MQSeries Application Programming Guide for more information.

RC2206
(2206, X'89E') Message-identifier error.

On an MQGET call, the MDMID field is not zero. Selective retrieval by
message identifier is not supported.

Corrective action: Ensure that the MDMID field is zero.

RC2207
(2207, X'89F') Correlation-identifier error.

On an MQGET call, the MDCID field is not zero. Selective retrieval by
correlation identifier is not supported.

Corrective action: Ensure that the MDCID field is zero.

Return codes

398 MQSeries for AS/400, V5.1 APR (ILE RPG)

RC2208
(2208, X'8A0') File-system error.

An unexpected return was received from the file system, in attempting to
perform an operation on a queue.

This reason code occurs only on VSE/ESA.

Corrective action: Check the file system definition for the queue that was
being accessed. For a VSAM file, check that the control interval is large
enough for the maximum message length allowed for the queue.

RC2209
(2209, X'8A1') No message locked.

An MQGET call was issued with the GMUNLK option, but no message
was currently locked.

Corrective action: Check that a message was locked by an earlier MQGET
call with the GMLK option for the same handle, and that no intervening
call has caused the message to become unlocked.

RC2218
(2218, X'8AA') Message length greater than maximum for channel.

A message was put to a remote queue, but the message is larger than the
maximum message length allowed by the channel. This reason code is
returned in the MDFB field in the message descriptor of a report message.

Corrective action: Check the channel definitions. Increase the maximum
message length that the channel can accept, or break the message into
several smaller messages.

RC2219
(2219, X'8AB') MQI call reentered before previous call complete.

The application issued an MQI call whilst another MQI call was already
being processed for that connection. Only one call per application
connection can be processed at a time.

Concurrent calls can arise only in certain specialized situations, such as in
an exit invoked as part of the processing of an MQI call. For example, the
data-conversion exit may be invoked as part of the processing of the
MQGET call.

Corrective action: Ensure that an MQI call cannot be issued while another
one is active. Do not issue MQI calls from within a data-conversion exit.

RC2220
(2220, X'8AC') Reference message header structure not valid.

On an MQPUT or MQPUT1 call, the reference message header structure
MQRMH in the message data is not valid.

Corrective action: Correct the definition of the MQRMH structure. Ensure
that the fields are set correctly.

RC2222
(2222, X'8AE') Queue manager created.

This condition is detected when a queue manager becomes active.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

Return codes

Appendix A. Return codes 399

RC2223
(2223, X'8AE') Queue manager unavailable.

This condition is detected when a queue manager is requested to stop or
quiesce.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2224
(2224, X'8B0') Queue depth high limit reached or exceeded.

An MQPUT or MQPUT1 call has caused the queue depth to be
incremented to or above the limit specified in the QDepthHighLimit
attribute.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2225
(2225, X'8B1') Queue depth low limit reached or exceeded.

An MQGET call has caused the queue depth to be decremented to or
below the limit specified in the QDepthLowLimit attribute.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2226
(2226, X'8B2') Queue service interval high.

No successful gets or puts have been detected within an interval which is
greater than the limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2227
(2227, X'8B3') Queue service interval ok.

A successful get has been detected within an interval which is less than or
equal to the limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2232
(2232, X'8B8') Unit of work not started.

An MQGET, MQPUT or MQPUT1 call was issued to get or put a message
within a unit of work, but no TM/MP transaction had been started. If
GMNSYP is not specified on MQGET, or PMNSYP is not specified on
MQPUT or MQPUT1 (the default), the call requires a unit of work.

Corrective action: Ensure a TM/MP transaction is available, or issue the
MQGET call with the GMNSYP option, or the MQPUT or MQPUT1 call
with the PMNSYP option, which will cause a transaction to be started
automatically.

RC2233
(2233, X'8B9') Automatic channel definition succeeded.

This condition is detected when the automatic definition of a channel is
successful. The channel is defined by the MCA.

Return codes

400 MQSeries for AS/400, V5.1 APR (ILE RPG)

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2234
(2234, X'8BA') Automatic channel definition failed.

This condition is detected when the automatic definition of a channel fails;
this may be because an error occurred during the definition process, or
because the channel automatic-definition exit inhibited the definition.
Additional information is returned in the event message indicating the
reason for the failure.

Corrective action: Examine the additional information returned in the event
message to determine the reason for the failure.

RC2235
(2235, X'8BB') PCF header structure not valid.

On an MQPUT or MQPUT1 call, the PCF header structure MQCFH in the
message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFH structure. Ensure
that the fields are set correctly.

RC2236
(2236, X'8BC') PCF integer list parameter structure not valid.

On an MQPUT or MQPUT1 call, the PCF integer list parameter structure
MQCFIL in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFIL structure. Ensure
that the fields are set correctly.

RC2237
(2237, X'8BD') PCF integer parameter structure not valid.

On an MQPUT or MQPUT1 call, the PCF integer parameter structure
MQCFIN in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFIN structure. Ensure
that the fields are set correctly.

RC2238
(2238, X'8BE') PCF string list parameter structure not valid.

On an MQPUT or MQPUT1 call, the PCF string list parameter structure
MQCFSL in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFSL structure. Ensure
that the fields are set correctly.

RC2239
(2239, X'8BF') PCF string parameter structure not valid.

Return codes

Appendix A. Return codes 401

On an MQPUT or MQPUT1 call, the PCF string parameter structure
MQCFST in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFST structure. Ensure
that the fields are set correctly.

RC2241
(2241, X'8C1') Message group not complete.

An operation was attempted on a queue using a queue handle that had an
incomplete message group. This reason code can arise in the following
situations:
v On the MQPUT call, when the application attempts to put a message

which is not in a group and specifies PMLOGO. The call fails in this
case.

v On the MQPUT call, when the application attempts to put a message
which is not the next one in the group, does not specify PMLOGO, but
the previous MQPUT call for the queue handle did specify PMLOGO.
The call succeeds with completion code CCWARN in this case.

v On the MQGET call, when the application attempts to get a message
which is not the next one in the group, does not specify GMLOGO, but
the previous MQGET call for the queue handle did specify GMLOGO.
The call succeeds with completion code CCWARN in this case.

v On the MQCLOSE call, when the application attempts to close the queue
that has the incomplete message group. The call succeeds with
completion code CCWARN.

If there is an incomplete logical message as well as an incomplete message
group, reason code RC2242 is returned in preference to RC2241.

Corrective action: If this reason code is expected, no corrective action is
required. Otherwise, ensure that the MQPUT call for the last message in
the group specifies MFLMIG.

RC2242
(2242, X'8C2') Logical message not complete.

An operation was attempted on a queue using a queue handle that had an
incomplete logical message. This reason code can arise in the following
situations:
v On the MQPUT call, when the application attempts to put a message

which is not a segment and specifies PMLOGO. The call fails in this
case.

v On the MQPUT call, when the application attempts to put a message
which is not the next segment, does not specify PMLOGO, but the
previous MQPUT call for the queue handle did specify PMLOGO. The
call succeeds with completion code CCWARN in this case.

v On the MQGET call, when the application attempts to get a message
which is not the next segment, does not specify GMLOGO, but the
previous MQGET call for the queue handle did specify GMLOGO. The
call succeeds with completion code CCWARN in this case.

v On the MQCLOSE call, when the application attempts to close the queue
that has the incomplete logical message. The call succeeds with
completion code CCWARN.

Return codes

402 MQSeries for AS/400, V5.1 APR (ILE RPG)

Corrective action: If this reason code is expected, no corrective action is
required. Otherwise, ensure that the MQPUT call for the last segment
specifies MFLSEG.

RC2243
(2243, X'8C3') Message segments have differing CCSIDs.

An MQGET call was issued specifying the GMCMPM option, but the
message to be retrieved consists of two or more segments which have
differing values for the MDCSI field in MQMD. This can arise when the
segments take different paths through the network, and some of those
paths have MCA sender conversion enabled. The call succeeds with a
completion code of CCWARN, but only the first few segments that have
identical character-set identifiers are returned.

Corrective action: Remove the GMCMPM option from the MQGET call and
retrieve the remaining message segments one by one.

RC2244
(2244, X'8C4') Message segments have differing encodings.

An MQGET call was issued specifying the GMCMPM option, but the
message to be retrieved consists of two or more segments which have
differing values for the MDENC field in MQMD. This can arise when the
segments take different paths through the network, and some of those
paths have MCA sender conversion enabled. The call succeeds with a
completion code of CCWARN, but only the first few segments that have
identical encodings are returned.

Corrective action: Remove the GMCMPM option from the MQGET call and
retrieve the remaining message segments one by one.

RC2245
(2245, X'8C5') Inconsistent unit-of-work specification.

One of the following applies:
v An MQPUT call was issued to put a message in a group or a segment of

a logical message, but the value specified or defaulted for the PMSYP
option is not consistent with the current group and segment information
retained by the queue manager for the queue handle.
If the current call specifies PMLOGO, the call fails. If the current call
does not specify PMLOGO, but the previous MQPUT call for the queue
handle did, the call succeeds with completion code CCWARN.

v An MQGET call was issued to remove from the queue a message in a
group or a segment of a logical message, but the value specified or
defaulted for the GMSYP option is not consistent with the current group
and segment information retained by the queue manager for the queue
handle.
If the current call specifies GMLOGO, the call fails. If the current call
does not specify GMLOGO, but the previous MQGET call for the queue
handle did, the call succeeds with completion code CCWARN.

Corrective action: Modify the application to ensure that the same
unit-of-work specification is used for all messages in the group, or all
segments of the logical message.

RC2246
(2246, X'8C6') Message under cursor not valid for retrieval.

Return codes

Appendix A. Return codes 403

An MQGET call was issued specifying the GMCMPM option with either
GMMUC or GMBRWC, but the message that is under the cursor has an
MQMD with an MDOFF field that is greater than zero. Because GMCMPM
was specified, the message is not valid for retrieval.

Corrective action: Reposition the browse cursor so that it is located on a
message whose MDOFF field in MQMD is zero. Alternatively, remove the
GMCMPM option.

RC2247
(2247, X'8C7') Match options not valid.

An MQGET call was issued, but the value of the GMMO field in the GMO
parameter is not valid. Either an undefined option is specified, or a defined
option which is not valid in the current circumstances is specified. In the
latter case, it means that all of the following are true:
v GMLOGO is specified.
v There is a current message group or logical message for the queue

handle.
v Neither of the following options is specified:

GMBRWC
GMMUC

v One or more of the MO* options is specified.
v The values of the fields in the MSGDSC parameter corresponding to the

MO* options specified, differ from the values of those fields in the
MQMD for the message to be returned next.

Corrective action: Ensure that only valid options are specified for the field.

RC2248
(2248, X'8C8') Message descriptor extension not valid.

The MQMDE structure at the start of the application message data is not
valid, for one of the following reasons:
v The MESID mnemonic eye-catcher is not MESIDV.
v The MEVER field is less than MEVER2.
v The MELEN field is less than MELEN2, or (for MEVER equal to MEVER2

only) greater than MELEN2.

Corrective action: Correct the definition of the message descriptor
extension. Ensure that required input fields are correctly set.

RC2249
(2249, X'8C9') Message flags not valid.

An MQPUT or MQPUT1 call was issued, but the MDMFL field in the
message descriptor MQMD contains one or more message flags which are
not recognized by the local queue manager. The message flags that cause
this reason code to be returned depend on the destination of the message;
see “Appendix E. Report options” on page 457 for more details.

This reason code can also occur in the MDFB field in the MQMD of a report
message, or in the DLREA field in the MQDLH structure of a message on the
dead-letter queue; in both cases it indicates that the destination queue
manager does not support one or more of the message flags specified by
the sender of the message.

Corrective action: Do the following:

Return codes

404 MQSeries for AS/400, V5.1 APR (ILE RPG)

1. Ensure that the MDMFL field in the message descriptor is initialized with
a value when the message descriptor is declared, or is assigned a value
prior to the MQPUT or MQPUT1 call.
Specify MFNONE if no message flags are needed.

2. Ensure that the message flags specified are ones which are documented
in this book; see the MDMFL field described in “Chapter 10. MQMD -
Message descriptor” on page 83 for valid message flags. Remove any
message flags which are not documented in this book.

3. If multiple message flags are being set by adding the individual
message flags together, ensure that the same message flag is not added
twice.

RC2250
(2250, X'8CA') Message sequence number not valid.

An MQGET, MQPUT, or MQPUT1 call was issued, but the value of the
MDSEQ field in the MQMD or MQMDE structure is less than one or greater
than 999 999 999.

This error can also occur on the MQPUT call if the MDSEQ field would have
become greater than 999 999 999 as a result of the call.

Corrective action: Specify a value in the range 1 through 999 999 999. Do
not attempt to create a message group containing more than 999 999 999
messages.

RC2251
(2251, X'8CB') Message segment offset not valid.

An MQPUT or MQPUT1 call was issued, but the value of the MDOFF field
in the MQMD or MQMDE structure is less than zero or greater than
999 999 999.

This error can also occur on the MQPUT call if the MDOFF field would have
become greater than 999 999 999 as a result of the call.

Corrective action: Specify a value in the range 0 through 999 999 999. Do
not attempt to create a message segment which would extend beyond an
offset of 999 999 999.

RC2252
(2252, X'8CC') Original length not valid.

An MQPUT or MQPUT1 call was issued to put a report message which is
reporting on a segment, but the MDOLN field in the MQMD or MQMDE
structure is either:
v Less than one (for a segment which is not the last segment), or
v Less than zero (for a segment which is the last segment)

Corrective action: Specify a value which is greater than zero. Zero is valid
only for the last segment.

RC2253
(2253, X'8CD') Length of data in message segment is zero.

An MQPUT or MQPUT1 call was issued to put the first or intermediate
segment of a logical message, but the length of the application message
data in the segment (excluding any MQ headers that may be present) is
zero. The length must be at least one for the first or intermediate segment.

Return codes

Appendix A. Return codes 405

Corrective action: Check the application logic to ensure that segments are
put with a length of one or greater. Only the last segment of a logical
message is permitted to have a zero length.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

An MQGET, MQPUT, or MQPUT1 call was issued to get or put a message
outside a unit of work, but the options specified on the call required the
queue manager to process the call within a unit of work. Because there is
already a user-defined unit of work in existence, the queue manager was
unable to create a temporary unit of work for the duration of the call.

This reason occurs in the following circumstances:
v On an MQGET call, when the GMCMPM option is specified in MQGMO

and the logical message to be retrieved is persistent and consists of two
or more segments.

v On an MQPUT or MQPUT1 call, when the MFSEGA flag is specified in
MQMD and the message requires segmentation.

Corrective action: Issue the MQGET, MQPUT, or MQPUT1 call inside the
user-defined unit of work. Alternatively, for the MQPUT or MQPUT1 call,
reduce the size of the message so that it does not require segmentation by
the queue manager.

RC2256
(2256, X'8D0') Wrong version of MQGMO supplied.

An MQGET call was issued specifying options that required an MQGMO
with a version number not less than GMVER2, but the MQGMO supplied
did not satisfy this condition.

Corrective action: Modify the application to pass a version-2 MQGMO.
Check the application logic to ensure that the GMVER field in MQGMO has
been set to GMVER2. Alternatively, remove the option that requires the
version-2 MQGMO.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

An MQGET, MQPUT, or MQPUT1 call was issued specifying options that
required an MQMD with a version number not less than MDVER2, but the
MQMD supplied did not satisfy this condition.

Corrective action: Modify the application to pass a version-2 MQMD.
Check the application logic to ensure that the MDVER field in MQMD has
been set to MDVER2. Alternatively, remove the option that requires the
version-2 MQMD.

RC2258
(2258, X'8D2') Group identifier not valid.

An MQPUT or MQPUT1 call was issued to put a distribution-list message
that is also a message in a group, a message segment, or has segmentation
allowed, but an invalid combination of options and values was specified.
All of the following are true:
v PMLOGO is not specified in the PMOPT field in MQPMO.
v Either there are too few MQPMR records provided by MQPMO, or the

PRGID field is not present in the MQPMR records.

Return codes

406 MQSeries for AS/400, V5.1 APR (ILE RPG)

v One or more of the following flags is specified in the MDMFL field in
MQMD or MQMDE:

MFSEGA
MF*MIG
MF*SEG

v The MDGID field in MQMD or MQMDE is not GINONE.

This combination of options and values would result in the same group
identifier being used for all of the destinations in the distribution list; this
is not permitted by the queue manager.

Corrective action: Specify GINONE for the MDGID field in MQMD or
MQMDE. Alternatively, if the call is MQPUT specify PMLOGO in the
PMOPT field in MQPMO.

RC2259
(2259, X'8D3') Inconsistent browse specification.

An MQGET call was issued with the GMBRWN option specified, but the
specification of the GMLOGO option for the call is different from the
specification of that option for the previous call for the queue handle.
Either both calls must specify GMLOGO, or neither call must specify
GMLOGO.

Corrective action: Add or remove the GMLOGO option as appropriate.
Alternatively, to switch between logical order and physical order, specify
the GMBRWF option to restart the scan from the beginning of the queue,
and either omit or specify GMLOGO as desired.

RC2260
(2260, X'8D4') Transmission queue header structure not valid.

On an MQPUT or MQPUT1 call, the transmission queue header structure
MQXQH in the message data is not valid.

Corrective action: Correct the definition of the MQXQH structure. Ensure
that the fields are set correctly.

RC2261
(2261, X'8D5') Source environment data error.

This reason occurs when a channel exit that processes reference messages
detects an error in the source environment data of a reference message
header (MQRMH). One of the following is true:
v RMSEL is less than zero.
v RMSEL is greater than zero, but there is no source environment data.
v RMSEL is greater than zero, but RMSEO is negative, zero, or less than the

length of the fixed part of MQRMH.
v RMSEL is greater than zero, but RMSEO plus RMSEL is greater than RMLEN.

The exit returns this reason in the CXFB field of the MQCXP structure. If an
exception report is requested, it is copied to the CXFB field of the MQMD
associated with the report.

Corrective action: Specify the source environment data correctly.

RC2262
(2262, X'8D6') Source name data error.

Return codes

Appendix A. Return codes 407

|
|

|

This reason occurs when a channel exit that processes reference messages
detects an error in the source name data of a reference message header
(MQRMH). One of the following is true:
v RMSNL is less than zero.
v RMSNL is greater than zero, but there is no source name data.
v RMSNL is greater than zero, but RMSNO is negative, zero, or less than the

length of the fixed part of MQRMH.
v RMSNL is greater than zero, but RMSNO plus RMSNL is greater than RMLEN.

The exit returns this reason in the CXFB field of the MQCXP structure. If an
exception report is requested, it is copied to the CXFB field of the MQMD
associated with the report.

Corrective action: Specify the source name data correctly.

RC2263
(2263, X'8D7') Destination environment data error.

This reason occurs when a channel exit that processes reference messages
detects an error in the destination environment data of a reference message
header (MQRMH). One of the following is true:
v RMDEL is less than zero.
v RMDEL is greater than zero, but there is no destination environment data.
v RMDEL is greater than zero, but RMDEO is negative, zero, or less than the

length of the fixed part of MQRMH.
v RMDEL is greater than zero, but RMDEO plus RMDEL is greater than RMLEN.

The exit returns this reason in the CXFB field of the MQCXP structure. If an
exception report is requested, it is copied to the CXFB field of the MQMD
associated with the report.

Corrective action: Specify the destination environment data correctly.

RC2264
(2264, X'8D8') Destination name data error.

This reason occurs when a channel exit that processes reference messages
detects an error in the destination name data of a reference message header
(MQRMH). One of the following is true:
v RMDNL is less than zero.
v RMDNL is greater than zero, but there is no destination name data.
v RMDNL is greater than zero, but RMDNO is negative, zero, or less than the

length of the fixed part of MQRMH.
v RMDNL is greater than zero, but RMDNO plus RMDNL is greater than RMLEN.

The exit returns this reason in the CXFB field of the MQCXP structure. If an
exception report is requested, it is copied to the CXFB field of the MQMD
associated with the report.

Corrective action: Specify the destination name data correctly.

RC2265
(2265, X'8D9') Trigger message structure not valid.

On an MQPUT or MQPUT1 call, the trigger message structure MQTM in
the message data is not valid.

Return codes

408 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

|

|
|

|

|
|

|

Corrective action: Correct the definition of the MQTM structure. Ensure
that the fields are set correctly.

RC2266
(2266, X'8DA') Cluster workload exit failed.

An MQOPEN, MQPUT, or MQPUT1 call was issued to open or put a
message on a cluster queue, but the cluster workload exit defined by the
queue-manager’s ClusterWorkloadExit attribute failed unexpectedly or did
not respond in time. Subsequent MQOPEN, MQPUT, and MQPUT1 calls
for this queue handle are processed as though the ClusterWorkloadExit
attribute were blank.
v On OS/390, a message giving more information about the error is

written to the system log, for example message CSQV455E or
CSQV456E.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Check the cluster workload exit to ensure that it has
been written correctly.

RC2267
(2267, X'8DB') Unable to load cluster workload exit.

An MQCONN call was issued to connect to a queue manager, but the call
failed because the cluster workload exit defined by the queue-manager’s
ClusterWorkloadExit attribute could not be loaded.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Ensure that the cluster workload exit has been installed
in the correct location.

RC2268
(2268, X'8DC') Put calls inhibited for all queues in cluster.

An MQOPEN call with the OOOUT and OOBNDO options in effect was
issued for a cluster queue, but all of the instances of the queue in the
cluster are currently put-inhibited, that is, all of the queue instances have
the InhibitPut attribute set to QAPUTI. Because there are no queue
instances available to receive messages, the MQOPEN call fails.

Note: This reason code occurs only when both of the following are also
true:
v There is no local instance of the queue. (If there is a local instance,

the MQOPEN call succeeds, even if the local instance is
put-inhibited.)

v There is no cluster workload exit for the queue, or there is a
cluster workload exit but it did not choose a queue instance. (If
the cluster workload exit does choose a queue instance, the
MQOPEN call succeeds, even if that instance is put-inhibited.)

If the OOBNDN option is specified on the MQOPEN call, the call can
succeed even if all of the queues in the cluster are put-inhibited. However,
a subsequent MQPUT call may fail if all of the queues are still
put-inhibited at the time of the MQPUT call.

Return codes

Appendix A. Return codes 409

|

|
|
|

|

|

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: If the system design allows put requests to be inhibited
for short periods, retry the operation later. If the problem persists,
determine why all of the queues in the cluster are put-inhibited.

RC2269
(2269, X'8DD') Cluster resource error.

An MQOPEN, MQPUT, or MQPUT1 call was issued for a cluster queue,
but an error occurred whilst trying to use a resource required for
clustering.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Do the following:
v Check that the SYSTEM.CLUSTER.* queues are not put inhibited or full.
v Check the event queues for any events relating to the

SYSTEM.CLUSTER.* queues, as these may give guidance as to the
nature of the failure.

v Check that the repository queue manager is available.

RC2270
(2270, X'8DE') No destination queues available.

An MQPUT or MQPUT1 call was issued to put a message on a cluster
queue, but at the time of the call there were no longer any instances of the
queue in the cluster. The message therefore could not be sent.

This situation can occur when OOBNDN is specified on the MQOPEN call
that opens the queue, or MQPUT1 is used to put the message.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/390, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Check the queue definition and queue status to
determine why all instances of the queue were removed from the cluster.
Correct the problem and rerun the application.

RC2273
(2273, X'8E1') Error processing MQCONN call.

An MQCONN call failed for one of the following reasons:
v The system parameter module is not at the same release level as the

queue manager.
v An internal error was detected by the queue manager.

This reason code occurs only on OS/390.

Corrective action: Relinkedit the system parameter module (CSQZPARM)
to ensure that it is at the correct level. If the problem persists, contact your
IBM support center.

RC2277
(2277, X'8E5') Channel definition not valid.

An MQCONNX call was issued to connect to a queue manager, but the
MQCD channel definition structure addressed by the CNCCO or CNCCP field

Return codes

410 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|

|

in MQCNO contains data that is not valid. Consult the MQSeries error log
for more information about the nature of the error.

Corrective action: Ensure that required input fields in the MQCD structure
are set correctly.

RC2278
(2278, X'8E6') Client connection fields not valid.

An MQCONNX call was issued to connect to a queue manager, but the
MQCD channel definition structure is not specified correctly. One of the
following applies:
v CNCCO is not zero and CNCCP is neither the null pointer nor zero.
v CNCCP is not a valid pointer.
v CNCCP or CNCCO points to storage that is not accessible.

Corrective action: Ensure that at least one of CNCCO and CNCCP is zero.
Ensure that the field used points to accessible storage.

RC2279
(2279, X'8E7') Channel stopped by user.

This condition is detected when the channel has been stopped by an
operator. The reason qualifier identifies the reasons for stopping.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2282
(2282, X'8EA') Channel started.

One of the following has occurred:
v An operator has issued a Start Channel command.
v An instance of a channel has been successfully established.

This condition is detected when Initial Data negotiation is complete and
resynchronization has been performed where necessary such that
message transfer can proceed.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2283
(2283, X'8EB') Channel stopped.

This condition is detected when the channel has been stopped. The reason
qualifier identifies the reasons for stopping.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2284
(2284, X'8EC') Channel conversion error.

This condition is detected when a channel is unable to do data conversion
and the MQGET call to get a message from the transmission queue
resulted in a data conversion error. The conversion reason code identifies
the reason for the failure.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

Return codes

Appendix A. Return codes 411

RC2295
(2295, X'8F7') Channel activated.

This condition is detected when a channel which has been waiting to
become active, and for which a Channel Not Activated event has been
generated, is now able to become active because an active slot has been
released by another channel.

This event is not generated for a channel which is able to become active
without waiting for an active slot to be released.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2296
(2296, X'8F8') Channel cannot be activated.

This condition is detected when a channel is required to become active,
either because it is starting or because it is about to make another attempt
to establish connection with its partner. However, it is unable to do so
because the limit on the number of active channels has been reached. The
channel waits until it is able to take over an active slot released when
another channel ceases to be active. At that time a Channel Activated event
is generated.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

RC2299
(2299, X'8FB') Selector has wrong data type.

The Selector parameter has the wrong data type; it must be of type Long.

Corrective action: Declare the Selector parameter as Long.

RC2300
(2300, X'8FC') Command type not valid.

The mqExecute call was issued, but the value of the MQIASY_TYPE data
item in the administration bag is not MQCFT_COMMAND.

Corrective action: Ensure that the MQIASY_TYPE data item in the
administration bag has the value MQCFT_COMMAND.

RC2301
(2301, X'8FD') Multiple instances of system data item not valid.

The Selector parameter specifies a system selector (one of the MQIASY_*
values), but the value of the ItemIndex parameter is not MQIND_NONE.
Only one instance of each system selector can exist in the bag.

Corrective action: Specify MQIND_NONE for the ItemIndex parameter.

RC2302
(2302, X'8FE') System data item is read-only and cannot be altered.

A call was issued to modify the value of a system data item in a bag (a
data item with one of the MQIASY_* selectors), but the call failed because
the data item is one that cannot be altered by the application.

Corrective action: Specify the selector of a user-defined data item, or
remove the call.

RC2303
(2303, X'8FF') Data could not be converted into a bag.

Return codes

412 MQSeries for AS/400, V5.1 APR (ILE RPG)

The mqBufferToBag or mqGetBag call was issued, but the data in the
buffer or message could not be converted into a bag. This occurs when the
data to be converted is not valid PCF.

Corrective action: Check the logic of the application that created the buffer
or message to ensure that the buffer or message contains valid PCF.

If the message contains PCF that is not valid, the message cannot be
retrieved using the mqGetBag call:
v If one of the GMBRW* options was specified, the message remains on

the queue and can be retrieved using the MQGET call.
v In other cases, the message has already been removed from the queue

and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

RC2304
(2304, X'900') Selector not within valid range for call.

The Selector parameter has a value that is outside the valid range for the
call. If the bag was created with the MQCBO_CHECK_SELECTORS option:
v For the mqAddInteger call, the value must be within the range

MQIA_FIRST through MQIA_LAST.
v For the mqAddString call, the value must be within the range

MQCA_FIRST through MQCA_LAST.

If the bag was not created with the MQCBO_CHECK_SELECTORS option:
v The value must be zero or greater.

Corrective action: Specify a valid value.

RC2305
(2305, X'901') Selector occurs more than once in bag.

The ItemIndex parameter has the value MQIND_NONE, but the bag
contains more than one data item with the selector value specified by the
Selector parameter. MQIND_NONE requires that the bag contain only one
occurrence of the specified selector.

This reason code also occurs on the mqExecute call when the
administration bag contains two or more occurrences of a selector for a
required parameter that permits only one occurrence.

Corrective action: Check the logic of the application that created the bag. If
correct, specify for ItemIndex a value that is zero or greater, and add
application logic to process all of the occurrences of the selector in the bag.

Review the description of the administration command being issued, and
ensure that all required parameters are defined correctly in the bag.

RC2306
(2306, X'902') Index not present.

The specified index is not present:
v For a bag, this means that the bag contains one or more data items that

have the selector value specified by the Selector parameter, but none of
them has the index value specified by the ItemIndex parameter. The data
item identified by the Selector and ItemIndex parameters must exist in
the bag.

Return codes

Appendix A. Return codes 413

v For a namelist, this means that the index parameter value is too large,
and outside the range of valid values.

Corrective action: Specify the index of a data item that does exist in the
bag or namelist. Use the mqCountItems call to determine the number of
data items with the specified selector that exist in the bag, or the
nameCount method to determine the number of names in the namelist.

RC2307
(2307, X'903') String parameter not valid.

The String parameter is not valid. Either the parameter pointer is not
valid, or it points to read-only storage. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Corrective action: Correct the parameter.

RC2308
(2308, X'904') Encoding not supported.

The MDENC field in the message descriptor MQMD contains a value that is
not supported:
v For the mqPutBag call, the field in error resides in the MsgDesc

parameter of the call.
v For the mqGetBag call, the field in error resides in:

– The MsgDesc parameter of the call if the GMCONV option was
specified.

– The message descriptor of the message about to be retrieved if
GMCONV was not specified.

Corrective action: The value must be ENNAT.

If the value of the MDENC field in the message is not valid, the message
cannot be retrieved using the mqGetBag call:
v If one of the GMBRW* options was specified, the message remains on

the queue and can be retrieved using the MQGET call.
v In other cases, the message has already been removed from the queue

and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

RC2309
(2309, X'905') Selector not present in bag.

The Selector parameter specifies a selector that does not exist in the bag.

Corrective action: Specify a selector that does exist in the bag.

RC2310
(2310, X'906') OutSelector parameter not valid.

The OutSelector parameter is not valid. Either the parameter pointer is not
valid, or it points to read-only storage. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Corrective action: Correct the parameter.

RC2311
(2311, X'907') String truncated (too long for output buffer).

Return codes

414 MQSeries for AS/400, V5.1 APR (ILE RPG)

The string returned by the call is too long to fit in the buffer provided. The
string has been truncated to fit in the buffer.

Corrective action: If the entire string is required, provide a larger buffer.
On the mqInquireString call, the StringLength parameter is set by the call
to indicate the size of the buffer required to accommodate the string
without truncation.

RC2312
(2312, X'908') Selector implies a data type not valid for call.

A data item with the specified selector exists in the bag, but has a data
type that conflicts with the data type implied by the call being used. For
example, the data item might have an integer data type, but the call being
used might be mqSetString, which implies a character data type.

This reason code also occurs on the mqBagToBuffer, mqExecute, and
mqPutBag calls when mqAddString or mqSetString was used to add the
MQIACF_INQUIRY data item to the bag.

Corrective action: For the mqSetInteger and mqSetString calls, specify
MQIND_ALL for the ItemIndex parameter to delete from the bag all
existing occurrences of the specified selector before creating the new
occurrence with the required data type.

For the mqInquireBag, mqInquireInteger, and mqInquireString calls, use
the mqInquireItemInfo call to determine the data type of the item with the
specified selector, and then use the appropriate call to determine the value
of the data item.

For the mqBagToBuffer, mqExecute, and mqPutBag calls, ensure that the
MQIACF_INQUIRY data item is added to the bag using the mqAddInteger
or mqSetInteger calls.

RC2313
(2313, X'909') Data type of item differs from previous occurrence of selector.

The mqAddInteger or mqAddString call was issued to add another
occurrence of the specified selector to the bag, but the data type of this
occurrence differed from the data type of the first occurrence.

This reason can also occur on the mqBufferToBag and mqGetBag calls,
where it indicates that the PCF in the buffer or message contains a selector
that occurs more than once but with inconsistent data types.

Corrective action: For the mqAddInteger and mqAddString calls, use the
call appropriate to the data type of the first occurrence of that selector in
the bag.

For the mqBufferToBag and mqGetBag calls, check the logic of the
application that created the buffer or sent the message to ensure that
multiple-occurrence selectors occur with only one data type. A message
that contains a mixture of data types for a selector cannot be retrieved
using the mqGetBag call:
v If one of the GMBRW* options was specified, the message remains on

the queue and can be retrieved using the MQGET call.
v In other cases, the message has already been removed from the queue

and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

Return codes

Appendix A. Return codes 415

RC2314
(2314, X'90A') Index not valid.

An index parameter to a call or method has a value that is not valid. The
value must be zero or greater. For bag calls, certain MQIND_* values can
also be specified:
v For the mqDeleteItem, mqSetInteger and mqSetString calls,

MQIND_ALL and MQIND_NONE are valid.
v For the mqInquireBag, mqInquireInteger, mqInquireString, and

mqInquireItemInfo calls, MQIND_NONE is valid.

Corrective action: Specify a valid value.

RC2315
(2315, X'90B') System bag is read-only and cannot be altered.

A call was issued to add a data item to a bag, modify the value of an
existing data item in a bag, or retrieve a message into a bag, but the call
failed because the bag is one that had been created by the system as a
result of a previous mqExecute call. System bags cannot be modified by
the application.

Corrective action: Specify the handle of a bag created by the application, or
remove the call.

RC2316
(2316, X'90C') ItemCount parameter not valid.

The mqTruncateBag call was issued, but the ItemCount parameter specifies
a value that is not valid. The value is either less than zero, or greater than
the number of user-defined data items in the bag.

This reason also occurs on the mqCountItems call if the parameter pointer
is not valid, or points to read-only storage. (It is not always possible to
detect parameter pointers that are not valid; if not detected, unpredictable
results occur.)

Corrective action: Specify a valid value. Use the mqCountItems call to
determine the number of user-defined data items in the bag.

RC2317
(2317, X'90D') Format not supported.

The MDFMT field in the message descriptor MQMD contains a value that is
not supported:
v For the mqPutBag call, the field in error resides in the MsgDesc

parameter of the call.
v For the mqGetBag call, the field in error resides in the message

descriptor of the message about to be retrieved.

Corrective action: The value must be one of the following:
FMADMN
FMEVNT
FMPCF

If the value of the MDFMT field in the message is none of these values, the
message cannot be retrieved using the mqGetBag call:
v If one of the GMBRW* options was specified, the message remains on

the queue and can be retrieved using the MQGET call.

Return codes

416 MQSeries for AS/400, V5.1 APR (ILE RPG)

v In other cases, the message has already been removed from the queue
and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

RC2318
(2318, X'90E') System selector not supported.

The Selector parameter specifies a value that is a system selector (a value
that is negative), but the system selector is not one that is supported by the
call.

Corrective action: Specify a selector value that is supported.

RC2319
(2319, X'90F') ItemValue parameter not valid.

The mqInquireBag or mqInquireInteger call was issued, but the ItemValue
parameter is not valid. Either the parameter pointer is not valid, or it
points to read-only storage. (It is not always possible to detect parameter
pointers that are not valid; if not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

RC2320
(2320, X'910') Bag handle not valid.

A call was issued that has a parameter that is a bag handle, but the handle
is not valid. For output parameters, this reason also occurs if the parameter
pointer is not valid, or points to read-only storage. (It is not always
possible to detect parameter pointers that are not valid; if not detected,
unpredictable results occur.)

Corrective action: Correct the parameter.

RC2321
(2321, X'911') Parameter missing.

An administration message requires a parameter that is not present in the
administration bag. This reason code occurs only for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED options.

Corrective action: Review the description of the administration command
being issued, and ensure that all required parameters are present in the
bag.

RC2322
(2322, X'912') Command server not available.

The command server that processes administration commands is not
available.

Corrective action: Start the command server.

RC2323
(2323, X'913') StringLength parameter not valid.

The StringLength parameter is not valid. Either the parameter pointer is
not valid, or it points to read-only storage. (It is not always possible to
detect parameter pointers that are not valid; if not detected, unpredictable
results occur.)

Corrective action: Correct the parameter.

Return codes

Appendix A. Return codes 417

RC2324
(2324, X'914') Command code is not a recognized inquiry command.

The mqAddInquiry call was used previously to add attribute selectors to
the bag, but the command code to be used for the mqBagToBuffer,
mqExecute, or mqPutBag call is not recognized. As a result, the correct
PCF message cannot be generated.

Corrective action: Remove the mqAddInquiry calls and use instead the
mqAddInteger call with the appropriate MQIACF_*_ATTRS or
MQIACH_*_ATTRS selectors.

RC2325
(2325, X'915') Input bag contains one or more nested bags.

A bag which is input to the call contains nested bags. Nested bags are
supported only for bags which are output from the call.

Corrective action: Use a different bag as input to the call.

RC2326
(2326, X'916') Bag has wrong type for intended use.

The Bag parameter specifies the handle of a bag that has the wrong type
for the call. The bag must be an administration bag, that is, it must be
created with the MQCBO_ADMIN_BAG option specified on the
mqCreateBag call.

Corrective action: Specify the MQCBO_ADMIN_BAG option when the bag
is created.

RC2327
(2327, X'917') ItemType parameter not valid.

The mqInquireItemInfo call was issued, but the ItemType parameter is not
valid. Either the parameter pointer is not valid, or it points to read-only
storage. (It is not always possible to detect parameter pointers that are not
valid; if not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

RC2328
(2328, X'918') System bag is read-only and cannot be deleted.

An mqDeleteBag call was issued to delete a bag, but the call failed because
the bag is one that had been created by the system as a result of a previous
mqExecute call. System bags cannot be deleted by the application.

Corrective action: Specify the handle of a bag created by the application, or
remove the call.

RC2329
(2329, X'919') System data item is read-only and cannot be deleted.

A call was issued to delete a system data item from a bag (a data item
with one of the MQIASY_* selectors), but the call failed because the data
item is one that cannot be deleted by the application.

Corrective action: Specify the selector of a user-defined data item, or
remove the call.

RC2330
(2330, X'91A') Coded character set identifier parameter not valid.

Return codes

418 MQSeries for AS/400, V5.1 APR (ILE RPG)

The CodedCharSetId parameter is not valid. Either the parameter pointer is
not valid, or it points to read-only storage. (It is not always possible to
detect parameter pointers that are not valid; if not detected, unpredictable
results occur.)

Corrective action: Correct the parameter.

RC2334
(2334, X'91E') MQRFH structure not valid.

The message contains an MQRFH structure, but the structure is not valid.

Corrective action: Modify the application that generated the message to
ensure that it places a valid MQRFH structure in the message data.

RC2335
(2335, X'91F') RFNVS field not valid.

The contents of the RFNVS field in the MQRFH structure are not valid.
RFNVS must adhere to the following rules:
v The string must consist of zero or more name/value pairs separated

from each other by one or more blanks; the blanks are not significant.
v If a name or value contains blanks that are significant, the name or value

must be enclosed in double-quote characters.
v If a name or value itself contains one or more double-quote characters,

the name or value must be enclosed in double-quote characters, and
each embedded double-quote character must be doubled.

v A name or value can contain any characters other than the null, which
acts as a delimiter. The null and characters following it, up to the
defined length of RFNVS, are ignored.

The following is a valid RFNVS:
Famous_Words "The program displayed ""Hello World"""

Corrective action: Modify the application that generated the message to
ensure that it places in the RFNVS field data that adheres to the rules listed
above. Check that the RFLEN field is set to the correct value.

RC2336
(2336, X'920') Command not valid.

The message contains an MQRFH structure, but the command name
contained in the RFNVS field is not valid.

Corrective action: Modify the application that generated the message to
ensure that it places in the RFNVS field a command name that is valid.

RC2337
(2337, X'921') Parameter not valid.

The message contains an MQRFH structure, but a parameter name
contained in the RFNVS field is not valid for the command specified.

Corrective action: Modify the application that generated the message to
ensure that it places in the RFNVS field only parameters that are valid for
the specified command.

RC2338
(2338, X'922') Duplicate parameter.

The message contains an MQRFH structure, but a parameter occurs more
than once in the RFNVS field when only one occurrence is valid for the
specified command.

Return codes

Appendix A. Return codes 419

Corrective action: Modify the application that generated the message to
ensure that it places in the RFNVS field only one occurrence of the
parameter.

RC2339
(2339, X'923') Parameter missing.

The message contains an MQRFH structure, but the command specified in
the RFNVS field requires a parameter that is not present.

Corrective action: Modify the application that generated the message to
ensure that it places in the RFNVS field all parameters that are required for
the specified command.

Return codes

420 MQSeries for AS/400, V5.1 APR (ILE RPG)

Appendix B. MQSeries constants

Note
The names of the MQI constants are listed in this chapter in the form in
which they appear in the RPG COPY file. The copy file is named CMQR.

This chapter specifies the values of all of the named constants that are used in the
MQI, with the exception of those used for C++. For the C++ return codes refer to
the MQSeries Using C++ book.

The constants are grouped according to the parameter or field to which they relate.
All of the names of the constants in a group begin with a common prefix of the
form “XX” that indicates the parameter or field to which the values relate. The
constants are ordered alphabetically by this prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each “h”
denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol “b”.

5. If the value is shown as “(variable)”, it indicates that the value of the constant
depends on the environment in which the application is running.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.

LN* (Lengths of character string and byte fields)
See the CHRATR parameter described in “Chapter 31. MQINQ - Inquire about object
attributes” on page 241 and “Chapter 35. MQSET - Set object attributes” on
page 283.

LNABNC 4 X'00000004'

LNACCT 32 X'00000020'

LNAIDD 32 X'00000020'

LNAORD 4 X'00000004'

LNATID 4 X'00000004'

LNAUTH 8 X'00000008'

LNCID 24 X'00000018'

LNCLUN 48 X'00000030'

LNCNCL 4 X'00000004'

LNCRTD 12 X'0000000C'

LNCRTT 8 X'00000008'

LNDATE 12 X'0000000C'

LNEXN 20 X'00000014'

LNFAC 8 X'00000008'

© Copyright IBM Corp. 1994, 2000 421

|
|

|||

|||

LNFACL 4 X'00000004'

LNFMT 8 X'00000008'

LNFUNC 4 X'00000004'

LNGID 24 X'00000018'

LNLTOV 8 X'00000008'

LNMFMN 8 X'00000008'

LNMHD 4000 X'00000FA0'

LNMID 24 X'00000018'

LNMTOK 16 X'00000010'

LNNLD 64 X'00000040'

LNNLN 48 X'00000030'

LNOBJN 48 X'00000030'

LNOIID 24 X'00000018'

LNPAN 28 X'0000001C'

LNPDAT 8 X'00000008'

LNPROA 256 X'00000100'

LNPROD 64 X'00000040'

LNPROE 128 X'00000080'

LNPRON 48 X'00000030'

LNPROU 128 X'00000080'

LNPTIM 8 X'00000008'

LNQD 64 X'00000040'

LNQMD 64 X'00000040'

LNQMID 48 X'00000030'

LNQMN 48 X'00000030'

LNQN 48 X'00000030'

LNRSID 4 X'00000004'

LNSTCO 4 X'00000004'

LNSTGC 8 X'00000008'

LNSVNM 32 X'00000020'

LNSVST 8 X'00000008'

LNTIID 16 X'00000010'

LNTIME 8 X'00000008'

LNTRGD 64 X'00000040'

LNTRID 4 X'00000004'

LNUID 12 X'0000000C'

AC* (Accounting token)
See the MDACC field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

ACNONE X'00...00' (32 nulls)

ATT* (Accounting token type)
See the MDACC field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

ATTUNK X'00'

ATTCIC X'01'

ATTOS2 X'04'

ATTDOS X'05'

ATTUNX X'06'

ATT400 X'08'

ATTWIN X'09'

ATTWNT X'0B'

ATTUSR X'19'

MQSeries constants

422 MQSeries for AS/400, V5.1 APR (ILE RPG)

|||

|||

|||

|||
|||

|||

|

|
|

|||
||
||
||
||
||
||
||
||
|

AT* (Application type)
See the MDPAT field described in “Chapter 10. MQMD - Message descriptor” on
page 83, and the ApplType attribute described in “Chapter 42. Attributes for process
definitions” on page 319.

ATUNK -1 X'FFFFFFFF'

ATNCON 0 X'00000000'

ATCICS 1 X'00000001'

ATMVS 2 X'00000002'

AT390 2 X'00000002'

ATIMS 3 X'00000003'

ATOS2 4 X'00000004'

ATDOS 5 X'00000005'

ATAIX 6 X'00000006'

ATUNIX 6 X'00000006'

ATQM 7 X'00000007'

AT400 8 X'00000008'

ATDEF 8 X'00000008'

ATWIN 9 X'00000009'

ATVSE 10 X'0000000A'

ATWINT 11 X'0000000B'

ATVMS 12 X'0000000C'

ATGUAR 13 X'0000000D'

ATNSK 13 X'0000000D'

ATVOS 14 X'0000000E'

ATIMSB 19 X'00000013'

ATXCF 20 X'00000014'

ATCICB 21 X'00000015'

ATNOTE 22 X'00000016'

ATBRKR 26 X'0000001A'

ATJAVA 28 X'0000001C'

ATUFST 65536 X'00010000'

ATULST 999999999 X'3B9AC9FF'

BND* (Binding)
See the DefBind attribute described in “Chapter 37. Attributes for all queues” on
page 293.

BNDOPN 0 X'00000000'

BNDNOT 1 X'00000001'

BO* (Begin options)
See the BOOPT field described in “Chapter 3. MQBO - Begin options” on page 15.

BONONE 0 X'00000000'

BO* (Begin options structure identifier)
See the BOSID field described in “Chapter 3. MQBO - Begin options” on page 15.

BOSIDV 'BObb'

BO* (Begin options version)
See the BOVER field described in “Chapter 3. MQBO - Begin options” on page 15.

MQSeries constants

Appendix B. MQSeries constants 423

|

|||

|||

||||
|||
|

|

BOVER1 1 X'00000001'

BOVERC 1 X'00000001'

CA* (Character attribute selector)
See the SELS parameter described in “Chapter 31. MQINQ - Inquire about object
attributes” on page 241 and “Chapter 35. MQSET - Set object attributes” on
page 283.

CAFRST 2001 X'000007D1'

CAAPPI 2001 X'000007D1'

CABASQ 2002 X'000007D2'

CACMDQ 2003 X'000007D3'

CACRTD 2004 X'000007D4'

CACRTT 2005 X'000007D5'

CADLQ 2006 X'000007D6'

CAENVD 2007 X'000007D7'

CAINIQ 2008 X'000007D8'

CALSTD 2009 X'000007D9'

CALSTN 2010 X'000007DA'

CAPROD 2011 X'000007DB'

CAPRON 2012 X'000007DC'

CAQD 2013 X'000007DD'

CAQMD 2014 X'000007DE'

CAQMN 2015 X'000007DF'

CAQN 2016 X'000007E0'

CARQMN 2017 X'000007E1'

CARQN 2018 X'000007E2'

CABRQN 2019 X'000007E3'

CANAMS 2020 X'000007E4'

CAUSRD 2021 X'000007E5'

CASTGC 2022 X'000007E6'

CATRGD 2023 X'000007E7'

CAXQN 2024 X'000007E8'

CADXQN 2025 X'000007E9'

CACADX 2026 X'000007EA'

CAALTD 2027 X'000007EB'

CAALTT 2028 X'000007EC'

CACLN 2029 X'000007ED'

CACLNL 2030 X'000007EE'

CACLQM 2031 X'000007EF'

CAQMID 2032 X'000007F0'

CACLWX 2033 X'000007F1'

CACLWD 2034 X'000007F2'

CARPN 2035 X'000007F3'

CARPNL 2036 X'000007F4'

CACLD 2037 X'000007F5'

CACLT 2038 X'000007F6'

CAUSER 4000 X'00000FA0'

CALAST 4000 X'00000FA0'

CALSTU (variable)

AD* (CICS header ADS descriptor)
See the CIADS field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

ADNONE 0 X'00000000'

MQSeries constants

424 MQSeries for AS/400, V5.1 APR (ILE RPG)

ADSEND 1 X'00000001'

ADRECV 16 X'00000010'

ADMSGF 256 X'00000100'

CC* (Completion code)
See the CMPCOD parameter described in each MQI call.

CCOK 0 X'00000000'

CCWARN 1 X'00000001'

CCFAIL 2 X'00000002'

CS* (Coded character set identifier)
See the MDCSI field described in “Chapter 10. MQMD - Message descriptor” on
page 83 and in other structures.

CT* (CICS header conversational task)
See the CICT field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CTNO 0 X'00000000'

CTYES 1 X'00000001'

FC* (CICS header facility)
See the CIFAC field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

FCNONE X'00...00' (8 nulls)

CF* (CICS header function name)
See the CIFNC field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CFCONN 'CONN'

CFGET 'GETb'

CFINQ 'INQb'

CFOPEN 'OPEN'

CFPUT 'PUTb'

CFPUT1 'PUT1'

CFNONE 'bbbb'

WI* (CICS header get-wait interval)
See the CIGWI field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

WIDFLT -2 X'FFFFFFFE'

CI* (Correlation identifier)
See the MDCID field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

MQSeries constants

Appendix B. MQSeries constants 425

|||

CINONE X'00...00' (24 nulls)

CINEWS X'414D51214E45575F534553...'

MQ* (Call identifier)
MQCONN 1 X'00000001'

MQDISC 2 X'00000002'

MQOPEN 3 X'00000003'

MQCLOS 4 X'00000004'

MQGET 5 X'00000005'

MQPUT 6 X'00000006'

MQPUT1 7 X'00000007'

MQINQ 8 X'00000008'

MQSET 9 X'00000009'

MQXCVC 12 X'0000000C'

CIF* (CICS header flags)
See the CIFLG field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CIFNON 0 X'00000000'

CI* (CICS header length)
See the CILEN field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CILEN1 164 X'000000A4'

CILEN2 180 X'000000B4'

CILENC 180 X'000000B4'

CI* (CICS header structure identifier)
See the CISID field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CISIDV 'CIHb'

CI* (CICS header version)
See the CIVER field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CIVER1 1 X'00000001'

CIVER2 2 X'00000002'

CIVERC 2 X'00000002'

LT* (CICS header link type)
See the CILT field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

LTPROG 1 X'00000001'

LTTRAN 2 X'00000002'

MQSeries constants

426 MQSeries for AS/400, V5.1 APR (ILE RPG)

|||
|||

|||

|||

CMLV* (Command level)
See the CommandLevel attribute described in “Chapter 43. Attributes for the queue
manager” on page 323.

CMLVL1 100 X'00000064'

CML320 320 X'00000140'

CML420 420 X'000001A4'

CML510 510 X'000001FE'

CN* (Connect options)
See the CNOPT field described in “Chapter 5. MQCNO - Connect options” on
page 31.

CNSBND 0 X'00000000'

CNFBND 1 X'00000001'

CNNONE 0 X'00000000'

CN* (Connect options structure identifier)
See the CNSID field described in “Chapter 5. MQCNO - Connect options” on
page 31.

CNSIDV 'CNOb'

CN* (Connect options version)
See the CNVER field described in “Chapter 5. MQCNO - Connect options” on
page 31.

CNVER1 1 X'00000001'

CNVER2 2 X'00000002'

CNVERC 2 X'00000002'

CO* (Close options)
See the OPTS parameter described in “Chapter 25. MQCLOSE - Close object” on
page 211.

CONONE 0 X'00000000'

CODEL 1 X'00000001'

COPURG 2 X'00000002'

OL* (CICS header output data length)
See the CIODL field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

OLINPT -1 X'FFFFFFFF'

CRC* (CICS header return code)
See the CIRET field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CRC000 0 X'00000000'

CRC001 1 X'00000001'

MQSeries constants

Appendix B. MQSeries constants 427

|||
|||

|||

CRC002 2 X'00000002'

CRC003 3 X'00000003'

CRC004 4 X'00000004'

CRC005 5 X'00000005'

CRC006 6 X'00000006'

CRC007 7 X'00000007'

CRC008 8 X'00000008'

CRC009 9 X'00000009'

SC* (CICS header transaction start code)
See the CISC field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

SCSTRT 'Sbbb'

SCDATA 'SDbb'

SCTERM 'TDbb'

SCNONE 'bbbb'

TE* (CICS header task end status)
See the CITES field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

TENOSY 0 X'00000000'

TECMIT 256 X'00000100'

TEBACK 4352 X'00001100'

TEENDT 65536 X'00010000'

CU* (CICS header unit-of-work control)
See the CIUOW field described in “Chapter 4. MQCIH - CICS bridge header” on
page 17.

CUMIDL 16 X'00000010'

CUFRST 17 X'00000011'

CUCMIT 256 X'00000100'

CULAST 272 X'00000110'

CUONLY 273 X'00000111'

CUBACK 4352 X'00001100'

CUCONT 65536 X'00010000'

DCC* (Convert-characters masks and factors)
See the OPTS parameter described in “MQXCNVC - Convert characters” on
page 473.

DCCSMA 240 X'000000F0'

DCCTMA 3840 X'00000F00'

DCCSFA 16 X'00000010'

DCCTFA 256 X'00000100'

DCC* (Convert-characters options)
See the OPTS parameter described in “MQXCNVC - Convert characters” on
page 473.

MQSeries constants

428 MQSeries for AS/400, V5.1 APR (ILE RPG)

|||

DCCSUN 0 X'00000000'

DCCTUN 0 X'00000000'

DCCNON 0 X'00000000'

DCCDEF 1 X'00000001'

DCCFIL 2 X'00000002'

DCCSNA 16 X'00000010'

DCCSNO 16 X'00000010'

DCCSRE 32 X'00000020'

DCCTNA 256 X'00000100'

DCCTNO 256 X'00000100'

DCCTRE 512 X'00000200'

DH* (Distribution header structure identifier)
See the DHSID field described in “Chapter 6. MQDH - Distribution header” on
page 37.

DHSIDV 'DHbb'

DH* (Distribution header version)
See the DHVER field described in “Chapter 6. MQDH - Distribution header” on
page 37.

DHVER1 1 X'00000001'

DHVERC 1 X'00000001'

DHF* (Distribution header flags)
See the DHFLG field described in “Chapter 6. MQDH - Distribution header” on
page 37.

DHFNON 0 X'00000000'

DHFNEW 1 X'00000001'

DL* (Distribution list support)
See the DistLists attributes described in “Chapter 43. Attributes for the queue
manager” on page 323 and “Chapter 38. Attributes for local queues and model
queues” on page 299.

DLNSUP 0 X'00000000'

DLSUPP 1 X'00000001'

DL* (Dead-letter header structure identifier)
See the DLSID field described in “Chapter 7. MQDLH - Dead-letter header” on
page 43.

DLSIDV 'DLHb'

DL* (Dead-letter header version)
See the DLVER field described in “Chapter 7. MQDLH - Dead-letter header” on
page 43.

DLVER1 1 X'00000001'

MQSeries constants

Appendix B. MQSeries constants 429

|||

DLVERC 1 X'00000001'

DX* (Data-conversion-exit parameter structure identifier)
See the DXSID field described in “MQDXP – Data-conversion exit parameter” on
page 468.

DXSIDV 'DXPb'

DX* (Data-conversion-exit parameter structure version)
See the DXVER field described in “MQDXP – Data-conversion exit parameter” on
page 468.

DXVER1 1 X'00000001'

DXVERC 1 X'00000001'

EI* (Expiry interval)
See the MDEXP field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

EIULIM -1 X'FFFFFFFF'

EN* (Encoding)
See the MDENC field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

ENNAT 273 X'00000111'

EN* (Encoding masks)
See “Appendix D. Machine encodings” on page 453.

ENIMSK 15 X'0000000F'

ENDMSK 240 X'000000F0'

ENFMSK 3840 X'00000F00'

ENRMSK -4096 X'FFFFF000'

EN* (Encoding for packed-decimal integers)
See “Appendix D. Machine encodings” on page 453.

ENDUND 0 X'00000000'

ENDNOR 16 X'00000010'

ENDREV 32 X'00000020'

EN* (Encoding for floating-point numbers)
See “Appendix D. Machine encodings” on page 453.

ENFUND 0 X'00000000'

ENFNOR 256 X'00000100'

ENFREV 512 X'00000200'

ENF390 768 X'00000300'

MQSeries constants

430 MQSeries for AS/400, V5.1 APR (ILE RPG)

EN* (Encoding for binary integers)
See “Appendix D. Machine encodings” on page 453.

ENIUND 0 X'00000000'

ENINOR 1 X'00000001'

ENIREV 2 X'00000002'

EV* (Event reporting)
See the QDepthHighEvent, QDepthLowEvent, and QDepthMaxEvent attributes described
in “Chapter 38. Attributes for local queues and model queues” on page 299, and
the AuthorityEvent, ChannelAutoDefEvent, InhibitEvent, LocalEvent,
PerformanceEvent, RemoteEvent, and StartStopEvent attributes described in
“Chapter 43. Attributes for the queue manager” on page 323.

EVRDIS 0 X'00000000'

EVRENA 1 X'00000001'

FB* (Feedback)
See the MDFB field described in “Chapter 10. MQMD - Message descriptor” on
page 83, and the DLREA field described in “Chapter 7. MQDLH - Dead-letter
header” on page 43; see also the RC* values.

FBNONE 0 X'00000000'

FBSFST 1 X'00000001'

FBQUIT 256 X'00000100'

FBEXP 258 X'00000102'

FBCOA 259 X'00000103'

FBCOD 260 X'00000104'

FBABEG 265 X'00000109'

FBTM 266 X'0000010A'

FBATYP 267 X'0000010B'

FBSBMX 268 X'0000010C'

FBXQME 271 X'0000010F'

FBPAN 275 X'00000113'

FBNAN 276 X'00000114'

FBSBCX 277 X'00000115'

FBSBPS 279 X'00000117'

FBNARM 280 X'00000118'

FBDLZ 291 X'00000123'

FBDLN 292 X'00000124'

FBDLTB 293 X'00000125'

FBBUFO 294 X'00000126'

FBLOB1 295 X'00000127'

FBIIH 296 X'00000128'

FBNAFI 298 X'0000012A'

FBIERR 300 X'0000012C'

FBIFST 301 X'0000012D'

FBILST 399 X'0000018F'

FBCINE 401 X'00000191'

FBCNTA 402 X'00000192'

FBCBRF 403 X'00000193'

FBCCIE 404 X'00000194'

FBCCSE 405 X'00000195'

FBCENE 406 X'00000196'

FBCIHE 407 X'00000197'

FBCUWE 408 X'00000198'

MQSeries constants

Appendix B. MQSeries constants 431

FBCCAE 409 X'00000199'

FBCANS 410 X'0000019A'

FBCAAB 411 X'0000019B'

FBCDLQ 412 X'0000019C'

FBCUBO 413 X'0000019D'

FBSLST 65535 X'0000FFFF'

FBAFST 65536 X'00010000'

FBALST 999999999 X'3B9AC9FF'

FM* (Format)
See the MDFMT field described in “Chapter 10. MQMD - Message descriptor” on
page 83 and in other structures.

FMNONE 'bbbbbbbb'

FMADMN 'MQADMINb'

FMCICS 'MQCICSbb'

FMCMD1 'MQCMD1bb'

FMCMD2 'MQCMD2bb'

FMDLH 'MQDEADbb'

FMDH 'MQHDISTb'

FMEVNT 'MQEVENTb'

FMIMS 'MQIMSbbb'

FMIMVS 'MQIMSVSb'

FMMDE 'MQHMDEbb'

FMPCF 'MQPCFbbb'

FMRMH 'MQHREFbb'

FMRFH 'MQHRFbbb'

FMSTR 'MQSTRbbb'

FMTM 'MQTRIGbb'

FMWIH 'MQHWIHbb'

FMXQH 'MQXMITbb'

GI* (Group identifier)
See the MDGID field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

GINONE X'00...00' (24 nulls)

GM* (Get message options)
See the GMOPT field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

GMNWT 0 X'00000000'

GMNONE 0 X'00000000'

GMWT 1 X'00000001'

GMSYP 2 X'00000002'

GMNSYP 4 X'00000004'

GMBRWF 16 X'00000010'

GMBRWN 32 X'00000020'

GMATM 64 X'00000040'

GMMUC 256 X'00000100'

GMLK 512 X'00000200'

GMUNLK 1024 X'00000400'

GMBRWC 2048 X'00000800'

GMPSYP 4096 X'00001000'

MQSeries constants

432 MQSeries for AS/400, V5.1 APR (ILE RPG)

||

||

GMFIQ 8192 X'00002000'

GMCONV 16384 X'00004000'

GMLOGO 32768 X'00008000'

GMCMPM 65536 X'00010000'

GMAMSA 131072 X'00020000'

GMASGA 262144 X'00040000'

GM* (Get message options structure identifier)
See the GMSID field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

GMSIDV 'GMOb'

GM* (Get message options version)
See the GMVER field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

GMVER1 1 X'00000001'

GMVER2 2 X'00000002'

GMVER3 3 X'00000003'

GMVERC (variable)

GS* (Group status)
See the GMGST field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

GSNIG 'b'

GSMIG 'G'

GSLMIG 'L'

HC* (Connection handle)
See the HCONN parameter described in “Chapter 27. MQCONN - Connect queue
manager” on page 221 and “Chapter 29. MQDISC - Disconnect queue manager” on
page 229.

HCUNUH -1 X'FFFFFFFF'

HCDEFH 0 X'00000000'

HO* (Object handle)
See the HOBJ parameter described in “Chapter 25. MQCLOSE - Close object” on
page 211.

IA* (Integer attribute selector)
See the SELS parameter described in “Chapter 31. MQINQ - Inquire about object
attributes” on page 241 and “Chapter 35. MQSET - Set object attributes” on
page 283.

IAFRST 1 X'00000001'

IAAPPT 1 X'00000001'

IACCSI 2 X'00000002'

IACDEP 3 X'00000003'

MQSeries constants

Appendix B. MQSeries constants 433

|||

IADINP 4 X'00000004'

IADPER 5 X'00000005'

IADPRI 6 X'00000006'

IADEFT 7 X'00000007'

IAHGB 8 X'00000008'

IAIGET 9 X'00000009'

IAIPUT 10 X'0000000A'

IAMHND 11 X'0000000B'

IAUSAG 12 X'0000000C'

IAMLEN 13 X'0000000D'

IAMPRI 14 X'0000000E'

IAMDEP 15 X'0000000F'

IAMDS 16 X'00000010'

IAOIC 17 X'00000011'

IAOOC 18 X'00000012'

IANAMC 19 X'00000013'

IAQTYP 20 X'00000014'

IARINT 21 X'00000015'

IABTHR 22 X'00000016'

IASHAR 23 X'00000017'

IATRGC 24 X'00000018'

IATRGI 25 X'00000019'

IATRGP 26 X'0000001A'

IATRGT 28 X'0000001C'

IATRGD 29 X'0000001D'

IASYNC 30 X'0000001E'

IACMDL 31 X'0000001F'

IAPLAT 32 X'00000020'

IAMUNC 33 X'00000021'

IADIST 34 X'00000022'

IATSR 35 X'00000023'

IAHQD 36 X'00000024'

IAMEC 37 X'00000025'

IAMDC 38 X'00000026'

IAQDHL 40 X'00000028'

IAQDLL 41 X'00000029'

IAQDME 42 X'0000002A'

IAQDHE 43 X'0000002B'

IAQDLE 44 X'0000002C'

IASCOP 45 X'0000002D'

IAQSIE 46 X'0000002E'

IAAUTE 47 X'0000002F'

IAINHE 48 X'00000030'

IALCLE 49 X'00000031'

IARMTE 50 X'00000032'

IASSE 52 X'00000034'

IAPFME 53 X'00000035'

IAQSI 54 X'00000036'

IACAD 55 X'00000037'

IACADE 56 X'00000038'

IAINDT 57 X'00000039'

IACLWL 58 X'0000003A'

IACLQT 59 X'0000003B'

IAARCH 60 X'0000003C'

IADBND 61 X'0000003D'

IAUSER 2000 X'000007D0'

IALAST 2000 X'000007D0'

IALSTU (variable)

MQSeries constants

434 MQSeries for AS/400, V5.1 APR (ILE RPG)

IAU* (IMS authenticator)
See the IIAUT field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

IAUNON 'bbbbbbbb'

IAV* (Integer attribute value)
See the INTATR parameter described in “Chapter 31. MQINQ - Inquire about object
attributes” on page 241.

IAVUND -2 X'FFFFFFFE'

IAVNA -1 X'FFFFFFFF'

ICM* (IMS commit mode)
See the IICMT field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

ICMCTS '0'

ICMSTC '1'

II* (IMS header flags)
See the IIFLG field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

IINONE 0 X'00000000'

II* (IMS header length)
See the IILEN field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

IILEN1 84 X'00000054'

II* (IMS header structure identifier)
See the IISID field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

IISIDV 'IIHb'

II* (IMS header version)
See the IIVER field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

IIVER1 1 X'00000001'

IIVERC 1 X'00000001'

ISS* (IMS security scope)
See the IISEC field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

MQSeries constants

Appendix B. MQSeries constants 435

ISSCHK 'C'

ISSFUL 'F'

ITI* (IMS transaction instance identifier)
See the IITID field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

ITINON X'00...00' (16 nulls)

ITS* (IMS transaction state)
See the IITST field described in “Chapter 9. MQIIH - IMS bridge header” on
page 77.

ITSIC 'C'

ITSNIC ' '

ITSARC 'A'

MD* (Message descriptor structure identifier)
See the MDSID field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

MDSIDV 'MDbb'

MD* (Message descriptor version)
See the MDVER field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

MDVER1 1 X'00000001'

MDVER2 2 X'00000002'

MDVERC (variable)

ME* (Message descriptor extension length)
See the MELEN field described in “Chapter 11. MQMDE - Message descriptor
extension” on page 131.

MELEN2 72 X'00000048'

ME* (Message descriptor extension structure identifier)
See the MESID field described in “Chapter 11. MQMDE - Message descriptor
extension” on page 131.

MESIDV 'MDEb'

ME* (Message descriptor extension version)
See the MEVER field described in “Chapter 11. MQMDE - Message descriptor
extension” on page 131.

MEVER2 2 X'00000002'

MEVERC 2 X'00000002'

MQSeries constants

436 MQSeries for AS/400, V5.1 APR (ILE RPG)

MEF* (Message descriptor extension flags)
See the MEFLG field described in “Chapter 11. MQMDE - Message descriptor
extension” on page 131.

MEFNON 0 X'00000000'

MS* (Message delivery sequence)
See the MsgDeliverySequence attribute described in “Chapter 38. Attributes for local
queues and model queues” on page 299.

MSPRIO 0 X'00000000'

MSFIFO 1 X'00000001'

MF* (Message flags)
See the MDMFL field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

MFSEGI 0 X'00000000'

MFNONE 0 X'00000000'

MFSEGA 1 X'00000001'

MFSEG 2 X'00000002'

MFLSEG 4 X'00000004'

MFMIG 8 X'00000008'

MFLMIG 16 X'00000010'

MF* (Message-flags masks)
See “Appendix E. Report options” on page 457.

MFAUM -1048576 X'FFF00000'

MFAUXM 1044480 X'000FF000'

MFRUM 4095 X'00000FFF'

MI* (Message identifier)
See the MDMID field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

MINONE X'00...00' (24 nulls)

MO* (Match options)
See the GMMO field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

MONONE 0 X'00000000'

MOMSGI 1 X'00000001'

MOCORI 2 X'00000002'

MOGRPI 4 X'00000004'

MOSEQN 8 X'00000008'

MOOFFS 16 X'00000010'

MQSeries constants

Appendix B. MQSeries constants 437

MT* (Message type)
See the MDMT field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

MTSFST 1 X'00000001'

MTRQST 1 X'00000001'

MTRPLY 2 X'00000002'

MTRPRT 4 X'00000004'

MTDGRM 8 X'00000008'

MTSLST 65535 X'0000FFFF'

MTAFST 65536 X'00010000'

MTALST 999999999 X'3B9AC9FF'

MTK* (Message token)
See the GMTOK fields described in “Chapter 8. MQGMO - Get-message options” on
page 51 and “Chapter 20. MQWIH - Work information header” on page 189.

MTKNON X'00...00' (16 nulls)

NC* (Name count)
See the NameCount attribute described in “Chapter 41. Attributes for namelists” on
page 317.

NCMXNL 256 X'00000100'

OD* (Object descriptor length)
See “Chapter 12. MQOD - Object descriptor” on page 137.

ODLENC 336 X'00000150'

OD* (Object descriptor structure identifier)
See the ODSID field described in “Chapter 12. MQOD - Object descriptor” on
page 137.

ODSIDV 'ODbb'

OD* (Object descriptor version)
See the ODVER field described in “Chapter 12. MQOD - Object descriptor” on
page 137.

ODVER1 1 X'00000001'

ODVER2 2 X'00000002'

ODVER3 3 X'00000003'

ODVERC (variable)

OII* (Object instance identifier)
See the RMOII field described in “Chapter 16. MQRMH - Message reference header”
on page 169.

OIINON X'00...00' (24 nulls)

MQSeries constants

438 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|
|

|||
|

|

|
|

||||
|

|

|||

OL* (Original length)
See the MDOLN field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

OLUNDF -1 X'FFFFFFFF'

OO* (Open options)
See the OPTS parameter described in “Chapter 32. MQOPEN - Open object” on
page 251.

OOBNDQ 0 X'00000000'

OOINPQ 1 X'00000001'

OOINPS 2 X'00000002'

OOINPX 4 X'00000004'

OOBRW 8 X'00000008'

OOOUT 16 X'00000010'

OOINQ 32 X'00000020'

OOSET 64 X'00000040'

OOSAVA 128 X'00000080'

OOPASI 256 X'00000100'

OOPASA 512 X'00000200'

OOSETI 1024 X'00000400'

OOSETA 2048 X'00000800'

OOALTU 4096 X'00001000'

OOFIQ 8192 X'00002000'

OOBNDO 16384 X'00004000'

OOBNDN 32768 X'00008000'

OT* (Object type)
See the ODOT field described in “Chapter 12. MQOD - Object descriptor” on
page 137.

OTQ 1 X'00000001'

OTNLST 2 X'00000002'

OTPRO 3 X'00000003'

OTQM 5 X'00000005'

PE* (Persistence)
See the MDPER field described in “Chapter 10. MQMD - Message descriptor” on
page 83, and the DefPersistence attribute described in “Chapter 37. Attributes for
all queues” on page 293.

PENPER 0 X'00000000'

PEPER 1 X'00000001'

PL* (Platform)
See the Platform attribute described in “Chapter 43. Attributes for the queue
manager” on page 323.

PLMVS 1 X'00000001'

PL390 1 X'00000001'

PLOS2 2 X'00000002'

PLAIX 3 X'00000003'

MQSeries constants

Appendix B. MQSeries constants 439

|||
|||

|||

PLUNIX 3 X'00000003'

PL400 4 X'00000004'

PLWIN 5 X'00000005'

PLWINT 11 X'0000000B'

PLVMS 12 X'0000000C'

PLNSK 13 X'0000000D'

PM* (Put message options)
See the PMOPT field described in “Chapter 14. MQPMO - Put message options” on
page 149.

PMNONE 0 X'00000000'

PMSYP 2 X'00000002'

PMNSYP 4 X'00000004'

PMDEFC 32 X'00000020'

PMNMID 64 X'00000040'

PMNCID 128 X'00000080'

PMPASI 256 X'00000100'

PMPASA 512 X'00000200'

PMSETI 1024 X'00000400'

PMSETA 2048 X'00000800'

PMALTU 4096 X'00001000'

PMFIQ 8192 X'00002000'

PMNOC 16384 X'00004000'

PMLOGO 32768 X'00008000'

PM* (Put message options structure length)
See “Chapter 14. MQPMO - Put message options” on page 149.

PMLENC 152 X'00000098'

PM* (Put message options structure identifier)
See the PMSID field described in “Chapter 14. MQPMO - Put message options” on
page 149.

PMSIDV 'PMOb'

PM* (Put message options version)
See the PMVER field described in “Chapter 14. MQPMO - Put message options” on
page 149.

PMVER1 1 X'00000001'

PMVER2 2 X'00000002'

PMVERC (variable)

PF* (Put message record field flags)
See the DHPRF field described in “Chapter 6. MQDH - Distribution header” on
page 37.

PFNONE 0 X'00000000'

PFMID 1 X'00000001'

PFCID 2 X'00000002'

MQSeries constants

440 MQSeries for AS/400, V5.1 APR (ILE RPG)

PFGID 4 X'00000004'

PFFB 8 X'00000008'

PFACC 16 X'00000010'

PR* (Priority)
See the MDPRI field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

PRQDEF -1 X'FFFFFFFF'

QA* (Inhibit get)
See the InhibitGet attribute described in “Chapter 37. Attributes for all queues” on
page 293.

QAGETA 0 X'00000000'

QAGETI 1 X'00000001'

QA* (Inhibit put)
See the InhibitPut attribute described in “Chapter 37. Attributes for all queues” on
page 293.

QAPUTA 0 X'00000000'

QAPUTI 1 X'00000001'

QA* (Backout hardening)
See the HardenGetBackout attribute described in “Chapter 38. Attributes for local
queues and model queues” on page 299.

QABNH 0 X'00000000'

QABH 1 X'00000001'

QA* (Queue shareability)
See the Shareability attribute described in “Chapter 38. Attributes for local queues
and model queues” on page 299.

QANSHR 0 X'00000000'

QASHR 1 X'00000001'

QD* (Queue definition type)
See the DefinitionType attribute described in “Chapter 38. Attributes for local
queues and model queues” on page 299.

QDPRE 1 X'00000001'

QDPERM 2 X'00000002'

QDTEMP 3 X'00000003'

QSIE* (Service interval events)
See the QServiceIntervalEvent attribute described in “Chapter 38. Attributes for
local queues and model queues” on page 299.

MQSeries constants

Appendix B. MQSeries constants 441

QSIENO 0 X'00000000'

QSIEHI 1 X'00000001'

QSIEOK 2 X'00000002'

QT* (Queue type)
See the QType attribute described in “Chapter 37. Attributes for all queues” on
page 293.

QTLOC 1 X'00000001'

QTMOD 2 X'00000002'

QTALS 3 X'00000003'

QTREM 6 X'00000006'

QTCLUS 7 X'00000007'

RC* (Reason code)
See “Appendix A. Return codes” on page 357, and the MDFB field described in
“Chapter 10. MQMD - Message descriptor” on page 83. Note: the following list is
in numeric order.

RCNONE 0 X'00000000'

RC0900 900 X'00000384'

RC0999 999 X'000003E7'

RC2001 2001 X'000007D1'

RC2002 2002 X'000007D2'

RC2003 2003 X'000007D3'

RC2004 2004 X'000007D4'

RC2005 2005 X'000007D5'

RC2006 2006 X'000007D6'

RC2007 2007 X'000007D7'

RC2008 2008 X'000007D8'

RC2009 2009 X'000007D9'

RC2010 2010 X'000007DA'

RC2011 2011 X'000007DB'

RC2013 2013 X'000007DD'

RC2014 2014 X'000007DE'

RC2016 2016 X'000007E0'

RC2017 2017 X'000007E1'

RC2018 2018 X'000007E2'

RC2019 2019 X'000007E3'

RC2020 2020 X'000007E4'

RC2021 2021 X'000007E5'

RC2022 2022 X'000007E6'

RC2023 2023 X'000007E7'

RC2024 2024 X'000007E8'

RC2026 2026 X'000007EA'

RC2027 2027 X'000007EB'

RC2029 2029 X'000007ED'

RC2030 2030 X'000007EE'

RC2031 2031 X'000007EF'

RC2033 2033 X'000007F1'

RC2034 2034 X'000007F2'

RC2035 2035 X'000007F3'

RC2036 2036 X'000007F4'

RC2037 2037 X'000007F5'

RC2038 2038 X'000007F6'

RC2039 2039 X'000007F7'

MQSeries constants

442 MQSeries for AS/400, V5.1 APR (ILE RPG)

|||

|||
|||

RC2040 2040 X'000007F8'

RC2041 2041 X'000007F9'

RC2042 2042 X'000007FA'

RC2043 2043 X'000007FB'

RC2044 2044 X'000007FC'

RC2045 2045 X'000007FD'

RC2046 2046 X'000007FE'

RC2047 2047 X'000007FF'

RC2048 2048 X'00000800'

RC2049 2049 X'00000801'

RC2050 2050 X'00000802'

RC2051 2051 X'00000803'

RC2052 2052 X'00000804'

RC2053 2053 X'00000805'

RC2055 2055 X'00000807'

RC2056 2056 X'00000808'

RC2057 2057 X'00000809'

RC2058 2058 X'0000080A'

RC2059 2059 X'0000080B'

RC2061 2061 X'0000080D'

RC2063 2063 X'0000080F'

RC2065 2065 X'00000811'

RC2066 2066 X'00000812'

RC2067 2067 X'00000813'

RC2068 2068 X'00000814'

RC2071 2071 X'00000817'

RC2072 2072 X'00000818'

RC2075 2075 X'0000081B'

RC2076 2076 X'0000081C'

RC2077 2077 X'0000081D'

RC2078 2078 X'0000081E'

RC2079 2079 X'0000081F'

RC2080 2080 X'00000820'

RC2082 2082 X'00000822'

RC2085 2085 X'00000825'

RC2086 2086 X'00000826'

RC2087 2087 X'00000827'

RC2090 2090 X'0000082A'

RC2091 2091 X'0000082B'

RC2092 2092 X'0000082C'

RC2093 2093 X'0000082D'

RC2094 2094 X'0000082E'

RC2095 2095 X'0000082F'

RC2096 2096 X'00000830'

RC2097 2097 X'00000831'

RC2098 2098 X'00000832'

RC2100 2100 X'00000834'

RC2101 2101 X'00000835'

RC2102 2102 X'00000836'

RC2104 2104 X'00000838'

RC2110 2110 X'0000083E'

RC2111 2111 X'0000083F'

RC2112 2112 X'00000840'

RC2113 2113 X'00000841'

RC2114 2114 X'00000842'

RC2115 2115 X'00000843'

RC2116 2116 X'00000844'

RC2117 2117 X'00000845'

RC2118 2118 X'00000846'

MQSeries constants

Appendix B. MQSeries constants 443

RC2119 2119 X'00000847'

RC2120 2120 X'00000848'

RC2123 2123 X'0000084B'

RC2124 2124 X'0000084C'

RC2125 2125 X'0000084D'

RC2126 2126 X'0000084E'

RC2135 2135 X'00000857'

RC2136 2136 X'00000858'

RC2137 2137 X'00000859'

RC2139 2139 X'0000085B'

RC2141 2141 X'0000085D'

RC2142 2142 X'0000085E'

RC2143 2143 X'0000085F'

RC2144 2144 X'00000860'

RC2145 2145 X'00000861'

RC2146 2146 X'00000862'

RC2148 2148 X'00000864'

RC2149 2149 X'00000865'

RC2150 2150 X'00000866'

RC2152 2152 X'00000868'

RC2153 2153 X'00000869'

RC2154 2154 X'0000086A'

RC2155 2155 X'0000086B'

RC2156 2156 X'0000086C'

RC2158 2158 X'0000086E'

RC2159 2159 X'0000086F'

RC2161 2161 X'00000871'

RC2162 2162 X'00000872'

RC2173 2173 X'0000087D'

RC2184 2184 X'00000888'

RC2185 2185 X'00000889'

RC2186 2186 X'0000088A'

RC2187 2187 X'0000088B'

RC2188 2188 X'0000088C'

RC2189 2189 X'0000088D'

RC2190 2190 X'0000088E'

RC2191 2191 X'0000088F'

RC2194 2194 X'00000892'

RC2195 2195 X'00000893'

RC2196 2196 X'00000894'

RC2197 2197 X'00000895'

RC2198 2198 X'00000896'

RC2199 2199 X'00000897'

RC2206 2206 X'0000089E'

RC2207 2207 X'0000089F'

RC2208 2208 X'000008A0'

RC2209 2209 X'000008A1'

RC2218 2218 X'000008AA'

RC2219 2219 X'000008AB'

RC2220 2220 X'000008AC'

RC2222 2222 X'000008AE'

RC2223 2223 X'000008AF'

RC2224 2224 X'000008B0'

RC2225 2225 X'000008B1'

RC2226 2226 X'000008B2'

RC2227 2227 X'000008B3'

RC2232 2232 X'000008B8'

RC2233 2233 X'000008B9'

RC2234 2234 X'000008BA'

MQSeries constants

444 MQSeries for AS/400, V5.1 APR (ILE RPG)

RC2235 2235 X'000008BB'

RC2236 2236 X'000008BC'

RC2237 2237 X'000008BD'

RC2238 2238 X'000008BE'

RC2239 2239 X'000008BF'

RC2241 2241 X'000008C1'

RC2242 2242 X'000008C2'

RC2243 2243 X'000008C3'

RC2244 2244 X'000008C4'

RC2245 2245 X'000008C5'

RC2246 2246 X'000008C6'

RC2247 2247 X'000008C7'

RC2248 2248 X'000008C8'

RC2249 2249 X'000008C9'

RC2250 2250 X'000008CA'

RC2251 2251 X'000008CB'

RC2252 2252 X'000008CC'

RC2253 2253 X'000008CD'

RC2255 2255 X'000008CF'

RC2256 2256 X'000008D0'

RC2257 2257 X'000008D1'

RC2258 2258 X'000008D2'

RC2259 2259 X'000008D3'

RC2260 2260 X'000008D4'

RC2261 2261 X'000008D5'

RC2262 2262 X'000008D6'

RC2263 2263 X'000008D7'

RC2264 2264 X'000008D8'

RC2265 2265 X'000008D9'

RC2266 2266 X'000008DA'

RC2267 2267 X'000008DB'

RC2268 2268 X'000008DC'

RC2269 2269 X'000008DD'

RC2270 2270 X'000008DE'

RC2273 2273 X'000008E1'

RC2277 2277 X'000008E5'

RC2278 2278 X'000008E6'

RC2279 2279 X'000008E7'

RC2282 2282 X'000008EA'

RC2283 2283 X'000008EB'

RC2284 2284 X'000008EC'

RC2295 2295 X'000008F7'

RC2296 2296 X'000008F8'

RC2299 2299 X'000008FB'

RC2300 2300 X'000008FC'

RC2301 2301 X'000008FD'

RC2302 2302 X'000008FE'

RC2303 2303 X'000008FF'

RC2304 2304 X'00000900'

RC2305 2305 X'00000901'

RC2306 2306 X'00000902'

RC2307 2307 X'00000903'

RC2308 2308 X'00000904'

RC2309 2309 X'00000905'

RC2310 2310 X'00000906'

RC2311 2311 X'00000907'

RC2312 2312 X'00000908'

RC2313 2313 X'00000909'

RC2314 2314 X'0000090A'

MQSeries constants

Appendix B. MQSeries constants 445

|||
|||

RC2315 2315 X'0000090B'

RC2316 2316 X'0000090C'

RC2317 2317 X'0000090D'

RC2318 2318 X'0000090E'

RC2319 2319 X'0000090F'

RC2320 2320 X'00000910'

RC2321 2321 X'00000911'

RC2322 2322 X'00000912'

RC2323 2323 X'00000913'

RC2324 2324 X'00000914'

RC2325 2325 X'00000915'

RC2326 2326 X'00000916'

RC2327 2327 X'00000917'

RC2328 2328 X'00000918'

RC2329 2329 X'00000919'

RC2330 2330 X'0000091A'

RC2334 2334 X'0000091E'

RC2335 2335 X'0000091F'

RC2336 2336 X'00000920'

RC2337 2337 X'00000921'

RC2338 2338 X'00000922'

RC2339 2339 X'00000923'

RL* (Returned length)
See the GMRL field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

RLUNDF -1 X'FFFFFFFF'

RM* (Reference message header structure identifier)
See the RMSID field described in “Chapter 16. MQRMH - Message reference header”
on page 169.

RMSIDV 'RMHb'

RM* (Reference message header version)
See the RMVER field described in “Chapter 16. MQRMH - Message reference header”
on page 169.

RMVER1 1 X'00000001'

RMVERC 1 X'00000001'

RM* (Reference message header flags)
See the RMFLG field described in “Chapter 16. MQRMH - Message reference header”
on page 169.

RMNLST 0 X'00000000'

RMLAST 1 X'00000001'

RO* (Report options)
See the MDREP field described in “Chapter 10. MQMD - Message descriptor” on
page 83.

MQSeries constants

446 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|
|

||||
|

|

RONMI 0 X'00000000'

ROCMTC 0 X'00000000'

RODLQ 0 X'00000000'

RONONE 0 X'00000000'

ROPAN 1 X'00000001'

RONAN 2 X'00000002'

ROPCI 64 X'00000040'

ROPMI 128 X'00000080'

ROCOA 256 X'00000100'

ROCOAD 768 X'00000300'

ROCOAF 1792 X'00000700'

ROCOD 2048 X'00000800'

ROCODD 6144 X'00001800'

ROCODF 14336 X'00003800'

ROEXP 2097152 X'00200000'

ROEXPD 6291456 X'00600000'

ROEXPF 14680064 X'00E00000'

ROEXC 16777216 X'01000000'

ROEXCD 50331648 X'03000000'

ROEXCF 117440512 X'07000000'

RODISC 134217728 X'08000000'

RO* (Report-options masks)
See “Appendix E. Report options” on page 457.

RORUM 270270464 X'101C0000'

ROAUM -270532353 X'EFE000FF'

ROAUXM 261888 X'0003FF00'

SCO* (Queue scope)
See the Scope attribute described in “Chapter 37. Attributes for all queues” on
page 293.

SCOQM 1 X'00000001'

SCOCEL 2 X'00000002'

SEG* (Segmentation)
See the GMSEG field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

SEGIHB 'b'

SEGALW 'A'

SI* (Security identifier)
See the ODASI field described in “Chapter 12. MQOD - Object descriptor” on
page 137.

SINONE X'00...00' (40 nulls)

SIT* (Security identifier type)
See the ODASI field described in “Chapter 12. MQOD - Object descriptor” on
page 137.

MQSeries constants

Appendix B. MQSeries constants 447

|

|
|

|||
|

|

|
|

SITNON X'00'

SITWNT X'01'

SP* (Syncpoint)
See the SyncPoint attribute described in “Chapter 43. Attributes for the queue
manager” on page 323.

SPNAVL 0 X'00000000'

SPAVL 1 X'00000001'

SS* (Segment status)
See the GMSST field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

SSNSEG 'b'

SSLSEG 'L'

SSSEG 'S'

TC* (Trigger control)
See the TriggerControl attribute described in “Chapter 38. Attributes for local
queues and model queues” on page 299.

TCOFF 0 X'00000000'

TCON 1 X'00000001'

TM* (Trigger message structure identifier)
See the TMSID field described in “Chapter 18. MQTM - Trigger message” on
page 179.

TMSIDV 'TMbb'

TM* (Trigger message version)
See the TMVER field described in “Chapter 18. MQTM - Trigger message” on
page 179.

TMVER1 1 X'00000001'

TMVERC 1 X'00000001'

TC* (Trigger message character format structure identifier)
See the TC2SID field described in “Chapter 19. MQTMC2 - Trigger message
(character format)” on page 185.

TCSIDV 'TMCb'

TC* (Trigger message character format version)
See the TC2VER field described in “Chapter 19. MQTMC2 - Trigger message
(character format)” on page 185.

MQSeries constants

448 MQSeries for AS/400, V5.1 APR (ILE RPG)

|||
||
|

|

TT* (Trigger type)
See the TriggerType attribute described in “Chapter 38. Attributes for local queues
and model queues” on page 299.

TTNONE 0 X'00000000'

TTFRST 1 X'00000001'

TTEVRY 2 X'00000002'

TTDPTH 3 X'00000003'

US* (Usage)
See the Usage attribute described in “Chapter 38. Attributes for local queues and
model queues” on page 299.

USNORM 0 X'00000000'

USTRAN 1 X'00000001'

WI* (Wait interval)
See the GMWI field described in “Chapter 8. MQGMO - Get-message options” on
page 51.

WIULIM -1 X'FFFFFFFF'

WI* (Workload information header flags)
See the WIFLG field described in “Chapter 20. MQWIH - Work information header”
on page 189.

WINONE 0 X'00000000'

WI* (Workload information header structure length)
See the WILEN field described in “Chapter 20. MQWIH - Work information header”
on page 189.

WILEN1 120 X'00000078'

WILENC 120 X'00000078'

WI* (Workload information header structure identifier)
See the WISID field described in “Chapter 20. MQWIH - Work information header”
on page 189.

WISIDV 'WIHb'

WI* (Workload information header version)
See the WIVER field described in “Chapter 20. MQWIH - Work information header”
on page 189.

WIVER1 1 X'00000001'

WIVERC 1 X'00000001'

MQSeries constants

Appendix B. MQSeries constants 449

|

|
|

||||
|

|

|
|

||||
|||
|

|

|
|

|||
|

|

|
|

||||
|||
|

XR* (Data-conversion-exit response)
See the DXRES field described in “MQDXP – Data-conversion exit parameter” on
page 468.

XROK 0 X'00000000'

XRFAIL 1 X'00000001'

XQ* (Transmission queue header structure identifier)
See the XQSID field described in “Chapter 21. MQXQH - Transmission queue
header” on page 193.

XQSIDV 'XQHb'

XQ* (Transmission queue header version)
See the XQVER field described in “Chapter 21. MQXQH - Transmission queue
header” on page 193.

XQVER1 1 X'00000001'

XQVERC 1 X'00000001'

MQSeries constants

450 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

Appendix C. Rules for validating MQI options

This appendix lists the situations that produce an RC2046 reason code from an
MQOPEN, MQPUT, MQPUT1, MQGET, or MQCLOSE call.

MQOPEN call
For the options of the MQOPEN call:
v At least one of the following must be specified:

OOBRW
OOINPQ
OOINPX
OOINPS
OOINQ
OOOUT
OOSET

v Only one of the following is allowed:
OOINPQ
OOINPX
OOINPS

v Only one of the following is allowed:
OOBNDO
OOBNDN
OOBNDQ

Note: The options listed above are mutually exclusive. However, because the
value of OOBNDQ is zero, specifying it with either of the other two bind
options does not result in reason code RC2046. OOBNDQ is provided to
aid program documentation.

v If OOSAVA is specified, one of the OOINP* options must also be specified.
v If one of the OOSET* or OOPAS* options is specified, OOOUT must also be

specified.

MQPUT call
For the put-message options:
v The combination of PMSYP and PMNSYP is not allowed.
v Only one of the following is allowed:

PMDEFC
PMNOC
PMPASA
PMPASI
PMSETA
PMSETI

v PMALTU is not allowed (it is valid only on the MQPUT1 call).

© Copyright IBM Corp. 1994, 2000 451

|
|
|
|

|
|
|
|

|

MQPUT1 call
For the put-message options, the rules are the same as for the MQPUT call, except
for the following:
v PMALTU is allowed.
v PMLOGO is not allowed.

MQGET call
For the get-message options:
v Only one of the following is allowed:

GMNSYP
GMSYP
GMPSYP

v Only one of the following is allowed:
GMBRWF
GMBRWC
GMBRWN
GMMUC

v GMSYP is not allowed with any of the following:
GMBRWF
GMBRWC
GMBRWN
GMLK
GMUNLK

v GMPSYP is not allowed with any of the following:
GMBRWF
GMBRWC
GMBRWN
GMCMPM
GMUNLK

v If GMLK is specified, one of the following must also be specified:
GMBRWF
GMBRWC
GMBRWN

v If GMUNLK is specified, only the following are allowed:
GMNSYP
GMNWT

MQCLOSE call
For the options of the MQCLOSE call:
v The combination of CODEL and COPURG is not allowed.

MQI options

452 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

Appendix D. Machine encodings

This appendix describes the structure of the MDENC field in the message descriptor
(see “Chapter 10. MQMD - Message descriptor” on page 83).

The MDENC field is a 32-bit integer that is divided into four separate subfields; these
subfields identify:
v The encoding used for binary integers
v The encoding used for packed-decimal integers
v The encoding used for floating-point numbers
v Reserved bits

Each subfield is identified by a bit mask which has 1-bits in the positions
corresponding to the subfield, and 0-bits elsewhere. The bits are numbered such
that bit 0 is the most significant bit, and bit 31 the least significant bit. The
following masks are defined:

ENIMSK
Mask for binary-integer encoding.

This subfield occupies bit positions 28 through 31 within the MDENC field.

ENDMSK
Mask for packed-decimal-integer encoding.

This subfield occupies bit positions 24 through 27 within the MDENC field.

ENFMSK
Mask for floating-point encoding.

This subfield occupies bit positions 20 through 23 within the MDENC field.

ENRMSK
Mask for reserved bits.

This subfield occupies bit positions 0 through 19 within the MDENC field.

Binary-integer encoding
The following values are valid for the binary-integer encoding:

ENIUND
Undefined integer encoding.

Binary integers are represented using an encoding that is undefined.

ENINOR
Normal integer encoding.

Binary integers are represented in the conventional way:
v The least significant byte in the number has the highest address of any

of the bytes in the number; the most significant byte has the lowest
address

v The least significant bit in each byte is adjacent to the byte with the next
higher address; the most significant bit in each byte is adjacent to the
byte with the next lower address

ENIREV
Reversed integer encoding.

© Copyright IBM Corp. 1994, 2000 453

Binary integers are represented in the same way as ENINOR, but with the
bytes arranged in reverse order. The bits within each byte are arranged in
the same way as ENINOR.

Packed-decimal-integer encoding
The following values are valid for the packed-decimal-integer encoding:

ENDUND
Undefined packed-decimal encoding.

Packed-decimal integers are represented using an encoding that is
undefined.

ENDNOR
Normal packed-decimal encoding.

Packed-decimal integers are represented in the conventional way:
v Each decimal digit in the printable form of the number is represented in

packed decimal by a single hexadecimal digit in the range X'0' through
X'9'. Each hexadecimal digit occupies four bits, and so each byte in the
packed decimal number represents two decimal digits in the printable
form of the number.

v The least significant byte in the packed-decimal number is the byte
which contains the least significant decimal digit. Within that byte, the
most significant four bits contain the least significant decimal digit, and
the least significant four bits contain the sign. The sign is either X'C'
(positive), X'D' (negative), or X'F' (unsigned).

v The least significant byte in the number has the highest address of any
of the bytes in the number; the most significant byte has the lowest
address.

v The least significant bit in each byte is adjacent to the byte with the next
higher address; the most significant bit in each byte is adjacent to the
byte with the next lower address.

ENDREV
Reversed packed-decimal encoding.

Packed-decimal integers are represented in the same way as ENDNOR, but
with the bytes arranged in reverse order. The bits within each byte are
arranged in the same way as ENDNOR.

Floating-point encoding
The following values are valid for the floating-point encoding:

ENFUND
Undefined floating-point encoding.

Floating-point numbers are represented using an encoding that is
undefined.

ENFNOR
Normal IEEE float encoding.

Floating-point numbers are represented using the standard IEEE2

floating-point format, with the bytes arranged as follows:

2. The Institute of Electrical and Electronics Engineers

Machine encodings

454 MQSeries for AS/400, V5.1 APR (ILE RPG)

v The least significant byte in the mantissa has the highest address of any
of the bytes in the number; the byte containing the exponent has the
lowest address

v The least significant bit in each byte is adjacent to the byte with the next
higher address; the most significant bit in each byte is adjacent to the
byte with the next lower address

Details of the IEEE float encoding may be found in IEEE Standard 754.

ENFREV
Reversed IEEE float encoding.

Floating-point numbers are represented in the same way as ENFNOR, but
with the bytes arranged in reverse order. The bits within each byte are
arranged in the same way as ENFNOR.

ENF390
System/390® architecture float encoding.

Floating-point numbers are represented using the standard System/390
floating-point format; this is also used by System/370®.

Constructing encodings
To construct a value for the MDENC field in MQMD, the relevant constants that
describe the required encodings should be added together. Be sure to combine only
one of the ENI* encodings with one of the END* encodings and one of the ENF*
encodings.

Analyzing encodings
The MDENC field contains subfields; because of this, applications that need to
examine the integer, packed decimal, or float encoding should use the technique
described below.

Using arithmetic
The following steps should be performed using integer arithmetic:
1. Select a value from the following table, according to the encoding required:

Encoding required
Value to use

Binary integer
1

Packed-decimal integer
16

Floating point
256

Call the value A.
2. Divide the value of the MDENC field by A; call the result B.
3. Divide B by 16; call the result C.
4. Multiply C by 16 and subtract from B; call the result D.
5. Multiply D by A; call the result E.
6. E is the encoding required, and can be tested for equality with each of the

values that is valid for that type of encoding.

Machine encodings

Appendix D. Machine encodings 455

Summary of machine architecture encodings
Encodings for machine architectures are shown in Table 58.

Table 58. Summary of encodings for machine architectures

Machine architecture Binary integer
encoding

Packed-decimal
integer encoding

Floating-point
encoding

AS/400 normal normal IEEE normal

Intel® x86 reversed reversed IEEE reversed

PowerPC normal normal IEEE normal

System/390 normal normal System/390

Machine encodings

456 MQSeries for AS/400, V5.1 APR (ILE RPG)

Appendix E. Report options

This appendix concerns the MDREP and MDMFL fields that are part of the message
descriptor MQMD specified on the MQGET, MQPUT, and MQPUT1 calls (see
“Chapter 10. MQMD - Message descriptor” on page 83). The appendix describes:
v The structure of the report field and how the queue manager processes it
v How an application should analyze the report field
v The structure of the message-flags field

Structure of the report field
The MDREP field is a 32-bit integer that is divided into three separate subfields.
These subfields identify:
v Report options that are rejected if the local queue manager does not recognize

them
v Report options that are always accepted, even if the local queue manager does

not recognize them
v Report options that are accepted only if certain other conditions are satisfied

Each subfield is identified by a bit mask which has 1-bits in the positions
corresponding to the subfield, and 0-bits elsewhere. Note that the bits in a subfield
are not necessarily adjacent. The bits are numbered such that bit 0 is the most
significant bit, and bit 31 the least significant bit. The following masks are defined
to identify the subfields:

RORUM
Mask for unsupported report options that are rejected.

This mask identifies the bit positions within the MDREP field where report
options which are not supported by the local queue manager will cause the
MQPUT or MQPUT1 call to fail with completion code CCFAIL and reason
code RC2061.

This subfield occupies bit positions 3, and 11 through 13.

ROAUM
Mask for unsupported report options that are accepted.

This mask identifies the bit positions within the MDREP field where report
options which are not supported by the local queue manager will
nevertheless be accepted on the MQPUT or MQPUT1 calls. Completion
code CCWARN with reason code RC2104 are returned in this case.

This subfield occupies bit positions 0 through 2, 4 through 10, and 24
through 31.

The following report options are included in this subfield:
ROCMTC
RODLQ
RODISC
ROEXC
ROEXCD
ROEXCF
ROEXP
ROEXPD

© Copyright IBM Corp. 1994, 2000 457

ROEXPF
RONAN
RONMI
RONONE
ROPAN
ROPCI
ROPMI

ROAUXM
Mask for unsupported report options that are accepted only in certain
circumstances.

This mask identifies the bit positions within the MDREP field where report
options which are not supported by the local queue manager will
nevertheless be accepted on the MQPUT or MQPUT1 calls provided that
both of the following conditions are satisfied:
v The message is destined for a remote queue manager.
v The application is not putting the message directly on a local

transmission queue (that is, the queue identified by the ODMN and ODON
fields in the object descriptor specified on the MQOPEN or MQPUT1
call is not a local transmission queue).

Completion code CCWARN with reason code RC2104 are returned if these
conditions are satisfied, and CCFAIL with reason code RC2061 if not.

This subfield occupies bit positions 14 through 23.

The following report options are included in this subfield:
ROCOA
ROCOAD
ROCOAF
ROCOD
ROCODD
ROCODF

If there are any options specified in the MDREP field which the queue manager does
not recognize, the queue manager checks each subfield in turn by using the bitwise
AND operation to combine the MDREP field with the mask for that subfield. If the
result of that operation is not zero, the completion code and reason codes
described above are returned.

If CCWARN is returned, it is not defined which reason code is returned if other
warning conditions exist.

The ability to specify and have accepted report options which are not recognized
by the local queue manager is useful when it is desired to send a message with a
report option which will be recognized and processed by a remote queue manager.

Analyzing the report field
The MDREP field contains subfields; because of this, applications that need to check
whether the sender of the message requested a particular report should use the
technique described below.

Using arithmetic
The following steps should be performed using integer arithmetic:

Report options

458 MQSeries for AS/400, V5.1 APR (ILE RPG)

1. Select one of the following values, according to the type of report to be
checked:

Report type
Value to use

COA ROCOA
COD ROCOD
Exception

ROEXC
Expiration

ROEXP

Call the value A.
2. Divide the MDREP field by A; call the result B.
3. Divide B by 8; call the result C.
4. Multiply C by 8 and subtract from B; call the result D.
5. Multiply D by A; call the result E.
6. Test E for equality with each of the values that is possible for that type of

report.
For example, if A is ROEXC, test E for equality with each of the following to
determine what was specified by the sender of the message:

RONONE
ROEXC
ROEXCD
ROEXCF

The tests can be performed in whatever order is most convenient for the
application logic.

The following pseudocode illustrates this technique for exception report messages:
A = MQRO_EXCEPTION
B = Report/A
C = B/8
D = B - C*8
E = D*A

A similar method can be used to test for the ROPMI or ROPCI options; select as
the value A whichever of these two constants is appropriate, and then proceed as
described above, but replacing the value 8 in the steps above by the value 2.

Structure of the message-flags field
The MDMFL field is a 32-bit integer that is divided into three separate subfields.
These subfields identify:
v Message flags that are rejected if the local queue manager does not recognize

them
v Message flags that are always accepted, even if the local queue manager does

not recognize them
v Message flags that are accepted only if certain other conditions are satisfied

Note: All subfields in MDMFL are reserved for use by the queue manager.

Each subfield is identified by a bit mask which has 1-bits in the positions
corresponding to the subfield, and 0-bits elsewhere. The bits are numbered such

Report options

Appendix E. Report options 459

that bit 0 is the most significant bit, and bit 31 the least significant bit. The
following masks are defined to identify the subfields:

MFRUM
Mask for unsupported message flags that are rejected.

This mask identifies the bit positions within the MDMFL field where message
flags which are not supported by the local queue manager will cause the
MQPUT or MQPUT1 call to fail with completion code CCFAIL and reason
code RC2249.

This subfield occupies bit positions 20 through 31.

The following message flags are included in this subfield:
MFLMIG
MFLSEG
MFMIG
MFSEG
MFSEGA

MFAUM
Mask for unsupported message flags that are accepted.

This mask identifies the bit positions within the MDMFL field where message
flags which are not supported by the local queue manager will
nevertheless be accepted on the MQPUT or MQPUT1 calls. The completion
code is CCOK.

This subfield occupies bit positions 0 through 11.

MFAUXM
Mask for unsupported message flags that are accepted only in certain
circumstances.

This mask identifies the bit positions within the MDMFL field where message
flags which are not supported by the local queue manager will
nevertheless be accepted on the MQPUT or MQPUT1 calls provided that
both of the following conditions are satisfied:
v The message is destined for a remote queue manager.
v The application is not putting the message directly on a local

transmission queue (that is, the queue identified by the ODMN and ODON
fields in the object descriptor specified on the MQOPEN or MQPUT1
call is not a local transmission queue).

Completion code CCOK is returned if these conditions are satisfied, and
CCFAIL with reason code RC2249 if not.

This subfield occupies bit positions 12 through 19.

If there are flags specified in the MDMFL field that the queue manager does not
recognize, the queue manager checks each subfield in turn by using the bitwise
AND operation to combine the MDMFL field with the mask for that subfield. If the
result of that operation is not zero, the completion code and reason codes
described above are returned.

Report options

460 MQSeries for AS/400, V5.1 APR (ILE RPG)

Appendix F. Data conversion

This appendix describes the interface to the data-conversion exit, and the
processing performed by the queue manager when data conversion is required.

The data-conversion exit is invoked as part of the processing of the MQGET call, in
order to convert the application message data to the representation required by the
receiving application. Conversion of the application message data is optional — it
requires the GMCONV option to be specified on the MQGET call.

The following are described:
v The processing performed by the queue manager in response to the GMCONV

option; see “Conversion processing”.
v Processing conventions used by the queue manager when processing a built-in

format; these conventions are recommended for user-written exits too. See
“Processing conventions” on page 462.

v Special considerations for the conversion of report messages; see “Conversion of
report messages” on page 467.

v The parameters passed to the data-conversion exit; see “MQCONVX - Data
conversion exit” on page 478.

v A call that can be used from the exit in order to convert character data between
different representations; see “MQXCNVC - Convert characters” on page 473.

v The data-structure parameter which is specific to the exit; see “MQDXP –
Data-conversion exit parameter” on page 468.

Conversion processing
The queue manager performs the following actions if the GMCONV option is
specified on the MQGET call, and there is a message to be returned to the
application:
1. If one or more of the following is true, no conversion is necessary:
v The MDCSI and MDENC values in the control information in the message are

identical to those in the MSGDSC parameter.
v The length of the application message data is zero.
v The length of the BUFFER parameter is zero.

In these cases the message is returned without conversion to the application
issuing the MQGET call; the MDCSI and MDENC values in the MSGDSC parameter
are set to the values in the control information in the message, and the call
completes with one of the following combinations of completion code and
reason code:

Completion code
Reason code

CCOK
RCNONE

CCWARN
RC2079

CCWARN
RC2080

© Copyright IBM Corp. 1994, 2000 461

The following steps are performed only if the MDCSI or MDENC value in the control
information in the message differs from that in the MSGDSC parameter, and there is
data to be converted:
2. If the MDFMT field in the control information in the message has the value

FMNONE, the message is returned unconverted, with completion code
CCWARN and reason code RC2110.
In all other cases conversion processing continues.

3. The message is removed from the queue and placed in a temporary buffer
which is the same size as the BUFFER parameter. For browse operations, the
message is copied into the temporary buffer, instead of being removed from the
queue.

4. If the message has to be truncated to fit in the buffer, the following is done:
v If the GMATM option was not specified, the message is returned

unconverted, with completion code CCWARN and reason code RC2080.
v If the GMATM option was specified, the completion code is set to CCWARN,

the reason code is set to RC2079, and conversion processing continues.
5. If the message can be accommodated in the buffer without truncation, or the

GMATM option was specified, the following is done:
v If the format is a built-in format, the buffer is passed to the queue-manager’s

data-conversion service.
v If the format is not a built-in format, the buffer is passed to a user-written

exit which has the same name as the format. If the exit cannot be found, the
message is returned unconverted, with completion code CCWARN and
reason code RC2110.

If no error occurs, the output from the data-conversion service or from the
user-written exit is the converted message, plus the completion code and
reason code to be returned to the application issuing the MQGET call.

6. If the conversion is successful, the queue manager returns the converted
message to the application. In this case, the completion code and reason code
returned by the MQGET call will usually be one of the following combinations:

Completion code
Reason code

CCOK
RCNONE

CCWARN
RC2079

However, if the conversion is performed by a user-written exit, other reason
codes can be returned, even when the conversion is successful.

If the conversion fails (for whatever reason), the queue manager returns the
unconverted message to the application, with the MDCSI and MDENC fields in the
MSGDSC parameter set to the values in the control information in the message,
and with completion code CCWARN. See below for possible reason codes.

Processing conventions
When converting a built-in format, the queue manager follows the processing
conventions described below. It is recommended that user-written exits should also
follow these conventions, although this is not enforced by the queue manager. The
built-in formats converted by the queue manager are:

FMADMN

Conversion processing

462 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|

FMCICS
FMCMD1
FMCMD2
FMDLH
FMDH
FMEVNT
FMIMS
FMIMVS
FMMDE
FMPCF
FMRMH
FMSTR
FMTM
FMXQH

1. If the message expands during conversion, and exceeds the size of the BUFFER
parameter, the following is done:
v If the GMATM option was not specified, the message is returned

unconverted, with completion code CCWARN and reason code RC2120.
v If the GMATM option was specified, the message is truncated, the

completion code is set to CCWARN, the reason code is set to RC2079, and
conversion processing continues.

2. If truncation occurs (either before or during conversion), it is possible for the
number of valid bytes returned in the BUFFER parameter to be less than the
length of the buffer.
This can occur, for example, if a 4-byte integer or a DBCS character straddles
the end of the buffer. The incomplete element of information is not converted,
and so those bytes in the returned message do not contain valid information.
This can also occur if a message that was truncated before conversion shrinks
during conversion.
If the number of valid bytes returned is less than the length of the buffer, the
unused bytes at the end of the buffer are set to nulls.

3. If an array or string straddles the end of the buffer, as much of the data as
possible is converted; only the particular array element or DBCS character
which is incomplete is not converted – preceding array elements or characters
are converted.

4. If truncation occurs (either before or during conversion), the length returned
for the DATLEN parameter is the length of the unconverted message before
truncation.

5. When strings are converted between single-byte character sets (SBCS),
double-byte character sets (DBCS), or multi-byte character sets (MBCS), the
strings can expand or contract.
v In the PCF formats FMADMN, FMEVNT, and FMPCF, the strings in the

MQCFST and MQCFSL structures expand or contract as necessary to
accommodate the string after conversion.
For the string-list structure MQCFSL, the strings in the list may expand or
contract by different amounts. If this happens, the queue manager pads the
shorter strings with blanks to make them the same length as the longest
string after conversion.

v In the format FMRMH, the strings addressed by the RMSEO, RMSNO, RMDEO,
and RMDNO fields expand or contract as necessary to accommodate the
strings after conversion.

v In the format FMRFH, the RFNVS field expands or contracts as necessary to
accommodate the name/value pairs after conversion.

Processing conventions

Appendix F. Data conversion 463

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

v In structures with fixed field sizes, the queue manager allows strings to
expand or contract within their fixed fields, provided that no significant
information is lost. In this regard, trailing blanks and characters following
the first null character in the field are treated as insignificant.
– If the string expands, but only insignificant characters need to be

discarded to accommodate the converted string in the field, the
conversion succeeds and the call completes with CCOK and reason code
RCNONE (assuming no other errors).

– If the string expands, but the converted string requires significant
characters to be discarded in order to fit in the field, the message is
returned unconverted and the call completes with CCWARN and reason
code RC2190.

– If the string contracts, the queue manager pads the string with blanks to
the length of the field.

6. For messages consisting of one or more MQ header structures followed by
user data, it is possible for one or more of the header structures to be
converted, while the remainder of the message is not. However, (with two
exceptions) the MDCSI and MDENC fields in each header structure always
correctly indicate the character set and encoding of the data that follows the
header structure.
The two exceptions are the MQCIH and MQIIH structures, where the values
in the MDCSI and MDENC fields in those structures are not significant. For those
structures, the data following the structure is in the same character set and
encoding as the MQCIH or MQIIH structure itself.

7. If the MDCSI or MDENC fields in the control information of the message being
retrieved, or in the MSGDSC parameter, specify values which are undefined or
not supported, the queue manager may ignore the error if the undefined or
unsupported value does not need to be used in converting the message.
For example, if the MDENC field in the message specifies an unsupported float
encoding, but the message contains only integer data, or contains
floating-point data which does not require conversion (because the source and
target float encodings are identical), the error may or may not be diagnosed.
If the error is diagnosed, the message is returned unconverted, with
completion code CCWARN and one of the RC2111, RC2112, RC2113, RC2114
or RC2115, RC2116, RC2117, RC2118 reason codes (as appropriate); the MDCSI
and MDENC fields in the MSGDSC parameter are set to the values in the control
information in the message.
If the error is not diagnosed and the conversion completes successfully, the
values returned in the MDCSI and MDENC fields in the MSGDSC parameter are
those specified by the application issuing the MQGET call.

8. In all cases, if the message is returned to the application unconverted the
completion code is set to CCWARN, and the MDCSI and MDENC fields in the
MSGDSC parameter are set to the values appropriate to the unconverted data.
This is done for FMNONE also.
The REASON parameter is set to a code that indicates why the conversion could
not be carried out, unless the message also had to be truncated; reason codes
related to truncation take precedence over reason codes related to conversion.
(To determine if a truncated message was converted, check the values
returned in the MDCSI and MDENC fields in the MSGDSC parameter.)
When an error is diagnosed, either a specific reason code is returned, or the
general reason code RC2119. The reason code returned depends on the
diagnostic capabilities of the underlying data-conversion service.

Processing conventions

464 MQSeries for AS/400, V5.1 APR (ILE RPG)

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

9. If completion code CCWARN is returned, and more than one reason code is
relevant, the order of precedence is as follows:
a. The following reason takes precedence over all others:

RC2079
b. Next in precedence is the following reason:

RC2110
c. The order of precedence within the remaining reason codes is not defined.

10. On completion of the MQGET call:
v The following reason code indicates that the message was converted

successfully:
RCNONE

v The following reason code indicates that the message may have been
converted successfully (check the MDCSI and MDENC fields in the MSGDSC
parameter to find out):

RC2079
v All other reason codes indicate that the message was not converted.

The following processing is specific to the built-in formats; it is not applicable to
user-defined formats:
11. With the exception of the following formats:

FMADMN
FMEVNT
FMIMVS
FMPCF
FMSTR

none of the built-in formats can be converted from or to character sets that do
not have SBCS characters for the characters that are valid in queue names. If
an attempt is made to perform such a conversion, the message is returned
unconverted, with completion code CCWARN and reason code RC2111 or
RC2115, as appropriate.

The Unicode character set UCS-2 is an example of a character set that does not
have SBCS characters for the characters that are valid in queue names.

12. If the message data for a built-in format is truncated, fields within the
message which contain lengths of strings, or counts of elements or structures,
are not adjusted to reflect the length of the data actually returned to the
application; the values returned for such fields within the message data are
the values applicable to the message prior to truncation.
When processing messages such as a truncated FMADMN message, care must
be taken to ensure that the application does not attempt to access data beyond
the end of the data returned.

13. If the format name is FMDLH, the message data begins with an MQDLH
structure, and this may be followed by zero or more bytes of application
message data. The format, character set, and encoding of the application
message data are defined by the DLFMT, DLCSI, and DLENC fields in the MQDLH
structure at the start of the message. Since the MQDLH structure and
application message data can have different character sets and encodings, it is
possible for one, other, or both of the MQDLH structure and application
message data to require conversion.
The queue manager converts the MQDLH structure first, as necessary. If
conversion is successful, or the MQDLH structure does not require conversion,
the queue manager checks the DLCSI and DLENC fields in the MQDLH structure

Processing conventions

Appendix F. Data conversion 465

|
|
|
|
|
|

|
|
|
|
|

|
|

to see if conversion of the application message data is required. If conversion
is required, the queue manager invokes the user-written exit with the name
given by the DLFMT field in the MQDLH structure, or performs the conversion
itself (if DLFMT is the name of a built-in format).
If the MQGET call returns a completion code of CCWARN, and the reason
code is one of those indicating that conversion was not successful, one of the
following applies:
v The MQDLH structure could not be converted. In this case the application

message data will not have been converted either.
v The MQDLH structure was converted, but the application message data

was not.

The application can examine the values returned in the MDCSI and MDENC fields
in the MSGDSC parameter, and those in the MQDLH structure, in order to
determine which of the above applies.

14. If the format name is FMXQH, the message data begins with an MQXQH
structure, and this may be followed by zero or more bytes of additional data.
This additional data is usually the application message data (which may be of
zero length), but there can also be one or more further MQ header structures
present, at the start of the additional data.
The MQXQH structure must be in the character set and encoding of the queue
manager. The format, character set, and encoding of the data following the
MQXQH structure are given by the MDFMT, MDCSI, and MDENC fields in the
MQMD structure contained within the MQXQH. For each subsequent MQ
header structure present, the MDFMT, MDCSI, and MDENC fields in the structure
describe the data that follows that structure; that data is either another MQ
header structure, or the application message data.
If the GMCONV option is specified for an FMXQH message, the application
message data and certain of the MQ header structures are converted, but the
data in the MQXQH structure is not. On return from the MQGET call, therefore:
v The values of the MDFMT, MDCSI, and MDENC fields in the MSGDSC parameter

describe the data in the MQXQH structure, and not the application message
data; the values will therefore not be the same as those specified by the
application that issued the MQGET call.
The effect of this is that an application which repeatedly gets messages from
a transmission queue with the GMCONV option specified must reset the
MDCSI and MDENC fields in the MSGDSC parameter to the values desired for the
application message data, prior to each MQGET call.

v The values of the MDFMT, MDCSI, and MDENC fields in the last MQ header
structure present describe the application message data. If there are no
other MQ header structures present, the application message data is
described by these fields in the MQMD structure within the MQXQH
structure. If conversion is successful, the values will be the same as those
specified in the MSGDSC parameter by the application that issued the MQGET
call.

If the message is a distribution-list message, the MQXQH structure is followed
by an MQDH structure (plus its arrays of MQOR and MQPMR records),
which in turn may be followed by zero or more further MQ header structures
and zero or more bytes of application message data. Like the MQXQH
structure, the MQDH structure must be in the character set and encoding of
the queue manager, and it is not converted on the MQGET call, even if the
GMCONV option is specified.

Processing conventions

466 MQSeries for AS/400, V5.1 APR (ILE RPG)

The processing of the MQXQH and MQDH structures described above is
primarily intended for use by message channel agents when they get
messages from transmission queues.

Conversion of report messages
A report message can contain varying amounts of application message data,
according to the report options specified by the sender of the original message. In
particular, a report message can contain either:
1. No application message data
2. Some of the application message data from the original message

This occurs when the sender of the original message specifies RO*D and the
message is longer than 100 bytes.

3. All of the application message data from the original message
This occurs when the sender of the original message specifies RO*F, or specifies
RO*D and the message is 100 bytes or shorter.

When the queue manager or message channel agent generates a report message, it
copies the format name from the original message into the MDFMT field in the
control information in the report message. The format name in the report message
may therefore imply a length of data which is different from the length actually
present in the report message (cases 1 and 2 above).

If the GMCONV option is specified when the report message is retrieved:
v For case 1 above, the data-conversion exit will not be invoked (because the

report message will have no data).
v For case 3 above, the format name correctly implies the length of the message

data.
v But for case 2 above, the data-conversion exit will be invoked to convert a

message which is shorter than the length implied by the format name.
In addition, the reason code passed to the exit will usually be RCNONE (that is,
the reason code will not indicate that the message has been truncated). This
happens because the message data was truncated by the sender of the report
message, and not by the receiver’s queue manager in response to the MQGET
call.

Because of these possibilities, the data-conversion exit should not use the format
name to deduce the length of data passed to it; instead the exit should check the
length of data provided, and be prepared to convert less data than the length
implied by the format name. If the data can be converted successfully, completion
code CCOK and reason code RCNONE should be returned by the exit. The length
of the message data to be converted is passed to the exit as the INLEN parameter.

Processing conventions

Appendix F. Data conversion 467

Product-sensitive programming interface

MQDXP – Data-conversion exit parameter
The following table summarizes the fields in the structure.

Table 59. Fields in MQDXP

Field Description Page

DXSID Structure identifier 468

DXVER Structure version number 468

DXAOP Application options 469

DXENC Numeric encoding required by application 469

DXCSI Character set required by application 469

DXLEN Length in bytes of message data 469

DXCC Completion code 470

DXREA Reason code qualifying DXCC 470

DXRES Response from exit 472

DXHCN Connection handle 473

The MQDXP structure is a parameter that is passed to the data-conversion exit. See
the description of the MQCONVX call for details of the data conversion exit.

Only the DXLEN, DXCC, DXREA and DXRES fields in MQDXP may be changed by the
exit; changes to other fields are ignored. However, the DXLEN field cannot be
changed if the message being converted is a segment that contains only part of a
logical message.

When control returns to the queue manager from the exit, the queue manager
checks the values returned in MQDXP. If the values returned are not valid, the
queue manager continues processing as though the exit had returned XRFAIL in
DXRES; however, the queue manager ignores the values of the DXCC and DXREA fields
returned by the exit in this case, and uses instead the values those fields had on
input to the exit. The following values in MQDXP cause this processing to occur:
v DXRES field not XROK and not XRFAIL
v DXCC field not CCOK and not CCWARN
v DXLEN field less than zero, or DXLEN field changed when the message being

converted is a segment that contains only part of a logical message.

Fields
DXSID (4-byte character string)

Structure identifier.

The value must be:

DXSIDV
Identifier for data conversion exit parameter structure.

This is an input field to the exit.

DXVER (10-digit signed integer)
Structure version number.

MQDXP - Data-conversion exit parameter

468 MQSeries for AS/400, V5.1 APR (ILE RPG)

The value must be:

DXVER1
Version number for data-conversion exit parameter structure.

The following constant specifies the version number of the current version:

DXVERC
Current version of data-conversion exit parameter structure.

Note: When a new version of this structure is introduced, the layout of the
existing part is not changed. The exit should therefore check that the
DXVER field is equal to or greater than the lowest version which contains
the fields that the exit needs to use.

This is an input field to the exit.

DXXOP (10-digit signed integer)
Reserved.

This is a reserved field; its value is 0.

DXAOP (10-digit signed integer)
Application options.

This is a copy of the GMOPT field of the MQGMO structure specified by the
application issuing the MQGET call. The exit may need to examine these to
ascertain whether the GMATM option was specified.

This is an input field to the exit.

DXENC (10-digit signed integer)
Numeric encoding required by application.

This is the numeric encoding required by the application issuing the MQGET
call; see the MDENC field in the MQMD structure for more details.

If the conversion is successful, the exit should copy this to the MDENC field in
the message descriptor.

This is an input field to the exit.

DXCSI (10-digit signed integer)
Character set required by application.

This is the coded character-set identifier of the character set required by the
application issuing the MQGET call; see the MDCSI field in the MQMD structure
for more details. If the application specifies the special value CSQM on the
MQGET call, the queue manager changes this to the actual character-set
identifier of the character set used by the queue manager, before invoking the
exit.

If the conversion is successful, the exit should copy this to the MDCSI field in
the message descriptor.

This is an input field to the exit.

DXLEN (10-digit signed integer)
Length in bytes of message data.

MQDXP - Data-conversion exit parameter

Appendix F. Data conversion 469

When the exit is invoked, this field contains the original length of the
application message data. If the message was truncated in order to fit into the
buffer provided by the application, the size of the message provided to the exit
will be smaller than the value of DXLEN. The size of the message actually
provided to the exit is always given by the INLEN parameter of the exit,
irrespective of any truncation that may have occurred.

Truncation is indicated by the DXREA field having the value RC2079 on input to
the exit.

Most conversions will not need to change this length, but an exit can do so if
necessary; the value set by the exit is returned to the application in the DATLEN
parameter of the MQGET call. However, this length cannot be changed if the
message being converted is a segment that contains only part of a logical
message. This is because changing the length would cause the offsets of later
segments in the logical message to be incorrect.

Note that, if the exit wants to change the length of the data, be aware that the
queue manager has already decided whether the message data will fit into the
application’s buffer, based on the length of the unconverted data. This decision
determines whether the message is removed from the queue (or the browse
cursor moved, for a browse request), and is not affected by any change to the
data length caused by the conversion. For this reason it is recommended that
conversion exits do not cause a change in the length of the application message
data.

If character conversion does imply a change of length, a string can be
converted into another string with the same length in bytes, truncating trailing
blanks or padding with blanks as necessary.

The exit is not invoked if the message contains no application message data;
hence DXLEN is always greater then zero.

This is an input/output field to the exit.

DXCC (10-digit signed integer)
Completion code.

When the exit is invoked, this contains the completion code that will be
returned to the application that issued the MQGET call, if the exit chooses to
do nothing. It is always CCWARN, because either the message was truncated,
or the message requires conversion and this has not yet been done.

On output from the exit, this field contains the completion code to be returned
to the application in the CMPCOD parameter of the MQGET call; only CCOK and
CCWARN are valid. See the description of the DXREA field for recommendations
on how the exit should set this field on output.

This is an input/output field to the exit.

DXREA (10-digit signed integer)
Reason code qualifying DXCC.

When the exit is invoked, this contains the reason code that will be returned to
the application that issued the MQGET call, if the exit chooses to do nothing.
Among possible values are RC2079, indicating that the message was truncated

MQDXP - Data-conversion exit parameter

470 MQSeries for AS/400, V5.1 APR (ILE RPG)

in order fit into the buffer provided by the application, and RC2119, indicating
that the message requires conversion but that this has not yet been done.

On output from the exit, this field contains the reason to be returned to the
application in the REASON parameter of the MQGET call; the following is
recommended:
v If DXREA had the value RC2079 on input to the exit, the DXREA and DXCC fields

should not be altered, irrespective of whether the conversion succeeds or
fails.
(If the DXCC field is not CCOK, the application which retrieves the message
can identify a conversion failure by comparing the returned MDENC and MDCSI
values in the message descriptor with the values requested; in contrast, the
application cannot distinguish a truncated message from a message that just
fitted the buffer. For this reason, RC2079 should be returned in preference to
any of the reasons that indicate conversion failure.)

v If DXREA had any other value on input to the exit:
– If the conversion succeeds, DXCC should be set to CCOK and DXREA set to

RCNONE.
– If the conversion fails, or the message expands and has to be truncated to

fit in the buffer, DXCC should be set to CCWARN (or left unchanged), and
DXREA set to one of the values listed below, to indicate the nature of the
failure.
Note that, if the message after conversion is too big for the buffer, it
should be truncated only if the application that issued the MQGET call
specified the GMATM option:
- If it did specify that option, reason RC2079 should be returned.
- If it did not specify that option, the message should be returned

unconverted, with reason code RC2120.

The reason codes listed below are recommended for use by the exit to indicate
the reason that conversion failed, but the exit can return other values from the
set of RC* codes if deemed appropriate. In addition, the range of values
RC0900 through RC0999 are allocated for use by the exit to indicate conditions
that the exit wishes to communicate to the application issuing the MQGET call.

Note: If the message cannot be converted successfully, the exit must return
XRFAIL in the DXRES field, in order to cause the queue manager to
return the unconverted message. This is true regardless of the reason
code returned in the DXREA field.

RC0900
(900, X'384') Lowest value for an application-defined reason code
returned by a data-conversion exit.

RC0999
(999, X'3E7') Highest value for application-defined reason code
returned by a data-conversion exit.

RC2120
(2120, X'848') Converted data too big for buffer.

RC2119
(2119, X'847') Message data not converted.

RC2111
(2111, X'83F') Source coded character set identifier not valid.

RC2113
(2113, X'841') Packed-decimal encoding in message not recognized.

MQDXP - Data-conversion exit parameter

Appendix F. Data conversion 471

|
|
|

|
|
|
|
|
|

RC2114
(2114, X'842') Floating-point encoding in message not recognized.

RC2112
(2112, X'840') Source integer encoding not recognized.

RC2115
(2115, X'843') Target coded character set identifier not valid.

RC2117
(2117, X'845') Packed-decimal encoding specified by receiver not
recognized.

RC2118
(2118, X'846') Floating-point encoding specified by receiver not
recognized.

RC2116
(2116, X'844') Target integer encoding not recognized.

RC2079
(2079, X'81F') Truncated message returned (processing completed).

This is an input/output field to the exit.

DXRES (10-digit signed integer)
Response from exit.

This is set by the exit to indicate the success or otherwise of the conversion. It
must be one of the following:

XROK Conversion was successful.

If the exit specifies this value, the queue manager returns the following
to the application which issued the MQGET call:
v The value of the DXCC field on output from the exit
v The value of the DXREA field on output from the exit
v The value of the DXLEN field on output from the exit
v The contents of the exit’s output buffer OUTBUF; the number of bytes

returned is the lesser of the exit’s OUTLEN parameter, and the value of
the DXLEN field on output from the exit

v The value of the MDENC field in the exit’s message descriptor
parameter on output from the exit

v The value of the MDCSI field in the exit’s message descriptor
parameter on output from the exit

XRFAIL
Conversion was unsuccessful.

If the exit specifies this value, the queue manager returns the following
to the application which issued the MQGET call:
v The value of the DXCC field on output from the exit
v The value of the DXREA field on output from the exit
v The value of the DXLEN field on input to the exit
v The contents of the exit’s input buffer INBUF; the number of bytes

returned is given by the INLEN parameter

If the exit has altered INBUF, the results are undefined.

DXRES is an output field from the exit.

MQDXP - Data-conversion exit parameter

472 MQSeries for AS/400, V5.1 APR (ILE RPG)

DXHCN (10-digit signed integer)
Connection handle.

This is a connection handle which can be used on the MQXCNVC call. This
handle is not necessarily the same as the handle specified by the application
which issued the MQGET call.

RPG declaration (ILE)
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQDXP Structure
D*
D* Structure identifier
D DXSID 1 4
D* Structure version number
D DXVER 5 8I 0
D* Reserved
D DXXOP 9 12I 0
D* Application options
D DXAOP 13 16I 0
D* Numeric encoding required by application
D DXENC 17 20I 0
D* Character set required by application
D DXCSI 21 24I 0
D* Length in bytes of message data
D DXLEN 25 28I 0
D* Completion code
D DXCC 29 32I 0
D* Reason code qualifying CompCode
D DXREA 33 36I 0
D* Response from exit
D DXRES 37 40I 0
D* Connection handle
D DXHCN 41 44I 0

MQXCNVC - Convert characters
The MQXCNVC call converts characters from one character set to another.

This call is part of the MQSeries Data Conversion Interface (DCI), which is one of
the MQSeries framework interfaces. Note: this call can be used only from a
data-conversion exit.

Syntax

Parameters
HCONN (10-digit signed integer) – input

Connection handle.

This handle represents the connection to the queue manager. It should
normally be the handle passed to the data-conversion exit in the DXHCN field of
the MQDXP structure; this handle is not necessarily the same as the handle
specified by the application which issued the MQGET call.

On OS/400, the following special value can be specified for HCONN:

MQXCNVC (HCONN, OPTS, SRCCSI, SRCLEN, SRCBUF, TGTCSI, TGTLEN,
TGTBUF, DATLEN, CMPCOD, REASON)

MQDXP - Data-conversion exit parameter

Appendix F. Data conversion 473

HCDEFH
Default connection handle.

OPTS (10-digit signed integer) – input
Options that control the action of MQXCNVC.

Zero or more of the options described below can be specified. If more than one
is required, the values can be added together (do not add the same constant
more than once).

Default-conversion option: The following option controls the use of default
character conversion:

DCCDEF
Default conversion.

This option specifies that default character conversion can be used if
one or both of the character sets specified on the call is not supported.
This allows the queue manager to use an installation-specified default
character set that approximates the actual character set, when
converting the string.

Note: The result of using an approximate character set to convert the
string is that some characters may be converted incorrectly. This
can be avoided by using in the string only characters which are
common to both the actual character set specified on the call,
and the default character set.

The default character set is specified by means of a configuration
option when the queue manager is installed or restarted.

If DCCDEF is not specified, the queue manager uses only the specified
character sets to convert the string, and the call fails if one or both of
the character sets is not supported.

Padding option: The following option allows the queue manager to pad the
converted string with blanks or discard insignificant trailing characters, in
order to make the converted string fit the target buffer:

DCCFIL
Fill target buffer.

This option requests that conversion take place in such a way that the
target buffer is filled completely:
v If the string contracts when it is converted, trailing blanks are added

in order to fill the target buffer.
v If the string expands when it is converted, trailing characters that are

not significant are discarded to make the converted string fit the
target buffer. If this can be done successfully, the call completes with
CCOK and reason code RCNONE.
If there are too few insignificant trailing characters, as much of the
string as will fit is placed in the target buffer, and the call completes
with CCWARN and reason code RC2120.
Insignificant characters are:
– Trailing blanks
– Characters following the first null character in the string (but

excluding the first null character itself)

MQXCNVC — Convert characters

474 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

v If the string, TGTCSI, and TGTLEN are such that the target buffer
cannot be set completely with valid characters, the call fails with
CCFAIL and reason code RC2144. This can occur when TGTCSI is a
pure DBCS character set (such as UCS-2), but TGTLEN specifies a
length that is an odd number of bytes.

v TGTLEN can be less than or greater than SRCLEN. On return from
MQXCNVC, DATLEN has the same value as TGTLEN.

If this option is not specified:
v The string is allowed to contract or expand within the target buffer

as required. Insignificant trailing characters are neither added nor
discarded.
If the converted string fits in the target buffer, the call completes
with CCOK and reason code RCNONE.
If the converted string is too big for the target buffer, as much of the
string as will fit is placed in the target buffer, and the call completes
with CCWARN and reason code RC2120. Note that fewer than
TGTLEN bytes can be returned in this case.

v TGTLEN can be less than or greater than SRCLEN. On return from
MQXCNVC, DATLEN is less than or equal to TGTLEN.

Encoding options: The options described below can be used to specify the
integer encodings of the source and target strings. The relevant encoding is
used only when the corresponding character set identifier indicates that the
representation of the character set in main storage is dependent on the
encoding used for binary integers. This affects only certain multibyte character
sets (for example, UCS-2 character sets).

The encoding is ignored if the character set is a single-byte character set
(SBCS), or a multibyte character set whose representation in main storage is
not dependent on the integer encoding.

Only one of the DCCS* values should be specified, combined with one of the
DCCT* values:

DCCSNA
Source encoding is the default for the environment and programming
language.

DCCSNO
Source encoding is normal.

DCCSRE
Source encoding is reversed.

DCCSUN
Source encoding is undefined.

DCCTNA
Target encoding is the default for the environment and programming
language.

DCCTNO
Target encoding is normal.

DCCTRE
Target encoding is reversed.

MQXCNVC — Convert characters

Appendix F. Data conversion 475

|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|

|
|

|

DCCTUN
Target encoding is undefined.

The encoding values defined above can be added directly to the OPTS field.
However, if the source or target encoding is obtained from the MDENC field in
the MQMD or other structure, the following processing must be done:
1. The integer encoding must be extracted from the MDENC field by eliminating

the float and packed-decimal encodings; see “Analyzing encodings” on
page 455 for details of how to do this.

2. The integer encoding resulting from step 1 must be multiplied by the
appropriate factor before being added to the OPTS field. These factors are:

DCCSFA
Factor for source encoding

DCCTFA
Factor for target encoding

If not specified, the encoding options default to undefined (DCC*UN). In most
cases, this does not affect the successful completion of the MQXCNVC call.
However, if the corresponding character set is a multibyte character set whose
representation is dependent on the encoding (for example, a UCS-2 character
set), the call fails with reason code RC2112 or RC2116 as appropriate.

Default option: If none of the options described above is specified, the
following option can be used:

DCCNON
No options specified.

DCCNON is defined to aid program documentation. It is not intended
that this option be used with any other, but as its value is zero, such
use cannot be detected.

SRCCSI (10-digit signed integer) – input
Coded character set identifier of string before conversion.

This is the coded character set identifier of the input string in SRCBUF.

SRCLEN (10-digit signed integer) – input
Length of string before conversion.

This is the length in bytes of the input string in SRCBUF; it must be zero or
greater.

SRCBUF (1-byte character string×SRCLEN) – input
String to be converted.

This is the buffer containing the string to be converted from one character set
to another.

TGTCSI (10-digit signed integer) – input
Coded character set identifier of string after conversion.

This is the coded character set identifier of the character set to which SRCBUF is
to be converted.

TGTLEN (10-digit signed integer) – input
Length of output buffer.

MQXCNVC — Convert characters

476 MQSeries for AS/400, V5.1 APR (ILE RPG)

This is the length in bytes of the output buffer TGTBUF; it must be zero or
greater. It can be less than or greater than SRCLEN.

TGTBUF (1-byte character string×TGTLEN) – output
String after conversion.

This is the string after it has been converted to the character set defined by
TGTCSI. The converted string can be shorter or longer than the unconverted
string. The DATLEN parameter indicates the number of valid bytes returned.

DATLEN (10-digit signed integer) – output
Length of output string.

This is the length of the string returned in the output buffer TGTBUF. The
converted string can be shorter or longer than the unconverted string.

CMPCOD (10-digit signed integer) – output
Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) – output
Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2120

(2120, X'848') Converted data too big for buffer.

If CMPCOD is CCFAIL:
RC2010

(2010, X'7DA') Data length parameter not valid.
RC2150

(2150, X'866') DBCS string not valid.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2046

(2046, X'7FE') Options not valid or not consistent.
RC2102

(2102, X'836') Insufficient system resources available.
RC2145

(2145, X'861') Source buffer parameter not valid.
RC2111

(2111, X'83F') Source coded character set identifier not valid.
RC2112

(2112, X'840') Source integer encoding not recognized.
RC2143

(2143, X'85F') Source length parameter not valid.

MQXCNVC — Convert characters

Appendix F. Data conversion 477

RC2071
(2071, X'817') Insufficient storage available.

RC2146
(2146, X'862') Target buffer parameter not valid.

RC2115
(2115, X'843') Target coded character set identifier not valid.

RC2116
(2116, X'844') Target integer encoding not recognized.

RC2144
(2144, X'860') Target length parameter not valid.

RC2195
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see “Appendix A. Return codes”
on page 357.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP MQXCNVC(HCONN : OPTS : SRCCSI :
C SRCLEN : SRCBUF : TGTCSI :
C TGTLEN : TGTBUF : DATLEN :
C CMPCOD : REASON)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQXCNVC PR EXTPROC('MQXCNVC')
D* Connection handle
D HCONN 10I 0 VALUE
D* Options that control the action of MQXCNVC
D OPTS 10I 0 VALUE
D* Coded character set identifier of string before conversion
D SRCCSI 10I 0 VALUE
D* Length of string before conversion
D SRCLEN 10I 0 VALUE
D* String to be converted
D SRCBUF * VALUE
D* Coded character set identifier of string after conversion
D TGTCSI 10I 0 VALUE
D* Length of output buffer
D TGTLEN 10I 0 VALUE
D* String after conversion
D TGTBUF * VALUE
D* Length of output string
D DATLEN 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

MQCONVX - Data conversion exit
This call definition describes the parameters that are passed to the data-conversion
exit. No entry point called MQCONVX is actually provided by the queue manager
(see usage note 11 on page 482).

This definition is part of the MQSeries Data Conversion Interface (DCI), which is
one of the MQSeries framework interfaces.

MQXCNVC — Convert characters

478 MQSeries for AS/400, V5.1 APR (ILE RPG)

Syntax

Parameters
MQDXP (MQDXP) – input/output

Data-conversion exit parameter block.

This structure contains information relating to the invocation of the exit. The
exit sets information in this structure to indicate the outcome of the conversion.
See “MQDXP – Data-conversion exit parameter” on page 468 for details of the
fields in this structure.

MQMD (MQMD) – input/output
Message descriptor.

On input to the exit, this is the message descriptor that would be returned to
the application if no conversion were performed. It therefore contains the
MDFMT, MDENC, and MDCSI of the unconverted message contained in INBUF.

Note: The MQMD parameter passed to the exit is always the most-recent version
of MQMD supported by the queue manager which invokes the exit. If
the exit is intended to be portable between different environments, the
exit should check the MDVER field in MQMD to verify that the fields that the
exit needs to access are present in the structure.

On OS/400, the exit is passed a version-2 MQMD.

On output, the exit should change the MDENC and MDCSI fields to the values
requested by the application, if conversion was successful; these changes will
be reflected back to the application. Any other changes that the exit makes to
the structure are ignored; they are not reflected back to the application.

INLEN (10-digit signed integer) – input
Length in bytes of INBUF.

This is the length of the input buffer INBUF, and specifies the number of bytes
to be processed by the exit. INLEN is the lesser of the length of the message
data prior to conversion, and the length of the buffer provided by the
application on the MQGET call.

The value is always greater than zero.

INBUF (1-byte bit string×INLEN) – input
Buffer containing the unconverted message.

This contains the message data prior to conversion. If the exit is unable to
convert the data, the queue manager returns the contents of this buffer to the
application after the exit has completed.

Note: The exit should not alter INBUF; if this parameter is altered, the results
are undefined.

OUTLEN (10-digit signed integer) – input
Length in bytes of OUTBUF.

MQCONVX (MQDXP, MQMD, INLEN, INBUF, OUTLEN, OUTBUF)

MQCONVX — Data conversion exit

Appendix F. Data conversion 479

This is the length of the output buffer OUTBUF, and is the same as the length of
the buffer provided by the application on the MQGET call.

The value is always greater than zero.

OUTBUF (1-byte bit string×OUTLEN) – output
Buffer containing the converted message.

On output from the exit, if the conversion was successful (as indicated by the
value XROK in the DXRES field of the MQDXP parameter), OUTBUF contains the
message data to be delivered to the application, in the requested
representation. If the conversion was unsuccessful, any changes that the exit
has made to this buffer are ignored.

Usage notes
1. A data-conversion exit is a user-written exit which receives control during the

processing of an MQGET call. The function performed by the data-conversion
exit is defined by the provider of the exit; however, the exit must conform to
the rules described here, and in the associated parameter structure MQDXP.
The programming languages that can be used for a data-conversion exit are
determined by the environment.

2. The exit is invoked only if all of the following are true:
v The GMCONV option is specified on the MQGET call
v The MDFMT field in the message descriptor is not FMNONE
v The message is not already in the required representation; that is, one or

both of the message’s MDCSI and MDENC is different from the value specified
by the application in the message descriptor supplied on the MQGET call

v The queue manager has not already done the conversion successfully
v The length of the application’s buffer is greater than zero
v The length of the message data is greater than zero
v The reason code so far during the MQGET operation is RCNONE or

RC2079
3. When an exit is being written, consideration should be given to coding the

exit in a way that will allow it to convert messages that have been truncated.
Truncated messages can arise in the following ways:
v The receiving application provides a buffer that is smaller than the message,

but specifies the GMATM option on the MQGET call.
In this case, the DXREA field in the MQDXP parameter on input to the exit will
have the value RC2079.

v The sender of the message truncated it before sending it. This can happen
with report messages, for example (see “Conversion of report messages” on
page 467 for more details).
In this case, the DXREA field in the MQDXP parameter on input to the exit will
have the value RCNONE (if the receiving application provided a buffer that
was big enough for the message).

Thus the value of the DXREA field on input to the exit cannot always be used to
decide whether the message has been truncated.

The distinguishing characteristic of a truncated message is that the length
provided to the exit in the INLEN parameter will be less than the length implied
by the format name contained in the MDFMT field in the message descriptor.
The exit should therefore check the value of INLEN before attempting to

MQCONVX — Data conversion exit

480 MQSeries for AS/400, V5.1 APR (ILE RPG)

convert any of the data; the exit should not assume that the full amount of data
implied by the format name has been provided.

If the exit has not been written to convert truncated messages, and INLEN is
less than the value expected, the exit should return XRFAIL in the DXRES field
of the MQDXP parameter, with the DXCC and DXREA fields set to CCWARN and
RC2110 respectively.

If the exit has been written to convert truncated messages, the exit should
convert as much of the data as possible (see next usage note), taking care not
to attempt to examine or convert data beyond the end of INBUF. If the
conversion completes successfully, the exit should leave the DXREA field in the
MQDXP parameter unchanged. This has the effect of returning RC2079 if the
message was truncated by the receiver’s queue manager, and RCNONE if the
message was truncated by the sender of the message.

It is also possible for a message to expand during conversion, to the point
where it is bigger than OUTBUF. In this case the exit must decide whether to
truncate the message; the DXAOP field in the MQDXP parameter will indicate
whether the receiving application specified the GMATM option.

4. Generally it is recommended that all of the data in the message provided to
the exit in INBUF is converted, or that none of it is. An exception to this,
however, occurs if the message is truncated, either before conversion or
during conversion; in this case there may be an incomplete item at the end of
the buffer (for example: one byte of a double-byte character, or 3 bytes of a
4-byte integer). In this situation it is recommended that the incomplete item
should be omitted, and unused bytes in OUTBUF set to nulls. However,
complete elements or characters within an array or string should be converted.

5. When an exit is needed for the first time, the queue manager attempts to load
an object that has the same name as the format (apart from extensions). The
object loaded must contain the exit that processes messages with that format
name. It is recommended that the exit name, and the name of the object that
contain the exit, should be identical, although not all environments require
this.

6. A new copy of the exit is loaded when an application attempts to retrieve the
first message that uses that MDFMT since the application connected to the queue
manager. A new copy may also be loaded at other times, if the queue
manager has discarded a previously-loaded copy. For this reason, an exit
should not attempt to use static storage to communicate information from one
invocation of the exit to the next – the exit may be unloaded between the two
invocations.

7. If there is a user-supplied exit with the same name as one of the built-in
formats supported by the queue manager, the user-supplied exit does not
replace the built-in conversion routine. The only circumstances in which such
an exit is invoked are:
v If the built-in conversion routine cannot handle conversions to or from

either the MDCSI or MDENC involved, or
v If the built-in conversion routine has failed to convert the data (for example,

because there is a field or character which cannot be converted).
8. The scope of the exit is environment-dependent. MDFMT names should be

chosen so as to minimize the risk of clashes with other formats. It is
recommended that they start with characters that identify the application
defining the format name.

MQCONVX — Data conversion exit

Appendix F. Data conversion 481

9. The data-conversion exit runs in an environment similar to that of the
program which issued the MQGET call; environment includes address space
and user profile (where applicable). The program could be a message channel
agent sending messages to a destination queue manager that does not support
message conversion. The exit cannot compromise the queue manager’s
integrity, since it does not run in the queue manager’s environment.

10. The only MQI call which can be used by the exit is MQXCNVC; attempting to
use other MQI calls fails with reason code RC2219, or other unpredictable
errors.

11. No entry point called MQCONVX is actually provided by the queue manager.
The name of the exit should be the same as the format name (the name
contained in the MDFMT field in MQMD), although this is not required in all
environments.

RPG invocation
C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
C CALLP exitname(MQDXP : MQMD : INLEN :
C INBUF : OUTLEN : OUTBUF)

The prototype definition for the call is:
D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
Dexitname PR EXTPROC('exitname')
D* Data-conversion exit parameter block
D MQDXP 44A
D* Message descriptor
D MQMD 364A
D* Length in bytes of INBUF
D INLEN 10I 0 VALUE
D* Buffer containing the unconverted message
D INBUF * VALUE
D* Length in bytes of OUTBUF
D OUTLEN 10I 0 VALUE
D* Buffer containing the converted message
D OUTBUF * VALUE

End of product-sensitive programming interface

MQCONVX — Data conversion exit

482 MQSeries for AS/400, V5.1 APR (ILE RPG)

Appendix G. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2000 483

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
This book is intended to help you write application programs that run under
MQSeries for AS/400.

This book also documents General-use Programming Interface and Associated
Guidance Information provided by MQSeries for AS/400 V5.1

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Notices

484 MQSeries for AS/400, V5.1 APR (ILE RPG)

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX AS/400 BookManager
CICS CICS/VSE FFST
IBM IMS MQ
MQSeries OS/2 OS/390
OS/400 Presentation Manager RACF
RPG/400 System/370 System/390

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Intel is a trademark of Intel Corporation in the United States and/or other
countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service
marks of others.

Notices

Appendix G. Notices 485

Applications

486 MQSeries for AS/400, V5.1 APR (ILE RPG)

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
OS/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

application environment. The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

archive log. See recovery log.

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of

© Copyright IBM Corp. 1994, 2000 487

work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

v An inventory of all active and archived log data sets
known to MQSeries for OS/390

v A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

circular logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

488 MQSeries for AS/400, V5.1 APR (ILE RPG)

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

completion code. A return code indicating how an
MQI call has ended.

configuration file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information
related to, for example, logs, communications, or
installable services. Synonymous with .ini file. See also
stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL). In MQSeries for AS/400, a
language that can be used to issue commands, either at
the command line or by writing a CL program.

controlled shutdown. See quiesced shutdown.

CPF. Command prefix.

D
DAE. Dump analysis and elimination.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written

programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE).
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging. A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode. See dual logging.

dump analysis and elimination (DAE). An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

Glossary of terms and abbreviations 489

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
environment. See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log. See application log.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer. A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE). An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for
processing, diagnosing an abend, or specifying a retry
address.

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST). Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

v MQSeries data conversion interface (DCI)

v MQSeries message channel interface (MCI)

v MQSeries name service interface (NSI)

v MQSeries security enabling interface (SEI)

v MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR). An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle. See connection handle and object handle.

hardened message. A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also persistent
message.

490 MQSeries for AS/400, V5.1 APR (ILE RPG)

I
ILE. Integrated Language Environment.

immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

Integrated Language Environment (ILE). The AS/400
Integrated Language Environment. This replaces the
AS/400 Original Program Model (OPM).

.ini file. See configuration file.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

installable services. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name service,
and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor

and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence of
files. New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale. On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log control file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a

Glossary of terms and abbreviations 491

queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW). See unit of work.

M
machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

media image. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message. In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

name service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

name transformation. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows

492 MQSeries for AS/400, V5.1 APR (ILE RPG)

NT, an internal process that changes a queue manager
name so that it is unique and valid for the system
being used. Externally, the queue manager name
remains unchanged.

New Technology File System (NTFS). A Windows NT
recoverable file system that provides security for files.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character. The character that is represented by
X'00'.

O
OAM. Object authority manager.

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for AS/400, and MQSeries for
Windows NT, the default authorization service for
command and object management. The OAM can be
replaced by, or run in combination with, a
customer-supplied security service.

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

OPM. Original Program Model.

Original Program Model (OPM). The AS/400
Original Program Model. This is no longer supported
on MQSeries. It is replaced by the Integrated Language
Environment (ILE).

OTMA. Open Transaction Manager Access.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P
page set. A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
OS/390 page sets and the corresponding log data sets
required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal. In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

Glossary of terms and abbreviations 493

|
|
|
|
|
|

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM). A program that
handles all normal and abnormal termination of tasks
by passing control to a recovery routine associated with
the terminating function.

Registry. In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor. In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive. In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

494 MQSeries for AS/400, V5.1 APR (ILE RPG)

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

Resource Recovery Services (RRS). An OS/390
facility that provides 2-phase syncpoint support across
participating resource managers.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

RRS. Resource Recovery Services.

RTM. Recovery termination manager.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be

Glossary of terms and abbreviations 495

used by a message channel agent when moving
messages from a transmission queue to a link.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging. A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza. A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a
refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA). Data recorded
in a SYS1.LOGREC entry, which describes a program or
hardware error.

system initialization table (SIT). A table containing
parameters used by CICS on start up.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
TACL. Tandem Advanced Command Language.

target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

496 MQSeries for AS/400, V5.1 APR (ILE RPG)

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid. See transaction identifier.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue. See dead-letter queue.

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS). In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

Glossary of terms and abbreviations 497

498 MQSeries for AS/400, V5.1 APR (ILE RPG)

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS

V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64

UNIX) V2.2.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for SINIX and DC/OSx V2.2
v MQSeries for Sun Solaris V5.1
v MQSeries for Tandem NonStop Kernel V2.2.0.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a
brief introduction to the benefits of
MQSeries. It is intended to support the
purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing

An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what
MQSeries is, how it works, and how it
can solve some classic interoperability
problems. This book is intended for a
more technical audience than the
MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349,
describes some key MQSeries concepts,
identifies items that need to be considered
before MQSeries is installed, including

storage requirements, backup and
recovery, security, and migration from
earlier releases, and specifies hardware
and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book,
SC33-1872, defines the concepts of
distributed queuing and explains how to
set up a distributed queuing network in a
variety of MQSeries environments. In
particular, it demonstrates how to (1)
configure communications to and from a
representative sample of MQSeries
products, (2) create required MQSeries
objects, and (3) create and configure
MQSeries channels. The use of channel
exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters,
SC34-5349, describes MQSeries clustering.
It explains the concepts and terminology
and shows how you can benefit by taking
advantage of clustering. It details changes
to the MQI, and summarizes the syntax of
new and changed MQSeries commands. It
shows a number of examples of tasks you
can perform to set up and maintain
clusters of queue managers.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632,
describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book,
SC33-1873, supports day-to-day
management of local and remote
MQSeries objects. It includes topics such
as security, recovery and restart,
transactional support, problem

© Copyright IBM Corp. 1994, 2000 499

|

|
|
|
|

|

|

determination, and the dead-letter queue
handler. It also includes the syntax of the
MQSeries control commands.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference,
SC33-1369, contains the syntax of the
MQSC commands, which are used by
MQSeries system operators and
administrators to manage MQSeries
objects.

MQSeries Programmable System Management
The MQSeries Programmable System
Management book, SC33-1482, provides
both reference and guidance information
for users of MQSeries events,
Programmable Command Format (PCF)
messages, and installable services.

MQSeries Administration Interface
Programming Guide and Reference

The MQSeries Administration Interface
Programming Guide and Reference,
SC34-5390, provides information for users
of the MQAI. The MQAI is a
programming interface that simplifies the
way in which applications manipulate
Programmable Command Format (PCF)
messages and their associated data
structures.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876,
which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries
products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

v MQSeries for Windows V2.0
v MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the
messages are supplied with the system.
They do not appear in softcopy manual
form.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference
Summary

The MQSeries Application Programming
Reference Summary, SX33-6095,
summarizes the information in the
MQSeries Application Programming
Reference manual.

MQSeries Using C++
MQSeries Using C++, SC33-1877, provides
both guidance and reference information
for users of the MQSeries C++
programming-language binding to the
MQI. MQSeries C++ is supported by
these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for AS/400 V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries C++ is also supported by
MQSeries clients supplied with these
products and installed in the following
environments:
v AIX
v HP-UX

500 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|

v OS/2
v Sun Solaris
v Windows NT
v Windows 3.1
v Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides
both guidance and reference information
for users of the MQSeries Bindings for
Java and the MQSeries Client for Java.
MQSeries classes for Java are supported
by these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for MVS/ESA V1.2
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

This book is available in softcopy only.

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64
UNIX)

MQSeries for Digital UNIX System
Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX V5.1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.1 Quick
Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1
Licensed Program Specifications,
GC34-5377
MQSeries for OS/390 Version 2 Release 1
Program Directory

MQSeries for OS/390 System
Management Guide, SC34-5374
MQSeries for OS/390 Messages and
Codes, GC34-5375
MQSeries for OS/390 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.1 Quick
Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows V2.0 User’s
Guide, GC33-1822
MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.1 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387

Bibliography 501

|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

BookManager format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:
http://www.ibm.com/software/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:
http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1

v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:
http://www.ibm.com/software/ts/mqseries/

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Related publications
AS/400 ILE RPG/400 Programmer’s Guide,
SC09-1525
AS/400 ILE RPG/400 Reference, SC09-1526

502 MQSeries for AS/400, V5.1 APR (ILE RPG)

|

|

Index

A
AC* values 116
alias queue 315
aliasing

queue manager 313
reply queue 313

AlterationDate attribute
namelist 317
process definition 319
queue 293
queue manager 324

AlterationTime attribute
namelist 317
process definition 319
queue 293
queue manager 324

AMQ3ECH4 sample program 348
AMQ3GBR4 sample program 344
AMQ3GET4 sample program 345
AMQ3INQ4 sample program 349
AMQ3PUT4 sample program 343
AMQ3REQ4 sample program 346
AMQ3SET4 sample program 351
AMQ3SRV4 sample program 352
AMQ3TRG4 sample program 352
ApplId attribute 319
ApplType attribute 320
AT* values

ApplType attribute 320
MDPAT field 117
TMAT field 181

attributes
alias queue 315
common to all queues 293
local queue 299
namelist 317
process definition 319
queue manager 323
remote queue, local definition of 313

AuthorityEvent attribute 324

B
BackoutRequeueQName attribute 300
BackoutThreshold attribute 300
BaseQName attribute 315
begin options structure 15
BEGOP parameter 207
bibliography 499
BND* values 294
BO* values 15
BookManager 502
BOOPT field 15
BOSID field 15
BOVER field 15
BUFFER parameter

MQGET call 232
MQPUT call 266
MQPUT1 call 276

BUFLEN parameter
MQGET call 232

BUFLEN parameter (continued)
MQPUT call 265
MQPUT1 call 276

building your application 337
built-in formats 104

C
CA* values 242
CALEN parameter

MQINQ call 246
MQSET call 285

calls
conventions used 201
detailed description

MQBACK 203
MQBEGIN 207
MQCLOSE 211
MQCMIT 217
MQCONN 221
MQCONNX 227
MQCONVX 478
MQDISC 229
MQGET 231
MQINQ 241
MQOPEN 251
MQPUT 265
MQPUT1 275
MQSET 283
MQXCNVC 473

CC* values 357
CF* values 24
ChannelAutoDef attribute 324
ChannelAutoDefEvent attribute 325
ChannelAutoDefExit attribute 325
CHRATR parameter

MQINQ call 247
MQSET call 285

CI* values 19, 112
CIAC field 25
CIADS field 23
CIAI field 26
CIAUT field 25
CICC field

MQCIH structure 21
CICNC field 26
CICP field 27
CICSI field 19
CICT field 23
CIENC field 19
CIEO field 27
CIFAC field 24
CIFKT field 22
CIFL field 26
CIFLG field 20
CIFMT field 20
CIFNC field 24
CIGWI field 21
CIII field 27
CILEN field 19
CILT field 22
CINTI field 27

CIODL field 22
CIREA field 21
CIRET field 20
CIRFM field 25
CIRS1 field 25
CIRS2 field 27
CIRS3 field 27
CIRS4 field 27
CIRSI field 25
CIRTI field 25
CISC field 26
CISID field 19
CITES field 23
CITI field 25
CIUOW field 21
CIVER field 19
ClusterName attribute 293
ClusterNamelist attribute 294
ClusterWorkloadData attribute 325
ClusterWorkloadExit attribute 325
ClusterWorkloadLength attribute 326
CMLV* values 327
CMPCOD parameter

MQBEGIN call 207
MQCLOSE call 213
MQCONN call 223
MQCONNX call 227
MQDISC call 229
MQGET call 233
MQINQ call 247
MQOPEN call 257
MQPUT call 267
MQPUT1 call 276
MQSET call 285
MQXCNVC call 477

CN* values 31, 32
CNCCO field 33
CNCCP field 33
CNOPT field 32
CNOPT parameter 227
CNSID field 31
CNVER field 31
CO* values 211
coded character set identifier 326
CodedCharSetId attribute 326
COMCOD parameter

MQBACK call 203
MQCMIT call 217

CommandInputQName attribute 326
CommandLevel attribute 327
compatibility mode 224
compiling 337
completion code 357
connect options structure 31
constants, values of 421

accounting token (AC*) 422
accounting token type (ATT*) 422
application type (AT*) 423
backout hardening (QA*) 441
begin options (BO*) 423

© Copyright IBM Corp. 1994, 2000 503

constants, values of 421 (continued)
begin options structure identifier

(BO*) 423
begin options version (BO*) 423
binding (BND*) 423
call identifier (MQ*) 426
character attribute selectors

(CA*) 424
CICS bridge return code (CRC*) 427
CICS function name (CF*) 425
CICS header ADS descriptor

(AD*) 424
CICS header conversational task

(CT*) 425
CICS header facility (FC*) 425
CICS header flags (CIF*) 426
CICS header get-wait interval

(WI*) 425
CICS header length (CI*) 426
CICS header link type (LT*) 426
CICS header output data length

(OL*) 427
CICS header structure identifier

(CI*) 426
CICS header task end status

(TE*) 428
CICS header transaction start code

(SC*) 428
CICS header unit-of-work control

(CU*) 428
CICS header version (CI*) 426
close options (CO*) 427
coded character set identifier

(CS*) 425
command level (CMLV*) 427
completion codes (CC*) 425
connect options (CN*) 427
connect options structure identifier

(CN*) 427
connect options version (CN*) 427
connection handle (HC*) 433
convert-characters masks and factors

(DCC*) 428
convert-characters options

(DCC*) 428
correlation identifier (CI*) 425
data-conversion-exit parameter

structure identifier (DX*) 430
data-conversion-exit parameter

structure version (DX*) 430
data-conversion-exit response

(XR*) 450
dead-letter header structure identifier

(DL*) 429
dead-letter header version (DL*) 429
distribution header flags (DHF*) 429
distribution header structure identifier

(DH*) 429
distribution header version

(DH*) 429
distribution list support (DL*) 429
encoding (EN*) 430
encoding for binary integers

(EN*) 431
encoding for floating-point numbers

(EN*) 430

constants, values of 421 (continued)
encoding for packed-decimal integers

(EN*) 430
encoding masks (EN*) 430
event reporting (EV*) 431
event reporting (QSIE*) 441
expiry interval (EI*) 430
feedback (FB*) 431
format (FM*) 432
get message options (GM*) 432
get message options structure

identifier (GM*) 433
get message options version

(GM*) 433
group identifier (GI*) 432
group status (GS*) 433
IMS authenticator (IAU*) 435
IMS commit mode (ICM*) 435
IMS header flags (II*) 435
IMS header length (II*) 435
IMS header structure identifier

(II*) 435
IMS header version (II*) 435
IMS security scope (ISS*) 435
IMS transaction instance identifier

(ITI*) 436
IMS transaction state (ITS*) 436
inhibit get (QA*) 441
inhibit put (QA*) 441
integer attribute selectors (IA*) 433
integer attribute value (IAV*) 435
lengths of character string and byte

fields (LN*) 421
match options (MO*) 437
message delivery sequence (MS*) 437
message descriptor extension flags

(MEF*) 437
message descriptor extension length

(ME*) 436
message descriptor extension structure

identifier (ME*) 436
message descriptor extension version

(ME*) 436
message descriptor structure identifier

(MD*) 436
message descriptor version

(MD*) 436
message flags (MF*) 437
message-flags masks (MF*) 437
message identifier (MI*) 437
message token (MTK*) 438
message type (MT*) 438
name count (NC*) 438
object descriptor length (OD*) 438
object descriptor structure identifier

(OD*) 438
object descriptor version (OD*) 438
object handle (HO*) 433
object instance identifier (OII*) 438
object type (OT*) 439
open options (OO*) 439
original length (OL*) 439
persistence (PE*) 439
platform (PL*) 439
priority (PR*) 441
put message options (PM*) 440

constants, values of 421 (continued)
put message options length

(PM*) 440
put message options structure

identifier (PM*) 440
put message options version

(PM*) 440
put message record field flags

(PF*) 440
queue definition type (QD*) 441
queue shareability (QA*) 441
queue type (QT*) 442
reason codes (RC*) 442
reference message header flags

(RM*) 446
reference message header structure

identifier (RM*) 446
reference message header version

(RM*) 446
report options (RO*) 446
report-options masks (RO*) 447
returned length (RL*) 446
scope (SCO*) 447
security identifier (SI*) 447
security identifier type (SIT*) 447
segment status (SS*) 448
segmentation (SEG*) 447
syncpoint (SP*) 448
transmission queue header structure

identifier 450
transmission queue header version

(XQ*) 450
trigger controls (TC*) 448
trigger message (character format)

structure identifier (TC*) 448
trigger message (character format)

version (TC*) 448
trigger message structure identifier

(TM*) 448
trigger message version (TM*) 448
trigger type (TT*) 449
undelivered-message header structure

identifier (DL*) 429
undelivered-message header version

(DL*) 429
usage (US*) 449
wait interval (WI*) 449
workload information header flags

(WI*) 449
workload information header

structure identifier (WI*) 449
workload information header

structure length (WI*) 449
workload information header version

(WI*) 449
conversion of report messages 467
copy file – RPG programming

language 8
copy files 337
CRC* values 20
CreationDate attribute 300
CreationTime attribute 300
CRTPGM 337
CRTRPGMOD 337
CRTRPGPGM 337
CS* values 103
CU* values 21

504 MQSeries for AS/400, V5.1 APR (ILE RPG)

CurrentQDepth attribute 301

D
data conversion

processing conventions 462
report messages 467

data types, conventions used 3, 7
data types, detailed description

elementary
ILE 5
MQBYTE 3
MQBYTEn 4
MQCHAR 4
MQCHARn 4
MQHCONN 4
MQHOBJ 5
MQLONG 5
overview 3

structure
MQBO 15
MQCIH 17
MQCNO 31
MQDH 37
MQDLH 43
MQDXP 468
MQGMO 51
MQIIH 77
MQMD 83
MQMDE 131
MQOD 137
MQOR 147
MQPMO 149
MQPMR 165
MQRMH 169
MQRR 177
MQTM 179
MQTMC2 185
MQWIH 189
MQXQH 193
overview of 7

DATLEN parameter
MQGET call 232
MQXCNVC call 477

DCC* values 474
dead-letter header structure 43
DeadLetterQName attribute 327
DefBind attribute 294
DefinitionType attribute 301
DefInputOpenOption attribute 302
DefPersistence attribute 294
DefPriority attribute 295
DefXmitQName attribute 328
DH* values 38
DHCNT field 40
DHCSI field 39
DHENC field 39
DHF* values 39
DHFLG field 39
DHFMT field 39
DHLEN field 38
DHORO field 40
DHPRF field 40
DHPRO field 40
DHSID field 38
DHVER field 38
DistLists attribute 302, 328
distribution header structure 37

distribution lists 302, 328
DL* values 45, 302, 328
DLCSI field 47
DLDM field 46
DLDQ field 46
DLENC field 46
DLFMT field 47
DLPAN field 48
DLPAT field 47
DLPD field 48
DLPT field 48
DLREA field 45
DLSID field 45
DLVER field 45
DX* values 468
DXAOP field 469
DXCC field 470
DXCSI field 469
DXENC field 469
DXHCN field 473
DXLEN field 470
DXREA field 470
DXRES field 472
DXSID field 468
DXVER field 469
DXXOP field 469
dynamic queue 251

E
EI* values 98
EN* values 102
Encoding field

using 453
EnvData attribute 320
EV* values

AuthorityEvent attribute 324
ChannelAutoDefEvent attribute 325
InhibitEvent attribute 329
LocalEvent attribute 329
PerformanceEvent attribute 331
QDepthHighEvent attribute 307
QDepthLowEvent attribute 307
QDepthMaxEvent attribute 308
RemoteEvent attribute 332
StartStopEvent attribute 333

F
FB* values 45, 98
FM* values 104
fonts in this book xii
formats built-in 104

G
get-message options structure 51
GI* values 122
glossary 487
GM* values 51, 52
GMGST field 72
GMMO field 70
GMO parameter 232
GMOPT field 52
GMRE1 field 73
GMRL field 74
GMRQN field 70

GMSEG field 73
GMSG1 field 70
GMSG2 field 70
GMSID field 51
GMSST field 73
GMTOK field 73
GMVER field 52
GMWI field 69
GS* values 72

H
handle scope 223, 257
handles 329
HardenGetBackout attribute 303
HC* values 229
HCONN parameter

MQBACK call 203
MQBEGIN call 207
MQCLOSE call 211
MQCMIT call 217
MQCONN call 222
MQCONNX call 227
MQDISC call 229
MQGET call 231
MQINQ call 241
MQOPEN call 251
MQPUT call 265
MQPUT1 call 275
MQSET call 283
MQXCNVC call 473
scope 223

HO* values 211
HOBJ parameter

MQCLOSE call 211
MQGET call 231
MQINQ call 241
MQOPEN call 257
MQPUT call 265
MQSET call 283
scope 257

HTML (Hypertext Markup
Language) 502

Hypertext Markup Language
(HTML) 502

I
IA* values 242, 284
IACNT parameter

MQINQ call 246
MQSET call 284

IAU* values 79
IAV* values 246
ICM* values 80
II* values 78
IIAUT field 79
IICMT field 80
IICSI field 78
IIENC field 78
IIFLG field 79
IIFMT field 78
IILEN field 78
IILTO field 79
IIMMN field 79
IIRFM field 79
IIRSV field 81

Index 505

IISEC field 80
IISID field 78
IITID field 79
IITST field 80
IIVER field 78
INBUF parameter 479
InhibitEvent attribute 329
InhibitGet attribute 295
InhibitPut attribute 296
InitiationQName attribute 304
INLEN parameter 479
INTATR parameter

MQINQ call 246
MQSET call 284

ISS* values 80
ITI* values 80
ITS* values 80

L
LN* values 421
LocalEvent attribute 329
LT* values 22

M
MaxHandles attribute 329
MaxMsgLength attribute

local queue 304
queue manager 330

MaxPriority attribute 330
MaxQDepth attribute 304
MaxUncommittedMsgs attribute 330
MD* values 85
MDACC field 115
MDAID field 116
MDAOD field 121
MDBOC field 112
MDCID field 111
MDCSI field 103
MDENC field 102
MDEXP field 96
MDFB field 98
MDFMT field 104
MDGID field 121
MDMFL field 124
MDMID field 109
MDMT field 95
MDOFF field 123
MDOLN field 128
MDPAN field 119
MDPAT field 117
MDPD field 119
MDPER field 108
MDPRI field 107
MDPT field 120
MDREP field 85
MDRM field 113
MDRQ field 112
MDSEQ field 123
MDSID field 85
MDUID field 114
MDVER field 85
ME* values 133
MECSI field 134
MEENC field 134
MEF* values 134

MEFLG field 134
MEFMT field 134
MEGID field 134
MELEN field 134
MEMFL field 135
MEOFF field 135
MEOLN field 135
MESEQ field 135
MESID field 133
message descriptor extension

structure 131
message descriptor structure 83
message order 236, 270, 279
MEVER field 133
MF* values 124
MI* values 111
MO* values 71
MQBACK call 203
MQBEGIN call 207
MQBO structure 15
MQBYTE 3
MQBYTEn 4
MQCHAR 4
MQCHARn 4
MQCIH structure 17
MQCLOSE call 211
MQCMIT call 217
MQCNO structure 31
MQCONN call 221
MQCONNX call 227
MQCONVX call 478
MQDH structure 37
MQDISC call 229
MQDLH structure 43
MQDXP parameter 479
MQDXP structure 468
MQGET call 231
MQGMO structure 51
MQHCONN 4
MQHOBJ 5
MQIIH structure 77
MQINQ call 241
MQLONG 5
MQMD

parameter 479
structure 83

MQMDE structure 131
MQOD structure 137
MQOPEN call 251
MQOR structure 147
MQPMO structure 149
MQPMR structure 165
MQPUT call 265
MQPUT1 call 275
MQRMH structure 169
MQRR structure 177
MQSeries for AS/400

syncpoint considerations with CICS
for AS/400 339

syncpoints 338
MQSeries publications 499
MQSET call 283
MQTM structure 179
MQTMC2 structure 185
MQWIH structure 189
MQXCNVC call 473
MQXQH structure 193

MS* values 305
MsgDeliverySequence attribute 305
MSGDSC parameter

MQGET call 231
MQPUT call 265
MQPUT1 call 275

MT* values 95
MTK* values 73

N
NameCount attribute 317
namelist attributes 317
NamelistDesc attribute 317
NamelistName attribute 318
Names attribute 318
NC* values 317
notational conventions – RPG

programming language 10

O
OBJDSC parameter

MQOPEN call 251
MQPUT1 call 275

object descriptor structure 137
object record structure 147
OD* values 138
ODASI field 143
ODAU field 140
ODDN field 140
ODIDC field 141
ODKDC field 141
ODMN field 139
ODON field 139
ODORO field 142
ODORP field 143
ODOT field 138
ODREC field 141
ODRMN field 144
ODRQN field 144
ODRRO field 142
ODRRP field 143
ODSID field 138
ODUDC field 141
ODVER field 138
OII* values 172
OL* values 22, 128
OO* values 252, 302
OpenInputCount attribute 306
OpenOutputCount attribute 306
OPTS parameter

MQCLOSE call 211
MQOPEN call 251
MQXCNVC call 474

ordering of messages 236, 270, 279
ORMN field 147
ORON field 147
OT* values 138
OUTBUF parameter 480
OUTLEN parameter 480

P
PDF (Portable Document Format) 502
PE* values 108, 294
PerformanceEvent attribute 331

506 MQSeries for AS/400, V5.1 APR (ILE RPG)

persistence 294
PF* values 40, 160
PL* values 331
Platform attribute 331
PM* values 150
PMCT field 158
PMIDC field 159
PMKDC field 158
PMO parameter

MQPUT call 265
MQPUT1 call 275

PMOPT field 150
PMPRF field 160
PMPRO field 161
PMPRP field 163
PMREC field 160
PMRMN field 159
PMRQN field 159
PMRRO field 162
PMRRP field 163
PMSID field 150
PMTO field 158
PMUDC field 159
PMVER field 150
Portable Document Format (PDF) 502
PostScript format 502
PR* values 107
PRACC field 167
PRCID field 166
PRFB field 166
PRGID field 166
PRMID field 165
process definition attributes 319
ProcessDesc attribute 320
ProcessName attribute

local queue 306
process definition 321

publications
MQSeries 499
related 502

put-message options structure 149
put message record structure 165

Q
QA* values

InhibitGet attribute 296
InhibitPut attribute 296
Shareability attribute 310

QD* values 301
QDepthHighEvent attribute 307
QDepthHighLimit attribute 307
QDepthLowEvent attribute 307
QDepthLowLimit attribute 308
QDepthMaxEvent attribute 308
QDesc attribute 296
QMgrDesc attribute 331
QMgrIdentifier attribute 332
QMgrName attribute 332
QMNAME parameter 221

MQCONNX call 227
QName attribute 297
QRPGLESRC 337
QServiceInterval attribute 308
QServiceIntervalEvent attribute 309
QSIE* values 309
QT* values 297, 315
QType attribute 297

queue, dynamic 251
queue attributes

alias 315
common to all queues 293
local 299
local definition of remote 313
model 299

queue-manager aliasing 313
queue manager attributes 323

R
RC* values 101, 358
reason codes

alphabetic list 357
numeric list 442

REASON parameter
MQBACK call 203
MQBEGIN call 207
MQCLOSE call 213
MQCMIT call 217
MQCONN call 223
MQCONNX call 227
MQDISC call 229
MQGET call 233
MQINQ call 247
MQOPEN call 257
MQPUT call 267
MQPUT1 call 276
MQSET call 285
MQXCNVC call 477

reference message header structure 169
RemoteEvent attribute 332
RemoteQMgrName attribute 313
RemoteQName attribute 314
reply queue aliasing 313
Report field

using 457
report message conversion 467
RepositoryName attribute 332
RepositoryNamelist attribute 332
response record structure 177
RetentionInterval attribute 309
return codes 357
RL* values 74
RM* values 170, 171
RMCSI field 171
RMDEL field 173
RMDEO field 173
RMDL field 174
RMDNL field 174
RMDNO field 174
RMDO field 174
RMDO2 field 175
RMENC field 171
RMFLG field 171
RMFMT field 171
RMLEN field 171
RMOII field 172
RMOT field 172
RMSEL field 172
RMSEO field 172
RMSID field 170
RMSNL field 173
RMSNO field 173
RMVER field 170
RO* values 86
RPG (ILE) sample programs 341

RPG programming language
COPY file 8
notational conventions 10
structures 10, 337

RRCC field 177
RRREA field 177

S
sample programs 341

browse 344
echo 348
get 345
inquire 349
preparing and running 343
put 343
request 346
set 351
trigger monitor 352
trigger server 352
using remote queues 353
using triggering 346

SCO* values 297
scope, handles 223, 257
Scope attribute 297
SEG* values 73
SELCNT parameter

MQINQ call 241
MQSET call 283

SELS parameter
MQINQ call 241
MQSET call 283

Shareability attribute 310
SI* values 144
SIT* values 143
softcopy books 502
SP* values 333
SRCBUF parameter 476
SRCCSI parameter 476
SRCLEN parameter 476
SS* values 73
StartStopEvent attribute 333
structures – RPG programming

language 10, 337
syncpoint 333

in CICS for AS/400 applications 339
with MQSeries for AS/400 338

SyncPoint attribute 333

T
TC* values 186, 310
TC2AI field 186
TC2AT field 186
TC2ED field 186
TC2PN field 186
TC2QMN field 187
TC2QN field 186
TC2SID field 186
TC2TD field 186
TC2UD field 186
TC2VER field 186
terminology xii
terminology used in this book 487
TGTBUF parameter 477
TGTCSI parameter 476
TGTLEN parameter 477

Index 507

TM* values 180
TMAI field 182
TMAT field 181
TMED field 182
TMPN field 181
TMQN field 180
TMSID field 180
TMTD field 181
TMUD field 182
TMVER field 180
transmission queue header structure 193
trigger message structure 179
TriggerControl attribute 310
TriggerData attribute 310
TriggerDepth attribute 311
triggering 310
TriggerInterval attribute 333
TriggerMsgPriority attribute 311
TriggerType attribute 311
trusted application 32
TT* values 311
type styles in this book xii

U
Uncommitted messages 330
US* values 312
Usage attribute 312
UserData attribute 321

W
WI* values 22, 69, 189
WICSI field 190
WIENC field 190
WIFLG field 190
WIFMT field 190
WILEN field 190
Windows Help 502
WIRSV field 191
WISID field 189
WISNM field 190
WISST field 190
WITOK field 191
WIVER field 189

X
XmitQName attribute 314

XQ* values 196

XQMD field 196

XQRQ field 196

XQRQM field 196

XQSID field 196

XQVER field 196

XR* values 472

508 MQSeries for AS/400, V5.1 APR (ILE RPG)

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2000 509

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5559-00

Spine information:

IBM MQSeries® for AS/400® MQSeries for AS/400, V5.1 APR (ILE RPG) V5.1

	Contents
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Appearance of text in this book
	Terms used in this book

	Part 1. Data type descriptions
	Chapter 1. Elementary data types
	Conventions used in the descriptions of data types
	Elementary data types
	MQBYTE - Byte
	MQBYTEn – String of n bytes
	MQCHAR – character
	MQCHARn – String of n characters
	MQHCONN – Connection handle
	MQHOBJ – Object handle
	MQLONG – Long integer
	Elementary data types

	Chapter 2. Structure data types – programmingconsiderations
	Conventions used in the descriptions of data types
	Language considerations
	COPY files
	Calls
	Structures
	Notational conventions
	MQI procedures
	Threading considerations
	MQI call parameters
	Named constants
	Commitment control
	Coding the bound calls
	Coding the dynamic calls

	Chapter 3. MQBO - Begin options
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 4. MQCIH - CICS bridge header
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 5. MQCNO - Connect options
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 6. MQDH - Distribution header
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 7. MQDLH - Dead-letter header
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 8. MQGMO - Get-message options
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 9. MQIIH - IMS bridge header
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 10. MQMD - Message descriptor
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 11. MQMDE - Message descriptor extension
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 12. MQOD - Object descriptor
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 13. MQOR - Object record
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 14. MQPMO - Put message options
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 15. MQPMR - Put-message record
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 16. MQRMH - Message reference header
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 17. MQRR - Response record
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 18. MQTM - Trigger message
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 19. MQTMC2 - Trigger message (character format)
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 20. MQWIH - Work information header
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Chapter 21. MQXQH - Transmission queue header
	Overview
	Fields
	Initial values and RPG declaration
	RPG declaration

	Part 2. Function calls
	Chapter 22. Call descriptions
	Conventions used in the call descriptions

	Chapter 23. MQBACK - Back out changes
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 24. MQBEGIN - Begin unit of work
	Syntax
	Parameters
	Usage notes
	RPG invocation (ILE)

	Chapter 25. MQCLOSE - Close object
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 26. MQCMIT - Commit changes
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 27. MQCONN - Connect queue manager
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 28. MQCONNX - Connect queue manager (extended)
	Syntax
	Parameters
	RPG invocation

	Chapter 29. MQDISC - Disconnect queue manager
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 30. MQGET - Get message
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 31. MQINQ - Inquire about object attributes
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 32. MQOPEN - Open object
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 33. MQPUT - Put message
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 34. MQPUT1 - Put one message
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Chapter 35. MQSET - Set object attributes
	Syntax
	Parameters
	Usage notes
	RPG invocation

	Part 3. Attributes of objects
	Chapter 36. Attributes of MQSeries objects
	Chapter 37. Attributes for all queues
	Chapter 38. Attributes for local queues and model queues
	Chapter 39. Attributes for local definitions of remote queues
	Chapter 40. Attributes for alias queues
	Chapter 41. Attributes for namelists
	Chapter 42. Attributes for process definitions
	Chapter 43. Attributes for the queue manager
	Part 4. Applications
	Chapter 44. Building your application
	MQSeries copy files
	Preparing your programs to run
	Interfaces to the AS/400 external syncpoint manager
	Syncpoints in CICS for AS/400 applications

	Chapter 45. Sample programs
	Features demonstrated in the sample programs
	Preparing and running the sample programs
	Running the sample programs

	The Put sample program
	Design of the Put sample program

	The Browse sample program
	Design of the Browse sample program

	The Get sample program
	Design of the Get sample program

	The Request sample program
	Using triggering with the Request sample
	Design of the Request sample program

	The Echo sample program
	Design of the Echo sample program

	The Inquire sample program
	Design of the Inquire sample program

	The Set sample program
	Design of the Set sample program

	The Triggering sample programs
	The AMQ3TRG4 sample trigger monitor
	Design of the trigger monitor

	The AMQ3SRV4 sample trigger server
	Design of the trigger server

	Ending the Triggering sample programs

	Running the samples using remote queues

	Part 5. Appendixes
	Appendix A. Return codes
	Completion codes
	Reason codes

	Appendix B. MQSeries constants
	List of constants
	LN* (Lengths of character string and byte fields)
	AC* (Accounting token)
	ATT* (Accounting token type)
	AT* (Application type)
	BND* (Binding)
	BO* (Begin options)
	BO* (Begin options structure identifier)
	BO* (Begin options version)
	CA* (Character attribute selector)
	AD* (CICS header ADS descriptor)
	CC* (Completion code)
	CS* (Coded character set identifier)
	CT* (CICS header conversational task)
	FC* (CICS header facility)
	CF* (CICS header function name)
	WI* (CICS header get-wait interval)
	CI* (Correlation identifier)
	MQ* (Call identifier)
	CIF* (CICS header flags)
	CI* (CICS header length)
	CI* (CICS header structure identifier)
	CI* (CICS header version)
	LT* (CICS header link type)
	CMLV* (Command level)
	CN* (Connect options)
	CN* (Connect options structure identifier)
	CN* (Connect options version)
	CO* (Close options)
	OL* (CICS header output data length)
	CRC* (CICS header return code)
	SC* (CICS header transaction start code)
	TE* (CICS header task end status)
	CU* (CICS header unit-of-work control)
	DCC* (Convert-characters masks and factors)
	DCC* (Convert-characters options)
	DH* (Distribution header structure identifier)
	DH* (Distribution header version)
	DHF* (Distribution header flags)
	DL* (Distribution list support)
	DL* (Dead-letter header structure identifier)
	DL* (Dead-letter header version)
	DX* (Data-conversion-exit parameter structure identifier)
	DX* (Data-conversion-exit parameter structure version)
	EI* (Expiry interval)
	EN* (Encoding)
	EN* (Encoding masks)
	EN* (Encoding for packed-decimal integers)
	EN* (Encoding for floating-point numbers)
	EN* (Encoding for binary integers)
	EV* (Event reporting)
	FB* (Feedback)
	FM* (Format)
	GI* (Group identifier)
	GM* (Get message options)
	GM* (Get message options structure identifier)
	GM* (Get message options version)
	GS* (Group status)
	HC* (Connection handle)
	HO* (Object handle)
	IA* (Integer attribute selector)
	IAU* (IMS authenticator)
	IAV* (Integer attribute value)
	ICM* (IMS commit mode)
	II* (IMS header flags)
	II* (IMS header length)
	II* (IMS header structure identifier)
	II* (IMS header version)
	ISS* (IMS security scope)
	ITI* (IMS transaction instance identifier)
	ITS* (IMS transaction state)
	MD* (Message descriptor structure identifier)
	MD* (Message descriptor version)
	ME* (Message descriptor extension length)
	ME* (Message descriptor extension structure identifier)
	ME* (Message descriptor extension version)
	MEF* (Message descriptor extension flags)
	MS* (Message delivery sequence)
	MF* (Message flags)
	MF* (Message-flags masks)
	MI* (Message identifier)
	MO* (Match options)
	MT* (Message type)
	MTK* (Message token)
	NC* (Name count)
	OD* (Object descriptor length)
	OD* (Object descriptor structure identifier)
	OD* (Object descriptor version)
	OII* (Object instance identifier)
	OL* (Original length)
	OO* (Open options)
	OT* (Object type)
	PE* (Persistence)
	PL* (Platform)
	PM* (Put message options)
	PM* (Put message options structure length)
	PM* (Put message options structure identifier)
	PM* (Put message options version)
	PF* (Put message record field flags)
	PR* (Priority)
	QA* (Inhibit get)
	QA* (Inhibit put)
	QA* (Backout hardening)
	QA* (Queue shareability)
	QD* (Queue definition type)
	QSIE* (Service interval events)
	QT* (Queue type)
	RC* (Reason code)
	RL* (Returned length)
	RM* (Reference message header structure identifier)
	RM* (Reference message header version)
	RM* (Reference message header flags)
	RO* (Report options)
	RO* (Report-options masks)
	SCO* (Queue scope)
	SEG* (Segmentation)
	SI* (Security identifier)
	SIT* (Security identifier type)
	SP* (Syncpoint)
	SS* (Segment status)
	TC* (Trigger control)
	TM* (Trigger message structure identifier)
	TM* (Trigger message version)
	TC* (Trigger message character format structure identifier)
	TC* (Trigger message character format version)
	TT* (Trigger type)
	US* (Usage)
	WI* (Wait interval)
	WI* (Workload information header flags)
	WI* (Workload information header structure length)
	WI* (Workload information header structure identifier)
	WI* (Workload information header version)
	XR* (Data-conversion-exit response)
	XQ* (Transmission queue header structure identifier)
	XQ* (Transmission queue header version)

	Appendix C. Rules for validating MQI options
	MQOPEN call
	MQPUT call
	MQPUT1 call
	MQGET call
	MQCLOSE call

	Appendix D. Machine encodings
	Binary-integer encoding
	Packed-decimal-integer encoding
	Floating-point encoding
	Constructing encodings
	Analyzing encodings
	Using arithmetic

	Summary of machine architecture encodings

	Appendix E. Report options
	Structure of the report field
	Analyzing the report field
	Using arithmetic

	Structure of the message-flags field

	Appendix F. Data conversion
	Conversion processing
	Processing conventions
	Conversion of report messages
	MQDXP – Data-conversion exit parameter
	Fields
	RPG declaration (ILE)

	MQXCNVC - Convert characters
	Syntax
	Parameters

	RPG invocation
	MQCONVX - Data conversion exit
	Syntax
	Parameters
	Usage notes

	RPG invocation

	Appendix G. Notices
	Programming interface information
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	BookManager format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications

	Index
	Sending your comments to IBM

