
MQSeries®

Using C++

SC33-1877-03

���

MQSeries®

Using C++

SC33-1877-03

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 137.

Fourth edition (March 2000)

This edition applies to the following products:
v MQSeries for AIX® Version 5.1

v MQSeries for AS/400® Version 5.1

v MQSeries for HP-UX Version 5.1

v MQSeries for OS/2® Warp Version 5.1

v MQSeries for OS/390® Version 2.1

v MQSeries for Sun Solaris Version 5.1

v MQSeries for Windows NT® Version 5.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

Contents

Figures vii

Tables ix

About this book xi
What you need to know to understand this book . . xi

The base directory xi
How to use this book xi

Summary of changes xiii
Changes for this edition (SC33-1877-03) xiii
Changes for the third edition (SC33-1877-02) . . . xiii
Changes for the second edition (SC33-1877-01) . . xiii

Chapter 1. Introduction to MQSeries C++ 1
Features of MQSeries C++ 1
Preparing message data. 4
Reading messages 5
Writing a message to the dead-letter queue 11
Writing a message to the IMS bridge 12
Writing a message to the CICS bridge 13
Writing a message to the work header 14
Sample programs 14

Sample program HELLO WORLD (imqwrld.cpp) 15
Sample programs SPUT (imqsput.cpp) and SGET
(imqsget.cpp) 18
Sample program DPUT (imqdput.cpp) 18

Implicit operations 18
Connect 18
Open 18
Reopen 19
Close 19
Disconnect. 19

Binary and character strings 19
Unsupported functions 20

Chapter 2. C++ language
considerations 21
Header files 21
Methods 21
Attributes 21
Data types. 22

Elementary data types 22
Manipulating binary strings 22
Manipulating character strings 22
Initial state of objects 22
Using C from C++ 23
Notational conventions 23

Chapter 3. MQSeries C++ classes . . . 25
ImqBinary 27

Other relevant classes 27
Object attributes 27
Constructors 27

Overloaded “ImqItem” methods 27
Object methods (public) 28
Object methods (protected) 28
Reason codes 28

ImqCache 29
Other relevant classes 29
Object attributes 29
Constructors 30
Object methods (public) 30
Reason codes 31

ImqCICSBridgeHeader 32
Other relevant classes 32
Object attributes 32
Constructors 35
Overloaded “ImqItem” methods 35
Object methods (public) 35
Object data (protected) 38
Reason codes 38
Return codes 38

ImqDeadLetterHeader 39
Other relevant classes 39
Object attributes 39
Constructors 40
Overloaded “ImqItem” methods 40
Object methods (public) 40
Object data (protected) 41
Reason codes 41

ImqDistributionList. 42
Other relevant classes 42
Object attributes 42
Constructors 42
Object methods (public) 42
Object methods (protected) 43

ImqError 44
Other relevant classes 44
Object attributes 44
Constructors 44
Object methods (public) 44
Object methods (protected) 44
Reason codes 45

ImqGetMessageOptions 46
Other relevant classes 46
Object attributes 46
Constructors 47
Object methods (public) 48
Object data (protected) 49
Reason codes 49

ImqHeader 50
Other relevant classes 50
Object attributes 50
Constructors 50
Object methods (public) 51

ImqIMSBridgeHeader 52
Other relevant classes 52
Object attributes 52
Constructors 53

© Copyright IBM Corp. 1997, 2000 iii

||

||

Overloaded “ImqItem” methods 53
Object methods (public) 53
Object data (protected) 54
Reason codes 54

ImqItem 55
Other relevant classes 55
Object attributes 55
Constructors 55
Class methods (public) 55
Object methods (public) 56
Reason codes 56

ImqMessage 57
Other relevant classes 57
Object attributes 57
Constructors 61
Object methods (public) 61
Object data (protected) 63

ImqMessageTracker. 64
Other relevant classes 64
Object attributes 64
Constructors 65
Object methods (public) 65
Reason codes 67

ImqNamelist 68
Other relevant classes 68
Object attributes 68
Constructors 68
Object methods (public) 68
Reason codes 69

ImqObject 70
Other relevant classes 70
Class attributes 70
Object attributes 70
Constructors 72
Class methods (public) 72
Object methods (public) 72
Object methods (protected) 74
Object data (protected) 75
Reason codes 75

ImqProcess 77
Other relevant classes 77
Object attributes 77
Constructors 77
Object methods (public) 77

ImqPutMessageOptions 79
Other relevant classes 79
Object attributes 79
Constructors 80
Object methods (public) 80
Object data (protected) 81
Reason codes 81

ImqQueue 82
Other relevant classes 82
Object attributes 82
Constructors 85
Object methods (public) 85
Object methods (protected) 92
Reason codes 92

ImqQueueManager 94
Other relevant classes 94
Class attributes 94

Object attributes 94
Constructors 96
Destructors 96
Class methods (public) 96
Object methods (public) 97
Object methods (protected) 101
Object data (protected) 101
Reason codes 101

ImqReferenceHeader 102
Other relevant classes 102
Object attributes 102
Constructors. 103
Overloaded “ImqItem” methods 103
Object methods (public) 103
Object data (protected) 104
Reason codes 104

ImqString 105
Other relevant classes 105
Object attributes 105
Constructors. 105
Class methods (public) 106
Overloaded “ImqItem” methods 106
Object methods (public) 106
Object methods (protected) 110
Reason codes 110

ImqTrigger 111
Other relevant classes. 111
Object attributes 111
Constructors. 112
Overloaded “ImqItem” methods 112
Object methods (public) 112
Object data (protected) 113
Reason codes 113

ImqWorkHeader 114
Other relevant classes 114
Object attributes 114
Constructors. 114
Overloaded “ImqItem” methods 114
Object methods (public) 115
Object data (protected) 115
Reason codes 115

Appendix A. Compiling and linking 117
Compilers for MQSeries platforms 117
Compiling C++ sample programs for AS/400. . . 118
Compiling VisualAge C++ sample programs for
Windows 95, 98, and NT 119
Building an application on OS/390 119

Running sample programs on OS/390 120

Appendix B. MQI cross-reference . . . 121
Data structure, class, and include-file
cross-reference 121
Class attribute cross-reference 122

ImqCache 122
ImqCICSBridgeHeader 122
ImqDeadLetterHeader 123
ImqError 123
ImqGetMessageOptions 123
ImqHeader 124
ImqIMSBridgeHeader 124

iv MQSeries Using C++

||

||

ImqItem 124
ImqMessage 124
ImqMessageTracker 125
ImqNamelist 125
ImqObject 125
ImqProcess 126
ImqPutMessageOptions 126
ImqQueue 126
ImqQueueManager 128
ImqReferenceHeader 129
ImqTrigger 130
ImqWorkHeader 130

Appendix C. Reason codes 131

Appendix D. Notices 137
Programming interface information 138
Trademarks 139

Glossary of terms and abbreviations 141

Bibliography. 143
MQSeries cross-platform publications 143
MQSeries platform-specific publications 145
Softcopy books 146

BookManager® format 146
HTML format 146
Portable Document Format (PDF) 146
PostScript format 146
Windows Help format 146

MQSeries information available on the Internet . . 146
Related publications 146

Index 149

Sending your comments to IBM . . . 153

Contents v

vi MQSeries Using C++

Figures

1. MQSeries C++ classes (queue management) 2
2. MQSeries C++ classes (item handling) 3
3. Ways of preparing message data 5
4. Retrieving items within a message 6
5. Custom encapsulated message-writing code 8
6. Custom encapsulated message-reading code 9
7. Retrieving messages into a fixed area of

storage 10
8. Writing a message to the dead-letter queue 11
9. Writing a message to the IMS bridge 12

10. Writing a message to the CICS bridge. . . . 13
11. Writing a message to the work header . . . 14
12. The HELLO WORLD sample program . . . 16
13. Manipulating binary strings 22
14. Declaration and use conventions 23
15. Format for string text to integer conversion 108
16. Retrieving integers from string text 108
17. Retrieving tokens from string text. 108
18. Parsing a path in a string 109

© Copyright IBM Corp. 1997, 2000 vii

||

viii MQSeries Using C++

Tables

1. Location of sample programs 14
2. C/C++ header files 21
3. ImqCICSBridgeHeader class return codes 38
4. MQSeries C++ switches and link libraries 117
5. OS/390 sample program files 120
6. Data structure, class, and include-file

cross-reference 121
7. ImqCache cross-reference 122
8. ImqCICSBridgeHeader cross reference 122
9. ImqDeadLetterHeader cross reference 123

10. ImqError cross reference 123
11. ImqGetMessageOptions cross reference 123
12. ImqHeader cross reference 124

13. ImqIMSBridgeHeader cross reference 124
14. ImqItem cross reference 124
15. ImqMessage cross reference 124
16. ImqMessageTracker cross reference 125
17. ImqNamelist cross reference 125
18. ImqObject cross reference 125
19. ImqProcess cross reference 126
20. ImqPutMessageOptions cross reference 126
21. ImqQueue cross reference 126
22. ImqQueueManager cross reference 128
23. ImqReferenceHeader 129
24. ImqTrigger cross reference 130
25. ImqWorkHeader cross reference 130

© Copyright IBM Corp. 1997, 2000 ix

||

x MQSeries Using C++

About this book

This publication describes the C++ programming-language binding to the Message
Queue Interface (MQI). This part of the MQSeries products is referred to as
MQSeries C++.

MQSeries C++ is supplied as part of the following products:
v MQSeries for AIX Version 5 and later
v MQSeries for AS/400 Version 4 Release 2 and later
v MQSeries for HP-UX Version 5 and later
v MQSeries for OS/2 Warp Version 5 and later
v MQSeries for OS/390 Version 2.1 and later
v MQSeries for Sun Solaris Version 5 and later
v MQSeries for Windows NT Version 5 and later

The information is intended for application programmers who write programs to
make use of the MQI.

What you need to know to understand this book
You should have:
v Knowledge of the C programming language
v Knowledge of the C++ programming language
v Some understanding of the Booch methodology
v Understanding of the purpose of the Message Queue Interface (MQI) as

described in the MQSeries Application Programming Guide and in the MQSeries
Application Programming Reference book

v Experience of MQSeries programs in general, or familiarity with the content of
other MQSeries publications

The base directory
Throughout this book, the name mqmtop has been used to represent the name of
the base directory where MQSeries is typically installed.
v For MQSeries for OS/2 Warp and MQSeries for Windows NT, mqmtop

represents the directory \mqm. On MQSeries for Windows NT, it may
sometimes represent the directory \Program Files\MQSeries.

v For MQSeries for AIX, mqmtop represents the directory /usr/mqm.
v For other UNIX systems, the name of the actual directory is /opt/mqm.

How to use this book
First read “Chapter 1. Introduction to MQSeries C++” on page 1. This chapter is a
guide to programming in C++ for MQSeries, as well as an introduction.

There are some things specific to C++ that you may need to know in “Chapter 2.
C++ language considerations” on page 21.

© Copyright IBM Corp. 1997, 2000 xi

|

|
|

|
|
|

|

|

|

“Chapter 3. MQSeries C++ classes” on page 25. is the main, reference part of the
book. This should be read together with “Appendix B. MQI cross-reference” on
page 121 and the MQSeries Application Programming Reference.

The Appendixes contain information about compiling and linking your programs,
a cross-reference to the MQSeries data structures, object attributes, calls, and some
additional reason codes.

There is a glossary and a bibliography at the back of the book.

About this book

xii MQSeries Using C++

|
|
|

Summary of changes

This information describes changes to the MQSeries product and changes to this
edition of the MQSeries Using C++ book. Changes since the previous edition of the
book are marked in the left-hand margin with vertical bars

Changes for this edition (SC33-1877-03)
For additional new function in MQSeries for AS/400 V5.1, see “Compiling C++
sample programs for AS/400” on page 118.

Changes for the third edition (SC33-1877-02)
v MQSeries for C++ is now supplied as part of MQSeries for OS/390 V2.1.
v Three new MQSeries C++ classes are supported:

– ImqCicsBridgeHeader
– ImqNameList
– ImqWorkHeader

Changes for the second edition (SC33-1877-01)
MQSeries C++ is supplied as part of MQSeries for AS/400 Version 4 Release 2, in
addition to being supplied as part of the MQSeries Version 5 products.

© Copyright IBM Corp. 1997, 2000 xiii

|
|
|

|
|

|
|

Changes

xiv MQSeries Using C++

Chapter 1. Introduction to MQSeries C++

MQSeries C++ allows you to write MQSeries application programs in the C++
programming language.

This chapter describes the following:
v “Features of MQSeries C++”
v “Preparing message data” on page 4
v “Reading messages” on page 5
v “Writing a message to the dead-letter queue” on page 11
v “Writing a message to the IMS bridge” on page 12
v “Writing a message to the CICS bridge” on page 13
v “Writing a message to the work header” on page 14
v “Sample programs” on page 14
v “Implicit operations” on page 18
v “Binary and character strings” on page 19
v “Unsupported functions” on page 20

MQSeries C++ can be used with the following products when they have been
installed as a full queue manager:
v MQSeries for AIX Version 5 and later
v MQSeries for AS/400 Version 4 Release 2 and later
v MQSeries for HP-UX Version 5 and later
v MQSeries for OS/2 Warp Version 5 and later
v MQSeries for OS/390
v MQSeries for Sun Solaris Version 5 and later
v MQSeries for Windows NT Version 5 and later

MQSeries C++ can also be used with an MQSeries client supplied with the Version
5 products and installed on the following platforms:
v AIX
v HP-UX
v OS/2
v Sun Solaris
v Windows 3.1
v Windows 95
v Windows NT

Features of MQSeries C++
MQSeries C++ provides the following features:
v Automatic initialization of MQSeries data structures
v Just-in-time queue manager connection and queue opening
v Implicit queue closure and queue manager disconnection
v Dead-letter header transmission and receipt
v IMS® Bridge header transmission and receipt
v Reference message header transmission and receipt
v Trigger message receipt
v CICS® Bridge header transmission and receipt
v Work header transmission and receipt

The following Booch class diagrams show that all the classes are broadly parallel
to those MQSeries entities in the procedural MQI (for example C) that have either

© Copyright IBM Corp. 1997, 2000 1

|
|
|
|
|
|
|
|
|
|
|
|

|

handles or data structures. All classes inherit from the ImqError class (see
“ImqError” on page 44), which allows an error condition to be associated with each
object.

To interpret Booch class diagrams correctly, you must be aware of the following:
v Methods and noteworthy attributes are listed below the class name.
v A small triangle within a cloud denotes an abstract class.
v Inheritance is denoted by an arrow to the parent class.
v An undecorated line between clouds denotes a cooperative relationship between

classes.
v A line decorated with a number denotes a referential relationship between two

classes. The number indicates the number of objects that may participate in a
given relationship at any one time.

priority : Integer

Distribution
List

wait interval : Integer

A

close()
name :String

open()

backout()
begin()

commit()
connect()

disconnect()

get()
put()

queue manager name :String

Queue Manager

Queue

Object

Put Message
Options

correlation id :Binary
group id :Binary

message id :Binary

MessageTracker

buffer length : Integer
data offset : Integer

message length : Integer
useEmptyBuffer()

useFullBuffer()

Cache

Message

Get Message
Options

n

1

referenced by

n

managed by

1

Namelist

Figure 1. MQSeries C++ classes (queue management)

Features

2 MQSeries Using C++

The following classes and data types are used in the C++ method signatures of the
queue management classes (see Figure 1 on page 2) and the item handling classes
(see Figure 2):
v The ImqBinary class (see “ImqBinary” on page 27), which encapsulates byte

arrays such as MQBYTE24.
v The ImqBoolean data type, which is defined as typedef unsigned char

ImqBoolean.
v The ImqString class (see “ImqString” on page 105), which encapsulates character

arrays such as MQCHAR64.

Entities with data structures are subsumed within appropriate object classes.
Individual data structure fields (see “Appendix B. MQI cross-reference” on
page 121) are accessed with methods.

Entities with handles come under the ImqObject class hierarchy (see “ImqObject”
on page 70) and provide encapsulated interfaces to the MQI. Objects of these

classes exhibit intelligent behavior that can reduce the number of method
invocations required relative to the procedural MQI. For example, you can
establish and discard queue manager connections as required, or you can open a
queue with appropriate options, then close it.

The ImqMessage class (see “ImqMessage” on page 57) encapsulates the MQMD
data structure and also acts as a holding point for user data and items (see
“Reading messages” on page 5) by providing cached buffer facilities. You can

Trigger

Dead Letter
Header

CICS
Bridge
Header

IMS
Bridge
Header

Work
Header

A

Reference
Header

A

copyOut()
pasteIn()

format : String
formatIs()
readItem()
writeItem()

character set : Integer
encoding : Integer

format : String
header flags : Integer

Message

Header

Item

Figure 2. MQSeries C++ classes (item handling)

Features

Chapter 1. Introduction to MQSeries C++ 3

provide fixed-length buffers for user data and use the buffer many times. The
amount of data present in the buffer can vary from one use to the next.
Alternatively, the system can provide and manage a buffer of flexible length. Both
the size of the buffer (the amount available for receipt of messages) and the
amount actually used (either the number of bytes for transmission or the number
of bytes actually received) become important considerations.

Preparing message data
When you send a message, message data is first prepared in a buffer managed by
an ImqCache object (see “ImqCache” on page 29). A buffer is associated (by
inheritance) with each ImqMessage object (see “ImqMessage” on page 57): it can be
supplied by the application (using either the useEmptyBuffer or useFullBuffer
method) or automatically by the system. The advantage of the application
supplying the message buffer is that no data copying is necessary in many cases
because the application can use prepared data areas directly. The disadvantage is
that the supplied buffer is of a fixed length.

The buffer can be reused, and the number of bytes transmitted can be varied each
time, by using the setMessageLength method prior to transmission.

When supplied automatically by the system, the number of bytes available is
managed by the system, and data can be copied into the message buffer using, for
example, the ImqCache write method, or the ImqMessage writeItem method. The
message buffer grows according to need. As the buffer grows, there is no loss of
previously written data. A large or multipart message can be written in sequential
pieces.

Figure 3 on page 5 shows simplified straightforward message sends.

Features

4 MQSeries Using C++

Reading messages
When receiving data, the application or the system can supply a suitable message
buffer. The same buffer can be used for both multiple transmission and multiple
receipt for a given ImqMessage object. If the message buffer is supplied
automatically, it grows to accommodate whatever length of data is received.
However, if the application supplies the message buffer, it might not be big
enough. Then either truncation or failure might occur, depending on the options
used for message receipt.

Incoming data can be accessed directly from the message buffer, in which case the
data length indicates the total amount of incoming data. Alternatively, incoming
data can be read sequentially from the message buffer. In this case, the data
pointer addresses the next byte of incoming data, and the data pointer and data
length are updated each time data is read.

Items are pieces of a message, all in the user area of the message buffer, that need
to be processed sequentially and separately. Apart from regular user data, an item
might be a dead-letter header or a trigger message. Items are always associated
with message formats; message formats are not always associated with items.

There is a class of object for each item that corresponds to a recognizable MQSeries
message format. There is one for a dead-letter header and one for a trigger
message. There is no class of object for user data. That is, once the recognizable
formats have been exhausted, processing the remainder is left to the application
program. Classes for user data can be written by specializing the ImqItem class.

/* 1. Use prepared data in a user-supplied buffer. */
char pszBuffer[] = "Hello world" ;

msg.useFullBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);

/* 2. Use prepared data in a user-supplied buffer, */
/* where the buffer size exceeds the data size. */
char pszBuffer[24] = "Hello world" ;

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);
msg.setMessageLength(12);

/* 3. Copy data to a user-supplied buffer. */
char pszBuffer[12];

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

/* 4. Copy data to a system-supplied buffer. */
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

/* 5. Copy data to a system-supplied buffer using objects. */
/* (Objects set the message format as well as content.) */
ImqString strText("Hello world");

msg.writeItem(strText);

Figure 3. Ways of preparing message data

Reading messages

Chapter 1. Introduction to MQSeries C++ 5

Figure 4 shows a message receipt that takes account of a number of potential items
that can precede the user data, in an imaginary situation. Non-item user data is
simply defined as anything that occurs after items that can be identified. An
automatic buffer (the default) is used to hold an arbitrary amount of message data.

ImqQueue queue ;
ImqMessage msg ;

if (queue.get(msg)) {

/* Process all items of data in the message buffer. */
do while (msg.dataLength()) {

ImqBoolean bFormatKnown = FALSE ;
/* There remains unprocessed data in the message buffer. */

/* Determine what kind of item is next. */

if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {
ImqDeadLetterHeader header ;
/* The next item is a dead-letter header. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(header)) {
/* The dead-letter header has been extricated from the */
/* buffer and transformed into a dead-letter object. */
/* The encoding and character set of the dead-letter */
/* object itself are MQENC_NATIVE and MQCCSI_Q_MGR. */
/* The encoding and character set from the dead-letter */
/* header have been copied to the message attributes */
/* to reflect any remaining data in the buffer. */

/* Process the information in the dead-letter object. */
/* Note that the encoding and character set have */
/* already been processed. */
...

}
/* There might be another item after this, */
/* or just the user data. */

}
if (msg.formatIs(MQFMT_TRIGGER)) {

ImqTrigger trigger ;
/* The next item is a trigger message. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;
if (msg.readItem(trigger)) {

/* The trigger message has been extricated from the */
/* buffer and transformed into a trigger object. */
/* Process the information in the trigger object. */
...

}

/* There is usually nothing after a trigger message. */
}

Figure 4. Retrieving items within a message (Part 1 of 2)

Reading messages

6 MQSeries Using C++

In Figure 4, FMT_USERCLASS is a constant representing the 8-character format name
associated with an object of class UserClass, and is defined by the application.

UserClass would be derived from the ImqItem class (see “ImqItem” on page 55),
and would implement the virtual copyOut and pasteIn methods from that class.

if (msg.formatIs(FMT_USERCLASS)) {
UserClass object ;
/* The next item is an item of a user-defined class. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(object)) {
/* The user-defined data has been extricated from the */
/* buffer and transformed into a user-defined object. */

/* Process the information in the user-defined object. */
...

}

/* Continue looking for further items. */
}
if (! bFormatKnown) {

/* There remains data which is not associated with a specific */
/* item class. */
char * pszDataPointer = msg.dataPointer(); /* Address. */
int iDataLength = msg.dataLength(); /* Length. */

/* The encoding and character set for the remaining data are */
/* reflected in the attributes of the message object, even */
/* if a dead-letter header was present. */
...

}

}
}

Figure 4. Retrieving items within a message (Part 2 of 2)

Reading messages

Chapter 1. Introduction to MQSeries C++ 7

Figure 5 and Figure 6 on page 9 show example code from the
ImqDeadLetterHeader class (see “ImqDeadLetterHeader” on page 39).

// Insert a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: copyOut (ImqMessage & msg) {

ImqBoolean bSuccess ;
if (msg.moreBytes(sizeof(omqdlh))) {

ImqCache cacheData(msg); // Preserve the original message content.
// Note the original message attributes in the dead-letter header.
setEncoding(msg.encoding());
setCharacterSet(msg.characterSet());
setFormat(msg.format());

// Set the message attributes to reflect the dead-letter header.
msg.setEncoding(MQENC_NATIVE);
msg.setCharacterSet(MQCCSI_Q_MGR);
msg.setFormat(MQFMT_DEAD_LETTER_HEADER);
// Replace the existing data with the dead-letter header.
msg.clearMessage();
if (msg.write(sizeof(omqdlh), (char *) & omqdlh)) {

// Append the original message data.
bSuccess = msg.write(cacheData.messageLength(),

cacheData.bufferPointer());
} else {

bSuccess = FALSE ;
}

} else {
bSuccess = FALSE ;

}
// Reflect and cache error in this object.
if (! bSuccess) {

setReasonCode(msg.reasonCode());
setCompletionCode(msg.completionCode());

}

return bSuccess ;
}

Figure 5. Custom encapsulated message-writing code

Reading messages

8 MQSeries Using C++

With an automatic buffer, it is important to remember that the buffer storage is
volatile. That is, buffer data might be held at a different physical location after each
get method invocation. Therefore, each time buffer data is referenced, use the
bufferPointer or dataPointer methods to access message data.

You may want a program to set aside a fixed area for receiving message data. In
this case, invoke the useEmptyBuffer method before using the get method.

Using a fixed, nonautomatic area limits messages to a maximum size, so it is
important to consider the MQGMO_ACCEPT_TRUNCATED_MSG option of the
ImqGetMessageOptions object. If this option is not specified (this is the default),
the MQRC_TRUNCATED_MSG_FAILED reason code can be expected. If this
option is specified, the MQRC_TRUNCATED_MSG_ACCEPTED reason code may
be expected depending on the design of the application.

// Read a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: pasteIn (ImqMessage & msg) {

ImqBoolean bSuccess = FALSE ;

// First check that the eye-catcher is correct.
// This is also our guarantee that the "character set" is correct.
if (ImqItem::structureIdIs(MQDLH_STRUC_ID, msg)) {

// Next check that the "encoding" is correct, as the MQDLH contains
// numeric data.
if (msg.encoding() == MQENC_NATIVE) {

// Finally check that the "format" is correct.
if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {

char * pszBuffer = (char *) & omqdlh ;
// Transfer the MQDLH from the message and move the pointer on.
if (bSuccess = msg.read(sizeof(omdlh), pszBuffer)) {

// Update the encoding, character set and format of the message
// to reflect the remaining data.
msg.setEncoding(encoding());
msg.setCharacterSet(characterSet());
msg.setFormat(format());

} else {

// Reflect the cache error in this object.
setReasonCode(msg.reasonCode());
setCompletionCode(msg.completeionCode());

}
} else {

setReasonCode(MQRC_INCONSISTENT_FORMAT);
setCompletionCode(MQCC_FAILED);

}
} else {

setReasonCode(MQRC_ENCODING_ERROR);
setCompletionCode(MQCC_FAILED);

{
} else {

setReasonCode(MQRC_STRUC_ID_ERROR);
setCompletionCode(MQCC_FAILED);

}

return bSuccess ;
}

Figure 6. Custom encapsulated message-reading code

Reading messages

Chapter 1. Introduction to MQSeries C++ 9

Figure 7 shows how a fixed area of storage might be used to receive messages:

Note: The responsibility for discarding a user-defined (nonautomatic) buffer rests
with the application, not with the ImqCache class object.

In the fragment shown in Figure 7, the buffer can always be addressed directly,
with pszBuffer, as opposed to using the bufferPointer method, although it is
recommended to use the dataPointer method for general-purpose access.

Note: Specifying a null pointer and zero length with useEmptyBuffer does not
nominate a fixed length buffer of length zero as might be expected. This
combination is actually interpreted as a request to ignore any previous
user-defined buffer, and instead revert to the use of an automatic buffer.

char * pszBuffer = new char[100];

msg.useEmptyBuffer(pszBuffer, 100);
gmo.setOptions(MQGMO_ACCEPT_TRUNCATED_MSG);
queue.get(msg, gmo);

delete [] pszBuffer ;

Figure 7. Retrieving messages into a fixed area of storage

Reading messages

10 MQSeries Using C++

Writing a message to the dead-letter queue
A typical case of a multipart message is one containing a dead-letter header. The
data from a message that cannot be processed is appended to the dead-letter
header.

ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueDead ; // Dead-letter message queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqDeadLetterHeader header ; // Dead-letter header information.

// Retrieve the message to be rerouted.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the dead-letter header information.
header.setDestinationQueueManagerName(mgr.name());
header.setDestinationQueueName(queueIn.name());
header.setPutApplicationName(/* ? */);
header.setPutApplicationType(/* ? */);
header.setPutDate(/* TODAY */);
header.setPutTime(/* NOW */);
header.setDeadLetterReasonCode(FB_APPL_ERROR_1234);

// Insert the dead-letter header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the dead-letter queue.
queueDead.setConnectionReference(mgr);
queueDead.setName(mgr.deadLetterQueueName());
queueDead.put(msg);

Figure 8. Writing a message to the dead-letter queue

Writing to dead-letter queue

Chapter 1. Introduction to MQSeries C++ 11

Writing a message to the IMS bridge
Messages sent to the MQSeries-IMS bridge may use a special header. The IMS
bridge header is prefixed to regular message data.

ImqQueueManager mgr; // The queue manager.
ImqQueue queueBridge; // IMS bridge message queue.
ImqMessage msg; // Outgoing message.
ImqIMSBridgeHeader header; // IMS Bridge header.

// Set up the message.
//
// Here we are constructing a message with format MQFMT_IMS_VAR_STRING,
// and appropriate data.
//
msg.write(2, /* ? */); // Total message length.
msg.write(2, /* ? */); // IMS flags.
msg.write(7, /* ? */); // Transaction code.
msg.write(/* ? */, /* ? */); // String data.
msg.setFormat(MQFMT_IMS_VAR_STRING); // The format attribute.

// Set up the IMS bridge header information.
//
// The reply-to-format is often specified.
// Other attributes can be specified, but all have default values.
//
header.setReplyToFormat(/* ? */);

// Insert the IMS bridge header into the message.
//
// This will:
// 1) Insert the header into the message buffer, before the existing
// data.
// 2) Copy attributes out of the message descriptor into the header,
// for example the IMS bridge header format attribute will now
// be set to MQFMT_IMS_VAR_STRING.
// 3) Set up the message attributes to describe the header, in
// particular setting the message format to MQFMT_IMS.
//
msg.writeItem(header);

// Send the message to the IMS bridge queue.
//
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

Figure 9. Writing a message to the IMS bridge

Writing to IMS bridge

12 MQSeries Using C++

|
|
||

Writing a message to the CICS bridge
Messages sent to MQSeries for OS/390 via the CICS bridge require a special
header. The CICS bridge header is prefixed to regular message data.

ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueBridge ; // CICS bridge message queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqCicsBridgeHeader header ; // CICS bridge header information.

// Retrieve the message to be forwarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the CICS bridge header information.
// The reply-to format is often specified.
// Other attributes can be specified, but all have default values.
header.setReplyToFormat(/* ? */);

// Insert the CICS bridge header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the CICS bridge queue.
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

Figure 10. Writing a message to the CICS bridge

Writing to CICS bridge

Chapter 1. Introduction to MQSeries C++ 13

Writing a message to the work header
Messages sent to MQSeries for OS/390, which are destined for a queue managed
by the OS/390 Workload Manager, require a special header. The work header is
prefixed to regular message data.

Sample programs
The sample programs are:
v HELLO WORLD (imqwrld.cpp)
v SPUT (imqsput.cpp) and SGET (imqsget.cpp)
v DPUT (imqdput.cpp)

Note: DPUT is not supported on OS/390.

The sample programs are located in the directories shown in Table 1.

Note:

The name mqmtop has been used to represent the name of the base
directory where MQSeries is typically installed.
v For MQSeries for OS/2 Warp and MQSeries for Windows NT, mqmtop

represents the directory \mqm. On MQSeries for Windows NT, it may
sometimes represent the directory \Program Files\MQSeries.

v For MQSeries for AIX, mqmtop represents the directory /usr/mqm.
v For other UNIX systems, the name of the actual directory is /opt/mqm.

Table 1. Location of sample programs

Environment Directory containing source Directory containing built
programs

AIX <mqmtop>/samp <mqmtop>/samp/bin/ia

AS/400 /QIBM/ProdData/mqm/samp/ (see note 1)

ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueWLM ; // WLM managed queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqWorkHeader header ; // Work header information

// Retrieve the message to be frowarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Insert the Work header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the WLM managed queue.
queueWLM.setConnectionReference(mgr);
queueWLM.setName(/* ? */);
queueWLM.put(msg);

Figure 11. Writing a message to the work header

Writing to work header

14 MQSeries Using C++

|

|

|||

|||

Table 1. Location of sample programs (continued)

Environment Directory containing source Directory containing built
programs

HP-UX <mqmtop>/samp <mqmtop>/samp/bin/ah and
<mqmtop>/samp/bin/hh.
(see note 2)

OS/2 Warp <mqmtop>\tools\cplus\samples <mqmtop>\tools\cplus\samples\
bin\i2

OS/390 see page 119 see page 119

Sun Solaris <mqmtop>/samp <mqmtop>/samp/bin/ss

Windows NT,
95, and 98

<mqmtop>\tools\cplus\samples <mqmtop>\tools\cplus\samples\
bin\in and
<mqmtop>\tools\cplus\samples\
bin\vn
(see note 3)

Windows 3.1
(16-bit client
only)

bin\vw bin\vw

Notes:

1. Programs built using the ILE C++ compiler for AS/400 are in the library QMQM. The
include files are in /QIBM/ProdData/mqm/inc.

2. Programs built using the HP ANSII C++ compiler are found in directory
<mqmtop>/samp/bin/ah. Programs built using the HP C++ Version 3.1 on HP-UX
V10.20 and HP C++ Version 12.0 on HP-UX V11 are found in
<mqmtop>/samp/bin/hh. For further information about these compilers, see
“Compilers for MQSeries platforms” on page 117.

3. Programs built using the IBM VisualAge for C++ for Windows V3.5 compiler are found
in directory <mqmtop>\tools\cplus\samples\bin\in. Programs built using the
Microsoft™ Visual C++ V4.0 are found in <mqmtop>\tools\cplus\samples\bin\vn. For
further information about these compilers, see “Compilers for MQSeries platforms” on
page 117.

Sample program HELLO WORLD (imqwrld.cpp)
This program shows how to put and get a regular datagram (C structure) using
the ImqMessage class. This sample, which is shown in Figure 12 on page 16, uses
few method invocations, taking advantage of implicit method invocations such as
open, close, and disconnect.

On all platforms except OS/390
If you are using a server connection to MQSeries:
1. Run1 imqwrlds to use the existing default queue

SYSTEM.DEFAULT.LOCAL.QUEUE.
2. Run imqwrlds SYSTEM.DEFAULT.MODEL.QUEUE to use a temporary

dynamically assigned queue.

Note: If you are using a client connection to MQSeries, un imqwrldc.

On OS/390
v Construct and run a batch job, using the sample JCL imqwrldr. See “Running

sample programs on OS/390” on page 120 for more information.

1. For details of executing C++ programs, see “Appendix A. Compiling and linking” on page 117.

Sample programs

Chapter 1. Introduction to MQSeries C++ 15

|||
|
|

|||
|

|||

|||

|
|

|
|
|

||

|

|
|

|
|
|
|
|

|
|
|
|
|

|

|

extern "C" {
#include <stdio.h>
}

#include <imqi.hpp> // MQSeries C++

#define EXISTING_QUEUE "SYSTEM.DEFAULT.LOCAL.QUEUE"

#define BUFFER_SIZE 12

static char gpszHello[BUFFER_SIZE] = "Hello world" ;
int main (int argc, char * * argv) {

ImqQueueManager manager ;
int iReturnCode = 0 ;

// Connect to the queue manager.
if (argc > 2) {

manager.setName(argv[2]);
}
if (manager.connect()) {

ImqQueue * pqueue = new ImqQueue ;
ImqMessage * pmsg = new ImqMessage ;
// Identify the queue which will hold the message.
pqueue -> setConnectionReference(manager);
if (argc > 1) {

pqueue -> setName(argv[1]);

// The named queue can be a model queue, which will result in the
// creation of a temporary dynamic queue, which will be destroyed
// as soon as it is closed. Therefore we must ensure that such a
// queue is not automatically closed and reopened. We do this by
// setting open options which will avoid the need for closure and
// reopening.
pqueue -> setOpenOptions(MQOO_OUTPUT │ MQOO_INPUT_SHARED │

MQOO_INQUIRE);
} else {

pqueue -> setName(EXISTING_QUEUE);

// The existing queue is not a model queue, and will not be
// destroyed by automatic closure and reopening. Therefore we will
// let the open options be selected on an as-needed basis. The
// queue will be opened implicitly with an output option during
// the "put", and then implicitly closed and reopened with the
// addition of an input option during the "get".

}
// Prepare a message containing the text "Hello world".

pmsg -> useFullBuffer(gpszHello , BUFFER_SIZE);
pmsg -> setFormat(MQFMT_STRING);

// Place the message on the queue, using default put message options.
// The queue will be automatically opened with an output option.
if (pqueue -> put(* pmsg)) {

ImqString strQueue(pqueue -> name());

// Discover the name of the queue manager.
ImqString strQueueManagerName(manager.name());
printf("The queue manager name is %s.\n",

(char *)strQueueManagerName);

// Show the name of the queue.
printf("Message sent to %s.\n", (char *)strQueue);

Figure 12. The HELLO WORLD sample program (Part 1 of 2)

Sample programs

16 MQSeries Using C++

// Retrieve the data message just sent ("Hello world" expected)
// from the queue, using default get message options. The queue
// is automatically closed and reopened with an input option
// if it is not already open with an input option. We get the
// message just sent, rather than any other message on the
// queue, because the "put" will have set the ID of the message
// so, as we are using the same message object, the message ID
// acts as in the message object, a filter which says that we
// are interested in a message only if it has this particular ID.

if (pqueue -> get(* pmsg)) {
int iDataLength = pmsg -> dataLength();
// Show the text of the received message.
printf("Message of length %d received, ", iDataLength);

if (pmsg -> formatIs(MQFMT_STRING)) {
char * pszText = pmsg -> bufferPointer();

// If the last character of data is a null, then we can
// assume that the data can be interpreted as a text string.
if (! pszText[iDataLength - 1]) {

printf("text is \"%s\".\n", pszText);
} else {

printf("no text.\n");

}

} else {
printf("non-text message.\n");

}
} else {

printf("ImqQueue::get failed with reason code %ld\n",
pqueue -> reasonCode());

iReturnCode = (int)pqueue -> reasonCode();
}

} else {
printf("ImqQueue::open/put failed with reason code %ld\n",

pqueue -> reasonCode());
iReturnCode = (int)pqueue -> reasonCode();

}
// Deletion of the queue will ensure that it is closed.
// If the queue is dynamic then it will also be destroyed.
delete pqueue ;
delete pmsg ;

} else {
printf("ImqQueueManager::connect failed with reason code %ld\n"

manager.reasonCode());
iReturnCode = (int)manager.reasonCode();

}
// Destruction of the queue manager ensures that it is
// disconnected. If the queue object were still available
// and open (which it is not), the queue would be closed
// prior to disconnection.

return iReturnCode ;
}

Figure 12. The HELLO WORLD sample program (Part 2 of 2)

Sample programs

Chapter 1. Introduction to MQSeries C++ 17

Sample programs SPUT (imqsput.cpp) and SGET
(imqsget.cpp)

These programs place messages to and retrieve messages from a named queue.

On all platforms except OS/390
1. Run imqsputs queue-name.
2. Type in lines at the console, which are placed with MQSeries as messages.
3. Enter a null line to end the input.
4. Run imqsgets queue-name to retrieve all the lines and display them at the

console.

On OS/390
1. Construct and run a batch job using the sample JCL imqsputr. The messages

are read from the SYSIN data set.
2. Construct and run a batch job using the sample JCL imqsgetr. The messages

are retrieved from the queue and sent to the SYSPRINT data set.

See “Running sample programs on OS/390” on page 120 for more information.

These samples show the use of the following classes:
ImqError (see “ImqError” on page 44)
ImqMessage (see “ImqMessage” on page 57)
ImqObject (see “ImqObject” on page 70)
ImqQueue (see “ImqQueue” on page 82)
ImqQueueManager (see “ImqQueueManager” on page 94)

Sample program DPUT (imqdput.cpp)
This is a distribution list program that puts messages to a distribution list
consisting of two queues. DPUT shows the use of the ImqDistributionList class
(see “ImqDistributionList” on page 42). This sample is not supported on OS/390.
1. Run imqdputs queue-name-1 queue-name-2 to place messages on the two named

queues.
2. Run imqsgets queue-name-1 and imqsgets queue-name-2 to retrieve the messages

from those queues.

Implicit operations
Several operations can occur implicitly, “just in time” to satisfy the prerequisite
conditions for the successful execution of a method. These implicit operations are
connect, open, reopen, close, and disconnect.2

Connect
An ImqQueueManager object is connected automatically for any method that
results in any call to the MQI (see “Appendix B. MQI cross-reference” on page 121).

Open
An ImqObject object is opened automatically for any method that results in an
MQGET, MQINQ, MQPUT or MQSET call. The openFor method is used to specify
one or more relevant open option values.

2. Connect and open implicit behavior is controllable using class attributes.

Sample programs

18 MQSeries Using C++

Reopen
An ImqObject is reopened automatically for any method that results in an MQGET,
MQINQ, MQPUT or MQSET call, where the object is already open, but the existing
open options are not adequate to allow the MQI call to be successful. The object is
temporarily closed using a temporary close options value of MQCO_NONE. The
openFor method is used to add a relevant open option.

Reopen can cause problems in specific circumstances:
v A temporary dynamic queue is destroyed when it is closed and can never be

reopened.
v A queue opened for exclusive input (either explicitly or by default) might be

accessed by others in the window of opportunity during closure and reopening.
v A browse cursor position is lost when a queue is closed. This situation will not

prevent closure and reopening, but will prevent subsequent use of the cursor
until MQGMO_BROWSE_FIRST is used again.

v The context of the last message retrieved is lost when a queue is closed.

If any of these circumstances occur or can be foreseen, avoid reopens by explicitly
setting adequate open options before an object is opened (either explicitly or
implicitly).

Setting the open options explicitly for complex queue-handling situations results in
better performance and avoids the problems associated with the use of reopen.

Close
An ImqObject is closed automatically at any point where the object state would no
longer be viable, for example if an ImqObject connection reference is severed, or if
an ImqObject object is destroyed.

Disconnect
An ImqQueueManager is disconnected automatically at any point where the
connection would no longer be viable, for example if an ImqObject connection
reference is severed, or if an ImqQueueManager object is destroyed.

Binary and character strings
Methods that set character (char *) data always take a copy of the data, but some
methods might truncate the copy, because certain limits are imposed by MQSeries.

The ImqString class (see “ImqString” on page 105) encapsulates the traditional char
* and provides support for:
v Comparison
v Concatenation
v Copying
v Integer-to-text and text-to-integer conversion
v Token (word) extraction
v Uppercase translation

The ImqBinary class (see “ImqBinary” on page 27) encapsulates binary byte arrays
of arbitrary size. In particular it is used to hold these attributes:

accounting token (MQBYTE32)
correlation id (MQBYTE24)
facility token (MQBYTE8)

Implicit operations

Chapter 1. Introduction to MQSeries C++ 19

group id (MQBYTE24)
instance id (MQBYTE24)
message id (MQBYTE24)
message token (MQBYTE16)
transaction instance id (MQBYTE16)

of objects of these classes:
ImqCICSBridgeHeader (see “ImqCICSBridgeHeader” on page 32)
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 46)
ImqIMSBridgeHeader (see “ImqIMSBridgeHeader” on page 52)
ImqMessageTracker (see “ImqMessageTracker” on page 64)
ImqReferenceHeader (see “ImqReferenceHeader” on page 102)
ImqWorkHeader (see “ImqWorkHeader” on page 114)

and provides support for comparison and copying.

Unsupported functions
The MQSeries C++ classes and methods are intended to be independent of
MQSeries platform. They might therefore offer some functions that are not
supported on certain platforms. If you attempt to use a function on a platform on
which it is not supported, the function is detected by MQSeries but not by the C++
language bindings. MQSeries reports the error to your program, like any other
MQI error.

Binary and character strings

20 MQSeries Using C++

Chapter 2. C++ language considerations

This chapter details the aspects of the C++ language that you must consider when
writing application programs that use the Message Queue Interface (MQI).

Header files
Header files are provided as part of the definition of the MQI, to assist with the
writing of MQSeries application programs in the C++ language. These header files
are summarized in the following table.

Table 2. C/C++ header files

Filename Contents

IMQI.HPP C++ MQI Classes (includes CMQC.H and IMQTYPE.H)

IMQTYPE.H Defines the ImqBoolean data type

CMQC.H MQI data structures and manifest constants

To improve the portability of applications, it is recommended that the name of the
header file should be coded in lowercase on the #include preprocessor directive:
#include <imqi.hpp> // C++ classes

Methods
Parameters that are const are for input only. Parameters whose signature includes a
pointer (*) or a reference (&) are passed by reference. Return values that do not
include a pointer or a reference are passed by value; in the case of returned objects,
these are new entities that become the responsibility of the caller.

Some method signatures include items that take a default if not specified. Such
items are always at the end of signatures and are denoted by an equal sign (=); the
value after the equal sign indicates the default value that applies if the item is
omitted.

All method names are mixed case beginning with lowercase. Each word, except the
first within a method name, begins with a capital letter. Abbreviations are not used
unless their meaning is widely understood. Abbreviations used include “id” for
identity and also “sync” for synchronization.

Attributes
Object attributes are accessed using “set” and “get” methods. A “set” method
begins with the word “set” whereas a “get” method has no prefix. If an attribute is
read-only, there is no “set” method.

Attributes are initialized to valid states during object construction, and the state of
an object is always consistent.

© Copyright IBM Corp. 1997, 2000 21

Data types
All data types are defined by the C typedef statement. The type ImqBoolean is
defined as unsigned character in IMQTYPE.H and can have the values TRUE and
FALSE. You can use ImqBinary class objects in place of MQBYTE arrays, and
ImqString class objects in place of char *. Many methods return objects rather than
char or MQBYTE pointers to ease storage management. All return values become
the responsibility of the caller, and, in the case of a returned object, the storage can
be easily disposed of using delete.

Elementary data types
The datatype ImqBoolean is represented by typedef unsigned char ImqBoolean.

Manipulating binary strings
Strings of binary data are declared as objects of the ImqBinary class. Objects of
this class may be copied, compared, and set using the familiar C operators. For
example:

Manipulating character strings
When character data is accepted or returned using C++ methods, the character
data is always null-terminated and may be of any length. However, certain limits
are imposed by MQSeries which may result in information being truncated. To
ease storage management, character data is often returned in ImqString class
objects. These objects can be cast to char * and used for read-only purposes in many
situations where a char * is required.

Note: The char * in an ImqString class object may be null.

Although C functions may be used on the char *, there are special methods of the
ImqString class which are preferable; operator length() is the equivalent of strlen
and storage() indicates the memory allocated for the character data.

Initial state of objects
All objects have a consistent initial state reflected by their attributes. The initial
values are defined in the class descriptions.

#include <imqi.hpp> // C++ classes

ImqMessage message ;
ImqBinary id, correlationId ;
MQBYTE24 byteId ;

correlationId.set(byteId, sizeof(byteId)); // Set.
id = message.id(); // Assign.
if (correlationId == id) { // Compare.

...

Figure 13. Manipulating binary strings

Data types

22 MQSeries Using C++

Using C from C++
When using C functions from a C++ program, include headers as in the following
example:
extern "C" {
#include <string.h>
}

Notational conventions
This shows how the methods should be invoked and how the parameters should
be declared:

ImqBoolean ImqQueue::get(ImqMessage & msg)

Declare and use the parameters as follows:

ImqQueueManager * pmanager ; // Queue manager
ImqQueue * pqueue ; // Message queue
ImqMessage msg ; // Message
char pszBuffer[100]; // Buffer for message data

pmanager = new ImqQueueManager ;
pqueue = new ImqQueue ;
pqueue -> setName("myreplyq");
pqueue -> setConnectionReference(pmanager);

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));

if (pqueue -> get(msg)) {
long lDataLength = msg.dataLength();

...
}

Figure 14. Declaration and use conventions

Using C from C++

Chapter 2. C++ language considerations 23

Notation

24 MQSeries Using C++

Chapter 3. MQSeries C++ classes

The MQSeries C++ classes encapsulate the MQSeries Message Queue Interface
(MQI). There is a single C++ header file, imqi.hpp, which covers all of these
classes.

For each class, the following information is shown:

Class hierarchy diagram
A class diagram showing the class in its inheritance relation to its
immediate parent classes, if any.

Other relevant classes
Document links to other relevant classes, such as parent classes, and the
classes of objects used in method signatures.

Object attributes
Attributes unique to the class. These are in addition to those attributes
defined for any parent classes. Many attributes reflect MQSeries
data-structure members (see “Appendix B. MQI cross-reference” on
page 121). For detailed descriptions see the MQSeries Application
Programming Reference book.

Constructors
Signatures of the special methods used to create an object of the class.

Object methods (public)
Signatures of methods that do require an instance of the class for their
operation, and that have no usage restrictions.

Where it applies, the following information is also shown:

Class methods (public)
Signatures of methods that do not require an instance of the class for their
operation, and that have no usage restrictions.

Overloaded “(parent class)” methods
Signatures of those virtual methods that are defined in parent classes, but
exhibit different, polymorphic, behavior for this class.

Object methods (protected)
Signatures of methods that do require an instance of the class for their
operation, and are reserved for use by the implementations of derived
classes. This section is of interest only to class writers, as opposed to class
users.

Object data (protected)
Implementation details for object instance data available to the
implementations of derived classes. This section is of interest only to class
writers, as opposed to class users.

Reason codes
MQRC_* values (see “Appendix C. Reason codes” on page 131) that can be
expected from those methods that can fail. For an exhaustive list of reason
codes that can occur for an object of a given class, consult parent class
documentation. The documented list of reason codes for a given class does
not include the reason codes for parent classes.

© Copyright IBM Corp. 1997, 2000 25

|
|
|
|
|
|

Notes:

1. Objects of these classes are not thread-safe. This ensures optimal performance,
but care must be taken not to access any given object from more than one
thread.

2. For a multithreaded program, use a separate ImqQueueManager object for each
thread. MQSeries requires a separate queue manager connection for each
thread, and does not permit cross-thread operations. Each ImqQueueManager
object should have its own independent collection of ImqQueue and other
objects, ensuring that objects in different threads are isolated from one another.

The classes are:
v “ImqBinary” on page 27
v “ImqCache” on page 29
v “ImqCICSBridgeHeader” on page 32
v “ImqDeadLetterHeader” on page 39
v “ImqDistributionList” on page 42
v “ImqError” on page 44
v “ImqGetMessageOptions” on page 46
v “ImqHeader” on page 50
v “ImqIMSBridgeHeader” on page 52
v “ImqItem” on page 55
v “ImqMessage” on page 57
v “ImqMessageTracker” on page 64
v “ImqNamelist” on page 68
v “ImqObject” on page 70
v “ImqProcess” on page 77
v “ImqPutMessageOptions” on page 79
v “ImqQueue” on page 82
v “ImqQueueManager” on page 94
v “ImqReferenceHeader” on page 102
v “ImqString” on page 105
v “ImqTrigger” on page 111
v “ImqWorkHeader” on page 114

C++ classes

26 MQSeries Using C++

ImqBinary

This class encapsulates a binary byte array that can be used for ImqMessage
accounting token, correlation id, and message id values. It allows easy
assignment, copying, and comparison.

Other relevant classes
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)

Object attributes
data An array of bytes of binary data. The initial value is null.

data length
The number of bytes. The initial value is zero.

data pointer
The address of the first byte of the data. The initial value is zero.

Constructors
ImqBinary();

The default constructor.

ImqBinary(const ImqBinary & binary);
The copy constructor.

ImqBinary(const void * data, const size_t length);
Copies length bytes from data.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the data to the message buffer, replacing any existing content. Sets
the msg format to MQFMT_NONE.

See the ImqItem class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Sets the data by transferring the remaining data from the message buffer,
replacing the existing data.

Item

Binary

A

ImqBinary class

Chapter 3. MQSeries C++ classes 27

To be successful, the ImqMessage format must be MQFMT_NONE.

See the ImqItem class method description for further details.

Object methods (public)
void operator = (const ImqBinary & binary);

Copies bytes from binary.

ImqBoolean operator == (const ImqBinary & binary);
Compares this object with binary. It returns FALSE if not equal and TRUE
otherwise. The objects are equal if they have the same data length and the
bytes match.

ImqBoolean copyOut(void * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the data pointer to buffer. If the data length
is insufficient, the remaining space in buffer is filled with pad bytes. buffer
may be zero if length is also zero. length must not be negative. It returns
TRUE if successful.

size_t dataLength() const ;
Returns the data length.

ImqBoolean setDataLength(const size_t length);
Sets the data length. If the data length is changed as a result of this
method, the data in the object is uninitialized. It returns TRUE if
successful.

void * dataPointer() const ;
Returns the data pointer.

ImqBoolean isNull() const ;
Returns TRUE if the data length is zero, or if all of the data bytes are zero.
Otherwise it returns FALSE.

ImqBoolean set(const void * buffer, const size_t length);
Copies length bytes from buffer. It returns TRUE if successful.

Object methods (protected)
void clear();

Reduces the data length to zero.

Reason codes
MQRC_NO_BUFFER
MQRC_STORAGE_NOT_AVAILABLE
MQRC_INCONSISTENT_FORMAT

ImqBinary class

28 MQSeries Using C++

ImqCache

Use this class to hold or marshal data in memory. The user can nominate a buffer
of memory of fixed size, or the system can provide a flexible amount of memory
automatically. This class relates to the MQI calls listed in Table 7 on page 122.

Other relevant classes
ImqError (see “ImqError” on page 44).

Object attributes
automatic buffer

Indicates whether buffer memory is managed automatically by the system
(TRUE) or is supplied by the user (FALSE). This is initially set to TRUE.

Note: This attribute is not set directly, but is set indirectly using one of the
useEmptyBuffer and useFullBuffer methods.

If user storage is supplied, this attribute is FALSE, buffer memory
cannot grow, and buffer overflow errors may occur. The address and
length of the buffer remain constant.

If user storage is not supplied, this attribute is TRUE, and buffer
memory can grow incrementally to accommodate an arbitrary
amount of message data. However, when the buffer grows, the
address of the buffer may change, and so care has to be exercised
when using the buffer pointer and data pointer.

buffer length
The number of bytes of memory in the buffer. The initial value is zero.

buffer pointer
The address of the buffer memory. The initial value is null.

data length
The number of bytes succeeding the data pointer. Equal to or less than the
message length. The initial value is zero.

data offset
The number of bytes preceding the data pointer. Equal to or less than the
message length. The initial value is zero.

Error

Cache

A

ImqCache class

Chapter 3. MQSeries C++ classes 29

|
|
|

data pointer
The address of that part of the buffer that is to be written to or read from
next. The initial value is null.

message length
The number of bytes of significant data in the buffer. The initial value is
zero.

Constructors
ImqCache();

The default constructor.

ImqCache(const ImqCache & cache);
The copy constructor.

Object methods (public)
void operator = (const ImqCache & cache);

Copies up to message length bytes of data from the cache object to the
object. If automatic buffer is FALSE, the buffer length must already be
sufficient to accommodate the copied data.

ImqBoolean automaticBuffer() const ;
Returns the automatic buffer value.

size_t bufferLength() const ;
Returns the buffer length.

char * bufferPointer() const ;
Returns the buffer pointer.

void clearMessage();
Sets the message length and data offset both to zero.

size_t dataLength() const ;
Returns the data length.

size_t dataOffset() const ;
Returns the data offset.

ImqBoolean setDataOffset(const size_t offset);
Sets the data offset. The message length is increased if necessary to ensure
that it is no less than the data offset. This method returns TRUE if
successful.

char * dataPointer() const ;
Returns a copy of the data pointer.

size_t messageLength() const ;
Returns the message length.

ImqBoolean setMessageLength(const size_t length);
Sets the message length. Increases the buffer length if necessary to ensure
that the message length is no greater than the buffer length. Reduces the
data offset if necessary to ensure that it is no greater than the message
length. It returns TRUE if successful.

ImqBoolean moreBytes(const size_t bytes-required);
Assures that bytes-required more bytes are available (for writing) between
the data pointer and the end of the buffer. It returns TRUE if successful.

ImqCache class

30 MQSeries Using C++

If automatic buffer is TRUE, more memory will be acquired as required;
otherwise, the buffer length must already be adequate.

ImqBoolean read(const size_t length, char * & external-buffer);
Copies length bytes, from the buffer starting at the data pointer position,
into the external-buffer. After the data has been copied, the data offset is
increased by length. This method returns TRUE if successful.

ImqBoolean resizeBuffer(const size_t length);
Varies the buffer length, provided that automatic buffer is TRUE. This is
achieved by reallocating the buffer memory. Up to message length bytes of
data from the existing buffer are copied to the new one. The maximum
number copied is length bytes. The buffer pointer is changed. The message
length and data offset are preserved as closely as possible within the
confines of the new buffer. It returns TRUE if successful, and FALSE if
automatic buffer is FALSE.

Note: This method may fail with MQRC_STORAGE_NOT_AVAILABLE if
there is any problem with system resources.

ImqBoolean useEmptyBuffer(const char * external-buffer, const size_t length);
Identifies an empty user buffer, setting the buffer pointer to point to
external-buffer, the buffer length to length, and the message length to zero.
Performs a clearMessage. If the buffer is fully primed with data, use the
useFullBuffer method instead. If the buffer is partially primed with data,
use the setMessageLength method to indicate the correct amount. This
method returns TRUE if successful.

This method can be used to identify a fixed amount of memory, as
described above (external-buffer is nonnull and length is nonzero), in which
case automatic buffer is set to FALSE, or it can be used to revert to
system-managed flexible memory (external-buffer is null and length is zero),
in which case automatic buffer is set to TRUE.

ImqBoolean useFullBuffer(const char * externalBuffer, const size_t length);
As for useEmptyBuffer, except that the message length is set to length. It
returns TRUE if successful.

ImqBoolean write(const size_t length, const char * external-buffer);
Copies length bytes, from the external-buffer, into the buffer starting at the
data pointer position. After the data has been copied, the data offset is
increased by length, and the message length is increased if necessary to
ensure that it is no less than the new data offset value. This method
returns TRUE if successful.

If automatic buffer is TRUE, an adequate amount of memory is
guaranteed; otherwise, the ultimate data offset must not exceed the buffer
length.

Reason codes
MQRC_BUFFER_NOT_AUTOMATIC
MQRC_DATA_TRUNCATED
MQRC_INSUFFICIENT_BUFFER
MQRC_INSUFFICIENT_DATA
MQRC_NULL_POINTER
MQRC_STORAGE_NOT_AVAILABLE
MQRC_ZERO_LENGTH

ImqCache class

Chapter 3. MQSeries C++ classes 31

ImqCICSBridgeHeader

This class encapsulates specific features of the MQCIH data structure (see Table 8
on page 122). Objects of this class are used by applications that send messages to

the CICS bridge through MQSeries for OS/390 V2.1.

Other relevant classes
ImqBinary (see “ImqBinary” on page 27)
ImqHeader (see “ImqHeader” on page 50)
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)
ImqString (see “ImqString” on page 105)

Object attributes
ADS descriptor

Send/receive ADS descriptor. This is set using MQCADSD_NONE. The
initial value is MQCADSD_NONE. The following additional values are
possible:

MQCADSD_NONE
MQCADSD_SEND
MQCADSD_RECV
MQCADSD_MSGFORMAT

attention identifier
AID key. The field must be of length MQ_ATTENTION_ID_LENGTH.

authenticator
RACF® password or passticket. The initial value contains blanks, of length
MQ_AUTHENTICATOR_LENGTH.

bridge abend code
Bridge abend code, of length MQ_ABEND_CODE_LENGTH. The initial
value is four blank characters. The value returned in this field is dependent
on the return code. See Table 3 on page 38 for more details.

bridge cancel code
Bridge abend transaction code. The field is reserved, must contain blanks,
and be of length MQ_CANCEL_CODE_LENGTH.

Header

CICS
Bridge
Header

A

ImqCICSBridgeHeader class

32 MQSeries Using C++

bridge completion code
Completion code, which can contain either the MQSeries completion code
or the CICS EIBRESP value. The field has the initial value of MQCC_OK.
The value returned in this field is dependent on the return code. See
Table 3 on page 38 for more details.

bridge error offset
Bridge error offset. The initial value is zero. This attribute is read-only.

bridge reason code
Reason code. This field can contain either the MQSeries reason or the CICS
EIBRESP2 value. The field has the initial value of MQRC_NONE. The
value returned in this field is dependent on the return code. See Table 3 on
page 38 for more details.

bridge return code
Return code from the CICS bridge. The initial value is MQCRC_OK.

conversational task
Indicates whether the task can be conversational. The initial value is
MQCCT_NO. The following additional values are possible:

MQCCT_YES
MQCCT_NO

cursor position
Cursor position. The initial value is zero.

facility keep time
CICS bridge facility release time.

facility like
Terminal emulated attribute. The field must be of length
MQ_FACILITY_LIKE_LENGTH.

facility token
BVT token value. The field must be of length MQ_FACILITY_LENGTH.
The initial value is MQCFAC_NONE.

function
Function, which can contain either the MQSeries call name or the CICS
EIBFN function. The field has the initial value of MQCFUNC_NONE, with
length MQ_FUNCTION_LENGTH. The value returned in this field is
dependent on the return code. See Table 3 on page 38 for more details.

The following additional values are possible when function contains an
MQSeries call name:

MQCFUNC_MQCONN
MQCFUNC_MQGET
MQCFUNC_MQINQ
MQCFUNC_NONE
MQCFUNC_MQOPEN
MQCFUNC_PUT
MQCFUNC_MQPUT1

get wait interval
Wait interval for an MQGET call issued by the CICS bridge task. The field
has an initial value of MQCGWI_DEFAULT. The field is applicable only
when uow control has the value MQCUOWC_FIRST. The following
additional values are possible:

ImqCICSBridgeHeader class

Chapter 3. MQSeries C++ classes 33

MQCGWI_DEFAULT
MQWI_UNLIMITED

link type
Link type. The initial value is MQCLT_PROGRAM. The following
additional values are possible:

MQCLT_PROGRAM
MQCLT_TRANSACTION

next transaction identifier
ID of the next transaction to attach. The field must be of length
MQ_TRANSACTION_ID_LENGTH.

output data length
COMMAREA data length. The initial value is MQCODL_AS_INPUT.

reply-to format
Format name of the reply message. The initial value is MQFMT_NONE
with length MQ_FORMAT_LENGTH.

start code
Transaction start code. The field must be of length
MQ_START_CODE_LENGTH. The initial value is MQCSC_NONE. The
following additional values are possible:

MQCSC_START
MQCSC_STARTDATA
MQCSC_TERMINPUT
MQCSC_NONE

task end status
Task end status. The initial value is MQCTES_NOSYNC. The following
additional values are possible:

MQCTES_COMMIT
MQCTES_BACKOUT
MQCTES_ENDTASK
MQCTES_NOSYNC

transaction identifier
ID of the transaction to attach. The initial value must contain blanks, and
must be of length MQ_TRANSACTION_ID_LENGTH. The field is
applicable only when uow control has the value MQCUOWC_FIRST or
MQCUOWC_ONLY.

UOW control
UOW control. The initial value is MQCUOWC_ONLY. The following
additional values are possible:

MQCUOWC_FIRST
MQCUOWC_MIDDLE
MQCUOWC_LAST
MQCUOWC_ONLY
MQCUOWC_COMMIT
MQCUOWC_BACKOUT
MQCUOWC_CONTINUE

ImqCICSBridgeHeader class

34 MQSeries Using C++

version
This is the MQCIH version number. The initial value is
MQCIH_VERSION_2. The only other supported value is
MQCIH_VERSION_1.

Constructors
ImqCICSBridgeHeader();

The default constructor.

ImqCICSBridgeHeader(const ImqCICSBridgeHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQCIH data structure into the message buffer at the beginning,
moving existing message data further along, and sets the message format
to MQFMT_CICS.

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQCIH data structure form the message buffer. To be successful,
the encoding of the msg object should be MQENC_NATIVE. It is
recommended that messages be retrieved with MQGMO_CONVERT to
MQENC_NATIVE. To be successful, the ImqMessage format must be
MQFMT_CICS.

See the parent class method description for more details.

Object methods (public)
void operator = (const ImqCICSBridgeHeader & header);

Instance data is copied from the header, replacing the existing instance data.

MQLONG ADSDescriptor() const;
Returns a copy of the ADS descriptor.

void setADSDescriptor(const MQLONG descriptor = MQCADSD_NONE);
Sets the ADS descriptor.

ImqString attentionIdentifier() const;
Returns a copy of the attention identifier, padded with trailing blanks to
length MQ_ATTENTION_ID_LENGTH.

void setAttentionIdentifier(const char * data = 0);
Sets the attention identifier, padded with trailing blanks to length
MQ_ATTENTION_ID_LENGTH. If no data is supplied, attention identifier
is reset to the initial value.

ImqString authenticator() const;
Returns a copy of the authenticator, padded with trailing blanks to length
MQ_AUTENTICATOR_LENGTH.

void setAuthenticator(const char * data = 0);
Sets the authenticator, padded with trailing blanks to length
MQ_AUTHENTICATOR_LENGTH. If no data is supplied, authenticator is
reset to the initial value.

ImqCICSBridgeHeader class

Chapter 3. MQSeries C++ classes 35

ImqString bridgeAbendCode() const;
Returns a copy of the bridge abend code, padded with trailing blanks to
length MQ_ABEND_CODE_LENGTH.

ImqString bridgeCancelCode() const;
Returns a copy of the bridge cancel code, padded with trailing blanks to
length MQ_CANCEL_CODE_LENGTH.

void setBridgeCancelCode(const char * data = 0);
Sets the bridge cancel code, padded with trailing blanks to length
MQ_CANCEL_CODE_LENGTH. If no data is supplied, the bridge cancel
code is reset to the initial value.

MQLONG bridgeCompletionCode() const;
Returns a copy of the bridge completion code.

MQLONG bridgeErrorOffset() const ;
Returns a copy of the bridge error offset.

MQLONG bridgeReasonCode() const;
Returns a copy of the bridge reason code.

MQLONG bridgeReturnCode() const;
Returns the bridge return code.

MQLONG conversationalTask() const;
Returns a copy of the conversational task.

void setConversationalTask(const MQLONG task = MQCCT_NO);
Sets the conversational task.

MQLONG cursorPosition() const ;
Returns a copy of the cursor position.

void setCursorPosition(const MQLONG position = 0);
Sets the cursor position.

MQLONG facilityKeepTime() const;
Returns a copy of the facility keep time.

void setFacilityKeepTime(const MQLONG time = 0);
Sets the facility keep time.

ImqString facilityLike() const;
Returns a copy of the facility like, padded with trailing blanks to length
MQ_FACILITY_LIKE_LENGTH.

void setFacilityLike(const char * name = 0);
Sets the facility like, padded with trailing blanks to length
MQ_FACILITY_LIKE_LENGTH. If no name is supplied, facility like is reset
to the initial value.

ImqBinary facilityToken() const;
Returns a copy of the facility token.

ImqBoolean setFacilityToken(const ImqBinary & token);
Sets the facility token. The data length of token must be either zero or
MQ_FACILITY_LENGTH. It returns TRUE if successful.

void setFacilityToken(const MQBYTE8 token = 0);
Sets the facility token. token may be zero, which is the same as specifying
MQCFAC_NONE. If token is nonzero it must address
MQ_FACILITY_LENGTH bytes of binary data. When using predefined

ImqCICSBridgeHeader class

36 MQSeries Using C++

values such as MQCFAC_NONE, it may be necessary to make a cast to
ensure a signature match. For example, (MQBYTE *)MQCFAC_NONE.

ImqString function() const;
Returns a copy of the function, padded with trailing blanks to length
MQ_FUNCTION_LENGTH.

MQLONG getWaitInterval() const;
Returns a copy of the get wait interval.

void setGetWaitInterval(const MQLONG interval = MQCGWI_DEFA
Sets the get wait interval.

MQLONG linkType() const;
Returns a copy of the link type.

void setLinkType(const MQLONG type = MQCLT_PROGRAM);
Sets the link type.

ImqString nextTransactionIdentifier() const ;
Returns a copy of the next transaction identifier data, padded with
trailing blanks to length MQ_TRANSACTION_ID_LENGTH.

MQLONG outputDataLength() const;
Returns a copy of the output data length.

void setOutputDataLength(const MQLONG length = MQCODL_AS_INPUT);
Sets the output data length.

ImqString replyToFormat() const;
Returns a copy of the reply-to format name, padded with trailing blanks to
length MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * name = 0);
Sets the reply-to format, padded with trailing blanks to length
MQ_FORMAT_LENGTH. If no name is supplied, reply-to format is reset to
the initial value.

ImqString startCode() const;
Returns a copy of the start code, padded with trailing blanks to length
MQ_START_CODE_LENGTH.

void setStartCode(const char * data = 0);
Sets the start code data, padded with trailing blanks to length
MQ_START_CODE_LENGTH. If no data is supplied, start code is reset to
the initial value.

MQLONG taskEndStatus() const;
Returns a copy of the task end status.

ImqString transactionIdentifier() const;
Returns a copy of the transaction identifier data, padded with trailing
blanks to the length MQ_TRANSACTION_ID_LENGTH.

void setTransactionIdentifier(const char * data = 0);
Sets the transaction identifier, padded with trailing blanks to length
MQ_TRANSACTION_ID_LENGTH. If no data is supplied, transaction
identifier is reset to the initial value.

MQLONG UOWControl() const;
Returns a copy of the UOW control.

void setUOWControl(const MQLONG control = MQCUOWC_ONLY);
Sets the UOW control.

ImqCICSBridgeHeader class

Chapter 3. MQSeries C++ classes 37

MQLONG version() const;
Returns the version number.

ImqBoolean setVersion(const MQLONG version = MQCIH_VERSION_2);
Sets the version number. It returns TRUE if successful.

Object data (protected)
MQLONG olVersion

The maximum MQCIH version number that can be accommodated in the
storage allocated for opcih.

PMQCIH opcih
The address of an MQCIH data structure. The amount of storage allocated
is indicated by olVersion.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR
MQRC_WRONG_VERSION

Return codes
Table 3. ImqCICSBridgeHeader class return codes

Return Code Function CompCode Reason Abend
Code

MQCRC_OK

MQCRC_BRIDGE_ERROR MQFB_CICS

MQCRC_MQ_API_ERROR MQSeries call
name

MQSeries
CompCode

MQSeries
Reason

MQCRC_BRIDGE_TIMEOUT MQSeries call
name

MQSeries
CompCode

MQSeries
Reason

MQCRC_CICS_EXEC_ERROR CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_SECURITY_ERROR CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_PROGRAM_NOT_AVAILABLE CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_TRANSID_NOT_AVAILABLE CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_BRIDGE_ABEND CICS
ABCODE

MQCRC_APPLICATION_ABEND CICS
ABCODE

ImqCICSBridgeHeader class

38 MQSeries Using C++

ImqDeadLetterHeader

This class encapsulates specific features of the MQDLH data structure (see Table 9
on page 123). Objects of this class are typically used by an application that

encounters an unprocessable message. A new message comprising a dead-letter
header and the unprocessable message content is placed on the dead-letter queue,
and the unprocessable message is discarded.

Other relevant classes
ImqHeader (see “ImqHeader” on page 50)
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)
ImqString (see “ImqString” on page 105)

Object attributes
dead-letter reason code

The reason the message arrived on the dead-letter queue. The initial value
is MQRC_NONE.

destination queue manager name
The name of the original destination queue manager. The name is a string
of length MQ_Q_MGR_NAME_LENGTH. Its initial value is null.

destination queue name
The name of the original destination queue. The name is a string of length
MQ_Q_NAME_LENGTH. Its initial value is null.

put application name
The name of the application that put the message on the dead-letter queue.
The name is a string of length MQ_PUT_APPL_NAME_LENGTH. Its
initial value is null.

put application type
The type of application that put the message on the dead-letter queue. The
initial value is zero.

put date
The date when the message was put on the dead-letter queue. The date is
a string of length MQ_PUT_DATE_LENGTH. Its initial value is a null
string.

Header

Dead Letter
Header

A

ImqDeadLetterHeader class

Chapter 3. MQSeries C++ classes 39

|
|

|
|

|

|
|

put time
The time when the message was put on the dead-letter queue. The time is
a string of length MQ_PUT_TIME_LENGTH. Its initial value is a null
string.

Constructors
ImqDeadLetterHeader();

The default constructor.

ImqDeadLetterHeader(const ImqDeadLetterHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQDLH data structure into the message buffer at the beginning,
moving existing message data further along. Sets the msg format to
MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page 50 for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQDLH data structure from the message buffer.

To be successful, the ImqMessage format must be
MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page 50 for further details.

Object methods (public)
void operator = (const ImqDeadLetterHeader & header);

Instance data is copied from header, replacing the existing instance data.

MQLONG deadLetterReasonCode() const ;
Returns the dead-letter reason code.

void setDeadLetterReasonCode(const MQLONG reason);
Sets the dead-letter reason code.

ImqString destinationQueueManagerName() const ;
Returns the destination queue manager name, stripped of any trailing
blanks.

void setDestinationQueueManagerName(const char * name);
Sets the destination queue manager name. Data longer than
MQ_Q_MGR_NAME_LENGTH (48 characters) is truncated.

ImqString destinationQueueName() const ;
Returns a copy of the destination queue name, stripped of any trailing
blanks.

void setDestinationQueueName(const char * name);
Sets the destination queue name. Data longer than
MQ_Q_NAME_LENGTH (48 characters) is truncated.

ImqString putApplicationName() const ;
Returns a copy of the put application name, stripped of any trailing
blanks.

ImqDeadLetterHeader class

40 MQSeries Using C++

|
|

|
|

|
|

|
|

|
|

|
|

void setPutApplicationName(const char * name = 0);
Sets the put application name. Data longer than
MQ_PUT_APPL_NAME_LENGTH (28 characters) is truncated.

MQLONG putApplicationType() const ;
Returns the put application type.

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type.

ImqString putDate() const ;
Returns a copy of the put date.

void setPutDate(const char * date = 0);
Sets the put date. Data longer than MQ_PUT_DATE_LENGTH (8
characters) is truncated.

ImqString putTime() const ;
Returns a copy of the put time.

void setPutTime(const char * time = 0);
Sets the put time. Data longer than MQ_PUT_TIME_LENGTH (8
characters) is truncated.

Object data (protected)
MQDLH omqdlh

The MQDLH data structure.

Reason codes
MQRC_INCONSISTENT_FORMAT
MQRC_STRUC_ID_ERROR
MQRC_ENCODING_ERROR

ImqDeadLetterHeader class

Chapter 3. MQSeries C++ classes 41

|
|

|
|

|
|

ImqDistributionList

This class encapsulates a dynamic distribution list that references one or more
queues for the purpose of sending a message or messages to multiple destinations.

Other relevant classes
ImqMessage (see “ImqMessage” on page 57)
ImqQueue (see “ImqQueue” on page 82)

Object attributes
first distributed queue

The first of one or more objects of class ImqQueue, in no particular order,
in which the ImqQueue distribution list reference addresses this object.

Initially there are no such objects. To open an ImqDistributionList
successfully, there must be at least one such object.

Note: When an ImqDistributionList object is opened, any open ImqQueue
objects that reference it are automatically closed.

Constructors
ImqDistributionList();

The default constructor.

ImqDistributionList(const ImqDistributionList & list);
The copy constructor.

Object methods (public)
void operator = (const ImqDistributionList & list);

All ImqQueue objects that reference this object are dereferenced prior to
copying. No ImqQueue objects will reference this object after the
invocation of this method.

ImqQueue * firstDistributedQueue() const ;
Returns the first distributed queue.

Queue

Distribution
List

n

1

distributed from

ImqDistributionList class

42 MQSeries Using C++

Object methods (protected)
void setFirstDistributedQueue(ImqQueue * queue = 0);

Sets the first distributed queue.

ImqDistributionList class

Chapter 3. MQSeries C++ classes 43

ImqError

This abstract class provides information on errors associated with an object. It
relates to the MQI calls listed in Table 10 on page 123.

Other relevant classes
None.

Object attributes
completion code

The most recent completion code. The initial value is zero. The following
additional values are possible:

MQCC_OK
MQCC_WARNING
MQCC_FAILED

reason code
The most recent reason code. The initial value is zero.

Constructors
ImqError();

The default constructor.

ImqError(const ImqError & error);
The copy constructor.

Object methods (public)
void operator = (const ImqError & error);

Instance data is copied from error, replacing the existing instance data.

void clearErrorCodes();
Sets the completion code and reason code both to zero.

MQLONG completionCode() const ;
Returns the completion code.

MQLONG reasonCode() const ;
Returns the reason code.

Object methods (protected)
ImqBoolean checkReadPointer(const void * pointer, const size_t length);

Verifies that the combination of pointer and length is valid for read-only
access, and returns TRUE if successful.

Error

A

ImqError class

44 MQSeries Using C++

|
|

|
|
|

|

|

|

|

ImqBoolean checkWritePointer(const void * pointer, const size_t length);
Verifies that the combination of pointer and length is valid for read-write
access, and returns TRUE if successful.

void setCompletionCode(const MQLONG code = 0);
Sets the completion code.

void setReasonCode(const MQLONG code = 0);
Sets the reason code.

Reason codes
MQRC_BUFFER_ERROR

ImqError class

Chapter 3. MQSeries C++ classes 45

ImqGetMessageOptions

This class encapsulates the MQGMO data structure (see Table 11 on page 123).

Other relevant classes
ImqString (see “ImqString” on page 105)

Object attributes
group status

Status of a message with respect to a group of messages. The initial value
is MQGS_NOT_IN_GROUP. The following additional values are possible:

MQGS_MSG_IN_GROUP
MQGS_LAST_MSG_IN_GROUP

match options
Options for selecting incoming messages. The initial value is
MQMO_MATCH_MSG_ID | MQMO_MATCH_CORREL_ID. The
following additional values are possible:

MQMO_GROUP_ID
MQMO_MATCH_MSG_SEQ_NUMBER
MQMO_MATCH_OFFSET
MQMO_MSG_TOKEN
MQMO_NONE

message token
Message token. A binary value (MQBYTE16) of length
MQ_MSG_TOKEN_LENGTH. The initial value is MQMTOK_NONE.

options
Options applicable to a message. The initial value is MQGMO_NO_WAIT.
The following additional values are possible:

MQGMO_WAIT
MQGMO_SYNCPOINT
MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_NO_SYNCPOINT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_BROWSE_FIRST

Error

A

Get
Message
Options

ImqGetMessageOptions class

46 MQSeries Using C++

|
|
|

|

|

|
|
|
|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

MQGMO_BROWSE_NEXT
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_MSG_UNDER_CURSOR
MQGMO_LOCK
MQGMO_UNLOCK
MQGMO_ACCEPT_TRUNCATED_MSG
MQGMO_SET_SIGNAL
MQGMO_FAIL_IF_QUIESCING
MQGMO_CONVERT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_NONE

resolved queue name
Resolved queue name. This attribute is read-only. Names are never longer
than 48 characters and may be padded to that length with nulls. The initial
value is a null string.

returned length
Returned length. The initial value is MQRL_UNDEFINED. This attribute is
read-only.

segmentation
The capability for segmentation of a message. The initial value is
MQSEG_INHIBITED. The additional value, MQSEG_ALLOWED, is
possible.

segment status
The segmentation status of a message. The initial value is
MQSS_NOT_A_SEGMENT. The following additional values are possible:

MQSS_SEGMENT
MQSS_LAST_SEGMENT

syncpoint participation
TRUE when messages are retrieved under syncpoint control.

wait interval
Length of time that the ImqQueue class get method pauses while waiting
for a suitable message to arrive, if one is not already available. The initial
value is zero, which effects an indefinite wait. The additional value,
MQWI_UNLIMITED, is possible. This attribute is ignored unless the
options include MQGMO_WAIT.

Constructors
ImqGetMessageOptions();

The default constructor.

ImqGetMessageOptions(const ImqGetMessageOptions & gmo);
The copy constructor.

ImqGetMessageOptions class

Chapter 3. MQSeries C++ classes 47

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

Object methods (public)
void operator = (const ImqGetMessageOptions & gmo);

Instance data is copied from gmo, replacing the existing instance data.

MQCHAR groupStatus() const ;
Returns the group status.

void setGroupStatus(const MQCHAR status);
Sets the group status.

MQLONG matchOptions() const ;
Returns the match options.

void setMatchOptions(const MQLONG options);
Sets the match options.

ImqBinary messageToken() const;
Returns the message token.

ImqBoolean setMessageToken(const ImqBinary & token);
Sets the message token. The data length of token must be either zero or
MQ_MSG_TOKEN_LENGTH. This method returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);
Sets the message token. token may be zero, which is the same as specifying
MQMTOK_NONE. If token is nonzero, then it must address
MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values, such as MQMTOK_NONE, it may be
necessary to make a cast to ensure a signature match, for example
(MQBYTE *)MQMTOK_NONE.

MQLONG options() const ;
Returns the options.

void setOptions(const MQLONG options);
Sets the options, including the syncpoint participation value.

ImqString resolvedQueueName() const ;
Returns a copy of the resolved queue name.

MQLONG returnedLength() const;
Returns the returned length.

MQCHAR segmentation() const ;
Returns the segmentation.

void setSegmentation(const MQCHAR value);
Sets the segmentation.

MQCHAR segmentStatus() const ;
Returns the segment status.

void setSegmentStatus(const MQCHAR status);
Sets the segment status.

ImqBoolean syncPointParticipation() const ;
Returns the syncpoint participation value, which is TRUE if the options
include either MQGMO_SYNCPOINT or
MQGMO_SYNCPOINT_IF_PERSISTENT.

void setSyncPointParticipation(const ImqBoolean sync);
Sets the syncpoint participation value. If sync is TRUE, the options are
altered to include MQGMO_SYNCPOINT, and to exclude both

ImqGetMessageOptions class

48 MQSeries Using C++

MQGMO_NO_SYNCPOINT and MQGMO_SYNCPOINT_IF_PERSISTENT.
If sync is FALSE, the options are altered to include
MQGMO_NO_SYNCPOINT, and to exclude both MQGMO_SYNCPOINT
and MQGMO_SYNCPOINT_IF_PERSISTENT.

MQLONG waitInterval() const ;
Returns the wait interval.

void setWaitInterval(const MQLONG interval);
Sets the wait interval.

Object data (protected)
MQGMO omqgmo

An MQGMO Version 2 data structure. Take care to access MQGMO fields
supported for MQGMO_VERSION_2 only.

This instance data is available for programs compiled on all MQSeries
Version 5.1 products.

PMQGMO opgmo
The address of an MQGMO data structure. The version number for this
address is indicated in olVersion. Take care to inspect the version number
before accessing MQGMO fields, to ensure they are present.

This instance data is available for programs compiled on OS/390, and all
MQSeries Version 5.1 products.

MQLONG olVersion
The version number of the MQGMO data structure addressed by opgmo.

This instance data is available for programs compiled on OS/390, and all
MQSeries Version 5.1 products.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR

ImqGetMessageOptions class

Chapter 3. MQSeries C++ classes 49

|
|

ImqHeader

This abstract class encapsulates common features of the MQDLH data structure
(see Table 12 on page 124).

Other relevant classes
ImqCICSBridgeHeader (see “ImqCICSBridgeHeader” on page 32)
ImqDeadLetterHeader (see “ImqDeadLetterHeader” on page 39)
ImqIMSBridgeHeader (see “ImqIMSBridgeHeader” on page 52)
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)
ImqReferenceHeader (see “ImqReferenceHeader” on page 102)
ImqString (see “ImqString” on page 105)
ImqWorkHeader (see “ImqWorkHeader” on page 114)

Object attributes
character set

The original coded character set identifier. Initially MQCCSI_Q_MGR.

encoding
The original encoding. Initially MQENC_NATIVE.

format
The original format. Initially MQFMT_NONE.

header flags
The initial values are:

Zero for objects of the ImqDeadLetterHeader class
MQIIH_NONE for objects of the ImqIMSBridgeHeader class
MQRMHF_LAST for objects of the ImqReferenceHeader class
MQCIH_NONE for objects of the ImqCICSBridgeHeader class
MQWIH_NONE for objects of the ImqWorkHeader class

Constructors
ImqHeader();

The default constructor.

Item

A

Header

A

ImqHeader class

50 MQSeries Using C++

ImqHeader(const ImqHeader & header);
The copy constructor.

Object methods (public)
void operator = (const ImqHeader & header);

Instance data is copied from header, replacing the existing instance data.

virtual MQLONG characterSet() const ;
Returns the character set.

virtual void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);
Sets the character set.

virtual MQLONG encoding() const ;
Returns the encoding.

virtual void setEncoding(const MQLONG encoding = MQENC_NATIVE);
Sets the encoding.

virtual ImqString format() const ;
Returns a copy of the format, including trailing blanks.

virtual void setFormat(const char * name = 0);
Sets the format, padding to 8 characters with trailing blanks.

virtual MQLONG headerFlags() const ;
Returns the header flags.

virtual void setHeaderFlags(const MQLONG flags = 0);
Sets the header flags.

ImqHeader class

Chapter 3. MQSeries C++ classes 51

ImqIMSBridgeHeader
This class encapsulates specific features of the MQIIH data structure (see Table 13

on page 124). Objects of this class are used by applications that send messages to
the IMS bridge through MQSeries for OS/390.

Note: The ImqHeader character set and encoding must have default values and
must not be set to any other values.

Other relevant classes
ImqBinary (see “ImqBinary” on page 27)
ImqHeader (see “ImqHeader” on page 50)
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)
ImqString (see “ImqString” on page 105)

Object attributes
authenticator

RACF password or passticket, of length
MQ_AUTHENTICATOR_LENGTH. The initial value is MQIAUT_NONE.

commit mode
Commit mode. See the OTMA User’s Guide for more information about IMS
commit modes. The initial value is MQICM_COMMIT_THEN_SEND. The
additional value, MQICM_SEND_THEN_COMMIT, is possible.

logical terminal override
Logical terminal override, of length MQ_LTERM_OVERRIDE_LENGTH.
The initial value is a null string.

message format services map name
MFS map name, of length MQ_MFS_MAP_NAME_LENGTH. The initial
value is a null string.

reply-to format
Format of any reply, of length MQ_FORMAT_LENGTH. The initial value is
MQFMT_NONE.

security scope
Indicates the desired IMS security processing. The initial value is
MQISS_CHECK. The additional value, MQISS_FULL, is possible.

Header

A

IMS Bridge
Header

ImqIMSBridgeHeader class

52 MQSeries Using C++

|
|
|
|

|
|
|

transaction instance id
Transaction instance identity, a binary (MQBYTE16) value of length
MQ_TRAN_INSTANCE_ID_LENGTH. The initial value is MQITII_NONE.

transaction state
Indicates the state of the IMS conversation. The initial value is
MQITS_NOT_IN_CONVERSATION. The additional value,
MQITS_IN_CONVERSATION, is possible.

Constructors
ImqIMSBridgeHeader();

The default constructor.

ImqIMSBridgeHeader(const ImqIMSBridgeHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQIIH data structure into the message buffer at the beginning,
moving existing message data further along. Sets the msg format to
MQFMT_IMS.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQIIH data structure from the message buffer.

To be successful, the encoding of the msg object should be
MQENC_NATIVE. It is recommended that messages be retrieved with
MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_IMS.

See the parent class method description for further details.

Object methods (public)
void operator = (const ImqIMSBridgeHeader & header);

Instance data is copied from header, replacing the existing instance data.

ImqString authenticator() const ;
Returns a copy of the authenticator, padded with trailing blanks to length
MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator(const char * name);
Sets the authenticator.

MQCHAR commitMode() const ;
Returns the commit mode.

void setCommitMode(const MQCHAR mode);
Sets the commit mode.

ImqString logicalTerminalOverride() const ;
Returns a copy of the logical terminal override.

void setLogicalTerminalOverride(const char * override);
Sets the logical terminal override.

ImqString messageFormatServicesMapName() const ;
Returns a copy of the message format services map name.

ImqIMSBridgeHeader class

Chapter 3. MQSeries C++ classes 53

|
|
|
|

void setMessageFormatServicesMapName(const char * name);
Sets the message format services map name.

ImqString replyToFormat() const ;
Returns a copy of the reply-to format, padded with trailing blanks to
length MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * format);
Sets the reply-to format, padding with trailing blanks to length
MQ_FORMAT_LENGTH.

MQCHAR securityScope() const ;
Returns the security scope.

void setSecurityScope(const MQCHAR scope);
Sets the security scope.

ImqBinary transactionInstanceId() const ;
Returns a copy of the transaction instance id.

ImqBoolean setTransactionInstanceId(const ImqBinary & id);
Sets the transaction instance id. The data length of token must be either
zero or MQ_TRAN_INSTANCE_ID_LENGTH. This method returns TRUE
if successful.

void setTransactionInstanceId(const MQBYTE16 id = 0);
Sets the transaction instance id. id may be zero, which is the same as
specifying MQITII_NONE. If id is nonzero, then it must address
MQ_TRAN_INSTANCE_ID_LENGTH bytes of binary data. When using
predefined values such as MQITII_NONE, it may be necessary to make a
cast to ensure a signature match, for example (MQBYTE *)MQITII_NONE.

MQCHAR transactionState() const ;
Returns the transaction state.

void setTransactionState(const MQCHAR state);
Sets the transaction state.

Object data (protected)
MQIIH omqiih

The MQIIH data structure.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR
MQRC_INCONSISTENT_FORMAT
MQRC_ENCODING_ERROR
MQRC_STRUC_ID_ERROR

ImqIMSBridgeHeader class

54 MQSeries Using C++

ImqItem

This abstract class represents an item, perhaps one of several, within a message.
Items are concatenated together in a message buffer. Each specialization is
associated with a particular data structure that begins with a structure id.

Polymorphic methods in this abstract class allow items to be copied to and from
messages. The ImqMessage class readItem and writeItem methods provide another
style of invoking these polymorphic methods, a style that is more natural for
application programs.

This class relates to the MQI calls listed in Table 14 on page 124.

Other relevant classes
ImqCache (see “ImqCache” on page 29)
ImqError (see “ImqError” on page 44)
ImqMessage (see “ImqMessage” on page 57)

Object attributes
structure id

A string of four characters at the beginning of the data structure. This
attribute is read-only. This attribute is recommended for derived classes. It
is not included automatically.

Constructors
ImqItem();

The default constructor.

ImqItem(const ImqItem & item);
The copy constructor.

Class methods (public)
static ImqBoolean structureIdIs(const char * structure-id-to-test, const
ImqMessage & msg);

Returns TRUE if the structure id of the next ImqItem in the incoming msg
is the same as structure-id-to-test. The next item is identified as that part of

Error

A

Item

A

ImqItem class

Chapter 3. MQSeries C++ classes 55

|

|
|

the message buffer currently addressed by the ImqCache data pointer. This
method relies on the structure id and therefore is not guaranteed to work
for all ImqItem derived classes.

Object methods (public)
void operator = (const ImqItem & item);

Instance data is copied from item, replacing the existing instance data.

virtual ImqBoolean copyOut(ImqMessage & msg) = 0 ;
Writes this object as the next item in an outgoing message buffer,
appending it to any existing items. If the write operation is successful, the
ImqCache data length is increased. This method returns TRUE if
successful.

Override this method to work with a specific subclass.

virtual ImqBoolean pasteIn(ImqMessage & msg) = 0 ;
Reads this object destructively3 from the incoming message buffer.

The (sub)class of this object must be consistent with the structure id found
next in the message buffer of the msg object.

The encoding of the msg object should be MQENC_NATIVE. It is
recommended that messages be retrieved with the ImqMessage encoding
set to MQENC_NATIVE, and with the ImqGetMessageOptions options
including MQGMO_CONVERT.

If the read operation is successful, the ImqCache data length is reduced.
This method returns TRUE if successful.

Override this method to work with a specific subclass.

Reason codes
MQRC_ENCODING_ERROR
MQRC_STRUC_ID_ERROR
MQRC_INCONSISTENT_FORMAT
MQRC_INSUFFICIENT_BUFFER
MQRC_INSUFFICIENT_DATA

3. The read is destructive in that the ImqCache data pointer is moved on. However, the buffer content remains the same, so data
can be re-read by resetting the ImqCache data pointer.

ImqItem class

56 MQSeries Using C++

|
|
|

ImqMessage

This class encapsulates an MQMD data structure (see Table 15 on page 124), and
also handles the construction and reconstruction of message data.

Other relevant classes
ImqCache (see “ImqCache” on page 29)
ImqItem (see “ImqItem” on page 55)
ImqMessageTracker (see “ImqMessageTracker” on page 64)
ImqString (see “ImqString” on page 105)

Object attributes
application id data

Identity information associated with a message. The initial value is a null
string.

application origin data
Origin information associated with a message. The initial value is a null
string.

backout count
The number of times a message has been tentatively retrieved and
subsequently backed out. The initial value is zero. This attribute is
read-only.

character set
Coded Character Set Id. The initial value is MQCCSI_Q_MGR. The
following additional values are possible:

MQCCSI_INHERIT
MQCCSI_EMBEDDED

You can also use a Coded Character Set Id of your choice. For information
about this, see the code page conversion tables in the MQSeries Application
Programming Reference book.

encoding
The machine encoding of the message data. The initial value is
MQENC_NATIVE.

Cache

Message

Message
Tracker

ImqMessage class

Chapter 3. MQSeries C++ classes 57

|
|
|

|

|

|
|
|

expiry A time-dependent quantity that controls how long MQSeries retains an
unretrieved message before discarding it. The initial value is
MQEI_UNLIMITED.

format
The name of the format (template) that describes the layout of data in the
buffer. Names longer than eight characters are truncated to eight
characters. Names are always padded with blanks to eight characters. The
initial value is MQFMT_NONE. The following additional values are
possible:

MQFMT_ADMIN
MQFMT_CICS
MQFMT_COMMAND_1
MQFMT_COMMAND_2
MQFMT_DEAD_LETTER_HEADER
MQFMT_DIST_HEADER
MQFMT_EVENT
MQFMT_IMS
MQFMT_IMS_VAR_STRING
MQFMT_MD_EXTENSION
MQFMT_PCF
MQFMT_REF_MSG_HEADER
MQFMT_RF_HEADER
MQFMT_STRING
MQFMT_TRIGGER
MQFMT_WORK_INFO_HEADER
MQFMT_XMIT_Q_HEADER

You can also use an application-specific string of your choice. For more
information about this, see the Format field of the message descriptor
(MQMD) in the MQSeries Application Programming Reference book.

message flags
Segmentation control information. The initial value is
MQMF_SEGMENTATION_INHIBITED. The following additional values
are possible:

MQMF_SEGMENTATION_ALLOWED
MQMF_MSG_IN_GROUP
MQMF_LAST_MSG_IN_GROUP
MQMF_SEGMENT
MQMF_LAST_SEGMENT
MQMF_NONE

This attribute is not supported on OS/390.

message type
The broad categorization of a message. The initial value is
MQMT_DATAGRAM. The following additional values are possible:

MQMT_SYSTEM_FIRST
MQMT_SYSTEM_LAST
MQMT_DATAGRAM

ImqMessage class

58 MQSeries Using C++

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|

|

|

|

|

|

|

|
|
|

|

|

|

MQMT_REQUEST
MQMT_REPLY
MQMT_REPORT
MQMT_APPL_FIRST
MQMT_APPL_LAST

You can also use an application-specific string of your choice. For more
information about this, see the MsgType field of the message descriptor
(MQMD) in the MQSeries Application Programming Reference book.

offset Offset information. The initial value is zero. This attribute is not supported
on OS/390.

original length
The original length of a segmented message. The initial value is
MQOL_UNDEFINED. This attribute is not supported on OS/390.

persistence
Indicates that the message is important and must at all times be backed up
using persistent storage. This option implies a performance penalty. The
initial value is MQPER_PERSISTENCE_AS_Q_DEF. The following
additional values are possible:

MQPER_PERSISTENT
MQPER_NOT_PERSISTENT

priority
The relative priority for transmission and delivery. Messages of the same
priority are usually delivered in the same sequence as they were supplied
(although there are several criteria that must be satisfied to guarantee this).
The initial value is MQPRI_PRIORITY_AS_Q_DEF.

put application name
The name of the application that put a message. The initial value is a null
string.

put application type
The type of application that put a message. The initial value is
MQAT_NO_CONTEXT. The following additional values are possible:

MQAT_AIX
MQAT_CICS
MQAT_CICS_BRIDGE
MQAT_DOS
MQAT_IMS
MQAT_IMS_BRIDGE
MQAT_MVS
MQAT_NOTES_AGENT
MQAT_OS2
MQAT_OS390
MQAT_OS400
MQAT_QMGR
MQAT_UNIX
MQAT_WINDOWS
MQAT_WINDOWS_NT

ImqMessage class

Chapter 3. MQSeries C++ classes 59

|

|

|

|

|

|
|
|

|
|

|

|
|
|
|
|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

MQAT_XCF
MQAT_DEFAULT
MQAT_UNKNOWN
MQAT_USER_FIRST
MQAT_USER_LAST

You can also use an application-specific string of your choice. For more
information about this, see the PutApplType field of the message descriptor
(MQMD) in the MQSeries Application Programming Reference book.

put date
The date on which a message was put. The initial value is a null string.

put time
The time at which a message was put. The initial value is a null string.

reply-to queue manager name
The name of the queue manager to which any reply should be sent. The
initial value is a null string.

reply-to queue name
The name of the queue to which any reply should be sent. The initial value
is a null string.

report Feedback information associated with a message. The initial value is
MQRO_NONE. The following additional values are possible:

MQRO_EXCEPTION
MQRO_EXCEPTION_WITH_DATA
MQRO_EXCEPTION_WITH_FULL_DATA *
MQRO_EXPIRATION
MQRO_EXPIRATION_WITH_DATA
MQRO_EXPIRATION_WITH_FULL_DATA *
MQRO_COA
MQRO_COA_WITH_DATA
MQRO_COA_WITH_FULL_DATA *
MQRO_COD
MQRO_COD_WITH_DATA
MQRO_COD_WITH_FULL_DATA *
MQRO_PAN
MQRO_NAN
MQRO_NEW_MSG_ID
MQRO_NEW_PASS_ID
MQRO_COPY_MSG_ID_TO_CORREL_ID
MQRO_PASS_CORREL_ID
MQRO_DEAD_LETTER_Q
MQRO_DISCARD_MSG
MQRO_DISCARD_MSG

where * indicates values that are not supported on MQSeries for OS/390.

sequence number
Sequence information identifying a message within a group. The initial
value is one. This attribute is not supported on OS/390.

ImqMessage class

60 MQSeries Using C++

|

|

|

|

|

|
|
|

||
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

total message length
The number of bytes that were available during the most recent attempt to
read a message. This number will be greater than the ImqCache message
length if the last message was truncated, or if the last message was not
read because truncation would have occurred. This attribute is read-only.
The initial value is zero.

This attribute can be useful in any situation involving truncated messages.

user id
A user identity associated with a message. The initial value is a null string.

Constructors
ImqMessage();

The default constructor.

ImqMessage(const ImqMessage & msg);
The copy constructor. See the operator = method for details.

Object methods (public)
void operator = (const ImqMessage & msg);

Copies the MQMD and message data from msg. If a buffer has been
supplied by the user for this object, the amount of data copied is restricted
to the available buffer size. Otherwise, the system ensures that a buffer of
adequate size is made available for the copied data.

ImqString applicationIdData() const ;
Returns a copy of the application id data.

void setApplicationIdData(const char * data = 0);
Sets the application id data.

ImqString applicationOriginData() const ;
Returns a copy of the application origin data.

void setApplicationOriginData(const char * data = 0);
Sets the application origin data.

MQLONG backoutCount() const ;
Returns the backout count.

MQLONG characterSet() const ;
Returns the character set.

void setCharacterSet(const MQLONG ccsid = MQCCSI_Q_MGR);
Sets the character set.

MQLONG encoding() const ;
Returns the encoding.

void setEncoding(const MQLONG encoding = MQENC_NATIVE);
Sets the encoding.

MQLONG expiry() const ;
Returns the expiry.

void setExpiry(const MQLONG expiry);
Sets the expiry.

ImqString format() const ;
Returns a copy of the format, including trailing blanks.

ImqMessage class

Chapter 3. MQSeries C++ classes 61

ImqBoolean formatIs(const char * format-to-test) const ;
Returns TRUE if the format is the same as format-to-test.

void setFormat(const char * name = 0);
Sets the format, padding to eight characters with trailing blanks.

MQLONG messageFlags() const ;
Returns the message flags.

void setMessageFlags(const MQLONG flags);
Sets the message flags.

MQLONG messageType() const ;
Returns the message type.

void setMessageType(const MQLONG type);
Sets the message type.

MQLONG offset() const ;
Returns the offset.

void setOffset(const MQLONG offset);
Sets the offset.

MQLONG originalLength() const ;
Returns the original length.

void setOriginalLength(const MQLONG length);
Sets the original length.

MQLONG persistence() const ;
Returns the persistence.

void setPersistence(const MQLONG persistence);
Sets the persistence.

MQLONG priority() const ;
Returns the priority.

void setPriority(const MQLONG priority);
Sets the priority.

ImqString putApplicationName() const ;
Returns a copy of the put application name.

void setPutApplicationName(const char * name = 0);
Sets the put application name.

MQLONG putApplicationType() const ;
Returns the put application type.

void setPutApplicationType(const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type.

ImqString putDate() const ;
Returns a copy of the put date.

void setPutDate(const char * date = 0);
Sets the put date.

ImqString putTime() const ;
Returns a copy of the put time.

void setPutTime(const char * time = 0);
Sets the put time.

ImqMessage class

62 MQSeries Using C++

ImqBoolean readItem(ImqItem & item);
Reads into the item object from the message buffer, using the ImqItem
pasteIn method. It returns TRUE if successful.

ImqString replyToQueueManagerName() const ;
Returns a copy of the reply-to queue manager name.

void setReplyToQueueManagerName(const char * name = 0);
Sets the reply-to queue manager name.

ImqString replyToQueueName() const ;
Returns a copy of the reply-to queue name.

void setReplyToQueueName(const char * name = 0);
Sets the reply-to queue name.

MQLONG report() const ;
Returns the report.

void setReport(const MQLONG report);
Sets the report.

MQLONG sequenceNumber() const ;
Returns the sequence number.

void setSequenceNumber(const MQLONG number);
Sets the sequence number.

size_t totalMessageLength() const ;
Returns the total message length.

ImqString userId() const ;
Returns a copy of the user id.

void setUserId(const char * id = 0);
Sets the user id.

ImqBoolean writeItem(ImqItem & item);
Writes from the item object into the message buffer, using the ImqItem
copyOut method. Writing may take the form of insertion, replacement or
an append: this depends on the class of the item object. This method
returns TRUE if successful.

Object data (protected)
MQMD omqmd

The MQMD data structure.

ImqMessage class

Chapter 3. MQSeries C++ classes 63

ImqMessageTracker

This class encapsulates those attributes of an ImqMessage or ImqQueue object that
can be associated with either object. It relates to the MQI calls listed in Table 16 on
page 125.

Other relevant classes
ImqBinary (see “ImqBinary” on page 27)
ImqError (see “ImqError” on page 44)
ImqMessage (see “ImqMessage” on page 57)
ImqQueue (see “ImqQueue” on page 82)

Object attributes
accounting token

A binary value (MQBYTE32) of length
MQ_ACCOUNTING_TOKEN_LENGTH. The initial value is
MQACT_NONE.

correlation id
A binary value (MQBYTE24) of length MQ_CORREL_ID_LENGTH
assigned by the user for the purpose of correlating messages. The initial
value is MQCI_NONE. The additional value, MQCI_NEW_SESSION, is
possible.

feedback
Feedback information to be sent with a message. The initial value is
MQFB_NONE. The following additional values are possible:

MQFB_SYSTEM_FIRST
MQFB_SYSTEM_LAST
MQFB_APPL_FIRST
MQFB_APPL_LAST
MQFB_COA
MQFB_COD
MQFB_EXPIRATION
MQFB_PAN
MQFB_NAN

Message
Tracker

Error

A

ImqMessageTracker class

64 MQSeries Using C++

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

MQFB_QUIT
MQFB_DATA_LENGTH_ZERO
MQFB_DATA_LENGTH_NEGATIVE
MQFB_DATA_LENGTH_TOO_BIG
MQFB_BUFFER_OVERFLOW
MQFB_LENGTH_OFF_BY_ONE
MQFB_IIH_ERROR
MQFB_NOT_AUTHORIZED_FOR_IMS
MQFB_IMS_ERROR
MQFB_IMS_FIRST
MQFB_IMS_LAST
MQFB_CICS_APPL_ABENDED
MQFB_CICS_APPL_NOT_STARTED
MQFB_CICS_BRIDGE_FAILURE
MQFB_CICS_CCSID_ERROR
MQFB_CICS_CIH_ERROR
MQFB_CICS_COMMAREA_ERROR
MQFB_CICS_CORREL_ID_ERROR
MQFB_CICS_DLQ_ERROR
MQFB_CICS_ENCODING_ERROR
MQFB_CICS_INTERNAL_ERROR
MQFB_CICS_NOT_AUTHORIZED
MQFB_CICS_UOW_BACKED_OUT
MQFB_CICS_UOW_ERROR

You can also use an application-specific string of your choice. For more
information about this, see the Feedback field of the message descriptor
(MQMD) in the MQSeries Application Programming Reference book.

group id
A binary value (MQBYTE24) of length MQ_GROUP_ID_LENGTH unique
within a queue. The initial value is MQGI_NONE.

message id
A binary value (MQBYTE24) of length MQ_MSG_ID_LENGTH unique
within a queue. The initial value is MQMI_NONE.

Constructors
ImqMessageTracker();

The default constructor.

ImqMessageTracker(const ImqMessageTracker & tracker);
The copy constructor. See the operator = method for details.

Object methods (public)
void operator = (const ImqMessageTracker & tracker);

Instance data is copied from tracker, replacing the existing instance data.

ImqBinary accountingToken() const ;
Returns a copy of the accounting token.

ImqMessageTracker class

Chapter 3. MQSeries C++ classes 65

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

ImqBoolean setAccountingToken(const ImqBinary & token);
Sets the accounting token. The data length of token must be either zero or
MQ_ACCOUNTING_TOKEN_LENGTH. This method returns TRUE if
successful.

void setAccountingToken(const MQBYTE32 token = 0);
Sets the accounting token. token may be zero, which is the same as
specifying MQACT_NONE. If token is nonzero, then it must address
MQ_ACCOUNTING_TOKEN_LENGTH bytes of binary data. When using
predefined values such as MQACT_NONE, it may be necessary to make a
cast to ensure a signature match; for example,
(MQBYTE *)MQACT_NONE.

ImqBinary correlationId() const ;
Returns a copy of the correlation id.

ImqBoolean setCorrelationId(const ImqBinary & token);
Sets the correlation id. The data length of token must be either zero or
MQ_CORREL_ID_LENGTH. This method returns TRUE if successful.

void setCorrelationId(const MQBYTE24 id = 0);
Sets the correlation id. id may be zero, which is the same as specifying
MQCI_NONE. If id is nonzero, then it must address
MQ_CORREL_ID_LENGTH bytes of binary data. When using predefined
values such as MQCI_NONE, it may be necessary to make a cast to ensure
a signature match; for example, (MQBYTE *)MQCI_NONE.

MQLONG feedback() const ;
Returns the feedback.

void setFeedback(const MQLONG feedback);
Sets the feedback.

ImqBinary groupId() const ;
Returns a copy of the group id.

ImqBoolean setGroupId(const ImqBinary & token);
Sets the group id. The data length of token must be either zero or
MQ_GROUP_ID_LENGTH. This method returns TRUE if successful.

void setGroupId(const MQBYTE24 id = 0);
Sets the group id. id may be zero, which is the same as specifying
MQGI_NONE. If id is nonzero, it must address MQ_GROUP_ID_LENGTH
bytes of binary data. When using predefined values such as MQGI_NONE,
it may be necessary to make a cast to ensure a signature match, for
example (MQBYTE *)MQGI_NONE.

ImqBinary messageId() const ;
Returns a copy of the message id.

ImqBoolean setMessageId(const ImqBinary & token);
Sets the message id. The data length of token must be either zero or
MQ_MSG_ID_LENGTH. This method returns TRUE if successful.

void setMessageId(const MQBYTE24 id = 0);
Sets the message id. id may be zero, which is the same as specifying
MQMI_NONE. If id is nonzero, it must address MQ_MSG_ID_LENGTH
bytes of binary data. When using predefined values such as
MQMI_NONE, it may be necessary to make a cast to ensure a signature
match, for example (MQBYTE *)MQMI_NONE.

ImqMessageTracker class

66 MQSeries Using C++

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR

ImqMessageTracker class

Chapter 3. MQSeries C++ classes 67

ImqNamelist

This class encapsulates a namelist. It relates to the MQI calls listed in Table 17 on
page 125.

Other relevant classes
ImqObject (see “ImqObject” on page 70)
ImqString (see “ImqString” on page 105)

Object attributes
name count

The number of object names in namelist names. This attribute is read-only.

namelist names
Object names, the number of which is indicated by the name count. This
attribute is read-only.

Constructors
ImqNamelist();

The default constructor.

ImqNamelist(const ImqNamelist & list);
The copy constructor. The ImqObject open status will be false.

ImqNamelist(const char * name);
Sets the ImqObject name to name.

Object methods (public)
void operator = (const ImqNamelist & list);

Instance data is copied from list, replacing the existing instance data. The
ImqObject open status will be false.

ImqBoolean nameCount(MQLONG & count);
Provides a copy of the name count. It returns TRUE if successful.

MQLONG nameCount ();
Returns the name count without any indication of possible errors.

Object

A

Namelist

ImqNamelist class

68 MQSeries Using C++

|
|

ImqBoolean namelistName (const MQLONG index, ImqString & name);
Provides a copy of one the namelist names by zero based index. It returns
TRUE if successful.

ImqString namelistName (const MQLONG index);
Returns one of the namelist names by zero based index without any
indication of possible errors.

Reason codes
MQRC_INDEX_ERROR
MQRC_INDEX_NOT_PRESENT

ImqNamelist class

Chapter 3. MQSeries C++ classes 69

ImqObject

This class is abstract. When an object of this class is destroyed, it is automatically
closed, and its ImqQueueManager connection severed. This class relates to the
MQI calls listed in Table 18 on page 125.

Other relevant classes
ImqBinary (see “ImqBinary” on page 27)
ImqError (see “ImqError” on page 44)
ImqNamelist (see “ImqNamelist” on page 68)
ImqQueue (see “ImqQueue” on page 82)
ImqQueueManager (see “ImqQueueManager” on page 94)
ImqString (see “ImqString” on page 105)

Class attributes
behavior

Controls the behavior of implicit opening.

IMQ_IMPL_OPEN (8L)
Implicit opening is allowed. This is the default.

Object attributes
alteration date

The alteration date. This attribute is read-only.

alteration time
The alteration time. This attribute is read-only.

alternate user id
Up to MQ_USER_ID_LENGTH characters. The initial value is a null string.

alternate security id
The alternate security id. A binary value (MQBYTE40) of length
MQ_SECURITY_ID_LENGTH. The initial value is MQSID_NONE.

close options
The initial value is MQCO_NONE. This attribute is ignored during implicit
reopen operations, where a value of MQCO_NONE is always used.

Error

A

Object

A

ImqObject class

70 MQSeries Using C++

|
|
|

|

|
|

|
|

|

connection reference
A reference to an ImqQueueManager object that provides the required
connection to a (local) queue manager. For an ImqQueueManager object, it
will be the object itself. The initial value is zero.

Note: Do not confuse this with the ImqQueue queue manager name that
identifies a queue manager (possibly remote) for a named queue.

description
The descriptive name (up to 64 characters) of the queue manager, queue,
namelist, or process. This attribute is read-only.

name The name (up to 48 characters) of the queue manager, queue, namelist, or
process, as appropriate. The initial value is a null string. The name of a
model queue changes after an open to the name of the resulting dynamic
queue.

Note: An ImqQueueManager can have a null name, representing the
default queue manager. The name changes to the actual queue
manager after a successful open. An ImqDistributionList is dynamic
and must have a null name.

next managed object
This is the next object of this class, in no particular order, having the same
connection reference as this object. The initial value is zero.

open options
The initial value is MQOO_INQUIRE. There are two ways to set
appropriate values:
1. Do not set the open options and do not use the open method.

MQSeries automatically adjusts the open options and automatically
opens, reopen and closes objects as required. This may result in
unnecessary reopen operations, because MQSeries uses the openFor
method, and this adds open options incrementally only.

2. Set the open options as appropriate before using any methods that
result in an MQI call (see “Appendix B. MQI cross-reference” on
page 121). This ensures that unnecessary reopen operations do not
occur. It is strongly recommended that the open options be set
explicitly if any of the potential reopen problems are likely to occur (see
“Reopen” on page 19).
If you use the open method, you must ensure that the open options are
appropriate first. However, using the open method is not mandatory;
MQSeries still exhibits the same behavior as in case 1, but in this
circumstance, the behavior is efficient.

Zero is not a valid value, and so the appropriate value must be set before
attempting to open the object. This can be done either using
setOpenOptions(lOpenOptions) followed by open(), or by using
openFor(lRequiredOpenOption).

Notes:

1. MQOO_OUTPUT is substituted for MQOO_INQUIRE during the open
method for a distribution list, as MQOO_OUTPUT is the only valid
open option at this time. However, this substitution may not occur in
any future release, so you are recommended to set MQOO_OUTPUT
explicitly in application programs that use the open method.

ImqObject class

Chapter 3. MQSeries C++ classes 71

2. MQOO_RESOLVE_NAMES is an option that can be specified if the
resolved queue manager name and resolved queue name attributes of
the ImqQueue class are of interest.

open status
Indicates whether the object is open (TRUE) or closed (FALSE). The initial
value is FALSE. This attribute is read-only.

previous managed object
This is the previous object of this class, in no particular order, having the
same connection reference as this object. The initial value is zero.

queue manager identifier
Queue manager identifier. This attribute is read-only.

Constructors
ImqObject();

The default constructor.

ImqObject(const ImqObject & object);
The copy constructor. The open status will be FALSE.

Class methods (public)
static MQLONG behavior();

Returns the behavior.

void setBehavior(const MQLONG behavior = 0);
Sets the behavior.

Object methods (public)
void operator = (const ImqObject & object);

Performs a close if necessary, and copies the instance data from object. The
open status will be FALSE.

ImqBoolean alterationDate(ImqString & date);
Provides a copy of the alteration date. It returns TRUE if successful.

ImqString alterationDate();
Returns the alteration date without any indication of possible errors.

ImqBoolean alterationTime(ImqString & time);
Provides a copy of the alteration time. It returns TRUE if successful.

ImqString alterationTime();
Returns the alteration time without any indication of possible errors.

ImqString alternateUserId() const ;
Returns a copy of the alternate user id.

ImqBoolean setAlternateUserId(const char * id);
Sets the alternate user id. The alternate user id can be set only while the
open status is FALSE. This method returns TRUE if successful.

ImqBinary alternateSecurityId() const ;
Returns a copy of the alternate security id.

ImqBoolean setAlternateSecurityId(const ImqBinary & token);
Sets the alternate security id. The alternate security id can be set only
while the open status is FALSE. The data length of token must be either
zero or MQ_SECURITY_ID_LENGTH. It returns TRUE if successful.

ImqObject class

72 MQSeries Using C++

ImqBoolean setAlternateSecurityId(const MQBYTE32 token = 0);
Sets the alternate security id. token may be zero, which is the same as
specifying MQSID_NONE. If token is nonzero, it must address
MQ_SECURITY_ID_LENGTH bytes of binary data. When using predefined
values such as MQSID_NONE, it may be necessary to make a cast to
ensure signature match; for example, (MQBYTE *)MQSID_NONE.

The alternate security id can be set only while the open status is TRUE. It
returns TRUE if successful.

void setAlternateSecurityId(const unsigned char * id = 0);
Sets the alternate security id.

ImqBoolean close();
Sets the open status to FALSE. It returns TRUE if successful.

MQLONG closeOptions() const ;
Returns the close options.

void setCloseOptions(const MQLONG options);
Sets the close options.

ImqQueueManager * connectionReference() const ;
Returns the connection reference.

void setConnectionReference(ImqQueueManager & manager);
Sets the connection reference.

void setConnectionReference(ImqQueueManager * manager = 0);
Sets the connection reference.

virtual ImqBoolean description(ImqString & description) = 0 ;
Provides a copy of the description. It returns TRUE if successful.

ImqString description();
Returns a copy of the description without any indication of possible errors.

virtual ImqBoolean name(ImqString & name);
Provides a copy of the name. It returns TRUE if successful.

ImqString name();
Returns a copy of the name without any indication of possible errors.

ImqBoolean setName(const char * name = 0);
Sets the name. The name can only be set while the open status is FALSE,
and, for an ImqQueueManager, while the connection status is FALSE. It
returns TRUE if successful.

ImqObject * nextManagedObject() const ;
Returns the next managed object.

ImqBoolean open();
Changes the open status to TRUE by opening the object as necessary,
using amongst other attributes the open options and the name. This
method uses the connection reference information and the
ImqQueueManager connect method if necessary to ensure that the
ImqQueueManager connection status is TRUE. It returns the open status.

ImqBoolean openFor(const MQLONG required-options = 0);
Attempts to ensure that the object is open with open options that include
the required-options specified.

If required-options is zero, it is assumed that input is required, and that any
input option will suffice. So, if the open options already contain one of:

ImqObject class

Chapter 3. MQSeries C++ classes 73

MQOO_INPUT_AS_Q_DEF
MQOO_INPUT_SHARED
MQOO_INPUT_EXCLUSIVE

then the open options are already satisfactory and are not changed; if the
open options do not already contain any of the above, then
MQOO_INPUT_AS_Q_DEF is set in the open options.

If required-options is nonzero, the required options are added to the open
options; if required-options is any of the above, the others are reset.

If any of the open options are changed and the object is already open, the
object is closed temporarily and reopened in order to adjust the open
options.

It returns TRUE if successful. Success indicates that the object is open with
appropriate options.

MQLONG openOptions() const ;
Returns the open options.

ImqBoolean setOpenOptions(const MQLONG options);
Sets the open options. The open options can be set only while the open
status is FALSE. It returns TRUE if successful.

ImqBoolean openStatus() const ;
Returns the open status.

ImqObject * previousManagedObject() const ;
Returns the previous managed object.

ImqBoolean queueManagerIdentifier(ImqString & id);
Provides a copy of the queue manager identifier. It returns TRUE if
successful.

ImqString queueManagerIdentifier();
Returns the queue manager identifier without any indication of possible
errors.

Object methods (protected)
virtual ImqBoolean closeTemporarily();

Closes an object safely prior to reopening. It returns TRUE if successful.

Note: This method assumes that the open status is TRUE.

MQHCONN connectionHandle() const ;
Returns the MQHCONN associated with the connection reference. This
value is zero if there is no connection reference or if the
ImqQueueManager is not connected.

ImqBoolean inquire(const MQLONG int-attr, MQLONG & value);
Returns an integer value, the index of which is an MQIA_* value. In case
of error, the value is set to MQIAV_UNDEFINED.

ImqBoolean inquire(const MQLONG char-attr, char * & buffer, const size_t
length);

Returns a character string, the index of which is an MQCA_* value.

ImqObject class

74 MQSeries Using C++

Note: Both of the above methods return only a single attribute value. If a
“snapshot” is required of more than one value, where the values are
consistent with each other for an instant, MQSeries C++ does not
provide this facility and it is necessary to use the MQINQ call with
appropriate parameters.

virtual void openInformationDisperse();
Disperses information from the variable section of the MQOD data
structure immediately after an MQOPEN call.

virtual ImqBoolean openInformationPrepare();
Prepares information for the variable section of the MQOD data structure
immediately prior to an MQOPEN call, and returns TRUE if successful.

ImqBoolean set(const MQLONG int-attr, const MQLONG value);
Sets an MQSeries integer attribute.

ImqBoolean set(const MQLONG char-attr, const char * buffer, const size_t
required-length);

Sets an MQSeries character attribute.

void setNextManagedObject(const ImqObject * object = 0);
Sets the next managed object.

void setPreviousManagedObject(const ImqObject * object = 0);
Sets the previous managed object.

Object data (protected)
MQHOBJ ohobj

The MQSeries object handle (valid only when open status is TRUE).

MQOD omqod
The embedded MQOD data structure. The amount of storage allocated for
this data structure is that required for an MQOD Version 2. Inspect the
version number (omqod.Version) and access the other fields as follows:

MQOD_VERSION_1
All other fields in omqod may be accessed.

MQOD_VERSION_2
All other fields in omqod may be accessed.

MQOD_VERSION_3
omqod.pmqod is a pointer to a dynamically allocated, larger, MQOD.
No other fields in omqod may be accessed. All fields addressed by
omqod.pmqod may be accessed.

Note: omqod.pmqod.Version may be less than omqod.Version,
indicating that the MQSeries client has more functionality
than the MQSeries server.

Reason codes
MQRC_ATTRIBUTE_LOCKED
MQRC_INCONSISTENT_OBJECT_STATE
MQRC_NO_CONNECTION_REFERENCE
MQRC_STORAGE_NOT_AVAILABLE
MQRC_REOPEN_SAVED_CONTEXT_ERR
(reason codes from MQCLOSE)

ImqObject class

Chapter 3. MQSeries C++ classes 75

(reason codes from MQCONN)
(reason codes from MQINQ)
(reason codes from MQOPEN)
(reason codes from MQSET)

ImqObject class

76 MQSeries Using C++

ImqProcess

This class encapsulates an application process (an MQSeries object of type
MQOT_PROCESS) that can be triggered by a trigger monitor (see Table 19 on
page 126).

Other relevant classes
ImqObject (see “ImqObject” on page 70)

Object attributes
application id

The identity of the application process. This attribute is read-only.

application type
The type of the application process. This attribute is read-only.

environment data
This is the environment information for the process. This attribute is
read-only.

user data
This is user data for the process. This attribute is read-only.

Constructors
ImqProcess();

The default constructor.

ImqProcess(const ImqProcess & process);
The copy constructor. The ImqObject open status is FALSE.

ImqProcess(const char * name);
Sets the ImqObject name.

Object methods (public)
void operator = (const ImqProcess & process);

Performs a close if necessary, and then copies instance data from process.
The ImqObject open status will be FALSE.

ImqBoolean applicationId(ImqString & id);
Provides a copy of the application id. It returns TRUE if successful.

Object

A

Process

ImqProcess class

Chapter 3. MQSeries C++ classes 77

|
|

ImqString applicationId();
Returns the application id without any indication of possible errors.

ImqBoolean applicationType(MQLONG & type);
Provides a copy of the application type. It returns TRUE if successful.

MQLONG applicationType();
Returns the application type without any indication of possible errors.

ImqBoolean environmentData(ImqString & data);
Provides a copy of the environment data. It returns TRUE if successful.

ImqString environmentData();
Returns the environment data without any indication of possible errors.

ImqBoolean userData(ImqString & data);
Provides a copy of the user data. It returns TRUE if successful.

ImqString userData();
Returns the user data without any indication of possible errors.

ImqProcess class

78 MQSeries Using C++

ImqPutMessageOptions

This class encapsulates the MQPMO data structure (see Table 20 on page 126).

Other relevant classes
ImqError (see “ImqError” on page 44)
ImqMessage (see “ImqMessage” on page 57)
ImqQueue (see “ImqQueue” on page 82)
ImqString (see “ImqString” on page 105)

Object attributes
context reference

An ImqQueue that provides a context for messages. Initially there is no
reference.

options
The put message options. The initial value is MQPMO_NONE. The
following additional values are possible:

MQPMO_SYNCPOINT
MQPMO_NO_SYNCPOINT
MQPMO_NEW_MSG_ID
MQPMO_NEW_CORREL_ID
MQPMO_LOGICAL_ORDER
MQPMO_NO_CONTEXT
MQPMO_DEFAULT_CONTEXT
MQPMO_PASS_IDENTITY_CONTEXT
MQPMO_PASS_ALL_CONTEXT
MQPMO_SET_IDENTITY_CONTEXT
MQPMO_SET_ALL_CONTEXT
MQPMO_ALTERNATE_USER_AUTHORITY
MQPMO_FAIL_IF_QUIESCING

record fields
The flags that control the inclusion of put message records when a message
is put. The initial value is MQPMRF_NONE. The following additional
values are possible:

Error

A

Put
Message
Options

ImqPutMessageOptions class

Chapter 3. MQSeries C++ classes 79

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

MQPMRF_MSG_ID
MQPMRF_CORREL_ID
MQPMRF_GROUP_ID
MQPMRF_FEEDBACK
MQPMRF_ACCOUNTING_TOKEN

ImqMessageTracker attributes are taken from the ImqQueue object for any
field that is specified. ImqMessageTracker attributes are taken from the
ImqMessage object for any field that is not specified.

resolved queue manager name
Name of a destination queue manager determined during a put. The initial
value is null. This attribute is read-only.

resolved queue name
Name of a destination queue determined during a put. The initial value is
null. This attribute is read-only.

syncpoint participation
TRUE when messages are put under syncpoint control.

Constructors
ImqPutMessageOptions();

The default constructor.

ImqPutMessageOptions(const ImqPutMessageOptions & pmo);
The copy constructor.

Object methods (public)
void operator = (const ImqPutMessageOptions & pmo);

Instance data is copied from pmo, replacing the existing instance data.

ImqQueue * contextReference() const ;
Returns the context reference.

void setContextReference(const ImqQueue & queue);
Sets the context reference.

void setContextReference(const ImqQueue * queue = 0);
Sets the context reference.

MQLONG options() const ;
Returns the options.

void setOptions(const MQLONG options);
Sets the options, including the syncpoint participation value.

MQLONG recordFields() const ;
Returns the record fields.

void setRecordFields(const MQLONG fields);
Sets the record fields.

ImqString resolvedQueueManagerName() const ;
Returns a copy of the resolved queue manager name.

ImqString resolvedQueueName() const ;
Returns a copy of the resolved queue name.

ImqPutMessageOptions class

80 MQSeries Using C++

|

|

|

|

|

ImqBoolean syncPointParticipation() const ;
Returns the syncpoint participation value, which is TRUE if the options
include MQPMO_SYNCPOINT.

void setSyncPointParticipation(const ImqBoolean sync);
Sets the syncpoint participation value. If sync is TRUE, the options are
altered to include MQPMO_SYNCPOINT, and to exclude
MQPMO_NO_SYNCPOINT. If sync is FALSE, the options are altered to
include MQPMO_NO_SYNCPOINT, and to exclude
MQPMO_SYNCPOINT.

Object data (protected)
MQPMO omqpmo

The MQPMO data structure.

Reason codes
MQRC_STORAGE_NOT_AVAILABLE

ImqPutMessageOptions class

Chapter 3. MQSeries C++ classes 81

ImqQueue

This class encapsulates a message queue (an MQSeries object of type MQOT_Q). It
relates to the MQI calls listed in Table 21 on page 126.

Other relevant classes
ImqCache (see “ImqCache” on page 29)
ImqDistributionList (see “ImqDistributionList” on page 42)
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 46)
ImqMessage (see “ImqMessage” on page 57)
ImqMessageTracker (see “ImqMessageTracker” on page 64)
ImqObject (see “ImqObject” on page 70)
ImqPutMessageOptions (see “ImqPutMessageOptions” on page 79)
ImqQueueManager (see “ImqQueueManager” on page 94)
ImqString (see “ImqString” on page 105)

Object attributes
backout requeue name

Excessive backout requeue name. This attribute is read-only.

backout threshold
Backout threshold. This attribute is read-only.

base queue name
Name of the queue that the alias resolves to. This attribute is read-only.

cluster name
Cluster name. This attribute is read-only.

cluster namelist name
Cluster namelist name. This attribute is read-only.

creation date
Queue creation data. This attribute is read-only.

creation time
Queue creation time. This attribute is read-only.

current depth
Number of messages on the queue. This attribute is read-only.

Object

Queue

Message
Tracker

A

ImqQueue class

82 MQSeries Using C++

|
|

default bind
Default bind. This attribute is read-only.

default input open option
Default open-for-input option. This attribute is read-only.

default persistence
The default message persistence. This attribute is read-only.

default priority
Default message priority. This attribute is read-only.

definition type
Queue definition type. This attribute is read-only.

depth high event
Control attribute for queue depth high events. This attribute is read-only.

depth high limit
High limit for the queue depth. This attribute is read-only.

depth low event
This is the control attribute for queue depth low events. This attribute is
read-only.

depth low limit
This is the low limit for the queue depth. This attribute is read-only.

depth maximum event
Control attribute for queue depth maximum events. This attribute is
read-only.

distribution list reference
An optional reference to an ImqDistributionList that can be used to
distribute messages to more than one queue, including this one. The initial
value is null.

Note: When an ImqQueue object is opened, any open ImqDistributionList
object that it references is automatically closed.

distribution lists
Specifies the capability of a transmission queue to support distribution
lists. This attribute is read-only.

dynamic queue name
Dynamic queue name. The initial value is “AMQ.*” for all Personal
Computer and UNIX platforms.

harden get backout
Determines whether to harden the backout count. This attribute is
read-only.

index type
Index type. This attribute is read-only.

inhibit get
Determines whether get operations are allowed. The initial value is
dependent on the queue definition. This attribute is valid for an alias or
local queue only.

inhibit put
Determines whether put operations are allowed. The initial value is
dependent on the queue definition.

ImqQueue class

Chapter 3. MQSeries C++ classes 83

initiation queue name
Name of the initiation queue. This attribute is read-only.

maximum depth
Maximum number of messages allowed on the queue. This attribute is
read-only.

maximum message length
Maximum length for any message on this queue, which may be less than
the maximum for any queue managed by the associated queue manager.
This attribute is read-only.

message delivery sequence
Determines whether message priority is relevant. This attribute is
read-only.

next distributed queue
Next object of this class, in no particular order, having the same
distribution list reference as this object. The initial value is zero.

open input count
Number of ImqQueue objects that are open for input. This attribute is
read-only.

open output count
Number of ImqQueue objects that are open for output. This attribute is
read-only.

previous distributed queue
Previous object of this class, in no particular order, having the same
distribution list reference as this object. The initial value is zero.

process name
Name of the process definition. This attribute is read-only.

queue manager name
Name of the queue manager (possibly remote) where the queue actually
resides. The queue manager named here should not be confused with the
ImqObject connection reference which references the (local) queue
manager providing a connection. The initial value is null.

queue type
Queue type. This attribute is read-only.

remote queue manager name
Name of the remote queue manager. This attribute is read-only.

remote queue name
Name of the remote queue as known on the remote queue manager. This
attribute is read-only.

resolved queue manager name
Resolved queue manager name. This attribute is read-only.

resolved queue name
Resolved queue name. This attribute is read-only.

retention interval
Queue retention interval. This attribute is read-only.

scope Scope of the queue definition. This attribute is read-only.

service interval
Service interval. This attribute is read-only.

ImqQueue class

84 MQSeries Using C++

service interval event
Control attribute for service interval events. This attribute is read-only.

shareability
Determines whether the queue can be shared. This attribute is read-only.

storage class
Storage class. This attribute is read-only.

transmission queue name
Name of the transmission queue. This attribute is read-only.

trigger control
Trigger control. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

trigger data
Trigger data. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

trigger depth
Trigger depth. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

trigger message priority
Threshold message priority for triggers. The initial value depends on the
queue definition. This attribute is valid for a local queue only.

trigger type
Trigger type. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

usage Usage. This attribute is read-only.

Constructors
ImqQueue();

The default constructor.

ImqQueue(const ImqQueue & queue);
The copy constructor. The ImqObject open status will be FALSE.

ImqQueue(const char * name);
Sets the ImqObject name.

Object methods (public)
void operator = (const ImqQueue & queue);

Performs a close if necessary, and then copies instance data from queue.
The ImqObject open status will be FALSE.

ImqBoolean backoutRequeueName(ImqString & name);
Provides a copy of the backout requeue name. It returns TRUE if
successful.

ImqString backoutRequeueName();
Returns the backout requeue name without any indication of possible
errors.

ImqBoolean backoutThreshold(MQLONG & threshold);
Provides a copy of the backout threshold. It returns TRUE if successful.

ImqQueue class

Chapter 3. MQSeries C++ classes 85

MQLONG backoutThreshold();
Returns the backout threshold value without any indication of possible
errors.

ImqBoolean baseQueueName(ImqString & name);
Provides a copy of the base queue name. It returns TRUE if successful.

ImqString baseQueueName();
Returns the base queue name without any indication of possible errors.

ImqBoolean clusterName(ImqString & name);
Provides a copy of the cluster name. It returns TRUE if successful.

ImqString clusterName();
Returns the cluster name without any indication of possible errors.

ImqBoolean clusterNamelistName(ImqString & name);
Provides a copy of the cluster namelist name. It returns TRUE if
successful.

ImqString clusterNamelistName();
Returns the cluster namelist name without any indication of errors.

ImqBoolean creationDate(ImqString & date);
Provides a copy of the creation date. It returns TRUE if successful.

ImqString creationDate();
Returns the creation date without any indication of possible errors.

ImqBoolean creationTime(ImqString & time);
Provides a copy of the creation time. It returns TRUE if successful.

ImqString creationTime();
Returns the creation time without any indication of possible errors.

ImqBoolean currentDepth(MQLONG & depth);
Provides a copy of the current depth. It returns TRUE if successful.

MQLONG currentDepth();
Returns the current depth without any indication of possible errors.

ImqBoolean defaultInputOpenOption(MQLONG & option);
Provides a copy of the default input open option. It returns TRUE if
successful.

MQLONG defaultInputOpenOption();
Returns the default input open option without any indication of possible
errors.

ImqBoolean defaultPersistence(MQLONG & persistence);
Provides a copy of the default persistence. It returns TRUE if successful.

MQLONG defaultPersistence();
Returns the default persistence without any indication of possible errors.

ImqBoolean defaultPriority(MQLONG & priority);
Provides a copy of the default priority. It returns TRUE if successful.

MQLONG defaultPriority();
Returns the default priority without any indication of possible errors.

ImqBoolean defaultBind(MQLONG & bind);
Provides a copy of the default bind. It returns TRUE if successful.

MQLONG defaultBind();
Returns the default bind without any indication of possible errors.

ImqQueue class

86 MQSeries Using C++

|
|

|
|

|
|
|

|
|

ImqBoolean definitionType(MQLONG & type);
Provides a copy of the definition type. It returns TRUE if successful.

MQLONG definitionType();
Returns the definition type without any indication of possible errors.

ImqBoolean depthHighEvent(MQLONG & event);
Provides a copy of the enablement state of the depth high event. It returns
TRUE if successful.

MQLONG depthHighEvent();
Returns the enablement state of the depth high event without any
indication of possible errors.

ImqBoolean depthHighLimit(MQLONG & limit);
Provides a copy of the depth high limit. It returns TRUE if successful.

MQLONG depthHighLimit();
Returns the depth high limit value without any indication of possible
errors.

ImqBoolean depthLowEvent(MQLONG & event);
Provides a copy of the enablement state of the depth low event. It returns
TRUE if successful.

MQLONG depthLowEvent();
Returns the enablement state of the depth low event without any
indication of possible errors.

ImqBoolean depthLowLimit(MQLONG & limit);
Provides a copy of the depth low limit. It returns TRUE if successful.

MQLONG depthLowLimit();
Returns the depth low limit value without any indication of possible
errors.

ImqBoolean depthMaximumEvent(MQLONG & event);
Provides a copy of the enablement state of the depth maximum event. It
returns TRUE if successful.

MQLONG depthMaximumEvent();
Returns the enablement state of the depth maximum event without any
indication of possible errors.

ImqDistributionList * distributionListReference() const ;
Returns the distribution list reference.

void setDistributionListReference(ImqDistributionList & list);
Sets the distribution list reference.

void setDistributionListReference(ImqDistributionList * list = 0);
Sets the distribution list reference.

ImqBoolean distributionLists(MQLONG & support);
Provides a copy of the distribution lists value. It returns TRUE if
successful.

MQLONG distributionLists();
Returns the distribution lists value without any indication of possible
errors.

ImqBoolean setDistributionLists(const MQLONG support);
Sets the distribution lists value. It returns TRUE if successful.

ImqQueue class

Chapter 3. MQSeries C++ classes 87

ImqString dynamicQueueName() const ;
Returns a copy of the dynamic queue name.

ImqBoolean setDynamicQueueName(const char * name);
Sets the dynamic queue name. The dynamic queue name can be set only
while the ImqObject open status is FALSE. It returns TRUE if successful.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options);
Retrieves a message from the queue, using the specified options. The
ImqObject openFor method is invoked if necessary to ensure that the
ImqObject open options include either (a) one of the MQOO_INPUT_*
values, or (b) the MQOO_BROWSE value, depending on the options. If the
msg object has an ImqCache automatic buffer, the buffer grows to
accommodate any message retrieved. The clearMessage method is invoked
against the msg object prior to retrieval.

This method returns TRUE if successful.

Note: The result of the method invocation is FALSE if the ImqObject
reason code is MQRC_TRUNCATED_MSG_FAILED, even though
this reason code is classified as a warning. If a truncated message is
accepted, the ImqCache message length reflects the truncated
length. In either event, the ImqMessage total message length
indicates the number of bytes that were available.

ImqBoolean get(ImqMessage & msg);
As for the previous method, except that default get message options are
used.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options, const
size_t buffer-size);

As for the previous two methods, except that an overriding buffer-size is
indicated. If the msg object employs an ImqCache automatic buffer, the
resizeBuffer method is invoked on the msg object prior to message
retrieval, and the buffer does not grow further to accommodate any larger
message.

ImqBoolean get(ImqMessage & msg, const size_t buffer-size);
As for the previous method, except that default get message options are
used.

ImqBoolean hardenGetBackout(MQLONG & harden);
Provides a copy of the harden get backout value. It returns TRUE if
successful.

MQLONG hardenGetBackout();
Returns the harden get backout value without any indication of possible
errors.

ImqBoolean indexType(MQLONG & type);
Provides a copy of the index type. It returns TRUE if successful.

MQLONG indexType();
Returns the index type without any indication of possible errors.

ImqBoolean inhibitGet(MQLONG & inhibit);
Provides a copy of the inhibit get value. It returns TRUE if successful.

MQLONG inhibitGet();
Returns the inhibit get value without any indication of possible errors.

ImqQueue class

88 MQSeries Using C++

ImqBoolean setInhibitGet(const MQLONG inhibit);
Sets the inhibit get value. It returns TRUE if successful.

ImqBoolean inhibitPut(MQLONG & inhibit);
Provides a copy of the inhibit put value. It returns TRUE if successful.

MQLONG inhibitPut();
Returns the inhibit put value without any indication of possible errors.

ImqBoolean setInhibitPut(const MQLONG inhibit);
Sets the inhibit put value. It returns TRUE if successful.

ImqBoolean initiationQueueName(ImqString & name);
Provides a copy of the initiation queue name. It returns TRUE if
successful.

ImqString initiationQueueName();
Returns the initiation queue name without any indication of possible
errors.

ImqBoolean maximumDepth(MQLONG & depth);
Provides a copy of the maximum depth. It returns TRUE if successful.

MQLONG maximumDepth();
Returns the maximum depth without any indication of possible errors.

ImqBoolean maximumMessageLength(MQLONG & length);
Provides a copy of the maximum message length. It returns TRUE if
successful.

MQLONG maximumMessageLength();
Returns the maximum message length without any indication of possible
errors.

ImqBoolean messageDeliverySequence(MQLONG & sequence);
Provides a copy of the message delivery sequence. It returns TRUE if
successful.

MQLONG messageDeliverySequence();
Returns the message delivery sequence value without any indication of
possible errors.

ImqQueue * nextDistributedQueue() const ;
Returns the next distributed queue.

ImqBoolean openInputCount(MQLONG & count);
Provides a copy of the open input count. It returns TRUE if successful.

MQLONG openInputCount();
Returns the open input count without any indication of possible errors.

ImqBoolean openOutputCount(MQLONG & count);
Provides a copy of the open output count. It returns TRUE if successful.

MQLONG openOutputCount();
Returns the open output count without any indication of possible errors.

ImqQueue * previousDistributedQueue() const ;
Returns the previous distributed queue.

ImqBoolean processName(ImqString & name);
Provides a copy of the process name. It returns TRUE if successful.

ImqString processName();
Returns the process name without any indication of possible errors.

ImqQueue class

Chapter 3. MQSeries C++ classes 89

ImqBoolean put(ImqMessage & msg);
Places a message onto the queue, using default put message options. Uses
the ImqObject openFor method if necessary to ensure that the ImqObject
open options include MQOO_OUTPUT.

This method returns TRUE if successful.

ImqBoolean put(ImqMessage & msg, ImqPutMessageOptions & pmo);
Places a message onto the queue, using the specified pmo. Uses the
ImqObject openFor method as necessary to ensure that the ImqObject open
options include MQOO_OUTPUT, and (if the pmo options include any of
MQPMO_PASS_IDENTITY_CONTEXT, MQPMO_PASS_ALL_CONTEXT,
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT)
corresponding MQOO_*_CONTEXT values.

This method returns TRUE if successful.

Note: If the pmo includes a context reference, the referenced object will be
opened if necessary to provide a context.

ImqString queueManagerName() const ;
Returns the queue manager name.

ImqBoolean setQueueManagerName(const char * name);
Sets the queue manager name. The queue manager name can be set only
while the ImqObject open status is FALSE. This method returns TRUE if
successful.

ImqBoolean queueType(MQLONG & type);
Provides a copy of the queue type value. It returns TRUE if successful.

MQLONG queueType();
Returns the queue type without any indication of possible errors.

ImqBoolean remoteQueueManagerName(ImqString & name);
Provides a copy of the remote queue manager name. It returns TRUE if
successful.

ImqString remoteQueueManagerName();
Returns the remote queue manager name without any indication of
possible errors.

ImqBoolean remoteQueueName(ImqString & name);
Provides a copy of the remote queue name. It returns TRUE if successful.

ImqString remoteQueueName();
Returns the remote queue name without any indication of possible errors.

ImqBoolean resolvedQueueManagerName(ImqString & name);
Provides a copy of the resolved queue manager name. It returns TRUE if
successful.

Note: This method fails unless MQOO_RESOLVE_NAMES is among the
ImqObject open options.

ImqString resolvedQueueManagerName() ;
Returns the resolved queue manager name, without any indication of
possible errors.

ImqBoolean resolvedQueueName(ImqString & name);
Provides a copy of the resolved queue name. It returns TRUE if successful.

ImqQueue class

90 MQSeries Using C++

Note: This method fails unless MQOO_RESOLVE_NAMES is among the
ImqObject open options.

ImqString resolvedQueueName() ;
Returns the resolved queue name, without any indication of possible
errors.

ImqBoolean retentionInterval(MQLONG & interval);
Provides a copy of the retention interval. It returns TRUE if successful.

MQLONG retentionInterval();
Returns the retention interval without any indication of possible errors.

ImqBoolean scope(MQLONG & scope);
Provides a copy of the scope. It returns TRUE if successful.

MQLONG scope();
Returns the scope without any indication of possible errors.

ImqBoolean serviceInterval(MQLONG & interval);
Provides a copy of the service interval. It returns TRUE if successful.

MQLONG serviceInterval();
Returns the service interval without any indication of possible errors.

ImqBoolean serviceIntervalEvent(MQLONG & event);
Provides a copy of the enablement state of the service interval event. It
returns TRUE if successful.

MQLONG serviceIntervalEvent();
Returns the enablement state of the service interval event without any
indication of possible errors.

ImqBoolean shareability(MQLONG & shareability);
Provides a copy of the shareability value. It returns TRUE if successful.

MQLONG shareability();
Returns the shareability value without any indication of possible errors.

ImqBoolean storageClass(ImqString & class);
Provides a copy of the storage class. It returns TRUE if successful.

ImqString storageClass();
Returns the storage class without any indication of possible errors.

ImqBoolean transmissionQueueName(ImqString & name);
Provides a copy of the transmission queue name. It returns TRUE if
successful.

ImqString transmissionQueueName();
Returns the transmission queue name without any indication of possible
errors.

ImqBoolean triggerControl(MQLONG & control);
Provides a copy of the trigger control value. It returns TRUE if successful.

MQLONG triggerControl();
Returns the trigger control value without any indication of possible errors.

ImqBoolean setTriggerControl(const MQLONG control);
Sets the trigger control value. It returns TRUE if successful.

ImqBoolean triggerData(ImqString & data);
Provides a copy of the trigger data. It returns TRUE if successful.

ImqQueue class

Chapter 3. MQSeries C++ classes 91

ImqString triggerData();
Returns a copy of the trigger data without any indication of possible
errors.

ImqBoolean setTriggerData(const char * data);
Sets the trigger data. It returns TRUE if successful.

ImqBoolean triggerDepth(MQLONG & depth);
Provides a copy of the trigger depth. It returns TRUE if successful.

MQLONG triggerDepth();
Returns the trigger depth without any indication of possible errors.

ImqBoolean setTriggerDepth(const MQLONG depth);
Sets the trigger depth. It returns TRUE if successful.

ImqBoolean triggerMessagePriority(MQLONG & priority);
Provides a copy of the trigger message priority. It returns TRUE if
successful.

MQLONG triggerMessagePriority();
Returns the trigger message priority without any indication of possible
errors.

ImqBoolean setTriggerMessagePriority(const MQLONG priority);
Sets the trigger message priority. It returns TRUE if successful.

ImqBoolean triggerType(MQLONG & type);
Provides a copy of the trigger type. It returns TRUE if successful.

MQLONG triggerType();
Returns the trigger type without any indication of possible errors.

ImqBoolean setTriggerType(const MQLONG type);
Sets the trigger type. It returns TRUE if successful.

ImqBoolean usage(MQLONG & usage);
Provides a copy of the usage value. It returns TRUE if successful.

MQLONG usage();
Returns the usage value without any indication of possible errors.

Object methods (protected)
void setNextDistributedQueue(ImqQueue * queue = 0);

Sets the next distributed queue.

void setPreviousDistributedQueue(ImqQueue * queue = 0);
Sets the previous distributed queue.

Reason codes
MQRC_ATTRIBUTE_LOCKED
MQRC_CONTEXT_OBJECT_NOT_VALID
MQRC_CONTEXT_OPEN_ERROR
MQRC_CURSOR_NOT_VALID
MQRC_NO_BUFFER
MQRC_REOPEN_EXCL_INPUT_ERROR
MQRC_REOPEN_INQUIRE_ERROR
MQRC_REOPEN_TEMPORARY_Q_ERROR
(reason codes from MQGET)

ImqQueue class

92 MQSeries Using C++

(reason codes from MQPUT)

ImqQueue class

Chapter 3. MQSeries C++ classes 93

ImqQueueManager

This class encapsulates a queue manager (an MQSeries object of type
MQOT_Q_MGR). It relates to the MQI calls listed in Table 22 on page 128.

Other relevant classes
ImqObject (see “ImqObject” on page 70)

Class attributes
behavior

Controls the behavior of implicit connection and disconnection.

IMQ_EXPL_DISC_BACKOUT (0L)
An explicit call to the disconnect method implies backout. This
attribute is mutually exclusive with IMQ_EXPL_DISC_COMMIT.

IMQ_EXPL_DISC_COMMIT (1L)
An explicit call to the disconnect method implies commit (the
default). This attribute is mutually exclusive with
IMQ_EXPL_DISC_BACKOUT.

IMQ_IMPL_CONN (2L)
Implicit connection is allowed (the default).

IMQ_IMPL_DISC_BACKOUT (0L)
An implicit call to the disconnect method, which can occur during
object destruction, implies backout. This attribute is mutually
exclusive with the IMQ_IMPL_DISC_COMMIT.

IMQ_IMPL_DISC_COMMIT (4L)
An implicit call to the disconnect method, which can occur during
object destruction, implies commit (the default). This attribute is
mutually exclusive with IMQ_IMPL_DISC_BACKOUT.

Object attributes
authority event

Controls authority events. This attribute is read-only.

Object

Queue
Manager

n

1

managed by

A

ImqQueueManager class

94 MQSeries Using C++

|
|

|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

begin options
Options that apply to the begin method. The initial value is
MQBO_NONE.

channel auto definition
Channel auto definition value. This attribute is read-only.

channel auto definition event
Channel auto definition event value. This attribute is read-only.

channel auto definition exit
Channel auto definition exit name. This attribute is read-only.

character set
Coded character set identifier (CCSID). This attribute is read-only.

cluster workload data
Cluster workload exit data. This attribute is read-only.

cluster workload exit
Cluster workload exit name. This attribute is read-only.

cluster workload length
Cluster workload length. This attribute is read-only.

command input queue name
System command input queue name. This attribute is read-only.

command level
Command level supported by the queue manager. This attribute is
read-only.

connect options
Options that apply to the connect method. The initial value is
MQCNO_NONE. The following additional values are possible:

MQCNO_STANDARD_BINDING
MQCNO_FASTPATH_BINDING

connection status
TRUE when connected to the queue manager. This attribute is read-only.

dead-letter queue name
Name of the dead-letter queue. This attribute is read-only.

default transmission queue name
Default transmission queue name. This attribute is read-only.

distribution lists
Specifies the capability of the queue manager to support distribution lists.

first managed object
The first of one or more objects of class ImqObject, in no particular order,
in which the ImqObject connection reference addresses this object. The
initial value is zero.

inhibit event
Controls inhibit events. This attribute is read-only.

local event
Controls local events. This attribute is read-only.

maximum handles
Maximum number of handles. This attribute is read-only.

ImqQueueManager class

Chapter 3. MQSeries C++ classes 95

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

maximum message length
Maximum possible length for any message on any queue managed by this
queue manager. This attribute is read-only.

maximum priority
Maximum message priority. This attribute is read-only.

maximum uncommitted messages
This is the maximum number of uncommitted messages within a unit or
work. This attribute is read-only.

performance event
Controls performance events. This attribute is read-only.

platform
Platform on which the queue manager resides. This attribute is read-only.

remote event
Controls remote events. This attribute is read-only.

repository name
Repository name. This attribute is read-only.

repository namelist
Name of the repository namelist. This attribute is read-only.

start-stop event
Controls start-stop events. This attribute is read-only.

syncpoint availability
Availability4 of syncpoint participation. This attribute is read-only.

trigger interval
Trigger interval. This attribute is read-only.

Constructors
ImqQueueManager();

The default constructor.

ImqQueueManager(const ImqQueueManager & manager);
The copy constructor. The connection status will be FALSE.

ImqQueueManager(const char * name);
Sets the ImqObject name to name.

Destructors
When an ImqQueueManager object is destroyed, it is automatically disconnected.

Class methods (public)
static MQLONG behavior();

Returns the behavior.

void setBehavior(const MQLONG behavior = 0);
Sets the behavior.

4. Queue manager-coordinated global units of work are not supported on the OS/400 platform. You can program a unit of work,
externally coordinated by OS/400, using the “_Rcommit” and “_Rback” native system calls. This type of unit of work is started
by starting the MQSeries application under job-level commitment control using the STRCMTCTL command. See the MQSeries
Application Programming Guide for further details. Backout and commit are supported on the OS/400 platform for local units of
work coordinated by a queue manager.

ImqQueueManager class

96 MQSeries Using C++

|
|

|
|

Object methods (public)
void operator = (const ImqQueueManager & mgr);

Disconnects if necessary, and copies instance data from mgr. The
connection status is be FALSE.

ImqBoolean authorityEvent(MQLONG & event);
Provides a copy of the enablement state of the authority event. It returns
TRUE if successful.

MQLONG authorityEvent();
Returns the enablement state of the authority event without any indication
of possible errors.

ImqBoolean backout();
Backs out uncommitted changes. It returns TRUE if successful.

ImqBoolean begin();
Begins a unit of work. The begin options affect the behavior of this
method. It returns TRUE if successful.

MQLONG beginOptions() const ;
Returns the begin options.

void setBeginOptions(const MQLONG options = MQBO_NONE);
Sets the begin options.

ImqBoolean channelAutoDefinition(MQLONG & value);
Provides a copy of the channel auto definition value. It returns TRUE if
successful.

MQLONG channelAutoDefinition();
Returns the channel auto definition value without any indication of
possible errors.

ImqBoolean channelAutoDefinitionEvent(MQLONG & value);
Provides a copy of the channel auto definition event value. It returns
TRUE if successful.

MQLONG channelAutoDefinitionEvent();
Returns the channel auto definition event value without any indication of
possible errors.

ImqBoolean channelAutoDefinitionExit(ImqString & name);
Provides a copy of the channel auto definition exit name. It returns TRUE
if successful.

ImqString channelAutoDefinitionExit();
Returns the channel auto definition exit name without any indication of
possible errors.

ImqBoolean characterSet(MQLONG & ccsid);
Provides a copy of the character set. It returns TRUE if successful.

MQLONG characterSet();
Returns a copy of the character set, without any indication of possible
errors.

ImqBoolean clusterWorkloadData(ImqString & data);
Provides a copy of the cluster workload exit data. It returns TRUE if
successful.

ImqQueueManager class

Chapter 3. MQSeries C++ classes 97

|
|
|

ImqString clusterWorkloadData();
Returns the cluster workload exit data without any indication of possible
errors.

ImqBoolean clusterWorkloadExit(ImqString & name);
Provides a copy of the cluster workload exit name. It returns TRUE if
successful.

ImqString clusterWorkloadExit();
Returns the cluster workload exit name without any indication of possible
errors.

ImqBoolean clusterWorkloadLength(MQLONG & length);
Provides a copy of the cluster workload length. It returns TRUE if
successful.

MQLONG clusterWorkloadLength();
Returns the cluster workload length without any indication of possible
errors.

ImqBoolean commandInputQueueName(ImqString & name);
Provides a copy of the command input queue name. It returns TRUE if
successful.

ImqString commandInputQueueName();
Returns the command input queue name without any indication of
possible errors.

ImqBoolean commandLevel(MQLONG & level);
Provides a copy of the command level. It returns TRUE if successful.

MQLONG commandLevel();
Returns the command level without any indication of possible errors.

ImqBoolean commit();
Commits uncommitted changes. It returns TRUE if successful.

ImqBoolean connect();
Connects to the queue manager with the given ImqObject name, the
default being the local queue manager. If you want to connect to a specific
queue manager, use the ImqObject setName method before connection.
The connect options affect the behavior of this method. This method sets
the connection status to TRUE, and returns TRUE if successful.

Note: More than one ImqQueueManager object can be connected to the
same queue manager. All use the same MQHCONN connection
handle and share UOW functionality for the connection associated
with the thread. The first ImqQueueManager to connect obtains the
MQHCONN handle. The last ImqQueueManager to disconnect
performs the MQDISC.

For a multithreaded program, each thread must use a separate
ImqQueueManager object. Connections in different threads have
different MQHCONN connection handles.

MQLONG connectOptions() const ;
Returns the connect options.

void setConnectOptions(const MQLONG options = MQCNO_NONE);
Sets the connect options.

ImqQueueManager class

98 MQSeries Using C++

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|

ImqBoolean connectionStatus() const ;
Returns the connection status.

ImqBoolean deadLetterQueueName(ImqString & name);
Provides a copy of the dead-letter queue name. It returns TRUE if
successful.

ImqString deadLetterQueueName();
Returns a copy of the dead-letter queue name, without any indication of
possible errors.

ImqBoolean defaultTransmissionQueueName(ImqString & name);
Provides a copy of the default transmission queue name. It returns TRUE
if successful.

ImqString defaultTransmissionQueueName();
Returns the default transmission queue name without any indication of
possible errors.

ImqBoolean disconnect();
Disconnects from the queue manager and sets the connection status to
FALSE. All ImqProcess and ImqQueue objects associated with this object
are closed and their connection reference severed prior to disconnection. If
more than one ImqQueueManager object is connected to the same queue
manager, only the last to disconnect performs a physical disconnection;
others perform a logical disconnection. Uncommitted changes are
committed (on physical disconnection only). It returns TRUE if successful.

ImqBoolean distributionLists(MQLONG & support);
Provides a copy of the distribution lists value. It returns TRUE if
successful.

MQLONG distributionLists();
Returns the distribution lists value without any indication of possible
errors.

ImqObject * firstManagedObject() const ;
Returns the first managed object.

ImqBoolean inhibitEvent(MQLONG & event);
Provides a copy of the enablement state of the inhibit event. It returns
TRUE if successful.

MQLONG inhibitEvent();
Returns the enablement state of the inhibit event without any indication of
possible errors.

ImqBoolean localEvent(MQLONG & event);
Provides a copy of the enablement state of the local event. It returns TRUE
if successful.

MQLONG localEvent();
Returns the enablement state of the local event without any indication of
possible errors.

ImqBoolean maximumHandles(MQLONG & number);
Provides a copy of the maximum handles. It returns TRUE if successful.

MQLONG maximumHandles();
Returns the maximum handles without any indication of possible errors.

ImqQueueManager class

Chapter 3. MQSeries C++ classes 99

ImqBoolean maximumMessageLength(MQLONG & length);
Provides a copy of the maximum message length. It returns TRUE if
successful.

MQLONG maximumMessageLength();
Returns the maximum message length without any indication of possible
errors.

ImqBoolean maximumPriority(MQLONG & priority);
Provides a copy of the maximum priority. It returns TRUE if successful.

MQLONG maximumPriority();
Returns a copy of the maximum priority, without any indication of
possible errors.

ImqBoolean maximumUncommittedMessages(MQLONG & number);
Provides a copy of the maximum uncommitted messages. It returns TRUE
if successful.

MQLONG maximumUncommittedMessages();
Returns the maximum uncommitted messages without any indication of
possible errors.

ImqBoolean performanceEvent(MQLONG & event);
Provides a copy of the enablement state of the performance event. It
returns TRUE if successful.

MQLONG performanceEvent();
Returns the enablement state of the performance event without any
indication of possible errors.

ImqBoolean platform(MQLONG & platform);
Provides a copy of the platform. It returns TRUE if successful.

MQLONG platform();
Returns the platform without any indication of possible errors.

ImqBoolean remoteEvent(MQLONG & event);
Provides a copy of the enablement state of the remote event. It returns
TRUE if successful.

MQLONG remoteEvent();
Returns the enablement state of the remote event without any indication of
possible errors.

ImqBoolean repositoryName(ImqString & name);
Provides a copy of the repository name. It returns TRUE if successful.

ImqString repositoryName();
Returns the repository name without any indication of possible errors.

ImqBoolean repositoryNamelistName(ImqString & name);
Provides a copy of the repository namelist name. It returns TRUE if
successful.

ImqString repositoryNamelistName();
Returns a copy of the repository namelist name without any indication of
possible errors.

ImqBoolean startStopEvent(MQLONG & event);
Provides a copy of the enablement state of the start-stop event. It returns
TRUE if successful.

ImqQueueManager class

100 MQSeries Using C++

|
|

|
|

|
|
|

|
|
|

MQLONG startStopEvent();
Returns the enablement state of the start-stop event without any indication
of possible errors.

ImqBoolean syncPointAvailability(MQLONG & sync);
Provides a copy of the syncpoint availability value. It returns TRUE if
successful.

MQLONG syncPointAvailability();
Returns a copy of the syncpoint availability value, without any indication
of possible errors.

ImqBoolean triggerInterval(MQLONG & interval);
Provides a copy of the trigger interval. It returns TRUE if successful.

MQLONG triggerInterval();
Returns the trigger interval without any indication of possible errors.

Object methods (protected)
void setFirstManagedObject(const ImqObject * object = 0);

Sets the first managed object.

Object data (protected)
MQHCONN ohconn

The MQSeries connection handle (meaningful only while the connection
status is TRUE).

Reason codes
MQRC_ENVIRONMENT_ERROR
(reason codes for MQBACK)
(reason codes for MQBEGIN)
(reason codes for MQCMIT)
(reason codes for MQCONNX)
(reason codes for MQDISC)
(reason codes for MQCONN)

ImqQueueManager class

Chapter 3. MQSeries C++ classes 101

ImqReferenceHeader

This class encapsulates specific features of the MQRMH data structure. It relates to
the MQI calls listed in Table 23 on page 129.

Other relevant classes
ImqBinary (see “ImqBinary” on page 27)
ImqHeader (see “ImqHeader” on page 50)
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)
ImqString (see “ImqString” on page 105)

Object attributes
destination environment

Environment for the destination. The initial value is a null string.

destination name
Name of the data destination. The initial value is a null string.

instance id
Binary value (MQBYTE24) of length
MQ_OBJECT_INSTANCE_ID_LENGTH. The initial value is
MQOII_NONE.

logical length
Logical, or intended, length of message data that follows this header. The
initial value is zero.

logical offset
Logical offset for the message data that follows, to be interpreted in the
context of the data as a whole, at the ultimate destination. The initial value
is zero.

logical offset 2
High-order extension to the logical offset. The initial value is zero.

reference type
Reference type. The initial value is a null string.

source environment
Environment for the source. The initial value is a null string.

Header

A

Reference
Header

ImqReferenceHeader class

102 MQSeries Using C++

|
|

source name
Name of the data source. The initial value is a null string.

Constructors
ImqReferenceHeader();

The default constructor.

ImqReferenceHeader(const ImqReferenceHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQRMH data structure into the message buffer at the
beginning, moving existing message data further along, and sets the msg
format to MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on 50 for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQRMH data structure from the message buffer.

To be successful, the ImqMessage format must be
MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on 50 for further details.

Object methods (public)
void operator = (const ImqReferenceHeader & header);

Instance data is copied from header, replacing the existing instance data.

ImqString destinationEnvironment() const ;
Returns a copy of the destination environment.

void setDestinationEnvironment(const char * environment = 0);
Sets the destination environment.

ImqString destinationName() const ;
Returns a copy of the destination name.

void setDestinationName(const char * name = 0);
Sets the destination name.

ImqBinary instanceId() const ;
Returns a copy of the instance id.

ImqBoolean setInstanceId(const ImqBinary & id);
Sets the instance id. The data length of token must be either 0 or
MQ_OBJECT_INSTANCE_ID_LENGTH. This method returns TRUE if
successful.

void setInstanceId(const MQBYTE24 id = 0);
Sets the instance id. id may be zero, which is the same as specifying
MQOII_NONE. If id is nonzero, then it must address
MQ_OBJECT_INSTANCE_ID_LENGTH bytes of binary data. When using
pre-defined values such as MQOII_NONE, it may be necessary to make a
cast to ensure a signature match, for example (MQBYTE *)MQOII_NONE.

MQLONG logicalLength() const ;
Returns the logical length.

ImqReferenceHeader class

Chapter 3. MQSeries C++ classes 103

void setLogicalLength(const MQLONG length);
Sets the logical length.

MQLONG logicalOffset() const ;
Returns the logical offset.

void setLogicalOffset(const MQLONG offset);
Sets the logical offset.

MQLONG logicalOffset2() const ;
Returns the logical offset 2.

void setLogicalOffset2(const MQLONG offset);
Sets the logical offset 2.

ImqString referenceType() const ;
Returns a copy of the reference type.

void setReferenceType(const char * name = 0);
Sets the reference type.

ImqString sourceEnvironment() const ;
Returns a copy of the source environment.

void setSourceEnvironment(const char * environment = 0);
Sets the source environment.

ImqString sourceName() const ;
Returns a copy of the source name.

void setSourceName(const char * name = 0);
Sets the source name.

Object data (protected)
MQRMH omqrmh

The MQRMH data structure.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR
MQRC_STRUC_LENGTH_ERROR
MQRC_STRUC_ID_ERROR
MQRC_INSUFFICIENT_DATA
MQRC_INCONSISTENT_FORMAT
MQRC_ENCODING_ERROR

ImqReferenceHeader class

104 MQSeries Using C++

ImqString

This class provides character string storage and manipulation for null-terminated
strings. An ImqString can be used in place of a char * in most situations where a
parameter calls for a char *.

Other relevant classes
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)

Object attributes
characters

Characters in the storage which precede a trailing null.

length Number of bytes in the characters. If there is no storage, the length is zero.
The initial value is zero.

storage
A volatile array of bytes of arbitrary size. A trailing null must always be
present in the storage after the characters, so that the end of the characters
can be detected. Methods ensure that this situation is maintained, but care
must be taken, when setting bytes in the array directly, to ensure that a
trailing null exists after modification. Initially, there is no storage attribute.

Constructors
ImqString();

The default constructor.

ImqString(const ImqString & string);
The copy constructor.

ImqString(const char c);
The characters comprise c.

ImqString(const char * text);
The characters are copied from text.

ImqString(const void * buffer, const size_t length);
Copies length bytes starting from buffer and assigns them to the characters.
Substitution is made for any null characters copied. The substitution

Item

A

String

ImqString class

Chapter 3. MQSeries C++ classes 105

character is a period (.). No special consideration is given to any other
non-printable or non-displayable characters copied.

Class methods (public)
static ImqBoolean copy(char * destination-buffer, const size_t length, const char *
source-buffer, const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the
number of characters in source-buffer is insufficient, then the remaining
space in destination-buffer is filled with pad characters. source-buffer may be
zero. destination-buffer may be zero if length is also zero. This method
returns TRUE if successful.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Copies the characters to the message buffer, replacing any existing content.
Sets the msg format to MQFMT_STRING.

See the parent class method description for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Sets the characters by transferring the remaining data from the message
buffer, replacing the existing characters.

To be successful, the encoding of the msg object should be
MQENC_NATIVE. It is recommended that messages be retrieved with
MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_STRING.

See the parent class method description for further details.

Object methods (public)
char & operator [] (const size_t offset) const ;

References the character at offset offset in the storage. It is the user’s
responsibility to ensure that the relevant byte exists and is addressable.

ImqString operator () (const size_t offset, const size_t length = 1) const ;
Returns a substring by copying bytes from the characters starting at offset.
If length is zero, the rest of the characters are returned. If the combination
of offset and length does not produce a reference within the characters, an
empty ImqString is returned.

void operator = (const ImqString & string);
Instance data is copied from string, replacing the existing instance data.

ImqString operator + (const char c) const ;
Returns the result of appending c to the characters.

ImqString operator + (const char * text) const ;
Returns the result of appending text to the characters. This may also be
inverted. For example:
strOne + “string two” ;
“string one” + strTwo ;

Note: Although most compilers accept strOne + “string two”; Microsoft®

Visual C++ requires strOne + (char *)“string two” ;

ImqString class

106 MQSeries Using C++

ImqString operator + (const ImqString & string1) const ;
Returns the result of appending string1 to the characters.

ImqString operator + (const double number) const ;
Returns the result of appending number to the characters after conversion
to text.

ImqString operator + (const long number) const ;
Returns the result of appending number to the characters after conversion
to text.

void operator += (const char c);
c is appended to the characters.

void operator += (const char * text);
Appends text to the characters.

void operator += (const ImqString & string);
Appends string to the characters.

void operator += (const double number);
Appends number to the characters after conversion to text.

void operator += (const long number);
Appends number to the characters after conversion to text.

void operator char * () const ;
Returns the address of the first byte in the storage. This method may be
zero, and is volatile.

ImqBoolean operator < (const ImqString & string) const ;

ImqBoolean operator > (const ImqString & string) const ;

ImqBoolean operator <= (const ImqString & string) const ;

ImqBoolean operator >= (const ImqString & string) const ;

ImqBoolean operator == (const ImqString & string) const ;

ImqBoolean operator != (const ImqString & string) const ;
Compares the characters with those of string using the compare method. It
returns either TRUE or FALSE.

short compare(const ImqString & string) const ;
Compares the characters with those of string. The result is zero if the
characters are equal, negative if “less than” and positive if “greater than”.
Comparison is case sensitive. A null ImqString is regarded as “less than” a
nonnull ImqString.

ImqBoolean copyOut(char * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the characters to the buffer. If the number of
characters is insufficient, then the remaining space in buffer is filled with
pad characters. buffer may be zero if length is also zero. It returns TRUE if
successful.

size_t copyOut(long & number) const ;
Sets number from the characters after conversion from text, and returns the
number of characters involved in the conversion. If this is zero, no
conversion has been performed and number is not set. A convertible
character sequence must begin with the values shown in Figure 15 on
page 108.

ImqString class

Chapter 3. MQSeries C++ classes 107

size_t copyOut(ImqString & token, const char c = ‘ ’) const ;
If the characters contain one or more characters different from c, a token is
identified as the first contiguous sequence of such characters. In this case
token is set to that sequence, and the value returned is the sum of the
number of leading characters c and the number of bytes in the sequence.
Otherwise, zero is returned and token is not set.

size_t cutOut(long & number);
Sets number as for the copy method, but also removes from characters the
number of bytes indicated by the return value. For example, the string
shown in Figure 16 may be cut into three numbers by using
cutOut(number) three times:

size_t cutOut(ImqString & token, const char c = ‘ ’);
Sets token as for the copyOut method, and removes from characters the
strToken characters and also any characters c which precede the token
characters. If c is not a blank, characters c that directly succeed the token
characters are also removed. The number of characters removed is
returned. For example, the string shown in Figure 17 may be cut into three
tokens by using cutOut(token) three times:

<blank(s)>
<+│->
digit(s)

Figure 15. Format for string text to integer conversion

strNumbers = “-1 0 +55 ”;

while (strNumbers.cutOut(number));
number becomes -1, then 0, then 55
leaving strNumbers == “ ”

Figure 16. Retrieving integers from string text

strText = “ Program Version 1.1 ”;

while (strText.cutOut(token));

// token becomes “Program”, then “Version”,
// then “1.1” leaving strText == “ ”

Figure 17. Retrieving tokens from string text

ImqString class

108 MQSeries Using C++

Figure 18 shows how a DOS path name might be parsed as follows:

ImqBoolean find(const ImqString & string);
Searches for an exact match for string anywhere within the characters. If no
match is found, it returns FALSE. Otherwise, it returns TRUE. If string is
null, it returns TRUE.

ImqBoolean find(const ImqString & string, size_t & offset);
Searches for an exact match for string somewhere within the characters
from offset offset onwards. If string is null, it returns TRUE without
updating offset. If no match is found, it returns FALSE; note that the value
of offset may have been increased. If a match is found, it returns TRUE and
updates offset to the offset of string within the characters.

size_t length() const ;
Returns the length.

ImqBoolean pasteIn(const double number, const char * format = “%f”);
number is appended to the characters after conversion to text. It returns
TRUE if successful.

The specification format is used to format the floating point conversion. If
specified, it should be one suitable for use with printf and floating point
numbers, for example “%.3f”.

ImqBoolean pasteIn(const long number);
number is appended to the characters after conversion to text. It returns
TRUE if successful.

ImqBoolean pasteIn(const void * buffer, const size_t length);
Appends length bytes from buffer to the characters, and adds a final trailing
null. A substitution is made for any null characters copied. The
substitution character is a period (.). No special consideration is given to
any other nonprintable or nondisplayable characters copied. This method
returns TRUE if successful.

ImqBoolean set(const char * buffer, const size_t length);
Sets the characters from a fixed-length character field, which might contain
a null. A null is appended to the characters from the fixed-length field if
necessary. This method returns TRUE if successful.

size_t storage() const ;
Returns the number of bytes in the storage.

strPath = “C:\OS2\BITMAP\OS2LOGO.BMP”

strPath.cutOut(strDrive, ':');
strPath.stripLeading(':');
while (strPath.cutOut(strFile, '\'));

// strDrive becomes “C”.
// strFile becomes “OS2”, then “BITMAP”,
// then “OS2LOGO.BMP” leaving strPath empty.

Figure 18. Parsing a path in a string

ImqString class

Chapter 3. MQSeries C++ classes 109

ImqBoolean setStorage(const size_t length);
(Re)allocates the storage and returns the number of bytes currently
allocated. Any original characters, including any trailing null, are
preserved if there is still room for them, but any additional storage is not
initialized.

This method returns TRUE if successful.

size_t stripLeading(const char c = ‘ ’);
Strips leading characters c from the characters and returns the number
removed.

size_t stripTrailing(const char c = ‘ ’);
Strips trailing characters c from the characters and returns the number
removed.

ImqString upperCase() const ;
Returns an uppercase copy of the characters.

Object methods (protected)
ImqBoolean assign(const ImqString & string);

Equivalent to the equivalent operator = method, but non-virtual. It returns
TRUE if successful.

Reason codes
MQRC_DATA_TRUNCATED
MQRC_NULL_POINTER
MQRC_STORAGE_NOT_AVAILABLE
MQRC_BUFFER_ERROR
MQRC_INCONSISTENT_FORMAT

ImqString class

110 MQSeries Using C++

ImqTrigger

This class encapsulates the MQTM data structure (see Table 24 on page 130).
Objects of this class are typically used by a trigger monitor program, whose task is
to wait for these particular messages and act on them to ensure that other
MQSeries applications are started when messages are waiting for them.

See the IMQSTRG sample program for a usage example.

Other relevant classes
ImqGetMessageOptions (see “ImqGetMessageOptions” on page 46)
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)
ImqString (see “ImqString” on page 105)

Object attributes
application id

Identity of the application that sent the message. The initial value is a null
string.

application type
Type of application that sent the message. The initial value is zero. The
following additional values are possible:

MQAT_AIX
MQAT_CICS
MQAT_DOS
MQAT_IMS
MQAT_MVS
MQAT_NOTES_AGENT
MQAT_OS2
MQAT_OS390
MQAT_OS400
MQAT_UNIX
MQAT_WINDOWS
MQAT_WINDOWS_NT

Item

A

Trigger

ImqTrigger class

Chapter 3. MQSeries C++ classes 111

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

MQAT_USER_FIRST
MQAT_USER_LAST

environment data
Environment data for the process. The initial value is a null string.

process name
Process name. The initial value is a null string.

queue name
Name of the queue to be started. The initial value is a null string.

trigger data
Trigger data for the process. The initial value is a null string.

user data
User data for the process. The initial value is a null string.

Constructors
ImqTrigger();

The default constructor.

ImqTrigger(const ImqTrigger & trigger);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Writes an MQTM data structure to the message buffer, replacing any
existing content. Sets the msg format to MQFMT_TRIGGER.

See the ImqItem class method description on 55 for further details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQTM data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_TRIGGER.

See the ImqItem class method description on 55 for further details.

Object methods (public)
void operator = (const ImqTrigger & trigger);

Instance data is copied from trigger, replacing the existing instance data.

ImqString applicationId() const ;
Returns a copy of the application id.

void setApplicationId(const char * id);
Sets the application id.

MQLONG applicationType() const ;
Returns the application type.

void setApplicationType(const MQLONG type);
Sets the application type.

ImqBoolean copyOut(MQTMC2 * ptmc2);
This class encapsulates the MQTM data structure which is the one received
on initiation queues. This method fills in an equivalent MQTMC2 data
structure provided by the caller, and sets the QMgrName field (which is
not present in the MQTM data structure) to all blanks. The MQTMC2 data

ImqTrigger class

112 MQSeries Using C++

|

|

|

structure is traditionally used as a parameter to applications started by a
trigger monitor. This method returns TRUE if successful.

ImqString environmentData() const ;
Returns a copy of the environment data.

void setEnvironmentData(const char * data);
Sets the environment data.

ImqString processName() const ;
Returns a copy of the process name.

void setProcessName(const char * name);
Sets the process name, padding with blanks to 48 characters.

ImqString queueName() const ;
Returns a copy of the queue name.

void setQueueName(const char * name);
Sets the queue name, padding with blanks to 48 characters.

ImqString triggerData() const ;
Returns a copy of the trigger data.

void setTriggerData(const char * data);
Sets the trigger data.

ImqString userData() const ;
Returns a copy of the user data.

void setUserData(const char * data);
Sets the user data.

Object data (protected)
MQTM omqtm

The MQTM data structure.

Reason codes
MQRC_NULL_POINTER
MQRC_INCONSISTENT_FORMAT
MQRC_ENCODING_ERROR
MQRC_STRUC_ID_ERROR

ImqTrigger class

Chapter 3. MQSeries C++ classes 113

ImqWorkHeader

This class encapsulates specific features of the MQWIH data structure (see Table 25
on page 130). Objects of this class are used by applications putting messages to the

queue managed by the OS/390 Workload Manager.

Other relevant classes
ImqBinary (see “ImqBinary” on page 27)
ImqHeader (see “ImqHeader” on page 50)
ImqItem (see “ImqItem” on page 55)
ImqMessage (see “ImqMessage” on page 57)
ImqString (see “ImqString” on page 105)

Object attributes
message token

Message token for the OS/390 Workload Manager, of length
MQ_MSG_TOKEN_LENGTH. The initial value is MQMTOK_NONE.

service name
The 32-character name of a process. The name is initially blanks.

service step
The 8-character name of a step within the process. The name is initially
blanks.

Constructors
ImqWorkHeader();

The default constructor.

ImqWorkHeader(const ImqWorkHeader & header);
The copy constructor.

Overloaded “ImqItem” methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQWIH data structure into the beginning of the message buffer,
moving the existing message data further along, and sets the msg format to
MQFMT_WORK_INFO_HEADER.

Header

A

Work
Header

ImqWorkHeader class

114 MQSeries Using C++

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQWIH data structure from the message buffer.

To be successful, the encoding of the msg object should be
MQENC_NATIVE. It is recommended that messages be retrieved with
MQGMO_CONVERT to MQENC_NATIVE.

The ImqMessage format must be MQFMT_WORK_INFO_HEADER.

See the parent class method description for more details.

Object methods (public)
void operator = (const ImqWorkHeader & header);

Instance data is copied from header, replacing the existing instance data.

ImqBinary messageToken () const;
Returns the message token.

ImqBoolean setMessageToken(const ImqBinary & token);
Sets the message token. The data length of token must be either zero or
MQ_MSG_TOKEN_LENGTH. It returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);
Sets the message token. token may be zero, which is the same as specifying
MQMTOK_NONE. If token is nonzero, then it must address
MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values such as MQMTOK_NONE, it may be
necessary to make a cast to ensure a signature match; for example,
(MQBYTE *)MQMTOK_NONE.

ImqString serviceName () const;
Returns the service name, including trailing blanks.

void setServiceName(const char * name);
Sets the service name.

ImqString serviceStep () const;
Returns the service step, including trailing blanks.

void setServiceStep(const char * step);
Sets the service step.

Object data (protected)
MQWIH omqwih

The MQWIH data structure.

Reason codes
MQRC_BINARY_DATA_LENGTH_ERROR

ImqWorkHeader class

Chapter 3. MQSeries C++ classes 115

Changes

116 MQSeries Using C++

Appendix A. Compiling and linking

The compilers for each platform are listed in “Compilers for MQSeries platforms”,
together with the switches and link libraries to use.

If you are writing programs for the AS/400 platform, see “Compiling C++ sample
programs for AS/400” on page 118.

If you are writing programs for the Windows 95 and Windows NT platforms, see
“Compiling VisualAge C++ sample programs for Windows 95, 98, and NT” on
page 119.

If you are writing programs for the OS/390 platform, see “Building an application
on OS/390” on page 119.

Compilers for MQSeries platforms
The compilers can be used on both the MQSeries client and the MQSeries server,
unless indicated otherwise in the table.

Table 4. MQSeries C++ switches and link libraries

Platform Compiler Switches Libraries

AIX IBM C Set++ Version 3.1 for
AIX

xlC[_r] -qchars=signed
-I/usr/mqm/inc

-limqb23ia[_r] -limq{c|s}23ia[_r]
(see note 2)

AS/400 IBM ILE for C++ for AS/400 DFTCHAR*(SIGNED) BNDSRVPGM(QMQM/IMQ
B23I4[_R] QMQM/IMQS23I4[_R])
(see note 2)

HP-UX
V10.20 and
V11

HP C++ Version 3.1 on HP-UX
V10.20 and HP C++ Version
12.0 on HP-UX V11

HP ANSII C++

CC +eh
-D_HPUX_SOURCE (see notes 3
and 4)

aCC -D_HPUX_SOURCE

(see note 4)

-limqb23hh[_r|_d]
-limq{c|s}23hh[_r|_d] (see note 5)

-limqi23ah[_r|_d] {-lmqm[_r|_d] |
-lmqic[_r|_d]}
(see note 6)

OS/2 Warp IBM VisualAge for C++ Version
3.0 for OS/2

icc /Gd /Gm /Gs /J- imqb23i2 imq{c|s}23i2

OS/390 IBM OS/390 C/C++ Version 2
Release 4 or later

/cxx (see note 7)

Sun Solaris Sun WorkShop Compiler C++
Version 4.2

CC -mt -limqb23ss[_d] -limq{c|s}23ss[_d]
{-lmqic|-lmqm} -lmqmcs[_d]
-lmqmzse -lsocket -lnsl -ldl
(see notes 6 and 8)

Windows
3.1 (16-bit
client only)

Microsoft Visual C++ Version
1.5 for Windows 3.1

cl -ALw -Mq imqb23vw imqc23vw mqic

Windows
NT,
Windows
95, and
Windows 98

IBM VisualAge for C++ for
Windows Version 3.5

Microsoft Visual C++ Version 4.0

icc /Gd /Gm /Gs /J-

cl -MD

imqb23in imq{c|s}23in

imqb23vn imq{c|s}23vn

© Copyright IBM Corp. 1997, 2000 117

||

||||

||
|
|
|
|
|

||||
|
|

|
|
|

|
|
|

|

|
|
|

|

|

|
|

|
|
|

||
|
||

||
|
||

||
|
||
|
|
|

|
|
|

|
|
||

|
|
|
|
|

|
|

|

|

|

|

|

Table 4. MQSeries C++ switches and link libraries (continued)

Platform Compiler Switches Libraries

Notes:

1. {c|s} denotes that you must enter either ‘c’ for a client application or ‘s’ for a server application.

2. To build a threaded application you need to link with the libraries ending in _r.

3. The link and run-time libraries supplied for HP-UX now cater for exception handling. Programs using the older
imq{b|c|s}23ch[_r] libraries should be recompiled with the +eh option and relinked with the newer
imq{b|c|s|}23hh[_r] libraries.

4. If you compile with CC, you must also link with CC. Similarly, if you compile with aCC, you must also link
with aCC.

5. To build non-threaded applications, you do not need to link with libraries ending in _r or _d; the
non-underscore version of the libraries suffices. To build draft 10 pthreads applications on HP-UX V11 and draft
4 pthreads applications on HP-UX V10.20, link with the libraries ending in _r. To build draft 4 pthreads
applications on HP-UX V11, link with the libraries ending in _d.

6. Library -lmqm must be linked in with a server application whereas the library -lmqic must be linked in with a
client application.

7. For OS/390, the side decks are imqs23dm imqb23dm, or imqs23dr imqb23dr, or imqs23dc imqb23dc. The
corresponding DLL load modules are imqs23im imqb23im, or imqs23ir imqb23ir, or imqs23ic imqb23ic.

8. To build non-threaded applications, you do not need to link with libraries ending in _r or _d; the
non-underscore version of the libraries suffices. To build a DCE (POSIX draft 4) threaded application, link with
the libraries ending in _d.

Compiling C++ sample programs for AS/400
This section is aimed at the C++ programmer who wants to write programs for the
OS/400® platform.

IBM ILE C++ for AS/400 (program 5799-GDW) is a native compiler for C++
programs. In addition, IBM VisualAge® for C++ for AS/400 provides
cross-compilers with clients running on OS/2, Windows 95, or Windows NT. The
cross-compilers also generate object modules that can be bound into OS/400
programs.

The following instructions describe how to use the native compiler to create
MQSeries C++ applications. Users of the VisualAge cross-compilers should
interpret the instructions according to their version of the product.
1. Install the ILE C++ for AS/400 compiler as directed in the Read Me first!

manual that accompanies the product.
2. Ensure that the QCXXN library is in your library list.
3. Create the HELLO WORLD sample program:

a. Create a module:
CRTCPPMOD MODULE(MYLIB/IMQWRLD) +
SRCSTMF('/QIBM/ProdData/mqm/samp/imqwrld.cpp') +
INCDIR('/QIBM/ProdData/mqm/inc') DFTCHAR(*SIGNED)

The source for the C++ sample programs can be found in
/QIBM/ProdData/mqm/samp and the include files in
/QIBM/ProdData/mqm/inc.

b. Bind this with MQSeries-supplied service programs to produce a program
object:
CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +
BNDSRVPGM(QMQM/IMQB23I4 QMQM/IMQS23I4)

Compiling and linking

118 MQSeries Using C++

|

||||

|

|

|

|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|

|

|

|
|
|

|
|
|

|
|

|
|

See Table 4 on page 117 for alternative service programs that can be used.
c. Execute the HELLO WORLD sample program, using

SYSTEM.DEFAULT.LOCAL.QUEUE:
CALL PGM(MYLIB/IMQWRLD)

Compiling VisualAge C++ sample programs for Windows 95, 98, and
NT

This section is aimed at the C++ programmer, who wishes to write VisualAge
programs for the Windows 95, 98, and NT platforms.

The IBM VisualAge for C++ for Windows Version 3.5 run-time library
cppwm35i.dll is used by MQSeries C++ and is redistributed, using the
DLLRNAME utility from the VisualAge product, under the name imqwm35i.dll.
Using DLLRNAME, you and your customers can also use the redistributed file,
rather than supplying a redistribution copy of your own.

To use the MQSeries redistributed file, you need to process your executables after
construction. Build your executable application in the normal way, whether it is a
dynamic link library or a program, and then type:
dllrname applicname cppwm35i=imqwm35i

to rebind the application, type applicname

Building an application on OS/390
You can write C++ programs for three of the environments that MQSeries for
OS/390 supports:
v Batch
v RRS batch
v CICS

When you have written the C++ program for your MQSeries application, you have
to create an executable application by compiling, pre-linking, and link-editing it.

MQSeries C++ for OS/390 is implemented as OS/390 DLLs for the IBM C++ for
OS/390 language. Using DLLs, you have to concatenate the supplied definition
side-decks with the compiler output at pre-link time. This allows the linker to
check your calls to the MQSeries C++ member functions.

Note: There are three sets of side-decks for each of the three environments.

To build an MQSeries for OS/390 C++ application, you need to create and run
JCL. Use the following procedure:
1. If your application runs under CICS, use the CICS-supplied procedure to

translate CICS commands in your program.
2. Compile the program to produce object code. The JCL for your compilation

must include statements that make the product data definition files available to
the compiler. The data definitions are supplied in the following MQSeries for
OS/390 libraries:
v thlqual.SCSQC370
v thlqual.SCSQHPPS

Compiling on AS/400

Appendix A. Compiling and linking 119

|

|
|

|

|

Be sure to specify the /cxx compiler option.

Note: The name thlqual is the high level qualifier of the MQSeries installation
library on OS/390.

3. Prelink the object code created in step 1, including the following definition
side-decks, which are supplied in thlqual.SCSQDEFS:
v imqs23dm and imqb23dm for batch
v imqs23dr and imqb23dr for RRS batch
v imqs23dc and imqb23dc for CICS

4. Link-edit the object code created in step 2, to produce a load module, and store
it in your application load library.

To run batch or RRS batch programs, the libraries thlqual.SCSQAUTH and
thlqual.SCSQLOAD must be included in the STEPLIB, or JOBLIB data set
concatenation.

To run a CICS program, you must first get your system administrator to define it
to CICS as an MQSeries program and transaction. You can then run it in the usual
way.

Running sample programs on OS/390
MQSeries for OS/390 supplies three sample programs, together with JCL to run
them. The programs are described in “Sample programs” on page 14.

The sample applications are supplied in source form only. The files are:

Table 5. OS/390 sample program files

Sample Source program (in library
thlqual.SCSQCPPS)

JCL (in library
thlqual.SCSQPROC)

HELLO WORLD imqwrld imqwrldr

SPUT imqsput imqsputr

SGET imqsget imqsgetr

To run the samples, you need to compile and link-edit them as with any C++
program (see “Building an application on OS/390” on page 119). Use the supplied
JCL to construct and run a batch job. You must initially customize the JCL, by
following the commentary included with it.

OS/390 applications

120 MQSeries Using C++

Appendix B. MQI cross-reference

This appendix contains information relating C++ to the MQI and should be read
together with the MQSeries Application Programming Reference book.

The information covers:
v “Data structure, class, and include-file cross-reference”
v “Class attribute cross-reference” on page 122

Data structure, class, and include-file cross-reference
Table 6. Data structure, class, and include-file cross-reference

Data structure Class Include file

ImqBinary imqbin.hpp

ImqCache imqcac.hpp

MQCIH ImqCICSBridgeHeader imqcih.hpp

MQDLH ImqDeadLetterHeader imqdlh.hpp

MQOR ImqDistributionList imqdst.hpp

ImqError imqerr.hpp

MQGMO ImqGetMessageOptions imqgmo.hpp

ImqHeader imqhdr.hpp

MQIIH ImqIMSBridgeHeader imqiih.hpp

ImqItem imqitm.hpp

MQMD ImqMessage imqmsg.hpp

ImqMessageTracker imqmtr.hpp

ImqNamelist imqnml.hpp

MQOD, MQRR ImqObject imqobj.hpp

MQPMO, MQPMR, MQRR ImqPutMessageOptions imqpmo.hpp

ImqProcess imqpro.hpp

ImqQueue imqque.hpp

MQBO, MQCNO ImqQueueManager imqmgr.hpp

MQRMH ImqReferenceHeader imqrfh.hpp

ImqString imqstr.hpp

MQTM ImqTrigger imqtrg.hpp

MQTMC

MQTMC2 ImqTrigger imqtrg.hpp

MQXQH

MQWIH ImqWorkHeader imqwih.hpp

© Copyright IBM Corp. 1997, 2000 121

Class attribute cross-reference
Table 7 through 25 contain cross-reference information for each C++ class. These
cross-references relate to the use of the underlying MQSeries procedural interfaces.
Again, this should be read together with the MQSeries Application Programming
Reference book. The classes ImqBinary, ImqDistributionList, and ImqString have no
attributes that fall into this category and are, therefore, excluded.

ImqCache
Table 7. ImqCache cross-reference

Attribute Call

automatic buffer MQGET

buffer length MQGET

buffer pointer MQGET, MQPUT

data length MQGET

data offset MQGET

data pointer MQGET

message length MQGET, MQPUT

ImqCICSBridgeHeader
Table 8. ImqCICSBridgeHeader cross reference

Attribute Data structure Field

bridge abend code MQCIH AbendCode

ADS descriptor MQCIH AdsDescriptor

attention identifier MQCIH AttentionId

authenticator MQCIH Authenticator

bridge completion code MQCIH BridgeCompletionCode

bridge error offset MQCIH ErrorOffset

bridge reason code MQCIH BridgeReason

bridge cancel code MQCIH CancelCode

conversational task MQCIH ConversationalTask

cursor position MQCIH CursorPosition

facility token MQCIH Facility

facility keep time MQCIH FacilityKeepTime

facility like MQCIH FacilityLike

function MQCIH Function

get wait interval MQCIH GetWaitInterval

link type MQCIH LinkType

next transaction identifier MQCIH NextTransactionId

output data length MQCIH OutputDataLength

reply-to format MQCIH ReplyToFormat

bridge return code MQCIH ReturnCode

start code MQCIH StartCode

Class attribute reference

122 MQSeries Using C++

|
|
|
|
|

Table 8. ImqCICSBridgeHeader cross reference (continued)

Attribute Data structure Field

task end status MQCIH TaskEndStatus

transaction identifier MQCIH TransactionId

uow control MQCIH UowControl

version MQCIH Version

ImqDeadLetterHeader
Table 9. ImqDeadLetterHeader cross reference

Attribute Data structure Field

dead-letter reason code MQDLH Reason

destination queue manager name MQDLH DestQMgrName

destination queue name MQDLH DestQName

put application name MQDLH PutApplName

put application type MQDLH PutApplType

put date MQDLH PutDate

put time MQDLH PutTime

ImqError
Table 10. ImqError cross reference

Attribute Call

completion code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,
MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQSET

reason code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,
MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQSET

ImqGetMessageOptions
Table 11. ImqGetMessageOptions cross reference

Attribute Data structure Field

group status MQGMO GroupStatus

match options MQGMO MatchOptions

message token MQGMO MessageToken

options MQGMO Options

resolved queue name MQGMO ResolvedQName

returned length MQGMO ReturnedLength

segmentation MQGMO Segmentation

segment status MQGMO SegmentStatus

MQGMO Signal1

MQGMO Signal2

syncpoint participation MQGMO Options

wait interval MQGMO WaitInterval

Class attribute reference

Appendix B. MQI cross-reference 123

ImqHeader
Table 12. ImqHeader cross reference

Attribute Data structure Field

character set MQDLH, MQIIH CodedCharSetId

encoding MQDLH, MQIIH Encoding

format MQDLH, MQIIH Format

header flags MQIIH, MQRMH Flags

ImqIMSBridgeHeader
Table 13. ImqIMSBridgeHeader cross reference

Attribute Data structure Field

authenticator MQIIH Authenticator

commit mode MQIIH CommitMode

logical terminal override MQIIH LTermOverride

message format services map name MQIIH MFSMapName

reply-to format MQIIH ReplyToFormat

security scope MQIIH SecurityScope

transaction instance id MQIIH TranInstanceId

transaction state MQIIH TranState

ImqItem
Table 14. ImqItem cross reference

Attribute Call

structure id MQGET

ImqMessage
Table 15. ImqMessage cross reference

Attribute Data structure Field Call

application id data MQMD ApplIdentityData

application origin data MQMD ApplOriginData

backout count MQMD BackoutCount

character set MQMD CodedCharSetId

encoding MQMD Encoding

expiry MQMD Expiry

format MQMD Format

message flags MQMD MsgFlags

message type MQMD MsgType

offset MQMD Offset

Class attribute reference

124 MQSeries Using C++

Table 15. ImqMessage cross reference (continued)

Attribute Data structure Field Call

original length MQMD OriginalLength

persistence MQMD Persistence

priority MQMD Priority

put application name MQMD PutApplName

put application type MQMD PutApplType

put date MQMD PutDate

put time MQMD PutTime

reply-to queue manager name MQMD ReplyToQMgr

reply-to queue name MQMD ReplyToQ

report MQMD Report

sequence number MQMD MsgSeqNumber

total message length DataLength MQGET

user id MQMD UserIdentifier

ImqMessageTracker
Table 16. ImqMessageTracker cross reference

Attribute Data structure Field

accounting token MQMD AccountingToken

correlation id MQMD CorrelId

feedback MQMD Feedback

group id MQMD GroupId

message id MQMD MsgId

ImqNamelist
Table 17. ImqNamelist cross reference

Attribute Inquiry Call

name count MQIA_NAME_COUNT MQINQ

namelist name MQCA_NAMELIST_NAME MQINQ

ImqObject
Table 18. ImqObject cross reference

Attribute Data
structure

Field Inquiry Call

alteration date MQCA_ALTERATION_DATE MQINQ

alteration time MQCA_ALTERATION_TIME MQINQ

alternate user id MQOD AlternateUserId

alternate security id

close options MQCLOSE

Class attribute reference

Appendix B. MQI cross-reference 125

Table 18. ImqObject cross reference (continued)

Attribute Data
structure

Field Inquiry Call

description MQCA_Q_DESC,
MQCA_Q_MGR_DESC,
MQCA_PROCESS_DESC

MQINQ

name MQOD ObjectName MQCA_Q_MGR_NAME,
MQCQ_Q_NAME,
MQCA_PROCESS_NAME

MQINQ

open options MQOPEN

open status MQOPEN,
MQCLOSE

queue manager
identifier

queue
manager
idenitifier

MQCA_Q_MGR_IDENTIFIER MQINQ

ImqProcess
Table 19. ImqProcess cross reference

Attribute Inquiry Call

application id MQCA_APPL_ID MQINQ

application type MQIA_APPL_TYPE MQINQ

environment data MQCA_ENV_DATA MQINQ

user data MQCA_USER_DATA MQINQ

ImqPutMessageOptions
Table 20. ImqPutMessageOptions cross reference

Attribute Data structure Field

context reference MQPMO Context

MQPMO InvalidDestCount

MQPMO KnownDestCount

options MQPMO Options

record fields MQPMO PutMsgRecFields

resolved queue manager name MQPMO ResolvedQMgrName

resolved queue name MQPMO ResolvedQName

MQPMO Timeout

MQPMO UnknownDestCount

syncpoint participation MQPMO Options

ImqQueue
Table 21. ImqQueue cross reference

Attribute Data
structure

Field Inquiry Call

backout requeue name MQCA_BACKOUT_REQ_Q_NAME MQINQ

Class attribute reference

126 MQSeries Using C++

Table 21. ImqQueue cross reference (continued)

Attribute Data
structure

Field Inquiry Call

backout threshold MQIA_BACKOUT_THRESHOLD MQINQ

base queue name MQCA_BASE_Q_NAME MQINQ

cluster name MQCA_CLUSTER_NAME MQINQ

cluster namelist name MQCA_CLUSTER_NAMELIST MQINQ

creation date MQCA_CREATION_DATE MQINQ

creation time MQCA_CREATION_TIME MQINQ

current depth MQIA_CURRENT_Q_DEPTH MQINQ

default bind MQIA_DEF_BIND MQINQ

default input open
option

MQIA_DEF_INPUT_OPEN_OPTION MQINQ

default persistence MQIA_DEF_PERSISTENCE MQINQ

default priority MQIA_DEF_PRIORITY MQINQ

definition type MQIA_DEFINITION_TYPE MQINQ

depth high event MQIA_Q_DEPTH_HIGH_EVENT MQINQ

depth high limit MQIA_Q_DEPTH_HIGH_LIMIT MQINQ

depth low event MQIA_Q_DEPTH_LOW_EVENT MQINQ

depth low limit MQIA_Q_DEPTH_LOW_LIMIT MQINQ

depth maximum event MQIA_Q_DEPTH_MAX_LIMIT MQINQ

distribution lists MQIA_DIST_LISTS MQINQ,
MQSET

dynamic queue name MQOD DynamicQName

harden get backout MQIA_HARDEN_GET_BACKOUT MQINQ

index type MQIA_INDEX_TYPE MQINQ

inhibit get MQIA_INHIBIT_GET MQINQ,
MQSET

inhibit put MQIA_INHIBIT_PUT MQINQ,
MQSET

initiation queue name MQCA_INITIATION_Q_NAME MQINQ

maximum depth MQIA_MAX_Q_DEPTH MQINQ

maximum message
length

MQIA_MAX_MSG_LENGTH MQINQ

message delivery
sequence

MQIA_MSG_DELIVERY_SEQUENCE MQINQ

next distributed queue

open input count MQIA_OPEN_INPUT_COUNT MQINQ

open output count MQIA_OPEN_OUTPUT_COUNT MQINQ

previous distributed
queue

process name MQCA_PROCESS_NAME MQINQ

queue manager name MQOD ObjectQMgrName

queue type MQIA_Q_TYPE MQINQ

Class attribute reference

Appendix B. MQI cross-reference 127

Table 21. ImqQueue cross reference (continued)

Attribute Data
structure

Field Inquiry Call

remote queue manager
name

MQCA_REMOTE_Q_MGR_NAME MQINQ

remote queue name MQCA_REMOTE_Q_NAME MQINQ

resolved queue
manager name

MQOD ResolvedQMgrName

resolved queue name MQOD ResolvedQName

retention interval MQIA_RETENTION_INTERVAL MQINQ

scope MQIA_SCOPE MQINQ

service interval MQIA_Q_SERVICE_INTERVAL MQINQ

service interval event MQIA_Q_SERVICE_INTERVAL_EVENT MQINQ

shareability MQIA_SHAREABILITY MQINQ

storage class MQCA_STORAGE_CLASS MQINQ

transmission queue
name

MQCA_XMIT_Q_NAME MQINQ

trigger control MQIA_TRIGGER_CONTROL MQINQ,
MQSET

trigger data MQCA_TRIGGER_DATA MQINQ,
MQSET

trigger depth MQIA_TRIGGER_DEPTH MQINQ,
MQSET

trigger message
priority

MQIA_TRIGGER_MSG_PRIORITY MQINQ,
MQSET

trigger type MQIA_TRIGGER_TYPE MQINQ,
MQSET

usage MQIA_USAGE MQINQ

ImqQueueManager
Table 22. ImqQueueManager cross reference

Attribute Data
structure

Field Inquiry Call

authority event MQIA_AUTHORITY_EVENT MQINQ

begin options MQBO Options MQBEGIN

channel auto definition MQIA_CHANNEL_AUTO_DEF MQINQ

channel auto definition
event

MQIA_CHANNEL_AUTO_EVENT MQIA

channel auto definition
exit

MQIA_CHANNEL_AUTO_EXIT MQIA

character set MQIA_CODED_CHAR_SET_ID MQINQ

cluster workload data MQCA_CLUSTER_WORKLOAD_DATA MQINQ

cluster workload exit MQCA_CLUSTER_WORKLOAD_EXIT MQINQ

cluster workload
length

MQIA_CLUSTER_WORKLOAD_
LENGTH

MQINQ

Class attribute reference

128 MQSeries Using C++

Table 22. ImqQueueManager cross reference (continued)

Attribute Data
structure

Field Inquiry Call

command input queue
name

MQCA_COMMAND_INPUT_Q_NAME MQINQ

command level MQIA_COMMAND_LEVEL MQINQ

connect options MQCNO Options MQCONN,
MQCONNX

connection status MQCONN,
MQCONNX,
MQDISC

dead-letter queue
name

MQCA_DEAD_LETTER_Q_NAME MQINQ

default transmission
queue name

MQCA_DEF_XMIT_Q_NAME MQINQ

distribution lists MQIA_DIST_LISTS MQINQ

inhibit event MQIA_INHIBIT_EVENT MQINQ

local event MQIA_LOCAL_EVENT MQINQ

maximum handles MQIA_MAX_HANDLES MQINQ

maximum message
length

MQIA_MAX_MSG_LENGTH MQINQ

maximum priority MQIA_MAX_PRIORITY MQINQ

maximum
uncommitted messages

MQIA_MAX_UNCOMMITTED_MSGS MQINQ

performance event MQIA_PERFORMANCE_EVENT MQINQ

platform MQIA_PLATFORM MQINQ

remote event MQIA_REMOTE_EVENT MQINQ

repository name MQCA_REPOSITORY_NAME MQINQ

repository namelist MQCA_REPOSITORY_NAMELIST MQINQ

start-stop event MQIA_START_STOP_EVENT MQINQ

syncpoint availability MQIA_SYNCPOINT MQINQ

trigger interval MQIA_TRIGGER_INTERVAL MQINQ

ImqReferenceHeader
Table 23. ImqReferenceHeader

Attribute Data structure Field

destination environment MQRMH DestEnvLength, DestEnvOffset

destination name MQRMH DestNameLength, DestNameOffset

instance id MQRMH ObjectInstanceId

logical length MQRMH DataLogicalLength

logical offset MQRMH DataLogicalOffset

logical offset 2 MQRMH DataLogicalOffset2

reference type MQRMH ObjectType

source environment MQRMH SrcEnvLength, SrcEnvOffset

Class attribute reference

Appendix B. MQI cross-reference 129

Table 23. ImqReferenceHeader (continued)

Attribute Data structure Field

source name MQRMH SrcNameLength, SrcNameOffset

ImqTrigger
Table 24. ImqTrigger cross reference

Attribute Data structure Field

application id MQTM ApplId

application type MQTM ApplType

environment data MQTM EnvData

process name MQTM ProcessName

queue name MQTM QName

trigger data MQTM TriggerData

user data MQTM UserData

ImqWorkHeader
Table 25. ImqWorkHeader cross reference

Attribute Data structure Field

message token MQWIH MessageToken

service name MQWIH ServiceName

service step MQWIH ServiceStep

Class attribute reference

130 MQSeries Using C++

Appendix C. Reason codes

The following reason codes can occur in addition to those documented for the
MQSeries MQI, in the MQSeries Application Programming Reference.

Note: The following list is in alphabetic order.

MQRC_ATTRIBUTE_LOCKED (6104 or X'17D8')
An attempt has been made to change the value of an attribute of an
object while that object is open, or, for an ImqQueueManager object,
while that object is connected. Certain attributes cannot be changed
in these circumstances. Close or disconnect the object (as
appropriate) before changing the attribute value.

An object may have been connected and/or opened unexpectedly
and implicitly in order to perform an MQINQ call. Check the
attribute cross-reference table (see “Appendix B. MQI
cross-reference” on page 121) to determine whether any of your
method invocations result in an MQINQ call.

Corrective action: include MQOO_INQUIRE in the ImqObject open
options and set them earlier.

MQRC_BINARY_DATA_LENGTH_ERROR (6111 or X'17DF')
The length of the binary data is inconsistent with the length of the
target attribute. Zero is a correct length for all attributes.
v The correct length for an accounting token is

MQ_ACCOUNTING_TOKEN_LENGTH.
v The correct length for an alternate security id is

MQ_SECURITY_ID_LENGTH.
v The correct length for a correlation id is

MQ_CORREL_ID_LENGTH.
v The correct length for a facility token is

MQ_FACILITY_LENGTH.
v The correct length for a group id is MQ_GROUP_ID_LENGTH.
v The correct length for a message id is MQ_MSG_ID_LENGTH.
v The correct length for an instance id is

MQ_OBJECT_INSTANCE_ID_LENGTH.
v The correct length for a transaction instance id is

MQ_TRAN_INSTANCE_ID_LENGTH.
v The correct length for a message token is

MQ_MSG_TOKEN_LENGTH.

MQRC_BUFFER_NOT_AUTOMATIC (6112 or X'17E0')
A user-defined (and managed) buffer cannot be resized. A
user-defined buffer can only be replaced or withdrawn. A buffer
must be automatic (system-managed) before it can be resized.

MQRC_CONTEXT_OBJECT_NOT_VALID (6121 or X'17E9')
The ImqPutMessageOptions context reference does not reference a
valid ImqQueue object. The object has been previously destroyed.

MQRC_CONTEXT_OPEN_ERROR (6122 or X'17EA')
The ImqPutMessageOptions context reference references an

© Copyright IBM Corp. 1997, 2000 131

ImqQueue object that could not be opened to establish a context.
This may be because the ImqQueue object has inappropriate open
options. Inspect the referenced object reason code to establish the
cause.

MQRC_CURSOR_NOT_VALID (6105 or X'17D9')
The browse cursor for an open queue has been invalidated since it
was last used by an implicit reopen (see “Reopen” on page 19).

Corrective action: set the ImqObject open options explicitly to cover
all eventualities so that implicit reopening is not required.

MQRC_DATA_TRUNCATED (6115 or X'17E3')
Data has been truncated when copying from one buffer to another.
This might be because the target buffer cannot be resized, or because
there is a problem addressing one or other buffer, or because a
buffer is being downsized with a smaller replacement.

MQRC_DISTRIBUTION_LIST_EMPTY (6126 or X'17EE')
An ImqDistributionList failed to open because there are no
ImqQueue objects referenced.

Corrective action: establish at least one ImqQueue object in which
the distribution list reference addresses the ImqDistributionList
object, and retry.

MQRC_ENCODING_ERROR (6106 or X'17DA')
The encoding of the (next) message item needs to be
MQENC_NATIVE for pasting.

MQRC_INCONSISTENT_FORMAT (6119 or X'17E7')
The format of the (next) message item is inconsistent with the class
of object into which the item is being pasted.

MQRC_INCONSISTENT_OBJECT_STATE (6120 or X'17E8')
There is an inconsistency between this object, which is open, and the
referenced ImqQueueManager object, which is not connected.

MQRC_INCONSISTENT_OPEN_OPTIONS (6127 or X'17EF')
A method failed because the object is open, and the ImqObject open
options are inconsistent with the required operation. The object
cannot be reopened implicitly because the IMQ_IMPL_OPEN flag of
the ImqObject behavior class attribute is false.

Corrective action: open the object with appropriate ImqObject open
options and retry.

MQRC_INSUFFICIENT_BUFFER (6113 or X'17E1')
There is insufficient buffer space available after the data pointer to
accommodate the request. This might be because the buffer cannot
be resized.

MQRC_INSUFFICIENT_DATA (6114 or X'17E2')
There is insufficient data after the data pointer to accommodate the
request.

MQRC_NEGATIVE_LENGTH (6117 or X'17E5')
A negative length has been supplied where a zero or positive length
is required.

MQRC_NEGATIVE_OFFSET (6118 or X'17E6')
A negative offset has been supplied where a zero or positive offset is
required.

Reason codes

132 MQSeries Using C++

MQRC_NO_BUFFER (6110 or X'17DE')
No buffer is available. For an ImqCache object, one cannot be
allocated, denoting an internal inconsistency in the object state that
should not occur.

MQRC_NO_CONNECTION_REFERENCE (6109 or X'17DD')
The connection reference is null. A connection to an
ImqQueueManager object is required.

MQRC_NOT_CONNECTED (6124 or X'17EC')
A method failed because a required connection to a queue manager
was not available, and a connection cannot be established implicitly
because the IMQ_IMPL_CONN flag of the ImqQueueManager
behavior class attribute is FALSE.

Corrective action: establish a connection to a queue manager and
retry.

MQRC_NOT_OPEN (6125 or X'17ED')
A method failed because an MQSeries object was not open, and
opening cannot be accomplished implicitly because the
IMQ_IMPL_OPEN flag of the ImqObject behavior class attribute is
FALSE.

Corrective action: open the object and retry.

MQRC_NULL_POINTER (6108 or X'17DC')
A null pointer has been supplied where a nonnull pointer is either
required or implied.

MQRC_REOPEN_EXCL_INPUT_ERROR (6100 or X'17D4')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 19) is required but closure has been
prevented.

Closure has been prevented because the queue is open for exclusive
input and closure might result in the queue being accessed by
another process or thread, before the queue is reopened by the
process or thread that presently has access.

Corrective action: set the open options explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_REOPEN_INQUIRE_ERROR (6101 or X'17D5')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 19) is required but closure has been
prevented.

Closure has been prevented because one or more characteristics of
the object need to be checked dynamically prior to closure, and the
open options do not already include MQOO_INQUIRE.

Corrective action: set the open options explicitly to include
MQOO_INQUIRE.

MQRC_REOPEN_SAVED_CONTEXT_ERR (6102 or X'17D6')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 19) is required but closure has been
prevented.

Reason codes

Appendix C. Reason codes 133

Closure has been prevented because the queue is open with
MQOO_SAVE_ALL_CONTEXT, and a destructive get has been
performed previously. This has caused retained state information to
be associated with the open queue and this information would be
destroyed by closure.

Corrective action: set the open options explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_REOPEN_TEMPORARY_Q_ERROR (6103 or X'17D7')
An open object does not have the correct ImqObject open options
and requires one or more additional options. An implicit reopen
(see “Reopen” on page 19) is required but closure has been
prevented.

Closure has been prevented because the queue is a local queue of
the definition type MQQDT_TEMPORARY_DYNAMIC, that would
be destroyed by closure.

Corrective action: set the open options explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_STRUC_ID_ERROR (6107 or X'17DB')
The structure id for the (next) message item, which is derived from
the 4 characters beginning at the data pointer, is either missing or is
inconsistent with the class of object into which the item is being
pasted.

MQRC_STRUC_LENGTH_ERROR (6123 or X'17EB')
The length of a data structure is inconsistent with its content. For an
MQRMH, the length is insufficient to contain the fixed fields and all
offset data.

MQRC_WRONG_VERSION (6128 or X'17FO')
A method failed because a version number specified or encountered
is either incorrect or not supported.

For the ImqCICSBridgeHeader class, the problem is with the version
attribute.

Corrective action: If you are specifying a version number, use one
that is supported by the class. If you are receiving message data
from another program, ensure that both programs are using
consistent and supported version numbers.

MQRC_ZERO_LENGTH (6116 or X'17E4')
A zero length has been supplied where a positive length is either
required or implied.

Reason codes

134 MQSeries Using C++

The following list shows reason codes in numeric order.

Reason code Decimal Hex.

MQRC_REOPEN_EXCL_INPUT_ERROR 6100 X'000017D4'
MQRC_REOPEN_INQUIRE_ERROR 6101 X'000017D5'
MQRC_REOPEN_SAVED_CONTEXT_ERR 6102 X'000017D6'
MQRC_REOPEN_TEMPORARY_Q_ERROR 6103 X'000017D7'
MQRC_ATTRIBUTE_LOCKED 6104 X'000017D8'
MQRC_CURSOR_NOT_VALID 6105 X'000017D9'
MQRC_ENCODING_ERROR 6106 X'000017DA'
MQRC_STRUC_ID_ERROR 6107 X'000017DB'
MQRC_NULL_POINTER 6108 X'000017DC'
MQRC_NO_CONNECTION_REFERENCE 6109 X'000017DD'
MQRC_NO_BUFFER 6110 X'000017DE'
MQRC_BINARY_DATA_LENGTH_ERROR 6111 X'000017DF'
MQRC_BUFFER_NOT_AUTOMATIC 6112 X'000017E0'
MQRC_INSUFFICIENT_BUFFER 6113 X'000017E1'
MQRC_INSUFFICIENT_DATA 6114 X'000017E2'
MQRC_DATA_TRUNCATED 6115 X'000017E3'
MQRC_ZERO_LENGTH 6116 X'000017E4'
MQRC_NEGATIVE_LENGTH 6117 X'000017E5'
MQRC_NEGATIVE_OFFSET 6118 X'000017E6'
MQRC_INCONSISTENT_FORMAT 6119 X'000017E7'
MQRC_INCONSISTENT_OBJECT_STATE 6120 X'000017E8'
MQRC_CONTEXT_OBJECT_NOT_VALID 6121 X'000017E9'
MQRC_CONTEXT_OPEN_ERROR 6122 X'000017EA'
MQRC_STRUC_LENGTH_ERROR 6123 X'000017EB'
MQRC_NOT_CONNECTED 6124 X'000017EC'
MQRC_NOT_OPEN 6125 X'000017ED'
MQRC_DISTRIBUTION_LIST_EMPTY 6126 X'000017EE'
MQRC_INCONSISTENT_OPEN_OPTIONS 6127 X'000017EF'
MQRC_WRONG_VERSION 6128 X'000017F0'

Reason codes

Appendix C. Reason codes 135

Reason codes

136 MQSeries Using C++

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2000 137

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming interface information
This book is intended to help you to write application programs that run under
MQSeries C++.

This book also documents General-use Programming Interface and Associated
Guidance Information provided by MQSeries for C++.

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

Notices

138 MQSeries Using C++

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX AS/400 BookManager
CICS IBM IMS
MQSeries MVS/ESA OS/2
OS/390 OS/400 RACF
VisualAge VSE/ESA

LotusScript is a trademark of the Lotus Development Corporation in the United
States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix D. Notices 139

Changes

140 MQSeries Using C++

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abstract class. A class that can only be instantiated as
a derivation.

attribute. A property of an object or class, which can
be distinguished distinctly from any other properties.
Attributes often describe state information.

B
behavior. The functionality embodied within a
method.

Booch methodology. An object-oriented methodology
that helps users design systems using the
object-oriented paradigm.

C
class. An abstract model of behavior; a collection of
methods. A class typically provides some unique
behavior, in addition to other, common, behavior. The
distinction between unique and common behavior is
effected using either inheritance, or multiple interfaces.

class hierarchy. Classes related by inheritance.

class library. A bundled collection of classes, usually
related.

cluster. A network of queue managers that are
logically associated in some way.

constructor. A special method used to initialize an
object.

D
derivation. The refinement or extension of one class
from another.

E
encapsulation. The restriction whereby class behavior
may only be observed using the methods of that class.

exclusive method. A method that is not intended to
exhibit polymorphism; one with specific effect.

F
friend class. A class that is regarded as being derived
from another, while this is not the case, for the purpose
of accessing protected methods and instance data.

function. A classic function call such as is supported
by the C programming language.

hardened message. A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure.

I
ILE. Integrated Language Environment.

inheritance. The ability of a class to include the
behavior of another through refinement and extension;
only refined and extended methods are defined in the
derived class, thereby preserving encapsulation.

Integrated Language Environment (ILE). The AS/400
Integrated Language Environment. This replaces the
AS/400 Original Program Model (OPM).

instance. An object.

instance data. State information associated with an
object.

interface. An abstract model of behavior; a collection
of functions or methods.

M
marshalling. The serialization of data.

method. A means of invoking a particular behavior in
an object or class.

MQAI. MQSeries Administration Interface.

© Copyright IBM Corp. 1997, 2000 141

|
|
|

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects.

O
object. In C an object is an instance of a class.

OPM. Original Program Model.

Original Program Model (OPM). The AS/400
Original Program Model. This is no longer supported
on MQSeries. It is replaced by the Integrated Language
Environment (ILE).

OTMA. Open Transaction Manager Access.

overloading. The existence of more than one flavor of
method with the same name or operator, but with
different signatures, within a class; while the name or
operator remains the same, the method parameters
differ, each signature requiring a separate
implementation. Such methods usually exhibit the same
behavior, despite differences in signature.

P
parent class. A class from which another is derived.

polymorphism. The characteristic whereby a method
can be applied to a variety of classes, with consequent
various effects: for example, an “open” method could
be applied equally to “book” and “door” class objects.

private methods and instance data. Methods and
instance data that are only accessible to the
implementation of the same class.

protected methods and instance data. Methods and
instance data that are only accessible to the
implementations of the same or derived classes, or
from friend classes.

public methods and instance data. Methods and
instance data that are accessible to all classes.

S
serialization. The writing of data in sequential fashion
to a communications medium from program memory.

signature. A distinct combination of method name or
operator, and parameters.

streaming. The marshalling of class information and
object instance data.

T
this. The reserved word that represents a pointer to
the current object.

type. A fundamental data type of computer
architecture, including for example character string and
integer.

V
virtual method. A method that exhibits
polymorphism.

142 MQSeries Using C++

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS

V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64

UNIX) V2.2.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for SINIX and DC/OSx V2.2
v MQSeries for Sun Solaris V5.1
v MQSeries for Tandem NonStop Kernel V2.2.0.1
v MQSeries for VSE/ESA™ V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a
brief introduction to the benefits of
MQSeries. It is intended to support the
purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing

An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what
MQSeries is, how it works, and how it
can solve some classic interoperability
problems. This book is intended for a
more technical audience than the
MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349,
describes some key MQSeries concepts,
identifies items that need to be considered
before MQSeries is installed, including

storage requirements, backup and
recovery, security, and migration from
earlier releases, and specifies hardware
and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book,
SC33-1872, defines the concepts of
distributed queuing and explains how to
set up a distributed queuing network in a
variety of MQSeries environments. In
particular, it demonstrates how to (1)
configure communications to and from a
representative sample of MQSeries
products, (2) create required MQSeries
objects, and (3) create and configure
MQSeries channels. The use of channel
exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters,
SC34-5349, describes MQSeries clustering.
It explains the concepts and terminology
and shows how you can benefit by taking
advantage of clustering. It details changes
to the MQI, and summarizes the syntax of
new and changed MQSeries commands. It
shows a number of examples of tasks you
can perform to set up and maintain
clusters of queue managers.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632,
describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book,
SC33-1873, supports day-to-day
management of local and remote
MQSeries objects. It includes topics such
as security, recovery and restart,
transactional support, problem

© Copyright IBM Corp. 1997, 2000 143

|

|
|
|
|

|

|

determination, and the dead-letter queue
handler. It also includes the syntax of the
MQSeries control commands.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference,
SC33-1369, contains the syntax of the
MQSC commands, which are used by
MQSeries system operators and
administrators to manage MQSeries
objects.

MQSeries Programmable System Management
The MQSeries Programmable System
Management book, SC33-1482, provides
both reference and guidance information
for users of MQSeries events,
Programmable Command Format (PCF)
messages, and installable services.

MQSeries Administration Interface
Programming Guide and Reference

The MQSeries Administration Interface
Programming Guide and Reference,
SC34-5390, provides information for users
of the MQAI. The MQAI is a
programming interface that simplifies the
way in which applications manipulate
Programmable Command Format (PCF)
messages and their associated data
structures.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876,
which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries
products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

v MQSeries for Windows V2.0
v MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the
messages are supplied with the system.
They do not appear in softcopy manual
form.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference
Summary

The MQSeries Application Programming
Reference Summary, SX33-6095,
summarizes the information in the
MQSeries Application Programming
Reference manual.

MQSeries Using C++
MQSeries Using C++, SC33-1877, provides
both guidance and reference information
for users of the MQSeries C++
programming-language binding to the
MQI. MQSeries C++ is supported by
these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for AS/400 V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries C++ is also supported by
MQSeries clients supplied with these
products and installed in the following
environments:
v AIX
v HP-UX

144 MQSeries Using C++

|

|

v OS/2
v Sun Solaris
v Windows NT
v Windows 3.1
v Windows 95 and Windows 98

MQSeries Using Java™

MQSeries Using Java, SC34-5456, provides
both guidance and reference information
for users of the MQSeries Bindings for
Java and the MQSeries Client for Java.
MQSeries classes for Java are supported
by these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for MVS/ESA™ V1.2
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

This book is available in softcopy only.

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64
UNIX)

MQSeries for Digital UNIX System
Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX V5.1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.1 Quick
Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1
Licensed Program Specifications,
GC34-5377
MQSeries for OS/390 Version 2 Release 1
Program Directory

MQSeries for OS/390 System
Management Guide, SC34-5374
MQSeries for OS/390 Messages and
Codes, GC34-5375
MQSeries for OS/390 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.1 Quick
Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows V2.0 User’s
Guide, GC33-1822
MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.1 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387

Bibliography 145

|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

BookManager® format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1

v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:
http://www.ibm.com/software/ts/mqseries/

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Related publications
This section describes the documentation
available for related products.

The Booch methodology
Object-Oriented Analysis and Design with
Applications 2nd Edition, by Grady Booch,
Benjamin/Cummings Publishing, ISBN
0-8053-5340-2.

C++ programming
Object Oriented Application Development
With VisualAge® for C++ for OS/2, ISBN
0132424479.

VisualAge for C++ for AS/400 User’s Guide,
SC09-2416.

146 MQSeries Using C++

|

|

OTMA User’s Guide.

ILE C++ for AS/400 Read Me First!,
SC09-2716.

Related publications

Bibliography 147

||
|

Related publications

148 MQSeries Using C++

Index

A
AS/400 compiling 118
AS/400 syncpoint control 96
attributes of objects 21

B
bibliography 143
binary strings 19, 22
Booch class diagrams 1
BookManager 146
bufferPointer method 9
buffers, message 4
building applications on OS/390 119

C
C++ language considerations 21
C, using from C++ 23
C Set++ 118
character strings 19, 22
CICS bridge, writing a message to 13
classes

Booch class diagrams 1
ImqBinary 27
ImqCache 29
ImqCICSBridgeHeader 32
ImqDeadLetterHeader 39
ImqDistributionList 42
ImqError 44
ImqGetMessageOptions 46
ImqHeader 50
ImqIMSBridgeHeader 52
ImqItem 55
ImqMessage 57
ImqMessageTracker 64
ImqNamelist 68
ImqObject 70
ImqProcess 77
ImqPutMessageOptions 79
ImqQueue 82
ImqQueueManager 94
ImqReferenceHeader 102
ImqString 105
ImqTrigger 111
ImqWorkHeader 114

close, implicit operation 19
CMQC.H header file 21
compilers for MQSeries platforms,

overview 117
compiling programs

for AS/400 118
for OS/390 119
for Windows 95, 98, and NT 119

connect, implicit operation 18
connection, secondary 99
constants

MQCA_* 74
MQIA_* 74
MQIAV_UNDEFINED 74
MQOO_*

BROWSE 88

constants (continued)
MQOO_* (continued)

INPUT_* 88
OUTPUT 90
PASS_ALL_CONTEXT 90
PASS_IDENTITY_CONTEXT 90
SET_ALL_CONTEXT 90
SET_IDENTITY_CONTEXT 90

MQPMO_*
PASS_ALL_CONTEXT 90
PASS_IDENTITY_CONTEXT 90
SET_ALL_CONTEXT 90
SET_IDENTITY_CONTEXT 90

MQRC_*
TRUNCATED_MSG_FAILED 88

conventions 23
copyOut method 7
cppwm35i (IBM VisualAge for C++ for

Windows run-time library) 119

D
data preparation 4
data structures 121
data types 22
datagram, putting and getting 15
dataPointer method 9
dead-letter queue, writing a message

to 11
declaring parameters 25
disconnect, implicit operation 19
distribution list

putting messages to 18
DLLRNAME 119
DPUT sample program 18

E
elementary data types 22
examples

custom encapsulated message-writing
code 8

declaration and use conventions 23
headers 23
ImqDeadLetterHeader class 8
manipulating binary strings 22
preparing message data 4
retrieving items within a message 6
retrieving messages into a fixed area

of storage 10
sample programs 14

DPUT (imqdput.cpp) 18
HELLO WORLD

(imqwrld.cpp) 16
SGET (imqsget.cpp) 18
SPUT (imqsput.cpp) 18

writing a message to the CICS
bridge 13

writing a message to the dead-letter
queue 11

examples (continued)
writing a message to the IMS

bridge 12
writing a message to the work

header 14

F
features of MQSeries C++ 1
functions not supported 20

G
get method 9
getting a datagram, sample program 15
glossary 141

H
header example 23
header files

CMQC.H 21
IMQI.HPP 21, 25
IMQTYPE.H 21

HELLO WORLD sample program 15
HTML (Hypertext Markup

Language) 146
Hypertext Markup Language

(HTML) 146

I
IBM ILE C++ 118
implicit operations 18
ImqBinary class 27
ImqCache class 29
ImqCICSBridgeHeader class 32
ImqDeadLetterHeader class 39
ImqDistributionList class 42
ImqError class 44
ImqGetMessageOptions class 46
ImqHeader class 50
IMQI.HPP header file 21, 25
ImqIMSBridgeHeader class 52
ImqItem class 55
ImqMessage class 57
ImqMessageTracker class 64
ImqNamelist class 68
ImqObject class 70
ImqProcess class 77
ImqPutMessageOptions class 79
ImqQueue class 82
ImqQueueManager class 94
ImqReferenceHeader class 102
ImqString class 105
ImqTrigger class 111
IMQTYPE.H header file 21
ImqWorkHeader class 114
IMS bridge, writing a message to 12
include-files 121

© Copyright IBM Corp. 1997, 2000 149

initial state for objects 22
introduction to MQSeries C++ 1
item

description 5
retrieving from a message 5

item handling classes 3

L
language considerations

attributes 21
binary strings 22
character strings 22
data types 22
header files 21
methods 21
notational conventions 23
using C from C++ 23

link libraries 117
linking 117

M
manipulating strings 19
manipulating strings, example 22
message buffers

application (manual) 4
system (automatic) 4

message data preparation 4
message headers

CICS bridge header 13
dead-letter header 11
IMS bridge header 12
work header 14

message items
description 5
formats 61
identification 55

messages
placing on named queue, example 18
putting to a distribution list,

example 18
reading 5
retrieving from named queue,

example 18
writing

to the CICS bridge 13
to the dead-letter queue 11
to the IMS bridge 12
to the work header 14

method signatures 21
methods 4
MQCA_* constants 74
MQIA_* constants 74
MQIAV_UNDEFINED constant 74
MQOO_BROWSE constant 88
MQOO_INPUT_* constants 88
MQOO_OUTPUT constant 90
MQOO_PASS_ALL_CONTEXT

constant 90
MQOO_PASS_IDENTITY_CONTEXT

constant 90
MQOO_SET_ALL_CONTEXT

constant 90
MQOO_SET_IDENTITY_CONTEXT

constant 90

MQPMO_PASS_ALL_CONTEXT
constant 90

MQPMO_PASS_IDENTITY_CONTEXT
constant 90

MQPMO_SET_ALL_CONTEXT
constant 90

MQPMO_SET_IDENTITY_CONTEXT
constant 90

MQRC_TRUNCATED_MSG_FAILED
constant 88

MQSeries features 1
MQSeries Object Model 2
MQSeries publications 143
multithreaded program 26

N
notational conventions, example 23

O
object attributes 21
objects, initial state 22
open, implicit operation 18
open options 19
openFor method 19
operating systems supporting C++ 1
OS/390 compiling 119
OS/400 compilers

IBM ILE C++ 118
VisualAge C++ 118

P
parameters, declaring 25
parameters, passing 21
passing parameters 21
pasteIn method 7
PDF (Portable Document Format) 146
placing messages on named queue,

example 18
platforms supporting C++ 1
Portable Document Format (PDF) 146
PostScript format 146
preparing message data 4
preparing message data, example 4
products supporting C++ 1
programming

OS/390 119
Windows 95, 98, and NT 119

publications
MQSeries 143

putting a datagram, sample program 15
putting messages to a distribution list,

example 18

Q
queue

putting messages on 18
retrieving messages from 18

queue management classes 2
queue manager name 71
queue name 71

R
RACF password 52
reading messages 5

reason codes 131
reopen, implicit operation 19
retrieving items within a message,

example 6
retrieving messages from named queue,

example 18
return codes 38
running samples on OS/390 120

S
sample programs

DPUT (imqdput) 18
HELLO WORLD (imqwrld) 14
SGET (imqsget) 18
SPUT (imqsput) 18

searching for a substring 109
secondary connection 99
setMessageLength method 4
SGET sample program 18
single header file 25
softcopy books 146
SPUT sample program 18
strings, manipulating 19
structure id 55
switches 117

T
terminology used in this book 141
threads

multiple 26
queue manager connections 98

U
unit of work

AS/400 96
backout 97
begin 97
commit 98
syncpoint message retrieval 48
syncpoint message sending 81
uncommitted messages (maximum

number) 96
unsupported functions 20
useEmptyBuffer method 4, 9
useFullBuffer method 4
using C from C++ 23

V
Visual C++ 118
VisualAge C++ 118

W
Windows 95, 98 and NT compiling 119
Windows Help 146
work header, writing a message to 14
write method 4
writeItem method 4
writing a message to the CICS bridge,

example 13
writing a message to the dead-letter

queue, example 11

150 MQSeries Using C++

writing a message to the IMS bridge,
example 12

writing a message to the work header,
example 14

writing messages

to the CICS bridge 13
to the dead-letter queue 11
to the IMS bridge 12
to the work header 14

Index 151

152 MQSeries Using C++

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1997, 2000 153

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1877-03

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
M

Q
Se

rie
s®

M
Q

Se
ri

es
U

si
ng

C
+

+

	Contents
	Figures
	Tables
	About this book
	What you need to know to understand this book
	The base directory

	How to use this book

	Summary of changes
	Changes for this edition (SC33-1877-03)
	Changes for the third edition (SC33-1877-02)
	Changes for the second edition (SC33-1877-01)

	Chapter 1. Introduction to MQSeries C++
	Features of MQSeries C++
	Preparing message data
	Reading messages
	Writing a message to the dead-letter queue
	Writing a message to the IMS bridge
	Writing a message to the CICS bridge
	Writing a message to the work header
	Sample programs
	Sample program HELLO WORLD (imqwrld.cpp)
	On all platforms except OS/390
	On OS/390

	Sample programs SPUT (imqsput.cpp) and SGET(imqsget.cpp)
	On all platforms except OS/390
	On OS/390

	Sample program DPUT (imqdput.cpp)

	Implicit operations
	Connect
	Open
	Reopen
	Close
	Disconnect

	Binary and character strings
	Unsupported functions

	Chapter 2. C++ language considerations
	Header files
	Methods
	Attributes
	Data types
	Elementary data types

	Manipulating binary strings
	Manipulating character strings
	Initial state of objects
	Using C from C++
	Notational conventions

	Chapter 3. MQSeries C++ classes
	ImqBinary
	Other relevant classes
	Object attributes
	Constructors
	Overloaded “ImqItem” methods
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqCache
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Reason codes

	ImqCICSBridgeHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded “ImqItem” methods
	Object methods (public)
	Object data (protected)
	Reason codes
	Return codes

	ImqDeadLetterHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded “ImqItem” methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqDistributionList
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object methods (protected)

	ImqError
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqGetMessageOptions
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqHeader
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)

	ImqIMSBridgeHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded “ImqItem” methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqItem
	Other relevant classes
	Object attributes
	Constructors
	Class methods (public)
	Object methods (public)
	Reason codes

	ImqMessage
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object data (protected)

	ImqMessageTracker
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Reason codes

	ImqNamelist
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Reason codes

	ImqObject
	Other relevant classes
	Class attributes
	Object attributes
	Constructors
	Class methods (public)
	Object methods (public)
	Object methods (protected)
	Object data (protected)
	Reason codes

	ImqProcess
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)

	ImqPutMessageOptions
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqQueue
	Other relevant classes
	Object attributes
	Constructors
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqQueueManager
	Other relevant classes
	Class attributes
	Object attributes
	Constructors
	Destructors
	Class methods (public)
	Object methods (public)
	Object methods (protected)
	Object data (protected)
	Reason codes

	ImqReferenceHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded “ImqItem” methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqString
	Other relevant classes
	Object attributes
	Constructors
	Class methods (public)
	Overloaded “ImqItem” methods
	Object methods (public)
	Object methods (protected)
	Reason codes

	ImqTrigger
	Other relevant classes
	Object attributes
	Constructors
	Overloaded “ImqItem” methods
	Object methods (public)
	Object data (protected)
	Reason codes

	ImqWorkHeader
	Other relevant classes
	Object attributes
	Constructors
	Overloaded “ImqItem” methods
	Object methods (public)
	Object data (protected)
	Reason codes

	Appendix A. Compiling and linking
	Compilers for MQSeries platforms
	Compiling C++ sample programs for AS/400
	Compiling VisualAge C++ sample programs for Windows 95, 98, andNT
	Building an application on OS/390
	Running sample programs on OS/390

	Appendix B. MQI cross-reference
	Data structure, class, and include-file cross-reference
	Class attribute cross-reference
	ImqCache
	ImqCICSBridgeHeader
	ImqDeadLetterHeader
	ImqError
	ImqGetMessageOptions
	ImqHeader
	ImqIMSBridgeHeader
	ImqItem
	ImqMessage
	ImqMessageTracker
	ImqNamelist
	ImqObject
	ImqProcess
	ImqPutMessageOptions
	ImqQueue
	ImqQueueManager
	ImqReferenceHeader
	ImqTrigger
	ImqWorkHeader

	Appendix C. Reason codes
	Appendix D. Notices
	Programming interface information
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	BookManager® format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications

	Index
	Sending your comments to IBM

