
IBM MQSeries

Application Messaging Interface

SC34-5604-02

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix C, “Notices”
on page 525.

Third edition (June 2000)

This edition applies to IBM MQSeries Application Messaging Interface Version 1.1, and to any subsequent releases and
modifications until otherwise indicated in new editions.

 Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . ix
Format of this book . ix

Who this book is for . ix
What you need to know to understand this book ix
Structure of this book . ix
Appearance of text in this book . x

MQSeries publications . x
MQSeries information on the Internet . xii
Portable Document Format (PDF) . xii

Summary of changes . xiii
| Changes for this edition (SC34-5604-02) . xiii

Part 1. Introduction . 1

Chapter 1. Introduction . 3
Main components of the AMI . 3
Description of the AMI . 4
Application Messaging Interface model . 7
Further information . 8

Part 2. The C interface . 9

Chapter 2. Using the Application Messaging Interface in C 11
Structure of the AMI . 11
Writing applications in C . 14
Building C applications . 27

Chapter 3. The C high-level interface . 35
Overview of the C high-level interface . 36
Reference information for the C high-level interface 38
amBackout . 39

| amBegin . 40
| amBrowseMsg . 41

amCommit . 43
amInitialize . 44
amPublish . 45

| amReceiveFile . 46
amReceiveMsg . 48
amReceivePublication . 50
amReceiveRequest . 52

| amSendFile . 54
amSendMsg . 55
amSendRequest . 56
amSendResponse . 57
amSubscribe . 58
amTerminate . 60
amUnsubscribe . 61

 Copyright IBM Corp. 1999, 2000 iii

 Contents

Chapter 4. C object interface overview . 63
Session interface functions . 64
Message interface functions . 66
Sender interface functions . 68
Receiver interface functions . 69
Distribution list interface functions . 70
Publisher interface functions . 71
Subscriber interface functions . 72
Policy interface functions . 73
High-level functions . 74

Chapter 5. C object interface reference . 77
Session interface functions . 78
Message interface functions . 90
Message interface helper macros . 107
Sender interface functions . 109
Receiver interface functions . 115
Distribution list interface functions . 126
Publisher interface functions . 132
Subscriber interface functions . 136
Policy interface functions . 143

Part 3. The C++ interface . 145

Chapter 6. Using the Application Messaging Interface in C++ 147
Structure of the AMI . 147
Writing applications in C++ . 149
Building C++ applications . 159

Chapter 7. C++ interface overview . 165
Base classes . 165
AmSessionFactory . 166
AmSession . 167
AmMessage . 169
AmSender . 171
AmReceiver . 172
AmDistributionList . 173
AmPublisher . 174
AmSubscriber . 175
AmPolicy . 176
Helper classes . 177
Exception classes . 179

Chapter 8. C++ interface reference . 181
Base classes . 181
AmSessionFactory . 182
AmSession . 184
AmMessage . 189
AmSender . 198
AmReceiver . 201
AmDistributionList . 205
AmPublisher . 208
AmSubscriber . 210

iv MQSeries Application Messaging Interface

 Contents

AmPolicy . 214
AmBytes . 215
AmElement . 217
AmObject . 218
AmStatus . 219
AmString . 220
AmException . 222
AmErrorException . 223
AmWarningException . 224

Part 4. The COBOL interface . 225

| Chapter 9. Using the Application Messaging Interface in COBOL 227
| Structure of the AMI . 227
| Writing applications in COBOL . 230
| Building COBOL applications . 241

| Chapter 10. The COBOL high-level interface 243
| Overview of the COBOL high-level interface 244
| Reference information for the COBOL high-level interface 246
| AMHBACK (backout) . 247
| AMHBEGIN (begin) . 248
| AMHBRMS (browse message) . 249
| AMHCMIT (commit) . 251
| AMHINIT (initialize) . 252
| AMHPB (publish) . 253
| AMHRCFL (receive file) . 254
| AMHRCMS (receive message) . 256
| AMHRCPB (receive publication) . 258
| AMHRCRQ (receive request) . 260
| AMHSNFL (send file) . 262
| AMHSNMS (send message) . 264
| AMHSNRQ (send request) . 265
| AMHSNRS (send response) . 266
| AMHSB (subscribe) . 267
| AMHTERM (terminate) . 269
| AMHUN (unsubscribe) . 270

| Chapter 11. COBOL object interface overview 273
| Session interface functions . 274
| Message interface functions . 276
| Sender interface functions . 278
| Receiver interface functions . 279
| Distribution list interface functions . 280
| Publisher interface functions . 281
| Subscriber interface functions . 282
| Policy interface functions . 283
| High-level functions . 284

| Chapter 12. COBOL object interface reference 287
| Session interface functions . 288
| Message interface functions . 301
| Sender interface functions . 320

 Contents v

 Contents

| Receiver interface functions . 326
| Distribution list interface functions . 336
| Publisher interface functions . 341
| Subscriber interface functions . 345
| Policy interface functions . 352

Part 5. The Java interface . 355

Chapter 13. Using the Application Messaging Interface in Java 357
Structure of the AMI . 357
Writing applications in Java . 359
Building Java applications . 369

Chapter 14. Java interface overview . 371
Base classes . 371
AmSessionFactory . 372
AmSession . 373
AmMessage . 374
AmSender . 376
AmReceiver . 377
AmDistributionList . 378
AmPublisher . 379
AmSubscriber . 380
AmPolicy . 381
Helper classes . 382
Exception classes . 383

Chapter 15. Java interface reference . 385
Base classes . 385
AmSessionFactory . 386
AmSession . 388
AmMessage . 392
AmSender . 401
AmReceiver . 404
AmDistributionList . 408
AmPublisher . 411
AmSubscriber . 413
AmPolicy . 417
AmConstants . 418
AmElement . 419
AmObject . 420
AmStatus . 421
AmException . 422
AmErrorException . 423
AmWarningException . 424

Part 6. OS/390 Subsystems . 425

| Chapter 16. Writing applications for OS/390 subsystems 427

Part 7. Setting up an AMI installation . 429

vi MQSeries Application Messaging Interface

 Contents

Chapter 17. Installation and sample programs 431
Prerequisites . 431
Installation on AIX . 433
Installation on HP-UX . 438
Installation on Sun Solaris . 442
Installation on Windows . 446

| Installation on OS/390 . 450
Local host and repository files (Unix and Windows) 454

| Local host and repository files (OS/390) . 456
The administration tool . 460
Connecting to MQSeries . 461

| The sample programs . 464

Chapter 18. Defining services and policies 471
Services and policies . 471
Service definitions . 474
Policy definitions . 477

Chapter 19. Problem determination . 485
Using trace (Unix and Windows) . 485

| Using trace (OS/390) . 493
When your AMI program fails . 496

Part 8. Appendixes . 499

Appendix A. Reason codes . 501
Reason code: OK . 501
Reason code: Warning . 501
Reason code: Failed . 504

Appendix B. Constants . 515

Appendix C. Notices . 525
Trademarks . 527

Part 9. Glossary and index . 529

Glossary of terms and abbreviations . 531

Index . 533

 Contents vii

 Contents

viii MQSeries Application Messaging Interface

 About this book

About this book

This book describes how to use the MQSeries Application Messaging Interface.
The Application Messaging Interface provides a simple interface that application
programmers can use without needing to understand all the details of the MQSeries
Message Queue Interface.

Format of this book
This book is available in portable document format (PDF) only. To view it you need
the Adobe Acrobat Reader, Version 3 or later. Click on an entry in the table of
contents, or a cross reference within the text, to move directly to that page. Use
the Acrobat Reader controls to return to the previous page.

This book is not available in hard copy.

Who this book is for
This book is for anyone who wants to use the Application Messaging Interface to
send and receive MQSeries messages, including publish/subscribe and
point-to-point applications.

What you need to know to understand this book
� Knowledge of the C, COBOL, C++, or Java programming language is

assumed.

� You don't need previous experience of MQSeries to use the Application
Messaging Interface (AMI). You can use the examples and sample programs
provided to find out how to send and receive messages. However, to
understand all the functions of the AMI you need to have some knowledge of
the MQSeries Message Queue Interface (MQI). This is described in the
MQSeries Application Programming Guide and the MQSeries Application
Programming Reference book.

| � You will need to read the following:

| – MQSeries Publish/Subscribe User’s Guide if you are going to use the AMI
| with MQSeries Publish/Subscribe.

| – MQSeries Integrator Version 1.1 Application Development Guide if you are
| going to use the AMI with MQSeries Integrator Version 1.1.

| – MQSeries Integrator Version 2.0 Programming Guide if you are going to
| use the AMI with MQSeries Integrator Version 2.0.

� If you are a systems administrator responsible for setting up an installation of
the AMI, you need to be experienced in using the MQI.

Structure of this book
This book contains the following parts:

� Part 1, “Introduction” on page 1 gives an overview of the Application
Messaging Interface.

� Part 2, “The C interface” on page 9 describes how to use the AMI in C
programs. If you are new to MQSeries, gain some experience with the

 Copyright IBM Corp. 1999, 2000 ix

 MQSeries publications

high-level interface first. It provides most of the functionality you need when
writing applications. Then move on to the object interface if you need extra
functionality.

� Part 3, “The C++ interface” on page 145 describes how to use the AMI in C++
programs.

| � Part 4, “The COBOL interface” on page 225 describes how to write AMI
| programs using the COBOL high-level and object interfaces.

� Part 5, “The Java interface” on page 355 describes how to use the AMI in
Java programs.

� Part 6, “OS/390 Subsystems” on page 425 gives advice on writing AMI
applications for OS/390 subsystems.

� Part 7, “Setting up an AMI installation” on page 429 is for systems
administrators who are setting up an Application Messaging Interface
installation.

Appearance of text in this book
This book uses the following type styles:

Format The name of a parameter in an MQSeries call, a field in an
MQSeries structure, or an attribute of an MQSeries object

amInitialize The name of an AMI function or method

AMB_TRUE The name of an AMI constant

AmString getName(); The syntax of AMI functions and methods, and example code

 MQSeries publications
This section describes MQSeries publications that are referred to in this manual.
They are available in hardcopy, HTML and PDF formats, except where noted.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Publish/Subscribe User’s Guide
The MQSeries Publish/Subscribe User’s Guide, GC34-5269, provides
comprehensive information for users of the MQSeries Publish/Subscribe
SupportPac. It includes: installation; system design; writing applications; and
managing the publish/subscribe broker.

This book is available in PDF format only.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as

x MQSeries Application Messaging Interface

 MQSeries publications

security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

| MQSeries Integrator Version 1.1 Application Development Guide
| The MQSeries Integrator Version 1.1 Application Development Guide, SC34-5508,
| provides guidance information on writing applications that communicate with
| MQSeries Integrator Version 1.1. Details of the supported
| option-buffer-tag/value-pair-tag names and the related MQRFH message header
| are included.

| MQSeries Integrator Version 2.0 Programming Guide
| The MQSeries Integrator Version 2.0 Programming Guide, SC34-5603, provides
| guidance information on writing applications that communicate with MQSeries
| Integrator Version 2.0 and includes a discussion of both point-to-point and
| publish/subscribe communication models. Details of the publish/subscribe command
| messages and the related MQRFH2 message header are also included.

 About this book xi

 MQSeries on the Internet

MQSeries information on the Internet
MQSeries Web site

The MQSeries product family Web site is at:

 http://www.ibm.com/software/ts/mqseries

By following links from this Web site you can:

� Obtain latest information about the MQSeries product family.

� Access the MQSeries books in HTML and PDF formats.

� Download MQSeries SupportPacs.

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader. It is
recommended that you use Version 3 or later.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

 http://www.adobe.com/

xii MQSeries Application Messaging Interface

 Summary of changes

Summary of changes

This section lists the changes that have been made to this book. Changes since
the previous edition are marked with vertical bars in the left-hand margin.

| Changes for this edition (SC34-5604-02)
| � Application Messaging Interface now provides support for applications written in
| the C and COBOL programming languages, running on the OS/390 operating
| system. See:

| – Part 4, “The COBOL interface” on page 225 for a description of the
| COBOL high-level and object interfaces.

| – Part 6, “OS/390 Subsystems” on page 425 for information about writing
| AMI applications for OS/390 subsystems.

| � New calls and methods have been included for:

| – file transfer

| – content-based publish/subscribe

| – returning the message type

| – returning the feedback code from a report message

| See the parts of the book describing each supported language for details.

| � New high-level calls have been added for both C and COBOL to:

| – browse a message (see “amBrowseMsg” on page 41 for C and
| “AMHBRMS (browse message)” on page 249 for COBOL)

| – begin a unit of work (see “amBegin” on page 40 for C and “AMHBEGIN
| (begin)” on page 248 for COBOL)

| � Support is provided for MQSeries Integrator Version 2.0. For details see “Using
| MQSeries Integrator Version 2” on page 461.

| � There is now a subset of the AMI C interface that conforms to the Open
| Application Group Middleware Application Program Interface Specification
| (OAMAS). See “Using the AMI OAMAS subset” on page 26 for details.

 Copyright IBM Corp. 1999, 2000 xiii

 Summary of changes

xiv MQSeries Application Messaging Interface

 Part 1. Introduction

 Copyright IBM Corp. 1999, 2000 1

2 MQSeries Application Messaging Interface

 Main components of the AMI

 Chapter 1. Introduction

The MQSeries products enable programs to communicate with one another across
a network of dissimilar components - processors, operating systems, subsystems,
and communication protocols - using a consistent application programming
interface, the MQSeries Message Queue Interface (MQI). The purpose of the
Application Messaging Interface (AMI) is to provide a simple interface that
application programmers can use without needing to understand all the functions
available in the MQI. The functions that are required in a particular installation are
defined by a system administrator, using services and policies.

Main components of the AMI
There are three main components in the AMI:

� The message, which defines what is sent from one program to another

� The service, which defines where the message is sent

� The policy, which defines how the message is sent

To send a message using the AMI, an application has to specify the message data
together with the service and policy to be used. You can use the default services
and policies provided by the system, or create your own. Optionally, you can store
your definitions of services and policies in a repository.

Sending and receiving messages
You can use the AMI to send and receive messages in a number of different ways:

� Send and forget (datagram), where no reply is needed

� Distribution list, where a message is sent to multiple destinations

� Request/response, where a sending application needs a response to the
request message

� Publish/subscribe, where a broker manages the distribution of messages

 Interoperability
The AMI is interoperable with other MQSeries interfaces. Using the AMI you can
exchange messages with one or more of the following:

� Another application that is using the AMI

� Any application that is using the MQI

� A message broker (such as MQSeries Publish/Subscribe or MQSeries
Integrator)

 Copyright IBM Corp. 1999, 2000 3

 Description of the AMI

 Programming languages
The Application Messaging Interface is available in the C, COBOL, C++ and Java
programming languages. In C and COBOL there are two interfaces: a high-level
interface that is procedural in style, and a lower level object-style interface. The
high-level interface contains the functionality needed by the majority of applications.
The two interfaces can be mixed as required.

In C++ and Java, a single object interface is provided.

Description of the AMI
In the Application Messaging Interface, messages, services and policies define
what is being sent, where it is sent, and how it is sent.

 Messages
Information is passed between communicating applications using messages, with
MQSeries providing the transport. Messages consist of:

� The message attributes: information that identifies the message and its
properties. The AMI uses the attributes, together with information in the policy,
to interpret and construct MQSeries headers and message descriptors.

� The message data: the application data carried in the message. The AMI does
not act upon this data.

Some examples of message attributes are:

MessageID An identifier for the message. It is usually unique, and
typically it is generated by the message transport
(MQSeries).

CorrelID A correlation identifier that can be used as a key, for
example to correlate a response message to a request
message. The AMI normally sets this in a response
message by copying the MessageID from the request
message.

Format The structure of the message.

Topic Indicates the content of the message for publish/subscribe
applications.

These attributes are properties of an AMI message object. Where it is appropriate,
an application can set them before sending a message, or access them after
receiving a message. The message data can be contained in the message object,
or passed as a separate parameter.

In an MQSeries application, the message attributes are set up explicitly using the
Message Queue Interface (MQI), so the application programmer needs to
understand their purpose. With the AMI, they are contained in the message object
or defined in a policy that is set up by the system administrator, so the programmer
is not concerned with these details.

4 MQSeries Application Messaging Interface

 Description of the AMI

 Services
A service represents a destination that applications send messages to or receive
messages from. In MQSeries such a destination is called a message queue, and a
queue resides in a queue manager. Programs can use the MQI to put messages
on queues, and get messages from them. Because there are many parameters
associated with queues and the way they are set up and managed, this interface is
complex. When using the AMI, these parameters are defined in a service that is set
up by the systems administrator, so the complexity is hidden from the application
programmer.

For further information about queues and queue managers, please refer to the
MQSeries Application Programming Guide.

Point-to-point and publish/subscribe
In a point-to-point application, the sending application knows the destination of the
message. Point-to-point applications can be send and forget (or datagram), where
a reply to the message is not required, or request/response, where the request
message specifies the destination for the response message. Applications using
distribution lists to send a message to multiple destinations are usually of the send
and forget type.

In the case of publish/subscribe applications, the providers of information are
decoupled from the consumers of that information. The provider of the information
is called a publisher. Publishers supply information about a subject by sending it to
a broker. The subject is identified by a topic, such as "Stock" or "Weather". A
publisher can publish information on more than one topic, and many publishers can
publish information on a particular topic.

The consumer of the information is called a subscriber. A subscriber decides what
information it is interested in, and subscribes to the relevant topics by sending a
message to the broker. When information is published on one of those topics, the
publish/subscribe broker sends it to the subscriber (and any others who have
registered an interest in that topic). Each subscriber is sent information about those
topics it has subscribed to.

There can be many brokers in a publish/subscribe system, and they communicate
with each other to exchange subscription requests and publications. A publication is
propagated to another broker if a subscription to that topic exists on the other
broker. So a subscriber that subscribes to one broker will receive publications (on a
chosen topic) that are published at another broker.

The AMI provides functions to send and receive messages using the
publish/subscribe model. For further details see the MQSeries Publish/Subscribe
User’s Guide.

Types of service
Different types of service are defined to specify the mapping from the AMI to real
resources in the messaging network.

� Senders and receivers establish one-way communication pipes for sending and
receiving messages.

� A distribution list contains a list of senders to which messages can be sent.

 Chapter 1. Introduction 5

 Description of the AMI

� A publisher contains a sender that is used to publish messages to a
publish/subscribe broker.

� A subscriber contains a sender, used to subscribe to a publish/subscribe
broker, and a receiver, for receiving publications from the broker.

The AMI provides default services that are used unless otherwise specified by the
application program. You can define your own service when calling a function, or
use a customized service stored in a repository (these are set up by a systems
administrator). You don’t have to have a repository. Many of the options used by
the services are contained in a policy (see below).

The AMI has functions to open and close services explicitly, but they can also be
opened and closed implicitly by other functions.

 Policies
| A policy controls how the AMI functions operate. Policies control such items as:

| � The attributes of the message, for example the priority.

| � Options used for send and receive operations, for instance whether it is part of
| a unit of work.

| � Publish/subscribe options, for example whether a publication is retained.

| � Added value functions to be invoked as part of the call, such as retry.

The AMI provides default policies. Alternatively, a systems administrator can define
customized policies and store them in a repository. An application program selects
a policy by specifying it as a parameter on calls.

You could choose to use a different policy on each call, and specify in the policy
only those parameters that are relevant to the particular call. You could then have
policies shared between applications, such as a “Transactional_Persistent_Put”
policy. Another approach is to have policies that specify all the parameters for all
the calls made in a particular application, such as a “Payroll_Client” policy. Both
approaches are valid with the AMI, but a single policy for each application will
simplify management of policies.

The AMI will automatically retry when temporary errors are encountered on sending
a message, if requested by the policy. (Examples of temporary errors are queue
full, queue disabled, and queue in use).

6 MQSeries Application Messaging Interface

 Application Messaging Interface model

Application Messaging Interface model
Figure 1 shows the components of the Application Messaging Interface.

Session Connection

Application
programs

High
level
API
layer

Message
transport

(MQSeries)

Distribution
list

Sender

Sender

Sender
Sender

Sender

Sender

Receiver

Receiver

Policy

Subscriber

Publisher

Message

Repository
Procedural
interface

Object
interface

Figure 1. Basic AMI model

| Application programs communicate directly with AMI objects using the object
| interface in C, COBOL, C++ and Java. In addition to the object-style interface, there
| is a procedural-style high-level interface available in C and COBOL. This contains
| the functionality needed by the majority of applications; it can be supplemented with
| object interface functions as needed.

Sender, receiver, distribution list, publisher, and subscriber objects are all services.
Senders and receivers connect directly to the message transport layer (MQSeries).
Distribution list and publisher objects contain senders; subscriber objects contain a
sender and a receiver.

Message, service and policy objects are created and managed by a session object,
which provides the scope for a unit of work. The session object contains a
connection object that is not visible to the application. The combination of

 Chapter 1. Introduction 7

 Further information

connection, sender, and receiver objects provides the transport for the message.
Other objects, such as helper classes, are provided in C++ and Java.

Attributes for message, service and policy objects can be taken from the system
defaults, or from administrator-provided definitions that have been stored in the
repository.

 Further information
The syntax of the AMI differs according to the programming language, so the
implementation for each language is described in a separate part of this book:

� Part 2, “The C interface” on page 9

� Part 4, “The COBOL interface” on page 225

� Part 3, “The C++ interface” on page 145

� Part 5, “The Java interface” on page 355

In Part 6, “OS/390 Subsystems” on page 425, you will find advice on writing AMI
applications for the IMS, CICS, batch, and RRS-batch subsystems on OS/390.

In Part 7, “Setting up an AMI installation” on page 429, you can find out how to:

� Install the Application Messaging Interface

� Run the sample programs

� Determine the cause of problems

� Set up services and policies

| The Application Messaging Interface for C, C++, and Java runs on the following
| operating systems or environments: AIX, HP-UX, Sun Solaris, Microsoft
| Windows 98 and Windows NT.

| The Application Messaging Interface for C and COBOL runs on the OS/390
| operating system.

8 MQSeries Application Messaging Interface

Part 2. The C interface

This part contains:

� Chapter 2, “Using the Application Messaging Interface in C” on page 11

� Chapter 3, “The C high-level interface” on page 35

� Chapter 4, “C object interface overview” on page 63

� Chapter 5, “C object interface reference” on page 77

 Copyright IBM Corp. 1999, 2000 9

10 MQSeries Application Messaging Interface

 Structure of the AMI

Chapter 2. Using the Application Messaging Interface in C

The Application Messaging Interface (AMI) in the C programming language has two
interfaces:

1. A high-level procedural interface that provides the function needed by most
users.

2. A lower-level, object-style interface, that provides additional function for
experienced MQSeries users.

This chapter describes the following:

� “Structure of the AMI”

� “Writing applications in C” on page 14

� “Building C applications” on page 27

Structure of the AMI
Although the high-level interface is procedural in style, the underlying structure of
the AMI is object based. (The term object is used here in the object-oriented
programming sense, not in the sense of MQSeries ‘objects’ such as channels and
queues.) The objects that are made available to the application are:

Session Contains the AMI session.

Message Contains the message data, message ID, correlation ID, and
options that are used when sending or receiving a message
(most of which come from the policy definition).

Sender This is a service that represents a destination (such as an
MQSeries queue) to which messages are sent.

Receiver This is a service that represents a source from which
messages are received.

Distribution list Contains a list of sender services to provide a list of
destinations.

Publisher Contains a sender service where the destination is a
publish/subscribe broker.

Subscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe broker) and a
receiver service (to receive publications from the broker).

Policy Defines how the message should be handled, including items
such as priority, persistence, and whether it is included in a
unit of work.

When using the high-level functions the objects are created automatically and
(where applicable) populated with values from the repository. In some cases it
might be necessary to inspect these properties after a message has been sent (for
instance, the MessageID), or to change the value of one or more properties before
sending the message (for instance, the Format). To satisfy these requirements, the
AMI for C has a lower-level object style interface in addition to the high-level
procedural interface. This provides access to the objects listed above, with methods

 Copyright IBM Corp. 1999, 2000 11

 Structure of the AMI

to set and get their properties. You can mix high-level and object-level functions in
the same application.

All the objects have both a handle and a name. The names are used to access
objects from the high-level interface. The handles are used to access them from
the object interface. Multiple objects of the same type can be created with the
same name, but are usable only from the object interface.

The high-level interface is described in Chapter 3, “The C high-level interface” on
page 35. An overview of the object interface is given in Chapter 4, “C object
interface overview” on page 63, with reference information in Chapter 5, “C object
interface reference” on page 77.

Using the repository
You can run AMI applications with or without a repository. If you don’t have a
repository, you can use a system default object (see below), or create your own by
specifying its name on a function call. It will be created using the appropriate
system provided definition (see “System provided definitions” on page 472).

If you have a repository, and you specify the name of an object on a function call
that matches a name in the repository, the object will be created using the
repository definition. (If no matching name is found in the repository, the system
provided definition will be used.)

System default objects

Table 1. System default objects

Default object Constant or handle (if applicable)

SYSTEM.DEFAULT.POLICY AMSD_POL
AMSD_POL_HANDLE

SYSTEM.DEFAULT.SYNCPOINT.POLICY AMSD_SYNC_POINT_POL
AMSD_SYNC_POINT_POL_HANDLE

SYSTEM.DEFAULT.SENDER AMSD_SND

SYSTEM.DEFAULT.RESPONSE.SENDER AMSD_RSP_SND
AMSD_RSP_SND_HANDLE

SYSTEM.DEFAULT.RECEIVER AMSD_RCV
AMSD_RCV_HANDLE

SYSTEM.DEFAULT.PUBLISHER AMSD_PUB
AMSD_PUB_SND

SYSTEM.DEFAULT.SUBSCRIBER AMSD_SUB
AMSD_SUB_SND

SYSTEM.DEFAULT.SEND.MESSAGE AMSD_SND_MSG
AMSD_SND_MSG_HANDLE

SYSTEM.DEFAULT.RECEIVE.MESSAGE AMSD_RCV_MSG
AMSD_RCV_MSG_HANDLE

A set of system default objects is created at session creation time. This removes
the overhead of creating the objects from applications using these defaults. The
system default objects are available for use from both the high-level and object

12 MQSeries Application Messaging Interface

 Structure of the AMI

interfaces in C. They are created using the system provided definitions (see
“System provided definitions” on page 472).

The default objects can be specified explicitly using AMI constants, or used to
provide defaults if a parameter is omitted (by specifying NULL, for example).

Constants representing synonyms for handles are also provided for these objects,
for use from the object interface (see Appendix B, “Constants” on page 515). Note
that the first parameter on a call must be a real handle; you cannot use a synonym
in this case (that is why handles are not provided for all the default objects).

 Chapter 2. Using the Application Messaging Interface in C 13

 Writing applications in C

Writing applications in C
This section gives a number of examples showing how to use the high-level
interface of the AMI, with some extensions using the object interface. Equivalent
operations to all high-level functions can be performed using combinations of object
interface functions (see “High-level functions” on page 74).

Opening and closing a session
Before using the AMI, you must open a session. This can be done with the
following high-level function (page 44):

Opening a session

 hSession = amInitialize(name, myPolicy, &compCode, &reason);

The name is optional, and can be specified as NULL. myPolicy is the name of the
policy to be used during initialization of the AMI. You can specify the policy name
as NULL, in which case the SYSTEM.DEFAULT.POLICY object is used.

The function returns a session handle, which must be used by other calls in this
session. Errors are returned using a completion code and reason code.

To close a session, you can use this high-level function (page 60):

Closing a session

 success = amTerminate(&hSession, myPolicy, &compCode, &reason);

This closes and deletes all objects that were created in the session. Note that a
pointer to the session handle is passed. If the function is successful, it returns
AMB_TRUE.

 Sending messages
You can send a datagram (send and forget) message using the high-level
amSendMsg function (page 55). In the simplest case, all you need to specify is
the session handle returned by amInitialize, the message data, and the message
length. Other parameters are set to NULL, so the default message, sender service,
and policy objects are used.

Sending a message using all the defaults

 success = amSendMsg(hSession, NULL, NULL, dataLen,
pData, NULL, &compCode, &reason);

If you want to send the message using a different sender service, specify its name
(such as mySender) as follows:

Sending a message using a specified sender service

 success = amSendMsg(hSession, mySender, NULL, dataLen,
pData, NULL, &compCode, &reason);

If you are not using the default policy, you can specify a policy name:

14 MQSeries Application Messaging Interface

 Writing applications in C

Sending a message using a specified policy

 success = amSendMsg(hSession, NULL, myPolicy, dataLen,
pData, NULL, &compCode, &reason);

The policy controls the behavior of the send function. For example, the policy can
specify:

� The priority, persistence and expiry of the message
� If the send is part of a unit of work
� If the sender service should be implicitly opened and left open

To send a message to a distribution list, specify its name (such as myDistList) as
the sender service:

Sending a message to a distribution list

 success = amSendMsg(hSession, myDistList, NULL, dataLen,
pData, NULL, &compCode, &reason);

Using the message object
Using the object interface gives you more functions when sending a message. For
example, you can get or set individual attributes in the message object. To get an
attribute after the message has been sent, you can specify a name for the
message object that is being sent:

Specifying a message object

 success = amSendMsg(hSession, NULL, NULL, dataLen,
pData, mySendMsg, &compCode, &reason);

The AMI creates a message object of the name specified (mySendMsg), if one
doesn't already exist. (The sender name and policy name are specified as NULL,
so in this example their defaults are used.) You can then use object interface
functions to get the required attributes, such as the MessageID, from the message
object:

Getting an attribute from a message object

 hMsg = amSesGetMessageHandle(hSession, mySendMsg, &compCode, &reason);

 success = amMsgGetMsgId(hMsg, BUFLEN, &MsgIdLen, pMsgId,
 &compCode, &reason);

The first call is needed to get the handle to the message object. The second call
returns the message ID length, and the message ID itself (in a buffer of length
BUFLEN).

To set an attribute such as the Format before the message is sent, you must first
create a message object and set the format:

 Chapter 2. Using the Application Messaging Interface in C 15

 Writing applications in C

Setting an attribute in a message object

 hMsg = amSesCreateMessage(hSession, mySendMsg, &compCode, &reason);

 success = amMsgSetFormat(hMsg, AMLEN_NULL_TERM, pFormat,
 &compCode, &reason);

Then you can send the message as before, making sure to specify the same
message object name (mySendMsg) in the amSendMsg call.

Look at “Message interface functions” on page 66 to find out what other attributes
of the message object you can get and set.

After a message object has been used to send a message, it might not be left in
the same state as it was prior to the send. Therefore, if you use the message
object for repeated send operations, it is advisable to reset it to its initial state (see
amMsgReset on page 103) and rebuild it each time.

Instead of sending the message data using the data buffer, it can be added to the
message object. However, this is not recommended for large messages because of
the overhead of copying the data into the message object before it is sent (and also
extracting the data from the message object when it is received).

 Sample programs

For more details, refer to the amtshsnd.c and amtsosnd.c sample programs (see
“Sample programs for Unix and Windows” on page 464).

 Receiving messages
Use the amReceiveMsg high-level function (page 48) to receive a message to
which no response is to be sent (such as a datagram). In the simplest case, all
you need to specify are the session handle and a buffer for the message data.
Other parameters are set to NULL, so the default message, receiver service, and
policy objects are used.

Receiving a message using all the defaults

 success = amReceiveMsg(hSession, NULL, NULL, NULL, BUFLEN,
&dataLen, pData, NULL, &compCode, &reason);

If you want to receive the message using a different receiver service, specify its
name (such as myReceiver) as follows:

Receiving a message using a specified receiver service

 success = amReceiveMsg(hSession, myReceiver, NULL, NULL, BUFLEN,
&dataLen, pData, NULL, &compCode, &reason);

If you are not using the default policy, you can specify a policy name:

16 MQSeries Application Messaging Interface

 Writing applications in C

Receiving a message using a specified policy

 success = amReceiveMsg(hSession, NULL, myPolicy, NULL, BUFLEN,
&dataLen, pData, NULL, &compCode, &reason);

The policy can specify, for example:

� The wait interval
� If the message is part of a unit of work
� If the message should be code page converted
� If all the members of a group must be there before any members can be read

Using the message object
To get the attributes of a message after receiving it, you can specify your own
message object name, or use the system default
(SYSTEM.DEFAULT.RECEIVE.MESSAGE). If a message object of that name
does not exist it will be created. You can access the attributes (such as the
Encoding) using the object interface functions:

Getting an attribute from a message object

 success = amReceiveMsg(hSession, NULL, NULL, NULL, BUFLEN,
&dataLen, pData, myRcvMsg, &compCode, &reason);

 hMsg = amSessGetMessageHandle(hSession, myRcvMsg, &compCode, &reason);

 success = amMsgGetEncoding(hMsg, &encoding, &compCode, &reason);

If a specific message is to be selectively received using its correlation identifier, a
message object must first be created and its CorrelId property set to the required
value (using the object interface). This message object is passed as the selection
message on the amReceiveMsg call:

Using a selection message object

 hMsg = amSesCreateMessage(hSession, mySelMsg, &compCode, &reason);

 success = amMsgSetCorrelId(hMsg, correlIdLen, pCorrelId,
 &compCode, &reason);

 success = amReceiveMsg(hSession, NULL, NULL, mySelMsg, BUFLEN,
&dataLen, pData, NULL, &compCode, &reason);

 Sample programs
For more details, refer to the amtshrcv.c and amtsorcv.c sample programs (see
“Sample programs for Unix and Windows” on page 464).

 Request/response messaging
In the request/response style of messaging, a requester (or client) application
sends a request message and expects to receive a message in response. The
responder (or server) application receives the request message and produces the
response message (or messages) which it returns to the requester application. The
responder application uses information in the request message to determine how to
send the response message to the requester.

 Chapter 2. Using the Application Messaging Interface in C 17

 Writing applications in C

In the following examples ‘your’ refers to the responding application (the server);
‘my’ refers to the requesting application (the client).

 Request
Use the amSendRequest high-level function (page 56) to send a request message.
This is similar to amSendMsg, but it includes the name of the service to which the
response message is to be sent. In this example the sender service (mySender) is
specified in addition to the receiver service (myReceiver). (A policy name and a
send message name can be specified as well, as described in “Sending messages”
on page 14).

Sending a request message

 success = amSendRequest(hSession, mySender, NULL, myReceiver,
dataLen, pData, NULL, &compCode, &reason);

The amReceiveRequest high-level function (page 52) is used by the responding
(or server) application to receive a request message. It is similar to
amReceiveMsg, but it includes the name of the sender service that will be used for
sending the response message. When the message is received, the sender service
is updated with the information needed for sending the response to the required
destination.

Receiving a request message

 success = amReceiveRequest(hSession, yourReceiver, NULL, BUFLEN,
&dataLen, pData, yourRcvMsg, yourSender,

 &compCode, &reason);

A policy name can be specified as well, as described in “Receiving messages” on
page 16.

A receiver message name (yourRcvMsg) is specified so that the response message
can refer to it. Note that, unlike amReceiveMsg, this function does not have a
selection message.

 Response
After the requested actions have been performed, the responding application sends
the response message (or messages) with the amSendResponse function (page
57):

Sending a response message

 success = amSendResponse(hSession, yourSender, NULL, yourRcvMsg,
dataLen, pData, NULL, &compCode, &reason);

The sender service for the response message (yourSender) and the receiver
message name (yourRcvMsg) are the same as those used with
amReceiveRequest. This causes the CorrelId and MessageId to be set in the
response message, as requested by the flags in the request message.

Finally, the requester (or client) application uses the amReceiveMsg function to
receive the response message as described in “Receiving messages” on page 16.
You might need to receive a specific response message (for example if three

18 MQSeries Application Messaging Interface

 Writing applications in C

request messages have been sent, and you want to receive the response to the
first request message first). In this case the sender message name from the
amSendRequest function should be used as the selection message name in the
amReceiveMsg.

 Sample programs
For more details, refer to the amtshclt.c, amtshsvr.c, amtsoclt.c, and amtsosvr.c
sample programs (see “Sample programs for Unix and Windows” on page 464).

| File transfer
| You can perform file transfers using the amSendFile and amReceiveFile high-level
| functions, and the amSndSendFile, amDstSendFile and amRcvReceiveFile
| object-level functions. There are two broad applications of the file transfer calls:
| end-to-end file transfer using both send file and receive file calls, and generation of
| messages from a file using just a send file call. If the message supplied to the
| send file call has a format of AMFMT_STRING (the default), then the file is treated
| as text. If the format is AMFMT_NONE, the file is treated as binary data and is not
| converted in any way.

| To ensure that the file can be reassembled at the receiving side during end-to-end
| file transfer, you should use a policy with the 'physical splitting' file transfer option.
| With this mode of file transfer, the AMI passes extra meta-data with the file to help
| ensure that the complete file is recovered and to allow the original filename to
| travel with the message.

| Sending a file using the high-level amSendFile function

| success = amSendFile(hSession, mySender, myPolicy, 5, 5, NULL,
| AMLEN_NULL_TERM, "myFilename", mySendMessage,
| &compCode, &reason);

| When using physical splitting, the AMI may send a group of messages rather than
| one large message. This implies that, when sending files to or receiving files on
| platforms without native group support, AMI simulated groups must be used. See
| “Sending group messages” on page 25 for more information. As errors may occur
| part way through sending or receiving a file, applications must ensure that the
| transfer completed as expected. In particular, we recommend that file transfers are
| done with the syncpoint policy option turned on, and that applications check the
| reason and completion codes carefully to be sure that the whole file was sent
| before committing the unit of work.

| Receiving a file using the high-level amReceiveFile function

| success = amReceiveFile(hSession, myReceiver, myPolicy, 5,
| mySelectionMessage, 5, NULL, 5, NULL, myReceiveMessage,
| &compCode, &reason);

| If the message selected for the receive operation does not contain file information,
| then it is returned to the application in the message object named on the call and a
| warning is returned with reason AMRC_NOT_A_FILE. If the file transfer fails part
| way through a message, then that message is returned to the application and the
| current data pointer within the message shows how far it had been processed
| before the error occurred. Again we recommend the use of the policy syncpoint

 Chapter 2. Using the Application Messaging Interface in C 19

 Writing applications in C

| option and checking of completion and reason codes to ensure the whole file was
| received correctly before committing the unit of work. If the file was sent from a
| different type of file system than it is received into, the AMI converts the file and
| returns a warning with reason AMRC_FILE_FORMAT_CONVERTED. This
| conversion allows transfer between OS/390 datasets with different record types or
| sizes, and between OS/390 datasets and the flat files used on other systems.

| If the intent is not to transfer a file from one location to another, but rather to
| generate a group of messages from a file, you should use the 'logical splitting'
| policy option. If the message object referenced by the send call has a format of
| AMFMT_STRING, then the file is split into lines and each line is sent as a separate
| message. Any other format indicates that the file does not contain text. If the
| record length of a non-text file is known (as in the case of OS/390 datasets) then
| each record is sent as a separate message. If the record length of a non-text file is
| not known then the whole file is considered to be a single record, and is sent in
| one message. No extra header information is added to the file data. The
| messages can then be processed in the same fashion as any other message in
| your queueing network.

| Note that file transfer calls are not supported under CICS. All of the calls
| (amSendFile, amReceiveFile, amSndSendFile, amRcvReceiveFile, and
| amDstSendFile) will return an error with reason code
| AMRC_FILE_TRANSFER_INVALID (144) if used in a CICS application running on
| OS/390.

 Publish/subscribe messaging
With publish/subscribe messaging, publisher applications publish messages to
subscriber applications using a broker. The messages published contain application
data and one or more topic strings that describe the data. Subscribing applications
register subscriptions informing the broker which topics they are interested in.
When the broker receives a published message, it forwards the message to all
subscribing applications for which a topic in the message matches a topic in the
subscription.

| Subscribing applications can exploit content-based publish/subscribe by passing a
| filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator Version
| 2” on page 461).

| For more information, refer to the MQSeries Integrator Version 2 Programming
| Guide or the MQSeries Publish/Subscribe User’s Guide.

 Publish
Use the amPublish high-level function (page 45) to publish a message. You need
to specify the name of the publisher for the publish/subscribe broker. The topic
relating to this publication and the publication data must also be specified:

Publishing a message

 success = amPublish(hSession, myPublisher, NULL, myReceiver,
strlen(topic), pTopic, dataLen, pData, myPubMsg,

 &compCode, &reason);

20 MQSeries Application Messaging Interface

 Writing applications in C

The name myReceiver identifies the receiver service to which the broker will send a
response message. You can also specify a policy name to change the behavior of
the function (as with the amSend functions).

You can specify the publication message name myPubMsg and set or get attributes
of the message object (using the object interface functions). This might include
adding another topic (using amMsgAddTopic) before invoking amPublish, if there
are multiple topics associated with this publication.

Instead of sending the publication data using the data buffer, it can be added to the
message object. Unlike the amSend functions, this gives no difference in
performance with large messages. This is because, whichever method is used, the
MQRFH header has to be added to the publication data before sending it (similarly
the header has to be removed when the publication is received).

 Subscribe
The amSubscribe high-level function (page 58) is used to subscribe to a
publish/subscribe broker specified by the name of a subscriber service. The
receiver to which publications will be sent is included within the definition of the
subscriber. The name of a receiver service to which the broker can send a
response message (myReceiver) is also specified.

Subscribing to a broker

 success = amSubscribe(hSession, mySubscriber, NULL, myReceiver,
strlen(topic), pTopic, 5L, NULL, mySubMsg,

 &compCode, &reason);

A subscription for a single topic can be passed by the pTopic parameter. You can
subscribe to multiple topics by using the object interface amMsgAddTopic function
to add topics to the subscription message object, before invoking amSubscribe.

If the policy specifies that the CorrelId is to be used as part of the identity for the
subscribing application, it can be added to the subscription message object with the
object interface amMsgSetCorrelId function, before invoking amSubscribe.

To remove a subscription, use the amUnsubscribe high-level function (page 61).
To remove all subscriptions, you can specify a policy that has the ‘Deregister All
Topics’ subscriber attribute.

To receive a publication from a broker, use the amReceivePublication function
(page 50). For example:

Receiving a publication

 success = amReceivePublication(hSession, mySubscriber, NULL, NULL,
TOPICBUFLEN, BUFLEN, &topicCount, &topicLen, pFirstTopic,
&dataLen, pData, myRcvMsg, &compCode, &reason);

You need to specify the name of the subscriber service used for the original
subscription. You can also specify a policy name and a selection message name,
as described in “Receiving messages” on page 16, but they are shown as NULL in
this example.

 Chapter 2. Using the Application Messaging Interface in C 21

 Writing applications in C

If there are multiple topics associated with the publication, only the first one is
returned by this function. So, if topicCount indicates that there are more topics, you
have to access them from the myRcvMsg message object, using the object-level
amSesGetMessageHandle and amMsgGetTopic functions.

 Sample programs
For more details, refer to the amtshpub.c, amtshsub.c, amtsopub.c, and amtsosub.c
sample programs (see “Sample programs for Unix and Windows” on page 464).

Using name/value elements
Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
used. The amPublish, amSubscribe, amUnsubscribe, and
amReceivePublication high-level functions provide these name/value pairs
implicitly.

For less commonly used commands and options, the name/value pairs can be
added to a message using an AMELEM structure, which is defined as follows:

| typedef struct tagAMELEM {
| AMCHAR8 strucId; /: Structure identifier :/
| AMLONG version; /: Structure version number :/
| AMLONG groupBuffLen; /: Reserved, must be zero :/
| AMLONG groupLen; /: Reserved, must be zero :/
| AMSTR pGroup; /: Reserved, must be NULL :/
| AMLONG nameBuffLen; /: Name buffer length :/
| AMLONG nameLen; /: Name length in bytes :/
| AMSTR pName; /: Name :/
| AMLONG valueBuffLen; /: Value buffer length :/
| AMLONG valueLen; /: Value length in bytes :/
| AMSTR pValue; /: Value :/
| AMLONG typeBuffLen; /: Reserved, must be zero :/
| AMLONG typeLen; /: Reserved, must be zero :/
| AMSTR pType; /: Reserved, must be NULL :/
| } AMELEM;

| See “Initial values for structures” on page 27 for advice on initialization of this
| structure.

| Parameters
| strucId The AMELEM structure identifier (input). Its value must be
| AMELEM_STRUC_ID. The constant
| AMELEM_STRUC_ID_ARRAY is also defined; this has the same
| value as AMELEM_STRUC_ID but is an array of characters
| instead of a string.

| version The version number of the AMELEM structure (input). Its value
| must be AMELEM_VERSION_1.

| groupBuffLen Reserved, must be zero.

| groupLen Reserved, must be zero.

| pGroup Reserved, must be NULL.

| nameBuffLen The length of the name buffer (input). If the nameBuffLen
| parameter value is set to 0, the AMI returns the nameLen value but
| not the pName value. This is not an error.

22 MQSeries Application Messaging Interface

 Writing applications in C

| nameLen The length of the name in bytes (input or output). A value of
| AMLEN_NULL_TERM can be used to denote a null-terminated
| string of unspecified length.

| pName The name buffer (input or output).

| valueBuffLen The length of the value buffer (input).If valueBuffLen is set to zero,
| the AMI returns the valueLen value but not the pValue value. This
| is not an error.

| valueLen The value length in bytes (input or output). A value of
| AMLEN_NULL_TERM can be used to denote a null-terminated
| string of unspecified length.

| pValue The value buffer (input or output).

| typeBuffLen Reserved, must be zero.

| typeLen Reserved, must be zero.

| pType Reserved, must be NULL.

| Example
| As an example, to send a message containing a ‘Request Update’ command,
| initialize the AMELEM structure and then set the following values:

| pName AMPS_COMMAND

| pValue AMPS_REQUEST_UPDATE

Having set the values, create a message object (mySndMsg) and add the element to
it:

Using name/value elements

 hMsg = amSessCreateMessage(hSession, mySndMsg, &compCode, &reason);

 success = amMsgAddElement(hMsg, pElem, 5L, &compCode, &reason);

You must then send the message, using amSendMsg, to the sender service
specified for the publish/subscribe broker.

If you need to use streams with MQSeries Publish/Subscribe, you must add the
appropriate stream name/value element explicitly to the message object. Helper
macros (such as AmMsgAddStreamName) are provided to simplify this and other
tasks.

The message element functions can, in fact, be used to add any element to a
message before issuing an publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

 Chapter 2. Using the Application Messaging Interface in C 23

 Writing applications in C

 Error handling
Each AMI C function returns a completion code reflecting the success or failure
(OK, warning, or error) of the request. Information indicating the reason for a
warning or error is returned in a reason code. Both completion and reason codes
are optional.

In addition, each function returns an AMBOOL value or an AMI object handle. For
those functions that return an AMBOOL value, this is set to AMB_TRUE if the
function completes successfully or with a warning, and AMB_FALSE if an error
occurs.

The ‘get last error’ functions (such as amSesGetLastError) always reflect the last
most severe error detected by an object. These functions can be used to return the
completion and reason codes associated with this error. Once the error has been
handled, call the ‘clear error codes’ functions (for instance,
amMsgClearErrorCodes) to clear the error information.

| All C high-level functions record last error information in the session object. This
| information can be accessed using the session’s ‘get last error’ call,
| amSesGetLastError (you need the session handle returned by amInitialize as the
| first parameter of this call).

 Transaction support
Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.

� MQSeries messages are the only resource

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using an amCommit or amBackout high-level
interface call (or the amSesCommit or amSesRollback object-level calls).

� Using MQSeries as an XA transaction coordinator

The transaction must be started explicitly using the amSesBegin call before
the first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an amCommit or amBackout
high-level interface call (or the amSesCommit or amSesRollback object-level
calls).

| MQSeries cannot be used as an XA transaction coordinator on OS/390.

� Using an external transaction coordinator

The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attribute must still be specified in the policy used on the call.

24 MQSeries Application Messaging Interface

 Writing applications in C

| Sending group messages
| The AMI allows a sequence of related messages to be included in, and sent as, a
| message group. Group context information is sent with each message to allow the
| message sequence to be preserved and made available to a receiving application.
| In order to include messages in a group, the group status information of the first
| and subsequent messages in the group must be set as follows:

| AMGRP_FIRST_MSG_IN_GROUP for the first message
| AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
| AMGRP_LAST_MSG_IN_GROUP for the last message

| The message status is set using amMsgSetGroupStatus.

| Although native group message support is not available using MQSeries Version
| 2.2 on OS/390, group messages can be sent and received using AMI by selecting
| 'Simulated Group Support' in the repository service point definitions of the sender
| and receiver services used by the applications. Group messages are sent and
| received by an application in exactly the same way regardless of whether
| 'Simulated Group Support' is enabled for the repository service definitions.

| Certain restrictions apply when 'Simulated Group Support' is enabled. These are as
| follows:.

| � Applications may not set or use the correlation id.

| � A message that is not part of a group will be sent as a group of one message
| (i.e., its group flags will be set to specify it is the only message in a group).

| � When receiving a message, the 'Open shared' receive policy option must be
| enabled (the default).

| � Any non-simulated group messages that are on the same underlying queue will
| be ignored by the receive request.

| Note that if MQSeries Version 2.2 on OS/390 is involved in any way in sending or
| receiving group messages or files, then 'Simulated Group Support' must be enabled
| on both the sending and receiving systems. This applies even if one of the
| systems is not an OS/390 platform.

 Other considerations
You should consider the following when writing your applications:

 � Multithreading
� Using MQSeries with the AMI

 � Field limits
| � Using the AMI OAMAS subset

 Multithreading
If you are using multithreading with the AMI, a session normally remains locked for
the duration of a single AMI call. If you use receive with wait, the session remains
locked for the duration of the wait, which might be unlimited (that is, until the wait
time is exceeded or a message arrives on the queue). If you want another thread to
run while a thread is waiting for a message, it must use a separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,

 Chapter 2. Using the Application Messaging Interface in C 25

 Writing applications in C

open, close, send, receive, publish, subscribe, unsubscribe, and receive publication
will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using amInitialize or amSesOpen). An
attempt to issue these on a different thread will cause an error to be returned by
MQSeries and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

| Multithreaded applications are not supported on OS/390.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI function calls within the same
process.

 Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries, the
underlying message transport. See the rules for naming MQSeries objects in the
MQSeries Application Programming Guide.

| Using the AMI OAMAS subset
| A subset of the AMI conforms to the Open Applications Group Middleware
| Application Programming Interface Specification (OAMAS). See
| http://www.openapplications.org for further details.

| To ensure that your C applications conform to the OAMAS subset, your C functions
| should include the oamasami.h header in place of amtc.h.

26 MQSeries Application Messaging Interface

 Building C applications

Building C applications
This section contains information that will help you write, prepare, and run your C
application programs on the various operating systems supported by the AMI.

AMI include file
The AMI provides an include file, amtc.h, to assist you with the writing of your
applications. It is recommended that you become familiar with the contents of this
file.

The include file is installed under:

| /amt/inc (UNIX)

| \amt\include (Windows)

| hlq.SCSQC375 (OS/395)

| See “Directory structure” on page 435 (AIX), page 440 (HP-UX), page 444
| (Solaris), page 447 (Windows), or page 452 (OS/390).

Your AMI C program must contain the statement:

 #include <amtc.h>

The AMI include file must be accessible to your program at compilation time.

 Data types
All data types are defined by means of the typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter "P"
to denote a pointer; for example:

typedef AMHSES AMPOINTER PAMHSES; /: pointer to AMHSES :/

Initial values for structures
The include file amtc.h defines a macro variable that provides initial values for the
AMELEM structure. This is the structure used to pass name/value element
information across the AMI. Use it as follows:

AMELEM MyElement = {AMELEM_DEFAULT};

You are recommended to initialize all AMELEM structures in this way so that the
structId and version fields have valid values. If the values passed for these fields
are not valid, AMI will reject the structure.

It should be noted that some of the fields in this structure are string pointers that, in
the default case, are set to NULL. If you wish to use these fields you must allocate
the correct amount of storage prior to setting the pointer.

 Chapter 2. Using the Application Messaging Interface in C 27

 C applications on AIX

 Next step

Now go to one of the following to continue building a C application:

� “C applications on AIX” on page 28

� “C applications on HP-UX” on page 29

� “C applications on Solaris” on page 31

� “C applications on Windows” on page 32

� “C applications on OS/390” on page 32

C applications on AIX
This section explains what you have to do to prepare and run your C programs on
the AIX operating system. See “Language compilers” on page 432 for compilers
supported by the AMI.

Preparing C programs on AIX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the xlc command you need to
specify a number of options:

� Where the AMI include files are.

This can be done using the -I flag. In the case of AIX, they are usually located
at /usr/mqm/amt/inc.

� Where the AMI library is.

This can be done using the -L flag. In the case of AIX, it is usually located at
/usr/mqm/lib.

� Link with the AMI library.

This is done with the -l flag, more specifically -lamt.

For example, compiling the C program mine.c into an executable called mine:

xlc -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamt mine.c -o mine

If, however, you are building a threaded program, you must use the correct
compiler and the threaded library, libamt_r.a. For example:

xlc_r -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamt_r mine.c -o mine

Running C programs on AIX
| When running a C executable you must have access to the C libraries libamt.a,
| libamtXML315.a, and libamtICUUC145.a in your runtime environment. If the

amtInstall utility has been run, this environment will be set up for you (see
“Installation on AIX” on page 433).

If you have not run the utility, the easiest way of achieving this is to construct a link
from the AIX default library location to the actual location of the C libraries. To do
this:

28 MQSeries Application Messaging Interface

 C applications on HP-UX

| ln -s /usr/mqm/lib/libamt.a /usr/lib/libamt.a
| ln -s /usr/mqm/lib/libamtXML315.a /usr/lib/libamtXML315.a
| ln -s /usr/mqm/lib/libamtICUUC145.a /usr/lib/libamtICUUC145.a

You must have sufficient access to perform this operation.

If you are using the threaded libraries, you can perform a similar operation:

| ln -s /usr/mqm/lib/libamt_r.a /usr/lib/libamt_r.a
| ln -s /usr/mqm/lib/libamtXML315_r.a /usr/lib/libamtXML315_r.a
| ln -s /usr/mqm/lib/libamtICUUC145_r.a /usr/lib/libamtICUUC145_r.a

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically.

For the non-threaded MQSeries Server library, perform:

ln -s /usr/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:

ln -s /usr/mqm/lib/amtcmqic /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:

ln -s /usr/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:

ln -s /usr/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

C applications on HP-UX
This section explains what you have to do to prepare and run your C programs on
the HP-UX operating system. See “Language compilers” on page 432 for
compilers supported by the AMI.

Preparing C programs on HP-UX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the aCC command you need to
specify a number of options:

� Where the AMI include files are.

This can be done using the -I flag. In the case of HP-UX, they are usually
located at /opt/mqm/amt/inc.

� Where the AMI libraries are.

This can be done using the -Wl,+b,:,-L flags. In the case of HP-UX, they are
usually located at /opt/mqm/lib.

� Link with the AMI library.

This is done with the -l flag, more specifically -lamt.

For example, compiling the AMI C program mine.c into an executable called mine:

aCC +DAportable -Wl,+b,:,-L/opt/mqm/lib -o mine mine.c
 -I/opt/mqm/amt/inc -lamt

 Chapter 2. Using the Application Messaging Interface in C 29

 C applications on HP-UX

Note that you could equally link to the threaded library using -lamt_r. On HP-UX
there is no difference since the unthreaded versions of the AMI binaries are simply
links to the threaded versions.

Running C programs on HP-UX
| When running a C executable you must have access to the C libraries libamt.sl,
| libamtXML315.sl, and libamtICUUC145.sl in your runtime environment. If the

amtInstall utility has been run, this environment will be set up for you (see
“Installation on HP-UX” on page 438).

If you have not run the utility, the easiest way of achieving this is to construct a link
from the HP-UX default library location to the actual location of the C libraries. To
do this:

| ln -s /opt/mqm/lib/libamt_r.sl /usr/lib/libamt.sl
| ln -s /opt/mqm/lib/libamtXML315_r.sl /usr/lib/libamtXML315.sl
| ln -s /opt/mqm/lib/libamtICUUC145_r.sl /usr/lib/libamtICUUC145.sl

You must have sufficient access to perform this operation.

If you are using the threaded libraries, you can perform a similar operation:

| ln -s /opt/mqm/lib/libamt_r.sl /usr/lib/libamt_r.sl
| ln -s /opt/mqm/lib/libamtXML315_r.sl /usr/lib/libamtXML315_r.sl
| ln -s /opt/mqm/lib/libamtICUUC145_r.sl /usr/lib/libamtICUUC145_r.sl

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically.

For the non-threaded MQSeries Server library, perform:

ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:

ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:

ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:

ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

As before, note that the unthreaded versions are simply links to the threaded
versions.

30 MQSeries Application Messaging Interface

 C applications on Solaris

C applications on Solaris
This section explains what you have to do to prepare and run your C programs in
the Sun Solaris operating environment. See “Language compilers” on page 432 for
compilers supported by the AMI.

Preparing C programs on Solaris
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the CC command you need to
specify a number of options:

� Where the AMI include files are.

This can be done using the -I flag. In the case of Solaris, they are usually
located at /opt/mqm/amt/inc.

� Where the AMI library is.

This can be done using the -L flag. In the case of Solaris, it is usually located
at /opt/mqm/lib.

� Link with the AMI library.

This is done with the -l flag, more specifically -lamt.

For example, compiling the C program mine.c into an executable called mine:

CC -mt -I/opt/mqm/amt/inc -L/opt/mqm/lib -lamt mine.c -o mine

Running C programs on Solaris
| When running a C executable you must have access to the C libraries libamt.so,
| libamtXML315.so, and libamtICUUC145.so in your runtime environment. If the

amtInstall utility has been run, this environment will be set up for you (see
“Installation on Sun Solaris” on page 442).

If you have not run the utility, the easiest way of achieving this is to construct a link
from the Solaris default library location to the actual location of the C libraries. To
do this:

| ln -s /opt/mqm/lib/libamt.so /usr/lib/libamt.so
| ln -s /opt/mqm/lib/libamtXML315.so /usr/lib/libamtXML315.so
| ln -s /opt/mqm/lib/libamtICUUC145.so /usr/lib/libamtICUUC145.so

You must have sufficient access to perform this operation.

You must also make the AMI MQSeries runtime binding stubs available in your
runtime environment. These stubs allow AMI to load MQSeries libraries
dynamically. For the non-threaded MQSeries Server library, perform:

ln -s /opt/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the MQSeries Client library, perform:

ln -s /opt/mqm/lib/amtcmqic /usr/lib/amtcmqic

 Chapter 2. Using the Application Messaging Interface in C 31

 C applications on OS/390

C applications on Windows
This section explains what you have to do to prepare and run your C programs on
the Windows 98 and Windows NT operating systems. See “Language compilers”
on page 432 for compilers supported by the AMI.

Preparing C programs on Windows
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the cl command you need to
specify a number of options:

� Where the AMI include files are.

This can be done using the -I flag. In the case of Windows, they are usually
located at \amt\include relative to where you installed MQSeries. Alternatively,
the include files could exist in one of the directories pointed to by the INCLUDE
environment variable.

� Where the AMI library is.

This can be done by including the library file amt.LIB as a command line
argument. The amt.LIB file should exist in one of the directories pointed to by
the LIB environment variable.

For example, compiling the C program mine.c into an executable called mine.exe:

cl -IC:\MQSeries\amt\include /Fomine mine.c amt.LIB

Running C programs on Windows
When running a C executable you must have access to the C DLLs amt.dll and
amtXML.dll in your runtime environment. Make sure they exist in one of the
directories pointed to by the PATH environment variable. For example:

 SET PATH=%PATH%;C:\MQSeries\bin;

If you already have MQSeries installed, and you have installed AMI under the
MQSeries directory structure, it is likely that the PATH has already been set up for
you.

You must also make sure that your AMI runtime environment can access the
MQSeries runtime environment. (This will be the case if you installed MQSeries
using the documented method.)

| C applications on OS/390
| This section explains what you have to do to prepare and run your C programs on
| the OS/390 operating system. See “Language compilers” on page 432 for
| compilers supported by the AMI.

| Preparing C programs on OS/390
| C application programs using the AMI must be compiled, pre-linked, and link edited.
| Programs containing CICS commands must be processed by the CICS translator
| prior to compilation.

32 MQSeries Application Messaging Interface

 C applications on OS/390

| Compile: Make sure that the AMI include file (installed in library hlq.SCSQC375) is
| added to the C compiler’s SYSLIB concatenation.

| Pre-link: The pre-link job step is essential for importing the AMI DLL function
| references from an appropriate sidedeck. A DD statement for the sidedeck
| member, hlq.SCSQDEFS(member), must be specified in the pre-link step SYSIN
| concatenation after the application object code member. The appropriate sidedeck
| member for each application type is as follows:

| Batch AMTBD10

| RRS-batch AMTRD10

| CICS AMTCD10

| IMS AMTID10

| Link Edit: There are no special requirements for link editing.:

| Running C programs on OS/390
| The AMI needs access to the MQSeries datasets SCSQLOAD and SCSQAUTH, as
| well as one of the language-specific datasets such as SCSQANLE. See the
| MQSeries Application Programming Guide for details of the supported languages.
| The following list shows which JCL concatenation to add the datasets to for each
| AMI-supported environment:

| Batch STEPLIB or JOBLIB

| CICS DFHRPL

| IMS The Message Processing Regions’ STEPLIB

 Chapter 2. Using the Application Messaging Interface in C 33

 C applications on OS/390

34 MQSeries Application Messaging Interface

 The C high-level interface

Chapter 3. The C high-level interface

The C high-level interface contains functions that cover the requirements of the
majority of applications. If extra functionality is needed, C object interface functions
can be used in the same application as the C high-level functions.

This chapter contains:

� “Overview of the C high-level interface” on page 36

� “Reference information for the C high-level interface” on page 38

 Copyright IBM Corp. 1999, 2000 35

 C high-level interface overview

Overview of the C high-level interface
The high-level functions are listed below. Follow the page references to see the
detailed descriptions of each function.

Initialize and terminate
Functions to create and open an AMI session, and to close and delete an AMI
session.

amInitialize page 44

amTerminate page 60

 Sending messages
Functions to send a datagram (send and forget) message, and to send request and
response messages.

amSendMsg page 55

amSendRequest page 56

amSendResponse page 57

 Receiving messages
Functions to receive a message from amSendMsg or amSendResponse, and to
receive a request message from amSendRequest.

amReceiveMsg page 48

amReceiveRequest page 52

| amBrowseMsg page 41

| File transfer
| Functions to send message data from a file, and to receive message data sent by
| amSendFile into a file.

| amSendFile page 54

| amReceiveFile page 46

 Publish/subscribe
Functions to publish a message to a publish/subscribe broker, and to subscribe,
unsubscribe, and receive publications.

amPublish page 45

amSubscribe page 58

amUnsubscribe page 61

amReceivePublication page 50

36 MQSeries Application Messaging Interface

 C high-level interface overview

 Transaction support
Functions to begin, commit, and backout a unit of work.

| amBegin page 40

amCommit page 43

amBackout page 39

 Chapter 3. The C high-level interface 37

 C high-level interface

Reference information for the C high-level interface
In the following sections the high-level interface functions are listed in alphabetical
order. Note that all functions return a completion code (pCompCode) and a reason
code (pReason). The completion code can take one of the following values:

AMCC_OK Function completed successfully
AMCC_WARNING Function completed with a warning
AMCC_FAILED An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the
reason for the error or warning (see Appendix A, “Reason codes” on page 501).

Most functions require the session handle to be specified. If this handle is not
valid, the results are unpredictable.

38 MQSeries Application Messaging Interface

 C high-level interface

 amBackout
Function to backout a unit of work.

 AMBOOL amBackout(
 AMHSES hSession,
 AMSTR policyName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 3. The C high-level interface 39

 C high-level interface

| amBegin
| Function to begin a unit of work.

| AMBOOL amBegin(
| AMHSES hSession,
| AMSTR policyName,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hSession The session handle returned by amInitialize (input).

| policyName The name of a policy (input). If specified as NULL, the system
| default policy name (constant: AMSD_POL) is used.

| pCompCode Completion code (output).

| pReason Reason code (output).

40 MQSeries Application Messaging Interface

 C high-level interface

| amBrowseMsg
| Function to browse a message. See the MQSeries Application Programming Guide
| for a full description of the browse options.

| AMBOOL amBrowseMsg(
| AMHSES hSession,
| AMSTR receiverName,
| AMSTR policyName,
| AMLONG options,
| AMLONG buffLen,
| PAMLONG pDataLen,
| PAMBYTE pData,
| AMSTR rcvMsgName,
| AMSTR senderName,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hSession The session handle returned by amInitialize (input).

| receiverName The name of a receiver service (input). If specified as NULL, the
| system default receiver name (constant: AMSD_RCV) is used.

| policyName The name of a policy (input). If specified as NULL, the system
| default policy name (constant: AMSD_POL) is used.

| options Options controlling the browse operation (input). Possible values
| are:

| AMBRW_NEXT
| AMBRW_FIRST
| AMBRW_CURRENT
| AMBRW_RECEIVE_CURRENT
| AMBRW_DEFAULT (AMBRW_NEXT)
| AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
| AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
| AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
| AMBRW_UNLOCK

| AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
| message under the browse cursor.

| Note that a locked message is unlocked by another browse or
| receive, even though it is not for the same message. The locking
| feature is not available on OS/390.

| buffLen The length in bytes of a buffer in which the data is returned (input).

| pDataLen The length of the message data, in bytes (output). Specify as
| NULL if this is not required.

| pData The received message data (output).

| rcvMsgName The name of the message object for the received message
| (output). Properties, and message data if not returned in the
| pData parameter, can be extracted from the message object using
| the object interface (see “Message interface functions” on
| page 90). The message object is implicitly reset before the
| browse takes place. If rcvMsgName is specified as NULL, the

 Chapter 3. The C high-level interface 41

 C high-level interface

| system default receive message name (constant:
| AMSD_RCV_MSG) is used.

| senderName The name of a special type of sender service known as a
| response sender, to which the response message will be sent
| (output). This sender name must not be defined in the repository. It
| is only applicable if the message type is AMMT_REQUEST.

| pCompCode Completion code (output).

| pReason Reason code (output).

| Usage notes
| To return the data in the message object (rcvMsgName), set buffLen to zero and
| pDataLen to NULL.

| To return the message data in the pData parameter, set buffLen to the required
| length and pDataLen to NULL.

| To return only the data length (so that the required buffer size can be determined
| before issuing a second function call to return the data), set buffLen to zero.
| pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
| attributes must not be selected (the default), otherwise the message data will be
| discarded with an AMRC_MSG_TRUNCATED warning.

| To return the message data in the pData parameter, together with the data length,
| set buffLen to the required length. pDataLen must not be set to NULL. If the
| buffer is too small, and Accept Truncated Message is not selected in the policy
| receive attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
| generated. If the buffer is too small, and Accept Truncated Message is selected in
| the policy receive attributes, the truncated message data is returned with an
| AMRC_MSG_TRUNCATED warning.

42 MQSeries Application Messaging Interface

 C high-level interface

 amCommit
Function to commit a unit of work.

 AMBOOL amCommit(
 AMHSES hSession,
 AMSTR policyName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 3. The C high-level interface 43

 C high-level interface

 amInitialize
Function to create and open an AMI session. It returns a session handle of type
AMHSES, which is valid until the session is terminated. One amInitialize is
allowed per thread. A session handle can be used on different threads, subject to
any limitations of the underlying transport layer (MQSeries).

 AMHSES amInitialize(
 AMSTR name,
 AMSTR policyName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
name An optional name that can be used to identify the application

(input).

policyName The name of a policy defined in the repository (input). If specified
as NULL, the system default policy name (constant: AMSD_POL)
is used.

pCompCode Completion code (output).

pReason Reason code (output).

44 MQSeries Application Messaging Interface

 C high-level interface

 amPublish
Function to publish a message to a publish/subscribe broker.

 AMBOOL amPublish(
 AMHSES hSession,
 AMSTR publisherName,
 AMSTR policyName,
 AMSTR responseName,
 AMLONG topicLen,
 AMSTR pTopic,
 AMLONG dataLen,
 PAMBYTE pData,
 AMSTR pubMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

publisherName The name of a publisher service (input). If specified as NULL, the
system default publisher name (constant: AMSD_PUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

| responseName The name of the receiver service to which the response to this
publish request should be sent (input). Specify as NULL if no
response is required. This parameter is mandatory if the policy
specifies implicit publisher registration (the default).

topicLen The length of the topic for this publication, in bytes (input). A
value of AMLEN_NULL_TERM specifies that the string is NULL
terminated.

pTopic The topic for this publication (input).

dataLen The length of the publication data in bytes (input). A value of zero
indicates that any publication data has been added to the message
object (pubMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The publication data, if dataLen is non-zero (input).

pubMsgName The name of a message object that contains the header for the
publication message (input). If dataLen is zero it also holds any
publication data. If specified as NULL, the system default
message name (constant: AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 3. The C high-level interface 45

 C high-level interface

| amReceiveFile
| Function to receive message data sent by amSendFile into a file.

| AMBOOL amReceiveFile(
| AMHSES hSession,
| AMSTR receiverName,
| AMSTR policyName,
| AMLONG options,
| AMSTR selMsgName,
| AMLONG directoryLen,
| AMSTR directory,
| AMLONG fileNameLen,
| AMSTR fileName,
| AMSTR rcvMsgName,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hSession The session handle returned by amInitialize (input).

| receiverName The name of a receiver service (input). If specified as NULL, the
| system default receiver name (constant: AMSD_RCV) is used.

| policyName The name of a policy (input). If specified as NULL, the system
| default policy name (constant: AMSD_POL) is used.

| options A reserved field that must be specified as zero (input).

| selMsgName Optional selection message object used to specify information
| (such as a CorrelId) needed to select the required message
| (input).

| directoryLen A reserved field that must be specified as zero (input).

| directory A reserved field that must be specified as NULL (input).

| fileNameLen The length of the file name in bytes (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| fileName The name of the file into which the transferred data is to be
| received (input). This can include a directory prefix to define a
| fully-qualified or relative file name. If NULL or a null string is
| specified, then the AMI will use the name of the originating file
| (including any directory prefix), exactly as it was supplied on the
| send file call. Note that the original file name may not be
| appropriate for use by the receiver, either because a path name
| included in the file name is not applicable to the receiving system,
| or because the sending and receiving systems use different file
| name conventions.

| rcvMsgName The name of the message object to be used to receive the file
| (output). This parameter is updated with the message properties
| (for example, the Message ID). If the message is not from a file,
| rcvMsgName receives the message data. If specified as NULL, the
| system default receive message name (constant
| AMSD_RCV_MSG) is used. is used.

| Property information and message data can be extracted from the
| message object using the object interface (see “Message interface

46 MQSeries Application Messaging Interface

 C high-level interface

| functions” on page 90). The message object is reset implicitly
| before the receive takes place.

| pCompCode Completion code (output).

| pReason Reason code (output).

| Usage notes
| If fileName is blank (indicating that the originating file name specified in the
| message is to be used), then fileNameLen should be set to zero.

 Chapter 3. The C high-level interface 47

 C high-level interface

 amReceiveMsg
Function to receive a message.

 AMBOOL amReceiveMsg(
 AMHSES hSession,
 AMSTR receiverName,
 AMSTR policyName,
 AMSTR selMsgName,
 AMLONG buffLen,
 PAMLONG pDataLen,
 PAMBYTE pData,
 AMSTR rcvMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

receiverName The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

selMsgName Optional selection message object used to specify information
(such as a CorrelId) needed to select the required message
(input).

| buffLen The length in bytes of a buffer in which the data is returned (input).

| pDataLen The length of the message data, in bytes (output). Specify as
| NULL if this is not required.

| pData The received message data (output).

| rcvMsgName The name of the message object for the received message
| (output). If specified as NULL, the system default receive
| message name (constant: AMSD_RCV_MSG) is used. Properties,
| and message data if not returned in the pData parameter, can be
| extracted from the message object using the object interface (see
| “Message interface functions” on page 90). The message object
| is implicitly reset before the receive takes place.

| pCompCode Completion code (output).

| pReason Reason code (output).

| Usage notes
| To return the data in the message object (rcvMsgName), set buffLen to zero and
| pDataLen to NULL.

| To return the message data in the pData parameter, set buffLen to the required
| length and pDataLen to NULL.

| To return only the data length (so that the required buffer size can be determined
| before issuing a second function call to return the data), set buffLen to zero.
| pDataLen must not be set to NULL. Accept Truncated Message in the policy receive

48 MQSeries Application Messaging Interface

 C high-level interface

| attributes must not be selected (the default), otherwise the message will be
| discarded with an AMRC_MSG_TRUNCATED warning.

| To return the message data in the pData parameter, together with the data length,
| set buffLen to the required length. pDataLen must not be set to NULL. If the
| buffer is too small, and Accept Truncated Message is not selected in the policy
| receive attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
| generated. If the buffer is too small, and Accept Truncated Message is selected in
| the policy receive attributes, the truncated message is returned with an
| AMRC_MSG_TRUNCATED warning.

| To remove the message from the queue (because it is not wanted by the
| application), Accept Truncated Message must be selected in the policy receive
| attributes. You can then remove the message by specifying zero in the buffLen
| parameter, a null in the pDataLen parameter, and a non-null in the pData
| parameter.

 Chapter 3. The C high-level interface 49

 C high-level interface

 amReceivePublication
Function to receive a publication from a publish/subscribe broker.

 AMBOOL amReceivePublication(
 AMHSES hSession,
 AMSTR subscriberName,
 AMSTR policyName,
 AMSTR selMsgName,
 AMLONG topicBuffLen,
 AMLONG buffLen,
 PAMLONG pTopicCount,
 PAMLONG pTopicLen,
 AMSTR pFirstTopic,
 PAMLONG pDataLen,
 PAMBYTE pData,
 AMSTR rcvMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

subscriberName The name of a subscriber service (input). If specified as NULL,
the system default subscriber name (constant: AMSD_SUB) is
used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

selMsgName Optional selection message object used to specify information
(such as a CorrelId) needed to select the required message
(input).

topicBuffLen The length in bytes of a buffer in which the topic is returned
(input).

buffLen The length in bytes of a buffer in which the publication data is
returned (input).

pTopicCount The number of topics in the message (output). Specify as NULL if
this is not required.

pTopicLen The length in bytes of the first topic (output). Specify as NULL if
this is not required.

pFirstTopic The first topic (output). Specify as NULL if this is not required.
Topics can be extracted from the message object (rcvMsgName)
using the object interface (see “Message interface functions” on
page 90).

pDataLen The length in bytes of the publication data (output). Specify as
NULL if this is not required.

pData The publication data (output). Specify as NULL if this is not
required. Data can be extracted from the message object
(rcvMsgName) using the object interface (see “Message interface
functions” on page 90).

50 MQSeries Application Messaging Interface

 C high-level interface

rcvMsgName The name of a message object for the received message (input).
If specified as NULL, the default message name (constant:
AMSD_RCV_MSG) is used. The publication message properties
and data update this message object, in addition to being returned
in the parameters above. The message object is implicitly reset to
the default before the receive takes place.

pCompCode Completion code (output).

pReason Reason code (output).

| Usage Notes
| We recommend that, when using amReceivePublication, you always have data
| conversion enabled in the specified policy. If data conversion is not enabled,
| amReceivePublication will fail if the local CCSID and/or encoding values differ
| from those on the platform from which the publication was sent.

| If data conversion is enabled by the specified policy, and a selection message is
| specified, then the conversion is performed using the target encoding and coded
| character set identifier (CCSID) values designated in the selection message. (The
| selection message is specified in the selMsgName parameter).

| If a selection message is not specified, then the platform encoding and Queue
| Manager CCSID values are used as defaults for the conversion.

| If a normal message that is not a publication message is received by the specified
| subscriber, then amReceivePublication behaves the same as amReceiveMsg.

 Chapter 3. The C high-level interface 51

 C high-level interface

 amReceiveRequest
Function to receive a request message.

 AMBOOL amReceiveRequest(
 AMHSES hSession,
 AMSTR receiverName,
 AMSTR policyName,
 AMLONG buffLen,
 PAMLONG pDataLen,
 PAMBYTE pData,
 AMSTR rcvMsgName,
 AMSTR senderName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

receiverName The name of a receiver service (input). If specified as NULL, the
system default receiver name (constant: AMSD_RCV) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

buffLen The length in bytes of a buffer in which the data is returned (input).

pDataLen The length of the message data, in bytes (output). Specify as
NULL if this is not required.

pData The received message data (output).

rcvMsgName The name of the message object for the received message
(output). If specified as NULL, the system default receiver service
(constant: AMSD_RCV_MSG) is used. Header information, and
message data if not returned in the Data parameter, can be
extracted from the message object using the object interface (see
“Message interface functions” on page 90). The message object
is implicitly reset before the receive takes place.

senderName The name of a special type of sender service known as a
response sender, to which the response message will be sent
(output). This sender name must not be defined in the repository.
If specified as NULL, the system default response sender service
(constant: AMSD_RSP_SND) is used.

pCompCode Completion code (output).

pReason Reason code (output).

| Usage notes
| The following notes contain details about use of the amReceiveRequest call.

52 MQSeries Application Messaging Interface

 C high-level interface

| Data conversion
| If data conversion is enabled by the specified policy, and a selection message is
| specified, then the conversion is performed using the target encoding and coded
| character set identifier (CCSID) values designated in the selection message.
| (These target values are specified in the selMsgName parameter).

| If a selection message is not specified, then the platform encoding and Queue
| Manager CCSID values are used as defaults for conversion.

| Use of the buffLen parameter
| To return the data in the message object (rcvMsgName), set buffLen to zero and
| pDataLen to NULL.

| To return the message data in the pData parameter, set buffLen to the required
| length and pDataLen to NULL.

| To return only the data length (so that the required buffer size can be determined
| before issuing a second function call to return the data), set buffLen to zero.
| pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
| attributes must be not be selected (the default), otherwise the message will be
| discarded with an AMRC_MSG_TRUNCATED warning.

| To return the message data in the pData parameter, together with the data length,
| set buffLen to the required length. pDataLen must not be set to NULL. If the
| buffer is too small, and Accept Truncated Message is not selected in the policy
| receive attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
| generated. If the buffer is too small, and Accept Truncated Message is selected in
| the policy receive attributes, the truncated message is returned with an
| AMRC_MSG_TRUNCATED warning.

| To remove the message from the queue (because it is not wanted by the
| application), Accept Truncated Message must be selected in the policy receive
| attributes. You can then remove the message by specifying zero in the buffLen
| parameter, a null in the pDataLen parameter, and a non-null in the pData
| parameter.

 Chapter 3. The C high-level interface 53

 C high-level interface

| amSendFile
| Function to send data from a file.

| AMBOOL amSendFile(
| AMHSES hSession,
| AMSTR senderName,
| AMSTR policyName,
| AMLONG options,
| AMLONG directoryLen,
| AMSTR directory,
| AMLONG fileNameLen,
| AMSTR fileName,
| AMSTR sndMsgName,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hSession The session handle returned by amInitialize (input).

| senderName The name of a sender service (input). If specified as NULL, the
| system default sender name (constant: AMSD_SND) is used.

| policyName The name of a policy (input). If specified as NULL, the system
| default policy name (constant: AMSD_POL) is used.

| options A reserved field that must be specified as zero (input).

| directoryLen A reserved field that must be specified as zero (input).

| directory A reserved field that must be specified as NULL (input).

| fileNameLen The length of the file name in bytes (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| fileName The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| the send operation is a physical-mode file transfer, then the file
| name will travel with the message for use with a receive file call
| (see “amReceiveFile” on page 46 for more details). Note that the
| file name sent will exactly match the supplied file name; it will not
| be converted or expanded in any way.

| sndMsgName The name of the message object to be used to send the file
| (input). This parameter can be used, for example, to specify the
| Correlation ID, which can be set from the message object using
| the object interface (see “Message interface functions” on
| page 90).

| pCompCode Completion code (output).

| pReason Reason code (output).

| Usage Notes
| The message object is implicitly reset by the amSendFile call.

| The system default object is used when you set sndMsgName to NULL or an empty
| string.

54 MQSeries Application Messaging Interface

 C high-level interface

 amSendMsg
Function to send a datagram (send and forget) message.

 AMBOOL amSendMsg(
 AMHSES hSession,
 AMSTR senderName,
 AMSTR policyName,
 AMLONG dataLen,
 PAMBYTE pData,
 AMSTR sndMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

senderName The name of a sender service (input). If specified as NULL, the
system default sender name (constant: AMSD_SND) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy name (constant: AMSD_POL) is used.

dataLen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The message data, if dataLen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input).
If dataLen is zero it also holds any message data. If specified as
NULL, the system default message name (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 3. The C high-level interface 55

 C high-level interface

 amSendRequest
Function to send a request message.

 AMBOOL amSendRequest(
 AMHSES hSession,
 AMSTR senderName,
 AMSTR policyName,
 AMSTR responseName,
 AMLONG dataLen,
 PAMBYTE pData,
 AMSTR sndMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

senderName The name of a sender service (input). If specified as NULL, the
system default sender name (constant: AMSD_SND) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

| responseName The name of the receiver service to which the response to this
send request should be sent (input). See amReceiveRequest.
Specify as NULL if no response is required.

dataLen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The message data, if dataLen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input).
If specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

56 MQSeries Application Messaging Interface

 C high-level interface

 amSendResponse
Function to send a response to a request message.

 AMBOOL amSendResponse(
 AMHSES hSession,
 AMSTR senderName,
 AMSTR policyName,
 AMSTR rcvMsgName,
 AMLONG dataLen,
 PAMBYTE pData,
 AMSTR sndMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

senderName The name of the sender service (input). It must be set to the
senderName specified for the amReceiveRequest function.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

rcvMsgName The name of the received message that this message is a
response to (input). It must be set to the rcvMsgName specified for
the amReceiveRequest function.

dataLen The length of the message data in bytes (input). A value of zero
indicates that any message data has been added to the message
object (sndMsgName) using the object interface (see “Message
interface functions” on page 90).

pData The message data, if dataLen is non-zero (input).

sndMsgName The name of a message object for the message being sent (input).
If specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 3. The C high-level interface 57

 C high-level interface

 amSubscribe
Function to register a subscription with a publish/subscribe broker.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix ‘.RECEIVER’.

| Subscribing applications can exploit content based publish/subscribe by passing a
| filter on the amSubscribe call.

 AMBOOL amSubscribe(
 AMHSES hSession,
 AMSTR subscriberName,
 AMSTR policyName,
 AMSTR responseName,
 AMLONG topicLen,
 AMSTR pTopic,
 AMLONG filterLen,
 AMSTR pFilter,
 AMSTR subMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

subscriberName The name of a subscriber service (input). If specified as NULL,
the system default subscriber (constant: AMSD_SUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

| responseName The name of the receiver service to which the response to this
subscribe request should be sent (input). Specify as NULL if no
response is required.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

topicLen The length of the topic for this subscription, in bytes (input).

pTopic The topic for this subscription (input). Publications which match
this topic, including wildcards, will be sent to the subscriber.
Multiple topics can be specified in the message object
(subMsgName) using the object interface (see “Message interface
functions” on page 90).

| filterLen The length in bytes of the filter (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| pFilter The filter to be added (input). The syntax of the filter string is
| described in the MQSeries Integrator Version 2.0 Programming
| Guide.

subMsgName The name of a message object for the subscribe message (input).
If specified as NULL, the system default message (constant:
AMSD_SND_MSG) is used.

58 MQSeries Application Messaging Interface

 C high-level interface

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 3. The C high-level interface 59

 C high-level interface

 amTerminate
Closes the session, closes and deletes any implicitly created objects, and deletes
the session. Any outstanding units of work are committed (if the application
terminates without an amTerminate call being issued, any outstanding units of
work are backed out).

 AMBOOL amTerminate(
 PAMHSES phSession,
 AMSTR policyName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
phSession A pointer to the session handle returned by amInitialize

(input/output).

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

pCompCode Completion code (output).

pReason Reason code (output).

60 MQSeries Application Messaging Interface

 C high-level interface

 amUnsubscribe
Function to remove a subscription from a publish/subscribe broker.

 AMBOOL amUnsubscribe(
 AMHSES hSession,
 AMSTR subscriberName,
 AMSTR policyName,
 AMSTR responseName,
 AMLONG topicLen,
 AMSTR pTopic,
 AMLONG filterLen,
 AMSTR pFilter,
 AMSTR unsubMsgName,
 PAMLONG pCompCode,
 PAMLONG pReason);

 Parameters
hSession The session handle returned by amInitialize (input).

subscriberName The name of a subscriber service (input). If specified as NULL,
the system default subscriber (constant: AMSD_SUB) is used.

policyName The name of a policy (input). If specified as NULL, the system
default policy (constant: AMSD_POL) is used.

| responseName The name of the receiver service to which the response to this
unsubscribe request should be sent (input). Specify as NULL if no
response is required.

topicLen The length of the topic, in bytes (input).

pTopic The topic that identifies the subscription to be removed (input).
Multiple topics can be specified in the message object
(unsubMsgName) using the object interface (see “Message interface
functions” on page 90).

To deregister all topics, a policy providing this option must be
specified (this is not the default policy). Otherwise, to remove a
previous subscription the topic information specified must match
that specified on the relevant amSubscribe request.

| filterLen The length in bytes of the filter (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| pFilter The filter that identifies the subscription to be removed (input).
| The syntax of the filter string is described in the MQSeries
| Integrator Version 2.0 Programming Guide.

unsubMsgName The name of a message object for the unsubscribe message
(input). If specified as NULL, the system default message
(constant: AMSD_SND_MSG) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 3. The C high-level interface 61

 C high-level interface

| Usage Notes
| To successfully remove a previous subscription, you must ensure that the topic,
| filter, and subscriber queue information exactly matches that used on the original
| subscribe request.

62 MQSeries Application Messaging Interface

 C object interface overview

Chapter 4. C object interface overview

This chapter contains an overview of the structure of the C object interface. Use it
to find out what functions are available in this interface.

The object interface provides sets of interface functions for each of the following
objects:

Session page 64

Message page 66

Sender page 68

Receiver page 69

Distribution list page 70

Publisher page 71

Subscriber page 72

Policy page 73

These interface functions are invoked as necessary by the high-level functions.
They are made available to the application programmer through this object-style
interface to provide additional function where needed. An application program can
mix high-level functions and object-interface functions as required.

Details of the interface functions for each object are given in the following pages.
Follow the page references to see the detailed descriptions of each function.

Details of the object interface functions used by each high-level function are given
on page 74.

 Copyright IBM Corp. 1999, 2000 63

 C object interface overview

Session interface functions
The session object creates and manages all other objects, and provides the scope
for a unit of work.

 Session management
Functions to create, open, close, and delete a session object.

amSesCreate page 79

amSesOpen page 88

amSesClose page 79

amSesDelete page 83

 Create objects
Functions to create message, sender, receiver, distribution list, publisher,
subscriber, and policy objects. Handles to these objects are returned by these
functions.

amSesCreateMessage page 80

amSesCreateSender page 82

amSesCreateReceiver page 81

amSesCreateDistList page 80

amSesCreatePublisher page 81

amSesCreateSubscriber page 82

amSesCreatePolicy page 80

Get object handles
Functions to get the handles for a message, sender, receiver, distribution list,
publisher, subscriber, and policy objects with a specified name (needed if the
objects were created implicitly by the high-level interface).

amSesGetMessageHandle page 86

amSesGetSenderHandle page 88

amSesGetReceiverHandle page 87

amSesGetDistListHandle page 85

amSesGetPublisherHandle page 87

amSesGetSubscriberHandle page 88

amSesGetPolicyHandle page 87

64 MQSeries Application Messaging Interface

 C object interface overview

 Delete objects
Functions to delete message, sender, receiver, distribution list, publisher,
subscriber, and policy objects.

amSesDeleteMessage page 83

amSesDeleteSender page 85

amSesDeleteReceiver page 84

amSesDeleteDistList page 83

amSesDeletePublisher page 84

amSesDeleteSubscriber page 85

amSesDeletePolicy page 84

 Transactional processing
Functions to begin, commit, and rollback a unit of work.

amSesBegin page 78

amSesCommit page 79

amSesRollback page 89

 Error handling
Functions to clear the error codes, and return the completion and reason codes for
the last error associated with the session object.

amSesClearErrorCodes page 78

amSesGetLastError page 86

 Chapter 4. C object interface overview 65

 C object interface overview

Message interface functions
A message object encapsulates an MQSeries message descriptor (MQMD)
structure. It also contains the message data if this is not passed as a separate
parameter.

 Get values
Functions to get the coded character set ID, correlation ID, encoding, format, group
status, message ID, and name of the message object.

amMsgGetCCSID page 94

amMsgGetCorrelId page 94

| amMsgGetElementCCSID page 95

amMsgGetEncoding page 96

amMsgGetFormat page 97

amMsgGetGroupStatus page 98

amMsgGetMsgId page 99

amMsgGetName page 99

| amMsgGetReportCode page 101

| amMsgGetType page 102

 Set values
Functions to set the coded character set ID, correlation ID, encoding, format, and
group status of the message object.

amMsgSetCCSID page 103

amMsgSetCorrelId page 103

amMsgSetElementCCSID page 104

amMsgSetEncoding page 104

amMsgSetFormat page 105

amMsgSetGroupStatus page 105

 Reset values
Function to reset the message object to the state it had when first created.

amMsgReset page 103

Read and write data
Functions to get the length of the data, get and set the data offset, and read or
write byte data to or from the message object at the current offset.

amMsgGetDataLength page 94

amMsgGetDataOffset page 95

amMsgSetDataOffset page 104

66 MQSeries Application Messaging Interface

 C object interface overview

amMsgReadBytes page 102

amMsgWriteBytes page 106

 Publish/subscribe topics
Functions to manipulate the topics in a publish/subscribe message.

amMsgAddTopic page 91

amMsgDeleteTopic page 93

amMsgGetTopic page 101

amMsgGetTopicCount page 102

| Publish/subscribe filters
| Functions to manipulate the filters in a publish/subscribe message.

| amMsgAddFilter page 91

| amMsgDeleteFilter page 92

| amMsgGetFilter page 96

| amMsgGetFilterCount page 97

Publish/subscribe name/value elements
Functions to manipulate the name/value elements in a publish/subscribe message.

amMsgAddElement page 90

amMsgDeleteElement page 92

amMsgGetElement page 95

amMsgGetElementCount page 96

amMsgDeleteNamedElement page 93

amMsgGetNamedElement page 100

amMsgGetNamedElementCount page 100

 Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the message.

amMsgClearErrorCodes page 92

amMsgGetLastError page 98

Publish/subscribe helper macros
Helper macros provided for use with the publish/subscribe stream name and
publication timestamp name/value strings.

AmMsgAddStreamName page 107

AmMsgGetPubTimestamp page 107

AmMsgGetStreamName page 107

 Chapter 4. C object interface overview 67

 C object interface overview

Sender interface functions
A sender object encapsulates an MQSeries object descriptor (MQOD) structure for
sending a message.

Open and close
Functions to open and close the sender service.

amSndOpen page 112

amSndClose page 109

 Send
Function to send a message.

amSndSend page 112

| amSndSendFile page 113

 Get values
Functions to get the coded character set ID, encoding, and name of the sender
service.

amSndGetCCSID page 110

amSndGetEncoding page 110

amSndGetName page 111

 Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the sender service.

amSndClearErrorCodes page 109

amSndGetLastError page 111

68 MQSeries Application Messaging Interface

 C object interface overview

Receiver interface functions
A receiver object encapsulates an MQSeries object descriptor (MQOD) structure for
receiving a message.

Open and close
Functions to open and close the receiver service.

amRcvOpen page 121

amRcvClose page 119

Receive and browse
Functions to receive or browse a message.

amRcvReceive page 122

| amRcvReceiveFile page 124

amRcvBrowse page 115

amRcvBrowseSelect page 117

 Get values
Functions to get the definition type, name, and queue name of the receiver service.

amRcvGetDefnType page 119

amRcvGetName page 120

amRcvGetQueueName page 121

 Set values
Function to set the queue name of the receiver service.

amRcvSetQueueName page 125

 Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver service.

amRcvClearErrorCodes page 118

amRcvGetLastError page 120

 Chapter 4. C object interface overview 69

 C object interface overview

Distribution list interface functions
A distribution list object encapsulates a list of sender services.

Open and close
Functions to open and close the distribution list service.

amDstOpen page 128

amDstClose page 126

 Send
Function to send a message to the distribution list.

amDstSend page 129

| amDstSendFile page 130

 Get values
Functions to get the name of the distribution list service, a count of the sender
services in the list, and a sender service handle.

amDstGetName page 127

amDstGetSenderCount page 127

amDstGetSenderHandle page 128

 Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the distribution list.

amDstClearErrorCodes page 126

amDstGetLastError page 126

70 MQSeries Application Messaging Interface

 C object interface overview

Publisher interface functions
A publisher object encapsulates a sender service. It provides support for publishing
messages to a publish/subscribe broker.

Open and close
Functions to open and close the publisher service.

amPubOpen page 134

amPubClose page 132

 Publish
Function to publish a message.

amPubPublish page 135

 Get values
Functions to get the coded character set ID, encoding, and name of the publisher
service.

amPubGetCCSID page 132

amPubGetEncoding page 133

amPubGetName page 134

 Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the publisher.

amPubClearErrorCodes page 132

amPubGetLastError page 133

 Chapter 4. C object interface overview 71

 C object interface overview

Subscriber interface functions
A subscriber object encapsulates both a sender service and a receiver service. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

Open and close
Functions to open and close the subscriber service.

amSubOpen page 139

amSubClose page 136

 Broker messages
Functions to subscribe to a broker, remove a subscription, and receive publications
from the broker.

amSubSubscribe page 141

amSubUnsubscribe page 142

amSubReceive page 140

 Get values
Functions to get the coded character set ID, definition type, encoding, name, and
queue name of the subscriber service.

amSubGetCCSID page 136

amSubGetDefnType page 137

amSubGetEncoding page 137

amSubGetName page 138

amSubGetQueueName page 139

 Set value
Function to set the queue name of the subscriber service.

amSubSetQueueName page 140

 Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the receiver.

amSubClearErrorCodes page 136

amSubGetLastError page 138

72 MQSeries Application Messaging Interface

 C object interface overview

Policy interface functions
A policy object encapsulates details of how the message is handled (such as
priority, persistence, and whether it is included in a unit of work).

 Get values
Functions to get the name of the policy, and the wait time set in the policy.

amPolGetName page 144

amPolGetWaitTime page 144

 Set value
Function to set the wait time for a receive using the policy.

amPolSetWaitTime page 144

 Error handling
Functions to clear the error codes, and return the completion and reason codes
from the last error associated with the policy.

amPolClearErrorCodes page 143

amPolGetLastError page 143

 Chapter 4. C object interface overview 73

 C object interface overview

 High-level functions
Each high-level function described in Chapter 3, “The C high-level interface” on
page 35 calls a number of the object interface functions, as shown below.

Table 2 (Page 1 of 2). Object interface calls used by the high-level functions

High-level function Equivalent object interface calls �1�

amBackout amSesCreatePolicy / amSesGetPolicyHandle
amSesRollback

| amBegin| amSesCreatePolicy / amSesGetPolicyHandle
| amSesBegin

| amBrowseMsg| amSesCreateReceiver / amSesGetReceiverHandle
| amSesCreatPolicy / amSesGetPolicyHandle
| amSesCreateMessage / amSesGetMessageHandle
| amRcvBrowseSelect

amCommit amSesCreatePolicy / amSesGetPolicyHandle
amSesCommit

amInitialize amSesCreate
amSesOpen

amTerminate amSesClose
amSesDelete

amSendMsg
amSendRequest
amSendResponse

amSesCreateSender / amSesGetSenderHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSndSend

amReceiveMsg
amReceiveRequest

amSesCreateReceiver / amSesGetReceiverHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amRcvReceive

| amSendFile| amSesCreateSender / amSesGetSenderHandle
| amSesCreatePolicy / amSesGetPolicyHandle
| amSesCreateMessage / amSesGetMessageHandle
| amSndSendFile

| amReceiveFile| amSesCreateReceiver / amSesGetReceiverHandle
| amSesCreatePolicy / amSesGetPolicyHandle
| amSesCreateMessage / amSesGetMessageHandle
| amRcvReceiveFile

amPublish amSesCreatePublisher / amSesGetPublisherHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amPubPublish

amSubscribe amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubSubscribe

amUnsubscribe amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubUnsubscribe

74 MQSeries Application Messaging Interface

 C object interface overview

Table 2 (Page 2 of 2). Object interface calls used by the high-level functions

High-level function Equivalent object interface calls �1�

amReceivePublication amSesCreateSubscriber / amSesGetSubscribeHandle
amSesCreatePolicy / amSesGetPolicyHandle
amSesCreateMessage / amSesGetMessageHandle
amSubReceive

Note:

�1.�If an object already exists, the appropriate call to get its handle is used instead of
calling the create function again. For example, if the message object exists,
amSesGetMessageHandle is used instead of amSesCreateMessage.

 Chapter 4. C object interface overview 75

 C object interface overview

76 MQSeries Application Messaging Interface

 C object interface reference

Chapter 5. C object interface reference

In the following sections the C object interface functions are listed by the object
they refer to:

Session page 78

Message page 90

Sender page 109

Receiver page 115

Distribution list page 126

Publisher page 132

Subscriber page 136

Policy page 143

Within each section the functions are listed in alphabetical order.

Note that all functions return a completion code (pCompCode) and a reason code
(pReason). The completion code can take one of the following values:

AMCC_OK Function completed successfully
AMCC_WARNING Function completed with a warning
AMCC_FAILED An error occurred during processing

If the completion code returns warning or failed, the reason code identifies the
reason for the error or warning (see Appendix A, “Reason codes” on page 501).

You can specify the completion code and reason code as null pointers when the
function is called, in which case the value is not returned.

Most functions return AMBOOL. They return a value of AMB_TRUE if the function
completed successfully, otherwise AMB_FALSE. Functions that do not return
AMBOOL return a handle as specified in the following sections.

Most functions require a handle to the object they reference. If this handle is not
valid, the results are unpredictable.

 Copyright IBM Corp. 1999, 2000 77

 C session interface

Session interface functions
A session object provides the scope for a unit of work and creates and manages all
other objects, including at least one connection object. Each (MQSeries) connection
object encapsulates a single MQSeries queue manager connection. The session
object definition specifying the required queue manager connection can be provided
by a repository policy definition and the local host file, or the local host file only
which by default will name a single local queue manager with no repository. The
session, when deleted, is responsible for releasing memory by closing and deleting
all other objects that it manages.

Note that you should not mix MQSeries MQCONN or MQDISC requests on the
same thread as AMI calls, otherwise premature disconnection might occur.

 amSesBegin
Begins a unit of work, allowing an AMI application to take advantage of the
resource coordination provided in MQSeries. The unit of work can subsequently be
committed by amSesCommit, or backed out by amSesRollback. It should be
used only when MQSeries is the transaction coordinator. If an external transaction
coordinator (for example, CICS or Tuxedo) is being used, the API of the external
coordinator should be used instead.

 AMBOOL amSesBegin(
 AMHSES hSess,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amSesClearErrorCodes
Clears the error codes in the session object.

 AMBOOL amSesClearErrorCodes(
 AMHSES hSess,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

pCompCode Completion code (output).

pReason Reason code (output).

78 MQSeries Application Messaging Interface

 C session interface

 amSesClose
Closes the session object and all open objects owned by the session, and
disconnects from the underlying message transport (MQSeries).

 AMBOOL amSesClose(
 AMHSES hSess,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amSesCommit
Commits a unit of work that was started by amSesBegin, or by sending or
receiving a message under syncpoint control as defined in the policy options for the
send or receive request.

 AMBOOL amSesCommit(
 AMHSES hSess,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amSesCreate
Creates the session and system default objects. amSesCreate returns the handle
of the session object (of type AMHSES). This must be specified by other session
function calls.

 AMHSES amSesCreate(
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

name An optional session name that can be used to identify the
application from which a message is sent (input).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 79

 C session interface

 amSesCreateDistList
Creates a distribution list object. A distribution list handle (of type AMHDST) is
returned.

 AMHDST amSesCreateDistList(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the distribution list (input). This must match the
name of a distribution list defined in the repository.

pCompCode Completion code (output).

pReason Reason code (output).

 amSesCreateMessage
Creates a message object. A message handle (of type AMHMSG) is returned.

 AMHMSG amSesCreateMessage(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the message (input). This can be any name that is
meaningful to the application. It is specified so that this message
object can be used with the high-level interface.

pCompCode Completion code (output).

pReason Reason code (output).

 amSesCreatePolicy
Creates a policy object. A policy handle (of type AMHPOL) is returned.

 AMHPOL amSesCreatePolicy(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the policy (input). If it matches a policy defined in the
repository, the policy will be created using the repository definition,
otherwise it will be created with default values.

If a repository is being used and the named policy is not found in
the repository, a completion code of AMCC_WARNING is returned
with a reason code of AMRC_POLICY_NOT_IN_REPOS.

pCompCode Completion code (output).

80 MQSeries Application Messaging Interface

 C session interface

pReason Reason code (output).

 amSesCreatePublisher
Creates a publisher object. A publisher handle (of type AMHPUB) is returned.

 AMHPUB amSesCreatePublisher(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the publisher (input). If it matches a publisher
defined in the repository, the publisher will be created using the
repository definition, otherwise it will be created with default values
(that is, with a sender service name that matches the publisher
name).

If a repository is being used and the named publisher is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_PUBLISHER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

 amSesCreateReceiver
Creates a receiver service object. A receiver handle (of type AMHRCV) is returned.

 AMHRCV amSesCreateReceiver(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the receiver service (input). If it matches a receiver
defined in the repository, the receiver will be created using the
repository definition, otherwise it will be created with default values
(that is, with a queue name that matches the receiver name).

If a repository is being used and the named receiver is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_RECEIVER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 81

 C session interface

 amSesCreateSender
Creates a sender service object. A sender handle (of type AMHSND) is returned.

 AMHSND amSesCreateSender(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the sender service (input). If it matches a sender
defined in the repository, the sender will be created using the
repository definition, otherwise it will be created with default values
(that is, with a queue name that matches the sender name).

If a repository is being used and the named sender is not found in
the repository, a completion code of AMCC_WARNING is returned
with a reason code of AMRC_SENDER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

 amSesCreateSubscriber
Creates a subscriber object. A subscriber handle (of type AMHSUB) is returned.

 AMHSUB amSesCreateSubscriber(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the subscriber (input). If it matches a subscriber
defined in the repository, the subscriber will be created using the
repository definition, otherwise it will be created with default values
(that is, with a sender service name that matches the subscriber
name, and a receiver service name that is the same with the
addition of the suffix ‘.RECEIVER’).

If a repository is being used and the named subscriber is not found
in the repository, a completion code of AMCC_WARNING is
returned with a reason code of
AMRC_SUBSCRIBER_NOT_IN_REPOS.

pCompCode Completion code (output).

pReason Reason code (output).

82 MQSeries Application Messaging Interface

 C session interface

 amSesDelete
Deletes the session object. Performs an implicit close if the session is open. This
closes and deletes the session and all objects owned by it.

 AMBOOL amSesDelete(
 PAMHSES phSess,
 PAMLONG pCompCode,
 PAMLONG pReason);

phSess A pointer to the session handle returned by amSesCreate
(input/output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesDeleteDistList
Deletes a distribution list object, and performs an implicit close if the distribution list
is open.

 AMBOOL amSesDeleteDistList(
 AMHSES hSess,
 PAMHDST phDistList,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phDistList A pointer to the distribution list handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesDeleteMessage
Deletes a message object.

 AMBOOL amSesDeleteMessage(
 AMHSES hSess,
 PAMHMSG phMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phMsg A pointer to the message handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 83

 C session interface

 amSesDeletePolicy
Deletes a policy object.

 AMBOOL amSesDeletePolicy(
 AMHSES hSess,
 PAMHPOL phPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phPolicy A pointer to the policy handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesDeletePublisher
Deletes a publisher object, and performs an implicit close if the publisher is open.

 AMBOOL amSesDeletePublisher(
 AMHSES hSess,
 PAMHPUB phPub,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phPub A pointer to the publisher handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesDeleteReceiver
Deletes a receiver object, and performs an implicit close if the receiver is open.

 AMBOOL amSesDeleteReceiver(
 AMHSES hSess,
 PAMHRCV phReceiver,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phReceiver A pointer to the receiver service handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

84 MQSeries Application Messaging Interface

 C session interface

 amSesDeleteSender
Deletes a sender object, and performs an implicit close if the sender is open.

 AMBOOL amSesDeleteSender(
 AMHSES hSess,
 PAMHSND phSender,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phSender A pointer to the sender service handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesDeleteSubscriber
Deletes a subscriber object, and performs an implicit close if the subscriber is open.

 AMBOOL amSesDeleteSubscriber(
 AMHSES hSess,
 PAMHSUB phSub,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

phSub A pointer to the subscriber handle (input/output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesGetDistListHandle
Returns the handle of the distribution list object (of type AMHDST) with the
specified name.

 AMHDST amSesGetDistListHandle(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by the amSesCreate function (input).

name The name of the distribution list (input).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 85

 C session interface

 amSesGetLastError
Gets the information (completion and reason codes) from the last error for the
session.

 AMBOOL amSesGetLastError(
 AMHSES hSess,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SESSION_HANDLE_ERR indicates that the
amSesGetLastError function call has itself detected an error and
failed.

 amSesGetMessageHandle
Returns the handle of the message object (of type AMHMSG) with the specified
name.

 AMHMSG amSesGetMessageHandle(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the message (input).

pCompCode Completion code (output).

pReason Reason code (output).

86 MQSeries Application Messaging Interface

 C session interface

 amSesGetPolicyHandle
Returns the handle of the policy object (of type AMHPOL) with the specified name.

 AMHPOL amSesGetPolicyHandle(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the policy (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesGetPublisherHandle
Returns the handle of the publisher object (of type AMHPUB) with the specified
name.

 AMHPUB amSesGetPublisherHandle(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the publisher (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesGetReceiverHandle
Returns the handle of the receiver service object (of type AMHRCV) with the
specified name.

 AMHRCV amSesGetReceiverHandle(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the receiver service (input).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 87

 C session interface

 amSesGetSenderHandle
Returns the handle of the sender service object (of type AMHSND) with the
specified name.

 AMHSND amSesGetSenderHandle(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the sender service (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesGetSubscriberHandle
Returns the handle of the subscriber object (of type AMHSUB) with the specified
name.

 AMHSUB amSesGetSubscriberHandle(
 AMHSES hSess,
 AMSTR name,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

name The name of the subscriber (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amSesOpen
Opens the session object using the specified policy options. The policy, together
with the local host file, provides the connection definition that enables the
connection object to be created. The specified library is loaded and initialized. If the
policy connection type is specified as AUTO and the MQSeries local queue
manager library cannot be loaded, the MQSeries client library is loaded. (On
OS/390, client connections are not supported so applications must use a local
queue manager.) The connection to the underlying message transport (MQSeries)
is then opened.

 AMBOOL amSesOpen(
 AMHSES hSess,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

88 MQSeries Application Messaging Interface

 C session interface

pCompCode Completion code (output).

pReason Reason code (output).

 amSesRollback
Rolls back a unit of work.

 AMBOOL amSesRollback(
 AMHSES hSess,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSess The session handle returned by amSesCreate (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 89

 C message interface

Message interface functions
A message object encapsulates an MQSeries message descriptor (MQMD), and
name/value elements such as the topic data for publish/subscribe messages. It
can also contain the message data, or this can be passed as a separate
parameter.

A name/value element in a message object is held in an AMELEM structure. See
“Using name/value elements” on page 22 for details.

The initial state of the message object is:

CCSID default queue manager CCSID
correlationId all zeroes
dataLength zero
dataOffset zero
elementCount zero
encoding AMENC_NATIVE
format AMFMT_STRING
groupStatus AMGRP_MSG_NOT_IN_GROUP
topicCount zero

When a message object is used to send a message, it will not normally be left in
the same state as it was prior to the send. Therefore, if you use the message
object for repeated send operations, it is advisable to reset it to its initial state (see
amMsgReset on page 103) and rebuild it each time.

| Note that the following calls are only valid after a session has been opened with an
| amSesOpen call or after you have explicitly set the element CCSID with an
| amMsgSetElementCCSID call:

| amMsgAddElement page 90

| amMsgDeleteElement page 92

| amMsgGetElement page 95

| amMsgGetElementCount page 96

| amMsgDeleteNamedElement page 93

| amMsgGetNamedElement page 100

| amMsgGetNamedElementCount page 100

| amMsgAddTopic page 91

| amMsgDeleteTopic page 93

| amMsgGetTopic page 101

| amMsgGetTopicCount page 102

 amMsgAddElement
| Adds a name/value element to a message (such as a publish/subscribe message).

90 MQSeries Application Messaging Interface

 C message interface

 AMBOOL amMsgAddElement(
 AMHMSG hMsg,
 PAMELEM pElem,
 AMLONG options,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pElem A pointer to an AMELEM element structure, which specifies the
element to be added (input). It will not replace an existing element
with the same name.

options A reserved field, which must be set to zero (input).

pCompCode Completion code (output).

pReason Reason code (output).

| amMsgAddFilter
| Adds a filter to a subscribe or unsubscribe request message.

| AMBOOL amMsgAddFilter(
| AMHMSG hMsg,
| AMLONG filterLen,
| AMSTR pFilter,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hMsg The message handle returned by amSesCreateMessage (input).

| filterLen The length in bytes of the filter (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| pFilter The filter to be added (input). The syntax of the filter string is
| described in the MQSeries Integrator Version 2.0 Programming
| Guide.

| pCompCode Completion code (output).

| pReason Reason code (output).

 amMsgAddTopic
Adds a topic to a publish/subscribe message.

 AMBOOL amMsgAddTopic(
 AMHMSG hMsg,
 AMLONG topicLen,
 AMSTR pTopic,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

topicLen The length in bytes of the topic (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL terminated.

pTopic The topic to be added (input).

 Chapter 5. C object interface reference 91

 C message interface

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgClearErrorCodes
Clears the error codes in the message object.

 AMBOOL amMsgClearErrorCodes(
 AMHMSG hMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgDeleteElement
| Deletes an element with the specified index from a message (such as a
| publish/subscribe message). Indexing is within all elements of the message, and

might include topics or filters (which are specialized elements).

 AMBOOL amMsgDeleteElement(
 AMHMSG hMsg,
 AMLONG elemIndex,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

elemIndex The index of the required element in the message, starting from
zero (input). On completion, elements with higher elemIndex
values than that specified will have their index value reduced by
one.

amMsgGetElementCount gets the number of elements in the
message.

pCompCode Completion code (output).

pReason Reason code (output).

| amMsgDeleteFilter
| Deletes a filter from a subscribe or unsubscribe request message at the specified
| index. Indexing is within all filters.

| AMBOOL amMsgDeleteFilter(
| AMHMSG hMsg, /: Message handle :/
| AMLONG filterIndex, /: Filter index :/
| PAMLONG pCompCode, /: Completion code :/
| PAMLONG pReason); /: Reason code qualifying CompCode :/

92 MQSeries Application Messaging Interface

 C message interface

| Parameters
| hMsg The message handle returned by amSesCreateMessage (input).

| filterIndex The index of the required filter in the message, starting from zero
| (input). amMsgGetFilterCount gets the number of filters in the
| message.

| pCompCode Completion code (output).

| pReason Reason code (output).

 amMsgDeleteNamedElement
Deletes a named element from a message, at the specified index. Indexing is
within all elements that share the same name.

 AMBOOL amMsgDeleteNamedElement(
 AMHMSG hMsg,
 AMLONG nameIndex,
 AMLONG nameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

nameIndex The index of the required named element in the message (input).
Specifying an index of zero deletes the first element with the
specified name. On completion, elements with higher nameIndex
values than that specified will have their index value reduced by
one.

amMsgGetNamedElementCount gets the number of elements in
the message with the specified name.

nameLen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL terminated.

pName The name of the element to be deleted (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgDeleteTopic
Deletes a topic from a publish/subscribe message, at the specified index. Indexing
is within all topics in the message.

 AMBOOL amMsgDeleteTopic(
 AMHMSG hMsg,
 AMLONG topicIndex,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

topicIndex The index of the required topic in the message, starting from zero
(input). amMsgGetTopicCount gets the number of topics in the
message.

 Chapter 5. C object interface reference 93

 C message interface

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetCCSID
Gets the coded character set identifier of the message.

 AMBOOL amMsgGetCCSID(
 AMHMSG hMsg,
 PAMLONG pCCSID,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetCorrelId
Gets the correlation identifier of the message.

 AMBOOL amMsgGetCorrelId(
 AMHMSG hMsg,
 AMLONG buffLen,
 PAMLONG pCorrelIdLen,
 PAMBYTE pCorrelId,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the correlation identifier is
returned (input).

pCorrelIdLen The length of the correlation identifier, in bytes (output). If
specified as NULL, the length is not returned.

pCorrelId The correlation identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetDataLength
Gets the length of the message data in the message object.

 AMBOOL amMsgGetDataLength(
 AMHMSG hMsg,
 PAMLONG pLength,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pLength The length of the message data, in bytes (output).

pCompCode Completion code (output).

94 MQSeries Application Messaging Interface

 C message interface

pReason Reason code (output).

 amMsgGetDataOffset
Gets the current offset in the message data for reading or writing data bytes.

 AMBOOL amMsgGetDataOffset(
 AMHMSG hMsg,
 PAMLONG pOffset,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pOffset The byte offset in the message data (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetElement
| Gets an element from a message (such as a publish/subscribe message).

 AMBOOL amMsgGetElement(
 AMHMSG hMsg,
 AMLONG elemIndex,
 PAMELEM pElem,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

elemIndex The index of the required element in the message, starting from
zero (input). amMsgGetElementCount gets the number of
elements in the message.

pElem The selected element in the message (output).

pCompCode Completion code (output).

pReason Reason code (output).

| amMsgGetElementCCSID
| Gets the message element CCSID. This is the coded character set identifier used
| for passing message element data (including topic and filter data) to or from an
| application.

| AMBOOL amMsgGetElementCCSID(
| AMHMSG hMsg,
| PAMLONG pElementCCSID,
| PAMLONG pCompCode,
| PAMLONG pReason);

| hMsg The message handle returned by amSesCreateMessage (input).

| pElementCCSID The element coded character set identifier (output).

| pCompCode Completion code (output).

| pReason Reason code (output).

 Chapter 5. C object interface reference 95

 C message interface

 amMsgGetElementCount
| Gets the total number of elements in a message (such as a publish/subscribe
| message).

 AMBOOL amMsgGetElementCount(
 AMHMSG hMsg,
 PAMLONG pCount,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pCount The number of elements in the message (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetEncoding
Gets the value used to encode numeric data types for the message.

 AMBOOL amMsgGetEncoding(
 AMHMSG hMsg,
 PAMLONG pEncoding,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pEncoding The encoding of the message (output). The following values can
be returned:

AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_395
AMENC_REVERSED
AMENC_REVERSED_FLOAT_395
AMENC_UNDEFINED

pCompCode Completion code (output).

pReason Reason code (output).

| amMsgGetFilter
| Get a filter from a publish/subscribe message, at the specified index. Indexing is
| within all filters.

| AMBOOL amMsgGetFilter(
| AMHMSG hMsg,
| AMLONG filterIndex,
| AMLONG buffLen,
| PAMLONG pFilterLen,
| AMSTR pFilter,
| PAMLONG pCompCode,
| PAMLONG pReason);

96 MQSeries Application Messaging Interface

 C message interface

| Parameters
| hMsg The message handle returned by amSesCreateMessage (input).

| filterIndex The index of the required filter in the message (input). Specifying
| an index of zero returns the first filter. amMsgGetFilterCount
| gets the number of filters in a message.

| buffLen The length in bytes of a buffer in which the filter is returned (input).

| pFilterLen The length of the filter, in bytes (output).

| pFilter The filter (output)

| pCompCode Completion code (output).

| pReason Reason code (output).

| amMsgGetFilterCount
| Gets the total number of filters in a publish/subscribe message.

| AMBOOL amMsgGetFilterCount(
| AMHMSG hMsg,
| PAMLONG pCount,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hMsg The message handle returned by amSesCreateMessage (input).

| pCount The number of filters (output).

| pCompCode Completion code (output).

| pReason Reason code (output).

 amMsgGetFormat
Gets the format of the message.

 AMBOOL amMsgGetFormat(
 AMHMSG hMsg,
 AMLONG buffLen,
 PAMLONG pFormatLen,
 AMSTR pFormat,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the format is returned
(input).

pFormatLen The length of the format, in bytes (output). If specified as NULL,
the length is not returned.

pFormat The format of the message (output). The values that can be
returned include the following:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

 Chapter 5. C object interface reference 97

 C message interface

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetGroupStatus
Gets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group.

 AMBOOL amMsgGetGroupStatus(
 AMHMSG hMsg,
 PAMLONG pStatus,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pStatus The group status (output). It can take one of the following values:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

Alternatively, bitwise tests can be performed using the constants:

AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetLastError
Gets the information (completion and reason codes) from the last error for the
message object.

 AMBOOL amMsgGetLastError(
 AMHMSG hMsg,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

98 MQSeries Application Messaging Interface

 C message interface

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_MSG_HANDLE_ERR indicates that the
amMsgGetLastError function call has itself detected an error and
failed.

 amMsgGetMsgId
Gets the message identifier.

 AMBOOL amMsgGetMsgId(
 AMHMSG hMsg,
 AMLONG buffLen,
 PAMLONG pMsgIdLen,
 PAMBYTE pMsgId,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the message identifier is
returned (input).

pMsgIdLen The length of the message identifier, in bytes (output). If specified
as NULL, the length is not returned.

pMsgId The message identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetName
Gets the name of the message object.

 AMBOOL amMsgGetName(
 AMHMSG hMsg,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer into which the name is put (input).
If specified as zero, only the name length is returned.

pNameLen The length of the name, in bytes (output). If specified as NULL,
only the name is returned.

pName The message object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 99

 C message interface

 amMsgGetNamedElement
| Gets a named element from a message (such as a publish/subscribe message).

 AMBOOL amMsgGetNamedElement(
 AMHMSG hMsg,
 AMLONG nameIndex,
 AMLONG nameLen,
 AMSTR pName,
 PAMELEM pElem,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

nameIndex The index of the required named element in the message (input).
Specifying an index of zero returns the first element with the
specified name. amMsgGetNamedElementCount gets the
number of elements in the message with the specified name.

nameLen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pName The element name (input).

pElem The selected named element in the message (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgGetNamedElementCount
Gets the number of elements in a message with a specified name.

 AMBOOL amMsgGetNamedElementCount(
 AMHMSG hMsg,
 AMLONG nameLen,
 AMSTR pName,
 PAMLONG pCount,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

nameLen The length of the element name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is null terminated.

pName The specified element name (input).

pCount The number of elements in the message with the specified name
(output).

pCompCode Completion code (output).

pReason Reason code (output).

100 MQSeries Application Messaging Interface

 C message interface

| amMsgGetReportCode
| Gets the feedback code from a message of type AMMT_REPORT. If the message
| type is not AMMT_REPORT, error code AMRC_MSG_TYPE_NOT_REPORT will
| be returned.

| AMBOOL amMsgGetReportCode(
| AMHMSG hMsg,
| PAMLONG pCode,
| PAMLONG pCompCode,
| PAMLONG pReason);

| hMsg The message handle returned by amSesCreateMessage (input).

| PCode The feedback code (output). The following values can be returned:

| AMFB_EXPIRATION
| AMFB_COA
| AMFB_COD
| AMFB_ERROR

| pCompCode Completion code (output).

| pReason Reason code (output).

 amMsgGetTopic
Gets a topic from a publish/subscribe message, at the specified index. Indexing is
within all topics.

 AMBOOL amMsgGetTopic(
 AMHMSG hMsg,
 AMLONG topicIndex,
 AMLONG buffLen,
 PAMLONG pTopicLen,
 AMSTR pTopic,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

topicIndex The index of the required topic in the message (input). Specifying
an index of zero returns the first topic. amMsgGetTopicCount
gets the number of topics in the message.

buffLen The length in bytes of a buffer in which the topic is returned
| (input). If buffLen is specified as zero, only the topic length is
| returned (in pTopicLen), not the topic itself.

pTopicLen The length of the topic, in bytes (output).

pTopic The topic (output).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 101

 C message interface

| amMsgGetType
| Gets the message type from a message.

| AMBOOL amMsgGetType(
| AMHMSG hMsg,
| PAMLONG pType,
| PAMLONG pCompCode,
| PAMLONG pReason);

| hMsg The message handle returned by amSesCreateMessage (input).

| PType The message type (output). The following values can be returned:

| AMMT_DATAGRAM
| AMMT_REQUEST
| AMMT_REPLY
| AMMT_REPORT

| pCompCode Completion code (output).

| pReason Reason code (output).

 amMsgGetTopicCount
Gets the total number of topics in a publish/subscribe message.

 AMBOOL amMsgGetTopicCount(
 AMHMSG hMsg,
 PAMLONG pCount,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

pCount The number of topics (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgReadBytes
Reads up to the specified number of data bytes from the message object, starting
at the current data offset (which must be positioned before the end of the data for
the read operation to be successful). Use amMsgSetDataOffset to set the data
offset. amMsgReadBytes will advance the data offset by the number of bytes
read, leaving the offset immediately after the last byte read.

 AMBOOL amMsgReadBytes(
 AMHMSG hMsg,
 AMLONG readLen,
 PAMLONG pBytesRead,
 PAMBYTE pData,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

102 MQSeries Application Messaging Interface

 C message interface

readLen The maximum number of bytes to be read (input). The data buffer
specified by pData must be at least this size. The number of bytes
returned is the minimum of readLen and the number of bytes
between the data offset and the end of the data.

pBytesRead The number of bytes read (output). If specified as NULL, the
number is not returned.

pData The read data (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgReset
Resets the message object its initial state (see page 90).

 AMBOOL amMsgReset(
 AMHMSG hMsg,
 AMLONG options,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

options A reserved field that must be specified as zero (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgSetCCSID
Sets the coded character set identifier of the message.

 AMBOOL amMsgSetCCSID(
 AMHMSG hMsg,
 AMLONG CCSID,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

CCSID The coded character set identifier (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgSetCorrelId
Sets the correlation identifier of the message.

 AMBOOL amMsgSetCorrelId(
 AMHMSG hMsg,
 AMLONG correlIdLen,
 PAMBYTE pCorrelId,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

 Chapter 5. C object interface reference 103

 C message interface

correlIdLen The length of the correlation identifier, in bytes (input).

pCorrelId The correlation identifier (input). Specify as NULL (with a
correlIdLen of 0L) to set the correlation identifier to NULL.

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgSetDataOffset
| Sets the data offset for reading or writing byte data. If the data offset is greater
| than the current data length, it is valid to write data into the message at that offset,
| but an attempt to read data will result in an error. See “amMsgReadBytes” on
| page 102 and “amMsgWriteBytes” on page 106.

 AMBOOL amMsgSetDataOffset(
 AMHMSG hMsg,
 AMLONG offset,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

offset The offset in bytes (input). Set an offset of zero to read or write
from the start of the data.

pCompCode Completion code (output).

pReason Reason code (output).

| amMsgSetElementCCSID
| This specifies the character set to be used for subsequent element message data
| (including topic and filter data) passed to or returned from the application. Existing
| elements in the message are unmodified (but will be returned in this character set).
| The default value of element CCSID is the queue manager CCSID.

| AMBOOL amMsgSetElementCCSID(
| AMHMSG hMsg,
| AMLONG elementCCSID,
| PAMLONG pCompCode,
| PAMLONG pReason);

| hMsg The message handle returned by amSesCreateMessage (input).

| elementCCSID The element coded character set identifier (input).

| pCompCode Completion code (output).

| pReason Reason code (output).

 amMsgSetEncoding
Sets the encoding of the data in the message.

 AMBOOL amMsgSetEncoding(
 AMHMSG hMsg,
 AMLONG encoding,
 PAMLONG pCompCode,
 PAMLONG pReason);

104 MQSeries Application Messaging Interface

 C message interface

hMsg The message handle returned by amSesCreateMessage (input).

encoding The encoding of the message (input). It can take one of the
following values:

AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_395
AMENC_REVERSED
AMENC_REVERSED_FLOAT_395
AMENC_UNDEFINED

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgSetFormat
Sets the format of the message.

 AMBOOL amMsgSetFormat(
 AMHMSG hMsg,
 AMLONG formatLen,
 AMSTR pFormat,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

formatLen The length of the format, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL terminated.

pFormat The format of the message (input). It can take one of the following
values, or an application defined string:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

If set to AMFMT_NONE, the default format for the sender will be
used (if available).

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgSetGroupStatus
Sets the group status of the message. This indicates whether the message is in a
group, and if it is the first, middle, last or only one in the group. Once you start
sending messages in a group, you must complete the group before sending any
messages that are not in the group.

If you specify AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP
respectively.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.

 Chapter 5. C object interface reference 105

 C message interface

 AMBOOL amMsgSetGroupStatus(
 AMHMSG hMsg,
 AMLONG status,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

status The group status (input). It can take one of the following values:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

pCompCode Completion code (output).

pReason Reason code (output).

 amMsgWriteBytes
Writes the specified number of data bytes into the message object, starting at the
current data offset. See “amMsgSetDataOffset” on page 104.

| If the data offset is not at the end of the data, existing data is overwritten. If the
| data offset is set beyond the current data length, the message data between the
| data length and the data offset is undefined. This feature enables applications to
| construct messages in a non-sequential manner, but care must be taken to ensure
| that a message is completely filled with data before it is sent.

amMsgWriteBytes will advance the data offset by the number of bytes written,
leaving it immediately after the last byte written.

 AMBOOL amMsgWriteBytes(
 AMHMSG hMsg,
 AMLONG writeLen,
 PAMBYTE pByteData,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

writeLen The number of bytes to be written (input).

pByteData The data bytes (input).

pCompCode Completion code (output).

pReason Reason code (output).

106 MQSeries Application Messaging Interface

 C message interface

Message interface helper macros
The following helper macros are provided for manipulation of the name/value
elements in a message object. Additional helper macros can be written as
required.

 AmMsgAddStreamName
Adds a name/value element for the publish/subscribe stream name.

 AmMsgAddStreamName(
 AMHMSG hMsg,
 AMLONG streamNameLen,
 AMSTR pStreamName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

streamNameLen The length of the stream name, in bytes (input).

pStreamName The stream name (input).

pCompCode Completion code (output).

pReason Reason code (output).

 AmMsgGetPubTimeStamp
Gets the publication time stamp name/value element.

 AmMsgGetPubTimeStamp(
 AMHMSG hMsg,
 AMLONG buffLen,
 PAMLONG pTimestampLen,
 AMSTR pTimestamp,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the publication time stamp
is returned (input). Specify as zero to return only the length.

pTimestampLen The length of the publication time stamp, in bytes (output). If
specified as NULL, the length is not returned.

pTimestamp The publication time stamp (output).

pCompCode Completion code (output).

pReason Reason code (output).

 AmMsgGetStreamName
Gets the name/value element for the publish/subscribe stream name.

 Chapter 5. C object interface reference 107

 C message interface

 AmMsgGetStreamName(
 AMHMSG hMsg,
 AMLONG buffLen,
 PAMLONG pStreamNameLen,
 AMSTR pStreamName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hMsg The message handle returned by amSesCreateMessage (input).

buffLen The length in bytes of a buffer in which the stream name is
returned (input). Specify as zero to return only the length.

pStreamNameLen The length of the stream name, in bytes (output). If specified as
NULL, the length is not returned.

pStreamName The stream name (output).

pCompCode Completion code (output).

pReason Reason code (output).

108 MQSeries Application Messaging Interface

 C sender interface

Sender interface functions
A sender object encapsulates an MQSeries object descriptor (MQOD) structure.
This represents an MQSeries queue on a local or remote queue manager. An open
sender service is always associated with an open connection object (such as a
queue manager connection). Support is also included for dynamic sender services
(those that encapsulate model queues). The required sender service object
definitions can be provided from a repository, or created without a repository
definition by defaulting to the existing queue objects on the local queue manager.

The high-level functions amSendMsg, amSendRequest and amSendResponse
call these interface functions as required to open the sender service and send a
message. Additional calls are provided here to give the application program extra
functionality.

A sender service object must be created before it can be opened. This is done
implicitly using the high-level functions, or the amSesCreateSender session
interface functions.

A response sender service is a special type of sender service used for sending a
response to a request message. It must be created using the default definition,
and not a definition stored in a repository (see “Services and policies” on
page 471). Once created, it must not be opened until used in its correct context as
a response sender when receiving a request message with amRcvReceive or
amReceiveRequest. When opened, its queue and queue manager properties are
modified to reflect the ReplyTo destination specified in the message being received.
When first used in this context, the sender service becomes a response sender
service.

 amSndClearErrorCodes
Clears the error codes in the sender object.

 AMBOOL amSndClearErrorCodes(
 AMHSND hSender,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amSndClose
Closes the sender service.

 AMBOOL amSndClose(
 AMHSND hSender,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

 Chapter 5. C object interface reference 109

 C sender interface

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amSndGetCCSID
Gets the coded character set identifier of the sender service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.

 AMBOOL amSndGetCCSID(
 AMHSND hSender,
 PAMLONG pCCSID,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSndGetEncoding
Gets the value used to encode numeric data types for the sender service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.

 AMBOOL amSndGetEncoding(
 AMHSND hSender,
 PAMLONG pEncoding,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

pEncoding The encoding (output).

pCompCode Completion code (output).

pReason Reason code (output).

110 MQSeries Application Messaging Interface

 C sender interface

 amSndGetLastError
Gets the information (completion and reason codes) from the last error for the
sender object.

 AMBOOL amSndGetLastError(
 AMHSND hSender,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amSndGetLastError function call has itself detected an error and
failed.

 amSndGetName
Gets the name of the sender service.

 AMBOOL amSndGetName(
 AMHSND hSender,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

buffLen The length in bytes of a buffer in which the name is returned
(input). If specified as zero, only the name length is returned.

pNameLen The length of the name, in bytes (output). If specified as NULL,
only the name is returned.

pName The name of the sender service (output).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 111

 C sender interface

 amSndOpen
Opens the sender service.

 AMBOOL amSndOpen(
 AMHSND hSender,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amSndSend
Sends a message to the destination specified by the sender service. If the sender
service is not open, it will be opened (if this action is specified in the policy
options).

The message data can be passed in the message object, or as a separate
parameter (this means that the data does not have to be copied into the message
object prior to sending the message, which might improve performance especially if
the message data is large).

 AMBOOL amSndSend(
 AMHSND hSender,
 AMHPOL hPolicy,
 AMHRCV hReceiver,
 AMHMSG hRcvMsg,
 AMLONG dataLen,
 PAMBYTE pData,
 AMHMSG hSndMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSender The sender handle returned by amSesCreateSender (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH_NULL_HANDLE if no response
is required.

hRcvMsg The handle of a received message that is being responded to, if
this is a response message (input). Specify as
AMH_NULL_HANDLE if this is not a response message.

dataLen The length of the message data, in bytes (input). If specified as
zero, any message data will be passed in the message object
(hSndMsg).

112 MQSeries Application Messaging Interface

 C sender interface

pData The message data, if dataLen is non-zero (input).

hSndMsg The handle of a message object that specifies the properties of the
message being sent (input). If dataLen is zero, it can also contain
the message data. If specified as AMH_NULL_HANDLE, the
default message object (constant: AMSD_SND_MSG_HANDLE) is
used.

pCompCode Completion code (output).

pReason Reason code (output).

| amSndSendFile
| Sends data from a file.The file data can be received as normal message data by a
| target application using amRcvReceive or used to reconstruct the file with
| amRcvReceiveFile.

| AMBOOL amSndSendFile(
| AMHSND hSender,
| AMHPOL hPolicy,
| AMLONG options,
| AMLONG directoryLen,
| AMSTR directory,
| AMLONG fileNameLen,
| AMSTR fileName,
| AMHMSG hSndMsg,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hSender The sender handle returned by amSesCreateSender (input).

| hPolicy The handle of a policy (input). If specified as
| AMH_NULL_HANDLE, the system default policy (constant:
| AMSD_POL_HANDLE) is used.

| options A reserved field that must be specified as zero.

| directoryLen A reserved field that must be specified as zero (input).

| directory A reserved field that must be specified as NULL (input).

| fileNameLen The length of the file name in bytes (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| fileName The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| the send operation is a physical-mode file transfer, then the
| filename will travel with the message for use with a receive file call
| (see “amRcvReceiveFile” on page 124 for more details). Note that
| the filename sent will exactly match the supplied filename; it will
| not be converted or expanded in any way.

| hSndMsg The handle of the message object to use to send the file (input).
| This can be used to specify the Correlation ID for example. If
| specified as AMH_NULL_HANDLE, the system default send
| message (constant: AMSD_SND_MSG_HANDLE) is used.

| pCompCode Completion code (output).

| pReason Reason code (output).

 Chapter 5. C object interface reference 113

 C sender interface

| Usage Notes
| If, in your application, you have previously used a message object, referenced by
| either handle or name, to send or receive data (including AMI elements or topics),
| you will need to explicitly call amMsgReset before re-using the object for sending a
| file. This applies even if you use the system default object handle (constant:
| AMSD_SND_MSG_HANDLE).

114 MQSeries Application Messaging Interface

 C receiver interface

Receiver interface functions
A receiver object encapsulates an MQSeries object descriptor (MQOD) structure.
This represents a local MQSeries queue. An open receiver service is always
associated with an open connection object, such as a queue manager connection.
Support is also included for dynamic receiver services (that encapsulate model
queues). The required receiver service object definitions can be provided from a
repository or can be created automatically from the set of existing queue objects
available on the local queue manager.

There is a definition type associated with each receiver service:

 AMDT_UNDEFINED
 AMDT_TEMP_DYNAMIC
 AMDT_DYNAMIC
 AMDT_PREDEFINED

A receiver service created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type might
change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to the
properties of its underlying queue object.

A receiver service created with default values (that is, without a repository
definition) will have its definition type set to AMDT_UNDEFINED until it is opened.
When opened, this will become AMDT_DYNAMIC, AMDT_TEMP_DYNAMIC, or
AMDT_PREDEFINED, according to the properties of its underlying queue object.

 amRcvBrowse
| Browses a message. See the MQSeries Application Programming Guide for a full
| description of the browse options.

 AMBOOL amRcvBrowse(
 AMHRCV hReceiver,
 AMHPOL hPolicy,
 AMLONG options,
 AMLONG buffLen,
 PAMLONG pDataLen,
 PAMBYTE pData,
 AMHMSG hRcvMsg,
 AMHSND hSender,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

 Chapter 5. C object interface reference 115

 C receiver interface

options Options controlling the browse operation (input). Possible values
are:

AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
message under the browse cursor.

Note that a locked message is unlocked by another browse or
| receive, even though it is not for the same message. The locking
| feature is not available on OS/390.

buffLen The length in bytes of a buffer in which the data is returned (input).

To return the data in the message object (rcvMsgName), set buffLen
to zero and pDataLen to NULL.

To return the message data in the pData parameter, set buffLen to
the required length and pDataLen to NULL.

To return only the data length (so that the required buffer size can
be determined before issuing a second function call to return the
data), set buffLen to zero. pDataLen must not be set to NULL.
Accept Truncated Message in the policy receive attributes must
not be selected (the default), otherwise the message will be
discarded with an AMRC_MSG_TRUNCATED warning.

To return the message data in the pData parameter, together with
the data length, set buffLen to the required length. pDataLen
must not be set to NULL. If the buffer is too small, and Accept
Truncated Message is not selected in the policy receive attributes
(the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
generated. If the buffer is too small, and Accept Truncated
Message is selected in the policy receive attributes, the truncated
message is returned with an AMRC_MSG_TRUNCATED warning.

pDataLen The length of the message data in bytes (output). If specified as
NULL, the data length is not returned.

pData The received message data (output).

hRcvMsg The handle of the message object for the received message
(output).

hSender The handle of the response sender service that the response
message must be sent to, if this is a request message (output).
This sender service must be created without a repository definition,
and used exclusively for sending a response. Its definition type
must be AMDT_UNDEFINED (it will be set to AMDT_RESPONSE
by this call).

pCompCode Completion code (output).

pReason Reason code (output).

116 MQSeries Application Messaging Interface

 C receiver interface

| amRcvBrowseSelect
| Browses a message identified by specifying the Correlation ID from the selection
| message as a selection criterion. See the MQSeries Application Programming
| Guide for a full description of the browse options.

| AMBOOL amRcvBrowseSelect(
| AMHRCV hReceiver,
| AMHPOL hPolicy,
| AMLONG options,
| AMHMSG hSelMsg,
| AMLONG buffLen,
| PAMLONG pDataLen,
| PAMBYTE pData,
| AMHMSG hRcvMsg,
| AMHSND hSender,
| PAMLONG pCompCode,
| PAMLONG pReason);

| hReceiver The receiver handle returned by amSesCreateReceiver (input).

| hPolicy The handle of a policy (input). If specified as
| AMH_NULL_HANDLE, the system default policy (constant:
| AMSD_POL_HANDLE) is used.

| options Options controlling the browse operation (input). Possible values
| are:

| AMBRW_NEXT
| AMBRW_FIRST
| AMBRW_CURRENT
| AMBRW_RECEIVE_CURRENT
| AMBRW_DEFAULT (AMBRW_NEXT)
| AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
| AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
| AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
| AMBRW_UNLOCK

| AMBRW_RECEIVE_CURRENT is equivalent to amRcvReceive for the
| message under the browse cursor.

| Note that a locked message is unlocked by another browse or
| receive, even though it is not for the same message. The locking
| feature is not available on OS/390.

| hSelMsg The handle of a selection message object (input). This is used
| together with the browse options to identify the message to be
| received (for example, using the Correlation ID). Specify as
| AMH_NULL_HANDLE to get the next available message. The
| CCSID, element CCSID, and encoding values from the selection
| message define the target values for any data conversions. If
| target conversion values are required without using the Correlation
| ID for selection, then this can be reset (see amMsgSetCorrelId on
| page 103) before invoking the amRcvBrowseSelect function.

| buffLen The length in bytes of a buffer in which the data is returned (input).

| To return the data in the message object (rcvMsgName), set buffLen
| to zero and pDataLen to NULL.

 Chapter 5. C object interface reference 117

 C receiver interface

| To return the message data in the pData parameter, set buffLen to
| the required length and pDataLen to NULL.

| To return only the data length (so that the required buffer size can
| be determined before issuing a second function call to return the
| data), set buffLen to zero. pDataLen must not be set to NULL.
| Accept Truncated Message in the policy receive attributes must
| not be selected (the default), otherwise the message data will be
| discarded with an AMRC_MSG_TRUNCATED warning.

| To return the message data in the pData parameter, together with
| the data length, set buffLen to the required length. pDataLen
| must not be set to NULL. If the buffer is too small, and Accept
| Truncated Message is not selected in the policy receive attributes
| (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
| generated. If the buffer is too small, and Accept Truncated
| Message is selected in the policy receive attributes, the truncated
| message is returned with an AMRC_MSG_TRUNCATED warning.

| pDataLen The length of the message data in bytes (output). If specified as
| NULL, the data length is not returned.

| pData The received message data (output).

| hRcvMsg The handle of the message object for the received message
| (output).

| hSender The handle of the response sender service that the response
| message must be sent to, if this is a request message (output).
| This sender service must be created without a repository definition,
| and used exclusively for sending a response. Its definition type
| must be AMDT_UNDEFINED (it will be set to AMDT_RESPONSE
| by this call).

| pCompCode Completion code (output).

| pReason Reason code (output).

 amRcvClearErrorCodes
Clears the error codes in the receiver service object.

 AMBOOL amRcvClearErrorCodes(
 AMHRCV hReceiver,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

pCompCode Completion code (output).

pReason Reason code (output).

118 MQSeries Application Messaging Interface

 C receiver interface

 amRcvClose
Closes the receiver service.

 AMBOOL amRcvClose(
 AMHRCV hReceiver,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amRcvGetDefnType
Gets the definition type of the receiver service.

 AMBOOL amRcvGetDefnType(
 AMHRCV hReceiver,
 PAMLONG pType,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

pType The definition type (output). It can be one of the following:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the
underlying queue object.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 119

 C receiver interface

 amRcvGetLastError
Gets the information (completion and reason codes) from the last error for the
receiver object.

 AMBOOL amRcvGetLastError(
 AMHRCV hReceiver,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amRcvGetLastError function call has itself detected an error and
failed.

 amRcvGetName
Gets the name of the receiver service.

 AMBOOL amRcvGetName(
 AMHRCV hReceiver,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The name of the receiver service (output).

pCompCode Completion code (output).

pReason Reason code (output).

120 MQSeries Application Messaging Interface

 C receiver interface

 amRcvGetQueueName
Gets the queue name of the receiver service. This is used to determine the queue
name of a permanent dynamic receiver service, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See
also amRcvSetQueueName.)

 AMBOOL amRcvGetQueueName(
 AMHRCV hReceiver,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pQueueName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

buffLen The length in bytes of a buffer in which the queue name is
returned (input).

pNameLen The length of the queue name, in bytes (output).

pQueueName The queue name of the receiver service (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amRcvOpen
Opens the receiver service.

 AMBOOL amRcvOpen(
 AMHRCV hReceiver,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 121

 C receiver interface

 amRcvReceive
Receives a message.

 AMBOOL amRcvReceive(
 AMHRCV hReceiver,
 AMHPOL hPolicy,
 AMHMSG hSelMsg,
 AMLONG buffLen,
 PAMLONG pDataLen,
 PAMBYTE pData,
 AMHMSG hRcvMsg,
 AMHSND hSender,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hSelMsg The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next

| available message with no selection. The CCSID, element CCSID,
| and encoding values from the selection message define the target
| values for any data conversions. If target conversion values are
| required without using the Correlation ID for selection, then this
| can be reset (see amMsgSetCorrelId on page 78) before invoking
| the amRcvReceive function.

buffLen The length in bytes of a buffer in which the data is returned (input).

pDataLen The length of the message data, in bytes (output). If specified as
NULL, the data length is not returned.

pData The received message data (output).

hRcvMsg The handle of the message object for the received message
(output). If specified as AMH_NULL_HANDLE, the default
message object (constant: AMSD_RCV_MSG_HANDLE) is used.
The message object is reset implicitly before the receive takes
place.

hSender The handle of the response sender service that a response
message must be sent to, if this is a request message (output).
This sender service must be created without a repository definition,
and used exclusively for sending a response. Its definition type
must be AMDT_UNDEFINED (it will be set to AMDT_RESPONSE
by this call).

pCompCode Completion code (output).

pReason Reason code (output).

122 MQSeries Application Messaging Interface

 C receiver interface

| Usage notes
| To return the data in the message object (rcvMsgName), set buffLen to zero and
| pDataLen to NULL.

| To return the message data in the pData parameter, set buffLen to the required
| length and pDataLen to NULL.

| To return only the data length (so that the required buffer size can be determined
| before issuing a second function call to return the data), set buffLen to zero.
| pDataLen must not be set to NULL. Accept Truncated Message in the policy receive
| attributes must not be selected (the default), otherwise the message will be
| discarded with an AMRC_MSG_TRUNCATED warning.

| To return the message data in the pData parameter, together with the data length,
| set buffLen to the required length. pDataLen must not be set to NULL. If the
| buffer is too small, and Accept Truncated Message is not selected in the policy
| receive attributes (the default), an AMRC_RECEIVE_BUFF_LEN_ERR error will be
| generated. If the buffer is too small, and Accept Truncated Message is selected in
| the policy receive attributes, the truncated message is returned with an
| AMRC_MSG_TRUNCATED warning.

| To remove the message from the queue (because it is not wanted by the
| application), Accept Truncated Message must be set to selected in the policy
| receive attributes. You can then remove the message by specifying zero in the
| buffLen parameter, a null in the pDataLen parameter, and a non-null in the pData
| parameter.

 Chapter 5. C object interface reference 123

 C receiver interface

| amRcvReceiveFile
| Receives file message data into a file.

| AMBOOL amRcvReceiveFile(
| AMHRCV hReceiver,
| AMHPOL hPolicy,
| AMHLONG options,
| AMHMSG hSelMsg,
| AMLONG directoryLen,
| AMSTR directory,
| AMLONG fileNameLen,
| AMSTR fileName,
| AMHMSG hRcvMsg,
| PAMLONG pCompCode,
| PAMLONG pReason);

| hReceiver The receiver handle returned by amSesCreateReceiver (input).

| hPolicy The handle of a policy (input). If specified as
| AMH_NULL_HANDLE, the system default policy (constant:
| AMSD_POL_HANDLE) is used.

| options A reserved field that must be specified as zero (input).

| hSelMsg The handle of a selection message object (input). This is used to
| identify the message to be received (for example, using the
| correlation ID). Specify as AMH_NULL_HANDLE to get the next
| available message with no selection. The CCSID, element CCSID,
| and encoding values from the selection message define the target
| values for any data conversions. If target conversion values are
| required without using the Correlation ID for selection, then this
| can be reset (see amMsgSetCorrelId on page 103) before
| invoking the amRcvReceiveFile function.

| directoryLen A reserved field that must be specified as zero (input).

| directory A reserved field that must be specified as NULL (input).

| fileNameLen The length of the file name in bytes (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated, in
| which case the AMI will work out the length itself.

| fileName The name of the file into which the transferred data is to be
| received (input). This can include a directory prefix to define a
| fully-qualified or relative file name. If NULL or a null string is
| specified, then the AMI will use the name of the originating file
| (including any directory prefix), exactly as it was supplied on the
| send file call. Note that the original filename may not be
| appropriate for use by the receiver, either because a pathname
| included in the filename is not applicable to the receiving system,
| or because the sending and receiving systems use different
| filename conventions.

| hRcvMessage The handle of the message object to use to receive the file. This
| parameter is updated with the message properties, for example the
| Message ID. If the message is not a file message, hRcvMessage
| receives the message data. If hRcvMessage is specified as
| AMH_NULL_HANDLE, the default message object (constant

124 MQSeries Application Messaging Interface

 C receiver interface

| AMSD_RCV_MSG_HANDLE) is used. The message object is
| reset implicitly before the receive takes place.

| pCompCode Completion code (output).

| pReason Reason code (output).

| Usage notes
| If fileName is blank (indicating that the originating file name specified in the
| message is to be used), then fileNameLength should be set to zero.

 amRcvSetQueueName
Sets the queue name of the receiver service, when this encapsulates a model
queue. This can be used to specify the queue name of a recreated permanent
dynamic receiver service, in order to receive messages in a session subsequent to
the one in which it was created. (See also amRcvGetQueueName.)

 AMBOOL amRcvSetQueueName(
 AMHRCV hReceiver,
 AMLONG nameLen,
 AMSTR pQueueName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hReceiver The receiver handle returned by amSesCreateReceiver (input).

nameLen The length of the queue name, in bytes (input). A value of
AMLEN_NULL_TERM specifies that the string is NULL terminated.

pQueueName The queue name of the receiver service (input).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 125

 C distribution list interface

Distribution list interface functions
A distribution list object encapsulates a list of sender objects.

 amDstClearErrorCodes
Clears the error codes in the distribution list object.

 AMBOOL amDstClearErrorCodes(
 AMHDST hDistList,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

pCompCode Completion code (output).

pReason Reason code (output).

 amDstClose
Closes the distribution list.

 AMBOOL amDstClose(
 AMHDST hDistList,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amDstGetLastError
Gets the information (completion and reason codes) from the last error in the
distribution list object.

 AMBOOL amDstGetLastError(
 AMHDST hDistList,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

buffLen Reserved, must be zero (input).

126 MQSeries Application Messaging Interface

 C distribution list interface

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amDstGetLastError function call has itself detected an error and
failed.

 amDstGetName
Gets the name of the distribution list object.

 AMBOOL amDstGetName(
 AMHDST hDistList,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The distribution list object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amDstGetSenderCount
Gets a count of the number of sender services in the distribution list.

 AMBOOL amDstGetSenderCount(
 AMHDST hDistList,
 PAMLONG pCount,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

pCount The number of sender services (output).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 127

 C distribution list interface

 amDstGetSenderHandle
Returns the handle (type AMHSND) of a sender service in the distribution list object
with the specified index.

 AMHSND amDstGetSenderHandle(
 AMHDST hDistList,
 AMLONG handleIndex,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

handleIndex The index of the required sender service in the distribution list
(input). Specify an index of zero to return the first sender service
in the list. amDstGetSenderCount gets the number of sender
services in the distribution list.

pCompCode Completion code (output).

pReason Reason code (output).

 amDstOpen
Opens the distribution list object for each of the destinations in the distribution list.
The completion and reason codes returned by this function call indicate if the open
was unsuccessful, partially successful, or completely successful.

 AMBOOL amDstOpen(
 AMHDST hDistList,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

128 MQSeries Application Messaging Interface

 C distribution list interface

 amDstSend
Sends a message to each sender in the distribution list.

 AMBOOL amDstSend(
 AMHDST hDistList,
 AMHPOL hPolicy,
 AMHRCV hReceiver
 AMLONG dataLen,
 PAMBYTE pData,
 AMHMSG hMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hDistList The distribution list handle returned by amSesCreateDistList
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
message should be sent, if the message being sent is a request
message (input). Specify as AMH_NULL_HANDLE if no response
is required.

dataLen The length of the message data, in bytes (input). If set to zero, the
data should be passed in the message object (hMsg).

pData The message data (input).

hMsg The handle of a message object that specifies the properties for
the message being sent (input). If dataLen is zero, it should also
contain the message data. If specified as AMH_NULL_HANDLE,
the default send message object (constant:
AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 129

 C distribution list interface

| amDstSendFile
| Sends data from a file to each sender in the distribution list. The file data can be
| received as normal message data by a target application using amRcvReceive or
| used to reconstruct the file with amRcvReceiveFile.

| AMBOOL amDstSendFile(
| AMHDST hDistList,
| AMHPOL hPolicy,
| AMLONG options,
| AMLONG directoryLen,
| AMSTR directory,
| AMLONG fileNameLen,
| AMSTR fileName,
| AMHMSG hMsg,
| PAMLONG pCompCode,
| PAMLONG pReason);

| Parameters
| hDistList The distribution list handle returned by amSesCreateDistList
| (input).

| hPolicy The handle of a policy (input). If specified as
| AMH_NULL_HANDLE, the system default policy (constant:
| AMSD_POL_HANDLE) is used.

| options Reserved, must be specified as 0L (input).

| directoryLen A reserved field that must be specified as zero (input).

| directory A reserved field that must be specified as NULL (input).

| fileNameLen The length of the file name in bytes (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| fileName The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| the send operation is a physical-mode file transfer, then the
| filename will travel with the message for use with a receive file call
| (see “amRcvReceiveFile” on page 124 for more details). Note that
| the filename sent will exactly match the supplied filename; it will
| not be converted or expanded in any way.

| hMsg The handle of the message object to use to send the file (input).
| This can be used to specify the Correlation ID for example. If
| specified as ANM_NULL_HANDLE, the default send message
| object (constant: AMSD_SND_MSG_HANDLE) is used.

| pCompCode Completion code (output).

| pReason Reason code (output).

| Usage Notes
| If, in your application, you have previously used a message object, referenced by
| either handle or name, to send or receive data (including AMI elements or topics),
| you will need to explicitly call amMsgReset before re-using the object for sending a
| file. This applies even if you use the system default object handle (constant:
| AMSD_SND_MSG_HANDLE).

130 MQSeries Application Messaging Interface

 C distribution list interface

| The system default message object handle is used when you specify hMsg as
| AMH_NULL_HANDLE.

 Chapter 5. C object interface reference 131

 C publisher interface

Publisher interface functions
A publisher object encapsulates a sender object. It provides support for publish
messages to a publish/subscribe broker.

 amPubClearErrorCodes
Clears the error codes in the publisher object.

 AMBOOL amPubClearErrorCodes(
 AMHPUB hPublisher,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amPubClose
Closes the publisher service.

 AMBOOL amPubClose(
 AMHPUB hPublisher,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amPubGetCCSID
Gets the coded character set identifier of the publisher service. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.

 AMBOOL amPubGetCCSID(
 AMHPUB hPublisher,
 PAMLONG pCCSID,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

132 MQSeries Application Messaging Interface

 C publisher interface

 amPubGetEncoding
Gets the value used to encode numeric data types for the publisher service. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

 AMBOOL amPubGetEncoding(
 AMHPUB hPublisher,
 PAMLONG pEncoding,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

pEncoding The encoding (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amPubGetLastError
Gets the information (completion and reason codes) from the last error for the
publisher object.

 AMBOOL amPubGetLastError(
 AMHPUB hPublisher,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amPubGetLastError function call has itself detected an error and
failed.

 Chapter 5. C object interface reference 133

 C publisher interface

 amPubGetName
Gets the name of the publisher service.

 AMBOOL amPubGetName(
 AMHPUB hPublisher,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The publisher object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amPubOpen
Opens the publisher service.

 AMBOOL amPubOpen(
 AMHPUB hPublisher,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

134 MQSeries Application Messaging Interface

 C publisher interface

 amPubPublish
Publishes a message using the publisher service.

The message data is passed in the message object. There is no option to pass it
as a separate parameter as with amSndSend (this would not give any performance
improvement because the MQRFH header has to be added to the message data
prior to publishing it).

 AMBOOL amPubPublish(
 AMHPUB hPublisher,
 AMHPOL hPolicy,
 AMHRCV hReceiver,
 AMHMSG hPubMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPublisher The publisher handle returned by amSesCreatePublisher (input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
publish request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

hPubMsg The handle of a message object for the publication message
(input). If specified as AMH_NULL_HANDLE, the default message
object (constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 135

 C subscriber interface

Subscriber interface functions
A subscriber object encapsulates both a sender object and a receiver object. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

 amSubClearErrorCodes
Clears the error codes in the subscriber object.

 AMBOOL amSubClearErrorCodes(
 AMHSUB hSubscriber,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

pCompCode Completion code (output).

pReason Reason code (output).

 amSubClose
Closes the subscriber service.

 AMBOOL amSubClose(
 AMHSUB hSubscriber,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 amSubGetCCSID
Gets the coded character set identifier of the subscriber’s sender service. A
non-default value reflects the CCSID of a remote system unable to perform CCSID
conversion of received messages. In this case the subscriber must perform CCSID
conversion of the message before it is sent.

 AMBOOL amSubGetCCSID(
 AMHSUB hSubscriber,
 PAMLONG pCCSID,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

136 MQSeries Application Messaging Interface

 C subscriber interface

pCCSID The coded character set identifier (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSubGetDefnType
Gets the definition type of the subscriber’s receiver service.

 AMBOOL amSubGetDefnType(
 AMHSUB hSubscriber,
 PAMLONG pType,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

pType The definition type (output). It can be:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

pCompCode Completion code (output).

pReason Reason code (output).

 amSubGetEncoding
Gets the value used to encode numeric data types for the subscriber’s sender
service. A non-default value reflects the encoding of a remote system unable to
convert the encoding of received messages. In this case the subscriber must
convert the encoding of the message before it is sent.

 AMBOOL amSubGetEncoding(
 AMHSUB hSubscriber,
 PAMLONG pEncoding,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

pEncoding The encoding (output).

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 137

 C subscriber interface

 amSubGetLastError
Gets the information (completion and reason codes) from the last error for the
subscriber object.

 AMBOOL amSubGetLastError(
 AMHSUB hSubscriber,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_SERVICE_HANDLE_ERR indicates that the
amSubGetLastError function call has itself detected an error and
failed.

 amSubGetName
Gets the name of the subscriber object.

 AMBOOL amSubGetName(
 AMHSUB hSubscriber,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The subscriber object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

138 MQSeries Application Messaging Interface

 C subscriber interface

 amSubGetQueueName
Gets the queue name of the subscriber’s receiver service object. This can be used
to determine the queue name of a permanent dynamic receiver service, so that it
can be recreated with the same queue name in order to receive messages in a
subsequent session. (See also amSubSetQueueName.)

 AMBOOL amSubGetQueueName(
 AMHSUB hSubscriber,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pQueueName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

buffLen The length in bytes of a buffer in which the queue name is
returned (input). Specify as zero to return only the length.

pStringLen The length of the queue name, in bytes (output). If specified as
NULL, the length is not returned.

pQueueName The queue name (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amSubOpen
Opens the subscriber service.

 AMBOOL amSubOpen(
 AMHSUB hSubscriber,
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 139

 C subscriber interface

 amSubReceive
Receives a message, normally a publication, using the subscriber service. The
message data, topic and other elements can be accessed using the message
interface functions (see page 90).

The message data is passed in the message object. There is no option to pass it
as a separate parameter as with amRcvReceive (this would not give any
performance improvement because the MQRFH header has to be removed from
the message data after receiving it).

 AMBOOL amSubReceive(
 AMHSUB hSubscriber,
 AMHPOL hPolicy,
 AMHMSG hSelMsg,
 AMHMSG hRcvMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hSelMsg The handle of a selection message object (input). This is used to
identify the message to be received (for example, using the
correlation ID). Specify as AMH_NULL_HANDLE to get the next
available message with no selection.

hRcvMsg The handle of the message object for the received message
(output). If specified as AMH_NULL_HANDLE, the default
message object (constant: AMSD_RCV_MSG_HANDLE) is used.
The message object is reset implicitly before the receive takes
place.

pCompCode Completion code (output).

pReason Reason code (output).

 amSubSetQueueName
Sets the queue name of the subscriber’s receiver object, when this encapsulates a
model queue. This can be used to specify the queue name of a recreated
permanent dynamic receiver service, in order to receive messages in a session
subsequent to the one in which it was created. (See also amSubGetQueueName.)

 AMBOOL amSubSetQueueName(
 AMHSUB hSubscriber,
 AMLONG nameLen,
 AMSTR pQueueName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

nameLen The length of the queue name, in bytes (input).

140 MQSeries Application Messaging Interface

 C subscriber interface

pQueueName The queue name (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amSubSubscribe
Sends a subscribe message to a publish/subscribe broker using the subscriber
service, to register a subscription. The topic and other elements can be specified
using the message interface functions (see page 90) before sending the message.

Publications matching the subscription are sent to the receiver service associated
with the subscriber. By default, this has the same name as the subscriber service,
with the addition of the suffix ‘.RECEIVER’.

 AMBOOL amSubSubscribe(
 AMHSUB hSubscriber,
 AMHPOL hPolicy,
 AMHRCV hReceiver,
 AMHMSG hSubMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
subscribe request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required.

This is not the service to which publications will be sent by the
broker; they are sent to the receiver service associated with the
subscriber (see above).

hSubMsg The handle of a message object for the subscribe message (input).
If specified as AMH_NULL_HANDLE, the default message object
(constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

 Chapter 5. C object interface reference 141

 C subscriber interface

 amSubUnsubscribe
Sends an unsubscribe message to a publish/subscribe broker using the subscriber
service, to deregister a subscription. The topic and other elements can be
specified using the message interface functions (see page 90) before sending the
message.

To deregister all topics, a policy providing this option must be specified (this is not
the default policy). Otherwise, to remove a previous subscription the topic
information specified must match that specified on the relevant amSubSubscribe
request.

 AMBOOL amSubUnsubscribe(
 AMHSUB hSubscriber,
 AMHPOL hPolicy,
 AMHRCV hReceiver,
 AMHMSG hUnsubMsg,
 PAMLONG pCompCode,
 PAMLONG pReason);

hSubscriber The subscriber handle returned by amSesCreateSubscriber
(input).

hPolicy The handle of a policy (input). If specified as
AMH_NULL_HANDLE, the system default policy (constant:
AMSD_POL_HANDLE) is used.

hReceiver The handle of the receiver service to which the response to this
unsubscribe request should be sent (input). Specify as
AMH_NULL_HANDLE if no response is required.

hUnsubMsg The handle of a message object for the unsubscribe message
(input). If specified as AMH_NULL_HANDLE, the default message
object (constant: AMSD_SND_MSG_HANDLE) is used.

pCompCode Completion code (output).

pReason Reason code (output).

142 MQSeries Application Messaging Interface

 C policy interface

Policy interface functions
A policy object encapsulates the set of options used for each AMI request (open,
close, send, receive, publish and so on). Examples are the priority and persistence
of the message, and whether the message is included in a unit of work.

 amPolClearErrorCodes
Clears the error codes in the policy object.

 AMBOOL amPolClearErrorCodes(
 AMHPOL hPolicy,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

pCompCode Completion code (output).

pReason Reason code (output).

 amPolGetLastError
Gets the information (completion and reason codes) from the last error for the
policy object.

 AMBOOL amPolGetLastError(
 AMHPOL hPolicy,
 AMLONG buffLen,
 PAMLONG pStringLen,
 AMSTR pErrorText,
 PAMLONG pReason2,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

buffLen Reserved, must be zero (input).

pStringLen Reserved, must be NULL (input).

pErrorText Reserved, must be NULL (input).

pReason2 A secondary reason code (output). Not returned if specified as
NULL. If pReason indicates AMRC_TRANSPORT_WARNING or
AMRC_TRANSPORT_ERR, pReason2 gives an MQSeries reason
code.

pCompCode Completion code (output). Not returned if specified as NULL.

pReason Reason code (output). Not returned if specified as NULL. A value
of AMRC_POLICY_HANDLE_ERR indicates that the
amPolGetLastError function call has itself detected an error and
failed.

 Chapter 5. C object interface reference 143

 C policy interface

 amPolGetName
Returns the name of the policy object.

 AMBOOL amPolGetName(
 AMHPOL hPolicy,
 AMLONG buffLen,
 PAMLONG pNameLen,
 AMSTR pName,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

buffLen The length in bytes of a buffer into which the name is put (input).
Set it to zero to return only the name length.

pNameLen The length of the name, in bytes (output). Set it to NULL to return
only the name.

pName The policy object name (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amPolGetWaitTime
Returns the wait time (in ms) set for this policy.

 AMBOOL amPolGetWaitTime(
 AMHPOL hPolicy,
 PAMLONG pWaitTime,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

pWaitTime The wait time, in ms (output).

pCompCode Completion code (output).

pReason Reason code (output).

 amPolSetWaitTime
Sets the wait time for any receive function using this policy.

 AMBOOL amPolSetWaitTime(
 AMHPOL hPolicy,
 AMLONG waitTime,
 PAMLONG pCompCode,
 PAMLONG pReason);

hPolicy The policy handle returned by amSesCreatePolicy (input).

waitTime The wait time (in ms) to be set in the policy (input).

pCompCode Completion code (output).

pReason Reason code (output).

144 MQSeries Application Messaging Interface

Part 3. The C++ interface

This part contains:

� Chapter 6, “Using the Application Messaging Interface in C++” on page 147

� Chapter 7, “C++ interface overview” on page 165

� Chapter 8, “C++ interface reference” on page 181

 Copyright IBM Corp. 1999, 2000 145

146 MQSeries Application Messaging Interface

 Structure of the AMI

Chapter 6. Using the Application Messaging Interface in C++

The Application Messaging Interface for C++ (amCpp) provides a C++ style of
programming, while being consistent with the object-style interface of the
Application Messaging Interface for C.

This chapter describes the following:

� “Structure of the AMI”

� “Writing applications in C++” on page 149

� “Building C++ applications” on page 159

Note that the term object is used in this book in the object-oriented programming
sense, not in the sense of MQSeries ‘objects’ such as channels and queues.

Structure of the AMI
The following classes are provided:

 Base classes
AmSessionFactory Creates AmSession objects.

AmSession Creates objects within the AMI session, and controls
transactional support.

AmMessage Contains the message data, message ID and correlation ID,
and options that are used when sending or receiving a
message (most of which come from the policy definition).

AmSender This is a service that represents a destination (such as an
MQSeries queue) to which messages are sent.

AmReceiver This is a service that represents a source (such as an
MQSeries queue) from which messages are received.

AmDistributionList Contains a list of sender services to provide a list of
destinations.

AmPublisher Contains a sender service where the destination is a
publish/subscribe broker.

AmSubscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe broker) and a
receiver service (to receive publications from the broker).

AmPolicy Defines how the message should be handled, including items
such as priority, persistence, and whether it is included in a
unit of work.

 Copyright IBM Corp. 1999, 2000 147

 Structure of the AMI

Interface and helper classes
AmObject This is an abstract class, from which the base classes listed

above inherit (with the exception of AmSessionFactory).

AmElement This encapsulates name/value pairs for use in
publish/subscribe applications.

AmStatus This encapsulates the error status of amCpp objects.

AmString This encapsulates string data.

AmBytes This encapsulates binary/byte data.

 Exception classes
AmException This is the base Exception class for amCpp; all other amCpp

Exceptions inherit from this class.

AmErrorException An Exception of this type is raised when an amCpp object
experiences an error with a severity level of FAILED
(CompletionCode = AMCC_FAILED).

AmWarningException An Exception of this type is raised when an amCpp object
experiences an error with a severity level of WARNING
(CompletionCode = AMCC_WARNING), provided that
warnings have been enabled using the enableWarnings
method.

Using the repository
You can run AMI applications with or without a repository. If you don’t have a
repository, you can create an object by specifying its name in a method. It will be
created using the appropriate system provided definition (see “System provided
definitions” on page 472).

If you have a repository, and you specify the name of an object in a method that
matches a name in the repository, the object will be created using the repository
definition. (If no matching name is found in the repository, the system provided
definition will be used.)

System default objects
The set of system default objects created in C is not accessible directly in C++, but
the SYSTEM.DEFAULT.POLICY (constant: AMSD_POL) is used to provide default
behavior when a policy is not specified. Objects with identical properties to the
system default objects can be created for use in C++ using the built-in definitions
(see “System provided definitions” on page 472).

148 MQSeries Application Messaging Interface

 Writing applications in C++

Writing applications in C++
This section gives a number of examples showing how to access the Application
Messaging Interface using C++.

Many of the method calls are overloaded and in some cases this results in default
objects being used. One example of this is the AmPolicy object which can be
passed on many of the methods. For example:

 Method overloading

 mySender->send(:mySendMessage, :myPolicy);

 mySender->send(:mySendMessage);

If a policy has been created to provide specific send behavior, use the first
example. However, if the default policy is acceptable, use the second example.

The defaulting of behavior using method overloading is used throughout the
examples.

Creating and opening objects
Before using the AMI, you must create and open the required objects. Objects are
created with names, which might correspond to named objects in the repository. In
the case of the creation of a response sender (myResponder) in the example below,
the default name for a response type object is specified, so the object is created
with default responder values.

Creating AMI objects

mySessionFactory = new AmSessionFactory("MY.REPOSITORY.XML");
mySession = mySessionFactory->createSession("MY.SESSION");
myPolicy = mySession->createPolicy("MY.POLICY");

mySender = mySession->createSender("AMT.SENDER.QUEUE");
myReceiver = mySession->createReceiver("AMT.RECEIVER.QUEUE");
myResponder = mySession->createSender(AMDEF_RSP_SND);

mySendMessage = mySession->createMessage("MY.SEND.MESSAGE");
myReceiveMessage = mySession->createMessage("MY.RECEIVE.MESSAGE");

The objects are then opened. In the following examples, the session object is
opened with the default policy, whereas the sender and receiver objects are
opened with a specified policy (myPolicy).

Opening the AMI objects

 mySession->open();
 mySender->open(:myPolicy);
 myReceiver->open(:myPolicy);

 Chapter 6. Using the Application Messaging Interface in C++ 149

 Writing applications in C++

| Deleting objects
| In order to avoid memory leaks, it is essential to explicitly delete all C++ objects
| that you have created at the end of your program. Delete the session after
| everything other than the session factory. Delete the session factory last.

| The following is an example from the Receiver.cpp sample program:

| Deleting AMI objects

| mySession->deleteMessage(myReceiveMsg);
| mySession->deleteReceiver(myReceiver);
| mySession->deletePolicy(myPolicy);
| mySessionFactory->deleteSession(mySession);
| delete :mySessionFactory;

 Sending messages
The examples in this section show how to send a datagram (send and forget)
message. First, the message data is written to the mySendMessage object. Data is
always sent in byte form using the AmBytes helper class.

Writing data to a message object

AmBytes :dataSent = new AmBytes((const char:)"message to be sent");
 mySendMessage->writeBytes(:dataSent);

Next, the message is sent using the sender service mySender.

Sending a message

 mySender->send(:mySendMessage);

The policy used is either the default policy for the service, if specified, or the
system default policy. The message attributes are set from the policy or service, or
the default for the messaging transport.

When more control is needed you can pass a policy object:

Sending a message with a specified policy

 mySender->send(:mySendMessage, :myPolicy);

The policy controls the behavior of the send command. In particular, the policy
specifies whether the send is part of a unit of work, the priority, persistence and
expiry of the message and whether policy components should be invoked.
Whether the queue should be implicitly opened and left open can also be
controlled.

To send a message to a distribution list, for instance myDistList, use it as the
sender service:

Sending a message to a distribution list

 myDistList->send(:mySendMessage);

150 MQSeries Application Messaging Interface

 Writing applications in C++

You can set an attribute such as the Format before a message is sent, to override
the default in the policy or service.

Setting an attribute in a message

 mySendMessage->setFormat("MyFormat"):

Similarly, after a message has been sent you can retrieve an attribute such as the
MessageID. Binary data, such as MessageId can be extracted using the AmBytes
helper class.

Getting an attribute from a message

AmBytes msgId = mySendMessage.getMessageId();

For details of the message attributes that you can set and get, see “AmMessage”
on page 169.

When a message object is used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see “reset” on
page 195) and rebuild it each time.

 Sample program
For more details, refer to the SendAndForget.cpp sample program (see “Sample
programs for Unix and Windows” on page 464).

 Receiving messages
The next example shows how to receive a message from the receiver service
myReceiver, and to read the data from the message object myReceiveMessage.

Receiving a message and retrieving the data

 myReceiver->receive(:myReceiveMessage);
AmBytes data = myReceiveMessage->readBytes(

 myReceiveMessage->getDataLength());

The policy used will be the default for the service if defined, or the system default
policy. Greater control of the behavior of the receive can be achieved by passing a
policy object.

Receiving a message with a specified policy

 myReceiver->receive(:myReceiveMessage, :myPolicy);

The policy can specify the wait interval, whether the call is part of a unit of work,
whether the message should be code page converted, whether all the members of
a group must be there before any members can be read, and how to deal with
backout failures.

To receive a specific message using its correlation ID, create a selection message
object and set its CorrelId attribute to the required value. The selection message
is then passed as a parameter on the receive.

 Chapter 6. Using the Application Messaging Interface in C++ 151

 Writing applications in C++

Receiving a specific message using the correlation ID

AmBytes : myCorrelId = new AmBytes("MYCORRELATION");
mySelectionMessage = mySession->createMessage("MY.SELECTION.MESSAGE");

 mySelectionMessage->setCorrelationId(:myCorrelId);
myReceiver->receive(:myReceiveMessage, :mySelectionMessage, :myPolicy);

As before, the policy is optional.

You can view the attributes of the message just received, such as the Encoding.

Getting an attribute from the message

encoding = myReceiveMessage->getEncoding();

 Sample program
For more details, refer to the Receiver.cpp sample program (see “Sample
programs for Unix and Windows” on page 464).

 Request/response messaging
In the request/response style of messaging, a requester (or client) application
sends a request message and expects to receive a response message back. The
responder (or server) application receives the request message and produces the
response message (or messages) which it sends back to the requester application.
The responder application uses information in the request message to know how to
send the response message back to the requester.

In the following examples ‘my’ refers to the requesting application (the client); ‘your’
refers to the responding application (the server).

The requester sends a message as described in “Sending messages” on
page 150, specifying the service (myReceiver) to which the response message
should be sent.

Sending a request message

 mySender->send(:mySendMessage, :myReceiver);

A policy object can also be specified if required.

The responder receives the message as described in “Receiving messages” on
page 151, using its receiver service (yourReceiver). It also receives details of the
response service (yourResponder) for sending the response.

Receiving the request message

 yourReceiver->receive(:yourReceiveMessage, :yourResponder);

A policy object can be specified if required, as can a selection message object (see
“Receiving messages” on page 151).

The responder sends its response message (yourReplyMessage) to the response
service, specifying the received message to which this is a response.

152 MQSeries Application Messaging Interface

 Writing applications in C++

Sending a response to the request message

 yourResponder->send(:yourReplyMessage, :yourReceiveMessage);

Finally, the requester application receives the response (myResponseMessage), which
is correlated with the original message it sent (mySendMessage).

Receiving the response message

 myReceiver->receive(:myResponseMessage, :mySendMessage);

In a typical application the responder might be a server operating in a loop,
receiving requests and replying to them. In this case, the message objects should
be set to their initial state and the data cleared before servicing the next request.
This is achieved as follows:

Resetting the message object

 yourReceiveMessage->reset();
 yourResponseMessage->reset();

 Sample programs
For more details, refer to the Client.cpp and Server.cpp sample programs (see
“Sample programs for Unix and Windows” on page 464).

| File transfer
| You can perform file transfers using the AmSender.sendFile and
| AmReceiver.receiveFile methods.

| Sending a file using the sendFile method

| mySender->sendFile(:mySendMessage,myfilename,:myPolicy)

| Receiving a file using the receiveFile method

| myReceiver->receiveFile(:myReceiveMessage,myfileName,:myPolicy)

| For a complete description of file transfer, refer to “File transfer” on page 19

 Publish/subscribe messaging
With publish/subscribe messaging a publisher application publishes messages to
subscriber applications using a broker. The message published contains application
data and one or more topic strings that describe the data. A subscribing application
subscribes to topics informing the broker which topics it is interested in. When the
broker receives a message from a publisher it compares the topics in the
messages to the topics in the subscription from subscribing applications. If they
match, the broker forwards the message to the subscribing application.

Data on a particular topic is published as shown in the next example.

 Chapter 6. Using the Application Messaging Interface in C++ 153

 Writing applications in C++

Publishing a message on a specified topic

AmBytes :publicationData = new AmBytes("The weather is sunny");

 myPubMessage->addTopic("Weather");
 myPubMessage->writeBytes(publicationData);
 myPublisher->publish(:myPubMessage, :myReceiver);

myReceiver identifies a response service to which the broker will send any response
messages (indicating whether the publish was successful or not). You can also
specify a policy object to modify the behavior of the command.

To subscribe to a publish/subscribe broker you need to specify one or more topics.

Subscribing to a broker on specified topics

 mySubMessage->addTopic("Weather");
 mySubMessage->addTopic("Birds");
 mySubscriber->subscribe(:mySubMessage, :myReceiver);

Broker response messages will be sent to myReceiver.

To remove a subscription, add the topic or topics to be deleted to the message
object, and use:

Removing a subscription

 mySubscriber->unsubscribe(:myUnsubMessage, :myReceiver);

To receive a publication from a broker, use:

Receiving a publication

 mySubscriber->receive(:myReceiveMessage, :myPolicy);
publication = myReceiveMessage->readBytes(

 :myReceiveMessage->getDataLength());

You can then use the getTopicCount and getTopic methods to extract the topic or
topics from the message object.

| Subscribing applications can also exploit content-based publish/subscribe by
| passing a filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator
| Version 2” on page 461).

 Sample programs
For more details, refer to the Publisher.cpp and Subscriber.cpp sample programs
(see “Sample programs for Unix and Windows” on page 464).

154 MQSeries Application Messaging Interface

 Writing applications in C++

Using AmElement objects
Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
carried out. The Application Messaging Interface contains some methods which
produce these name/value pairs directly (such as AmSubscriber->subscribe). For
less commonly used commands, the name/value pairs can be added to a message
using an AmElement object.

For example, to send a message containing a ‘Request Update’ command, use the
following:

Using an AmElement object to construct a command message

AmElement :bespokeElement = new AmElement("MQPSCommand", "ReqUpdate");
 mySendMessage->addElement(:bespokeElement);

You must then send the message, using AmSender->send, to the sender service
specified for your publish/subscribe broker.

If you use streams with MQSeries Publish/Subscribe, you must add the appropriate
name/value element explicitly to the message object.

The message element methods can, in fact, be used to add any element to a
message before issuing an publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications.
They can be used in other applications as well.

 Error handling
The getLastErrorStatus method always reflects the last most severe error
experienced by an object. It can be used to return an AmStatus object
encapsulating this error state. Once the error state has been handled,
clearErrorCodes can be called to reset this error state.

AmCpp can raise two types of Exception, one to reflect serious errors and the other
to reflect warnings. By default, only AmErrorExceptions are raised.
AmWarningExceptions can be enabled using the enableWarnings method. Since
both are types of AmException, a generic catch block can be used to process all
amCpp Exceptions.

Enabling AmWarningExceptions might have some unexpected side-effects,
especially when an AmObject is returning data such as another AmObject. For
example, if AmWarningExceptions are enabled for an AmSession object and an
AmSender is created that does not exist in the repository, an AmWarningException
will be raised to reflect this fact. If this happens, the AmSender object will not be
created since its creation was interrupted by an Exception. However, there might be
times during the life of an AmObject when processing AmWarningExceptions is
useful.

 Chapter 6. Using the Application Messaging Interface in C++ 155

 Writing applications in C++

For example:

 try
 {
 ...
 mySession->enableWarnings(AMB_TRUE);
 mySession->open();
 ...
 }
catch (AmErrorException &errorEx)

 {
AmStatus sessionStatus = mySession->getLastErrorStatus();

 switch (sessionStatus.getReasonCode())
 {
 case AMRC_XXXX:
 ...
 case AMRC_XXXX:
 ...
 }
 mySession->clearErrorCodes();
 }
catch (AmWarningException &warningEx)

 {
 ...
 }

Since most of the objects are types of AmObject, a generic error handling routine
can be written. For example:

 try
 {
 ...
 mySession->open();
 ...
 mySender->send(:myMessage):
 ...
 mySender->send(:myMessage):
 ...
 mySession->commit();
 }
 catch(AmException &amex);
 {

AmStatus status = amex.getSource()->getLastErrorStatus();
printf("Object in error; name = %s\n", amex.getSource()->getName());
printf("Object in error; RC = %ld\n", status.getReasonCode());

 ...
 amex.getSource()->clearErrorCodes();
 }

The catch block works because all objects that throw the AmException in the try
block are AmObjects, and so they all have getName, getLastErrorStatus and
clearErrorCodes methods.

156 MQSeries Application Messaging Interface

 Writing applications in C++

 Transaction support
Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.

� MQSeries messages are the only resource

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using the commit or rollback method.

� Using MQSeries as an XA transaction coordinator

The transaction must be started explicitly using the begin method before the
first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an commit or rollback method.

� Using an external transaction coordinator

The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attributed must still be specified in the policy used on the call.

| Sending group messages
| The AMI allows a sequence of related messages to be included in, and sent as, a
| message group. Group context information is sent with each message to allow the
| message sequence to be preserved and made available to a receiving application.
| In order to include messages in a group, the group status information of the first
| and subsequent messages in the group must be set as follows:

| AMGRP_FIRST_MSG_IN_GROUP for the first message
| AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
| AMGRP_LAST_MSG_IN_GROUP for the last message

| The message status is set using the AmMessage.setGroupStatus method.

| For a complete description of group messages, refer to “Sending group messages”
| on page 25

 Other considerations

 Multithreading
If you are using multithreading with the AMI, a session normally remains locked for
the duration of a single AMI call. If you use receive with wait, the session remains
locked for the duration of the wait, which might be unlimited (that is, until the wait
time is exceeded or a message arrives on the queue). If you want another thread to
run while a thread is waiting for a message, it must use a separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,
open, close, send, receive, publish, subscribe, unsubscribe, and receive publication

 Chapter 6. Using the Application Messaging Interface in C++ 157

 Writing applications in C++

will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using AmSession->open). An attempt to
issue these on a different thread will cause an error to be returned by MQSeries
and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI calls within the same process.

 Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries, the
underlying message transport. See the rules for naming MQSeries objects in the
MQSeries Application Programming Guide.

158 MQSeries Application Messaging Interface

 C++ applications on AIX

Building C++ applications
This section contains information that will help you write, prepare, and run your C++
application programs on the various operating systems supported by the AMI.

AMI include files
AMI provides include files, amtc.h and amtcpp.hpp, to assist you with the writing
of your applications. It is recommended that you become familiar with the contents
of these files.

The include files are installed under:

 /amt/inc (UNIX)

 \amt\include (Windows)

See “Directory structure” on page 435 (AIX), page 440 (HP-UX), page 444
(Solaris), or page 447 (Windows).

Your AMI C++ program must contain the statement:

 #include <amtcpp.hpp>

Even though you need mention only the C++ include file, both amtc.h and
amtcpp.hpp must be accessible to your program at compilation time.

 Next step

Now go to one of the following to continue building a C++ application:

� “C++ applications on AIX”

� “C++ applications on HP-UX” on page 160

� “C++ applications on Solaris” on page 162

� “C++ applications on Windows” on page 163

C++ applications on AIX
This section explains what you have to do to prepare and run your C++ programs
on the AIX operating system. See “Language compilers” on page 432 for the
compilers supported by the AMI.

Preparing C++ programs on AIX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the xlC command you need to
specify a number of options:

� Where the AMI include files are.

This can be done using the -I flag. In the case of AIX, they are usually
located at /usr/mqm/amt/inc.

 Chapter 6. Using the Application Messaging Interface in C++ 159

 C++ applications on HP-UX

� Where the AMI library is.

This can be done using the -L flag. In the case of AIX, it is usually located at
/usr/mqm/lib.

� Link with the AMI library.

This is done with the -l flag, more specifically -lamtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:

xlC -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamtCpp mine.cpp -o mine

If, however, you are building a threaded program, you must use the correct
compiler and the threaded library libamtCpp_r.a. For example:

xlC_r -I/usr/mqm/amt/inc -L/usr/mqm/lib -lamtCpp_r mine.cpp -o mine

Running C++ programs on AIX
When running a C++ executable you must have access to the C++ library
libamtCpp.a in your runtime environment. If the amtInstall utility has been run, this
environment will be set up for you (see “Installation on AIX” on page 433).

If you have not run the utility, the easiest way of achieving this is to construct a link
from the AIX default library location to the actual location of the C++ library. To do
this:

ln -s /usr/mqm/lib/libamtCpp.a /usr/lib/libamtCpp.a

If you are using the threaded libraries, you can perform a similar operation:

ln -s /usr/mqm/lib/libamtCpp_r.a /usr/lib/libamtCpp_r.a

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to allow
AMI to load MQSeries libraries dynamically. For the non-threaded MQSeries
Server library, perform:

ln -s /usr/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:

ln -s /usr/mqm/lib/amtcmqic /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:

ln -s /usr/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:

ln -s /usr/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

C++ applications on HP-UX
This section explains what you have to do to prepare and run your C++ programs
on the HP-UX operating system. See “Language compilers” on page 432 for the
compilers supported by the AMI.

160 MQSeries Application Messaging Interface

 C++ applications on HP-UX

Preparing C++ programs on HP-UX
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the aCC command you need to
specify a number of options:

1. Where the AMI include files are.

This can be done using the -I flag. In the case of HP-UX, they are usually
located at /opt/mqm/amt/inc.

2. Where the AMI libraries are.

This can be done using the -Wl,+b,:,-L flags. In the case of HP-UX, they are
usually located at /opt/mqm/lib.

3. Link with the AMI library for C++.

This is done with the -l flag, more specifically -lamtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:

aCC +DAportable -Wl,+b,:,-L/opt/mqm/lib -o mine mine.cpp
 -I/opt/mqm/amt/inc -lamtCpp

Note that you could equally link to the threaded library using -lamtCpp_r. On
HP-UX there is no difference since the unthreaded versions of the AMI binaries are
simply links to the threaded versions.

Running C++ programs on HP-UX
When running a C++ executable you must have access to the C++ library
libamtCpp.sl in your runtime environment. If amtInstall utility has been run, this
environment will be set up for you (see “Installation on HP-UX” on page 438).

If you have not run the utility, the easiest way of achieving this is to construct a link
from the HP-UX default library location to the actual location of the C++ library. To
do this:

ln -s /opt/mqm/lib/libamtCpp_r.sl /usr/lib/libamtCpp.sl

If you are using the threaded libraries, you can peform a similar operation:

ln -s /opt/mqm/lib/libamtCpp_r.sl /usr/lib/libamtCpp_r.sl

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to allow
AMI to load MQSeries libraries dynamically. For the non-threaded MQSeries
Server library, perform:

ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm

For the non-threaded MQSeries Client library, perform:

ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic

For the threaded MQSeries Server library, perform:

ln -s /opt/mqm/lib/amtcmqm_r /usr/lib/amtcmqm_r

For the threaded MQSeries Client library, perform:

 Chapter 6. Using the Application Messaging Interface in C++ 161

 C++ applications on Solaris

ln -s /opt/mqm/lib/amtcmqic_r /usr/lib/amtcmqic_r

As before, note that the unthreaded versions are simply links to the threaded
versions.

C++ applications on Solaris
This section explains what you have to do to prepare and run your C++ programs
in the Sun Solaris operating environment. See “Language compilers” on page 432
for the compilers supported by the AMI.

Preparing C++ programs on Solaris
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the CC command you need to
specify a number of options:

� Where the AMI include files are.

This can be done using the -I flag. In the case of Solaris, they are usually
located at /opt/mqm/amt/inc.

� Where the AMI library is.

This can be done using the -L flag. In the case of Solaris, it is usually located
at /opt/mqm/lib.

� Link with the AMI library.

This is done with the -l flag, more specifically -lamtCpp.

For example, compiling the C++ program mine.cpp into an executable called mine:

CC -mt -I/opt/mqm/amt/inc -L/opt/mqm/lib -lamtCpp mine.cpp -o mine

Running C++ programs on Solaris
When running a C++ executable you must have access to the C++ library
libamtCpp.so in your runtime environment. If the amtInstall utility has been run,
this environment will be set up for you (see “Installation on Sun Solaris” on
page 442).

If you have not run the utility, the easiest way of achieving this is to construct a link
from the Solaris default library location to the actual location of the C++ libraries. To
do this:

ln -s /opt/mqm/lib/libamtCpp.so /usr/lib/libamtCpp.so

You also need access to the C libraries and MQSeries in your runtime environment.
This is done by making the AMI MQSeries runtime binding stubs available, to allow
AMI to load MQSeries libraries dynamically. For the MQSeries Server library,
perform:

ln -s /opt/mqm/lib/amtcmqm /usr/lib/amtcmqm

For the MQSeries Client library, perform:

ln -s /opt/mqm/lib/amtcmqic /usr/lib/amtcmqic

162 MQSeries Application Messaging Interface

 C++ applications on Windows

C++ applications on Windows
This section explains what you have to do to prepare and run your C++ programs
on the Windows 98 and Windows NT operating systems. See “Language
compilers” on page 432 for the compilers supported by the AMI.

Preparing C++ programs on Windows
The following is not prescriptive as there are many ways to set up environments to
build executables. Use it as a guideline, but follow your local procedures.

To compile an AMI program in a single step using the cl command you need to
specify a number of options:

1. Where the AMI include files are.

This can be done using the /I flag. In the case of Windows, they are usually
located at \amt\include relative to where you installed MQSeries. Alternatively,
the include files could exist in one of the directories pointed to by the INCLUDE
environment variable.

2. Where the AMI library is.

This can be done by including the AMT library file amtCpp.LIB as a command
line argument. The amtCpp.LIB file should exist in one of the directories pointed
to by the LIB environment variable.

For example, compiling the C++ program mine.cpp into an executable called
mine.exe:

cl -IC:\MQSeries\amt\include /Fomine mine.cpp amtCpp.LIB

Running C++ programs on Windows
When running a C++ executable you must have access to the C++ DLL
amtCpp.dll in your runtime environment. Make sure it exists in one of the
directories pointed to by the PATH environment variable. For example:

 SET PATH=%PATH%;C:\MQSeries\bin;

If you already have MQSeries installed, and you have installed AMI under the
MQSeries directory structure, it is likely that the PATH has already been set up for
you.

You also need access to the C libraries and MQSeries in your runtime environment.
(This will be the case if you installed MQSeries using the documented method.)

 Chapter 6. Using the Application Messaging Interface in C++ 163

 C++ applications on Windows

164 MQSeries Application Messaging Interface

 C++ interface overview

Chapter 7. C++ interface overview

This chapter contains an overview of the structure of the Application Messaging
Interface for C++. Use it to find out what functions are available in this interface.

The C++ interface provides sets of methods for each of the classes listed below.
The methods available for each class are listed in the following pages. Follow the
page references to see the reference information for each method.

 Base classes
AmSessionFactory page 166

AmSession page 167

AmMessage page 169

AmSender page 171

AmReceiver page 172

AmDistributionList page 173

AmPublisher page 174

AmSubscriber page 175

AmPolicy page 176

 Helper classes
AmBytes page 177

AmElement page 177

AmObject page 177

AmStatus page 178

AmString page 178

 Exception classes
AmException page 179

AmErrorException page 179

AmWarningExcpetion page 179

 Copyright IBM Corp. 1999, 2000 165

 C++ interface overview

 AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

 Constructor
Constructor for AmSessionFactory.

AmSessionFactory page 182

Session factory management
Methods to return the name of an AmSessionFactory object, to get and set the
names of the AMI data files (local host and repository), and to control traces.

getFactoryName page 182

getLocalHost page 182

getRepository page 182

getTraceLevel page 183

getTraceLocation page 183

setLocalHost page 183

setRepository page 183

setTraceLevel page 183

setTraceLocation page 183

Create and delete session
Methods to create and delete an AmSession object.

createSession page 182

deleteSession page 182

166 MQSeries Application Messaging Interface

 C++ interface overview

 AmSession
The AmSession object creates and manages all other objects, and provides scope
for a unit of work.

 Session management
Methods to open and close an AmSession object, to return its name, and to control
traces.

open page 188

close page 184

getName page 187

getTraceLevel page 188

getTraceLocation page 188

 Create objects
Methods to create AmMessage, AmSender, AmReceiver, AmDistributionList,
AmPublisher, AmSubscriber, and AmPolicy objects.

createMessage page 185

createSender page 186

createReceiver page 185

createDistributionList page 185

createPublisher page 185

createSubscriber page 186

createPolicy page 185

 Delete objects
Methods to delete AmMessage, AmSender, AmReceiver, AmDistributionList,
AmPublisher, AmSubscriber, and AmPolicy objects.

deleteMessage page 186

deleteSender page 187

deleteReceiver page 187

deleteDistributionList page 186

deletePublisher page 187

deleteSubscriber page 187

deletePolicy page 186

 Chapter 7. C++ interface overview 167

 C++ interface overview

 Transactional processing
Methods to begin, commit and rollback a unit of work.

begin page 184

commit page 184

rollback page 188

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 184

enableWarnings page 187

getLastErrorStatus page 187

168 MQSeries Application Messaging Interface

 C++ interface overview

 AmMessage
An AmMessage object encapsulates an MQSeries message descriptor (MQMD)
structure, and contains the message data.

 Get values
Methods to get the coded character set ID, correlation ID, encoding, format, group
status, message ID and name of the message object.

getCCSID page 191

getCorrelationId page 191

| getElementCCSID page 192

getEncoding page 192

getFormat page 193

getGroupStatus page 193

getMessageId page 193

getName page 193

getReportCode page 194

getType page 194

 Set values
Methods to set the coded character set ID, correlation ID, format and group status
of the message object.

setCCSID page 195

setCorrelationId page 195

| setElementCCSID page 196

setEncoding page 196

setFormat page 196

setGroupStatus page 196

 Reset values
Method to reset the message object to the state it had when first created.

reset page 195

Read and write data
Methods to read or write byte data to or from the message object, to get and set
the data offset, and to get the length of the data.

getDataLength page 191

getDataOffset page 191

setDataOffset page 195

readBytes page 195

 Chapter 7. C++ interface overview 169

 C++ interface overview

writeBytes page 197

 Publish/subscribe topics
Methods to manipulate the topics in a publish/subscribe message.

addTopic page 190

deleteTopic page 191

getTopic page 194

getTopicCount page 194

| Publish/subscribe filters
| Methods to manipulate filters for content-based publish/subscribe.

| addFilter page 190

| deleteFilter page 190

| getFilter page 192

| getFilterCount page 192

Publish/subscribe name/value elements
Methods to manipulate the name/value elements in a publish/subscribe message.

addElement page 189

deleteElement page 190

getElement page 192

getElementCount page 192

deleteNamedElement page 190

getNamedElement page 193

getNamedElementCount page 194

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 190

enableWarnings page 191

getLastErrorStatus page 193

170 MQSeries Application Messaging Interface

 C++ interface overview

 AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the sender service.

open page 199

close page 198

 Send
Method to send a message.

send page 199

| Send file
| Method to send data from a file

| sendFile page 200

 Get values
Methods to get the coded character set ID, encoding and name of the sender
service.

getCCSID page 198

getEncoding page 199

getName page 199

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 198

enableWarnings page 198

getLastErrorStatus page 199

 Chapter 7. C++ interface overview 171

 C++ interface overview

 AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the receiver service.

open page 203

close page 202

Receive and browse
Methods to receive or browse a message.

receive page 203

browse page 201

| Receive file
| Method to receive file message data into a file.

| receiveFile page 204

 Get values
Methods to get the definition type, name and queue name of the receiver service.

getDefinitionType page 202

getName page 203

getQueueName page 203

 Set value
Method to set the queue name of the receiver service.

setQueueName page 204

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 202

enableWarnings page 202

getLastErrorStatus page 203

172 MQSeries Application Messaging Interface

 C++ interface overview

 AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

Open and close
Methods to open and close the distribution list service.

open page 206

close page 205

 Send
Method to send a message to the distribution list.

send page 206

| Send file
| Method to send date from a file to the each sender defined in the distribution list.

| sendFile page 206

 Get values
Methods to get the name of the distribution list service, a count of the AmSenders
in the list, and one of the AmSenders that is contained in the list.

getName page 205

getSenderCount page 206

getSender page 205

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 205

enableWarnings page 205

getLastErrorStatus page 205

 Chapter 7. C++ interface overview 173

 C++ interface overview

 AmPublisher
An AmPublisher object encapsulates a sender service and provides support for
publishing messages to a publish/subscribe broker.

Open and close
Methods to open and close the publisher service.

open page 209

close page 208

 Publish
Method to publish a message.

publish page 209

 Get values
Methods to get the coded character set ID, encoding and name of the publisher
service.

getCCSID page 208

getEncoding page 208

getName page 209

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 208

enableWarnings page 208

getLastErrorStatus page 208

174 MQSeries Application Messaging Interface

 C++ interface overview

 AmSubscriber
An AmSubscriber object encapsulates both a sender service and a receiver
service. It provides support for subscribe and unsubscribe requests to a
publish/subscribe broker, and for receiving publications from the broker.

Open and close
Methods to open and close the subscriber service.

open page 211

close page 210

 Broker messages
Methods to subscribe to a broker, remove a subscription, and receive a publication
from the broker.

subscribe page 213

unsubscribe page 213

receive page 212

 Get values
Methods to get the coded character set ID, definition type, encoding, name and
queue name of the subscriber service.

getCCSID page 210

getDefinitionType page 210

getEncoding page 211

getName page 211

getQueueName page 211

 Set value
Method to set the queue name of the subscriber service.

setQueueName page 212

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 210

enableWarnings page 210

getLastErrorStatus page 211

 Chapter 7. C++ interface overview 175

 C++ interface overview

 AmPolicy
An AmPolicy object encapsulates the options used during AMI operations.

 Policy management
Methods to return the name of the policy, and to get and set the wait time when
receiving a message.

getName page 214

getWaitTime page 214

setWaitTime page 214

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 214

enableWarnings page 214

getLastErrorStatus page 214

176 MQSeries Application Messaging Interface

 C++ interface overview

 Helper classes
The classes that encapsulate name/value elements for publish/subscribe, strings,
binary data and error status.

 AmBytes
The AmBytes class is an encapsulation of a byte array. It allows the AMI to pass
byte strings across the interface and enables manipulation of byte strings. It
contains constructors, operators and a destructor, and methods to copy, compare,
and pad. AmBytes also has methods to give the length of the encapsulated bytes
and a method to reference the data contained within an AmBytes object.

constructors page 215

destructor page 216

operators page 216

cmp page 215

cpy page 216

dataPtr page 216

length page 216

pad page 216

 AmElement
Constructor for AmElement, and methods to return the name, type, value and
version of an element, to set the version, and to return an AmString representation
of the element.

AmElement page 217

getName page 217

getValue page 217

getVersion page 217

setVersion page 217

toString page 217

 AmObject
A virtual class containing methods to return the name of the object, to clear the
error codes and to return the last error condition.

clearErrorCodes page 218

getLastErrorStatus page 218

getName page 218

 Chapter 7. C++ interface overview 177

 C++ interface overview

 AmStatus
Constructor for AmStatus, and methods to return the completion code, reason
code, secondary reason code and status text, and to return an AmString
representation of the AmStatus.

AmStatus page 219

getCompletionCode page 219

getReasonCode page 219

getReasonCode2 page 219

toString page 219

 AmString
The AmString class is an encapsulation of a string. It allows the AMI to pass strings
across the interface and enables manipulation of strings. It contains constructors,
operators, a destructor, and methods to copy, concatenate, pad, split, truncate and
strip. AmString also has methods to give the length of the encapsulated string,
compare AmStrings, check whether one AmString is contained within another and a
method to reference the text of an AmString.

constructors page 220

destructor page 221

operators page 221

cat page 220

cmp page 220

contains page 220

cpy page 220

length page 221

pad page 221

split page 221

strip page 221

text page 221

truncate page 221

178 MQSeries Application Messaging Interface

 C++ interface overview

 Exception classes
Classes that encapsulate error and warning conditions. AmErrorException and
AmWarningException inherit from AmException.

 AmException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page 222

getCompletionCode page 222

getMethodName page 222

getReasonCode page 222

getSource page 222

toString page 222

 AmErrorException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page 223

getCompletionCode page 223

getMethodName page 223

getReasonCode page 223

getSource page 223

toString page 223

 AmWarningException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a string
representation of the Exception.

getClassName page 224

getCompletionCode page 224

getMethodName page 224

getReasonCode page 224

getSource page 224

toString page 224

 Chapter 7. C++ interface overview 179

 C++ interface overview

180 MQSeries Application Messaging Interface

 C++ interface reference

Chapter 8. C++ interface reference

In the following sections the C++ interface methods are listed by the class they
refer to. Within each section the methods are listed in alphabetical order.

 Base classes
Note that all of the methods in these classes can throw AmWarningException and
AmErrorException (see below). However, by default, AmWarningExceptions are
not raised.

AmSessionFactory page 182

AmSession page 184

AmMessage page 189

AmSender page 198

AmReceiver page 201

AmDistributionList page 205

AmPublisher page 208

AmSubscriber page 210

AmPolicy page 214

 Helper classes
AmBytes page 215

AmElement page 217

AmObject page 218

AmStatus page 219

AmString page 220

 Exception classes
AmException page 222

AmErrorException page 223

AmWarningException page 224

 Copyright IBM Corp. 1999, 2000 181

 C++ AmSessionFactory

 AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

 AmSessionFactory
Constructors for an AmSessionFactory.

 AmSessionFactory();
AmSessionFactory(char : name);

name The name of the AmSessionFactory. This is the location of the
data files used by the AMI (the repository file and the local host
file). The name should be a fully qualified directory that includes
the path under which the files are located. Otherwise, see “Local
host and repository files (Unix and Windows)” on page 454 for the
location of these files.

 createSession
Creates an AmSession object.

AmSession : createSession(char : name);

name The name of the AmSession.

 deleteSession
Deletes an AmSession object previously created using the createSession method.

 void deleteSession(AmSession :: pSession);

pSession A pointer to the AmSession pointer returned by the createSession
method.

 getFactoryName
Returns the name of the AmSessionFactory.

 AmString getFactoryName();

 getLocalHost
Returns the name of the local host file.

 AmString getLocalHost();

 getRepository
Returns the name of the repository file.

 AmString getRepository();

182 MQSeries Application Messaging Interface

 C++ AmSessionFactory

 getTraceLevel
Returns the trace level for the AmSessionFactory.

 int getTraceLevel();

 getTraceLocation
Returns the location of the trace for the AmSessionFactory.

 AmString getTraceLocation();

 setLocalHost
Sets the name of the AMI local host file to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default host file amthost.xml is used.)

 void setLocalHost(char : fileName);

fileName The name of the file used by the AMI as the local host file. This
file must be present on the local file system or an error will be
produced upon the creation of an AmSession.

 setRepository
Sets the name of the AMI repository to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default repository file amt.xml is used.)

 void setRepository(char : fileName);

fileName The name of the file used by the AMI as the repository. This file
must be present on the local file system or an error will be
produced upon the creation of an AmSession.

 setTraceLevel
Sets the trace level for the AmSessionFactory.

 void setTraceLevel(int level);

level The trace level to be set in the AmSessionFactory. Trace levels
are 0 through 9, where 0 represents minimal tracing and 9
represents a fully detailed trace.

 setTraceLocation
Sets the location of the trace for the AmSessionFactory.

 void setTraceLocation(char : location);

location The location on the local system where trace files will be written.
This location must be a directory, and it must exist prior to the
trace being run.

 Chapter 8. C++ interface reference 183

 C++ AmSession

 AmSession
An AmSession object provides the scope for a unit of work and creates and
manages all other objects, including at least one connection object. Each
(MQSeries) connection object encapsulates a single MQSeries queue manager
connection. The session object definition specifying the required set of queue
manager connection(s) can be provided by a repository policy definition, or by
default will name a single local queue manager with no repository. The session,
when deleted, is responsible for releasing memory by closing and deleting all other
objects that it manages.

Note that you should not mix MQSeries MQCONN or MQDISC requests (or their
equivalent in the MQSeries C++ interface) on the same thread as AMI calls,
otherwise premature disconnection might occur.

 begin
Begins a unit of work in this AmSession, allowing an AMI application to take
advantage of the resource coordination provided in MQSeries. The unit of work
can subsequently be committed by the commit method, or backed out by the
rollback method. This should be used only when AMI is the transaction
coordinator. If available, native coordination APIs (for example CICS or Tuxedo)
should be used.

begin is overloaded. The policy parameter is optional.

 void begin(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 clearErrorCodes
Clears the error codes in the AmSession.

 void clearErrorCodes();

 close
Closes the AmSession, and all open objects owned by it. close is overloaded: the
policy parameter is optional.

 void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 commit
Commits a unit of work that was started by AmSession.begin. commit is
overloaded: the policy parameter is optional.

 void commit(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

184 MQSeries Application Messaging Interface

 C++ AmSession

 createDistributionList
Creates an AmDistributionList object.

AmDistributionList : createDistributionList(char : name);

name The name of the AmDistributionList. This must match the name of
a distribution list defined in the repository.

 createMessage
Creates an AmMessage object.

AmMessage : createMessage(char : name);

name The name of the AmMessage. This can be any name that is
meaningful to the application.

 createPolicy
Creates an AmPolicy object.

AmPolicy : createPolicy(char : name);

name The name of the AmPolicy. If it matches a policy defined in the
repository, the policy will be created using the repository definition,
otherwise it will be created with default values.

 createPublisher
Creates an AmPublisher object.

AmPublisher : createPublisher(char : name);

name The name of the AmPublisher. If it matches a publisher defined in
the repository, the publisher will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the publisher name).

 createReceiver
Creates an AmReceiver object.

AmReceiver : createReceiver(char : name);

name The name of the AmReceiver. If it matches a receiver defined in
the repository, the receiver will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the receiver name).

 Chapter 8. C++ interface reference 185

 C++ AmSession

 createSender
Creates an AmSender object.

AmSender : createSender(char : name);

name The name of the AmSender. If it matches a sender defined in the
repository, the sender will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the sender name).

 createSubscriber
Creates an AmSubscriber object.

AmSubscriber : createSubscriber(char : name);

name The name of the AmSubscriber. If it matches a subscriber defined
in the repository, the subscriber will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the subscriber name, and
an AmReceiver name that is the same with the addition of the
suffix ‘.RECEIVER’).

 deleteDistributionList
Deletes an AmDistributionList object.

 void deleteDistributionList(AmDistributionList :: dList);

dList A pointer to the AmDistributionList * returned on a
createDistributionList call.

 deleteMessage
Deletes an AmMessage object.

 void deleteMessage(AmMessage :: message);

message A pointer to the AmMessage * returned on a createMessage call.

 deletePolicy
Deletes an AmPolicy object.

 void deletePolicy(AmPolicy :: policy);

policy A pointer to the AmPolicy * returned on a createPolicy call.

186 MQSeries Application Messaging Interface

 C++ AmSession

 deletePublisher
Deletes an AmPublisher object.

 void deletePublisher(AmPublisher :: publisher);

publisher A pointer to the AmPublisher returned on a createPublisher call.

 deleteReceiver
Deletes an AmReceiver object.

 void deleteReceiver(AmReceiver :: receiver);

receiver A pointer to the AmReceiver returned on a createReceiver call.

 deleteSender
Deletes an AmSender object.

 void deleteSender(AmSender :: sender);

sender A pointer to the AmSender returned on a createSender call.

 deleteSubscriber
Deletes an AmSubscriber object.

 void deleteSubscriber(AmSubscriber :: subscriber);

subscriber A pointer to the AmSubscriber returned on a createSubscriber call.

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmSession.

 String getName();

 Chapter 8. C++ interface reference 187

 C++ AmSession

 getTraceLevel
Returns the trace level of the AmSession.

 int getTraceLevel();

 getTraceLocation
Returns the location of the trace for the AmSession.

 AmString getTraceLocation();

 open
Opens an AmSession using the specified policy. The application profile group of
this policy provides the connection definitions enabling the connection objects to be
created. The specified library is loaded for each connection and its dispatch table
initialized. If the transport type is MQSeries and the MQSeries local queue manager
library cannot be loaded, then the MQSeries client queue manager is loaded. Each
connection object is then opened.

open is overloaded: the policy parameter is optional.

 void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 rollback
Rolls back a unit of work that was started by AmSession.begin, or under policy
control. rollback is overloaded: the policy parameter is optional.

 void rollback(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

188 MQSeries Application Messaging Interface

 C++ AmMessage

 AmMessage
An AmMessage object encapsulates the MQSeries MQMD message properties,
and name/value elements such as the topics for publish/subscribe messages. In
addition it contains the application data.

The initial state of the message object is:

CCSID default queue manager CCSID
correlationId all zeroes
dataLength zero
dataOffset zero
elementCount zero
encoding AMENC_NATIVE
format AMFMT_STRING
groupStatus AMGRP_MSG_NOT_IN_GROUP
reportCode AMFBP_NONE
topicCount zero
type AMMT_DATAGRAM

When a message object is used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see reset on
page 195) and rebuild it each time.

| Note that the following methods are only valid after a session has been opened
| with AmSession.open or after you have explicitly set the element CCSID with
| AmMessage.setElementCCSID:

| addElement page 189

| deleteElement page 190

| getElement page 192

| getElementCount page 192

| deleteNamedElement page 190

| getNamedElement page 193

| getNamedElementCount page 194

| addTopic page 190

| deleteTopic page 191

| getTopic page 194

| getTopicCount page 194

 addElement
Adds a name/value element to an AmMessage object. addElement is overloaded:
the element parameter is required, but the options parameter is optional.

 void addElement(
 AmElement &element,
 int options);

element The element to be added to the AmMessage.

 Chapter 8. C++ interface reference 189

 C++ AmMessage

options The options to be used. This parameter is reserved and must be
set to zero.

| addFilter
| Adds a publish/subscribe filter to an AmMessage object.

| void addFilter(char : filter);

| filter The filter to be added to the AmMessage.

 addTopic
Adds a publish/subscribe topic to an AmMessage object.

 void addTopic(char : topicName);

topicName The name of the topic to be added to the AmMessage.

 clearErrorCodes
Clears the error in the AmMessage object.

 void clearErrorCodes();

 deleteElement
Deletes the element in the AmMessage object at the specified index. Indexing is
within all elements of a message, and might include topics (which are specialized
elements).

 void deleteElement(int index);

index The index of the element to be deleted, starting from zero. On
completion, elements with higher index values than that specified
will have those values reduced by one.

getElementCount gets the number of elements in the message.

| deleteFilter
| Deletes a publish/subscribe filter in an AmMessage object at the specified index.
| Indexing is within all filters in the message.

| void deleteFilter(int filterIndex);

| filterIndex The index of the filter to be deleted, starting from zero.
| getFilterCount gets the number of filters in a message.

 deleteNamedElement
Deletes the element with the specified name in the AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

 void deleteNamedElement(
char : name,

 int index);

190 MQSeries Application Messaging Interface

 C++ AmMessage

name The name of the element to be deleted.

index The index of the element to be deleted, starting from zero. On
completion, elements with higher index values than that specified
will have those values reduced by one.

getNamedElementCount gets the number of elements in the
message with the specified name.

 deleteTopic
Deletes a publish/subscribe topic in an AmMessage object at the specified index.
Indexing is within all topics in the message.

 void deleteTopic(int index);

index The index of the topic to be deleted, starting from zero.
getTopicCount gets the number of topics in the message.

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getCCSID
Returns the coded character set identifier used by the AmMessage.

 int getCCSID();

 getCorrelationId
Returns the correlation identifier for the AmMessage.

 AmBytes getCorrelationId();

 getDataLength
Returns the length of the message data in the AmMessage.

 int getDataLength();

 getDataOffset
Returns the current offset in the message data for reading or writing data bytes.

 int getDataOffset();

 Chapter 8. C++ interface reference 191

 C++ AmMessage

 getElement
Returns an element in an AmMessage object at the specified index. Indexing is
within all elements in the message, and might include topics (which are specialized
elements).

 AmElement getElement(int index);

index The index of the element to be returned, starting from zero.
getElementCount gets the number of elements in the message.

| getElementCCSID
| Returns the message element CCSID. This is the coded character set identifier for
| passing message element data (including topic and filter data) to or from an
| application.

| int getElementCCSID();

 getElementCount
Returns the total number of elements in an AmMessage object. This might include
topics (which are specialized elements).

 int getElementCount();

 getEncoding
Returns the value used to encode numeric data types for the AmMessage.

 int getEncoding();

The following values can be returned:

AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_395
AMENC_REVERSED
AMENC_REVERSED_FLOAT_395
AMENC_UNDEFINED

| getFilter
| Returns the publish/subscribe filter in the AmMessage object at the specified index.
| Indexing is within all filters.

| AmString getFilter(int filterIndex);

| filterIndex The index of the filter to be returned, starting from zero.
| getElementCount gets the number of filters in a message.

| getFilterCount
| Returns the total number of publish/subscribe filters in the AmMessage object.

| AmElement getFilterCount();

192 MQSeries Application Messaging Interface

 C++ AmMessage

 getFormat
Returns the format of the AmMessage.

 AmString getFormat();

The following values can be returned:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

 getGroupStatus
Returns the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.

 int getGroupStatus();

The following values can be returned:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

Alternatively, bitwise tests can be performed using the constants:

AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST

 getLastErrorStatus
Returns the AmStatus of the last error condition for this object.

 AmStatus getLastErrorStatus();

 getMessageId
Returns the message identifier from the AmMessage object.

 AmBytes getMessageId();

 getName
Returns the name of the AmMessage object.

 AmString getName();

 getNamedElement
Returns the element with the specified name in an AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

 AmElement getNamedElement(
 char : name,
 int index);

name The name of the element to be returned.

 Chapter 8. C++ interface reference 193

 C++ AmMessage

index The index of the element to be returned, starting from zero.

 getNamedElementCount
Returns the total number of elements with the specified name in the AmMessage
object.

 int getNamedElementCount(char : name);

name The name of the elements to be counted.

 getReportCode
| Returns the feedback code from an AmMessage of type AMMT_REPORT.

 int getReportCode();

The following values can be returned:

 AMFB_NONE
 AMFB_EXPIRATION
 AMFB_COA
 AMFB_COD
 AMFB_ERROR

 getTopic
Returns the publish/subscribe topic in the AmMessage object, at the specified
index. Indexing is within all topics.

 AmString getTopic(int index);

index The index of the topic to be returned, starting from zero.
getTopicCount gets the number of topics in the message.

 getTopicCount
Returns the total number of publish/subscribe topics in the AmMessage object.

 int getTopicCount();

 getType
| Returns the message type from the AmMessage.

 int getType();

The following values can be returned:

 AMMT_REQUEST
 AMMT_REPLY
 AMMT_REPORT
 AMMT_DATAGRAM

194 MQSeries Application Messaging Interface

 C++ AmMessage

 readBytes
Populates an AmByte object with data from the AmMessage, starting at the current
data offset (which must be positioned before the end of the data for the read to be
successful). Use setDataOffset to specify the data offset. readBytes will advance
the data offset by the number of bytes read, leaving the offset immediately after the
last byte read.

 AmBytes readBytes(int dataLength);

dataLength The maximum number of bytes to be read from the message data.
The number of bytes returned is the minimum of dataLength and
the number of bytes between the data offset and the end of the
data.

 reset
Resets the AmMessage object to its initial state (see page 189).

reset is overloaded: the options parameter is optional.

 void reset(int options);

options A reserved field that must be set to zero.

 setCCSID
Sets the coded character set identifier used by the AmMessage object.

 void setCCSID(int codedCharSetId);

codedCharSetId The CCSID to be set in the AmMessage.

 setCorrelationId
Sets the correlation identifier in the AmMessage object.

 void setCorrelationId(AmBytes &correlId);

correlId An AmBytes object containing the correlation identifier to be set in
the AmMessage. The correlation identifier can be reset by
specifying this as a null string; for example:

myMessage.setCorrelationId(AmBytes(""));

 setDataOffset
Sets the data offset for reading or writing byte data.

 void setDataOffset(int dataOffset);

dataOffset The data offset to be set in the AmMessage. Set an offset of zero
to read or write from the start of the data.

 Chapter 8. C++ interface reference 195

 C++ AmMessage

| setElementCCSID
| This specifies the character set to be used for subsequent message element data
| (including topic and filter data) passed to or returned from the application. Existing
| elements in the message are unmodified (but will be returned in the character set).
| The default value of element CCSID is the queue manager CCSID.

| void setElementCCSID(int elementCCSID);

| elementCCSID The element CCSID to be set in the AmMessage.

 setEncoding
Sets the encoding of the data in the AmMessage object.

 void setEncoding(int encoding);

encoding The encoding to be used in the AmMessage. It can take one of
the following values:

AMENC_NATIVE
AMENC_NORMAL
AMENC_NORMAL_FLOAT_395
AMENC_REVERSED
AMENC_REVERSED_FLOAT_395
AMENC_UNDEFINED

 setFormat
Sets the format for the AmMessage object.

 void setFormat(char : format);

format The format to be used in the AmMessage. It can take one of the
following values:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

If set to AMFMT_NONE, the default format for the sender will be
used (if available).

 setGroupStatus
Sets the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.
Once you start sending messages in a group, you must complete the group before
sending any messages that are not in the group.

If you specify AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.

 void setGroupStatus(int groupStatus);

196 MQSeries Application Messaging Interface

 C++ AmMessage

groupStatus The group status to be set in the AmMessage. It can take one of
the following values:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

 writeBytes
Writes a byte array into the AmMessage object, starting at the current data offset. If
the data offset is not at the end of the data, existing data is overwritten. Use
setDataOffset to specify the data offset. writeBytes will advance the data offset
by the number of bytes written, leaving it immediately after the last byte written.

 void writeBytes(AmBytes &data);

data An AmBytes object containing the data to be written to the
AmMessage.

 Chapter 8. C++ interface reference 197

 C++ AmSender

 AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue
manager. An open sender service is always associated with an open connection
object (such as a queue manager connection). Support is also included for
dynamic sender services (those that encapsulate model queues). The required
sender service object definitions can be provided from a repository, or created
without a repository definition by defaulting to the existing queue objects on the
local queue manager.

The AmSender object must be created before it can be opened. This is done using
AmSession.createSender.

A responder is a special type of AmSender used for sending a response to a
request message. It is not created from a repository definition. Once created, it
must not be opened until used in its correct context as a responder receiving a
request message with AmReceiver.receive. When opened, its queue and queue
manager properties are modified to reflect the ReplyTo destination specified in the
message being received. When first used in this context, the sender service
becomes a responder sender service.

 clearErrorCodes
Clears the error codes in the AmSender.

 void clearErrorCodes();

 close
Closes the AmSender. close is overloaded: the policy parameter is optional.

 void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getCCSID
Returns the coded character set identifier for the AmSender. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.

 int getCCSID();

198 MQSeries Application Messaging Interface

 C++ AmSender

 getEncoding
Returns the value used to encode numeric data types for the AmSender. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.

 int getEncoding();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmSender.

 AmString getName();

 open
Opens an AmSender service. open is overloaded: the policy parameter is
optional.

 void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 send
Sends a message using the AmSender service. If the AmSender is not open, it will
be opened (if this action is specified in the policy options).

send is overloaded: the sendMessage parameter is required, but the others are
optional. receivedMessage and responseService are used in request/response
messaging, and are mutually exclusive.

 void send(
 AmMessage &sendMessage,
 AmReceiver &responseService,
 AmMessage &receivedMessage,
 AmPolicy &policy);

sendMessage The message object that contains the data to be sent.

responseService The AmReceiver to which the response to this message should
be sent. Omit it if no response is required.

receivedMessage The previously received message which is used for correlation
with the sent message. If omitted, the sent message is not
correlated with any received message.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 Chapter 8. C++ interface reference 199

 C++ AmSender

| sendFile
| Sends data from a file. To send data from a file, the sendMessage and fileName
| parameters are required, but the policy is optional. The file data can be received
| as normal message data by a target application using AmReceiver.receive, or used
| to reconstruct the file with AmReceiver.receiveFile.

| void sendFile(
| AmMessage &sendMessage,
| char : filename,
| AmPolicy &policy);

| sendMessage The message object to use to send the file. This can be used to
| specify the Correlation ID for example.

| fileName The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| the send operation is a physical-mode file transfer, then the file
| name will travel with the message for use with the receive file
| method (see “receiveFile” on page 204 for more details). Note that
| the file name sent will exactly match the supplied file name; it will
| not be converted or expanded in any way.

| policy The policy to be used. If omitted, the system default policy (name
| constant : AMSD_POL) is used.

200 MQSeries Application Messaging Interface

 C++ AmReceiver

 AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue
manager. An open AmReceiver is always associated with an open connection
object, such as a queue manager connection. Support is also included for a
dynamic AmReceiver (that encapsulates a model queue). The required AmReceiver
object definitions can be provided from a repository or can be created automatically
from the set of existing queue objects available on the local queue manager.

There is a definition type associated with each AmReceiver:

 AMDT_UNDEFINED
 AMDT_TEMP_DYNAMIC
 AMDT_DYNAMIC
 AMDT_PREDEFINED

An AmReceiver created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type might
change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to the
properties of its underlying queue object.

An AmReceiver created with default values (that is, without a repository definition)
will have its definition type set to AMDT_UNDEFINED until it is opened. When
opened, this will become AMDT_DYNAMIC, AMDT_TEMP_DYNAMIC, or
AMDT_PREDEFINED, according to the properties of its underlying queue object.

 browse
Browses an AmReceiver service. browse is overloaded: the browseMessage and
options parameters are required, but the others are optional.

 void browse(
 AmMessage &browseMessage,
 int options,
 AmSender &responseService,

| AmMessage &selectionMessage,
 AmPolicy &policy);

browseMessage The message object that receives the browse data.

options Options controlling the browse operation. Possible values are:

AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to AmReceiver.receive for
the message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message.

 Chapter 8. C++ interface reference 201

 C++ AmReceiver

responseService The AmSender to be used for sending any response to the
browsed message. If omitted, no response can be sent.

| selectionMessage A message object which contains the Correlation ID used to
| selectively browse a message from the AmReceiver. If omitted, the
| first available message is browsed. The CCSID, element CCSID
| and encoding values from the selection message define the target
| values for data conversion. If target conversion values are required
| without using the Correlation ID for selection then this can be be
| reset (see AmMessage.setCorrelationId on page 195) before
| invoking the browse method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 clearErrorCodes
Clears the error codes in the AmReceiver.

 void clearErrorCodes();

 close
Closes the AmReceiver. close is overloaded: the policy parameter is optional.

 void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getDefinitionType
Returns the definition type (service type) for the AmReceiver.

 int getDefinitionType();

The following values can be returned:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the underlying
queue object.

202 MQSeries Application Messaging Interface

 C++ AmReceiver

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmReceiver.

 AmString getName();

 getQueueName
Returns the queue name of the AmReceiver. This is used to determine the queue
name of a permanent dynamic AmReceiver, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See
also setQueueName.)

 AmString getQueueName();

 open
Opens an AmReceiver service. open is overloaded: the policy parameter is
optional.

 void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 receive
Receives a message from the AmReceiver service. receive is overloaded: the
receiveMessage parameter is required, but the others are optional.

 void receive(
 AmMessage &receiveMessage,
 AmSender &responseService,
 AmMessage &selectionMessage,
 AmPolicy &policy);

receiveMessage The message object that receives the data. The message object
is reset implicitly before the receive takes place.

responseService The AmSender to be used for sending any response to the
received message. If omitted, no response can be sent.

selectionMessage A message object containing the Correlation ID used to
selectively receive a message from the AmReceiver. If omitted, the
first available message is received. The CCSID, element CCSID
and encoding values from the selection message define the target
values for data conversion. If target conversion values are required
without using the Correlation ID for selection then this can be be
reset (see AmMessage.setCorrelationId on page 195) before
invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 Chapter 8. C++ interface reference 203

 C++ AmReceiver

| receiveFile
| Receives file message data into a file. To receive data into a file, the
| receiveMessage parameter is required, but the others are optional.

| void receiveFile(
| AmMessage &receiveMessage,
| char : &fileName,
| AmMessage &selectionMessage,
| AmPolicy &policy);

| receiveMessage The message object used to receive the file. This is updated with
| the message properties, for example the Message ID. If the
| message is not from a file, the message object receives the data.
| The message object is reset implicitly before the receive takes
| place.

| fileName The name of the file to be received (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| NULL or a null string is specified, then the AMI will use the name
| of the originating file (including any directory prefix), exactly as it
| was supplied on the send file call. Note that the original file name
| may not be appropriate for use by the receiver, either because a
| path name included in the file name is not applicable to the
| receiving system, or because the sending and receiving systems
| use different file naming conventions.

| selectionMessage A message object containing the Correlation ID used to
| selectively receive a message from the AmReceiver. If omitted, the
| first available message is received. The CCSID, element CCSID
| and encoding values from the selection message define the target
| values for data conversion. If target conversion values are required
| without using the Correlation ID for selection then this can be reset
| (see AmMessage.setCorrelationId on page 195) before invoking
| the receive method.

| policy The policy to be used. If omitted, the system default policy
| (constant: AMSD_POL) is used.

 setQueueName
Sets the queue name of the AmReceiver (when this encapsulates a model queue).
This is used to specify the queue name of a recreated permanent dynamic
AmReceiver, in order to receive messages in a session subsequent to the one in
which it was created. (See also getQueueName.)

 void setQueueName(char : queueName);

queueName The queue name to be set in the AmReceiver.

204 MQSeries Application Messaging Interface

 C++ AmDistributionList

 AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

 clearErrorCodes
Clears the error codes in the AmDistributionList.

 void clearErrorCodes();

 close
Closes the AmDistributionList. close is overloaded: the policy parameter is
optional.

 void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getLastErrorStatus
Returns the AmStatus of the last error condition of this object.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmDistributionList object.

 AmString getName();

 getSender
Returns a pointer to the AmSender object contained within the AmDistributionList
object at the index specified. AmDistributionList.getSenderCount gets the
number of AmSender services in the distribution list.

AmSender : getSender(int index);

index The index of the AmSender in the AmDistributionList, starting at
zero.

 Chapter 8. C++ interface reference 205

 C++ AmDistributionList

 getSenderCount
Returns the number of AmSender services in the AmDistributionList object.

 int getSenderCount();

 open
Opens an AmDistributionList object for each of the destinations in the distribution
list. open is overloaded: the policy parameter is optional.

 void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 send
Sends a message to each AmSender defined in the AmDistributionList object.
send is overloaded: the sendMessage parameter is required, but the others are
optional.

 void send(
 AmMessage &sendMessage,
 AmReceiver &responseService,
 AmPolicy &policy);

sendMessage The message object containing the data to be sent.

responseService The AmReceiver to be used for receiving any response to the
sent message. If omitted, no response can be received.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

| sendFile
| Sends data from a file to each AmSender defined in the AmDistributionList object.
| The sendMessage and fileName parameters are required to send data from a file,
| but the policy is optional. The file data can be received as normal message data
| by a target application using AmReceiver.receive, or used to reconstruct the file
| with AmReceiver.receiveFile.

| void sendFile(
| AmMessage &sendMessage,
| char: fileName,
| AmPolicy &policy);

| sendMessage The message object to use to send the file. This can be used to
| specify the Correlation ID, for example.

| fileName The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| the send operation is a physical-mode file transfer, then the file
| name will travel with the message for use with the receive file
| method (see “receiveFile” on page 204 for more details). Note that
| the file name sent will exactly match the supplied file name; it will
| not be converted or expanded in any way.

206 MQSeries Application Messaging Interface

 C++ AmDistributionList

| policy The policy to be used. If omitted, the system default policy (name
| constant: AMSD_POL) is used.

 Chapter 8. C++ interface reference 207

 C++ AmPublisher

 AmPublisher
An AmPublisher object encapsulates an AmSender and provides support for
publish requests to a publish/subscribe broker.

 clearErrorCodes
Clears the error codes in the AmPublisher.

 void clearErrorCodes();

 close
Closes the AmPublisher. close is overloaded: the policy parameter is optional.

 void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getCCSID
Returns the coded character set identifier for the AmPublisher. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.

 int getCCSID();

 getEncoding
Returns the value used to encode numeric data types for the AmPublisher. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

 int getEncoding();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

208 MQSeries Application Messaging Interface

 C++ AmPublisher

 getName
Returns the name of the AmPublisher.

 AmString getName();

 open
Opens an AmPublisher service. open is overloaded: the policy parameter is
optional.

 void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 publish
Publishes a message using the AmPublisher. publish is overloaded: the
pubMessage parameter is required, but the others are optional.

 void publish(
 AmMessage &pubMessage,
 AmReceiver &responseService,
 AmPolicy &policy);

pubMessage The message object that contains the data to be published.

responseService The AmReceiver to which the response to this publish request
should be sent. Omit it if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 Chapter 8. C++ interface reference 209

 C++ AmSubscriber

 AmSubscriber
An AmSubscriber object encapsulates both an AmSender and an AmReceiver. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

 clearErrorCodes
Clears the error codes in the AmSubscriber.

 void clearErrorCodes();

 close
Closes the AmSubscriber. close is overloaded: the policy parameter is optional.

 void close(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getCCSID
Returns the coded character set identifier for the AmSender in the AmSubscriber.
A non-default value reflects the CCSID of a remote system unable to perform
CCSID conversion of received messages. In this case the subscriber must perform
CCSID conversion of the message before it is sent.

 int getCCSID();

 getDefinitionType
Returns the definition type for the AmReceiver in the AmSubscriber.

 int getDefinitionType();

The following values can be returned:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

210 MQSeries Application Messaging Interface

 C++ AmSubscriber

 getEncoding
Returns the value used to encode numeric data types for the AmSender in the
AmSubscriber. A non-default value reflects the encoding of a remote system
unable to convert the encoding of received messages. In this case the subscriber
must convert the encoding of the message before it is sent.

 int getEncoding();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmSubscriber.

 AmString getName();

 getQueueName
Returns the queue name used by the AmSubscriber to receive messages. This is
used to determine the queue name of a permanent dynamic AmReceiver in the
AmSubscriber, so that it can be recreated with the same queue name in order to
receive messages in a subsequent session. (See also setQueueName.)

 AmString getQueueName();

 open
Opens an AmSubscriber. open is overloaded: the policy parameter is optional.

 void open(AmPolicy &policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 Chapter 8. C++ interface reference 211

 C++ AmSubscriber

 receive
Receives a message, normally a publication, using the AmSubscriber. The
message data, topic and other elements can be accessed using the message
interface methods (see page 189).

receive is overloaded: the pubMessage parameter is required, but the others are
optional.

 void receive(
 AmMessage &pubMessage,
 AmMessage &selectionMessage,
 AmPolicy &policy);

pubMessage The message object containing the data that has been published.
The message object is reset implicitly before the receive takes
place.

selectionMessage A message object containing the correlation ID used to
selectively receive a message from the AmSubscriber. If omitted,

| the first available message is received. The CCSID, element
| CCSID and encoding values from the selection message define
| the target values for data conversion. If target conversion values
| are required without using the Correlation ID for selection then this
| can be be reset (see AmMessage.setCorrelationId on page 195)
| before invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 setQueueName
Sets the queue name in the AmReceiver of the AmSubscriber, when this
encapsulates a model queue. This is used to specify the queue name of a
recreated permanent dynamic AmReceiver, in order to receive messages in a
session subsequent to the one in which it was created. (See also
getQueueName.)

 void setQueueName(char : queueName);

queueName The queue name to be set.

212 MQSeries Application Messaging Interface

 C++ AmSubscriber

 subscribe
Sends a subscribe message to a publish/subscribe broker using the AmSubscriber,
to register a subscription. The topic and other elements can be specified using the
message interface methods (see page 189) before sending the message.

Publications matching the subscription are sent to the AmReceiver associated with
the AmSubscriber. By default, this has the same name as the AmSubscriber, with
the addition of the suffix ‘.RECEIVER’.

subscribe is overloaded: the subMessage parameter is required, but the others are
optional.

 void subscribe(
 AmMessage &subMessage,
 AmReceiver &responseService,
 AmPolicy &policy);

subMessage The message object that contains the topic subscription data.

responseService The AmReceiver to which the response to this subscribe request
should be sent. Omit it if no response is required.

This is not the AmReceiver to which publications will be sent by
the broker; they are sent to the AmReceiver associated with the
AmSubscriber (see above).

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 unsubscribe
Sends an unsubscribe message to a publish/subscribe broker using the
AmSubscriber, to deregister a subscription. The topic and other elements can be
specified using the message interface methods (see page 189) before sending the
message.

unsubscribe is overloaded: the unsubMessage parameter is required, but the others
are optional.

 void unsubscribe(
 AmMessage &unsubMessage,
 AmReceiver &responseService,
 AmPolicy &policy);

unsubMessage The message object that contains the topics to which the
unsubscribe request applies.

responseService The AmReceiver to which the response to this unsubscribe
request should be sent. Omit it if no response is required.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 Chapter 8. C++ interface reference 213

 C++ AmPolicy

 AmPolicy
An AmPolicy object encapsulates details of how the AMI processes the message
(for instance, the priority and persistence of the message, how errors are handled,
and whether transactional processing is used).

 clearErrorCodes
Clears the error codes in the AmPolicy.

 void clearErrorCodes();

 enableWarnings
Enables AmWarningExceptions; the default behavior for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(AMBOOL warningsOn);

warningsOn If set to AMB_TRUE, AmWarningExceptions will be raised for this
object.

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmPolicy object.

 AmString getName();

 getWaitTime
Returns the wait time (in ms) set for this AmPolicy.

 int getWaitTime();

 setWaitTime
Sets the wait time for any receive using this AmPolicy.

 void setWaitTime(int waitTime);

waitTime The wait time (in ms) to be set in the AmPolicy.

214 MQSeries Application Messaging Interface

 C++ AmBytes

 AmBytes
An AmBytes object encapsulates an array of bytes. It allows the AMI to pass bytes
across the interface and enables manipulation of these bytes.

 cmp
Methods used to compare AmBytes objects. These methods return 0 if the data is
the same, and 1 otherwise.

AMLONG cmp(const AmBytes &amBytes);
AMLONG cmp(const char : stringData);
AMLONG cmp(const char : charData, AMLONG length);

amBytes A reference to the AmBytes object being compared.

stringData A char pointer to the NULL terminated string being compared.

charData A char pointer to the bytes being compared.

length The length, in bytes, of the data to be compared. If this length is
not the same as the length of the AmBytes object, the comparison
fails.

 constructors
Constructors for an AmBytes object.

 AmBytes();
AmBytes(const AmBytes &amBytes);
AmBytes(const AMBYTE byte);
AmBytes(const AMLONG long);
AmBytes(const char : charData);
AmBytes(const AmString &amString);
AmBytes(const AMSTR stringData);
AmBytes(const AMBYTE :character, const AMLONG length);

amBytes A reference to an AmBytes object used to create the new AmBytes
object.

byte A single byte used to create the new AmBytes object.

long An AMLONG used to create the new AmBytes object.

charData A char pointer to a NULL terminated string used to create the new
AmBytes object.

stringData A NULL terminated string used to create the new AmBytes object.

character The character to populate the new AmBytes object with.

length The length, in bytes, of the new AmBytes object.

 Chapter 8. C++ interface reference 215

 C++ AmBytes

 cpy
Methods used to copy from an AmBytes object. Any existing data in the AmBytes
object is discarded.

 AmBytes &cpy();
AmBytes &cpy(const AMSTR stringData);
AmBytes &cpy(const AMBYTE :byteData, const AMLONG length);
AmBytes &cpy(const AMBYTE byte);
AmBytes &cpy(const AMLONG long);
AmBytes &cpy(const AmBytes &amBytes);

stringData A NULL terminated string being copied.

byteData A pointer to the bytes being copied.

length The length, in bytes, of the data to be copied.

byte The single byte being copied.

long An AMLONG being copied.

amBytes A reference to the AmBytes object being copied.

 dataPtr
Method to reference the byte data contained within an AmBytes object.

const AMBYTE : dataPtr() const;

 destructor
Destructor for an AmBytes object.

 ˜AmBytes();

 length
Returns the length of an AmBytes object.

 AMLONG length();

 operators
Operators for an AmBytes object.

AmBytes &operator = (const AmBytes &);
AMBOOL operator == (const AmBytes &) const;
AMBOOL operator != (const AmBytes &) const;

 pad
Method used to pad AmBytes objects with a specified byte value.

AmBytes &pad(const AMLONG length, const AMBYTE byte);

length The required length of the AmBytes after the padding.

byte The byte value used to pad the AmBytes object.

216 MQSeries Application Messaging Interface

 C++ AmElement

 AmElement
An AmElement object encapsulates a name/value pair which can be added to an
AmMessage object.

 AmElement
Constructor for an AmElement object.

AmElement(char : name, char : value);

name The name of the element.

value The value of the element.

 getName
Returns the name of the AmElement.

 AmString getName();

 getValue
Returns the value of the AmElement.

 AmString getValue();

 getVersion
Returns the version of the AmElement (the default value is AMELEM_VERSION_1).

 int getVersion();

 setVersion
Sets the version of the AmElement.

 void setVersion(int version);

version The version of the AmElement that is set. It can take the value
AMELEM_VERSION_1 or AMELEM_CURRENT_VERSION.

 toString
Returns a AmString representation of the AmElement.

 AmString toString();

 Chapter 8. C++ interface reference 217

 C++ AmObject

 AmObject
AmObject is a virtual class. The following classes inherit from the AmObject class:

 AmSession
 AmMessage
 AmSender
 AmDistributionList
 AmReceiver
 AmPublisher
 AmSubscriber
 AmPolicy

This allows application programmers to use generic error handling routines.

 clearErrorCodes
Clears the error codes in the AmObject.

 void clearErrorCodes();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmObject.

 AmString getName();

218 MQSeries Application Messaging Interface

 C++ AmStatus

 AmStatus
An AmStatus object encapsulates the error status of other AmObjects.

 AmStatus
Constructor for an AmStatus object.

 AmStatus();

 getCompletionCode
Returns the completion code from the AmStatus object.

 int getCompletionCode();

 getReasonCode
Returns the reason code from the AmStatus object.

 int getReasonCode();

 getReasonCode2
Returns the secondary reason code from the AmStatus object. (This code is
specific to the underlying transport used by the AMI). For MQSeries, the secondary
reason code is an MQSeries reason code of type MQRC_xxx.

 int getReasonCode2();

 toString
Returns an AmString representation of the internal state of the AmStatus object.

 AmString toString();

 Chapter 8. C++ interface reference 219

 C++ AmString

 AmString
An AmString object encapsulates a string or array of characters. It allows the AMI
to pass strings across the interface and enables manipulation of these strings.

 cat
Methods used to concatenate.

AmString &cat(const AmString &amString);
AmString &cat(const AMSTR stringData);

amString A reference to the AmString object being concatenated.

stringData The NULL terminated string being concatenated into the AmString
object.

 cmp
Methods to compare AmStrings with AmStrings and data of type AMSTR. A return
value of 0 indicates that the two strings match exactly.

AMLONG cmp(const AmString &amString) const;
AMLONG cmp(const AMSTR stringData) const;

amString A reference to the AmString object being compared.

stringData The NULL terminated string being compared.

 constructors
Constructors for an AmString object.

 AmString();
AmString(const AmString &amString);
AmString(const AMSTR stringData);

amString A reference to an AmString object used to create the new
AmString.

stringData A NULL terminated string, from which the AmString is constructed.

 contains
Method to indicate whether a specified character is contained within the AmString.

AMBOOL contains(const AMBYTE character) const;

character The character being used for the search.

 cpy
Methods used to copy from an AmString. Any existing data in the AmString is
discarded.

AmString &cpy(const AmString &amString);
AmString &cpy(const AMSTR stringData);

amString A reference to an AmString object being copied.

stringData The NULL terminated string being copied into the AmString.

220 MQSeries Application Messaging Interface

 C++ AmString

 destructor
Destructor for an AmString object.

 ˜AmString();

 operators
Operators for an AmString object.

AmString &operator = (const AmString &);
AmString &operator = (const AMSTR);
AMBOOL operator == (const AmString &) const;
AMBOOL operator != (const AmString &) const;

 pad
Method used to pad AmStrings with a specified character.

AmString &pad(const AMLONG length, const AMBYTE character);

length The required length of the AmString after the padding.

charString The character used to pad the AmString.

 split
Method used to split AmStrings at the first occurrence of a specified character.

AmString &split(AmString &newString, const AMBYTE splitCharacter);

newString A reference to an AmString object to contain the latter half of the
split string.

splitCharacter The first character at which the split will occur.

 strip
Method used to strip leading and trailing blanks from AmStrings.

 AmString &strip();

 length
Returns the length of an AmString.

 AMLONG length();

 text
Method to reference the string contained within an AmString.

AMSTR text() const;

 truncate
Method used to truncate AmStrings.

AmString &truncate(const AMLONG length);

length The length to which the AmString is to be truncated.

 Chapter 8. C++ interface reference 221

 C++ AmException

 AmException
AmException is the base Exception class; all other Exceptions inherit from this
class.

 getClassName
Returns the type of object throwing the Exception.

 AmString getClassName();

 getCompletionCode
Returns the completion code for the Exception.

 int getCompletionCode();

 getMethodName
Returns the name of the method throwing the Exception.

 AmString getMethodName();

 getReasonCode
Returns the reason code for the Exception.

 int getReasonCode();

 getSource
Returns the AmObject throwing the Exception.

 AmObject getSource();

 toString
Returns an AmString representation of the Exception.

 AmString toString();

222 MQSeries Application Messaging Interface

 C++ AmErrorException

 AmErrorException
An Exception of type AmErrorException is raised when an object experiences an
error with a severity level of FAILED (CompletionCode = AMCC_FAILED).

 getClassName
Returns the type of object throwing the Exception.

 AmString getClassName();

 getCompletionCode
Returns the completion code for the Exception.

 int getCompletionCode();

 getMethodName
Returns the name of the method throwing the Exception.

 AmString getMethodName();

 getReasonCode
Returns the reason code for the Exception.

 int getReasonCode();

 getSource
Returns the AmObject throwing the Exception.

 AmObject getSource();

 toString
Returns an AmString representation of the Exception.

 AmString toString();

 Chapter 8. C++ interface reference 223

 C++ AmWarningException

 AmWarningException
An Exception of type AmWarningException is raised when an object experiences
an error with a severity level of WARNING (CompletionCode = AMCC_WARNING).

 getClassName
Returns the type of object throwing the Exception.

 AmString getClassName();

 getCompletionCode
Returns the completion code for the Exception.

 int getCompletionCode();

 getMethodName
Returns the name of the method throwing the Exception.

 AmString getMethodName();

 getReasonCode
Returns the reason code for the Exception.

 int getReasonCode();

 getSource
Returns the AmObject throwing the Exception.

 AmObject getSource();

 toString
Returns an AmString representation of the Exception.

 AmString toString();

224 MQSeries Application Messaging Interface

Part 4. The COBOL interface

This part contains:

� Chapter 9, “Using the Application Messaging Interface in COBOL” on
page 227

� Chapter 10, “The COBOL high-level interface” on page 243

� Chapter 11, “COBOL object interface overview” on page 273

� Chapter 12, “COBOL object interface reference” on page 287

 Copyright IBM Corp. 1999, 2000 225

226 MQSeries Application Messaging Interface

 Structure of the AMI

| Chapter 9. Using the Application Messaging Interface in
| COBOL

| The Application Messaging Interface (AMI) in the COBOL programming language
| has two interfaces:

| 1. A high-level procedural interface that provides the function needed by the
| majority of users.

| 2. A lower-level, object-style interface, that provides additional function for
| experienced MQSeries users.

| This chapter describes the following:

| � “Structure of the AMI”

| � “Writing applications in COBOL” on page 230

| � “Building COBOL applications” on page 241

| Structure of the AMI
| Although the high-level interface is procedural in style, the underlying structure of
| the AMI is object based. (The term object is used here in the object-oriented
| programming sense, not in the sense of MQSeries ‘objects’ such as channels and
| queues.) The objects that are made available to the application are:

| Session Contains the AMI session.

| Message Contains the message data, message ID, correlation ID, and
| options that are used when sending or receiving a message
| (most of which come from the policy definition).

| Sender This is a service that represents a destination (such as an
| MQSeries queue) to which messages are sent.

| Receiver This is a service that represents a source from which
| messages are received.

| Distribution list Contains a list of sender services to provide a list of
| destinations.

| Publisher Contains a sender service where the destination is a
| publish/subscribe broker.

| Subscriber Contains a sender service (to send subscribe and
| unsubscribe messages to a publish/subscribe broker) and a
| receiver service (to receive publications from the broker).

| Policy Defines how the message should be handled, including items
| such as priority, persistence, and whether it is included in a
| unit of work.

| When using the high-level functions the objects are created automatically and
| (where applicable) populated with values from the repository. In some cases it
| might be necessary to inspect these properties after a message has been sent (for
| instance, the MessageID), or to change the value of one or more properties before
| sending the message (for instance, the Format). To satisfy these requirements, the
| AMI for COBOL has a lower-level object style interface in addition to the high-level

 Copyright IBM Corp. 1999, 2000 227

 Structure of the AMI

| procedural interface. This provides access to the objects listed above, with methods
| to set and get their properties. You can mix high-level and object-level functions in
| the same application.

| All the objects have both a handle and a name. The names are used to access
| objects from the high-level interface. The handles are used to access them from
| the object interface. Multiple objects of the same type can be created with the
| same name, but are usable only from the object interface.

| The high-level interface is described in Chapter 10, “The COBOL high-level
| interface” on page 243. An overview of the object interface is given in Chapter 11,
| “COBOL object interface overview” on page 273, with reference information in
| Chapter 12, “COBOL object interface reference” on page 287.

| Using the repository
| You can run AMI applications with or without a repository. If you don’t have a
| repository, you can use a system default object (see below), or create your own by
| specifying its name on a high-level function call. It will be created using the
| appropriate system provided definition (see “System provided definitions” on
| page 472).

| If you have a repository, and you specify the name of an object on a function call
| that matches a name in the repository, the object will be created using the
| repository definition. (If no matching name is found in the repository, the system
| provided definition will be used.)

| System default objects

| Table 3. System default objects

| Default object| Constant or handle (if applicable)

| SYSTEM.DEFAULT.POLICY| AMSD-POL
| AMSD-POL-HANDLE

| SYSTEM.DEFAULT.SYNCPOINT.POLICY| AMSD-SYNC-POINT-POL
| AMSD-SYNC-POINT-POL-HANDLE

| SYSTEM.DEFAULT.SENDER| AMSD-SND

| SYSTEM.DEFAULT.RESPONSE.SENDER| AMSD-RSP-SND
| AMSD-RSP-SND-HANDLE

| SYSTEM.DEFAULT.RECEIVER| AMSD-RCV
| AMSD-RCV-HANDLE

| SYSTEM.DEFAULT.PUBLISHER| AMSD-PUB
| AMSD-PUB-SND

| SYSTEM.DEFAULT.SUBSCRIBER| AMSD-SUB
| AMSD-SUB-SND

| SYSTEM.DEFAULT.SEND.MESSAGE| AMSD-SND-MSG
| AMSD-SND-MSG-HANDLE

| SYSTEM.DEFAULT.RECEIVE.MESSAGE| AMSD-RCV-MSG
| AMSD-RCV-MSG-HANDLE

| A set of system default objects is created at session creation time. This removes
| the overhead of creating the objects from applications using these defaults. The

228 MQSeries Application Messaging Interface

 Structure of the AMI

| system default objects are available for use from both the high-level and object
| interfaces in COBOL. They are created using the system provided definitions (see
| “System provided definitions” on page 472).

| The default objects can be specified explicitly using AMI constants, or used to
| provide defaults if a parameter is omitted (by specifying it as a space or low value,
| for example).

| Constants representing synonyms for handles are also provided for these objects,
| for use from the object interface (see Appendix B, “Constants” on page 515). Note
| that the first parameter on a call must be a real handle; you cannot use a synonym
| in this case (that is why handles are not provided for all the default objects).

 Chapter 9. Using the Application Messaging Interface in COBOL 229

 Writing applications in COBOL

| Writing applications in COBOL
| This section gives a number of examples showing how to use the high-level
| interface of the AMI, with some extensions using the object interface. Equivalent
| operations to all high-level functions can be performed using combinations of object
| interface functions (see “High-level functions” on page 284).

| Opening and closing a session
| Before using the AMI, you must open a session. This can be done with the
| following high-level function (page 252):

| Opening a session

| CALL 'AMHINIT' USING SESSION-NAME, POLICY-NAME, HSESSION,
| COMPCODE, REASON.

| The SESSION-NAME is optional. POLICY-NAME is the name of the policy to be used
| during initialization of the AMI. If it consists of a space or low value, the
| SYSTEM.DEFAULT.POLICY object is used. Or you can specify the constant
| AMSD-POL to use the default policy.

| The function returns HSESSION, a session handle that must be used by other calls in
| this session. Errors are returned using a completion code and reason code.

| To close a session, you can use this high-level function (page 269):

| Closing a session

| CALL 'AMHTERM' USING HSESSION, POLICY-NAME, COMPCODE, REASON.

| This closes and deletes all objects that were created in the session.

| Sending messages
| You can send a datagram (send and forget) message using the high-level
| AMHSNMS function (page 264). In the simplest case, all you need to specify is the
| session handle returned by AMHINIT, the message data, and the message length.
| Other parameters can be specified using the constants that represent the default
| message, sender service, and policy objects.

| Sending a message using all the defaults

| CALL 'AMHSNMS' USING HSESSION, AMSD-SND, AMSD-POL, DATALEN, DATA,
| AMSD-SND-MSG, COMPCODE, REASON.

| If you want to send the message using a different sender service, specify its name
| (such as SENDER-NAME) as follows:

| Sending a message using a specified sender service

| CALL 'AMHSNMS' USING HSESSION, SENDER-NAME, AMSD-POL, DATALEN, DATA,
| AMSD-SND-MSG, COMPCODE, REASON.

| If you are not using the default policy, you can specify a policy name:

230 MQSeries Application Messaging Interface

 Writing applications in COBOL

| Sending a message using a specified policy

| CALL 'AMHSNMS' USING HSESSION, AMSD-SND, POLICY-NAME, DATALEN, DATA,
| AMSD-SND-MSG, COMPCODE, REASON.

| The policy controls the behavior of the send function. For example, the policy can
| specify:

| � The priority, persistence and expiry of the message
| � If the send is part of a unit of work
| � If the sender service should be implicitly opened and left open

| To send a message to a distribution list, specify its name (such as DISTLIST-NAME)
| as the sender service:

| Sending a message to a distribution list

| CALL 'AMHSNMS' USING HSESSION, DISTLIST-NAME, AMSD-POL, DATALEN, DATA,
| AMSD-SND-MSG, COMPCODE, REASON.

| Using the message object
| Using the object interface gives you more functions when sending a message. For
| example, you can get or set individual attributes in the message object. To get an
| attribute after the message has been sent, you can specify a name for the
| message object that is being sent:

| Specifying a message object

| CALL 'AMHSNMS' USING HSESSION, AMSD-SND, AMSD-POL, DATALEN, DATA,
| SEND-MSG, COMPCODE, REASON.

| The AMI creates a message object of the name specified (SEND-MSG), if one doesn't
| already exist. (In this example the defaults for the sender name and policy name
| are used.) You can then use object interface functions to get the required
| attributes, such as the MessageID, from the message object:

| Getting an attribute from a message object

| CALL 'AMSEGHMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

| CALL 'AMMSGTMI' USING HMSG, BUFFLEN, MSGIDLEN, MSGID, COMPCODE, REASON.

| The first call is needed to get the handle to the message object (HMSG). The second
| call returns the message ID length, and the message ID itself (in a buffer of length
| BUFFLEN).

| To set an attribute such as the Format before the message is sent, you must first
| create a message object and set the format in that object:

| Setting an attribute in a message object

| CALL 'AMSECRMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

| CALL 'AMMSSTFO' USING HMSG, FORMATLEN, FORMAT, COMPCODE, REASON.

 Chapter 9. Using the Application Messaging Interface in COBOL 231

 Writing applications in COBOL

| Then you can send the message as before, making sure to specify the same
| message object name (SEND-MSG) in the AMHSNMS call.

| Look at “Message interface functions” on page 276 to find out what other attributes
| of the message object you can get and set.

| After a message object has been used to send a message, it might not be left in
| the same state as it was prior to the send. Therefore, if you use the message
| object for repeated send operations, it is advisable to reset it to its initial state (see
| AMMSRS on page 315) and rebuild it each time.

| Instead of sending the message data using the data buffer, it can be added to the
| message object. However, this is not recommended for large messages because of
| the overhead of copying the data into the message object before it is sent (and also
| extracting the data from the message object when it is received).

| Sample programs
| For more details, refer to the AMTVHSND and AMTVOSND sample programs (see
| “Sample programs for OS/390” on page 466).

| Receiving messages
| Use the AMHRCMS high-level function (page 256) to receive a message to which
| no response is to be sent (such as a datagram). In the simplest case, all you need
| to specify are the session handle and a buffer for the message data. Other
| parameters can be specified using the constants that represent the default
| message, receiver service, and policy objects.

| Receiving a message using all the defaults

| CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, AMSD-SND-MSG,
| BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
| COMPCODE, REASON.

| If you want to receive the message using a different receiver service, specify its
| name (such as RECEIVER-NAME) as follows:

| Receiving a message using a specified receiver service

| CALL 'AMHRCMS' USING HSESSION, RECEIVER-NAME, AMSD-POL, AMSD-SND-MSG,
| BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
| COMPCODE, REASON.

| If you are not using the default policy, you can specify a policy name:

| Receiving a message using a specified policy

| CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, POLICY-NAME, AMSD-SND-MSG,
| BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
| COMPCODE, REASON.

232 MQSeries Application Messaging Interface

 Writing applications in COBOL

| The policy can specify, for example:

| � The wait interval
| � If the message is part of a unit of work
| � If the message should be code page converted
| � If all the members of a group must be there before any members can be read

| Using the message object
| To get the attributes of a message after receiving it, you can specify your own
| message object name, or use the system default
| SYSTEM.DEFAULT.RECEIVE.MESSAGE (constant: AMSD-RCV-MSG). If a
| message object of that name does not exist it will be created. You can access the
| attributes (such as the Encoding) using the object interface functions:

| Getting an attribute from a message object

| CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, AMSD-SND-MSG,
| BUFFLEN, DATALEN, DATA, RECEIVE-MSG,
| COMPCODE, REASON.

| CALL 'AMSEGHMS' USING HSESSION, RECEIVE-MSG, HMSG, COMPCODE, REASON.

| CALL 'AMMSGTEN' USING HMSG, ENCODING, COMPCODE, REASON.

| If a specific message is to be selectively received using its correlation identifier, a
| message object must first be created and its CorrelId property set to the required
| value (using the object interface). This message object is passed as the selection
| message on the AMHRCMS call:

| Using a selection message object

| CALL 'AMSECRMS' USING HSESSION, SELECTION-MSG, HMSG, COMPCODE, REASON.

| CALL 'AMMSSTCI' USING HMSG, CORRELIDLEN, CORRELID, COMPCODE, REASON.

| CALL 'AMHRCMS' USING HSESSION, AMSD-RCV, AMSD-POL, SELECTION-MSG,
| BUFFLEN, DATALEN, DATA, AMSD-RCV-MSG,
| COMPCODE, REASON.

| Sample programs
| For more details, refer to the AMTVHRCV and AMTVORCV sample programs (see
| “Sample programs for OS/390” on page 466).

| Request/response messaging
| In the request/response style of messaging, a requester (or client) application
| sends a request message and expects to receive a message in response. The
| responder (or server) application receives the request message and produces the
| response message (or messages) which it returns to the requester application. The
| responder application uses information in the request message to determine how to
| send the response message to the requester.

| In the following examples ‘CLIENT’ refers to the requesting application, and
| ‘SERVER’ refers to the responding application.

 Chapter 9. Using the Application Messaging Interface in COBOL 233

 Writing applications in COBOL

| Request
| Use the AMHSNRQ high-level function (page 265) to send a request message.
| This is similar to AMHSNMS, but it includes the name of the service to which the
| response message is to be sent. In this example the sender service
| (CLIENT-SENDER) is specified in addition to the receiver service (CLIENT-RECEIVER).
| A send message name (CLIENT-SND-MSG) is specified as well.

| Sending a request message

| CALL 'AMHSNRQ' USING HSESSION, CLIENT-SENDER, AMSD-POL, CLIENT-RECEIVER,
| DATALEN, DATA, CLIENT-SND-MSG, COMPCODE, REASON.

| The AMHRCRQ high-level function (page 260) is used by the responding (or
| server) application to receive a request message. It is similar to AMHRCMS, but it
| includes the name of the sender service that will be used for sending the response
| message. When the message is received, the sender service is updated with the
| information needed for sending the response to the required destination.

| Receiving a request message

| CALL 'AMHRCRQ' USING HSESSION, SERVER-RECEIVER, AMSD-POL, BUFFLEN,
| DATALEN, DATA, SERVER-RCV-MSG, SERVER-SENDER,
| COMPCODE, REASON.

| A policy name can be specified as well, as described in “Receiving messages” on
| page 232.

| A receiver message name (SERVER-RCV-MSG) is specified so that the response
| message can refer to it. Note that, unlike AMHRCMS, this function does not have a
| selection message.

| Response
| After the requested actions have been performed, the responding application sends
| the response message (or messages) with the AMHSNRS function (page 266):

| Sending a response message

| CALL 'AMHSNRS' USING HSESSION, SERVER-SENDER, AMSD-POL, SERVER-RCV-MSG,
| DATALEN, DATA, AMSD-SND-MSG, COMPCODE, REASON.

| The sender service for the response message (SERVER-SENDER) and the receiver
| message name (SERVER-RCV-MSG) are the same as those used with AMHRCRQ
| (receive request). This causes the CorrelId and MessageId to be set in the
| response message, as requested by the flags in the request message.

| Finally, the requester (or client) application uses the AMHRCMS function to receive
| the response message as described in “Receiving messages” on page 232. You
| might need to receive a specific response message (for example if three request
| messages have been sent, and you want to receive the response to the first
| request message first). In this case the sender message name from the AMHSNRQ
| function (CLIENT-SND-MSG) should be used as the selection message name in
| AMHRCMS.

234 MQSeries Application Messaging Interface

 Writing applications in COBOL

| Sample programs
| For more details, refer to the AMTVHCLT, AMTVOCLT, AMTVHSVR, and
| AMTSOSVR sample programs (see “Sample programs for OS/390” on page 466).

| File transfer
| You can perform file transfers using the AMHSNFL and AMHRCFL high-level
| functions, and the AMSNSNFL, AMDLSNFL and AMRCRCFL object-level functions.

| Sending a file using the high-level AMHSNFL function

| CALL 'AMHSNFL' USING HSESSION, SENDER-NAME, POLICYNAME, OPTIONS,
| FILENAME-LENGTH, FILENAME, SNDMSG-NAME.

| Receiving a file using the high-level AMHRCFL function

| CALL 'AMHRCFL' USING HSESSION, RECEIVER-NAME, POLICY-NAME, OPTIONS,
| SELMSG-NAME, FILENAME-LENGTH, SNDMSG-NAME.

| For a complete description of file transfer, refer to “File transfer” on page 19

| Publish/subscribe messaging
| With publish/subscribe messaging, publisher applications publish messages to
| subscriber applications using a broker. The messages published contain application
| data and one or more topic strings that describe the data. Subscribing applications
| register subscriptions informing the broker which topics they are interested in.
| When the broker receives a published message, it forwards the message to all
| subscribing applications for which a topic in the message matches a topic in the
| subscription.

| Subscribing applications can exploit content-based publish/subscribe by passing a
| filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator Version
| 2” on page 461).

| For more information, refer to the MQSeries Publish/Subscribe User’s Guide.

| Publish
| Use the AMHPB high-level function (page 253) to publish a message. You need to
| specify the name of the publisher for the publish/subscribe broker (or use the
| default by specifying AMSD-PUB). The topic relating to this publication and the
| publication data must also be specified:

| Publishing a message

| CALL 'AMHPB' USING HSESSION, PUBLISHER-NAME, AMSD-POL, RECEIVER-NAME,
| TOPICLEN, TOPIC, DATALEN, DATA, PUBLISH-MSG,
| COMPCODE, REASON.

| The RECEIVER-NAME identifies the receiver service to which the broker will send a
| response message. You can also specify a policy name to change the behavior of
| the function (as with the AMHSNxx functions).

| You can specify the publication message name PUBLISH-MSG and set or get
| attributes of the message object (using the object interface functions). This might

 Chapter 9. Using the Application Messaging Interface in COBOL 235

 Writing applications in COBOL

| include adding another topic (using AMMSADTO) before invoking AMHPB, if there
| are multiple topics associated with this publication.

| Instead of sending the publication data using the data buffer, it can be added to the
| message object. Unlike the AMHSNxx functions, this gives no difference in
| performance with large messages. This is because, whichever method is used, the
| MQRFH header has to be added to the publication data before sending it (similarly
| the header has to be removed when the publication is received).

| Subscribe
| The AMHSB high-level function (page 267) is used to subscribe to a
| publish/subscribe broker specified by the name of a subscriber service. The
| receiver to which publications will be sent is included within the definition of the
| subscriber. The name of a receiver service to which the broker can send a
| response message (RECEIVER-NAME) is also specified.

| Subscribing to a broker

| CALL 'AMHSB' USING HSESSION, SUBSCRIBER-NAME, AMSD-POL, RECEIVER-NAME,
| TOPICLEN, TOPIC, 5, 5, SUBSCRIBE-MSG,
| COMPCODE, REASON.

| A subscription for a single topic can be passed by the TOPIC parameter. You can
| subscribe to multiple topics by using the object interface AMMSADTO function to
| add topics to the SUBSCRIBE-MSG message object, before invoking AMHSB.

| If the policy specifies that the CorrelId is to be used as part of the identity for the
| subscribing application, it can be added to the subscription message object with the
| object interface AMMSSTCI function, before invoking AMHSB.

| To remove a subscription, use the AMHUN high-level function (page 270). To
| remove all subscriptions, you can specify a policy that has the ‘Deregister All
| Topics’ subscriber attribute.

| To receive a publication from a broker, use the AMHRCPB function (page 258). For
| example:

| Receiving a publication

| CALL 'AMHRCPB' USING HSESSION, SUBSCRIBER-NAME, AMSD-POL, SELECTION-MSG,
| TOPICBUFFLEN, BUFFLEN, TOPICCOUNT, TOPICLEN,
| FIRSTTOPIC, DATALEN, DATA, RECEIVE-MSG,
| COMPCODE, REASON.

| You need to specify the name of the subscriber service used for the original
| subscription. You can also specify a policy name and a selection message name,
| as described in “Receiving messages” on page 232.

| If there are multiple topics associated with the publication, only the first one is
| returned by this function. So, if TOPICCOUNT indicates that there are more topics, you
| have to access them from the RECEIVE-MSG message object, using the object-level
| AMSEGHMS (get message handle) and AMMSGTTO (get topic) functions.

236 MQSeries Application Messaging Interface

 Writing applications in COBOL

| Sample programs
| For more details, refer to the AMTVHPUB, AMTSOPUB, AMTVHSUB, and
| AMTSOSUB sample programs (see “Sample programs for OS/390” on page 466).

| Using name/value elements
| Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
| messages that contain name/value pairs to define the commands and options to be
| used. The AMHPB, AMHSB, AMHUN, and AMHRCPB high-level functions provide
| these name/value pairs implicitly.

| For less commonly used commands and options, the name/value pairs can be
| added to a message using an AMELEM structure. The AMTELEMV and
| AMTELEML copybooks define the AMELEM structure, with and without default
| values respectively. Here is the AMTELEMV copybook:

| :: AMELEM structure
| 15 AMELEM.
| :: Structure identifier
| 15 AMELEM-STRUCID PIC X(8) VALUE 'COEL '.
| :: Structure version number
| 15 AMELEM-VERSION PIC S9(9) BINARY VALUE 1.
| :: Reserved, must be zero
| 15 AMELEM-GROUP-BUFF-LEN PIC S9(9) BINARY VALUE 5.
| :: Reserved, must be zero
| 15 AMELEM-GROUP-LEN PIC S9(9) BINARY VALUE 5.
| :: Reserved, must be zero
| 15 AMELEM-GROUP-OFFSET PIC S9(9) BINARY VALUE 5.
| :: Name buffer length
| 15 AMELEM-NAME-BUFF-LEN PIC S9(9) BINARY VALUE 5.
| :: Name length in bytes
| 15 AMELEM-NAME-LEN PIC S9(9) BINARY VALUE 5.
| :: Name
| 15 AMELEM-NAME-OFFSET PIC S9(9) BINARY VALUE 5.
| :: Value buffer length
| 15 AMELEM-VALUE-BUFF-LEN PIC S9(9) BINARY VALUE 5.
| :: Value length in bytes
| 15 AMELEM-VALUE-LEN PIC S9(9) BINARY VALUE 5.
| :: Value
| 15 AMELEM-VALUE-OFFSET PIC S9(9) BINARY VALUE 5.
| :: Reserved, must be zero
| 15 AMELEM-TYPE-BUFF-LEN PIC S9(9) BINARY VALUE 5.
| :: Reserved, must be zero
| 15 AMELEM-TYPE-LEN PIC S9(9) BINARY VALUE 5.
| :: Reserved, must be zero
| 15 AMELEM-TYPE-OFFSET PIC S9(9) BINARY VALUE 5.

| The offset fields in the AMELEM structure allow you to give the location of the
| name and value buffers relative to the start of the AMELEM structure. The offsets
| can be positive or negative.

| Following are short descriptions of the fields and an example of how to use the
| AMELEM structure.

| AMELEM-STRUCID
| The AMELEM structure identifier (input).

 Chapter 9. Using the Application Messaging Interface in COBOL 237

 Writing applications in COBOL

| AMELEM-VERSION
| The version number of the AMELEM structure (input). Its value must be
| one.

| AMELEM-GROUP-BUFF-LEN
| Reserved, must be zero.

| AMELEM-GROUP-LEN
| Reserved, must be zero.

| AMELEM-GROUP-OFFSET
| Reserved, must be zero.

| AMELEM-NAME-BUFF-LEN
| The length of the name buffer (input). If this field is set to zero, the AMI
| returns the name length value (in AMELEM-NAME-LEN) but not the name
| value (in AMELEM-NAME-OFFSET). This is not an error.

| AMELEM-NAME-LEN
| The length of the name in bytes (input or output).

| AMELEM-NAME-OFFSET
| The name buffer (input or output).

| AMELEM-VALUE-BUFF-LEN
| The length of the value buffer (input).

| AMELEM-VALUE-LEN
| The value length in bytes (input or output).

| AMELEM-VALUE-OFFSET
| The value buffer (input or output).

| AMELEM-TYPE-BUFF-LEN
| Reserved, must be zero.

| AMELEM-TYPE-LEN
| Reserved, must be zero.

| AMELEM-TYPE-OFFSET
| Reserved, must be zero.

| Example
| As an example, to send a message containing a ‘Request Update’ command,
| define the command data and the AMELEM structure as follows::

| 51 OPTIONS PIC S9(9) BINARY VALUE ZERO.
| 51 AMELEM-DATA.
| 15 COMMAND-NAME PIC X(16) VALUE 'MQPSCommand'.
| 15 COMMAND-VALUE PIC X(16) VALUE 'ReqUpdate'
| COPY AMTELEMV.

| Set the length and offset values as follows:

| MOVE 11 TO AMELEM-NAME-LEN.
| MOVE -48 TO AMELEM-NAME-OFFSET.
| MOVE 9 TO AMELEM-VALUE-LEN.
| MOVE -32 TO AMELEM-VALUE-OFFSET.

238 MQSeries Application Messaging Interface

 Writing applications in COBOL

| Having set the values, create a message object (SEND-MSG) and add the element to
| it:

| Using name/value elements

| CALL 'AMSECRMS' USING HSESSION, SEND-MSG, HMSG, COMPCODE, REASON.

| CALL 'AMMSADEL' USING HMSG, AMELEM, OPTIONS, COMPCODE, REASON.

| You must then send the message, using AMHSNMS, to the sender service
| specified for the publish/subscribe broker.

| If you need to use streams with MQSeries Publish/Subscribe, you must add the
| appropriate stream name/value element explicitly to the message object.

| The message element functions can, in fact, be used to add any element to a
| message before issuing a publish/subscribe request. Such elements (including
| topics, which are specialized elements) supplement or override those added
| implicitly by the request, as appropriate to the individual element type.

| The use of name/value elements is not restricted to publish/subscribe applications.
| They can be used in other applications as well.

| Error handling
| Each AMI COBOL function returns a completion code reflecting the success or
| failure (OK, warning, or error) of the request. Information indicating the reason for a
| warning or error is returned in a reason code.

| The ‘get last error’ functions (such as AMSEGTLE) always reflect the last most
| severe error detected by an object. These functions can be used to return the
| completion and reason codes associated with this error. Once the error has been
| handled, call the ‘clear error codes’ functions (for instance, AMMSCLEC) to clear
| the error information.

| All COBOL high-level functions record last error information in the session object.
| This information can be accessed using the session’s ‘get last error’ call,
| AMSEGTLE (you need the session handle returned by AMHINIT as the first
| parameter of this call).

| Transaction support
| Messages sent and received by the AMI can, optionally, be part of a transactional
| unit of work. A message is included in a unit of work based on the setting of the
| syncpoint attribute specified in the policy used on the call. The scope of the unit of
| work is the session handle and only one unit of work may be active at any time.

| The API calls used to control the transaction depends on the type of transaction is
| being used.

| � MQSeries messages are the only resource

| This is supported under OS/390 batch. A transaction is started by the first
| message sent or received under syncpoint control, as specified in the policy
| specified for the send or receive. Multiple messages can be included in the
| same unit of work. The transaction is committed or backed out using an

 Chapter 9. Using the Application Messaging Interface in COBOL 239

 Writing applications in COBOL

| AMHCMIT or AMHBACK high-level interface call (or the AMSECM or AMSERB
| object-level calls).

| � Using an external transaction coordinator

| The transaction is controlled using the API calls of an external transaction
| coordinator. Supported coordinators are CICS, IMS, and RRS. The AMI calls
| are not used but the syncpoint attribute must still be specified in the policy used
| on the call.

| Sending group messages
| The AMI allows a sequence of related messages to be included in, and sent as, a
| message group. Group context information is sent with each message to allow the
| message sequence to be preserved and made available to a receiving application.
| In order to include messages in a group, the group status information of the first
| and subsequent messages in the group must be set as follows:

| AMGRP_FIRST_MSG_IN_GROUP for the first message
| AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
| AMGRP_LAST_MSG_IN_GROUP for the last message

| The message status is set using AMMSSTGS.

| For a complete description of group messages, refer to “Sending group messages”
| on page 25

| Other considerations
| You should consider the following when writing your applications:

| � Multithreading
| � Using MQSeries with the AMI
| � Field limits

| Multithreading
| Multithreading is not supported for COBOL applications running on OS/390.

| Using MQSeries with the AMI
| You must not mix MQSeries function calls with AMI function calls within the same
| process.

| Field limits
| When string and binary properties such as queue name, message format, and
| correlation ID are set, the maximum length values are determined by MQSeries, the
| underlying message transport. See the rules for naming MQSeries objects in the
| MQSeries Application Programming Guide.

240 MQSeries Application Messaging Interface

 COBOL applications on OS/390

| Building COBOL applications
| The Application Messaging Interface for COBOL is available only on the OS/390
| operating system.

| COBOL applications on OS/390
| This section explains what you have to do to prepare and run your COBOL
| programs on the OS/390 operating system. See “Language compilers” on
| page 432 for compilers supported by the AMI.

| AMI Copybooks
| The AMI provides COBOL copybooks to assist you with the writing of your
| applications. The copybook AMTV contains constants and return codes.
| Copybooks AMTELEML and AMTELEMV contain the definition of the AMELEM
| data structure that is used to pass name/value element information across the AMI.
| AMTELEML provides a data definition without initial values; AMTELEMV provides
| the same definition with initial values.

| These copybooks are installed in the MQSeries for OS/390 library hlq.SCSQCOBC.
| Use the COPY statement to include them in your program. For example:

| WORKING STORAGE SECTION.
| 51 AMI-CONSTANTS.
| COPY AMTV.

| You are recommended to use the copybook AMTELEMV to define an AMELEM
| structure. This provides default initial values which ensures that the strucId and
| version fields have valid values. If the values passed for these fields are not valid,
| the AMI will reject them.

| Preparing COBOL programs on OS/390
| COBOL programs that use the AMI must be compiled and linked edited. Programs
| containing CICS commands must be processed by the CICS translator before
| compilation. To add AMI support, include the appropriate COBOL stub (interface
| module) in the link edit. The AMI provides a COBOL stub for each supported
| environment (batch, RRS batch, or CICS), as follows:

| Batch AMTBS10

| RRS batch AMTRS10

| CICS AMTCS10

| IMS AMTIS10

| Thus the link edit JCL should specify a ‘DD’ name for the MQSeries for OS/390
| hlq.SCSQLOAD library and an INCLUDE statement for the stub. For example, to
| link edit an AMI batch application:

| //LKED EXEC PGM=HEWL....
|
| //OBJLIB DD DSN=thlqual.SCSQLOAD,DISP=SHR
| //SYSIN DD :
| ENTRY CEESTART
| INCLUDE OBJLIB(AMTBS15)
| NAME progname(R)
| /:

 Chapter 9. Using the Application Messaging Interface in COBOL 241

 COBOL applications on OS/390

| Running COBOL programs on OS/390
| The AMI needs access to the MQSeries datasets SCSQLOAD and SCSQAUTH, as
| well as one of the language-specific datasets such as SCSQANLE. See the
| MQSeriesApplication Programming Guide for details of the supported languages.

| For CICS operation, the library hlq.SCSQLOAD and the Language Environment
| SCEERUN library must be included in the DFHRPL concatenation. COBOL
| programs using the AMI must be defined to CICS with a language code of ‘Le370’.

| For information about AMI tracing, see “Using trace (OS/390)” on page 493.

242 MQSeries Application Messaging Interface

 The COBOL high-level interface

| Chapter 10. The COBOL high-level interface

| The COBOL high-level interface contains functions that cover the requirements of
| the majority of applications. If extra functionality is needed, COBOL object interface
| functions can be used in the same application as the COBOL high-level functions.

| This chapter contains:

| � “Overview of the COBOL high-level interface” on page 244

| � “Reference information for the COBOL high-level interface” on page 246

 Copyright IBM Corp. 1999, 2000 243

 COBOL high-level interface overview

| Overview of the COBOL high-level interface
| The high-level functions are listed below. Follow the page references to see the
| detailed descriptions of each function.

| Initialize and terminate
| Functions to create and open an AMI session, and to close and delete an AMI
| session.

| AMHINIT (initialize) page 252

| AMHTERM (terminate) page 269

| Sending messages
| Functions to send a datagram (send and forget) message, and to send request and
| response messages.

| AMHSNMS (send message) page 264

| AMHSNRQ (send request) page 265

| AMHSNRS (send response) page 266

| Receiving messages
| Functions to receive a message from AMHSNMS or AMHSNRS, to receive a
| request message from AMHSNRQ, and to browse a message.

| AMHRCMS (receive message) page 256

| AMHRCRQ (receive request) page 260

| AMHBRMS (browse message) page 249

| File transfer
| Functions to send message data from a file, and to receive message data sent by
| AMHSNFL into a file.

| AMHSNFL (send file) page 262

| AMHRCFL (receive file) page 254

| Publish/subscribe
| Functions to publish a message to a publish/subscribe broker, and to subscribe,
| unsubscribe, and receive publications.

| AMHPB (publish) page 253

| AMHSB (subscribe) page 267

| AMHUN (unsubscribe) page 270

| AMHRCPB (receive publication) page 258

244 MQSeries Application Messaging Interface

 COBOL high-level interface overview

| Transaction support
| Functions to begin, commit and backout a unit of work.

| AMHBEGIN (begin) page 248

| AMHCMIT (commit) page 251

| AMHBACK (backout) page 247

 Chapter 10. The COBOL high-level interface 245

 COBOL high-level interface

| Reference information for the COBOL high-level interface
| In the following sections the high-level interface functions are listed in alphabetical
| order. Note that all functions return a completion code (COMPCODE) and a reason
| code (REASON). The completion code can take one of the following values:

| AMCC-OK Function completed successfully
| AMCC-WARNING Function completed with a warning
| AMCC-FAILED An error occurred during processing

| If the completion code returns warning or failed, the reason code identifies the
| reason for the error or warning (see Appendix A, “Reason codes” on page 501).

| Object names can be up to AMLEN-MAX-NAME-LENGTH characters, and are
| terminated by a space or by a low value (a single byte zero). If a space or low
| value is not found, the name will be truncated at AMLEN-MAX-NAME-LENGTH.

| If an object name is specified as a space or low value, the relevant system default
| name will be used.

| Most functions require the session handle to be specified. If this handle is not
| valid, the results are unpredictable.

246 MQSeries Application Messaging Interface

 COBOL high-level interface

| AMHBACK (backout)
| Function to backout a unit of work.

| CALL 'AMHBACK' USING HSESSION, POLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 POLICY PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 10. The COBOL high-level interface 247

 COBOL high-level interface

| AMHBEGIN (begin)
| Function to begin a unit of work.

| CALL 'AMHBEGIN' USING HSESSION, POLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 POLICY PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

248 MQSeries Application Messaging Interface

 COBOL high-level interface

| AMHBRMS (browse message)
| Function to browse a message. See the MQSeries Application Programming Guide
| for a full description of the browse options.

| CALL 'AMHBRMS' USING HSESSION, RECEIVER, POLICY, OPTIONS,
| BUFFLEN, DATALEN, DATA, RCVMSGNAME,
| SENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 RECEIVER PIC X(n).
| 51 POLICY PIC X(n).
| 51 OPTIONS PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 RCVMSGNAME PIC X(n).
| 51 SENDER PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| RECEIVER The name of a receiver service (input). If specified as a space or
| low value, the system default receiver name (constant:
| AMSD-RCV) is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| OPTIONS Options controlling the browse operation (input). Possible values
| are:

| AMBRW-NEXT
| AMBRW-FIRST
| AMBRW-RECEIVE-CURRENT
| AMBRW-DEFAULT (AMBRW-NEXT)

| AMBRW-RECEIVE-CURRENT is equivalent to AMRCRC (receive) for the
| message under the browse cursor.

| BUFFLEN The length in bytes of a buffer in which the data is returned (input).

| DATALEN The length of the message data, in bytes (output). Can be
| specified as -1 (input).

| DATA The received message data (output).

| RCVMSGNAME The name of the message object for the received message (input).
| Properties, and message data if not returned in the DATA
| parameter, can be extracted from the message object using the
| object interface (see “Message interface functions” on page 301).
| The message object is implicitly reset before the browse takes
| place. If specified as a space or low value, the system default
| receive message name (constant: AMSD-RCV-MSG) is used.

| SENDER The name of a special type of sender service known as a
| response sender, to which the response message will be sent
| (input). This sender name must not have been defined in the

 Chapter 10. The COBOL high-level interface 249

 COBOL high-level interface

| repository prior to the start of the AMI session. It is only applicable
| if the message type is AMMT-REQUEST.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| Usage Notes
| To return the data in the message object (RCVMSGNAME) rather than the DATA
| object, set BUFFLEN to zero and DATALEN to -1.

| To return the message data in the DATA parameter, set BUFFLEN to the required
| length and DATALEN to -1.

| To return only the data length (so that the required amount of memory can be
| allocated before issuing a second function call to return the data), set BUFFLEN to
| zero. DATALEN must not be set to -1. Accept Truncated Message in the policy
| options must not be selected (the default), otherwise the message data will be
| discarded with an AMRC-MSG-TRUNCATED warning.

| To return the message data in the DATA parameter, together with the data length,
| set BUFFLEN to the required length. DATALEN must not be set to -1. If the buffer is
| too small, and Accept Truncated Message is not selected in the policy receive
| attributes (the default), an AMRC-RECEIVE-BUFF-LEN-ERR error will be
| generated. If the buffer is too small, and Accept Truncated Message is selected in
| the policy receive attributes, the truncated message data is returned with an
| AMRC-MSG-TRUNCATED warning.

| If Accept Truncated Messages is set to ‘Yes’ in the policy options, and either
| BUFFLEN is non-zero or DATALEN is not set to -1, the message data might be
| truncated. If BUFFLEN is zero and DATALEN is not set to -1, the message data is
| discarded.

250 MQSeries Application Messaging Interface

 COBOL high-level interface

| AMHCMIT (commit)
| Function to commit a unit of work.

| CALL 'AMHCMIT' USING HSESSION, POLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 POLICY PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 10. The COBOL high-level interface 251

 COBOL high-level interface

| AMHINIT (initialize)
| Function to create and open an AMI session. It returns a session handle, which is
| valid until the session is terminated.

| CALL 'AMHINIT' USING SESSNAME, POLICY, HSESSION, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 SESSNAME PIC X(n).
| 51 POLICY PIC X(n).
| 51 HSESSION PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| SESSNAME An optional name that can be used to identify the application
| (input).

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| HSESSION The session handle (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

252 MQSeries Application Messaging Interface

 COBOL high-level interface

| AMHPB (publish)
| Function to publish a message to a publish/subscribe broker.

| CALL 'AMHPB' USING HSESSION, PUBLISHER, POLICY, RESPNAME,
| TOPICLEN, TOPIC, DATALEN, DATA, MSGNAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 PUBLISHER PIC X(n).
| 51 POLICY PIC X(n).
| 51 RESPNAME PIC X(n).
| 51 TOPICLEN PIC S9(9) BINARY.
| 51 TOPIC PIC X(n).
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 MSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| PUBLISHER The name of a publisher service (input). If specified as a space or
| low value, the system default publisher name (constant:
| AMSD-PUB) is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| RESPNAME The name of the receiver service to which the response to this
| publish request will be sent (input). If specified as a space or low
| value, no response will be sent. This parameter is mandatory if
| the policy specifies implicit publisher registration (the default).

| TOPICLEN The length of the topic for this publication, in bytes (input).

| TOPIC The topic for this publication (input).

| DATALEN The length of the publication data in bytes (input). A value of zero
| indicates that any publication data has been added to the message
| object (MSGNAME) using the object interface (see “Message interface
| functions” on page 301).

| DATA The publication data, if DATALEN is non-zero (input).

| MSGNAME The name of a message object that contains the header for the
| publication message (input). If DATALEN is zero, the message
| object also holds any publication data. If specified as a space or
| low value, the system default message name (constant:
| AMSD-SND-MSG) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 10. The COBOL high-level interface 253

 COBOL high-level interface

| AMHRCFL (receive file)
| Function to receive message data sent by AMHSNFL into a file.

| CALL 'AMHRCFL' USING HSESSION, RECEIVERNAME, POLICYNAME,
| OPTIONS, SELMSGNAME, DIRNAMELEN,
| DIRNAME, FILENAMELEN, FILENAME,
| RCVMSGNAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 RECEIVERNAME PIC X(n).
| 51 POLICYNAME PIC X(n).
| 51 OPTIONS PIC S9(9) BINARY.
| 51 SELMSGNAME PIC X(n).
| 51 DIRNAMELEN PIC S9(9) BINARY.
| 51 DIRNAME PIC X(n).
| 51 FILENAMELEN PIC S9(9) BINARY.
| 51 FILENAME PIC X(n).
| 51 RCVMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| RECEIVERNAME The name of a receiver service (input). If specified as a space or
| low value, the system default receiver name (constant:
| AMSD-RCV) is used.

| POLICYNAME The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| OPTIONS Reserved, must be specified as zero.

| SELMSGNAME Optional selection message object used to specify information
| (such as a CorrelId) needed to select the required message
| (input).

| DIRNAMELEN Reserved, must be specified as zero (input).

| DIRNAME Reserved.

| FILENAMELEN The length of the file name in bytes (input). .

| FILENAME The name of the file into which the transferred data is to be
| received (input). This can include a directory prefix to define a
| fully-qualified or relative file name. If blank then the AMI will use
| the name of the originating file (including any directory prefix)
| exactly as it was supplied on the send file call. Note that the
| original file name may not be appropriate for use by the receiver,
| either because a path name included in the file name is not
| applicable to the receiving system, or because the sending and
| receiving systems use different file naming conventions.

| RCVMSGNAME The name of the message object to be used to receive the file
| (output). This parameter is updated with the message properties
| (for example, the Message ID). If the message is not from a file,
| rcvMsgName receives the message data. If specified as a blank or

254 MQSeries Application Messaging Interface

 COBOL high-level interface

| low value, the system default receive message name (constant
| AMSD-RCV-MSG) is used.

| Property information and message data can be extracted from the
| message object using the object interface (see “Message interface
| functions” on page 301). The message object is reset implicitly
| before the receive takes place.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| Usage notes
| If FILENAME is blank (indicating that the originating file name specified in the
| message is to be used), then FILENAMELEN should be set to zero.

 Chapter 10. The COBOL high-level interface 255

 COBOL high-level interface

| AMHRCMS (receive message)
| Function to receive a message.

| CALL 'AMHRCMS' USING HSESSION, RECEIVER, POLICY, SELMSGNAME,
| BUFFLEN, DATALEN, DATA, RCVMSGNAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 RECEIVER PIC X(n).
| 51 POLICY PIC X(n).
| 51 SELMSGNAME PIC X(n).
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 RCVMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| RECEIVER The name of a receiver service (input). If specified as a space or
| low value, the system default receiver name (constant:
| AMSD-RCV) is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| SELMSGNAME Optional selection message object used to specify information
| (such as a CorrelId) needed to select the required message
| (input).

| BUFFLEN The length in bytes of a buffer in which the data is returned
| (input).Can be specified as -1.

| DATALEN The length of the message data, in bytes (output). Can be
| specified as -1 (input).

| DATA The received message data (output).

| RCVMSGNAME The name of the message object for the received message
| (output). If specified as a space or low value, the system default
| receive message name (constant: AMSD-RCV-MSG) is used.
| Properties, and message data if not returned in the DATA
| parameter, can be extracted from the message object using the
| object interface (see “Message interface functions” on page 301).
| The message object is implicitly reset before the receive takes
| place.

| COMPCODE Completion code (output).

| REASON Reason code (output).

256 MQSeries Application Messaging Interface

 COBOL high-level interface

| Usage notes
| To return the data in the message object (RCVMSGNAME), set BUFFLEN to zero
| and DATALEN to -1.

| To return the message data in the DATA parameter, set BUFFLEN to the required
| length (an integer greater than zero) and DATALEN to -1.

| To return only the data length (so that the required buffer size can be determined
| before issuing a second function call to return the data), set BUFFLEN to zero.
| DATALEN must not be set to -1. Accept Truncated Message in the policy receive
| attributes must not be selected (the default), otherwise the message will be
| discarded with an AMRC-MSG-TRUNCATED warning.

| To return the message data in the DATA parameter, together with the data length,
| set BUFFLEN to the required length (an integer greater than zero) and ensure that
| DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
| not selected in the policy receive attributes (the default), an
| AMRC-RECEIVE-BUFF-LEN-ERR error will be generated. If the buffer is too small,
| and Accept Truncated Message is selected in the policy receive attributes, the
| truncated message is returned with an AMRC_MSG_TRUNCATED warning.

| To remove the message from the queue (because it is not wanted by the
| application), Accept Truncated Messages must be set to ‘Yes’ in the policy receive
| attributes. You can then remove the message by specifying -1 in both the BUFFLEN
| and DATALEN parameters.

 Chapter 10. The COBOL high-level interface 257

 COBOL high-level interface

| AMHRCPB (receive publication)
| Function to receive a publication from a publish/subscribe broker.

| CALL 'AMHRCPB' USING HSESSION, SUBSCRIBER, POLICY, SELMSGNAME,
| TOPICBUFFLEN, BUFFLEN, TOPICCOUNT, TOPICLEN,
| FIRSTTOPIC, DATALEN, DATA, RCVMSGNAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 SUBSCRIBER PIC X(n).
| 51 POLICY PIC X(n).
| 51 SELMSGNAME PIC X(n).
| 51 TOPICBUFFLEN PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 TOPICCOUNT PIC S9(9) BINARY.
| 51 TOPICLEN PIC S9(9) BINARY.
| 51 FIRSTTOPIC PIC X(n).
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 RCVMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| SUBSCRIBER The name of a subscriber service (input). If specified as a space
| or low value, the system default subscriber name (constant:
| AMSD-SUB) is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| SELMSGNAME Optional selection message object used to specify information
| (such as a CorrelId) needed to select the required message
| (input).

| TOPICBUFFLEN The length in bytes of a buffer in which the topic is returned
| (input).

| BUFFLEN The length in bytes of a buffer in which the publication data is
| returned (input).

| TOPICCOUNT The number of topics in the message (output).

| TOPICLEN The length in bytes of the first topic (output).

| FIRSTTOPIC The first topic (output). Topics can be extracted from the message
| object (RCVMSGNAME) using the object interface (see “Message
| interface functions” on page 301).

| DATALEN The length in bytes of the publication data (output).

| DATA The publication data (output). Data can be extracted from the
| message object (RCVMSGNAME) using the object interface (see
| “Message interface functions” on page 301).

258 MQSeries Application Messaging Interface

 COBOL high-level interface

| RCVMSGNAME The name of a message object for the received message (input).
| If specified as a space or low value, the system default message
| name (constant: AMSD-RCV-MSG) is used. The publication
| message properties and data update this message object, in
| addition to being returned in the parameters above. The message
| object is implicitly reset before the receive takes place.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| Usage Notes
| We recommend that, when using AMHRCPB, you always have data conversion
| enabled in the specified policy. If data conversion is not enabled, AMHRCPB will fail if
| the local CCSID and/or encoding values differ from those on the platform from
| which the publication was sent.

| If data conversion is enabled by the specified policy, and a selection message is
| specified, then the conversion is performed using the target encoding and coded
| character set identifier (CCSID) values designated in the selection message. (The
| selection message is specified in the SELMSGNAME parameter).

| If a selection message is not specified, then the platform encoding and Queue
| Manager CCSID values are used as defaults for the conversion.

| If a normal message that is not a publication message is received by the specified
| subscriber, then AMHRCPB behaves the same as AMHRCMS.

 Chapter 10. The COBOL high-level interface 259

 COBOL high-level interface

| AMHRCRQ (receive request)
| Function to receive a request message.

| CALL 'AMHRCRQ' USING HSESSION, RECEIVER, POLICY, BUFFLEN, DATALEN,
| DATA, RCVMSGNAME, SENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 RECEIVER PIC X(n).
| 51 POLICY PIC X(n).
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 RCVMSGNAME PIC X(n).
| 51 SENDER PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| RECEIVER The name of a receiver service (input). If specified as a space or
| low value, the system default receiver name (constant:
| AMSD-RCV) is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| BUFFLEN The length in bytes of a buffer in which the data is returned (input).

| DATALEN The length of the message data, in bytes (output). Can be
| specified as -1 (input).

| DATA The received message data (output).

| RCVMSGNAME The name of the message object for the received message
| (output). If specified as NULL, the system default receiver service
| (constant: AMSD-RCV-MSG) is used. Header information, and
| message data if not returned in the DATA parameter, can be
| extracted from the message object using the object interface (see
| “Message interface functions” on page 301). The message object
| is implicitly reset before the receive takes place.

| SENDER The name of a special type of sender service known as a
| response sender, to which the response message will be sent
| (output). This sender name must not be defined in the repository.
| If specified as a space or low value, the system default response
| sender service (constant: AMSD-RSP-SND) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

260 MQSeries Application Messaging Interface

 COBOL high-level interface

| Usage notes
| The following notes contain details about use of the AMHRCRQ function.

| Data conversion
| If data conversion is enabled by the specified policy, and a selection message is
| specified, then the conversion is performed using the target encoding and coded
| character set identifier (CCSID) values designated in the selection message.
| (These target values are specified in the SELMSGNAME parameter).

| If a selection message is not specified, then the platform encoding and Queue
| Manager CCSID values are used as defaults for the conversion.

| Use of the buffLen parameter
| To return the data in the message object (RCVMSGNAME), set BUFFLEN to zero
| and DATALEN to -1.

| To return the message data in the DATA parameter, set BUFFLEN to the required
| length (an integer greater than zero) and DATALEN to -1.

| To return only the data length (so that the required buffer size can be determined
| before issuing a second function call to return the data), set BUFFLEN to zero.
| DATALEN must not be set to -1. Accept Truncated Message in the policy receive
| attributes must be set to ‘No’ (the default), otherwise the message will be discarded
| with an AMRC-MSG-TRUNCATED warning.

| To return the message data in the DATA parameter, together with the data length,
| set BUFFLEN to the required length (an integer greater than zero) and ensure that
| DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
| set to ‘No’ in the policy receive attributes (the default), an
| AMRC-RECEIVE-BUFF-LEN-ERR error will be generated. If the buffer is too small,
| and Accept Truncated Message is set to ‘Yes’ in the policy receive attributes, the
| truncated message is returned with an AMRC-MSG-TRUNCATED warning.

| To remove the message from the queue (because it is not wanted by the
| application), Accept Truncated Message must be set to ‘Yes&esq. in the policy
| receive attributes. You can then remove the message by specifying -1 in both the
| BUFFLEN and DATALEN parameters.

 Chapter 10. The COBOL high-level interface 261

 COBOL high-level interface

| AMHSNFL (send file)
| Function to send data from a file.

| CALL 'AMHSNFL' USING HSESSION, SENDERNAME, POLICYNAME,
| OPTIONS, DIRNAMELEN, DIRNAME,
| FILENAMELEN, FILENAME,
| SNDMSGNAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 SENDERNAME PIC X(n).
| 51 POLICYNAME PIC X(n).
| 51 OPTIONS PIC S9(9) BINARY.
| 51 DIRNAMELEN PIC S9(9) BINARY.
| 51 DIRNAME PIC X(n).
| 51 FILENAMELEN PIC S9(9) BINARY.
| 51 FILENAME PIC X(n).
| 51 SNDMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| SENDERNAME The name of a sender service (input). If specified as a space or
| low value, the system default sender name (constant: AMSD-SND)
| is used.

| POLICYNAME The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| OPTIONS Reserved, must be specified as zero.

| DIRNAMELEN Reserved, must be specified as zero (input).

| DIRNAME Reserved.

| FILENAMELEN The length of the file name in bytes (input).

| FILENAME The name of the file to be sent (input). This can include a directory
| prefix to define a fully-qualified or relative file name. If the send
| operation is a physical-mode file transfer, then the file name will
| travel with the message for use with a receive file call (see
| “AMHRCFL (receive file)” on page 254 for more details). Note that
| the file name sent will exactly match the supplied file name; it will
| not be converted or expanded in any way.

| SNDMSGNAME The name of the message object to be used to send the file
| (input). This can be used to specify the Correlation ID for
| example. The Correlation ID can be set from the message object
| using the object interface (see “Message interface functions” on
| page 301). SNDMSGNAME is specified as a space or low value,

| COMPCODE Completion code (output).

| REASON Reason code (output).

262 MQSeries Application Messaging Interface

 COBOL high-level interface

| Usage Notes
| The message object is implicitly reset by this call.

| The system default object is used when you set SNDMSGNAME as a space or low
| value.

 Chapter 10. The COBOL high-level interface 263

 COBOL high-level interface

| AMHSNMS (send message)
| Function to send a datagram (send and forget) message.

| CALL 'AMHSNMS' USING HSESSION, SENDER, POLICY, DATALEN, DATA,
| SNDMSGNAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 SENDER PIC X(n).
| 51 POLICY PIC X(n).
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 SNDMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| SENDER The name of a sender service (input). If specified as a space or
| low value, the system default sender name (constant: AMSD-SND)
| is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| DATALEN The length of the message data in bytes (input). A value of zero
| indicates that any message data has been added to the message
| object (SNDMSGNAME) using the object interface (see “Message
| interface functions” on page 301).

| DATA The message data, if DATALEN is non-zero (input).

| SNDMSGNAME The name of a message object for the message being sent (input).
| If DATALEN is zero, the message object also holds any message
| data. If specified as a space or low value, the system default
| message name (constant: AMSD-SND-MSG) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

264 MQSeries Application Messaging Interface

 COBOL high-level interface

| AMHSNRQ (send request)
| Function to send a request message.

| CALL 'AMHSNRQ' USING HSESSION, SENDER, POLICY, RESPNAME, DATALEN,
| DATA, SNDMSGNAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 SENDER PIC X(n).
| 51 POLICY PIC X(n).
| 51 RESPNAME PIC X(n).
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 SNDMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| SENDER The name of a sender service (input). If specified as a space or
| low value, the system default sender name (constant: AMSD-SND)
| is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| RESPNAME The name of the receiver service to which the response to this
| send request will be sent (input). See AMHRCRQ (receive
| request).

| DATALEN The length of the message data in bytes (input). A value of zero
| indicates that any message data has been added to the message
| object (SNDMSGNAME) using the object interface (see “Message
| interface functions” on page 301).

| DATA The message data, if DATALEN is non-zero (input).

| SNDMSGNAME The name of a message object for the message being sent (input).
| If specified as a space or low value, the system default message
| name (constant: AMSD-SND-MSG) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 10. The COBOL high-level interface 265

 COBOL high-level interface

| AMHSNRS (send response)
| Function to send a response to a request message.

| CALL 'AMHSNRS' USING HSESSION, SENDER, POLICY, RCVMSGNAME, DATALEN,
| DATA, SNDMSGNAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 SENDER PIC X(n).
| 51 POLICY PIC X(n).
| 51 RCVMSGNAME PIC X(n).
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 SNDMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| SENDER The name of the sender service (input). It must be set to the
| SENDER specified for the AMHRCRQ receive request.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| RCVMSGNAME The name of the received message that this message is a
| response to (input). It must be set to the RCVMSGNAME specified for
| the AMHRCRQ receive request.

| DATALEN The length of the message data in bytes (input). A value of zero
| indicates that any message data has been added to the message
| object (SNDMSGNAME) using the object interface (see “Message
| interface functions” on page 301).

| DATA The message data, if DATALEN is non-zero (input).

| SNDMSGNAME The name of a message object for the message being sent (input).
| If specified as a space or low value, the system default message
| name (constant: AMSD-SND-MSG) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

266 MQSeries Application Messaging Interface

 COBOL high-level interface

| AMHSB (subscribe)
| Function to register a subscription with a publish/subscribe broker.

| Publications matching the subscription are sent to the receiver service associated
| with the subscriber. By default, this has the same name as the subscriber service,
| with the addition of the suffix ‘.RECEIVER’.

| Subscribing applications can exploit content based publish/subscribe by passing a
| filter on the AMHSUB call.

| CALL 'AMHSB' USING HSESSION, SUBSCRIBER, POLICY, RESPNAME,
| TOPICLEN, TOPIC, FILTERLEN, FILTER,
| SUBMSGNAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 SUBSCRIBER PIC X(n).
| 51 POLICY PIC X(n).
| 51 RESPNAME PIC X(n).
| 51 TOPICLEN PIC S9(9) BINARY.
| 51 TOPIC PIC X(n).
| 51 FILTERLEN PIC S9(9) BINARY.
| 51 FILTER PIC X(n).
| 51 SUBMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| SUBSCRIBER The name of a subscriber service (input). If specified as a space
| or low value, the system default subscriber name (constant:
| AMSD-SUB) is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| RESPNAME The name of the receiver service to which the response to this
| subscribe request will be sent (input). If specified as a space or
| low value, no response is sent.

| This is not the service to which publications will be sent by the
| broker; they are sent to the receiver service associated with the
| subscriber (see above).

| TOPICLEN The length of the topic for this subscription, in bytes (input).

| TOPIC The topic for this subscription (input). Publications that match this
| topic, including wildcards, will be sent to the subscriber. Multiple
| topics can be specified in the message object (SUBMSGNAME) using
| the object interface (see “Message interface functions” on
| page 301).

| FILTERLEN The length in bytes of the filter (input).

| FILTER The filter to be added (input). The syntax of the filter string is
| described in the MQSeries Integrator Version 2.0 Programming
| Guide

 Chapter 10. The COBOL high-level interface 267

 COBOL high-level interface

| SUBMSGNAME The name of a message object for the subscribe message (input).
| If specified as a space or low value, the system default message
| name (constant: AMSD-SND-MSG) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

268 MQSeries Application Messaging Interface

 COBOL high-level interface

| AMHTERM (terminate)
| Closes the session, closes and deletes any implicitly created objects, and deletes
| the session. If MQSeries is the transaction coordinator, any outstanding units of
| work are committed (if the application terminates without an AMHTERM call being
| issued, any outstanding units of work are backed out).

| CALL 'AMHTERM' USING HSESSION, POLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 POLICY PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 10. The COBOL high-level interface 269

 COBOL high-level interface

| AMHUN (unsubscribe)
| Function to remove a subscription from a publish/subscribe broker.

| CALL 'AMHUN' USING HSESSION, SUBSCRIBER, POLICY, RESPNAME,
| TOPICLEN, TOPIC, FILTERLEN, FILTER,
| UNSUBMSGNAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESSION PIC S9(9) BINARY.
| 51 SUBSCRIBER PIC X(n).
| 51 POLICY PIC X(n).
| 51 RESPNAME PIC X(n).
| 51 TOPICLEN PIC S9(9) BINARY.
| 51 TOPIC PIC X(n).
| 51 FILTERLEN PIC S9(9) BINARY.
| 51 FILTER PIC X(n).
| 51 UNSUBMSGNAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESSION The session handle returned by AMHINIT (input).

| SUBSCRIBER The name of a subscriber service (input). If specified as a space
| or low value, the system default subscriber name (constant:
| AMSD-SUB) is used.

| POLICY The name of a policy (input). If specified as a space or low value,
| the system default policy name (constant: AMSD-POL) is used.

| RESPNAME The name of the receiver service to which the response to this
| unsubscribe request will be sent (input).

| TOPICLEN The length of the topic, in bytes (input).

| TOPIC The topic that identifies the subscription which is to be removed
| (input). Multiple topics can be specified in the message object
| (UNSUBMSGNAME) using the object interface (see “Message interface
| functions” on page 301).

| To deregister all topics, a policy providing this option must be
| specified (this is not the default policy). Otherwise, to remove a
| previous subscription the topic information specified must match
| that specified on the relevant AMHSB subscribe request.

| FILTERLEN The length in bytes of the filter (input). A value of
| AMLEN_NULL_TERM specifies that the string is null terminated.

| FILTER The filter that identifies the subscription to be removed (input).
| The syntax of the filter string is described in the MQSeries
| Integrator Version 2.0 Programming Guide

| UNSUBMSGNAME The name of a message object for the unsubscribe message
| (input). If specified as a space or low value, the system default
| message name (constant: AMSD-SND-MSG) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

270 MQSeries Application Messaging Interface

 COBOL high-level interface

| Usage Notes
| To successfully remove a previous subscription, you must ensure that the topic,
| filter, and subscriber queue information exactly matches that used on the original
| subscribe request.

 Chapter 10. The COBOL high-level interface 271

 COBOL high-level interface

272 MQSeries Application Messaging Interface

 COBOL object interface overview

| Chapter 11. COBOL object interface overview

| This chapter contains an overview of the structure of the COBOL object interface.
| Use it to find out what functions are available in this interface.

| The object interface provides sets of interface functions for each of the following
| objects:

| Session page 274

| Message page 276

| Sender page 278

| Receiver page 279

| Distribution list page 280

| Publisher page 281

| Subscriber page 282

| Policy page 283

| These interface functions are invoked as necessary by the high-level functions.
| They are made available to the application programmer through this object-style
| interface to provide additional function where needed. An application program can
| mix high-level functions and object-interface functions as required.

| Details of the interface functions for each object are given in the following pages.
| Follow the page references to see the detailed descriptions of each function.

| Details of the object interface functions used by each high-level function are given
| on page 284.

 Copyright IBM Corp. 1999, 2000 273

 COBOL object interface overview

| Session interface functions
| The session object creates and manages all other objects, and provides the scope
| for a unit of work.

| Session management
| Functions to create, open, close, and delete a session object.

| AMSECR (create) page 289

| AMSEOP (open) page 299

| AMSECL (close) page 289

| AMSEDL (delete) page 293

| Create objects
| Functions to create message, sender, receiver, distribution list, publisher,
| subscriber, and policy objects. Handles to these objects are returned by these
| functions.

| AMSECRMS (create message) page 290

| AMSECRSN (create sender) page 292

| AMSECRRC (create receiver) page 292

| AMSECRDL (create distribution list) page 290

| AMSECRPB (create publisher) page 291

| AMSECRSB (create subscriber) page 293

| AMSECRPO (create policy) page 291

| Get object handles
| Functions to get the handles for a message, sender, receiver, distribution list,
| publisher, subscriber, and policy objects with a specified name (needed if the
| objects were created implicitly by the high-level interface).

| AMSEGHMS (get message handle) page 297

| AMSEGHSN (get sender handle) page 299

| AMSEGHRC (get receiver handle) page 298

| AMSEGHDL (get distribution list handle) page 296

| AMSEGHPB (get publisher handle) page 298

| AMSEGHSB (get subscriber handle) page 299

| AMSEGHPO (get policy handle) page 297

274 MQSeries Application Messaging Interface

 COBOL object interface overview

| Delete objects
| Functions to delete message, sender, receiver, distribution list, publisher,
| subscriber, and policy objects.

| AMSEDLMS (delete message) page 294

| AMSEDLSN (delete sender) page 295

| AMSEDLRC (delete receiver) page 295

| AMSEDLDL (delete distribution list) page 294

| AMSEDLPB (delete publisher) page 295

| AMSEDLSB (delete subscriber) page 296

| AMSEDLPO (delete policy) page 294

| Transactional processing
| Functions to begin, commit, and rollback a unit of work.

| AMSEBG (begin) page 288

| AMSECM (commit) page 289

| AMSERB (rollback) page 300

| Error handling
| Functions to clear the error codes, and return the completion and reason codes for
| the last error associated with the session object.

| AMSECLEC (clear error codes) page 288

| AMSEGTLE (get last error codes) page 296

 Chapter 11. COBOL object interface overview 275

 COBOL object interface overview

| Message interface functions
| A message object encapsulates an MQSeries message descriptor (MQMD)
| structure. It also contains the message data if this is not passed as a separate
| parameter.

| Get values
| Functions to get the coded character set ID, correlation ID, encoding, format, group
| status, message ID, name, report code, and type of the message object.

| AMMSGTCC (get CCSID) page 305

| AMMSGTCI (get correl ID) page 306

| AMMSGELC (get element CCSID) page 305

| AMMSGTEN (get encoding) page 308

| AMMSGTFO (get format) page 309

| AMMSGTGS (get group status) page 310

| AMMSGTMI (get message ID) page 311

| AMMSGTNA (get name) page 311

| AMMSGTRC (get report code) page 313

| AMMSGTTY (get type) page 314

| Set values
| Functions to set the coded character set ID, correlation ID, encoding, format, and
| group status of the message object.

| AMMSSTCC (set CCSID) page 315

| AMMSSTCI (set correl ID) page 316

| AMMSSELC (set element CCSID) page 317

| AMMSSTEN (set encoding) page 317

| AMMSSTFO (set format) page 318

| AMMSSTGS (set group status) page 318

| Reset values
| Function to reset the message object to the state it had when first created.

| AMMSRS (reset) page 315

| Read and write data
| Functions to get the length of the data, get and set the data offset, and read or
| write byte data to or from the message object at the current offset.

| AMMSGTDL (get data length) page 306

| AMMSGTDO (get data offset) page 306

| AMMSSTDO (set data offset) page 316

276 MQSeries Application Messaging Interface

 COBOL object interface overview

| AMMSREBY (read bytes) page 314

| AMMSWRBY (write bytes) page 319

| Publish/subscribe topics
| Functions to manipulate the topics in a publish/subscribe message.

| AMMSADTO (add topic) page 302

| AMMSDETO (delete topic) page 304

| AMMSGTTO (get topic) page 313

| AMMSGTTC (get topic count) page 314

| Publish/subscribe filters
| Functions to manipulate the filters in a publish/subscribe message.

| AMMSADFI (add filter) page 302

| AMMSDEFI (delete filter) page 303

| AMMSGTFI (get filter) page 308

| AMMSGTFC(get filter count) page 308

| Publish/subscribe name/value elements
| Functions to manipulate the name/value elements in a publish/subscribe message.

| AMMSADEL (add element) page 301

| AMMSDEEL (delete element) page 303

| AMMSGTEL (get element) page 307

| AMMSGTEC (get element count) page 307

| AMMSDENE (delete named element) page 304

| AMMSGTNE (get named element) page 312

| AMMSGTNC (get named element count) page 312

| Error handling
| Functions to clear the error codes, and return the completion and reason codes
| from the last error associated with the message.

| AMMSCLEC (clear error codes) page 303

| AMMSGTLE (get last error) page 310

 Chapter 11. COBOL object interface overview 277

 COBOL object interface overview

| Sender interface functions
| A sender object encapsulates an MQSeries object descriptor (MQOD) structure for
| sending a message.

| Open and close
| Functions to open and close the sender service.

| AMSNOP (open) page 323

| AMSNCL (close) page 320

| Send
| Function to send a message.

| AMSNSN (send) page 323

| AMSNSNFL(send file) page 324

| Get values
| Functions to get the coded character set ID, encoding, and name of the sender
| service.

| AMSNGTCC (get CCSID) page 321

| AMSNGTEN (get encoding) page 321

| AMSNGTNA (get name) page 322

| Error handling
| Functions to clear the error codes, and return the completion and reason codes
| from the last error associated with the sender service.

| AMSNCLEC (clear error codes) page 320

| AMSNGTLE (get last error) page 322

278 MQSeries Application Messaging Interface

 COBOL object interface overview

| Receiver interface functions
| A receiver object encapsulates an MQSeries object descriptor (MQOD) structure for
| receiving a message.

| Open and close
| Functions to open and close the receiver service.

| AMRCOP (open) page 331

| AMRCCL (close) page 329

| Receive and browse
| Functions to receive or browse a message.

| AMRCRC (receive) page 332

| AMRCRCFL (receive file) page 333

| AMRCBR (browse) page 326

| AMRCBRSE (browse selection message) page 327

| Get values
| Functions to get the definition type, name, and queue name of the receiver service.

| AMRCGTDT (get definition type) page 329

| AMRCGTNA (get name) page 330

| AMRCGTQN (get queue name) page 331

| Set values
| Function to set the queue name of the receiver service.

| AMRCSTQN (set queue name) page 334

| Error handling
| Functions to clear the error codes, and return the completion and reason codes
| from the last error associated with the receiver service.

| AMRCCLEC (clear error codes) page 329

| AMRCGTLE (get last error) page 330

 Chapter 11. COBOL object interface overview 279

 COBOL object interface overview

| Distribution list interface functions
| A distribution list object encapsulates a list of sender services.

| Open and close
| Functions to open and close the distribution list service.

| AMDLOP (open) page 338

| AMDLCL (close) page 336

| Send
| Function to send a message to the distribution list.

| AMDLSN (send) page 339

| AMDLSNFL (send file) page 339

| Get values
| Functions to get the name of the distribution list service, a count of the sender
| services in the list, and a sender service handle.

| AMDLGTNA (get name) page 337

| AMDLGTSC (get sender count) page 337

| AMDLGTSH (get sender handle) page 338

| Error handling
| Functions to clear the error codes, and return the completion and reason codes
| from the last error associated with the distribution list.

| AMDLCLEC (clear error codes) page 336

| AMDLGTLE (get last error) page 336

280 MQSeries Application Messaging Interface

 COBOL object interface overview

| Publisher interface functions
| A publisher object encapsulates a sender service. It provides support for publishing
| messages to a publish/subscribe broker.

| Open and close
| Functions to open and close the publisher service.

| AMPBOP (open) page 343

| AMPBCL (close) page 341

| Publish
| Function to publish a message.

| AMPBPB (publish) page 344

| Get values
| Functions to get the coded character set ID, encoding, and name of the publisher
| service.

| AMPBGTCC (get CCSID) page 341

| AMPBGTEN (get encoding) page 342

| AMPBGTNA (get name) page 343

| Error handling
| Functions to clear the error codes, and return the completion and reason codes
| from the last error associated with the publisher.

| AMPBCLEC (clear error codes) page 341

| AMPBGTLE (get last error) page 342

 Chapter 11. COBOL object interface overview 281

 COBOL object interface overview

| Subscriber interface functions
| A subscriber object encapsulates both a sender service and a receiver service. It
| provides support for subscribe and unsubscribe requests to a publish/subscribe
| broker, and for receiving publications from the broker.

| Open and close
| Functions to open and close the subscriber service.

| AMSBOP (open) page 348

| AMSBCL (close) page 345

| Broker messages
| Functions to subscribe to a broker, remove a subscription, and receive publications
| from the broker.

| AMSBSB (subscribe) page 350

| AMSBUN (unsubscribe) page 351

| AMSBRC (receive) page 349

| Get values
| Functions to get the coded character set ID, definition type, encoding, name, and
| queue name of the subscriber service.

| AMSBGTCC (get CCSID) page 345

| AMSBGTDT (get definition type) page 346

| AMSBGTEN (get encoding) page 346

| AMSBGTNA (get name) page 347

| AMSBGTQN (get queue name) page 348

| Set value
| Function to set the queue name of the subscriber service.

| AMSBSTQN (set queue name) page 349

| Error handling
| Functions to clear the error codes, and return the completion and reason codes
| from the last error associated with the receiver.

| AMSBCLEC (clear error codes) page 345

| AMSBGTLE (get last error) page 347

282 MQSeries Application Messaging Interface

 COBOL object interface overview

| Policy interface functions
| A policy object encapsulates details of how the message is handled (such as
| priority, persistence, and whether it is included in a unit of work).

| Get values
| Functions to get the name of the policy, and the wait time set in the policy.

| AMPOGTNA (get name) page 353

| AMPOGTWT (get wait time) page 353

| Set value
| Function to set the wait time for a receive using the policy.

| AMPOSTWT (set wait time) page 353

| Error handling
| Functions to clear the error codes, and return the completion and reason codes
| from the last error associated with the policy.

| AMPOCLEC (clear error codes) page 352

| AMPOGTLE (get last error) page 352

 Chapter 11. COBOL object interface overview 283

 COBOL object interface overview

| High-level functions
| Each high-level function described in Chapter 10, “The COBOL high-level interface”
| on page 243 calls a number of the object interface functions, as shown below.

| Table 4 (Page 1 of 2). Object interface calls used by the high-level functions

High-level function Equivalent object interface calls

| AMHBACK (backout)| AMSECRPO / AMSEGHPO
| AMSERB

| AMHBEGIN (begin)| AMSECRPO / AMSEGHPO
| AMSEBG

| AMHBRMS (browse message)| AMSECRRC / AMSEGHRC
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMRCBRSE

| AMHCMIT (commit)| AMSECRPO / AMSEGHPO
| AMSECM

| AMHINIT (initialize)| AMSECR
| AMSEOP

| AMHTERM (terminate)| AMSECL
| AMSEDL

| AMHSNMS (send message)
| AMHSNRQ (send request)
| AMHSNRS (send response)

| AMSECRSN / AMSEGHSN
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMSNSN

| AMHRCMS (receive message)
| AMHRCRQ (receive request)
| AMSECRRC / AMSEGHRC
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMRCRC

| AMHSNFL (send file)| AMSECRSN / AMSEGHSN
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMSNSNFL

| AMHRCFL (receive file)| AMSECRRC / AMSEGHRC
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMRCRCFL

| AMHPB (publish)| AMSECRPB / AMSEGHPB
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMPBPB

| AMHSB (subscribe)| AMSECRSB / AMSEGHSB
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMSBSB

| AMHUN (unsubscribe)| AMSECRSB / AMSEGHSB
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMSBUN

284 MQSeries Application Messaging Interface

 COBOL object interface overview

| If an object already exists, the appropriate call to get its handle is used instead of
| calling the create function again. For example, if the policy object exists,
| AMSEGHPO (get policy handle) is used instead of AMSECRPO (create policy).

| Table 4 (Page 2 of 2). Object interface calls used by the high-level functions

| High-level function| Equivalent object interface calls

| AMHRCPB (receive publication)| AMSECRSB / AMSEGHSB
| AMSECRPO / AMSEGHPO
| AMSECRMS / AMSEGHMS
| AMSBRC

 Chapter 11. COBOL object interface overview 285

 COBOL object interface overview

286 MQSeries Application Messaging Interface

 COBOL object interface reference

| Chapter 12. COBOL object interface reference

| In the following sections the COBOL object interface functions are listed by the
| object they refer to:

| Session page 288

| Message page 301

| Sender page 320

| Receiver page 326

| Distribution list page 336

| Publisher page 341

| Subscriber page 345

| Policy page 352

| Within each section the functions are listed in alphabetical order.

| Note that all functions return a completion code (COMPCODE) and a reason code
| (REASON). The completion code can take one of the following values:

| AMCC-OK Function completed successfully
| AMCC-WARNING Function completed with a warning
| AMCC-FAILED An error occurred during processing

| If the completion code returns warning or failed, the reason code identifies the
| reason for the error or warning (see Appendix A, “Reason codes” on page 501).

| Most functions require a handle to the object they reference. If this handle is not
| valid, the results are unpredictable.

 Copyright IBM Corp. 1999, 2000 287

 COBOL session interface

| Session interface functions
| A session object provides the scope for a unit of work and creates and manages all
| other objects, including at least one connection object. Each (MQSeries) connection
| object encapsulates a single MQSeries queue manager connection. The session
| object definition specifying the required queue manager connection can be provided
| by a repository policy definition and the local host file, or the local host file only
| which by default will name a single local queue manager with no repository.
| (Under CICS, there can be only one queue manager connected to a given CICS
| system, so in this case the local host file is irrelevant.) The session, when deleted,
| is responsible for releasing memory by closing and deleting all other objects that it
| manages.

| Note that you should not mix MQSeries MQCONN or MQDISC requests on the
| same thread as AMI calls, otherwise premature disconnection might occur.

| AMSEBG (begin)
| Begins a unit of work, allowing an AMI application to take advantage of the
| resource coordination provided in MQSeries. The unit of work can subsequently be
| committed by AMSECM, or backed out by AMSERB. It should be used only when
| MQSeries is the transaction coordinator. If an external transaction coordinator (for
| example, CICS or Tuxedo) is being used, the API of the external coordinator should
| be used instead.

| CALL 'AMSEBG' USING HSESS, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HPOLICY The handle of a policy (input). If specified as AMH-NULL-HANDLE,
| the system default policy (constant: AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECLEC (clear error codes)
| Clears the error codes in the session object.

| CALL 'AMSECLEC' USING HSESS, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| COMPCODE Completion code (output).

288 MQSeries Application Messaging Interface

 COBOL session interface

| REASON Reason code (output).

| AMSECL (close)
| Closes the session object and all open objects owned by the session, and
| disconnects from the underlying message transport (MQSeries).

| CALL 'AMSECL' USING HSESS, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HPOLICY The handle of a policy (input). If specified as AMH-NULL-HANDLE,
| the system default policy (constant: AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECM (commit)
| Commits a unit of work that was started by AMSEBG, or by sending or receiving a
| message under syncpoint control as defined in the policy options for the send or
| receive request.

| CALL 'AMSECM' USING HSESS, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HPOLICY The handle of a policy (input). If specified as AMH-NULL-HANDLE,
| the system default policy (constant: AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECR (create)
| Creates the session and system default objects. AMSECR returns the handle of the
| session object. This must be specified by other session function calls.

| CALL 'AMSECR' USING NAME, HSESS, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 289

 COBOL session interface

| 51 NAME PIC X(n).
| 51 HSESS PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| NAME An optional session name that can be used to identify the
| application from which a message is sent (input).

| HSESS The handle of the session object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECRDL (create distribution list)
| Creates a distribution list object. A distribution list handle is returned.

| CALL 'AMSECRDL' USING HSESS, NAME, HDISTLIST, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HDISTLIST PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the distribution list (input). This must match the
| name of a distribution list defined in the repository.

| HDISTLIST The handle of the distribution list object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECRMS (create message)
| Creates a message object. A message handle is returned.

| CALL 'AMSECRMS' USING HSESS, NAME, HMSG, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the message (input). This can be any name that is
| meaningful to the application. It is specified so that this message
| object can be used with the high-level interface.

| HMSG The handle of the message object (output).

| COMPCODE Completion code (output).

290 MQSeries Application Messaging Interface

 COBOL session interface

| REASON Reason code (output).

| AMSECRPO (create policy)
| Creates a policy object. A policy handle is returned.

| CALL 'AMSECRPO' USING HSESS, NAME, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the policy (input). If it matches a policy defined in the
| repository, the policy will be created using the repository definition,
| otherwise it will be created with default values.

| If a repository is being used and the named policy is not found in
| the repository, a completion code of AMCC-WARNING is returned
| with a reason code of AMRC-POLICY-NOT-IN-REPOS.

| HPOLICY The handle of the policy object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECRPB (create publisher)
| Creates a publisher object. A publisher handle is returned.

| CALL 'AMSECRPB' USING HSESS, NAME, HPUBLISHER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the publisher (input). If it matches a publisher
| defined in the repository, the publisher will be created using the
| repository definition, otherwise it will be created with default values
| (that is, with a sender service name that matches the publisher
| name).

| If a repository is being used and the named publisher is not found
| in the repository, a completion code of AMCC-WARNING is
| returned with a reason code of
| AMRC-PUBLISHER-NOT-IN-REPOS.

| HPUBLISHER The handle of the publisher object (output).

 Chapter 12. COBOL object interface reference 291

 COBOL session interface

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECRRC (create receiver)
| Creates a receiver service object. A receiver handle is returned.

| CALL 'AMSECRRC' USING HSESS, NAME, HRECEIVER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the receiver service (input). If it matches a receiver
| defined in the repository, the receiver will be created using the
| repository definition, otherwise it will be created with default values
| (that is, with a queue name that matches the receiver name).

| If a repository is being used and the named receiver is not found
| in the repository, a completion code of AMCC-WARNING is
| returned with a reason code of
| AMRC-RECEIVER-NOT-IN-REPOS.

| HRECEIVER The handle of the receiver object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECRSN (create sender)
| Creates a sender service object. A sender handle is returned.

| CALL 'AMSECRSN' USING HSESS, NAME, HSENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HSENDER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the sender service (input). If it matches a sender
| defined in the repository, the sender will be created using the
| repository definition, otherwise it will be created with default values
| (that is, with a queue name that matches the sender name).

| If a repository is being used and the named sender is not found in
| the repository, a completion code of AMCC-WARNING is returned
| with a reason code of AMRC-SENDER-NOT-IN-REPOS.

292 MQSeries Application Messaging Interface

 COBOL session interface

| HSENDER The handle of the sender object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSECRSB (create subscriber)
| Creates a subscriber object. A subscriber handle is returned.

| CALL 'AMSECRSB' USING HSESS, NAME, HSUBSCRIBER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the subscriber (input). If it matches a subscriber
| defined in the repository, the subscriber will be created using the
| repository definition, otherwise it will be created with default values
| (that is, with a sender service name that matches the subscriber
| name, and a receiver service name that is the same with the
| addition of the suffix ‘.RECEIVER’).

| If a repository is being used and the named subscriber is not found
| in the repository, a completion code of AMCC-WARNING is
| returned with a reason code of
| AMRC-SUBSCRIBER-NOT-IN-REPOS.

| HSUBSCRIBER The handle of the subscriber object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEDL (delete)
| Deletes the session object. Performs an implicit close if the session is open. This
| closes and deletes the session and all objects owned by it.

| CALL 'AMSEDL' USING HSESS, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 293

 COBOL session interface

| AMSEDLDL (delete distribution list)
| Deletes a distribution list object, and performs an implicit close if the distribution list
| is open.

| CALL 'AMSEDLDL' USING HSESS, HDISTLIST, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HDISTLIST PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEDLMS (delete message)
| Deletes a message object.

| CALL 'AMSEDLMS' USING HSESS, HMSG, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HMSG The message handle returned by AMSECRMS (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEDLPO (delete policy)
| Deletes a policy object.

| CALL 'AMSEDLPO' USING HSESS, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HPOLICY The policy handle returned by AMSECRPO (input).

| COMPCODE Completion code (output).

294 MQSeries Application Messaging Interface

 COBOL session interface

| REASON Reason code (output).

| AMSEDLPB (delete publisher)
| Deletes a publisher object, and performs an implicit close if the publisher is open.

| CALL 'AMSEDLPB' USING HSESS, HPUBLISHER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEDLRC (delete receiver)
| Deletes a receiver object, and performs an implicit close if the receiver is open.

| CALL 'AMSEDLRC' USING HSESS, HRECEIVER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEDLSN (delete sender)
| Deletes a sender object, and performs an implicit close if the sender is open.

| CALL 'AMSEDLSN' USING HSESS, HSENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HSENDER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HSENDER The sender handle returned by AMSECRSN (input).

 Chapter 12. COBOL object interface reference 295

 COBOL session interface

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEDLSB (delete subscriber)
| Deletes a subscriber object, and performs an implicit close if the subscriber is open.

| CALL 'AMSEDLSB' USING HSESS, HSUBSCRIBER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEGHDL (get distribution list handle)
| Returns the handle of the distribution list object with the specified name.

| CALL 'AMSEGHDL' USING HSESS, NAME, HDISTLIST, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HDISTLIST PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the distribution list (input).

| HDISTLIST The handle of the distribution list object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEGTLE (get last error codes)
| Gets the information (completion and reason codes) from the last error for the
| session.

| CALL 'AMSEGTLE' USING HSESS, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

296 MQSeries Application Messaging Interface

 COBOL session interface

| 51 HSESS PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-SESSION-HANDLE-ERR
| indicates that the AMSEGTLE function call has itself detected an
| error and failed.

| AMSEGHMS (get message handle)
| Returns the handle of the message object with the specified name.

| CALL 'AMSEGHMS' USING HSESS, NAME, HMSG, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the message (input).

| HMSG The handle of the message object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEGHPO (get policy handle)
| Returns the handle of the policy object with the specified name.

| CALL 'AMSEGHPO' USING HSESS, NAME, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 297

 COBOL session interface

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the policy (input).

| HPOLICY The handle of the policy object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEGHPB (get publisher handle)
| Returns the handle of the publisher object with the specified name.

| CALL 'AMSEGHPB' USING HSESS, NAME, HPUBLISHER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the publisher (input).

| HPUBLISHER The handle of the publisher object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEGHRC (get receiver handle)
| Returns the handle of the receiver service object with the specified name.

| CALL 'AMSEGHRC' USING HSESS, NAME, HRECEIVER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the receiver (input).

| HRECEIVER The handle of the receiver object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

298 MQSeries Application Messaging Interface

 COBOL session interface

| AMSEGHSN (get sender handle)
| Returns the handle of the sender service object with the specified name.

| CALL 'AMSEGHSN' USING HSESS, NAME, HSENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HSENDER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the sender (input).

| HSENDER The handle of the sender object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEGHSB (get subscriber handle)
| Returns the handle of the subscriber object with the specified name.

| CALL 'AMSEGHSB' USING HSESS, NAME, HSUBSCRIBER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| NAME The name of the subscriber (input).

| HSUBSCRIBER The handle of the subscriber object (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSEOP (open)
| Opens the session object using the specified policy options. The policy, together
| with the local host file, provides the connection definition that enables the
| connection object to be created. The specified library is loaded and initialized.
| (Because client connections are not supported on OS/390, programs running on
| OS/390 must use a local queue manager). The connection to the underlying
| message transport (MQSeries) is then opened.

| CALL 'AMSEOP' USING HSESS, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 299

 COBOL session interface

| 51 HSESS PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSERB (rollback)
| Rolls back a unit of work.

| CALL 'AMSERB' USING HSESS, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECR (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

300 MQSeries Application Messaging Interface

 COBOL message interface

| Message interface functions
| A message object encapsulates an MQSeries message descriptor (MQMD), and
| name/value elements such as the topic data for publish/subscribe messages. It
| can also contain the message data, or this can be passed as a separate
| parameter.

| A name/value element in a message object is held in an AMELEM structure. See
| “Using name/value elements” on page 237 for details.

| The initial state of the message object is:

| CCSID default queue manager CCSID
| CORRELATIONID all zeroes
| DATALENGTH zero
| DATAOFFSET zero
| ELEMENTCOUNT zero
| ENCODING AMENC-NATIVE
| FORMAT AMFMT-STRING
| GROUPSTATUS AMGRP-MSG-NOT-IN-GROUP
| TOPICCOUNT zero

| When a message object is used to send a message, it will not normally be left in
| the same state as it was prior to the send. Therefore, if you use the message
| object for repeated send operations, it is advisable to reset it to its initial state (see
| AMMSRS on page 315) and rebuild it each time.

| Note that the following calls are only valid after a session has been opened with an
| AMSEOP call or after you have explicitly set the element CCSID with an
| AMMSSELC call:

| AMMSADEL (add element) page 301

| AMMSDEEL (delete element) page 303

| AMMSGTEL (get element) page 307

| AMMSGTEC (get element count) page 307

| AMMSDENE (delete named element) page 304

| AMMSGTNE (get named element) page 312

| AMMSGTNC (get named element count) page 312

| AMMSADTO (add topic) page 302

| AMMSDETO (delete topic) page 304

| AMMSGTTO (get topic) page 313

| AMMSGTTC (get topic count) page 314

| AMMSADEL (add element)
| Adds a name/value element to a message (such as a publish/subscribe message).

| CALL 'AMMSADEL' USING HMSG, AMELEM, OPTIONS, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 301

 COBOL message interface

| 51 HMSG PIC S9(9) BINARY.
| 51 AMELEM.
| COPY AMTELEMV.
| 51 OPTIONS PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| AMELEM An AMELEM element structure, which specifies the element to be
| added (input). It will not replace an existing element with the same
| name.

| OPTIONS Reserved, must be set to zero (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSADFI (add filter)
| Adds a filter to a subscribe or unsubscribe request message.

| CALL 'AMMSADFI' USING HMSG, FILTERLEN, TOPIC, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 FILTERLEN PIC S9(9) BINARY,
| 51 FILTER PIC X(n),
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| FILTERLEN The length in bytes of the filter (input). A value of
| AMLEN-NULL-TERM specifies that the string is null terminated.

| FILTER The filter to be added (input). The syntax of the filter string is
| described in the MQSeries Integrator Version 2.0 Programming
| Guide.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSADTO (add topic)
| Adds a topic to a publish/subscribe message.

| CALL 'AMMSADTO' USING HMSG, TOPICLEN, TOPIC, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 TOPICLEN PIC S9(9) BINARY.
| 51 TOPIC PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

302 MQSeries Application Messaging Interface

 COBOL message interface

| TOPICLEN The length in bytes of the topic (input).

| TOPIC The topic to be added (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSCLEC (clear error codes)
| Clears the error codes in the message object.

| CALL 'AMMSCLEC' USING HMSG, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSDEEL (delete element)
| Deletes an element with the specified index from a message (such as a
| publish/subscribe message). Indexing is within all elements of the message, and
| might include topics or filters (which are specialized elements).

| CALL 'AMMSDEEL' USING HMSG, ELEMINDEX, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 ELEMINDEX PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| ELEMINDEX The index of the required element in the message, starting from
| zero (input). On completion, elements with higher ELEMINDEX
| values than that specified will have their index value reduced by
| one.

| Use AMMSGTEC to get the number of elements in the message.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSDEFI (delete filter)
| Deletes a filter from a subscribe or unsubscribe message at the specified index.
| Indexing is within all filters.

| CALL 'AMMSDEFI' USING HMSG, FILTERINDEX, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 303

 COBOL message interface

| 51 HMSG PIC S9(9) BINARY.
| 51 FILTERINDEX PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| FILTERINDEX The index of the required filter in the message, starting from zero
| (input). AMMSGTFI gets the number of filters in the message.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSDENE (delete named element)
| Deletes a named element from a message (such as a publish/subscribe message),
| at the specified index. Indexing is within all elements that share the same name.

| CALL 'AMMSDENE' USING HMSG, NAMEINDEX, NAMELEN, NAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 NAMEINDEX PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| NAMEINDEX The index of the required named element in the message (input).
| Specifying an index of zero deletes the first element with the
| specified name. On completion, elements with higher NAMEINDEX
| values than that specified will have their index value reduced by
| one.

| Use AMMSGTNC to get the number of elements in the message
| with the specified name.

| NAMELEN The length of the element name, in bytes (input).

| NAME The name of the element to be deleted (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSDETO (delete topic)
| Deletes a topic from a publish/subscribe message, at the specified index. Indexing
| is within all topics in the message.

| CALL 'AMMSDETO' USING HMSG, TOPICINDEX, COMPCODE, REASON.

| Declare the parameters as follows:

304 MQSeries Application Messaging Interface

 COBOL message interface

| 51 HMSG PIC S9(9) BINARY.
| 51 TOPICINDEX PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| TOPICINDEX The index of the required topic in the message, starting from zero
| (input). On completion, topics with higher TOPICINDEX values than
| that specified will have their index value reduced by one.

| Use AMMSGTTC to get the number of topics in the message.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGELC (get element CCSID)
| Gets the message element CCSID. This is the coded character set identifier used
| for passing message element data (including topic and filter data) to or from an
| application.

| CALL 'AMMSGELCC' USING HMSG, ELEMENTCCSID, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 ELEMENTCCSID PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| ELEMENTCCSID The element coded character set identifier (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTCC (get CCSID)
| Gets the coded character set identifier of the message.

| CALL 'AMMSGTCC' USING HMSG, CCSID, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 CCSID PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| CCSID The coded character set identifier (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 305

 COBOL message interface

| AMMSGTCI (get correl ID)
| Gets the correlation identifier of the message.

| CALL 'AMMSGTCI' USING HMSG, BUFFLEN, CORRELIDLEN, CORRELID,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 CORRELIDLEN PIC S9(9) BINARY.
| 51 CORRELID PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| BUFFLEN The length in bytes of a buffer in which the correlation identifier is
| returned (input).

| CORRELIDLEN The length of the correlation identifier, in bytes (output).

| CORRELID The correlation identifier (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTDL (get data length)
| Gets the length of the message data in the message object.

| CALL 'AMMSGTDL' USING HMSG, LENGTH, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 LENGTH PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| LENGTH The length of the message data, in bytes (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTDO (get data offset)
| Gets the current offset in the message data for reading or writing data bytes.

| CALL 'AMMSGTDO' USING HMSG, OFFSET, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 OFFSET PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

306 MQSeries Application Messaging Interface

 COBOL message interface

| HMSG The message handle returned by AMSECRMS (input).

| OFFSET The byte offset in the message data (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTEL (get element)
| Gets an element from a message.

| CALL 'AMMSGTEL' USING HMSG, ELEMINDEX, ELEM, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 ELEMINDEX PIC S9(9) BINARY.
| 51 ELEM.
| COPY AMTELEMV.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| ELEMINDEX The index of the required element in the message, starting from
| zero (input). Use AMMSGTEC to get the number of elements in
| the message.

| ELEM The selected element in the message (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTEC (get element count)
| Gets the total number of elements in a message.

| CALL 'AMMSGTEC' USING HMSG, COUNT, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 COUNT PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| COUNT The number of elements in the message (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 307

 COBOL message interface

| AMMSGTEN (get encoding)
| Gets the value used to encode numeric data types for the message.

| CALL 'AMMSGTEN' USING HMSG, ENCODING, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 ENCODING PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| ENCODING The encoding of the message (output). The following values can
| be returned:

| AMENC-NATIVE
| AMENC-NORMAL
| AMENC-NORMAL-FLOAT-395
| AMENC-REVERSED
| AMENC-REVERSED-FLOAT-395
| AMENC-UNDEFINED

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTFC (get filter count)
| Gets the total number of filters in a publish/subscribe message.

| CALL 'AMMSGTFC' USING HMSG, COUNT, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 COUNT PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| COUNT The number of filters (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTFI (get filter)
| Get a filter from a publish/subscribe message at the specified index. Indexing is
| within all filters.

| CALL 'AMMSGTFI' USING HMSG, INDEX, BUFFLEN, FILTERLEN,
| FILTER, COMPCODE, REASON.

| Declare the parameters as follows:

308 MQSeries Application Messaging Interface

 COBOL message interface

| 51 HMSG PIC S9(9) BINARY.
| 51 INDEX PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 FILTERLEN PIC S9(9) BINARY.
| 51 FILTER PIC X(N),
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| INDEX The index of the required filter in the message (input). Specifying
| an index of zero returns the first filter. AMMSGTFC gets the number
| of filters in the message.

| BUFFLEN The length in bytes of a buffer in which the filter is returned (input).

| FILTERLEN The length of the filter, in bytes (output).

| FILTER The filter (output)

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTFO (get format)
| Gets the format of the message.

| CALL 'AMMSGTFO' USING HMSG, BUFFLEN, FORMATLEN, FORMAT, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 FORMATLEN PIC S9(9) BINARY.
| 51 FORMAT PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| BUFFLEN The length in bytes of a buffer in which the format is returned
| (input).

| FORMATLEN The length of the format, in bytes (output).

| FORMAT The format of the message (output). The values that can be
| returned include the following:

| AMFMT-NONE
| AMFMT-STRING
| AMFMT-RF-HEADER

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 309

 COBOL message interface

| AMMSGTGS (get group status)
| Gets the group status of the message. This indicates whether the message is in a
| group, and if it is the first, middle, last or only one in the group.

| CALL 'AMMSGTGS' USING HMSG, STATUS, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 STATUS PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| STATUS The group status (output). It can take one of the following values:

| AMGRP-MSG-NOT-IN-GROUP
| AMGRP-FIRST-MSG-IN-GROUP
| AMGRP-MIDDLE-MSG-IN-GROUP
| AMGRP-LAST-MSG-IN-GROUP
| AMGRP-ONLY-MSG-IN-GROUP

| Alternatively, bitwise tests can be performed using the constants:

| AMGF-IN-GROUP
| AMGF-FIRST
| AMGF-LAST

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTLE (get last error)
| Gets the information (completion and reason codes) from the last error for the
| message object.

| CALL 'AMMSGTLE' USING HSESS, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSESS PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSESS The session handle returned by AMSECRMS (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

310 MQSeries Application Messaging Interface

 COBOL message interface

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-MSG-HANDLE-ERR
| indicates that the AMMSGTLE function call has itself detected an
| error and failed.

| AMMSGTMI (get message ID)
| Gets the message identifier.

| CALL 'AMMSGTMI' USING HMSG, BUFFLEN, MSGIDLEN, MSGID, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 MSGIDLEN PIC S9(9) BINARY.
| 51 MSGID PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| BUFFLEN The length in bytes of a buffer in which the message identifier is
| returned (input).

| MSGIDLEN The length of the message identifier, in bytes (output).

| MSGID The message identifier (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTNA (get name)
| Gets the name of the message object.

| CALL 'AMMSGTNA' USING HMSG, BUFFLEN, NAMELEN, NAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| BUFFLEN The length in bytes of a buffer in which the name is returned
| (input).

| NAMELEN The length of the name, in bytes (output).

| NAME The message object name (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 311

 COBOL message interface

| AMMSGTNE (get named element)
| Gets a named element from a message (such as a publish/subscribe message).

| CALL 'AMMSGTNE' USING HMSG, NAMEINDEX, NAMELEN, NAME, ELEM
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 NAMEINDEX PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 ELEM.
| COPY AMTELEMV.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| NAMEINDEX The index of the required named element in the message (input).
| Specifying an index of zero returns the first element with the
| specified name.

| Use AMMSGTNC to get the number of elements in the message
| with the specified name.

| NAMELEN The length of the element name, in bytes (input).

| NAME The element name (input).

| ELEM The selected named element in the message (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTNC (get named element count)
| Gets the number of elements in a message with a specified name.

| CALL 'AMMSGTNC' USING HMSG, NAMELEN, NAME, COUNT, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COUNT PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| NAMELEN The length of the element name, in bytes (input).

| NAME The specified element name (input).

| COUNT The number of elements in the message with the specified name
| (output).

| COMPCODE Completion code (output).

312 MQSeries Application Messaging Interface

 COBOL message interface

| REASON Reason code (output).

| AMMSGTRC (get report code)
| Gets the feedback code from a message of type AMMT-REPORT. If the message
| type is not AMMT-REPORT, error code AMRC-MSG-TYPE-NOT-REPORT will be
| returned.

| CALL 'AMMSGTRC' USING HMSG, REPORTCODE, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 REPORTCODE PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| REPORTCODE The feedback code (output). The following values can be returned:

| AMFB-EXPIRATION
| AMFB-COA
| AMFB-COD
| AMFB-ERROR

| Error code AMRC_MSG_TYPE_NOT_REPORT may be issued.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTTO (get topic)
| Gets a topic from a publish/subscribe message, at the specified index. Indexing is
| within all topics.

| CALL 'AMMSGTTO' USING HMSG, TOPICINDEX, BUFFLEN, TOPICLEN, TOPIC,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 TOPICINDEX PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 TOPICLEN PIC S9(9) BINARY.
| 51 TOPIC PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| TOPICINDEX The index of the required topic in the message (input). Specifying
| an index of zero returns the first topic.

| Use AMMSGTTC to get the number of topics in the message.

| BUFFLEN The length in bytes of a buffer in which the topic is returned
| (input). If BUFFLEN is specified as zero, only the topic length is
| returned (in TOPICLEN), not the topic itself.

 Chapter 12. COBOL object interface reference 313

 COBOL message interface

| TOPICLEN The length of the topic, in bytes (output).

| TOPIC The topic (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTTC (get topic count)
| Gets the total number of topics in a publish/subscribe message.

| CALL 'AMMSGTTC' USING HMSG, COUNT, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 COUNT PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| COUNT The number of topics (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSGTTY (get type)
| Gets the type from a message.

| CALL 'AMMSGTTY' USING HMSG, TYPE, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 TYPE PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| TYPE The message type (output). The following values can be returned:

| AMMT-DATAGRAM
| AMMT-REQUEST
| AMMT-REPLY
| AMMT-REPORT

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSREBY (read bytes)
| Reads up to the specified number of data bytes from the message object, starting
| at the current data offset. The data offset must be positioned before the end of the
| data for the read to be successful (see “AMMSSTDO (set data offset)” on
| page 316). AMMSREBY will advance the data offset by the number of bytes read,
| leaving the offset immediately after the last byte read.

314 MQSeries Application Messaging Interface

 COBOL message interface

| CALL 'AMMSREBY' USING HMSG, READLEN, DATALEN, DATA, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 READLEN PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| READLEN The maximum number of bytes to be read (input). The data buffer
| specified by DATA must be at least this size. The number of bytes
| returned is the minimum of READLEN and the number of bytes
| between the data offset and the end of the data.

| DATALEN The number of bytes read (output).

| DATA The read data (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSRS (reset)
| Resets the message object to its initial state (see page 301).

| CALL 'AMMSRS' USING HMSG, OPTIONS, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 OPTIONS PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| OPTIONS Reserved, must be specified as zero (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSSTCC (set CCSID)
| Sets the coded character set identifier of the message.

| CALL 'AMMSSTCC' USING HMSG, CCSID, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 CCSID PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

 Chapter 12. COBOL object interface reference 315

 COBOL message interface

| CCSID The coded character set identifier (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSSTCI (set correl ID)
| Sets the correlation identifier of the message.

| CALL 'AMMSSTCI' USING HMSG, CORRELIDLEN, CORRELID, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 CORRELIDLEN PIC S9(9) BINARY.
| 51 CORRELID PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| CORRELIDLEN The length of the correlation identifier, in bytes (input).

| CORRELID The correlation identifier (input). If CORRELIDLEN is set to zero,
| the message correlation identifier is reset and the CORRELID
| parameter will be ignored.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSSTDO (set data offset)
| Sets the data offset for reading or writing byte data. If the data offset is greater
| than the current data length, it is valid to write data into the message at that offset,
| but an attempt to read data will result in an error. See “AMMSREBY (read bytes)”
| on page 314 and “AMMSWRBY (write bytes)” on page 319.

| CALL 'AMMSSTDO' USING HMSG, OFFSET, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 OFFSET PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| OFFSET The offset in bytes (input). Set an offset of zero to read or write
| from the start of the data.

| COMPCODE Completion code (output).

| REASON Reason code (output).

316 MQSeries Application Messaging Interface

 COBOL message interface

| AMMSSELC (set element ccsid)
| This specifies the character set to be used for subsequent element message data
| (including topic and filter data) passed to or returned from the application. Existing
| elements in the message are unmodified (but will be returned in this character set).
| The default value of element CCSID is the queue manager CCSID.

| CALL 'AMMSSELC' USING HMSG, ELEMENTCCSID, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 ELEMENTCCSID PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| ELEMENTCCSID The element coded character set identifier (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSSTEN (set encoding)
| Sets the encoding of the data in the message.

| CALL 'AMMSSTEN' USING HMSG, ENCODING, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 ENCODING PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| ENCODING The encoding of the message (input). It can take one of the
| following values:

| AMENC-NATIVE
| AMENC-NORMAL
| AMENC-NORMAL-FLOAT-395
| AMENC-REVERSED
| AMENC-REVERSED-FLOAT-395
| AMENC-UNDEFINED

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 317

 COBOL message interface

| AMMSSTFO (set format)
| Sets the format of the message.

| CALL 'AMMSSTFO' USING HMSG, FORMATLEN, FORMAT, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 FORMATLEN PIC S9(9) BINARY.
| 51 FORMAT PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| FORMATLEN The length of the format, in bytes (input).

| FORMAT The format of the message (input). It can take one of the following
| values, or an application defined string:

| AMFMT-NONE
| AMFMT-STRING
| AMFMT-RF-HEADER

| If set to AMFMT-NONE, the default format for the sender will be
| used (if available).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSSTGS (set group status)
| Sets the group status of the message. This indicates whether the message is in a
| group, and if it is the first, middle, last or only one in the group. Once you start
| sending messages in a group, you must complete the group before sending any
| messages that are not in the group.

| If you specify AMGRP-MIDDLE-MSG-IN-GROUP or
| AMGRP-LAST-MSG-IN-GROUP without specifying
| AMGRP-FIRST-MSG-IN-GROUP, the behavior is the same as for
| AMGRP-FIRST-MSG-IN-GROUP and AMGRP-ONLY-MSG-IN-GROUP
| respectively.

| If you specify AMGRP-FIRST-MSG-IN-GROUP out of sequence, then the behavior
| is the same as for AMGRP-MIDDLE-MSG-IN-GROUP.

| CALL 'AMMSSTGS' USING HMSG, STATUS, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 STATUS PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| STATUS The group status (input). It can take one of the following values:

318 MQSeries Application Messaging Interface

 COBOL message interface

| AMGRP-MSG-NOT-IN-GROUP
| AMGRP-FIRST-MSG-IN-GROUP
| AMGRP-MIDDLE-MSG-IN-GROUP
| AMGRP-LAST-MSG-IN-GROUP
| AMGRP-ONLY-MSG-IN-GROUP

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMMSWRBY (write bytes)
| Writes the specified number of data bytes into the message object, starting at the
| current data offset. See “AMMSSTDO (set data offset)” on page 316.

| If the data offset is not at the end of the data, existing data is overwritten. If the
| data offset is set beyond the current data length, the message data between the
| data length and the data offset is undefined. This feature enables applications to
| construct messages in a non-sequential manner, but care must be taken to ensure
| that a message is completely filled with data before it is sent.

| AMMSWRBY will advance the data offset by the number of bytes written, leaving it
| immediately after the last byte written.

| CALL 'AMMSWRBY' USING HMSG, WRITELEN, BYTEDATA, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HMSG PIC S9(9) BINARY.
| 51 WRITELEN PIC S9(9) BINARY.
| 51 BYTEDATA PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HMSG The message handle returned by AMSECRMS (input).

| WRITELEN The number of bytes to be written (input).

| BYTEDATA The data bytes (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 319

 COBOL sender interface

| Sender interface functions
| A sender object encapsulates an MQSeries object descriptor (MQOD) structure.
| This represents an MQSeries queue on a local or remote queue manager. An open
| sender service is always associated with an open connection object (such as a
| queue manager connection). Support is also included for dynamic sender services
| (those that encapsulate model queues). The required sender service object
| definitions can be provided from a repository, or created without a repository
| definition by defaulting to the existing queue objects on the local queue manager.

| The high-level functions AMHSNMS (send message), AMHSNRQ (send request),
| and AMHSNRS (send response) call these interface functions as required to open
| the sender service and send a message. Additional calls are provided here to give
| the application program extra functionality.

| A sender service object must be created before it can be opened. This is done
| implicitly using the high-level functions, or the AMSECRSN (create sender) session
| interface functions.

| A response sender service is a special type of sender service used for sending a
| response to a request message. It must be created using the default definition,
| and not a definition stored in a repository (see “Services and policies” on
| page 471). Once created, it must not be opened until used in its correct context as
| a response sender when receiving a request message with AMRCRC (receive) or
| AMHRCRQ (receive request). When opened, its queue and queue manager
| properties are modified to reflect the ReplyTo destination specified in the message
| being received. When first used in this context, the sender service becomes a
| response sender service.

| AMSNCLEC (clear error codes)
| Clears the error codes in the sender object.

| CALL 'AMSNCLEC' USING HSENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSNCL (close)
| Closes the sender service.

| CALL 'AMSNCL' USING HSENDER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

320 MQSeries Application Messaging Interface

 COBOL sender interface

| 51 HSENDER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSNGTCC (get CCSID)
| Gets the coded character set identifier of the sender service. A non-default value
| reflects the CCSID of a remote system unable to perform CCSID conversion of
| received messages. In this case the sender must perform CCSID conversion of the
| message before it is sent.

| CALL 'AMSNGTCC' USING HSENDER, CCSID, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 CCSID PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| CCSID The coded character set identifier (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSNGTEN (get encoding)
| Gets the value used to encode numeric data types for the sender service. A
| non-default value reflects the encoding of a remote system unable to convert the
| encoding of received messages. In this case the sender must convert the encoding
| of the message before it is sent.

| CALL 'AMSNGTEN' USING HSENDER, ENCODING, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 ENCODING PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| ENCODING The encoding (output).

| COMPCODE Completion code (output).

 Chapter 12. COBOL object interface reference 321

 COBOL sender interface

| REASON Reason code (output).

| AMSNGTLE (get last error)
| Gets the information (completion and reason codes) from the last error for the
| sender object.

| CALL 'AMSNGTLE' USING HSENDER, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
| indicates that the AMSNGTLE function call has itself detected an
| error and failed.

| AMSNGTNA (get name)
| Gets the name of the sender service.

| CALL 'AMSNGTNA' USING HSENDER, BUFFLEN, NAMELEN, NAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| BUFFLEN The length in bytes of a buffer in which the name is returned
| (input).

| NAMELEN The length of the name, in bytes (output).

| NAME The name of the sender service (output).

322 MQSeries Application Messaging Interface

 COBOL sender interface

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSNOP (open)
| Opens the sender service.

| CALL 'AMSNOP' USING HSENDER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSNSN (send)
| Sends a message to the destination specified by the sender service. If the sender
| service is not open, it will be opened (if this action is specified in the policy
| options).

| The message data can be passed in the message object, or as a separate
| parameter (this means that the data does not have to be copied into the message
| object prior to sending the message, which might improve performance especially if
| the message data is large).

| CALL 'AMSNSN' USING HSENDER, HPOLICY, HRECEIVER, HRCVMSG, DATALEN, DATA,
| HSNDMSG, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HRCVMSG PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 HSNDMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

 Chapter 12. COBOL object interface reference 323

 COBOL sender interface

| HRECEIVER The handle of the receiver service to which the response to this
| message should be sent, if the message being sent is a request
| message (input). Specify as AMH-NULL-HANDLE if no response is
| required.

| HRCVMSG The handle of a received message that is being responded to, if
| this is a response message (input). Specify as
| AMH-NULL-HANDLE if this is not a response message.

| DATALEN The length of the message data, in bytes (input). If specified as
| zero, any message data will be passed in the message object
| (HSNDMSG).

| DATA The message data, if DATALEN is non-zero (input).

| HSNDMSG The handle of a message object that specifies the properties of the
| message being sent (input). If DATALEN is zero, it can also contain
| the message data. If specified as AMH-NULL-HANDLE, the
| default message object (constant: AMSD-SND-MSG-HANDLE) is
| used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSNSNFL (send file)
| Sends data from a file.

| CALL 'AMSNSNFL' USING HSENDER, HPOLICY, OPTIONS, DIRNAMELEN,
| DIRNAME, FILENAMELEN, FILENAME, HSNDMSG,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSENDER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 OPTIONS PIC S9(9) BINARY.
| 51 DIRNAMELEN PIC S9(9) BINARY.
| 51 DIRNAME PIC X(n).
| 51 FILENAMELEN PIC S9(9) BINARY.
| 51 FILENAME PIC X(n).
| 51 HSNDMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSENDER The sender handle returned by AMSECRSN (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| OPTIONS A reserved field that must be specified as zero.

| DIRNAMELEN A reserved field that must be specified as zero (input).

| DIRNAME A reserved field.

| FILENAMELEN The length of the file name in bytes (input).

324 MQSeries Application Messaging Interface

 COBOL sender interface

| FILENAME The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If the
| send operation is a physical-mode file transfer, then the file name
| will travel with the message for use with a receive file call (see
| “AMRCRCFL (receive file)” on page 333 for more details). Note
| that the file name sent will exactly match the supplied file name; it
| will not be converted or expanded in any way.

| HSNDMSG The handle of a message object that specifies the properties of the
| message being sent (input). If specified as AMN-NULL-HANDLE,
| the system default send message (constant:
| AMN-SND-MSG-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| Usage Notes
| If, in your application, you have previously used a message object, referenced by
| either handle or name, to send or receive data (including AMI elements or topics),
| you will need to explicitly call AMMSRS (reset message) before re-using the object
| for sending a file. This applies even if you use the system default message object
| handle (constant: AMSD-SND-MSG-HANDLE).

 Chapter 12. COBOL object interface reference 325

 COBOL receiver interface

| Receiver interface functions
| A receiver object encapsulates an MQSeries object descriptor (MQOD) structure.
| This represents a local MQSeries queue. An open receiver service is always
| associated with an open connection object, such as a queue manager connection.
| Support is also included for dynamic receiver services (that encapsulate model
| queues). The required receiver service object definitions can be provided from a
| repository or can be created automatically from the set of existing queue objects
| available on the local queue manager.

| There is a definition type associated with each receiver service:

| AMDT-UNDEFINED
| AMDT-TEMP-DYNAMIC
| AMDT-DYNAMIC
| AMDT-PREDEFINED

| A receiver service created from a repository definition will be initially of type
| AMDT-PREDEFINED or AMDT-DYNAMIC. When opened, its definition type might
| change from AMDT-DYNAMIC to AMDT-TEMP-DYNAMIC according to the
| properties of its underlying queue object.

| A receiver service created with default values (that is, without a repository
| definition) will have its definition type set to AMDT-UNDEFINED until it is opened.
| When opened, this will become AMDT-DYNAMIC, AMDT-TEMP-DYNAMIC, or
| AMDT-PREDEFINED, according to the properties of its underlying queue object.

| AMRCBR (browse)
| Browses a message. See the MQSeries Application Programming Guide for a full
| description of the browse options.

| CALL 'AMRCBR' USING HRECEIVER, HPOLICY, OPTIONS, BUFFLEN, DATALEN, DATA
| HRCVMSG, HSENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 OPTIONS PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 HRCVMSG PIC S9(9) BINARY.
| 51 HSENDER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| OPTIONS Options controlling the browse operation (input). Possible values
| are:

326 MQSeries Application Messaging Interface

 COBOL receiver interface

| AMBRW-NEXT
| AMBRW-FIRST
| AMBRW-RECEIVE-CURRENT
| AMBRW-DEFAULT (AMBRW-NEXT)

| AMBRW-RECEIVE-CURRENT is equivalent to AMRCRC for the message
| under the browse cursor.

| BUFFLEN The length in bytes of a buffer in which the data is returned (input).

| DATALEN The length of the message data, in bytes (input/output).

| If BUFFLEN is set to zero and DATALEN is set to -1, the message data
| is returned in the message object (HRCVMSG) instead of the DATA
| parameter.

| If BUFFLEN is set to zero but DATALEN is not set to -1, the data
| length is returned without the data. This allows the required
| amount of memory to be allocated before issuing a second
| function call to return the data.

| DATA The received message data (output).

| HRCVMSG The handle of the message object for the received message
| (output).

| HSENDER The handle of the response sender service that the response
| message must be sent to, if this is a request message (output).
| This sender service must be created without a repository definition
| (i.e. must not exist before the AMI session is started), and must be
| used exclusively for sending a response. Its definition type must
| be AMDT-UNDEFINED (it will be set to AMDT-RESPONSE by this
| call).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCBRSE (browse selection message)
| Browses a message identified by specifying the Correlation ID from the selection
| message as a selection criterion. See the MQSeries Application Programming
| Guide for a full description of the browse options.

| CALL 'AMRCBRSE' USING HRECEIVER, HPOLICY, OPTIONS, HSELMSG,
| BUFFLEN, DATALEN, DATA, HRCVMSG,
| HRESPONSE, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 OPTIONS PIC S9(9) BINARY.
| 51 HSELMSG PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 HRCVMSG PIC S9(9) BINARY.
| 51 HRESPONSE PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

 Chapter 12. COBOL object interface reference 327

 COBOL receiver interface

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| OPTIONS Options controlling the browse operation (input). Possible values
| are:

| AMBRW-NEXT
| AMBRW-FIRST
| AMBRW-RECEIVE-CURRENT
| AMBRW-DEFAULT (AMBRW-NEXT)

| AMBRW-RECEIVE-CURRENT is equivalent to AMRCRC for the message
| under the browse cursor.

| HSELMSG The handle of a selection message object (input). This is used
| together with the browse options to identify the message to be
| received (for example, using the Correlation ID). Specify as
| AMH_NULL_HANDLE to get the next available message. The
| CCSID, element CCSID, and encoding values from the selection
| message define the target values for any data conversions. If
| target conversion values are required without using the Correlation
| ID for selection, then this can be reset (see AMMSGELC on page
| 305) before invoking the AMRCBRSE function.

| BUFFLEN The length in bytes of a buffer in which the data is returned (input).

| DATALEN The length of the message data, in bytes (input/output).

| If BUFFLEN is set to zero and DATALEN is set to -1, the message data
| is returned in the message object (HRCVMSG) instead of the DATA
| parameter.

| If BUFFLEN is set to zero but DATALEN is not set to -1, the data
| length is returned without the data. This allows the required
| amount of memory to be allocated before issuing a second
| function call to return the data.

| DATA The received message data (output).

| HRCVMSG The handle of the message object for the received message
| (output).

| HSENDER The handle of the response sender service that the response
| message must be sent to, if this is a request message (output).
| This sender service must be created without a repository definition
| (i.e. must not exist before the AMI session is started), and must be
| used exclusively for sending a response. Its definition type must
| be AMDT-UNDEFINED (it will be set to AMDT-RESPONSE by this
| call).

| COMPCODE Completion code (output).

| REASON Reason code (output).

328 MQSeries Application Messaging Interface

 COBOL receiver interface

| AMRCCLEC (clear error codes)
| Clears the error codes in the receiver service object.

| CALL 'AMRCCLEC' USING HRECEIVER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCCL (close)
| Closes the receiver service.

| CALL 'AMRCCL' USING HRECEIVER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCGTDT (get definition type)
| Gets the definition type of the receiver service.

| CALL 'AMRCGTDT' USING HRECEIVER, TYPE, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 TYPE PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| TYPE The definition type (output). It can be one of the following:

 Chapter 12. COBOL object interface reference 329

 COBOL receiver interface

| AMDT-UNDEFINED
| AMDT-TEMP-DYNAMIC
| AMDT-DYNAMIC
| AMDT-PREDEFINED

| Values other than AMDT-UNDEFINED reflect the properties of the
| underlying queue object.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCGTLE (get last error)
| Gets the information (completion and reason codes) from the last error for the
| receiver object.

| CALL 'AMRCGTLE' USING HRECEIVER, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
| indicates that the AMRCGTLE function call has itself detected an
| error and failed.

| AMRCGTNA (get name)
| Gets the name of the receiver service.

| CALL 'AMRCGTNA' USING HRECEIVER, BUFFLEN, NAMELEN, NAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

330 MQSeries Application Messaging Interface

 COBOL receiver interface

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| BUFFLEN The length in bytes of a buffer in which the name is returned
| (input).

| NAMELEN The length of the name, in bytes (output).

| NAME The name of the receiver service (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCGTQN (get queue name)
| Gets the queue name of the receiver service. This is used to determine the queue
| name of a permanent dynamic receiver service, so that it can be recreated with the
| same queue name in order to receive messages in a subsequent session. See
| also AMRCSTQN (set queue name).

| CALL 'AMRCGTQN' USING HRECEIVER, BUFFLEN, NAMELEN, QUEUENAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 QUEUENAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| BUFFLEN The length in bytes of a buffer in which the queue name is
| returned (input).

| NAMELEN The length of the queue name, in bytes (output).

| QUEUENAME The queue name of the receiver service (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCOP (open)
| Opens the receiver service.

| CALL 'AMRCOP' USING HRECEIVER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 331

 COBOL receiver interface

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCRC (receive)
| Receives a message.

| CALL 'AMRCRC' USING HRECEIVER, HPOLICY, HSELMSG, BUFFLEN, DATALEN, DATA,
| HRCVMSG, HSENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 HSELMSG PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 HRCVMSG PIC S9(9) BINARY.
| 51 HSENDER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| HSELMSG The handle of a selection message object (input). This is used to
| identify the message to be received (for example, using the
| correlation ID). Specify as AMH-NULL-HANDLE to get the next
| available message with no selection.

| BUFFLEN The length in bytes of a buffer in which the data is returned (input).

| DATALEN The length of the message data, in bytes (output). Can be
| specified as -1 (input).

| DATA The received message data (output).

| HRCVMSG The handle of the message object for the received message
| (input). If specified as AMH-NULL-HANDLE, the default message
| object (constant: AMSD-RCV-MSG-HANDLE) is used. The
| message object is reset implicitly before the receive takes place.

| HSENDER The handle of the response sender service that a response
| message must be sent to, if this is a request message (input).
| This sender service must have been created without a repository
| definition, and used exclusively for sending a response. Its

332 MQSeries Application Messaging Interface

 COBOL receiver interface

| definition type must be AMDT-UNDEFINED (it will be set to
| AMDT-RESPONSE by this call).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| Usage notes
| To return the data in the message object (HRCVMSG), set BUFFLEN to zero and
| DATALEN to -1.

| To return the message data in the DATA parameter, set BUFFLEN to the required
| length (an integer greater than zero) and DATALEN to -1.

| To return only the data length (so that the required buffer size can be determined
| before issuing a second function call to return the data), set BUFFLEN to zero.
| DATALEN must not be set to -1. Accept Truncated Message in the policy receive
| attributes must not be selected (the default), otherwise the message will be
| discarded with an AMRC_MSG_TRUNCATED warning.

| To return the message data in the DATA parameter, together with the data length,
| set BUFFLEN to the required length (an integer greater than zero) and ensure that
| DATALEN is not set to -1. If the buffer is too small, and Accept Truncated Message is
| not selected in the policy receive attributes (the default), an
| AMRC_RECEIVE_BUFF_LEN_ERR error will be generated. If the buffer is too
| small, and Accept Truncated Message is selected in the policy receive attributes,
| the truncated message is returned with an AMRC_MSG_TRUNCATED warning.

| To remove the message from the queue (because it is not wanted by the
| application), Accept Truncated Message must be selected in the policy receive
| attributes. You can then remove the message by specifying -1 in both the BUFFLEN
| and DATALEN parameters.

| AMRCRCFL (receive file)
| Receives file message data into a file.

| CALL 'AMRCRCFL' USING HRECEIVER, HPOLICY, OPTIONS, HSELMSG,
| DIRNAMELEN, DIRNAME, FILENAMELEN,
| FILENAME, HRCVMSG, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 OPTIONS PIC S9(9) BINARY.
| 51 HSELMSG PIC S9(9) BINARY.
| 51 DIRNAMELEN PIC S9(9) BINARY.
| 51 DIRNAME PIC X(n).
| 51 FILENAMELEN PIC S9(9) BINARY.
| 51 FILENAME PIC X(n).
| 51 HRCVMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HRECEIVER The receiver handle returned by AMSECRRC (input).

 Chapter 12. COBOL object interface reference 333

 COBOL receiver interface

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| HSELMSG The handle of a selection message object (input). This is used to
| identify the message to be received (for example, using the
| correlation ID). Specify as AMH-NULL-HANDLE to get the next
| available message with no selection. The CCSID, element CCSID,
| and encoding values from the selection message define the target
| values for any data conversions. If target conversion values are
| required without using the Correlation ID for selection, then this
| can be reset (see AMMSSTCI on page 316) before invoking the
| AMRCRCFL function.

| DIRNAMELEN Reserved, must be specified as zero (input). .

| DIRNAME Reserved. .

| FILENAMELEN The length of the file name in bytes (input). .

| FILENAME The name of the file into which the transferred data is to be
| received (input). This can include a directory prefix to define a
| fully-qualified or relative file name. If blank then the AMI will use
| the name of the originating file (including any directory prefix)
| exactly as it was supplied on the send file call. Note that the
| original file name may not be appropriate for use by the receiver,
| either because a path name included in the file name is not
| applicable to the receiving system, or because the sending and
| receiving systems use different file naming conventions.

| HRCVMSG The handle of the message object to use to receive the file. This
| parameter is updated with the message properties, for example the
| Message ID. If the message is a file message, HRCVMSG receives
| the message data. If HRCVMSG is specified as AMH-NULL-HANDLE,
| the default message object (constant AMSD-RCV-MSG-HANDLE)
| is used. The message object is reset implicitly before the receive
| takes place.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMRCSTQN (set queue name)
| Sets the queue name of the receiver service, when this encapsulates a model
| queue. This can be used to specify the queue name of a recreated permanent
| dynamic receiver service, in order to receive messages in a session subsequent to
| the one in which it was created. See also AMRCGTQN (get queue name).

| CALL 'AMRCSTQN' USING HRECEIVER, NAMELEN, QUEUENAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HRECEIVER PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 QUEUENAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

334 MQSeries Application Messaging Interface

 COBOL receiver interface

| HRECEIVER The receiver handle returned by AMSECRRC (input).

| NAMELEN The length of the queue name, in bytes (input).

| QUEUENAME The queue name of the receiver service (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 335

 COBOL distribution list interface

| Distribution list interface functions
| A distribution list object encapsulates a list of sender objects.

| AMDLCLEC (clear error codes)
| Clears the error codes in the distribution list object.

| CALL 'AMDLCLEC' USING HDISTLIST, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMDLCL (close)
| Closes the distribution list.

| CALL 'AMDLCL' USING HDISTLIST, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMDLGTLE (get last error)
| Gets the information (completion and reason codes) from the last error in the
| distribution list object.

| CALL 'AMDLGTLE' USING HDISTLIST, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

336 MQSeries Application Messaging Interface

 COBOL distribution list interface

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
| indicates that the AMDLGTLE function call has itself detected an
| error and failed.

| AMDLGTNA (get name)
| Gets the name of the distribution list object.

| CALL 'AMDLGTNA' USING HDISTLIST, BUFFLEN, NAMELEN, NAME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| BUFFLEN The length in bytes of a buffer in which the name is returned
| (input).

| NAMELEN The length of the name, in bytes (output).

| NAME The distribution list object name (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMDLGTSC (get sender count)
| Gets a count of the number of sender services in the distribution list.

| CALL 'AMDLGTSC' USING HDISTLIST, COUNT, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 337

 COBOL distribution list interface

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 COUNT PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| COUNT The number of sender services (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMDLGTSH (get sender handle)
| Returns the handle of a sender service in the distribution list object with the
| specified index.

| CALL 'AMDLGTSH' USING HDISTLIST, HANDLEINDEX, HSENDER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 HANDLEINDEX PIC S9(9) BINARY.
| 51 HSENDER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| HANDLEINDEX The index of the required sender service in the distribution list
| (input). Specify an index of zero to return the first sender service
| in the list.

| Use AMDLGTSC to get the number of sender services in the
| distribution list.

| HSENDER The handle of the sender service (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMDLOP (open)
| Opens the distribution list object for each of the destinations in the distribution list.
| The completion and reason codes returned by this function call indicate if the open
| was unsuccessful, partially successful, or completely successful.

| CALL 'AMDLOP' USING HDISTLIST, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

338 MQSeries Application Messaging Interface

 COBOL distribution list interface

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMDLSN (send)
| Sends a message to each sender in the distribution list.

| CALL 'AMDLSN' USING HDISTLIST, HPOLICY, HRECEIVER, DATALEN, DATA,
| HMSG, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 DATALEN PIC S9(9) BINARY.
| 51 DATA PIC X(n).
| 51 HMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| HRECEIVER The handle of the receiver service to which the response to this
| message should be sent, if the message being sent is a request
| message (input). Specify as AMH-NULL-HANDLE if no response
| is required.

| DATALEN The length of the message data in bytes (input).If specified as
| zero, any message data will be passed in the message object
| (HMSG).

| DATA The message data, if DATALEN is non-zero (input).

| HMSG The handle of a message object that specifies the properties of the
| message being sent (input). If DATALEN is zero, the message
| object can also contain the message data. If HMSG is specified as
| AMH-NULL-HANDLE, the default send message object (constant:
| AMSD-SND-MSG-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMDLSNFL (send file)
| Sends data from a file to each sender in the distribution list.

| CALL 'AMDLSNFL' USING HDISTLIST, HPOLICY, OPTIONS, DIRNAMELEN,
| DIRNAME, FILENAMELEN, FILENAME, HMSG,
| COMPCODE, REASON.

 Chapter 12. COBOL object interface reference 339

 COBOL distribution list interface

| Declare the parameters as follows:

| 51 HDISTLIST PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 OPTIONS PIC S9(9) BINARY.
| 51 DIRNAMELEN PIC S9(9) BINARY.
| 51 DIRNAME PIC X(n).
| 51 FILENAMELEN PIC S9(9) BINARY.
| 51 FILENAME PIC X(n).
| 51 HMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HDISTLIST The distribution list handle returned by AMSECRDL (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| OPTIONS Reserved, must be specified as zero (input).

| DIRNAMELEN Reserved, must be specified as zero (input).

| DIRNAME Reserved.

| FILENAMELEN The length of the file name in bytes (input).

| FILENAME The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If the
| send operation is a physical-mode file transfer, then the file name
| will travel with the message for use with a receive file call (see
| “AMRCRCFL (receive file)” on page 333 for more details). Note
| that the file name sent will exactly match the supplied file name; it
| will not be converted or expanded in any way.

| HMSG The handle of the message object to use to send the file (input).
| This can be used to specify the Correlation ID for example. If
| specified as ANM_NULL_HANDLE, the default send message
| object (constant: AMSD_SND_MSG_HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| Usage Notes
| If, in your application, you have previously used a message object, referenced by
| either handle or name, to send or receive data (including AMI elements or topics),
| you will need to explicitly call AMMSRS (reset message) before re-using the object
| for sending a file. This applies even if you use the system default message object
| handle (constant: AMSD-SND-MSG-HANDLE).

| The system default message object handle is used when you set HMSG to
| AMH-NULL-HANDLE.

340 MQSeries Application Messaging Interface

 COBOL publisher interface

| Publisher interface functions
| A publisher object encapsulates a sender object. It provides support for publish
| messages to a publish/subscribe broker.

| AMPBCLEC (clear error codes)
| Clears the error codes in the publisher object.

| CALL 'AMPBCLEC' USING HPUBLISHER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPBCL (close)
| Closes the publisher service.

| CALL 'AMPBCL' USING HPUBLISHER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPBGTCC (get CCSID)
| Gets the coded character set identifier of the publisher service. A non-default value
| reflects the CCSID of a remote system unable to perform CCSID conversion of
| received messages. In this case the publisher must perform CCSID conversion of
| the message before it is sent.

| CALL 'AMPBGTCC' USING HPUBLISHER, CCSID, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 341

 COBOL publisher interface

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 CCSID PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| CCSID The coded character set identifier (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPBGTEN (get encoding)
| Gets the value used to encode numeric data types for the publisher service. A
| non-default value reflects the encoding of a remote system unable to convert the
| encoding of received messages. In this case the publisher must convert the
| encoding of the message before it is sent.

| CALL 'AMPBGTEN' USING HPUBLISHER, ENCODING, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 ENCODING PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| ENCODING The encoding (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPBGTLE (get last error)
| Gets the information (completion and reason codes) from the last error for the
| publisher object.

| CALL 'AMPBGTLE' USING HPUBLISHER, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

342 MQSeries Application Messaging Interface

 COBOL publisher interface

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
| indicates that the AMPBGTLE function call has itself detected an
| error and failed.

| AMPBGTNA (get name)
| Gets the name of the publisher service.

| CALL 'AMPBGTNA' USING HPUBLISHER, BUFFLEN, NAMELEN, NAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| BUFFLEN The length in bytes of a buffer in which the name is returned
| (input).

| NAMELEN The length of the name, in bytes (output).

| NAME The publisher object name (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPBOP (open)
| Opens the publisher service.

| CALL 'AMPBOP' USING HPUBLISHER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

 Chapter 12. COBOL object interface reference 343

 COBOL publisher interface

| REASON Reason code (output).

| AMPBPB (publish)
| Publishes a message using the publisher service.

| The message data is passed in the message object. There is no option to pass it
| as a separate parameter as with AMSNSN (this would not give any performance
| improvement because the MQRFH header has to be added to the message data
| prior to publishing it).

| CALL 'AMPBPB' USING HPUBLISHER, HPOLICY, HRECEIVER, HPUBMSG,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPUBLISHER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HPUBMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPUBLISHER The publisher handle returned by AMSECRPB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| HRECEIVER The handle of the receiver service to which the response to this
| publish request should be sent (input). Specify as
| AMH-NULL-HANDLE if no response is required. This parameter is
| mandatory if the policy specifies implicit registration of the
| publisher.

| HPUBMSG The handle of a message object for the publication message
| (input). If specified as AMH-NULL-HANDLE, the default message
| object (constant: AMSD-SND-MSG-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

344 MQSeries Application Messaging Interface

 COBOL subscriber interface

| Subscriber interface functions
| A subscriber object encapsulates both a sender object and a receiver object. It
| provides support for subscribe and unsubscribe requests to a publish/subscribe
| broker, and for receiving publications from the broker.

| AMSBCLEC (clear error codes)
| Clears the error codes in the subscriber object.

| CALL 'AMSBCLEC' USING HSUBSCRIBER, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSBCL (close)
| Closes the subscriber service.

| CALL 'AMSBCL' USING HSUBSCRIBER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSBGTCC (get CCSID)
| Gets the coded character set identifier of the subscriber’s sender service. A
| non-default value reflects the CCSID of a remote system unable to perform CCSID
| conversion of received messages. In this case the subscriber must perform CCSID
| conversion of the message before it is sent.

| CALL 'AMSBGTCC' USING HSUBSCRIBER, CCSID, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 345

 COBOL subscriber interface

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 CCSID PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| CCSID The coded character set identifier (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSBGTDT (get definition type)
| Gets the definition type of the subscriber’s receiver service.

| CALL 'AMSBGTDT' USING HSUBSCRIBER, TYPE, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 TYPE PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| TYPE The definition type (output). It can be:

| AMDT-UNDEFINED
| AMDT-TEMP-DYNAMIC
| AMDT-DYNAMIC
| AMDT-PREDEFINED

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSBGTEN (get encoding)
| Gets the value used to encode numeric data types for the subscriber’s sender
| service. A non-default value reflects the encoding of a remote system unable to
| convert the encoding of received messages. In this case the subscriber must
| convert the encoding of the message before it is sent.

| CALL 'AMSBGTEN' USING HSUBSCRIBER, ENCODING, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 ENCODING PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| ENCODING The encoding (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

346 MQSeries Application Messaging Interface

 COBOL subscriber interface

| AMSBGTLE (get last error)
| Gets the information (completion and reason codes) from the last error for the
| subscriber object.

| CALL 'AMSBGTLE' USING HSUBSCRIBER, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
| indicates that the AMSBGTLE function call has itself detected an
| error and failed.

| AMSBGTNA (get name)
| Gets the name of the subscriber object.

| CALL 'AMSBGTNA' USING HSUBSCRIBER, BUFFLEN, NAMELEN, NAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| BUFFLEN The length in bytes of a buffer in which the name is returned
| (input).

| NAMELEN The length of the name, in bytes (output).

| NAME The subscriber object name (output).

| COMPCODE Completion code (output).

 Chapter 12. COBOL object interface reference 347

 COBOL subscriber interface

| REASON Reason code (output).

| AMSBGTQN (get queue name)
| Gets the queue name of the subscriber’s receiver service object. This can be used
| to determine the queue name of a permanent dynamic receiver service, so that it
| can be recreated with the same queue name in order to receive messages in a
| subsequent session. See also AMSBSTQN (set queue name).

| CALL 'AMSBGTQN' USING HSUBSCRIBER, BUFFLEN, STRINGLEN, QUEUENAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 QUEUENAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| BUFFLEN The length in bytes of a buffer in which the queue name is
| returned (input).

| STRINGLEN The length of the queue name, in bytes (output).

| QUEUENAME The queue name (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSBOP (open)
| Opens the subscriber service.

| CALL 'AMSBOP' USING HSUBSCRIBER, HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

348 MQSeries Application Messaging Interface

 COBOL subscriber interface

| AMSBRC (receive)
| Receives a message, normally a publication, using the subscriber service. The
| message data, topic and other elements can be accessed using the message
| interface functions (see page 301).

| The message data is passed in the message object. There is no option to pass it
| as a separate parameter as with AMRCRC (this would not give any performance
| improvement because the MQRFH header has to be removed from the message
| data after receiving it).

| CALL 'AMSBRC' USING HSUBSCRIBER, HPOLICY, HSELMSG, HRCVMSG,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 HSELMSG PIC S9(9) BINARY.
| 51 HRCVMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| HSELMSG The handle of a selection message object (input). This is used to
| identify the message to be received (for example, using the
| correlation ID). Specify as AMH-NULL-HANDLE to get the next
| available message with no selection.

| HRCVMSG The handle of the message object for the received message
| (input). If specified as AMH-NULL-HANDLE, the default message
| object (constant: AMSD-RCV-MSG-HANDLE) is used. The
| message object is reset implicitly before the receive takes place.

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSBSTQN (set queue name)
| Sets the queue name of the subscriber’s receiver object, when this encapsulates a
| model queue. This can be used to specify the queue name of a recreated
| permanent dynamic receiver service, in order to receive messages in a session
| subsequent to the one in which it was created. See also AMSBGTQN (get queue
| name).

| CALL 'AMSBSTQN' USING HSUBSCRIBER, NAMELEN, QUEUENAME, COMPCODE, REASON.

| Declare the parameters as follows:

 Chapter 12. COBOL object interface reference 349

 COBOL subscriber interface

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 QUEUENAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| NAMELEN The length of the queue name, in bytes (input).

| QUEUENAME The queue name (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMSBSB (subscribe)
| Sends a subscribe message to a publish/subscribe broker using the subscriber
| service, to register a subscription. The topic and other elements can be specified
| using the message interface functions (see page 301) before sending the message.

| Publications matching the subscription are sent to the receiver service associated
| with the subscriber. By default, this has the same name as the subscriber service,
| with the addition of the suffix ‘.RECEIVER’.

| CALL 'AMSBSB' USING HSUBSCRIBER, HPOLICY, HRECEIVER, HSUBMSG,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HSUBMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| HRECEIVER The handle of the receiver service to which the response to this
| subscribe request should be sent (input). Specify as
| AMH-NULL-HANDLE if no response is required.

| This is not the service to which publications will be sent by the
| broker; they are sent to the receiver service associated with the
| subscriber (see above).

| HSUBMSG The handle of a message object for the subscribe message (input).
| If specified as AMH-NULL-HANDLE, the default message object
| (constant: AMSD-SND-MSG-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

350 MQSeries Application Messaging Interface

 COBOL subscriber interface

| AMSBUN (unsubscribe)
| Sends an unsubscribe message to a publish/subscribe broker using the subscriber
| service, to deregister a subscription. The topic and other elements can be
| specified using the message interface functions (see page 301) before sending the
| message.

| To deregister all topics, a policy providing this option must be specified (this is not
| the default policy). Otherwise, to remove a previous subscription the topic
| information specified must match that specified on the relevant AMSBSB request.

| CALL 'AMSBUN' USING HSUBSCRIBER, HPOLICY, HRECEIVER, HUNSUBMSG,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HSUBSCRIBER PIC S9(9) BINARY.
| 51 HPOLICY PIC S9(9) BINARY.
| 51 HRECEIVER PIC S9(9) BINARY.
| 51 HUNSUBMSG PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HSUBSCRIBER The subscriber handle returned by AMSECRSB (input).

| HPOLICY The handle of a policy (input). If specified as
| AMH-NULL-HANDLE, the system default policy (constant:
| AMSD-POL-HANDLE) is used.

| HRECEIVER The handle of the receiver service to which the response to this
| subscribe request should be sent (input). Specify as
| AMH-NULL-HANDLE if no response is required.

| HUNSUBMSG The handle of a message object for the unsubscribe message
| (input). If specified as AMH-NULL-HANDLE, the default message
| object (constant: AMSD-SND-MSG-HANDLE) is used.

| COMPCODE Completion code (output).

| REASON Reason code (output).

 Chapter 12. COBOL object interface reference 351

 COBOL policy interface

| Policy interface functions
| A policy object encapsulates the set of options used for each AMI request (open,
| close, send, receive, publish and so on). Examples are the priority and persistence
| of the message, and whether the message is included in a unit of work.

| AMPOCLEC (clear error codes)
| Clears the error codes in the policy object.

| CALL 'AMPOCLEC' USING HPOLICY, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPOLICY PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPOLICY The policy handle returned by AMSECRPO (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPOGTLE (get last error)
| Gets the information (completion and reason codes) from the last error for the
| policy object.

| CALL 'AMPOGTLE' USING HPOLICY, BUFFLEN, STRINGLEN, ERRORTEXT,
| REASON2, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPOLICY PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 STRINGLEN PIC S9(9) BINARY.
| 51 ERRORTEXT PIC X(n).
| 51 REASON2 PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPOLICY The policy handle returned by AMSECRPO (input).

| BUFFLEN Reserved, must be zero (input).

| STRINGLEN Reserved (output).

| ERRORTEXT Reserved (output).

| REASON2 A secondary reason code (output). If REASON indicates
| AMRC-TRANSPORT-WARNING or AMRC-TRANSPORT-ERR,
| REASON2 gives an MQSeries reason code.

| COMPCODE Completion code (output).

| REASON Reason code (output). A value of AMRC-SERVICE-HANDLE-ERR
| indicates that the AMPOGTLE function call has itself detected an
| error and failed.

352 MQSeries Application Messaging Interface

 COBOL policy interface

| AMPOGTNA (get name)
| Returns the name of the policy object.

| CALL 'AMPOGTNA' USING HPOLICY, BUFFLEN, NAMELEN, NAME,
| COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPOLICY PIC S9(9) BINARY.
| 51 BUFFLEN PIC S9(9) BINARY.
| 51 NAMELEN PIC S9(9) BINARY.
| 51 NAME PIC X(n).
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPOLICY The policy handle returned by AMSECRPO (input).

| BUFFLEN The length in bytes of a buffer in which the name is returned
| (input).

| NAMELEN The length of the name, in bytes (output).

| NAME The policy object name (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPOGTWT (get wait time)
| Returns the wait time (in ms) set for this policy.

| CALL 'AMPOGTWT' USING HPOLICY, WAITTIME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPOLICY PIC S9(9) BINARY.
| 51 WAITTIME PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

| HPOLICY The policy handle returned by AMSECRPO (input).

| WAITTIME The wait time, in ms (output).

| COMPCODE Completion code (output).

| REASON Reason code (output).

| AMPOSTWT (set wait time)
| Sets the wait time for any receive function using this policy.

| CALL 'AMPOSTWT' USING HPOLICY, WAITTIME, COMPCODE, REASON.

| Declare the parameters as follows:

| 51 HPOLICY PIC S9(9) BINARY.
| 51 WAITTIME PIC S9(9) BINARY.
| 51 COMPCODE PIC S9(9) BINARY.
| 51 REASON PIC S9(9) BINARY.

 Chapter 12. COBOL object interface reference 353

 COBOL policy interface

| HPOLICY The policy handle returned by AMSECRPO (input).

| WAITTIME The wait time (in ms) to be set in the policy (input).

| COMPCODE Completion code (output).

| REASON Reason code (output).

354 MQSeries Application Messaging Interface

Part 5. The Java interface

This part contains:

� Chapter 13, “Using the Application Messaging Interface in Java” on page 357

� Chapter 14, “Java interface overview” on page 371

� Chapter 15, “Java interface reference” on page 385

 Copyright IBM Corp. 1999, 2000 355

356 MQSeries Application Messaging Interface

 Structure of the AMI

Chapter 13. Using the Application Messaging Interface in
Java

The Application Messaging Interface for Java (amJava) provides a Java style of
programming, while being consistent with the object-style interface of the
Application Messaging Interface for C. It uses a Java Native Interface (JNI) library,
so it cannot be used to write Applets to run in a browser environment.

This chapter describes the following:

� “Structure of the AMI”

� “Writing applications in Java” on page 359

� “Building Java applications” on page 369

Note that the term object is used in this book in the object-oriented programming
sense, not in the sense of MQSeries ‘objects’ such as channels and queues.

Structure of the AMI
The following classes are provided:

 Base classes
AmSessionFactory Creates AmSession objects.

AmSession Creates objects within the AMI session, and controls
transactional support.

AmMessage Contains the message data, message ID and correlation ID,
and options that are used when sending or receiving a
message (most of which come from the policy definition).

AmSender This is a service that represents a destination (such as an
MQSeries queue) to which messages are sent.

AmReceiver This is a service that represents a source (such as an
MQSeries queue) from which messages are received.

AmDistributionList Contains a list of sender services to provide a list of
destinations.

AmPublisher Contains a sender service where the destination is a
publish/subscribe broker.

AmSubscriber Contains a sender service (to send subscribe and
unsubscribe messages to a publish/subscribe broker) and a
receiver service (to receive publications from the broker).

AmPolicy Defines how the message should be handled, including items
such as priority, persistence, and whether it is included in a
unit of work.

 Copyright IBM Corp. 1999, 2000 357

 Structure of the AMI

Interface and helper classes
AmObject This is a Java interface, which is implemented by the base

classes listed above (with the exception of
AmSessionFactory).

AmConstants This encapsulates all of the constants needed by amJava.

AmElement This encapsulates name/value pairs that can be added to
AmMessage objects.

AmStatus This encapsulates the error status of amJava objects.

 Exception classes
AmException This is the base Exception class for amJava; all other

amJava Exceptions inherit from this class.

AmErrorException An Exception of this type is raised when an amJava object
experiences an error with a severity level of FAILED
(CompletionCode = AMCC_FAILED).

AmWarningException An Exception of this type is raised when an amJava object
experiences an error with a severity level of WARNING
(CompletionCode = AMCC_WARNING), provided that
warnings have been enabled using the enableWarnings
method.

Using the repository
You can run AMI applications with or without a repository. If you don’t have a
repository, you can create an object by specifying its name in a method. It will be
created using the appropriate system provided definition (see “System provided
definitions” on page 472).

If you have a repository, and you specify the name of an object in a method that
matches a name in the repository, the object will be created using the repository
definition. (If no matching name is found in the repository, the system provided
definition will be used.)

System default objects
The set of system default objects created in C is not accessible directly in Java, but
the SYSTEM.DEFAULT.POLICY (constant: AMSD_POL) is used to provide default
behavior when a policy is not specified. Objects with identical properties to the
system default objects can be created for use in Java using the built-in definitions
(see “System provided definitions” on page 472).

358 MQSeries Application Messaging Interface

 Writing applications in Java

Writing applications in Java
This section gives a number of examples showing how to access the Application
Messaging Interface using Java.

Many of the method calls are overloaded and in some cases this results in default
objects being used. One example of this is the AmPolicy object which can be
passed on many of the methods. For example:

 Method overloading

 mySender.send(mySendMessage, myPolicy);

 mySender.send(mySendMessage);

If a policy has been created to provide specific send behavior, use the first
example. However, if the default policy is acceptable, use the second example.

The defaulting of behavior using method overloading is used throughout the
examples.

Creating and opening objects
Before using the AMI, you must create and open the required objects. Objects are
created with names, which might correspond to named objects in the repository. In
the case of the creation of a response sender (myResponder) in the example below,
the default name for a response type object is specified using the AmConstants
helper class, so the object is created with default responder values.

Creating AMI objects

mySessionFactory = new AmSessionFactory("MY.SESSION.FACTORY");
mySession = mySessionFactory.createSession("MY.SESSION");
myPolicy = mySession.createPolicy("MY.POLICY");

mySender = mySession.createSender("AMT.SENDER.QUEUE");
myReceiver = mySession.createReceiver("AMT.RECEIVER.QUEUE");
myResponder = mySession.createSender(AmConstants.AMDEF_RSP_SND);

mySendMessage = mySession.createMessage("MY.SEND.MESSAGE");
myReceiveMessage = mySession.createMessage("MY.RECEIVE.MESSAGE");

The objects are then opened. In the following examples, the session object is
opened with the default policy, whereas the sender and receiver objects are
opened with a specified policy (myPolicy).

Opening the AMI objects

 mySession.open();
 mySender.open(myPolicy);
 myReceiver.open(myPolicy);

 Chapter 13. Using the Application Messaging Interface in Java 359

 Writing applications in Java

 Sending messages
The examples in this section show how to send a datagram (send and forget)
message. First, the message data is written to the mySendMessage object. Data is
always sent in byte form, so the Java getBytes method is used to extract the
String data as bytes prior to adding to the message.

Writing data to a message object

 String dataSent = new String("message to be sent");
 mySendMessage.writeBytes(dataSent.getBytes());

Next, the message is sent using the sender service mySender.

Sending a message

 mySender.send(mySendMessage);

The policy used is either the default policy for the service, if specified, or the
system default policy. The message attributes are set from the policy or service, or
the default for the messaging transport.

When more control is needed you can pass a policy object:

Sending a message with a specified policy

 mySender.send(mySendMessage, myPolicy);

The policy controls the behavior of the send command. In particular, the policy
specifies whether the send is part of a unit of work, the priority, persistence and
expiry of the message and whether policy components should be invoked.
Whether the queue should be implicitly opened and left open can also be
controlled.

To send a message to a distribution list, for instance myDistList, use it as the
sender service:

Sending a message to a distribution list

 myDistList.send(mySendMessage);

You can set an attribute such as the Format before the message is sent, to override
the default in the policy or service.

Setting an attribute in a message

 mySendMessage.setFormat(myFormat):

Similarly, after a message has been sent you can retrieve an attribute such as the
MessageID.

Getting an attribute from a message

msgId = mySendMessage.getMessageId();

360 MQSeries Application Messaging Interface

 Writing applications in Java

For details of the message attributes that you can set and get, see “AmMessage”
on page 374.

When a message object is used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see reset on
page 398) and rebuild it each time.

 Sample program
For more details, refer to the SendAndForget.java sample program (see “Sample
programs for Unix and Windows” on page 464).

 Receiving messages
The next example shows how to receive a message from the receiver service
myReceiver, and to read the data from the message object myReceiveMessage.

Receiving a message and retrieving the data

 myReceiver.receive(myReceiveMessage);
data = myReceiveMessage.readBytes(myReceiveMessage.getDataLength());

The policy used will be the default for the service if defined, or the system default
policy. Greater control of the behavior of the receive can be achieved by passing a
policy object.

Receiving a message with a specified policy

 myReceiver.receive(myReceiveMessage, myPolicy);

The policy can specify the wait interval, whether the call is part of a unit of work,
whether the message should be code page converted, whether all the members of
a group must be there before any members can be read, and how to deal with
backout failures.

To receive a specific message using its correlation ID, create a selection message
object and set its CorrelId attribute to the required value. The selection message
is then passed as a parameter on the receive.

Receiving a specific message using the correlation ID

mySelectionMessage = mySession.createMessage("MY.SELECTION.MESSAGE");
 mySelectionMessage.setCorrelationId(myCorrelId);
myReceiver.receive(myReceiveMessage, mySelectionMessage, myPolicy);

As before, the policy is optional.

You can view the attributes of the message just received, such as the Encoding.

Getting an attribute from the message

encoding = myReceiveMessage.getEncoding();

 Chapter 13. Using the Application Messaging Interface in Java 361

 Writing applications in Java

 Sample program
For more details, refer to the Receiver.java sample program (see “Sample
programs for Unix and Windows” on page 464).

 Request/response messaging
In the request/response style of messaging, a requester (or client) application
sends a request message and expects to receive a response message back. The
responder (or server) application receives the request message and produces the
response message (or messages) which it sends back to the requester application.
The responder application uses information in the request message to know how to
send the response message back to the requester.

In the following examples ‘my’ refers to the requesting application (the client); ‘your’
refers to the responding application (the server).

The requester sends a message as described in “Sending messages” on
page 360, specifying the service (myReceiver) to which the response message
should be sent.

Sending a request message

 mySender.send(mySendMessage, myReceiver);

A policy object can also be specified if required.

The responder receives the message as described in “Receiving messages” on
page 361, using its receiver service (yourReceiver). It also receives details of the
response service (yourResponder) for sending the response.

Receiving the request message

 yourReceiver.receive(yourReceiveMessage, yourResponder);

A policy object can be specified if required, as can a selection message object (see
“Receiving messages” on page 361).

The responder sends its response message (yourReplyMessage) to the response
service, specifying the received message to which this is a response.

Sending a response to the request message

 yourResponder.send(yourReplyMessage, yourReceiveMessage);

Finally, the requester application receives the response (myResponseMessage), which
is correlated with the original message it sent (mySendMessage).

Receiving the response message

 myReceiver.receive(myResponseMessage, mySendMessage);

In a typical application the responder might be a server operating in a loop,
receiving requests and replying to them. In this case, the message objects should

362 MQSeries Application Messaging Interface

 Writing applications in Java

be set to their initial state and the data cleared before servicing the next request.
This is achieved as follows:

Resetting the message object

 yourReceiveMessage.reset();
 yourResponseMessage.reset();

 Sample programs
For more details, refer to the Client.java and Server.java sample programs (see
“Sample programs for Unix and Windows” on page 464).

| File transfer
| You can perform file transfers using the AmSender.sendFile and
| AmReceiver.receiveFile methods.

| Sending a file using the sendFile method

| mySender.sendFile(mySendMessage, myfilename, myPolicy)

| Receiving a file using the receiveFile method

| myReceiver.receiveFile(myReceiveMessage, myfileName, myPolicy)

| For a complete description of file transfer, refer to “File transfer” on page 19

 Publish/subscribe messaging
With publish/subscribe messaging a publisher application publishes messages to
subscriber applications using a broker. The message published contains application
data and one or more topic strings that describe the data. A subscribing application
subscribes to topics informing the broker which topics it is interested in. When the
broker receives a message from a publisher it compares the topics in the
messages to the topics in the subscription from subscribing applications. If they
match, the broker forwards the message to the subscribing application.

Data on a particular topic is published as shown in the next example.

Publishing a message on a specified topic

String publicationTopic = new String("Weather");
String publicationData = new String("The weather is sunny");

 myPubMessage.addTopic(publicationTopic);
 myPubMessage.writeBytes(publicationData.getBytes());
 myPublisher.publish(myPubMessage, myReceiver);

myReceiver identifies a response service to which the broker will send any response
messages. You can also specify a policy object to modify the behavior of the
command.

To subscribe to a publish/subscribe broker you need to specify one or more topics.

 Chapter 13. Using the Application Messaging Interface in Java 363

 Writing applications in Java

Subscribing to a broker on specified topics

String weather = new String("Weather");
String birds = new String("Birds");

 mySubMessage.addTopic(weather);
 mySubMessage.addTopic(birds);
 mySubscriber.subscribe(mySubMessage, myReceiver);

Broker response messages will be sent to myReceiver.

To remove a subscription, add the topic or topics to be deleted to the message
object, and use:

Removing a subscription

 mySubscriber.unsubscribe(myUnsubMessage, myReceiver);

To receive a publication from a broker, use:

Receiving a publication

 mySubscriber.receive(myReceiveMessage, myPolicy);
publication = myReceiveMessage.readBytes(

 myReceiveMessage.getDataLength());

You can then use the getTopicCount and getTopic methods to extract the topic or
topics from the message object.

| Subscribing applications can also exploit content-based publish/subscribe by
| passing a filter on subscribe and unsubscribe calls (see “Using MQSeries Integrator
| Version 2” on page 461).

 Sample programs
For more details, refer to the Publisher.java and Subscriber.java sample
programs (see “Sample programs for Unix and Windows” on page 464).

Using AmElement objects
Publish/subscribe brokers (such as MQSeries Publish/Subscribe) respond to
messages that contain name/value pairs to define the commands and options to be
carried out. The Application Messaging Interface contains some methods which
produce these name/value pairs directly (such as AmSubscriber.subscribe). For
less commonly used commands, the name/value pairs can be added to a message
using an AmElement object.

For example, to send a message containing a ‘Request Update’ command, use the
following:

Using an AmElement object to construct a command message

AmElement bespokeElement = new AmElement("MQPSCommand", "ReqUpdate");
 mySendMessage.addElement(bespokeElement);

364 MQSeries Application Messaging Interface

 Writing applications in Java

You must then send the message, using AmSender.send, to the sender service
specified for your publish/subscribe broker.

If you use streams with MQSeries Publish/Subscribe, you must add the appropriate
name/value element explicitly to the message object.

The message element methods can, in fact, be used to add any element to a
message before issuing an publish/subscribe request. Such elements (including
topics, which are specialized elements) supplement or override those added
implicitly by the request, as appropriate to the individual element type.

The use of name/value elements is not restricted to publish/subscribe applications,
they can be used in other applications as well.

 Error handling
The getLastErrorStatus method always reflects the last most severe error
experienced by an object. It can be used to return an AmStatus object
encapsulating this error state. Once the error state has been handled,
clearErrorCodes can be called to reset this error state.

AmJava can raise two types of Exception, one to reflect serious errors and the
other to reflect warnings. By default, only AmErrorExceptions are raised.
AmWarningExceptions can be enabled using the enableWarnings method. Since
both are types of AmException, a generic catch block can be used to process all
amJava Exceptions.

Enabling AmWarningExceptions might have some unexpected side-effects,
especially when an AmObject is returning data such as another AmObject. For
example, if AmWarningExceptions are enabled for an AmSession object and an
AmSender is created that does not exist in the repository, an AmWarningException
will be raised to reflect this fact. If this happens, the AmSender object will not be
created since its creation was interrupted by an Exception. However, there might be
times during the life of an AmObject when processing AmWarningExceptions is
useful.

 Chapter 13. Using the Application Messaging Interface in Java 365

 Writing applications in Java

For example:

 try
 {
 ...
 mySession.enableWarnings(true);
 mySession.open();
 ...
 }
catch (AmErrorException errorEx)

 {
AmStatus sessionStatus = mySession.getLastErrorStatus();

 switch (sessionStatus.getReasonCode())
 {
 case AmConstants.AMRC_XXXX:
 ...
 case AmConstants.AMRC_XXXX:
 ...
 }
 mySession.clearErrorCodes();
 }
catch (AmWarningException warningEx)

 {
 ...
 }

Since most of the objects implement the AmObject interface, a generic error
handling routine can be written. For example:

 try
 {
 ...
 mySession.open();
 ...
 mySender.send(myMessage):
 ...
 mySender.send(myMessage):
 ...
 mySession.commit();
 }
 catch(AmException amex);
 {
 AmStatus status;

status = amex.getSource().getLastErrorStatus();
System.out.println("Object in error; name="+ amex.getSource().getName());
System.out.println("Object in error; RC="+ status.getReasonCode());

 ...
 amex.getSource().clearErrorCodes();
 }

The catch block works because all objects that throw the AmException in the try
block are AmObjects, and so they all have getName, getLastErrorStatus and
clearErrorCodes methods.

366 MQSeries Application Messaging Interface

 Writing applications in Java

 Transaction support
Messages sent and received by the AMI can, optionally, be part of a transactional
unit of work. A message is included in a unit of work based on the setting of the
syncpoint attribute specified in the policy used on the call. The scope of the unit of
work is the session handle and only one unit of work may be active at any time.

The API calls used to control the transaction depends on the type of transaction is
being used.

� MQSeries messages are the only resource

A transaction is started by the first message sent or received under syncpoint
control, as specified in the policy specified for the send or receive. Multiple
messages can be included in the same unit of work. The transaction is
committed or backed out using the commit or rollback method.

� Using MQSeries as an XA transaction coordinator

The transaction must be started explicitly using the begin method before the
first recoverable resource (such as a relational database) is changed. The
transaction is committed or backed out using an commit or rollback method.

� Using an external transaction coordinator

The transaction is controlled using the API calls of an external transaction
coordinator (such as CICS, Encina or Tuxedo). The AMI calls are not used but
the syncpoint attributed must still be specified in the policy used on the call.

| Sending group messages
| The AMI allows a sequence of related messages to be included in, and sent as, a
| message group. Group context information is sent with each message to allow the
| message sequence to be preserved and made available to a receiving application.
| In order to include messages in a group, the group status information of the first
| and subsequent messages in the group must be set as follows:

| AMGRP_FIRST_MSG_IN_GROUP for the first message
| AMGRP_MIDDLE_MSG_IN_GROUP for all messages other than first and last
| AMGRP_LAST_MSG_IN_GROUP for the last message

| The message status is set using the AmMessage.setGroupStatus method.

| For a complete description of group messages, refer to “Sending group messages”
| on page 25

 Other considerations

 Multithreading
If you are using multithreading with the AMI, a session normally remains locked for
the duration of a single AMI call. If you use receive with wait, the session remains
locked for the duration of the wait, which might be unlimited (that is, until the wait
time is exceeded or a message arrives on the queue). If you want another thread to
run while a thread is waiting for a message, it must use a separate session.

AMI handles and object references can be used on a different thread from that on
which they were first created for operations that do not involve an access to the
underlying (MQSeries) message transport. Functions such as initialize, terminate,
open, close, send, receive, publish, subscribe, unsubscribe, and receive publication

 Chapter 13. Using the Application Messaging Interface in Java 367

 Writing applications in Java

will access the underlying transport restricting these to the thread on which the
session was first opened (for example, using AmSession.open). An attempt to
issue these on a different thread will cause an error to be returned by MQSeries
and a transport error (AMRC_TRANSPORT_ERR) will be reported to the
application.

Using MQSeries with the AMI
You must not mix MQSeries function calls with AMI calls within the same process.

 Field limits
When string and binary properties such as queue name, message format, and
correlation ID are set, the maximum length values are determined by MQSeries, the
underlying message transport. See the rules for naming MQSeries objects in the
MQSeries Application Programming Guide.

368 MQSeries Application Messaging Interface

 Building Java applications

Building Java applications
This section contains information that will help you write, prepare, and run your
Java application programs on the various operating systems supported by the AMI.

AMI package for Java
AMI provides a jar file that contains all the classes comprising the AMI package for
Java.

com.ibm.mq.amt Java package

com.ibm.mq.amt.jar Java jar file

This jar file is installed under:

 /java/lib (UNIX)

 \java\lib (Windows)

See “Directory structure” on page 435 (AIX), page 440 (HP-UX), page 444
(Solaris), or page 447 (Windows).

In order to make use of this package you must:

� Import the package into your Java application by using the following statement
in that application:

 import com.ibm.mq.amt.:;

� Make sure the AMI jar file is in your CLASSPATH environment variable. See
“Setting the runtime environment” on page 434 (AIX), page 439 (HP-UX), page
443 (Solaris), or page 446 (Windows).

This should be done both in the environment in which your Java program is
compiled, and the environment in which it is run.

Running Java programs
This section explains what you have to do to prepare and run your Java programs
on the AIX, HP-UX, Sun Solaris, Windows 98 and Windows NT operating systems.

The AMI interface for Java makes use of JNI (Java Native Interface) and so
requires a platform native library to run successfully. This library must be accessible
to your runtime environment. See “Language compilers” on page 432 for versions
of the Java Developer’s Kit (JDK) supported by the AMI.

AIX
Make sure that the JNI library libamtJava.so is accessible to your runtime
environment. To do this, you should perform:

 export LIBPATH=$LIBPATH:/usr/mqm/lib:

HP-UX
Make sure that the JNI library libamtJava.sl is accessible to your runtime
environment. To do this, you should perform:

 export SHLIB_PATH=$SHLIB_PATH:/opt/mqm/lib:

Solaris
Make sure that the JNI library libamtJava.so is accessible to your runtime
environment. To do this, you should perform:

 Chapter 13. Using the Application Messaging Interface in Java 369

 Building Java applications

 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mqm/lib:

Windows
Make sure that the JNI library amtJava.dll is in one of the directories specified
in the PATH environment variable for your runtime environment. For example:

 SET PATH=%PATH%;C:\MQSeries\bin;

If you already have MQSeries installed, it is likely that this environment has
already been set up for you.

Once the AMI jar file and the JNI library are referenced in your runtime environment
you can run your Java application. For example, to run an application called mine
that exists in a package com.xxx.com, perform:

 java com.xxx.com.mine

370 MQSeries Application Messaging Interface

 Java interface overview

Chapter 14. Java interface overview

This chapter contains an overview of the structure of the Application Messaging
Interface for Java. Use it to find out what functions are available in this interface.

The Java interface provides sets of methods for each of the classes listed below.
The methods available for each class are listed in the following pages. Follow the
page references to see the reference information for each method.

 Base classes
AmSessionFactory page 372

AmSession page 373

AmMessage page 374

AmSender page 376

AmReceiver page 377

AmDistributionList page 378

AmPublisher page 379

AmSubscriber page 380

AmPolicy page 381

 Helper classes
AmConstants page 382

AmElement page 382

AmObject page 382

AmStatus page 382

 Exception classes
AmException page 383

AmErrorException page 383

AmWarningExcpetion page 383

 Copyright IBM Corp. 1999, 2000 371

 Java interface overview

 AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

 Constructor
Constructor for AmSessionFactory.

AmSessionFactory page 386

Session factory management
Methods to return the name of an AmSessionFactory object, and to control traces.

getFactoryName page 386

getLocalHost page 386

getRepository page 386

getTraceLevel page 386

getTraceLocation page 386

setLocalHost page 387

setRepository page 387

setTraceLevel page 387

setTraceLocation page 387

 Create session
Method to create an AmSession object.

createSession page 386

372 MQSeries Application Messaging Interface

 Java interface overview

 AmSession
The AmSession object creates and manages all other objects, and provides scope
for a unit of work.

 Session management
Methods to open and close an AmSession object, to return its name, and to control
traces.

open page 391

close page 388

getName page 390

getTraceLevel page 390

getTraceLocation page 391

 Create objects
Methods to create AmMessage, AmSender, AmReceiver, AmDistributionList
AmPublisher, AmSubscriber, and AmPolicy objects.

createMessage page 389

createSender page 390

createReceiver page 389

createDistributionList page 389

createPublisher page 389

createSubscriber page 390

createPolicy page 389

 Transactional processing
Methods to begin, commit and rollback a unit of work.

begin page 388

commit page 388

rollback page 391

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 388

enableWarnings page 390

getLastErrorStatus page 390

 Chapter 14. Java interface overview 373

 Java interface overview

 AmMessage
An AmMessage object encapsulates an MQSeries message descriptor (MQMD)
structure, and it contains the message data if this is not passed as a separate
parameter.

 Get values
Methods to get the coded character set ID, correlation ID, encoding, format, group
status, message ID and name of the message object.

getCCSID page 394

getCorrelationId page 394

getEncoding page 395

getFormat page 396

getGroupStatus page 396

getMessageId page 396

getName page 396

getReportCode page 216

getType page 216

 Set values
Methods to set the coded character set ID, correlation ID, format and group status
of the message object.

setCCSID page 398

setCorrelationId page 398

setEncoding page 399

setFormat page 399

setGroupStatus page 399

 Reset values
Method to reset the message object to the state it had when first created.

reset page 398

Read and write data
Methods to read or write byte data to or from the message object, to get and set
the data offset, and to get the length of the data.

getDataLength page 394

getDataOffset page 394

setDataOffset page 398

readBytes page 398

writeBytes page 400

374 MQSeries Application Messaging Interface

 Java interface overview

| Publish/subscribe filters
| Methods to manipulate filters for content-based publish/subscribe.

| addFilter page 393

| deleteFilter page 393

| getFilter page 395

| getFilterCount page 395

 Publish/subscribe topics
Methods to manipulate the topics in a publish/subscribe message.

addTopic page 393

deleteTopic page 394

getTopic page 397

getTopicCount page 397

Publish/subscribe name/value elements
Methods to manipulate the name/value elements in a publish/subscribe message.

addElement page 392

deleteElement page 393

getElement page 395

getElementCount page 395

deleteNamedElement page 393

getNamedElement page 397

getNamedElementCount page 397

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 393

enableWarnings page 394

getLastErrorStatus page 396

 Chapter 14. Java interface overview 375

 Java interface overview

 AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the sender service.

open page 402

close page 401

 Send
Method to send a message.

send page 402

| Send file
| Method to send data from a file

| sendFile page 403

 Get values
Methods to get the coded character set ID, encoding and name of the sender
service.

getCCSID page 401

getEncoding page 402

getName page 402

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 401

enableWarnings page 401

getLastErrorStatus page 402

376 MQSeries Application Messaging Interface

 Java interface overview

 AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure.

Open and close
Methods to open and close the receiver service.

open page 406

close page 405

Receive and browse
Methods to receive or browse a message.

receive page 406

browse page 404

| Receive file
| Method to receive file message data into a file.

| receiveFile page 407

 Get values
Methods to get the definition type, name and queue name of the receiver service.

getDefinitionType page 405

getName page 406

getQueueName page 406

 Set value
Method to set the queue name of the receiver service.

setQueueName page 407

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 405

enableWarnings page 405

getLastErrorStatus page 406

 Chapter 14. Java interface overview 377

 Java interface overview

 AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

Open and close
Methods to open and close the distribution list service.

open page 409

close page 408

 Send
Method to send a message to the distribution list.

send page 409

| Send file
| Method to send date from a file to each sender defined in the distribution list.

| sendFile page 409

 Get values
Methods to get the name of the distribution list service, a count of the AmSenders
in the list, and one of the AmSenders that is contained in the list.

getName page 408

getSenderCount page 409

getSender page 408

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 408

enableWarnings page 408

getLastErrorStatus page 408

378 MQSeries Application Messaging Interface

 Java interface overview

 AmPublisher
An AmPublisher object encapsulates a sender service and provides support for
publishing messages to a publish/subscribe broker.

Open and close
Methods to open and close the publisher service.

open page 412

close page 411

 Publish
Method to publish a message.

publish page 412

 Get values
Methods to get the coded character set ID, encoding and name of the publisher
service.

getCCSID page 411

getEncoding page 411

getName page 412

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 411

enableWarnings page 411

getLastErrorStatus page 411

 Chapter 14. Java interface overview 379

 Java interface overview

 AmSubscriber
An AmSubscriber object encapsulates both a sender service and a receiver
service. It provides support for subscribe and unsubscribe requests to a
publish/subscribe broker, and for receiving publications from the broker.

Open and close
Methods to open and close the subscriber service.

open page 414

close page 413

 Broker messages
Methods to subscribe to a broker, remove a subscription, and receive a publication
from the broker.

subscribe page 416

unsubscribe page 416

receive page 415

 Get values
Methods to get the coded character set ID, definition type, encoding, name and
queue name of the subscriber service.

getCCSID page 413

getDefinitionType page 413

getEncoding page 414

getName page 414

getQueueName page 414

 Set value
Method to set the queue name of the subscriber service.

setQueueName page 415

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 413

enableWarnings page 413

getLastErrorStatus page 414

380 MQSeries Application Messaging Interface

 Java interface overview

 AmPolicy
An AmPolicy object encapsulates the options used during AMI operations.

 Policy management
Methods to return the name of the policy, and to get and set the wait time when
receiving a message.

getName page 417

getWaitTime page 417

setWaitTime page 417

 Error handling
Methods to clear the error codes, enable warnings, and return the status from the
last error.

clearErrorCodes page 417

enableWarnings page 417

getLastErrorStatus page 417

 Chapter 14. Java interface overview 381

 Java interface overview

 Helper classes
A Java Interface, and classes that encapsulate constants, name/value elements,
and error status.

 AmConstants
Provides access to all the AMI constants.

AmConstants page 418

 AmElement
Constructor for AmElement, and methods to return the name, type, value and
version of an element, to set the version, and to return a String representation of
the element.

AmElement page 419

getName page 419

getValue page 419

getVersion page 419

setVersion page 419

toString page 419

 AmObject
A Java Interface containing methods to return the name of the object, to clear the
error codes and to return the last error condition.

clearErrorCodes page 420

getLastErrorStatus page 420

getName page 420

 AmStatus
Constructor for AmStatus, and methods to return the completion code, reason
code, secondary reason code and status text, and to return a String representation
of the AmStatus.

AmStatus page 421

getCompletionCode page 421

getReasonCode page 421

getReasonCode2 page 421

toString page 421

382 MQSeries Application Messaging Interface

 Java interface overview

 Exception classes
Classes that encapsulate error and warning conditions. AmErrorException and
AmWarningException inherit from AmException.

 AmException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a String
representation of the Exception.

getClassName page 422

getCompletionCode page 422

getMethodName page 422

getReasonCode page 422

getSource page 422

toString page 422

 AmErrorException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a String
representation of the Exception.

getClassName page 423

getCompletionCode page 423

getMethodName page 423

getReasonCode page 423

getSource page 423

toString page 423

 AmWarningException
Methods to return the completion code and reason code from the Exception, the
class name, method name and source of the Exception, and to return a String
representation of the Exception.

getClassName page 424

getCompletionCode page 424

getMethodName page 424

getReasonCode page 424

getSource page 424

toString page 424

 Chapter 14. Java interface overview 383

 Java interface overview

384 MQSeries Application Messaging Interface

 Java interface reference

Chapter 15. Java interface reference

In the following sections the Java interface methods are listed by the class they
refer to. Within each section the methods are listed in alphabetical order.

Note that where constants are shown (for example, AMRC_NONE), they can be
accessed using the AmConstants class (for example, AmConstants.AMRC_NONE).
See page 418.

 Base classes
Note that all of the methods in these classes can throw AmWarningException and
AmErrorException (see below). However, by default, AmWarningExceptions are
not raised.

AmSessionFactory page 386

AmSession page 388

AmMessage page 392

AmSender page 401

AmReceiver page 404

AmDistributionList page 408

AmPublisher page 411

AmSubscriber page 413

AmPolicy page 417

 Helper classes
AmConstants page 418

AmElement page 419

AmObject page 420

AmStatus page 421

 Exception classes
AmException page 422

AmErrorException page 423

AmWarningException page 424

 Copyright IBM Corp. 1999, 2000 385

 Java AmSessionFactory

 AmSessionFactory
The AmSessionFactory class is used to create AmSession objects.

 AmSessionFactory
Constructor for an AmSessionFactory.

 AmSessionFactory(String name);

name The name of the AmSessionFactory. This is the location of the
data files used by the AMI (the repository file and the local host
file). The name can be a fully qualified directory that includes the
path under which the files are located. Otherwise, see “Local host
and repository files (Unix and Windows)” on page 454 for the
location of these files.

 createSession
Creates an AmSession object.

 AmSession createSession(String name);

name The name of the AmSession.

 getFactoryName
Returns the name of the AmSessionFactory.

 String getFactoryName();

 getLocalHost
Returns the name of the local host file.

 String getLocalHost();

 getRepository
Returns the name of the repository file.

 String getRepository();

 getTraceLevel
Returns the trace level for the AmSessionFactory.

 int getTraceLevel();

 getTraceLocation
Returns the location of the trace for the AmSessionFactory.

 String getTraceLocation();

386 MQSeries Application Messaging Interface

 Java AmSessionFactory

 setLocalHost
Sets the name of the AMI local host file to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default host file amthost.xml is used.)

 void setLocalHost(String fileName);

fileName The name of the file used by the AMI as the local host file. This
file must be present on the local file system or an error will be
produced upon the creation of an AmSession.

 setRepository
Sets the name of the AMI repository to be used by any AmSession created from
this AmSessionFactory. (Otherwise, the default repository file amt.xml is used.)

 void setRepository(String fileName);

fileName The name of the file used by the AMI as the repository. This file
must be present on the local file system or an error will be
produced upon the creation of an AmSession.

 setTraceLevel
Sets the trace level for the AmSessionFactory.

 void setTraceLevel(int level);

level The trace level to be set in the AmSessionFactory. Trace levels
are 0 through 9, where 0 represents minimal tracing and 9
represents a fully detailed trace.

 setTraceLocation
Sets the location of the trace for the AmSessionFactory.

 void setTraceLocation(String location);

location The location on the local system where trace files will be written.
This location must be a directory, and it must exist prior to the
trace being run.

 Chapter 15. Java interface reference 387

 Java AmSession

 AmSession
An AmSession object provides the scope for a unit of work and creates and
manages all other objects, including at least one connection object. Each
(MQSeries) connection object encapsulates a single MQSeries queue manager
connection. The session object definition specifying the required queue manager
connection can be provided by a repository policy definition, or by default will name
a single local queue manager with no repository. The session, when deleted, is
responsible for releasing memory by closing and deleting all other objects that it
manages.

 begin
Begins a unit of work in this AmSession, allowing an AMI application to take
advantage of the resource coordination provided in MQSeries. The unit of work
can subsequently be committed by the commit method, or backed out by the
rollback method. This should be used only when AMI is the transaction
coordinator. If available, native coordination APIs (for example CICS or Tuxedo)
should be used.

begin is overloaded. The policy parameter is optional.

 void begin(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 clearErrorCodes
Clears the error codes in the AmSession.

 void clearErrorCodes();

 close
Closes the AmSession, and all open objects owned by it. close is overloaded: the
policy parameter is optional.

 void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 commit
Commits a unit of work that was started by AmSession.begin. commit is
overloaded: the policy parameter is optional.

 void commit(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

388 MQSeries Application Messaging Interface

 Java AmSession

 createDistributionList
Creates an AmDistributionList object.

 AmDistributionList createDistributionList(String name);

name The name of the AmDistributionList. This must match the name of
a distribution list defined in the repository.

 createMessage
Creates an AmMessage object.

 AmMessage createMessage(String name);

name The name of the AmMessage. This can be any name that is
meaningful to the application.

 createPolicy
Creates an AmPolicy object.

 AmPolicy createPolicy(String name);

name The name of the AmPolicy. If it matches a policy defined in the
repository, the policy will be created using the repository definition,
otherwise it will be created with default values.

 createPublisher
Creates an AmPublisher object.

 AmPublisher createPublisher(String name);

name The name of the AmPublisher. If it matches a publisher defined in
the repository, the publisher will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the publisher name).

 createReceiver
Creates an AmReceiver object.

 AmReceiver createReceiver(String name);

name The name of the AmReceiver. If it matches a receiver defined in
the repository, the receiver will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the receiver name).

 Chapter 15. Java interface reference 389

 Java AmSession

 createSender
Creates an AmSender object.

 AmSender createSender(String name);

name The name of the AmSender. If it matches a sender defined in the
repository, the sender will be created using the repository
definition, otherwise it will be created with default values (that is,
with a queue name that matches the sender name).

 createSubscriber
Creates an AmSubscriber object.

 AmSubscriber createSubscriber(String name);

name The name of the AmSubscriber. If it matches a subscriber defined
in the repository, the subscriber will be created using the repository
definition, otherwise it will be created with default values (that is,
with an AmSender name that matches the subscriber name, and
an AmReceiver name that is the same with the addition of the
suffix ‘.RECEIVER’).

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmSession.

 String getName();

 getTraceLevel
Returns the trace level of the AmSession.

 int getTraceLevel();

390 MQSeries Application Messaging Interface

 Java AmSession

 getTraceLocation
Returns the location of the trace for the AmSession.

 String getTraceLocation();

 open
Opens an AmSession using the specified policy. The application profile group of
this policy provides the connection definitions enabling the connection objects to be
created. The specified library is loaded for each connection and its dispatch table
initialized. If the transport type is MQSeries and the MQSeries local queue manager
library cannot be loaded, then the MQSeries client queue manager is loaded. Each
connection object is then opened.

open is overloaded: the policy parameter is optional.

 void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 rollback
Rolls back a unit of work that was started by AmSession.begin, or under policy
control. rollback is overloaded: the policy parameter is optional.

 void rollback(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 Chapter 15. Java interface reference 391

 Java AmMessage

 AmMessage
An AmMessage object encapsulates the MQSeries MQMD message properties,
and name/value elements such as the topics for publish/subscribe messages. In
addition it contains the application data.

The initial state of the message object is:

CCSID default queue manager CCSID
correlationId all zeroes
dataLength zero
dataOffset zero
elementCount zero
encoding AMENC_NATIVE
format AMFMT_STRING
groupStatus AMGRP_MSG_NOT_IN_GROUP
reportCode AMFB_NONE
topicCount zero
type AMMT_DATAGRAM

When a message object is used to send a message, it might not be left in the
same state as it was prior to the send. Therefore, if you use the message object for
repeated send operations, it is advisable to reset it to its initial state (see reset on
page 398) and rebuild it each time.

| Note that the following methods are only valid after a session has been opened
| with AmSession.open:

| addElement page 392

| deleteElement page 393

| getElement page 395

| getElementCount page 395

| deleteNamedElement page 393

| getNamedElement page 397

| getNamedElementCount page 397

| addTopic page 393

| deleteTopic page 394

| getTopic page 397

| getTopicCount page 397

 addElement
Adds a name/value element to an AmMessage object. addElement is overloaded:
the element parameter is required, but the options parameter is optional.

 void addElement(
 AmElement element,
 int options);

element The element to be added to the AmMessage.

392 MQSeries Application Messaging Interface

 Java AmMessage

options The options to be used. This parameter is reserved and must be
set to zero.

| addFilter
| Adds a publish/subscribe filter to an AmMessage object.

| void addFilter(String filter);

| filter The filter to be added to the AmMessage.

 addTopic
Adds a publish/subscribe topic to an AmMessage object.

 void addTopic(String topicName);

topicName The name of the topic to be added to the AmMessage.

 clearErrorCodes
Clears the error in the AmMessage object.

 void clearErrorCodes();

 deleteElement
Deletes the element in the AmMessage object at the specified index. Indexing is
within all elements of a message, and might include topics (which are specialized
elements).

 void deleteElement(int index);

index The index of the element to be deleted, starting from zero. On
completion, elements with higher index values than that specified
will have those values reduced by one.

getElementCount gets the number of elements in the message.

| deleteFilter
| Deletes a publish/subscribe filter in an AmMessage object at the specified index.
| Indexing is within all filters in the message.

| void deleteFilter(int filterIndex);

| filterIndex The index of the filter to be deleted, starting from zero.
| getFilterCount gets the number of filters in a message.

 deleteNamedElement
Deletes the element with the specified name in the AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

 void deleteNamedElement(
 String name,
 int index);

 Chapter 15. Java interface reference 393

 Java AmMessage

name The name of the element to be deleted.

index The index of the element to be deleted, starting from zero. On
completion, elements with higher index values than that specified
will have those values reduced by one.

getNamedElementCount gets the number of elements in the
message with the specified name.

 deleteTopic
Deletes a publish/subscribe topic in an AmMessage object at the specified index.
Indexing is within all topics in the message.

 void deleteTopic(int index);

index The index of the topic to be deleted, starting from zero.
getTopicCount gets the number of topics in the message.

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getCCSID
Returns the coded character set identifier used by AmMessage.

 int getCCSID();

 getCorrelationId
Returns the correlation identifier for the AmMessage.

 byte[] getCorrelationId();

 getDataLength
Returns the length of the message data in the AmMessage.

 int getDataLength();

 getDataOffset
Returns the current offset in the message data for reading or writing data bytes.

 int getDataOffset();

394 MQSeries Application Messaging Interface

 Java AmMessage

 getElement
Returns an element in an AmMessage object at the specified index. Indexing is
within all elements in the message, and might include topics (which are specialized
elements).

 AmElement getElement(int index);

index The index of the element to be returned, starting from zero.
getElementCount gets the number of elements in the message.

 getElementCount
Returns the total number of elements in an AmMessage object. This might include
topics (which are specialized elements).

 int getElementCount();

 getEncoding
Returns the value used to encode numeric data types for the AmMessage.

 int getEncoding();

The following values can be returned:

AMENC_NORMAL
AMENC_NORMAL_FLOAT_395
AMENC_REVERSED
AMENC_REVERSED_FLOAT_395
AMENC_UNDEFINED

| getFilter
| Returns the publish/subscribe filter in the AmMessage object at the specified index.
| Indexing is within all filters.

| AmString getFilter(int filterIndex);

| filterIndex The index of the filter to be returned, starting from zero.
| getElementCount gets the number of filters in a message.

| getFilterCount
| Returns the total number of publish/subscribe filters in the AmMessage object.

| int getFilterCount();

 Chapter 15. Java interface reference 395

 Java AmMessage

 getFormat
Returns the format of the AmMessage.

 String getFormat();

The following values can be returned:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

 getGroupStatus
Returns the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.

 int getGroupStatus();

The following values can be returned:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

Alternatively, bitwise tests can be performed using the constants:

AMGF_IN_GROUP
AMGF_FIRST
AMGF_LAST

 getLastErrorStatus
Returns the AmStatus of the last error condition for this object.

 AmStatus getLastErrorStatus();

 getMessageId
Returns the message identifier from the AmMessage object.

 byte[] getMessageId();

 getName
Returns the name of the AmMessage object.

 String getName();

396 MQSeries Application Messaging Interface

 Java AmMessage

 getNamedElement
Returns the element with the specified name in an AmMessage object, at the
specified index. Indexing is within all elements that share the same name.

 AmElement getNamedElement(
 String name,
 int index);

name The name of the element to be returned.

index The index of the element to be returned, starting from zero.

 getNamedElementCount
Returns the total number of elements with the specified name in the AmMessage
object.

 int getNamedElementCount(String name);

name The name of the elements to be counted.

 getReportCode
| Returns the feedback code from an AmMessage of type MQMT_REPORT.

 int getReportCode();

The following values can be returned:

 AMFB_NONE
 AMFB_EXPIRATION
 AMFB_COA
 AMFB_COD
 AMFB_ERROR

 getTopic
Returns the publish/subscribe topic in the AmMessage object, at the specified
index. Indexing is within all topics.

 String getTopic(int index);

index The index of the topic to be returned, starting from zero.
getTopicCount gets the number of topics in the message.

 getTopicCount
Returns the total number of publish/subscribe topics in the AmMessage object.

 int getTopicCount();

 getType
| Returns the message type from the AmMessage.

 int getType();

The following values can be returned:

 Chapter 15. Java interface reference 397

 Java AmMessage

 AMMT_REQUEST
 AMMT_REPLY
 AMMT_REPORT
 AMMT_DATAGRAM

 readBytes
Populates a byte array with data from the AmMessage, starting at the current data
offset (which must be positioned before the end of the data for the read to be
successful). Use setDataOffset to specify the data offset. readBytes will advance
the data offset by the number of bytes read, leaving the offset immediately after the
last byte read.

 byte[] readBytes(int dataLength);

dataLength The maximum number of bytes to be read from the message data.
The number of bytes returned is the minimum of dataLength and
the number of bytes between the data offset and the end of the
data.

 reset
Resets the AmMessage object to its initial state (see page 392).

reset is overloaded: the options parameter is optional.

 void reset(int options);

options A reserved field that must be set to zero.

 setCCSID
Sets the coded character set identifier used by the AmMessage object.

 void setCCSID(int codedCharSetId);

codedCharSetId The CCSID to be set in the AmMessage.

 setCorrelationId
Sets the correlation identifier in the AmMessage object.

 void setCorrelationId(byte[] correlId);

correlId The correlation identifier to be set in the AmMessage. The
correlation identifier can be reset by specifying this as a zero
length byte array. For example:

byte£‘ myByteArray = new byte£5‘;
myMessage.setCorrelationId(myByteArray);

 setDataOffset
Sets the data offset for reading or writing byte data.

 void setDataOffset(int dataOffset);

dataOffset The data offset to be set in the AmMessage. Set an offset of zero
to read or write from the start of the data.

398 MQSeries Application Messaging Interface

 Java AmMessage

 setEncoding
Sets the encoding of the data in the AmMessage object.

 void setEncoding(int encoding);

encoding The encoding to be used in the AmMessage. It can take one of
the following values:

AMENC_NORMAL
AMENC_NORMAL_FLOAT_395
AMENC_REVERSED
AMENC_REVERSED_FLOAT_395
AMENC_UNDEFINED

 setFormat
Sets the format for the AmMessage object.

 void setFormat(String format);

format The format to be used in the AmMessage. It can take one of the
following values:

AMFMT_NONE
AMFMT_STRING
AMFMT_RF_HEADER

If set to AMFMT_NONE, the default format for the sender will be
used (if available).

 setGroupStatus
Sets the group status value for the AmMessage. This indicates whether the
message is in a group, and if it is the first, middle, last or only one in the group.
Once you start sending messages in a group, you must complete the group before
sending any messages that are not in the group.

If you specify AMGRP_MIDDLE_MSG_IN_GROUP or
AMGRP_LAST_MSG_IN_GROUP without specifying
AMGRP_FIRST_MSG_IN_GROUP, the behavior is the same as for
AMGRP_FIRST_MSG_IN_GROUP and AMGRP_ONLY_MSG_IN_GROUP.

If you specify AMGRP_FIRST_MSG_IN_GROUP out of sequence, then the
behavior is the same as for AMGRP_MIDDLE_MSG_IN_GROUP.

 void setGroupStatus(int groupStatus);

groupStatus The group status to be set in the AmMessage. It can take one of
the following values:

AMGRP_MSG_NOT_IN_GROUP
AMGRP_FIRST_MSG_IN_GROUP
AMGRP_MIDDLE_MSG_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP
AMGRP_ONLY_MSG_IN_GROUP

 Chapter 15. Java interface reference 399

 Java AmMessage

 writeBytes
Writes a byte array into the AmMessage object, starting at the current data offset. If
the data offset is not at the end of the data, existing data is overwritten. Use
setDataOffset to specify the data offset. writeBytes will advance the data offset
by the number of bytes written, leaving it immediately after the last byte written.

 void writeBytes(byte[] data);

data The data to be written to the AmMessage.

400 MQSeries Application Messaging Interface

 Java AmSender

 AmSender
An AmSender object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue
manager. An open sender service is always associated with an open connection
object (such as a queue manager connection). Support is also included for
dynamic sender services (those that encapsulate model queues). The required
sender service object definitions can be provided from a repository, or created
without a repository definition by defaulting to the existing queue objects on the
local queue manager.

The AmSender object must be created before it can be opened. This is done using
AmSession.createSender.

A responder is a special type of AmSender used for sending a response to a
request message. It is not created from a repository definition. Once created, it
must not be opened until used in its correct context as a responder receiving a
request message with AmReceiver.receive. When opened, its queue and queue
manager properties are modified to reflect the ReplyTo destination specified in the
message being received. When first used in this context, the sender service
becomes a responder sender service.

 clearErrorCodes
Clears the error codes in the AmSender.

 void clearErrorCodes();

 close
Closes the AmSender. close is overloaded: the policy parameter is optional.

 void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getCCSID
Returns the coded character set identifier for the AmSender. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the sender must perform CCSID conversion of the
message before it is sent.

 int getCCSID();

 Chapter 15. Java interface reference 401

 Java AmSender

 getEncoding
Returns the value used to encode numeric data types for the AmSender. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the sender must convert the encoding
of the message before it is sent.

 int getEncoding();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmSender.

 String getName();

 open
Opens an AmSender service. open is overloaded: the policy parameter is
optional.

 void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 send
Sends a message to the destination specified by the AmSender. If the AmSender
is not open, it will be opened (if this action is specified in the policy options).

send is overloaded: the sendMessage parameter is required, but the others are
optional. receivedMessage and responseService are used in request/response
messaging, and are mutually exclusive.

 void send(
 AmMessage sendMessage,
 AmReceiver responseService,
 AmMessage receivedMessage,
 AmPolicy policy);

sendMessage The message object that contains the data to be sent.

responseService The AmReceiver to be used for receiving any response to the
sent message. If omitted, no response can be received.

receivedMessage The previously received message which is used for correlation
with the sent message. If omitted, the sent message is not
correlated with any received message.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

402 MQSeries Application Messaging Interface

 Java AmSender

| sendFile
| Sends data from a file. To send data from a file, the sendMessage and fileName
| parameters are required, but the policy is optional. The file data can be received
| as normal message data by a target application using AmReceiver.receive, or used
| to reconstruct the file with AmReceiver.receiveFile.

| void sendFile(
| AmMessage sendMessage,
| String filename,
| AmPolicy policy);

| sendMessage The message object to use to send the file. This can be used to
| specify the Correlation ID for example.

| fileName The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| the send operation is a physical-mode file transfer, then the file
| name will travel with the message for use with the receive file
| method (see “receiveFile” on page 407 for more details). Note that
| the file name sent will exactly match the supplied file name; it will
| not be converted or expanded in any way.

| policy The policy to be used. If omitted, the system default policy (name
| constant: AMSD_POL) is used.

 Chapter 15. Java interface reference 403

 Java AmReceiver

 AmReceiver
An AmReceiver object encapsulates an MQSeries object descriptor (MQOD)
structure. This represents an MQSeries queue on a local or remote queue
manager. An open AmReceiver is always associated with an open connection
object, such as a queue manager connection. Support is also included for a
dynamic AmReceiver (that encapsulates a model queue). The required AmReceiver
object definitions can be provided from a repository or can be created automatically
from the set of existing queue objects available on the local queue manager.

There is a definition type associated with each AmReceiver:

 AMDT_UNDEFINED
 AMDT_TEMP_DYNAMIC
 AMDT_DYNAMIC
 AMDT_PREDEFINED

An AmReceiver created from a repository definition will be initially of type
AMDT_PREDEFINED or AMDT_DYNAMIC. When opened, its definition type might
change from AMDT_DYNAMIC to AMDT_TEMP_DYNAMIC according to the
properties of its underlying queue object.

An AmReceiver created with default values (that is, without a repository definition)
will have its definition type set to AMDT_UNDEFINED until it is opened. When
opened, this will become AMDT_DYNAMIC, AMDT_TEMP_DYNAMIC, or
AMDT_PREDEFINED, according to the properties of its underlying queue object.

 browse
Browses an AmReceiver service. browse is overloaded: the browseMessage and
options parameters are required, but the others are optional.

 void browse(
 AmMessage browseMessage,
 int options,
 AmSender responseService,

| AmMessage selectionMessage,
 AmPolicy policy);

browseMessage The message object that receives the browse data.

options Options controlling the browse operation. Possible values are:

AMBRW_NEXT
AMBRW_FIRST
AMBRW_CURRENT
AMBRW_RECEIVE_CURRENT
AMBRW_DEFAULT (AMBRW_NEXT)
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)
AMBRW_UNLOCK

AMBRW_RECEIVE_CURRENT is equivalent to AmReceiver.receive for
the message under the browse cursor.

Note that a locked message is unlocked by another browse or
receive, even though it is not for the same message.

404 MQSeries Application Messaging Interface

 Java AmReceiver

responseService The AmSender to be used for sending any response to the
browsed message. If omitted, no response can be sent.

| selectionMessage A message object which contains the Correlation ID used to
| selectively browse a message from the AmReceiver. If omitted, the
| first available message is browsed. The CCSID, element CCSID
| and encoding values from the selection message define the target
| values for data conversion. If target conversion values are required
| without using the Correlation ID for selection then this can be reset
| (see AmMessage.setCorrelationId on page 398) before invoking
| the browse method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 clearErrorCodes
Clears the error codes in the AmReceiver.

 void clearErrorCodes();

 close
Closes the AmReceiver. close is overloaded: the policy parameter is optional.

 void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getDefinitionType
Returns the definition type (service type) for the AmReceiver.

 int getDefinitionType();

The following values can be returned:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

Values other than AMDT_UNDEFINED reflect the properties of the underlying
queue object.

 Chapter 15. Java interface reference 405

 Java AmReceiver

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmReceiver.

 String getName();

 getQueueName
Returns the queue name of the AmReceiver. This is used to determine the queue
name of a permanent dynamic AmReceiver, so that it can be recreated with the
same queue name in order to receive messages in a subsequent session. (See
also setQueueName.)

 String getQueueName();

 open
Opens an AmReceiver service. open is overloaded: the policy parameter is
optional.

 void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 receive
Receives a message from the AmReceiver service. receive is overloaded: the
receiveMessage parameter is required, but the others are optional.

 void receive(
 AmMessage receiveMessage,
 AmSender responseService,
 AmMessage selectionMessage,
 AmPolicy policy);

receiveMessage The message object that receives the data. The message object
is reset implicitly before the receive takes place.

responseService The AmSender to be used for sending any response to the
received message. If omitted, no response can be sent.

| selectionMessage A message object containing the Correlation ID used to
| selectively receive a message from the AmReceiver. If omitted, the
| first available message is received. The CCSID, element CCSID
| and encoding values from the selection message define the target
| values for data conversion. If target conversion values are required
| without using the Correlation ID for selection then this can be be
| reset (see AmMessage.setCorrelationId on page 398) before
| invoking the receive method.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

406 MQSeries Application Messaging Interface

 Java AmReceiver

| receiveFile
| Receives file message data into a file. To receive data into a file, the
| receiveMessage and fileName parameters are required, but the others are optional.

| void receiveFile(
| AmMessage receiveMessage,
| String fileName,
| AmMessage selectionMessage,
| AmPolicy policy);

| receiveMessage The message object used to receive the file. This is updated with
| the message properties, for example the Message ID. If the
| message is not from a file, the message object receives the data.
| The message object is reset implicitly before the receive takes
| place.

| fileName The name of the file to be received (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| NULL or a null string is specified, then the AMI will use the name
| of the originating file (including any directory prefix), exactly as it
| was supplied on the send file call. Note that the original file name
| may not be appropriate for use by the receiver, either because a
| path name included in the file name is not applicable to the
| receiving system, or because the sending and receiving systems
| use different file naming conventions.

| selectionMessage A message object containing the Correlation ID used to
| selectively receive a message from the AmReceiver. If omitted, the
| first available message is received. The CCSID, element CCSID
| and encoding values from the selection message define the target
| values for data conversion. If target conversion values are required
| without using the Correlation ID for selection then this can be be
| reset (see AmMessage.setCorrelationId on page 398) before
| invoking the receive method.

| policy The policy to be used. If omitted, the system default policy
| (constant: AMSD_POL) is used.

 setQueueName
Sets the queue name of the AmReceiver (when this encapsulates a model queue).
This is used to specify the queue name of a recreated permanent dynamic
AmReceiver, in order to receive messages in a session subsequent to the one in
which it was created. (See also getQueueName.)

 void setQueueName(String queueName);

queueName The queue name to be set in the AmReceiver.

 Chapter 15. Java interface reference 407

 Java AmDistributionList

 AmDistributionList
An AmDistributionList object encapsulates a list of AmSender objects.

 clearErrorCodes
Clears the error codes in the AmDistributionList.

 void clearErrorCodes();

 close
Closes the AmDistributionList. close is overloaded: the policy parameter is
optional.

 void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getLastErrorStatus
Returns the AmStatus of the last error condition of this object.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmDistributionList object.

 String getName();

 getSender
Returns the AmSender in the AmDistributionList object at the index specified.
AmDistributionList.getSenderCount gets the number of AmSender services in the
distribution list.

 AmSender getSender(int index);

index The index of the AmSender in the AmDistributionList, starting at
zero.

408 MQSeries Application Messaging Interface

 Java AmDistributionList

 getSenderCount
Returns the number of AmSender services in the AmDistributionList object.

 int getSenderCount();

 open
Opens an AmDistributionList object for each of the destinations in the distribution
list. open is overloaded: the policy parameter is optional.

 void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 send
Sends a message to each AmSender defined in the AmDistributionList object.
send is overloaded: the sendMessage parameter is required, but the others are
optional.

 void send(
 AmMessage sendMessage,
 AmReceiver responseService,
 AmPolicy policy);

sendMessage The message object containing the data to be sent.

responseService The AmReceiver to be used for receiving any response to the
sent message. If omitted, no response can be received.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

| sendFile
| Sends data from a file to each AmSender defined in the AmDistributionList object.
| The sendMessage and fileName parameters are required to send data from a file,
| but the policy is optional. The file data can be received as normal message data
| by a target application using AmReceiver.receive, or used to reconstruct the file
| with AmReceiver.receiveFile.

| void sendFile(
| AmMessage sendMessage,
| String fileName,
| AmPolicy policy);

| sendMessage The message object to use to send the file. This can be used to
| specify the Correlation ID, for example.

| fileName The name of the file to be sent (input). This can include a
| directory prefix to define a fully-qualified or relative file name. If
| the send operation is a physical-mode file transfer, then the file
| name will travel with the message for use with the receive file
| method (see “receiveFile” on page 407 for more details). Note that
| the file name sent will exactly match the supplied file name; it will
| not be converted or expanded in any way.

 Chapter 15. Java interface reference 409

 Java AmDistributionList

| policy The policy to be used. If omitted, the system default policy (name
| constant: AMSD_POL) is used.

410 MQSeries Application Messaging Interface

 Java AmPublisher

 AmPublisher
An AmPublisher object encapsulates an AmSender and provides support for
publish requests to a publish/subscribe broker.

 clearErrorCodes
Clears the error codes in the AmPublisher.

 void clearErrorCodes();

 close
Closes the AmPublisher. close is overloaded: the policy parameter is optional.

 void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getCCSID
Returns the coded character set identifier for the AmPublisher. A non-default value
reflects the CCSID of a remote system unable to perform CCSID conversion of
received messages. In this case the publisher must perform CCSID conversion of
the message before it is sent.

 int getCCSID();

 getEncoding
Returns the value used to encode numeric data types for the AmPublisher. A
non-default value reflects the encoding of a remote system unable to convert the
encoding of received messages. In this case the publisher must convert the
encoding of the message before it is sent.

 int getEncoding();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 Chapter 15. Java interface reference 411

 Java AmPublisher

 getName
Returns the name of the AmPublisher.

 String getName();

 open
Opens an AmPublisher service. open is overloaded: the policy parameter is
optional.

 void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(AMSD_POL) is used.

 publish
Publishes a message using the AmPublisher. publish is overloaded: the
pubMessage parameter is required, but the others are optional.

 void publish(
 AmMessage pubMessage,
 AmReceiver responseService,
 AmPolicy policy);

pubMessage The message object that contains the data to be published.

responseService The AmReceiver to which the response to the publish request
should be sent. Omit it if no response is required. This parameter
is mandatory if the policy specifies implicit registration of the
publisher.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

412 MQSeries Application Messaging Interface

 Java AmSubscriber

 AmSubscriber
An AmSubscriber object encapsulates both an AmSender and an AmReceiver. It
provides support for subscribe and unsubscribe requests to a publish/subscribe
broker, and for receiving publications from the broker.

 clearErrorCodes
Clears the error codes in the AmSubscriber.

 void clearErrorCodes();

 close
Closes the AmSubscriber. close is overloaded: the policy parameter is optional.

 void close(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getCCSID
Returns the coded character set identifier for the AmSender in the AmSubscriber.
A non-default value reflects the CCSID of a remote system unable to perform
CCSID conversion of received messages. In this case the subscriber must perform
CCSID conversion of the message before it is sent.

 int getCCSID();

 getDefinitionType
Returns the definition type for the AmReceiver in the AmSubscriber.

 int getDefinitionType();

The following values can be returned:

AMDT_UNDEFINED
AMDT_TEMP_DYNAMIC
AMDT_DYNAMIC
AMDT_PREDEFINED

 Chapter 15. Java interface reference 413

 Java AmSubscriber

 getEncoding
Returns the value used to encode numeric data types for the AmSender in the
AmSubscriber. A non-default value reflects the encoding of a remote system
unable to convert the encoding of received messages. In this case the subscriber
must convert the encoding of the message before it is sent.

 int getEncoding();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmSubscriber.

 String getName();

 getQueueName
Returns the queue name used by the AmSubscriber to receive messages. This is
used to determine the queue name of a permanent dynamic AmReceiver in the
AmSubscriber, so that it can be recreated with the same queue name in order to
receive messages in a subsequent session. (See also setQueueName.)

 String getQueueName();

 open
Opens an AmSubscriber. open is overloaded: the policy parameter is optional.

 void open(AmPolicy policy);

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

414 MQSeries Application Messaging Interface

 Java AmSubscriber

 receive
Receives a message, normally a publication, using the AmSubscriber. The
message data, topic and other elements can be accessed using the message
interface methods (see page 392).

receive is overloaded: the pubMessage parameter is required, but the others are
optional.

 void receive(
 AmMessage pubMessage,
 AmMessage selectionMessage,
 AmPolicy policy);

pubMessage The message object containing the data that has been published.
The message object is reset implicitly before the receive takes
place.

selectionMessage A message object containing the correlation ID used to
selectively receive a message from the AmSubscriber. If omitted,
the first available message is received.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 setQueueName
Sets the queue name in the AmReceiver of the AmSubscriber, when this
encapsulates a model queue. This is used to specify the queue name of a
recreated permanent dynamic AmReceiver, in order to receive messages in a
session subsequent to the one in which it was created. (See also
getQueueName.)

 void setQueueName(String queueName);

queueName The queue name to be set.

 Chapter 15. Java interface reference 415

 Java AmSubscriber

 subscribe
Sends a subscribe message to a publish/subscribe broker using the AmSubscriber,
to register a subscription. The topic and other elements can be specified using the
message interface methods (see page 392) before sending the message.

Publications matching the subscription are sent to the AmReceiver associated with
the AmSubscriber. By default, this has the same name as the AmSubscriber, with
the addition of the suffix ‘.RECEIVER’.

subscribe is overloaded: the subMessage parameter is required, but the others are
optional.

 void subscribe(
 AmMessage subMessage,
 AmReceiver responseService,
 AmPolicy policy);

subMessage The message object that contains the topic subscription data.

responseService The AmReceiver to which the response to this subscribe request
should be sent. Omit it if no response is required.

This is not the AmReceiver to which publications will be sent by
the broker; they are sent to the AmReceiver associated with the
AmSubscriber (see above).

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

 unsubscribe
Sends an unsubscribe message to a publish/subscribe broker using the
AmSubscriber, to deregister a subscription. The topic and other elements can be
specified using the message interface methods (see page 392) before sending the
message.

unsubscribe is overloaded: the unsubMessage parameter is required, but the others
are optional.

 void unsubscribe(
 AmMessage unsubMessage,
 AmReceiver responseService,
 AmPolicy policy);

unsubMessage The message object that contains the topics to which the
unsubscribe request applies.

responseService The AmReceiver to which the response to this unsubscribe
request should be sent. Omit it if no response is required.

policy The policy to be used. If omitted, the system default policy
(constant: AMSD_POL) is used.

416 MQSeries Application Messaging Interface

 Java AmPolicy

 AmPolicy
An AmPolicy object encapsulates details of how the AMI processes the message
(for instance, the priority and persistence of the message, how errors are handled,
and whether transactional processing is used).

 clearErrorCodes
Clears the error codes in the AmPolicy.

 void clearErrorCodes();

 enableWarnings
Enables AmWarningExceptions; the default value for any AmObject is that
AmWarningExceptions are not raised. Note that warning reason codes can be
retrieved using getLastErrorStatus, even if AmWarningExceptions are disabled.

 void enableWarnings(boolean warningsOn);

warningsOn If set to true, AmWarningExceptions will be raised for this object.

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmPolicy object.

 String getName();

 getWaitTime
Returns the wait time (in ms) set for this AmPolicy.

 int getWaitTime();

 setWaitTime
Sets the wait time for any receive using this AmPolicy.

 void setWaitTime(int waitTime);

waitTime The wait time (in ms) to be set in the AmPolicy.

 Chapter 15. Java interface reference 417

 Java AmConstants

 AmConstants
This class provides access to the AMI constants listed in Appendix B, “Constants”
on page 515.

For example, to use the constant AMRC_NONE (an AMI reason code), specify
AmConstants.AMRC_NONE.

Note: Not all of the constants available in the C and C++ programming interfaces
are available in Java, because they are not all appropriate in this language. For
instance, AmConstants does not contain AMB_TRUE or AMB_FALSE, since the
Java language has its own true and false constants and these are used by the AMI
for Java.

418 MQSeries Application Messaging Interface

 Java AmElement

 AmElement
An AmElement object encapsulates a name/value pair which can be added to an
AmMessage object.

 AmElement
Constructor for an AmElement object.

AmElement(String name, String value);

name The name of the element.

value The value of the element.

 getName
Returns the name of the AmElement.

 String getName();

 getValue
Returns the value of the AmElement.

 String getValue();

 getVersion
Returns the version of the AmElement (the default value is
AmConstants.AMELEM_VERSION_1).

 int getVersion();

 setVersion
Sets the version of the AmElement.

 void setVersion(int version);

version The version of the AmElement that is set. It can take the value
AmConstants.AMELEM_VERSION_1 or
AmConstants.AMELEM_CURRENT_VERSION.

 toString
Returns a String representation of the AmElement.

 String toString();

 Chapter 15. Java interface reference 419

 Java AmObject

 AmObject
AmObject is a Java Interface. The following classes implement the AmObject
interface:

 AmSession
 AmMessage
 AmSender
 AmReceiver
 AmDistributionList
 AmPublisher
 AmSubscriber
 AmPolicy

This allows application programmers to use generic error handling routines.

 clearErrorCodes
Clears the error codes in the AmObject.

 void clearErrorCodes();

 getLastErrorStatus
Returns the AmStatus of the last error condition.

 AmStatus getLastErrorStatus();

 getName
Returns the name of the AmObject.

 String getName();

420 MQSeries Application Messaging Interface

 Java AmStatus

 AmStatus
An AmStatus object encapsulates the error status of other AmObjects.

 AmStatus
Constructor for an AmStatus object.

 AmStatus();

 getCompletionCode
Returns the completion code from the AmStatus object.

 int getCompletionCode();

 getReasonCode
Returns the reason code from the AmStatus object.

 int getReasonCode();

 getReasonCode2
Returns the secondary reason code from the AmStatus object. (This code is
specific to the underlying transport used by the AMI). For MQSeries, the secondary
reason code is an MQSeries reason code of type MQRC_xxx.

 int getReasonCode2();

 toString
Returns a String representation of the internal state of the AmStatus object.

 String toString();

 Chapter 15. Java interface reference 421

 Java AmException

 AmException
AmException is the base Exception class; all other Exceptions inherit from this
class.

 getClassName
Returns the type of object throwing the Exception.

 String getClassName();

 getCompletionCode
Returns the completion code for the Exception.

 int getCompletionCode();

 getMethodName
Returns the name of the method throwing the Exception.

 String getMethodName();

 getReasonCode
Returns the reason code for the Exception.

 int getReasonCode();

 getSource
Returns the AmObject throwing the Exception.

 AmObject getSource();

 toString
Returns a String representation of the Exception.

 String toString();

422 MQSeries Application Messaging Interface

 Java AmErrorException

 AmErrorException
An Exception of type AmErrorException is raised when an object experiences an
error with a severity level of FAILED (CompletionCode = AMCC_FAILED).

 getClassName
Returns the type of object throwing the Exception.

 String getClassName();

 getCompletionCode
Returns the completion code for the Exception.

 int getCompletionCode();

 getMethodName
Returns the name of the method throwing the Exception.

 String getMethodName();

 getReasonCode
Returns the reason code for the Exception.

 int getReasonCode();

 getSource
Returns the AmObject throwing the Exception.

 AmObject getSource();

 toString
Returns a String representation of the Exception.

 String toString();

 Chapter 15. Java interface reference 423

 Java AmWarningException

 AmWarningException
An Exception of type AmWarningException is raised when an object experiences
an error with a severity level of WARNING (CompletionCode = AMCC_WARNING).

 getClassName
Returns the type of object throwing the Exception.

 String getClassName();

 getCompletionCode
Returns the completion code for the Exception.

 int getCompletionCode();

 getMethodName
Returns the name of the method throwing the Exception.

 String getMethodName();

 getReasonCode
Returns the reason code for the Exception.

 int getReasonCode();

 getSource
Returns the AmObject throwing the Exception.

 AmObject getSource();

 toString
Returns a String representation of the Exception.

 String toString();

424 MQSeries Application Messaging Interface

 Part 6. OS/390 Subsystems

 Copyright IBM Corp. 1999, 2000 425

426 MQSeries Application Messaging Interface

| Chapter 16. Writing applications for OS/390 subsystems

| Here is some advice for those of you who want to write AMI applications for the
| IMS, CICS, batch, and RRS-batch subsystems on OS/390.

| Writing IMS applications using AMI
| In an IMS application, you establish a syncpoint by using IMS calls such as GU
| (get unique) to the IOPCB and CHKP (checkpoint). To back out changes since the
| previous checkpoint, you can use the IMS ROLB (rollback) call. For more
| information, see the following manuals:

| � IMS/ESA Application Programming: Transaction Manager
| � IMS/ESA Application Programming: Design Guide

| If other recoverable resources are also involved in the unit of work, the queue
| manager (in conjunction with the IMS syncpoint manager) participates in a
| two-phase commit protocol; otherwise, the queue manager performs a single-phase
| commit process.

| All AMI sessions are marked as expired at a syncpoint or rollback (except in a
| batch-orientated BMP). This is because a different user could initiate the next unit
| of work and MQSeries security checking is performed when an AMI session or
| service is opened, not when an AMI object is accessed.

| Any subsequent use of a session that has been marked expired (or any object
| created using that session), will return AMRC_SESSION_EXPIRED. It is the
| application’s responsibility to ensure that all AMI sessions marked as expired are
| actually deleted.

| We recommend that applications explicitly end all AMI sessions (using
| amSesDelete or amTerminate) before syncpoint, to ensure that any AMI reason
| codes are correctly reported to the application, and to help ensure that all AMI
| sessions are deleted.

| If an IMS application closes or deletes an AMI session, no implicit syncpoint is
| taken. If the application closes down normally, any open services are closed and
| an implicit commit occurs. If the application closes down abnormally, any open
| services are closed and an implicit backout occurs.

| Writing CICS applications using AMI
| In a CICS application, you establish a syncpoint by using CICS calls such as EXEC
| CICS SYNCPOINT. To back out changes to the previous syncpoint you can use
| the EXEC CICS SYNCPOINT ROLLBACK call. For more information, see the
| CICS Application Programming Reference manual.

| If other recoverable resources are also involved in the unit of work, the queue
| manager (in conjunction with the CICS syncpoint manager) participates in a
| two-phase commit protocol; otherwise, the queue manager performs a single-phase
| commit process.

| If a CICS application closes or deletes an AMI session, no implicit syncpoint is
| taken. If the application closes down normally, any open services are closed and

 Copyright IBM Corp. 1999, 2000 427

| an implicit commit occurs. If the application closes down abnormally, any open
| services are closed and an implicit backout occurs. Note that file transfer calls are
| not supported under CICS. If used in a CICS application on OS/390, they return
| the reason code: AMRC_FILE_TRANSFER_INVALID (144).

| Writing batch applications using AMI
| In a batch application, you establish a syncpoint by using AMI calls such as
| amCommit or amSesCommit. To back out changes to the previous syncpoint you
| can use the amBackout or amSesRollback calls.

| Note: If you need to commit or back out updates to resources managed by
| different resource managers, such as MQSeries and DB2, within a single
| unit of work, you should use RRS. For further information, see “Writing
| RRS-batch applications using AMI.”

| If a batch application closes or deletes an AMI session, an implicit syncpoint is
| taken. If the application closes down normally, without first closing or deleting an
| AMI session, an implicit syncpoint occurs. If the application closes down
| abnormally, an implicit backout occurs.

| Writing RRS-batch applications using AMI
| Transaction management and recoverable resource services (RRS) is an OS/390
| facility that provides two-phase syncpoint support across participating resource
| managers. An application can update recoverable resources managed by various
| OS/390 resource managers such as MQSeries and DB2 and then commit or back
| out these changes as a single unit of work.

| In a RRS-batch application, you establish a syncpoint by using RRS calls such as
| SRRCMIT. To back out changes to the previous syncpoint you can use the
| SRRBACK call. For more information, see the MVS Callable Services for High
| Level Languages manual.

| RRS availability
| If RRS is not active on your OS/390 system, any AMI call which resolves to an
| MQSeries call will return one of the following AMI reason codes:

| If an RRS application closes or deletes an AMI session, no implicit syncpoint is
| taken. If the application closes down normally, any open services are closed and
| an implicit commit occurs. If the application closes down abnormally, any open
| services are closed and an implicit backout occurs.

| AMI reason code| Reason code 2

| AMRC_TRANSPORT_ERROR| MQRC_ENVIRONMENT_ERROR

| AMRC_BACKOUT_INVALID| NONE

| AMRC_COMMIT_INVALID| NONE

428 MQSeries Application Messaging Interface

Part 7. Setting up an AMI installation

This part contains:

� Chapter 17, “Installation and sample programs” on page 431

� Chapter 18, “Defining services and policies” on page 471

� Chapter 19, “Problem determination” on page 485

 Copyright IBM Corp. 1999, 2000 429

430 MQSeries Application Messaging Interface

 Prerequisites

Chapter 17. Installation and sample programs

| The Application Messaging Interface is available for the AIX, HP-UX, Sun Solaris,
| Windows NT, Windows 98, and OS/390 platforms.

This chapter contains:

 � “Prerequisites”

� “Installation on AIX” on page 433

� “Installation on HP-UX” on page 438

� “Installation on Sun Solaris” on page 442

� “Installation on Windows” on page 446

� “Installation on OS/390” on page 450

� “Local host and repository files (Unix and Windows)” on page 454

� “The administration tool” on page 460

� “Connecting to MQSeries” on page 461

� “The sample programs” on page 464

 Prerequisites
Prior to installing the AMI you should make sure that your system has sufficient
disk space, and the software listed below.

 Disk space
Disk space requirements:

| AIX 15.0 MB

| HP-UX 12.7 MB

| Sun Solaris 11.2 MB

| Windows 10.9 MB (without AMI Administration Tool)

| 22.4 MB (with AMI Administration Tool)

| OS/390 Not applicable (AMI installed as part of MQSeries for OS/390)

 Operating environments
The AMI runs under the following operating systems:

| AIX V4.3

HP-UX V11.0

| Sun Solaris V2.6 and V7

Windows Windows NT V4 and Windows 98

| OS/390 V2R6 or later, with Language Environment

| CICS 4.1 or later, with Language Environment

| IMS V5.1 or later, with Language Environment

 Copyright IBM Corp. 1999, 2000 431

 Prerequisites

 MQSeries environment
You can run the AMI in an MQSeries server or client environment.

To run the AMI in an MQSeries server environment you need at least one of the
following installed on your system:

� MQSeries for AIX Version 5.1 or later
� MQSeries for HP-UX Version 5.1 or later
� MQSeries for Sun Solaris Version 5.1 or later
� MQSeries for Windows NT Version 5.1 or later

| � MQSeries for OS/390 Version 2.2

To run the AMI in an MQSeries client environment you need at least one of the
following installed on your system:

� MQSeries client for AIX Version 5.1 or later
� MQSeries client for HP-UX Version 5.1 or later
� MQSeries client for Sun Solaris Version 5.1 or later
� MQSeries client for Windows NT Version 5.1 or later
� MQSeries client for Windows 98 Version 5.1 or later

The MQSeries client requires access to at least one supporting MQSeries server.

 Language compilers
| The following language compilers for C, COBOL, C++ and Java are supported:

| AIX VisualAge C++ 5.0
JDK 1.1.7 and above

HP-UX HP aC++ B3910B A.03.10

HP aC++ B3910B A.03.04 (970930) Support library
JDK 1.1.7 and above

| Sun Solaris Workshop Compiler 4.2 (with Solaris 2.6)
| Workshop Compiler 5.0 (with Solaris 7)

JDK 1.1.7 and above

Windows Microsoft Visual C++ 6

JDK 1.1.7 and above

| OS/390 OS/390 C/C++ Version 2 Release 6 and above
| IBM COBOL for OS/390 & VM Version 2 Release 1 and above
| IBM COBOL for MVS & VM Version 1 Release 2 and above

 Next step

Now go to one of the following to start the installation procedure:

� “Installation on AIX” on page 433

� “Installation on HP-UX” on page 438

� “Installation on Sun Solaris” on page 442

� “Installation on Windows” on page 446

� “Installation on OS/390” on page 450

432 MQSeries Application Messaging Interface

 Installation on AIX

Installation on AIX
The AMI package for AIX comes as a compressed archive file, ma5f_ax.tar.Z.
Uncompress and restore it as follows:

1. Login as root

2. Store ma5f_ax.tar.Z in /tmp

3. Execute uncompress -fv /tmp/ma5f_ax.tar.Z

4. Execute tar -xvf /tmp/ma5f_ax.tar

 5. Execute rm /tmp/ma5f_ax.tar

This creates the following files:

amt100.tar A standard tar file containing the AMI files

amtInstall A script file to aid AMI installation

amtRemove A script file to aid AMI removal

readme A file containing any product and information updates that have
become available since this documentation was produced

 Installation
Installation can be carried out manually, or using the amtInstall utility.

 Manual installation
Restore the tar file amt155.tar. This should be done under the base MQSeries
directory /usr/mqm, so that the AMI tar file restores to a directory structure
consistent with MQSeries. This operation usually requires root access. Existing
files will be overwritten. (Note that the location /usr/mqm/ is consistent with
MQSeries Version 5.1, which is the prerequisite for the AMI).

 Using amtInstall
1. Login as root

 2. Execute amtInstall <directory>

where <directory> is the directory containing the amt155.tar file.

The amtInstall utility will unpack the tar file into the correct location and provide the
necessary links for your environment. Existing files will be overwritten.

Note: All files and directories created must be accessible to all AMI users. These
files are listed in “Directory structure (AIX)” on page 435.

Removing the AMI
Run the amtRemove utility to remove all the files that were created by amtInstall.

 Chapter 17. Installation and sample programs 433

 Installation on AIX

Setting the runtime environment
Make sure the location of the AMI runtime binary files is added to your PATH
environment variable. For example:

 export PATH=$PATH:/usr/mqm/lib:

Note: The above step is not needed if you used the amtInstall utility.

In addition, for the samples:

 export PATH=$PATH:/usr/mqm/amt/samp/C/bin:/usr/mqm/amt/samp/Cpp/bin:

 Java programs
When running Java, there are some additional steps.

The AMI classes must be contained in the CLASSPATH, for example:

 export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/com.ibm.mq.amt.jar:

In addition, for the samples:

 export CLASSPATH=$CLASSPATH:/usr/mqm/amt/samp/java/bin
 /com.ibm.mq.amt.samples.jar:

Also, in order to load the AMI library for Java:

 export LIBPATH=$LIBPATH:/usr/mqm/lib:

 Next step

Now go to “Local host and repository files (Unix and Windows)” on page 454 to
continue the installation procedure.

434 MQSeries Application Messaging Interface

 Installation on AIX

Directory structure (AIX)
The AMI tar file contains:

/amt/amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

/amt/amthost.xml : Sample AMI XML file used as the default host file

/amt/amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

/amt/inc
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI

| oamasami.h: The C header file for the OAMAS AMI subset

/amt/ipla : The International Program License Agreement file
/amt/li : The License Information file

/java/lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

/lib
libamt.a : The main AMI library
libamt_r.a : The main AMI threaded library

| libamtXML315.a : The AMI XML parsing library
| libamtXML315_r.a : The AMI threaded XML parsing library

libamtCpp.a : The AMI C++ library
libamtCpp_r.a : The AMI C++ threaded library
libamtJava.so: The AMI JNI library

| libamtICUUC145.a : The AMI codepage translation library
| libamtICUUC145_r.a : The AMI codepage translation threaded library
| libamtICUDATA.a : The AMI codepage translation data library.

amtcmqm : Dynamic binding stub for MQSeries Server library
amtcmqm_r : Dynamic binding stub for MQSeries Server threaded library
amtcmqic : Dynamic binding stub for MQSeries Client library
amtcmqic_r : Dynamic binding stub for MQSeries Client threaded library

/amt/samp
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects
required by AMI samples

amt.xml : Sample AMI XML repository for use with the AMI samples

/amt/samp/C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample

| amtsofsn.c : C source for object-level send file sample
| amtsofrc.c : C source for object-level receive file sample
| amtsosgs.c : C source for object-level send group sample
| amtsosgr.c : C source for object-level receive group sample

amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample

 Chapter 17. Installation and sample programs 435

 Installation on AIX

amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample

| amtshfsn.c : C source for high-level send file sample
| amtshfrc.c : C source for high-level receive file sample

/amt/samp/C/bin
amtsosnd : C object-level send and forget sample program
amtsorcv : C object-level receiver sample program
amtsoclt : C object-level client sample program
amtsosvr : C object-level server sample program
amtsopub : C object-level publisher sample program
amtsosub : C object-level subscriber sample program

| amtsofsn : C object-level send file sample program
| amtsofrc : C object-level receive file sample program
| amtsosgs : C object-level send group sample program
| amtsosgr : C object-level receive group sample program

amtshsnd : C high-level send and forget sample program
amtshrcv : C high-level receiver sample program
amtshclt : C high-level client sample program
amtshsvr : C high-level server sample program
amtshpub : C high-level publisher sample program
amtshsub : C high-level subscriber sample program

| amtshfsn : C high-level send file sample program
| amtshfrc : C high-level receive file sample program

/amt/samp/Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample

| ReceiveFile.cpp : C++ source for receive file sample
| SendFile.cpp : C++ source for send file sample

/amt/samp/Cpp/bin
SendAndForget : C++ send and forget sample program
Receiver : C++ receiver sample program
Client : C++ client sample program
Server : C++ server sample program
Publisher : C++ publisher sample program
Subscriber : C++ subscriber sample program

| ReceiveFile : C++ source for receive file sample
| SendFile : C++ source for send file sample

/amt/samp/java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample

| ReceiveFile.java : Java source for receive file sample
| SendFile.java : Java source for send file sample

/amt/samp/java/bin

436 MQSeries Application Messaging Interface

 Installation on AIX

com.ibm.mq.amt.samples.jar : The jar file containing the AMI
samples class files for Java

 Chapter 17. Installation and sample programs 437

 Installation on HP-UX

Installation on HP-UX
The AMI package for HP-UX comes as a compressed archive file, ma5f_hp.tar.Z.
Uncompress and restore it as follows:

1. Login as root

2. Store ma5f_hp.tar.Z in /tmp

3. Execute uncompress -fv /tmp/ma5f_hp.tar.Z

4. Execute tar -xvf /tmp/ma5f_hp.tar

 5. Execute rm /tmp/ma5f_hp.tar

This creates the following files:

amt100.tar A standard tar file containing the AMI files

amtInstall A script file to aid AMI installation

amtRemove A script file to aid AMI removal

readme A file containing any product and information updates that have
become available since this documentation was produced

 Installation
Installation can be carried out manually, or using the amtInstall utility.

 Manual installation
Restore the tar file amt155.tar. This should be done under the base MQSeries
directory /opt/mqm, so that the AMI tar file restores to a directory structure
consistent with MQSeries. This operation usually requires root access. Existing
files will be overwritten.

 Using amtInstall
1. Login as root

 2. Execute amtInstall <directory>

where <directory> is the directory containing the amt155.tar file.

The amtInstall utility will unpack the tar file into the correct location and provide all
the necessary links for your environment. Existing files will be overwritten.

Note: All files and directories created must be accessible to all AMI users. These
files are listed in “Directory structure (HP-UX)” on page 440.

Removing the AMI
Run the amtRemove utility to remove all the files that were created by amtInstall.

438 MQSeries Application Messaging Interface

 Installation on HP-UX

Setting the runtime environment
Make sure the location of the AMI runtime binary files is added to your PATH
environment variable. For example:

 export PATH=$PATH:/opt/mqm/lib:

Note: The above step is not needed if you used the amtInstall utility.

In addition, for the samples:

 export PATH=$PATH:/opt/mqm/amt/samp/C/bin:/opt/mqm/amt/samp/Cpp/bin:

 Java programs
When running Java, there are some additional steps.

The AMI classes must be contained in the CLASSPATH, for example:

 export CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mq.amt.jar:

In addition, for the samples:

 export CLASSPATH=$CLASSPATH:/opt/mqm/amt/samp/java/bin
 /com.ibm.mq.amt.samples.jar:

Also, in order to load the AMI library for Java:

 export SHLIB_PATH=$SHLIB_PATH:/opt/mqm/lib:

 Next step

Now go to “Local host and repository files (Unix and Windows)” on page 454 to
continue the installation procedure.

 Chapter 17. Installation and sample programs 439

 Installation on HP-UX

Directory structure (HP-UX)
The AMI tar file contains:

/amt/amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

/amt/amthost.xml : Sample AMI XML file used as the default host file

/amt/amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

/amt/inc
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI

| oamasami.h : The C header file for the OAMAS AMI subset

/amt/ipla : The International Program License Agreement file
/amt/li : The License Information file

/java/lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

/lib
libamt_r.sl : The main AMI threaded library

| libamtXML315_r.sl : The AMI threaded XML parsing library
libamtCpp_r.sl : The AMI C++ threaded library
libamtJava.sl: The AMI JNI library

| libamtICUUC145_r.sl : The AMI codepage translation threaded library
| libamtICUDATA.sl: The AMI codepage translation data library.

amtcmqm_r : Dynamic binding stub for MQSeries Server threaded library
amtcmqic_r : Dynamic binding stub for MQSeries Client threaded library

/amt/samp
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects
required by AMI samples

amt.xml : Sample AMI XML repository for use with the AMI samples

/amt/samp/C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample

| amtsofsn.c : C source for object-level send file sample
| amtsofrc.c : C source for object-level receive file sample
| amtsosgs.c : C source for object-level send group sample
| amtsosgr.c : C source for object-level receive group sample

amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample
amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample

| amtshfsn.c : C source for high-level send file sample
| amtshfrc.c : C source for high-level receive file sample

440 MQSeries Application Messaging Interface

 Installation on HP-UX

/amt/samp/C/bin
amtsosnd : C object-level send and forget sample program
amtsorcv : C object-level receiver sample program
amtsoclt : C object-level client sample program
amtsosvr : C object-level server sample program
amtsopub : C object-level publisher sample program
amtsosub : C object-level subscriber sample program

| amtsofsn : C object-level send file sample program
| amtsofrc : C object-level receive file sample program
| amtsosgs : C object-level send group sample program
| amtsosgr : C object-level receive group sample program

amtshsnd : C high-level send and forget sample program
amtshrcv : C high-level receiver sample program
amtshclt : C high-level client sample program
amtshsvr : C high-level server sample program
amtshpub : C high-level publisher sample program
amtshsub : C high-level subscriber sample program

| amtshfsn : C high-level send file sample program
| amtshfrc : C high-level receive file sample program

/amt/samp/Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample

| ReceiveFile.cpp : C++ source for receive file sample
| SendFile.cpp : C++ source for send file sample

/amt/samp/Cpp/bin
SendAndForget : C++ send and forget sample program
Receiver : C++ receiver sample program
Client : C++ client sample program
Server : C++ server sample program
Publisher : C++ publisher sample program
Subscriber : C++ subscriber sample program

| ReceiveFile : C++ source for receive file sample
| SendFile : C++ source for send file sample

/amt/samp/java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample

| ReceiveFile.java : Java source for receive file sample
| SendFile.java : Java source for send file sample

/amt/samp/java/bin
com.ibm.mq.amt.samples.jar : The jar file containing the AMI
samples class files for Java

 Chapter 17. Installation and sample programs 441

 Installation on Sun Solaris

Installation on Sun Solaris
The AMI package for Sun Solaris comes as a compressed archive file,
ma5f_sol.tar.Z. Uncompress and restore it as follows:

1. Login as root

2. Store ma5f_sol.tar.Z in /tmp

3. Execute uncompress -fv /tmp/ma5f_sol.tar.Z

4. Execute tar -xvf /tmp/ma5f_sol.tar

 5. Execute rm /tmp/ma5f_sol.tar

This creates the following files:

amt100.tar A standard tar file containing the AMI files

amtInstall A script file to aid AMI installation

amtRemove A script file to aid AMI removal

readme A file containing any product and information updates that have
become available since this documentation was produced

 Installation
Installation can be carried out manually, or using the amtInstall utility.

 Manual installation
Restore the tar file amt155.tar. This should be done under the base MQSeries
directory /opt/mqm, so that the AMI tar file restores to a directory structure
consistent with MQSeries. This operation usually requires root access. Existing
files will be overwritten.

 Using amtInstall
1. Login as root

 2. Execute amtInstall <directory>

where <directory> is the directory containing the amt155.tar file.

The amtInstall utility will unpack the tar file into the correct location and provide the
necessary links for your environment. Existing files will be overwritten.

Note: All files and directories created must be accessible to all AMI users. These
files are listed in “Directory structure (Solaris)” on page 444.

Removing the AMI
Run the amtRemove utility to remove all the files that were created by amtInstall.

442 MQSeries Application Messaging Interface

 Installation on Sun Solaris

Setting the runtime environment
Make sure the location of the AMI runtime binary files is added to your PATH
environment variable. For example:

 export PATH=$PATH:/opt/mqm/lib:

Note: The above step is not needed if you used the amtInstall utility.

In addition, for the samples:

 export PATH=$PATH:/opt/mqm/amt/samp/C/bin:/opt/mqm/amt/samp/Cpp/bin:

 Java programs
When running Java, there are some additional steps.

The AMI classes must be contained in the CLASSPATH, for example:

 export CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mq.amt.jar:

In addition, for the samples:

 export CLASSPATH=$CLASSPATH:/opt/mqm/amt/samp/java/bin
 /com.ibm.mq.amt.samples.jar:

Also, in order to load the AMI library for Java:

 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mqm/lib:

 Next step

Now go to “Local host and repository files (Unix and Windows)” on page 454 to
continue the installation procedure.

 Chapter 17. Installation and sample programs 443

 Installation on Sun Solaris

Directory structure (Solaris)
The AMI tar file contains:

/amt/amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

/amt/amthost.xml : Sample AMI XML file used as the default host file

/amt/amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

/amt/inc
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI

| oamasami.h : The C header file for the OAMAS AMI subset

/amt/ipla : The International Program License Agreement file
/amt/li : The License Information file

/java/lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

/lib
libamt.so : The main AMI library

| libamtXML315.so : The AMI XML parsing library
libamtCpp.so : The AMI C++ library
libamtJava.so: The AMI JNI library

| libamtICUUC145.so : The AMI codepage translation library
| libamtICUDATA.so : The AMI codepage translation data library

amtcmqm : Dynamic binding stub for MQSeries Server library
amtcmqic : Dynamic binding stub for MQSeries Client library

/amt/samp
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects
required by AMI samples

amt.xml : Sample AMI XML repository for use with the AMI samples

/amt/samp/C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample

| amtsofsn.c : C source for object-level send file sample
| amtsofrc.c : C source for object-level receive file sample
| amtsosgs.c : C source for object-level send group sample
| amtsosgr.c : C source for object-level receive group sample

amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample
amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample

| amtshfsn.c : C source for high-level send file sample
| amtshfrc.c : C source for high-level receive file sample

444 MQSeries Application Messaging Interface

 Installation on Sun Solaris

/amt/samp/C/bin
amtsosnd : C object-level send and forget sample program
amtsorcv : C object-level receiver sample program
amtsoclt : C object-level client sample program
amtsosvr : C object-level server sample program
amtsopub : C object-level publisher sample program
amtsosub : C object-level subscriber sample program

| amtsofsn : C object-level send file sample program
| amtsofrc : C object-level receive file sample program
| amtsosgs : C object-level send group sample program
| amtsosgr : C object-level receive group sample program

amtshsnd : C high-level send and forget sample program
amtshrcv : C high-level receiver sample program
amtshclt : C high-level client sample program
amtshsvr : C high-level server sample program
amtshpub : C high-level publisher sample program
amtshsub : C high-level subscriber sample program

| amtshfsn : C high-level send file sample program
| amtshfrc : C high-level receive file sample program

/amt/samp/Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample

| ReceiveFile.cpp : C++ source for receive file sample
| SendFile.cpp : C++ source for send file sample

/amt/samp/Cpp/bin
SendAndForget : C++ send and forget sample program
Receiver : C++ receiver sample program
Client : C++ client sample program
Server : C++ server sample program
Publisher : C++ publisher sample program
Subscriber : C++ subscriber sample program

| ReceiveFile : C++ source for receive file sample
| SendFile : C++ source for send file sample

/amt/samp/java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample

| ReceiveFile.java : Java source for receive file sample
| SendFile.java : Java source for send file sample

/amt/samp/java/bin
com.ibm.mq.amt.samples.jar : The jar file containing the AMI
samples class files for Java

 Chapter 17. Installation and sample programs 445

 Installation on Windows

Installation on Windows
The AMI package for Windows 98 and Windows NT comes as a zip file,
ma5f_nt.zip. Once unzipped it comprises:

readme A file containing any product and information updates that have
become available since this documentation was produced

setup InstallShield installation program for MQSeries AMI

In addition, it contains files used by the setup program.

 Installation
1. Create an empty directory called tmp and make it current.
2. Store the ma5f_nt.zip file in this directory.
3. Uncompress it into tmp using Info-ZIP’s UnZip program (or other unzip

program).
 4. Run setup.
5. Delete the tmp directory.

The files and directories created are listed in “Directory structure (Windows)” on
page 447.

Removing the AMI
To uninstall the Application Messaging Interface, use the Add/Remove Programs
control panel.

Note: You must remove the AMI entries from the CLASSPATH (for instance,
C:\MQSeries\java\lib\com.ibm.mq.amt.jar; and
C:\MQSeries\amt\samples\java\bin\com.ibm.mq.amt.samples.jar;). These will not be
removed by Add/Remove Programs.

In addition, if you specified a directory other than the default during installation, you
must remove this directory from the PATH environment variable.

Setting the runtime environment
| By default, the location of the AMI runtime binary files matches that of MQSeries
| (for example C:\MQSeries\bin). If you specified a different directory for the runtime
| files, you must add it to the PATH environment variable.

(See also “Removing the AMI.”)

To use the samples, add the sample C and C++ binary directories to your PATH
environment variable. For example (assuming that the root directory for MQSeries
is C:\MQSeries):

 set PATH=%PATH%;C:\MQSeries\amt\samples\C\bin;
 C:\MQSeries\amt\samples\Cpp\bin;

When running Java, the AMI classes (C:\MQSeries\java\lib\com.ibm.mq.amt.jar)
and samples (C:\MQSeries\amt\samples\java\bin\com.ibm.mq.amt.samples.jar)
must be contained in the CLASSPATH environment variable. This is done by the
setup program.

446 MQSeries Application Messaging Interface

 Installation on Windows

 Next step

Now go to “Local host and repository files (Unix and Windows)” on page 454 to
continue the installation procedure.

Directory structure (Windows)
On Windows platforms the directory structure contains:

\amt\amtsdfts.tst : MQSeries mqsc command file to create default MQSeries
objects required by the AMI

\amt\amthost.xml : Sample AMI XML file used as the default host file

\amt\amt.dtd : AMI Document Type Definition file on which the AMI
repository is based

\amt\include
amtc.h : The C header file for the AMI
amtcpp.hpp : The C++ header file for the AMI

| oamasami.h: The C header file for the OAMAS AMI subset

\amt\ipla : The International Program License Agreement file
\amt\li : The License Information file

\java\lib
com.ibm.mq.amt.jar : The jar file containing the AMI classes for Java

\bin
amt.dll : The main AMI library
amt.lib : The AMI LIB file used for building C programs

| amtXML315.dll : The AMI XML parsing library
amtCpp.dll : The AMI C++ library
amtCpp.lib : The AMI LIB file used for building C++ programs
amtJava.dll: The AMI JNI library

| amtICUUC145.dll : The AMI codepage translation library
| amtICUDATA.dll: The AMI codepage translation data library

MSVCRT.DLL : Main MVSC runtime library
MSVCIRT.DLL : Iostream MSVC runtime library

\amt\samples
amtsamp.tst : MQSeries mqsc command file to create MQSeries objects
required by AMI samples

amt.xml : Sample AMI XML repository for use with the AMI samples

 Chapter 17. Installation and sample programs 447

 Installation on Windows

\amt\samples\C
amtsosnd.c : C source for object-level send and forget sample
amtsorcv.c : C source for object-level receiver sample
amtsoclt.c : C source for object-level client sample
amtsosvr.c : C source for object-level server sample
amtsopub.c : C source for object-level publisher sample
amtsosub.c : C source for object-level subscriber sample

| amtsofsn.c : C source for object-level send file sample
| amtsofrc.c : C source for object-level receive file sample
| amtsosgs.c : C source for object-level send group sample
| amtsosgr.c : C source for object-level receive group sample

amtshsnd.c : C source for high-level send and forget sample
amtshrcv.c : C source for high-level receiver sample
amtshclt.c : C source for high-level client sample
amtshsvr.c : C source for high-level server sample
amtshpub.c : C source for high-level publisher sample
amtshsub.c : C source for high-level subscriber sample

| amtshfsn.c : C source for high-level send file sample
| amtshfrc.c : C source for high-level receive file sample

\amt\samples\C\bin
amtsosnd.exe : C object-level send and forget sample program
amtsorcv.exe : C object-level receiver sample program
amtsoclt.exe : C object-level client sample program
amtsosvr.exe : C object-level server sample program
amtsopub.exe : C object-level publisher sample program
amtsosub.exe : C object-level subscriber sample program

| amtsofsn.exe : C object-level send file sample program
| amtsofrc.exe : C object-level receive file sample program
| amtsosgs.exe : C object-level send group sample program
| amtsosgr.exe : C object-level receive group sample program

amtshsnd.exe : C high-level send and forget sample program
amtshrcv.exe : C high-level receiver sample program
amtshclt.exe : C high-level client sample program
amtshsvr.exe : C high-level server sample program
amtshpub.exe : C high-level publisher sample program
amtshsub.exe : C high-level subscriber sample program

| amtshfsn.exe : C high-level send file sample program
| amtshfrc.exe : C high-level receive file sample program

\amt\samples\Cpp
SendAndForget.cpp : C++ source for send and forget sample
Receiver.cpp : C++ source for receiver sample
Client.cpp : C++ source for client sample
Server.cpp : C++ source for server sample
Publisher.cpp : C++ source for publisher sample
Subscriber.cpp : C++ source for subscriber sample

| ReceiveFile.cpp : C++ source for receive file sample
| SendFile.cpp : C++ source for send file sample

\amt\samples\Cpp\bin
SendAndForget.exe : C++ send and forget sample program
Receiver.exe : C++ receiver sample program
Client.exe : C++ client sample program
Server.exe : C++ server sample program
Publisher.exe : C++ publisher sample program
Subscriber.exe : C++ subscriber sample program

448 MQSeries Application Messaging Interface

 Installation on Windows

| ReceiveFile.exe : C++ receive file sample program
| SendFile.exe : C++ send file sample program

\amt\samples\java
SendAndForget.java : Java source for send and forget sample
Receiver.java : Java source for receiver sample
Client.java : Java source for client sample
Server.java : Java source for server sample
Publisher.java : Java source for publisher sample
Subscriber.java : Java source for subscriber sample

| ReceiveFile.java : Java source for receive file sample
| SendFile.java : Java source for send file sample

\amt\samples\java\bin
com.ibm.mq.amt.samples.jar : The jar file containing the AMI
samples class files for Java

 Chapter 17. Installation and sample programs 449

 Installation on OS/390

| Installation on OS/390
| The AMI is installed automatically with MQSeries for OS/390 Version 2.2.

| Installation
| The files and directories created are listed in “Directory structure (OS/390)” on
| page 452.

| Setting the runtime environment

| Batch and RRS-batch
| Make sure that the location of the AMI runtime library is added to your JCL
| STEPLIB concatenation.

| IMS
| Make sure that the location of the AMI runtime library is added to your IMS
| message processing region JCL STEPLIB concatenation.

| CICS
| Make sure that the location of the AMI runtime library is added to your region’s
| DFHRPL concatenation, and the AMI library is defined in your CICS CSD. A
| sample CSD script to help define the AMI library to CICS is supplied
| inhlq.SCSQPROC(AMTCSD10).

| Unicode character conversion
| If your OS/390 installation predates OS/390 V2 R9, applications that use the AMI
| publish subscribe calls, message element calls, and file transfer calls may need to
| perform some extra configuration. This configuration enables the Language
| Environment support for Unicode character conversion. With OS/390 V2 R9, the
| Unicode conversion tables were replaced with direct Unicode converters, enabling
| higher performance and removing the need for this extra configuration. Refer to
| the OS/390 V2R9.0 C/C++ Compiler and Run-Time Migration Guide for more
| details.

| Batch, RRS-batch, IMS
| If your Language Environment is installed in a non-default location, you will need to
| set the environment variable _ICONV_UCS2_PREFIX to specify the value of your
| installation prefix before running your AMI application. This ensures that the AMI
| has access to Unicode character conversion tables. See the OS/390 C/C++
| Programming Guide for examples of setting this environment variable.

| CICS
| OS/390 releases before OS/390 V2 R9 do not support Unicode character
| conversions under CICS. This makes it impossible to use AMI publish subscribe
| and message element support with prior versions of OS/390.

| OS/390 V2 R9 is required to enable AMI publish subscribe or message element
| support under CICS.

|

450 MQSeries Application Messaging Interface

 Installation on OS/390

| Next step

| Now go to “Local host and repository files (OS/390)” on page 456 to continue
| the installation procedure.

 Chapter 17. Installation and sample programs 451

 Installation on OS/390

| Directory structure (OS/390)
| On OS/390 platforms the directory structure contains the following (where ‘hlq’ is
| the high-level qualifier of the AMI installation):

| hlq.SCSQLOAD
| AMTBL15 : The main AMI library (batch)
| AMTCL15 : The main AMI library (CICS)
| AMTIL15 : The main AMI library (IMS)
| AMTRL15 : The main AMI library (RRS-batch)
| AMTBS15 : Stub to build COBOL applications (batch)
| AMTCS15 : Stub to build COBOL applications (CICS)
| AMTIS15 : Stub to build COBOL applications (IMS)
| AMTRS15 : Stub to build COBOL applications (RRS-batch)
| AMTASM15 : Repository cache generator

| hlq.SCSQANLE
| AMTMSE15 : US English messages
| AMTMSG15 : US English messages

| hlq.SCSQANLU
| AMTMSG15 : Uppercase US English messages
| AMTMSU15 : Uppercase US English messages

| hlq.SCSQANLK
| AMTMSG15 : Kanji messages
| AMTMSK15 : Kanji messages

| hlq.SCSQANLC
| AMTMSG15 : Chinese messages
| AMTMSC15 : Chinese messages

| hlq.SCSQC375
| AMTC : The C header file for the AMI

| hlq.SCSQCOBC
| AMTELEML : COBOL copybook for the AMELEM structure
| AMTELEMV : COBOL copybook for the AMELEM structure, with default values
| AMTV : The main COBOL copybook for the AMI

| hlq.SCSQPROC
| AMT : Sample AMI XML repository for use with the AMI samples.
| AMTCSD15 : CICS definitions for the AMI library.
| AMTHOST : Sample AMI XML file for use as the default host file (UTF-8).
| AMTHOST2 : Sample AMI XML file for use as the default host file
| (EBCDIC 1547).
| AMTSDFTS : MQSeries mqsc command file to create default MQSeries objects
| required by the AMI.
| AMTSAMP : MQSeries mqsc command file to create MQSeries objects required
| by AMI samples.

| hlq.SCSQDEFS
| AMTBD15 : DLL side-deck to build C applications (batch)
| AMTCD15 : DLL side-deck to build C applications (CICS)
| AMTRD15 : DLL side-deck to build C applications (RRS-batch)
| AMTID15 : DLL side-deck to build C applications (IMS)

452 MQSeries Application Messaging Interface

 Installation on OS/390

| hlq.SCSQCOBS (COBOL samples for Batch, RRS, CICS, and IMS)
| AMTVHSND : COBOL source for high-level send and forget sample
| AMTVHRCV : COBOL source for high-level receiver sample
| AMTVHCLT : COBOL source for high-level client sample
| AMTVHSVR : COBOL source for high-level server sample
| AMTVHPUB : COBOL source for high-level publisher sample
| AMTVHSUB : COBOL source for high-level subscriber sample
| AMTVHFSN : COBOL source for high-level group send file transfer sample
| AMTVHFRC : COBOL source for high-level group receive file transfer sample
| AMTVOSND : COBOL source for object-level send and forget sample
| AMTVORCV : COBOL source for object-level receiver sample
| AMTVOCLT : COBOL source for object-level client sample
| AMTVOSVR : COBOL source for object-level server sample
| AMTVOPUB : COBOL source for object-level publisher sample
| AMTVOSUB : COBOL source for object-level subscriber sample
| AMTVOSGS : COBOL source for object-level group send sample
| AMTVOSGR : COBOL source for object-level group receive sample
| AMTVOFSN : COBOL source for object-level send file transfer sample
| AMTVOFRC : COBOL source for object-level receive file transfer sample

| hlq.SCSQC37S (C samples for Batch, RRS, CICS, and IMS)
| AMTSHSND : C source for high-level send and forget sample
| AMTSHRCV : C source for high-level receiver sample
| AMTSHCLT : C source for high-level client sample
| AMTSHSVR : C source for high-level server sample
| AMTSHPUB : C source for high-level publisher sample
| AMTSHSUB : C source for high-level subscriber sample
| AMTSHFSN : C source for high-level group send file transfer sample
| AMTSHFRC : C source for high-level group receive file transfer sample
| AMTSOSND : C source for object-level send and forget sample
| AMTSORCV : C source for object-level receiver sample
| AMTSOCLT : C source for object-level client sample
| AMTSOSVR : C source for object-level server sample
| AMTSOPUB : C source for object-level publisher sample
| AMTSOSUB : C source for object-level subscriber sample
| AMTSOSGS : C source for object-level group send sample
| AMTSOSGR : C source for object-level group receive sample
| AMTSOFSN : C source for object-level send file transfer sample
| AMTSOFRC : C source for object-level receive file transfer sample

 Chapter 17. Installation and sample programs 453

 Local host and repository files (Unix and Windows)

Local host and repository files (Unix and Windows)
The AMI uses a repository file and a local host file. Their location and names must
be specified to the AMI.

 Default location
The default directory for the files on UNIX is:

 /usr/mqm/amt (AIX)

 /opt/mqm/amt (HP-UX, Solaris)

On Windows, the default location is a directory called \amt under the user specified
MQSeries file directory. For example, if MQSeries is installed in the C:\MQSeries
directory, the default directory for the AMI data files on Windows NT is:

 C:\MQSeries\amt

 Default names
The default name for the repository file is amt.xml, and the default name for the
host file is amthost.xml.

A sample host file (which can be used as a default) is provided in the correct
location. A sample repository file is located in the following directory:

 /amt/samp (UNIX)

 \amt\samples (Windows)

Overriding the default location and names
You can override where the AMI looks for the repository and local host files by
using an environment variable:

export AMT_DATA_PATH = /directory (UNIX)

set AMT_DATA_PATH = X:\directory (Windows)

You can override the default names of the repository and local host files by using
environment variables:

export AMT_REPOSITORY = myData.xml (UNIX)
export AMT_HOST = myHostFile.xml

set AMT_REPOSITORY = myData.xml (Windows)
set AMT_HOST = myHostFile.xml

The directories intlFiles and locales, and the .txt and .cnv files in the locales
directory, must be located relative to the directory containing the local host file.
This applies whether you are using the default directory or have overridden it as
described above.

In C++ and Java there is an extra level of flexibility in setting the location and
names of the repository and local host files. You can specify the directory in which
they are located by means of a name in the constructor of the AmSessionFactory
class:

 AmSessionFactory(name);

454 MQSeries Application Messaging Interface

 Local host and repository files (Unix and Windows)

This name is equivalent to the AMT_DATA_PATH environment variable. If set, the
name of the AmSessionFactory takes precedence over the AMT_DATA_PATH
environment variable.

The repository and local host file names can be set using methods of the
AmSessionFactory class:

 setRepository(name);
 setLocalHost(name);

These AmSessionFactory methods take precedence over the AMT_REPOSITORY
and AMT_HOST environment variables.

Once an AmSession has been created using an AmSessionFactory, the repository
and local host file names and location are set for the complete life of that
AmSession.

Local host file
An AMI installation must have a local host file. It defines the mapping from a
connection name (default or repository defined) to the name of the MQSeries
queue manager that you want to connect to on your local machine.

If you are not using a repository, or are opening (or initializing) a session using a
policy that does not define a connection, the connection name is assumed to be
defaultConnection. Using the sample amthost.xml file, as shown below, this maps
to an empty string that defines a connection with the default queue manager.

<?xml version="1.5" encoding="UTF-8"?>
<queueManagerNames

defaultConnection = ""
 connectionName1 = "queueManagerName1"
 connectionName2 = "queueManagerName2"
/>

To change the default connection to a named queue manager of your choice, such
as ‘QMNAME’, edit the local host file to contain the following string:

defaultConnection = "QMNAME"

If you want a repository defined connection name, such as connectionName1, to
provide a connection to queue manager ‘QMNAME1’, edit the local host file to
contain the following string:

 connectionName1 = "QMNAME1"

The repository connection names are not limited to the values shown
(connectionName1 and connectionName2). Any name can be used provided it is
unique in both the repository and local host files, and consistent between the two.

 Repository file
You can operate an AMI installation with or without a repository file. If you are
using a repository file, such as the sample amt.xml file, you must have a
corresponding amt.dtd file in the same directory (the local host file must be in this
directory as well).

 Chapter 17. Installation and sample programs 455

 Local host and repository files (OS/390)

The repository file provides definitions for policies and services. If you do not use a
repository file, AMI uses its built-in definitions. For more information, see
Chapter 18, “Defining services and policies” on page 471.

| Local host and repository files (OS/390)
| The AMI uses a repository file and a local host file. Their location and names must
| be specified to the AMI.

| Batch, RRS-batch, IMS
| The repository file is optional, and the host file is mandatory. Sample repository
| and host files are installed to hlq.SCSQPROC.

| By default, the AMI uses the DD name AMT (within your job or IMS message
| processing region JCL) to locate the repository file, and the DD name AMTHOST to
| locate the host file.

| Because the repository and host files are located using DD statements in your job
| or IMS message processing region JCL, you can choose which files to use without
| using environment variables. If you do want to use environment variables, you can
| override the locations of these files using the Language Environment ENVAR
| Run-Time Option.

| Example PARM statement for a C application, which changes the DD names used
| for the repository and local host files:

| PARM=('ENVAR(AMT_REPOSITORY=DD:MYREPOS,AMT_HOST=DD:MYHOST) / ARGS')

| Example PARM statement for a COBOL application, which changes the DD name
| used for the repository and local host files:

| PARM=('ARGS / ENVAR(AMT_REPOSITORY=DD:MYREPOS,AMT_HOST=DD:MYHOST)')

| where ARGS are the program's arguments. See the OS/390 Language
| Environment for OS/390 and VM Programming Guide for more information about
| Language Environment Run-Time Options

| CICS
| Under CICS, the AMI does not need a local host file, and the repository file is
| optional. In order to use the sample repository file under CICS, copy the repository
| into a VSAM entry-sequenced dataset using the IDCAMS utilities.

| By default, the AMI uses a CICS FILE definition called AMT to locate the repository
| file.

| As the repository is located using a CICS FILE definition, you can change which file
| to use by changing that definition. You can also change the CICS file name using
| environment variables and the OS/390 C/C++ function setenv():

| setenv("AMT_REPOSITORY", "NAME", 1);

456 MQSeries Application Messaging Interface

 Local host and repository files (OS/390)

| Local host file
| An AMI installation using OS/390 batch, IMS, or RRS-batch must have a local host
| file. It defines the mapping from a connection name (default or repository defined)
| to the name of the MQSeries queue manager that you want to connect to on your
| OS/390 installation. (The local host file is not needed for CICS, because there is
| only one MQSeries queue manager that a given CICS region can connect to).

| If you are not using a repository, or are opening (or initializing) a session using a
| policy that does not define a connection, the connection name is assumed to be
| defaultConnection. Using the sample AMTHOST file, as shown below, this maps to
| an empty string that defines a connection with the default queue manager.

| <?xml version="1.5" encoding="UTF-8"?>
| <queueManagerNames
| defaultConnection = ""
| connectionName1 = "queueManagerName1"
| connectionName2 = "queueManagerName2"
| />

| To change the default connection to a named queue manager of your choice, such
| as ‘QMNAME’, edit the local host file to contain the following string:

| defaultConnection = "QMNAME"

| If you want a repository defined connection name, such as connectionName1, to
| provide a connection to queue manager ‘QMNAME1’, edit the local host file to
| contain the following string:

| connectionName1 = "QMNAME1"

| The repository connection names are not limited to the values shown
| (connectionName1 and connectionName2). Any name can be used provided it is
| unique in both the repository and local host files, and consistent between the two.

| “Repository and local host caches” explains how to use a local host cache instead
| of a local host file.

| Repository file
| You can operate an AMI installation with or without a repository file. The repository
| file provides definitions for policies and services. If you do not use a repository file,
| AMI uses its built-in definitions. For more information, see Chapter 18, “Defining
| services and policies” on page 471.

| “Repository and local host caches” explains how to use a repository cache instead
| of a repository file.

| Repository and local host caches
| On OS/390, you can generate caches for use instead of repository and local host
| files. This gives a higher performance alternative to the files, but requires some
| additional configuration.

 Chapter 17. Installation and sample programs 457

 Local host and repository files (OS/390)

| Generating caches
| The AMI on OS/390 includes a program (AMTASM10) that generates assembler
| source code defining repository and local host caches. This program runs in a
| similar manner to any AMI batch program, and outputs a repository cache definition
| to the DD name ASMREPOS, and a local host cache to the DD name ASMHOST.
| The cache generator issues messages to the SYSPRINT data set, and returns zero
| if it is successful.

| Here is a sample JCL fragment to run the cache generator (with US English
| messages):

| //GO EXEC PGM=AMTASM15
| //STEPLIB DD DSN=hlq.SCSQLOAD,DISP=SHR
| // DD DSN=hlq.SCSQANLE,DISP=SHR
| //AMTHOST DD DSN=hlq.SCSQPROC(AMTHOST),DISP=SHR
| //AMT DD DSN=hlq.SCSQPROC(AMT),DISP=SHR
| //SYSPRINT DD SYSOUT=:
| //ASMHOST DD DSN=target(AMTHOST),DISP=SHR
| //ASMREPOS DD DSN=target(AMT),DISP=SHR

| When you have generated assembler source code successfully for your repository
| and host file cache, you must assemble and link edit them. Messages returned by
| the repository and cache generator are described below.

| Using a cache
| When your application creates an AMI session, the AMI first tries to load caches,
| before it tries to open files. The module that the AMI loads has the same name as
| the corresponding filename, that is AMT for the repository file and AMTHOST for the
| local host file. You can modify the name that will be loaded using environment
| variables as discussed in “Batch, RRS-batch, IMS” on page 456 and “CICS” on
| page 456.

| Batch, RRS-batch, and IMS applications must include the dataset that contains
| your cache in the JCL STEPLIB. There is no need to use DD AMT or DD
| AMTHOST statements to locate the cached files.

| CICS applications must add the dataset that contains the cache to the region
| DFHRPL, and define the cache to CICS using the CICS supplied CEDA
| transaction. There is no need to define the AMT file to CICS.

| Repository and cache generator messages
| The following messages are issued by the repository and cache generator. Terms
| like "%li" will be printed as decimal numbers; they hold the AMI completion and
| reason codes.

458 MQSeries Application Messaging Interface

 Local host and repository files (OS/390)

| "AMT5551W AMI MESSAGE MODULE NOT FOUND"

| /::/
| /: Explanation: :/
| /: The AMI failed to load its message module. :/
| /: User Response: :/
| /: Batch, IMS: Ensure that one of the language-specific datasets is :/
| /: in your STEPLIB concatenation. :/
| /: CICS: Ensure that one of the language-specific datasets is :/
| /: in your DFHRPL concatenation, and the message module :/
| /: AMTMSG15 is defined to CICS. :/
| /::/

| "AMT5552W AMI failure, AMCC=%li, AMRC=%li"

| /:::/
| /: Explanation: :/
| /: An AMI operation failed. :/
| /: User Response: :/
| /: See the MQSeries Application Messaging Interface Manual for an :/
| /: explanation of CompCode, AMCC, and Reason, AMRC. :/
| /:::/

| "AMT5553I AMI repository cache warning, AMCC=%li, AMRC=%li"

| /:::/
| /: Explanation: :/
| /: An AMI operation generated a warning. :/
| /: User Response: :/
| /: See the MQSeries Application Messaging Interface Manual for an :/
| /: explanation of CompCode, AMCC, and Reason, AMRC. :/
| /:::/

| "AMT5554I AMI repository cache created"

| /:::/
| /: Explanation: :/
| /: A repository cache was successfully created. :/
| /: User Response: :/
| /: None. :/
| /:::/

| "AMT5555I AMI host file cache created"

| /:::/
| /: Explanation: :/
| /: A host file cache was successfully created. :/
| /: User Response: :/
| /: None. :/
| /:::/

 Chapter 17. Installation and sample programs 459

 The administration tool

The administration tool
| The AMI administration tool is for use on Windows NT Version 4 only.

| Installation
| The administration tool is packaged with the AMI in ma5f_nt.zip and optionally
| installed with the AMI using the setup InstallShield program (see “Installation on
| Windows” on page 446). It is installed in sub-directory amt\AMITool.

To start the AMI administration program, select IBM MQSeries AMI \ IBM
MQSeries AMI Administration Tool using the Start Programs menu, or
double-click on the file \amt\AMITool\amitool.bat.

To verify that the tool has been installed correctly, click on Open in the File menu,
navigate to the \amt\AMItool directory, and open the file amiSample.xml. You
should see a number of services and policies in the navigation pane on the left.
Select one of them by clicking on it, and you should see its attributes displayed in
the pane on the right.

 Operation
The administration tool enables you to create definitions for:

Service points used to create sender or receiver services
Distribution lists must include at least one sender service
Publishers must include a sender service as the broker service
Subscribers must include sender and receiver services as the broker and

receiver services
Policies contain sets of attributes: initialization, general, send, receive,

publish, subscribe

The default attributes provided by the tool are as specified in “Service definitions”
on page 474 and “Policy definitions” on page 477.

When you have entered the definitions you require, select Save in the File menu to
save them as an XML-format repository file. It is recommended that you define all
your services and policies in the same repository file.

The repository file must be copied to a location where it can be accessed by the
AMI (see “Local host and repository files (Unix and Windows)” on page 454). If the
Application Messaging Interface is on the same system as the tool, the repository
file can be copied to the AMI directory. Otherwise, the repository file must be
transferred to that system using a method such as file sharing or FTP.

Note: In order to open an existing repository file (including the amt.xml file
provided in the samples directory), the repository file and the amt.dtd file must both
be in the same directory.

Further information can be found in the AMI administration tool online help.

460 MQSeries Application Messaging Interface

 Connecting to MQSeries

Connecting to MQSeries
You can connect to MQSeries, the transport layer, using an MQSeries server or an
MQSeries client. Using the default policy, the AMI automatically detects whether it
should connect directly or as a client. If you have an installation that has both an
MQSeries client and an MQSeries queue manager, and you want the AMI to use
the client for its connection, you must specify the Connection Type as Client in the
policy initialization attributes (see “Policy definitions” on page 477).

Using MQSeries Integrator Version 1
If you are using the AMI with MQSeries Integrator Version 1, the Service Type for
the sender service point must be defined in the repository as MQSeries Integrator
V1 (see “Service definitions” on page 474). This causes an MQRFH header
containing application group and message type name/value elements to be added
to a message when it is sent.

The Application Group definition is included in the policy send attributes (see
“Policy definitions” on page 477). The message type is defined as the message
format value set in the message object (using amMsgSetFormat, for example). If
this is set to AMFMT_NONE, the message type is defined as the Default Format for
the sender service point (a maximum of eight characters in MQSeries). If you wish
to specify the message type directly, you must do this explicitly using the
amMsgAddElement function in C, or the equivalent addElement method in C++
and Java. This allows you to add a message type that differs from the message
format, and is more than eight characters long.

Using MQSeries Publish/Subscribe
If you want to use the publish/subscribe functions of the AMI, you must have
MQSeries Publish/Subscribe installed (see the MQSeries Publish/Subscribe User’s
Guide). The Service Type for the sender and receiver service points used by the
publisher and subscriber must be defined in the repository as MQRFH (see
“Service definitions” on page 474). This causes an MQRFH header containing
publish/subscribe name/value elements to be added to a message when it is sent.

| Using MQSeries Integrator Version 2
| You can use your existing AMI repository file, MQSeries Publish/Subscribe
| applications, and MQSeries Integrator Version 1 (MQSI V1) applications unchanged
| with MQSeries Integrator Version 2 (MQSI V2).

| Alternatively, if you are writing a new application or wish to exploit some of the
| additional function provided by MQSI V2, you should specify 'MQSeries Integrator
| V2' or 'RF Header V2' for the Service Type of 'Service Points' in your repository file.
| This is accomplished using the AMI Administration Tool.

| The AMI makes it easy for applications to send messages to and receive messages
| from MQSI V2 and to exploit its publish and subscribe functions.

| Applications send messages to MQSI V2 using the standard AMI send verbs. If the
| service point has been defined as a Service Type of 'MQSeries Integrator V2', the
| AMI will automatically build an MQRFH2 header at the beginning of the message
| and add the default MCD parameters from the Service point definition if they have
| been defined. An application can therefore be unaware that it is communicating

 Chapter 17. Installation and sample programs 461

 Connecting to MQSeries

| with MQSI V2. Applications requiring more control can explicitly add the MCD
| information using the amMsgAddElement C, AMSADEL COBOL, or
| AmMessage::addElement C++ and Java calls. The default MCD values will be
| ignored if the application has added the elements to the message explicitly. The
| MQRFH2 and MCD fields are described in the MQSeries Integrator Version 2
| Programming Guide.

| Publish/subscribe applications use the standard publish, subscribe and unsubscribe
| calls. However, subscribing applications can exploit content-based
| publish/subscribe by passing a filter on subscribe and unsubscribe calls. The syntax
| of the filter string is described in the MQSeries Integrator Version 2 Programming
| Guide.

| If you specify the Service Type as 'RF Header V2', then the AMI will select and use
| the Publish and Subscribe policy options applicable to MQSI V2 when sending
| publish, subscribe, and unsubscribe requests to the broker. Default MCD field
| values are ignored and not included in the message.

| If you specify the Service Type as 'MQSeries Integrator V2', then the AMI will select
| and use the Publish and Subscribe policy options that are applicable to MQSI V2
| when sending publish, subscribe and unsubscribe requests. In addition, the AMI will
| insert each of the following values into any message being sent using this service
| point where a non-blank default value has been specified for the item concerned (in
| the Service Point Default MCD value) and the item has not been explicitly added by
| the application:

| message service domain (Default MCD Domain)
| message set (Default MCD Set)
| message type (Default MCD Type)
| message format (Default MCD Format)

| If you wish to perform content-based publish/subscribe operations using MQSI V2,
| then one or more filters must be specified and added to the messages used with
| subscribe requests. A filter can be added to a subscribe (and unsubscribe)
| message by specifying the filter as a parameter with the high-level subscribe (and
| unsubscribe) functions in C and COBOL or by using add filter calls prior to calling
| subscribe (or unsubscribe).

| Note that in addition to add filter, there are delete filter, get filter and get filter count
| functions available for filter manipulation.

| Migrating to MQSeries Integrator V2 from V1 and MQSeries
| Publish/Subscribe
| MQSeries Integrator V2 will support applications written to use MQSI V1 and
| MQSeries Publish/Subscribe. Existing AMI applications and the Service Type in the
| repository Service Point definitions do not therefore need to be changed.

| Applications that want to exploit new functions in MQSI V2 should have their
| Service Point definitions changed to a Service Type of 'MQSeries Integrator V2'
| and, if necessary, use the new AMI calls and parameters.

| Existing publish/subscribe applications that have used the element calls to explicitly
| add name value pairs to the MQRFH can continue to use the same names for the
| elements when migrating to MQSI V2.

462 MQSeries Application Messaging Interface

 Connecting to MQSeries

Creating default MQSeries objects
The Application Messaging Interface makes use of default MQSeries objects, which
must be created prior to using the AMI. This can be done by running the MQSC
script amtsdfts.tst. (You might want to edit this file first, to suit the requirements
of your installation.)

For UNIX and Windows, first start the local queue manager by typing the following
at a command line:

 strmqm {QMName}

where {QMName} is the name of your MQSeries queue manager.

Then run the default MQSC script by typing one of the following:

runmqsc {QMName} < {Location}/amtsdfts.tst (UNIX)

runmqsc {QMName} < {Location}\amtsdfts.tst (Windows)

where {QMName} is the name of your MQSeries queue manager and {Location} is
the location of the amtsdfts.tst file.

| For OS/390, start the local queue manager and then use the CSQUTIL program to
| run the default MQSC script:

| //COMMAND EXEC PGM=CSQUTIL,PARM='QMGR'
| //STEPLIB DD DSN=hlq.SCSQAUTH,DISP=SHR
| // DD DSN=hlq.SQSCANLE,DISP=SHR
| //AMTSDFTS DD DSN=hlq.SCSQPROC(AMTSDFTS),DISP=SHR
| //SYSPRINT DD SYSOUT=:
| //SYSIN DD :
| COMMAND DDNAME(AMTSDFTS)
| /:

| where hlq is the high level qualifier of your MQSeries installation, and QMGR is your
| queue manager name.

 Chapter 17. Installation and sample programs 463

 The sample programs

| The sample programs
| Sample programs are provided to illustrate the use of the Application Messaging
| Interface.

| It is recommended that you run one or more of the sample programs to verify that
| you have installed the Application Messaging Interface correctly.

| If you are using the OS/390 platform, go to “Sample programs for OS/390” on
| page 466.

| Sample programs for Unix and Windows
| There are ten basic sample programs for Unix and Windows platforms, performing
| approximately the same function in C, C++, and Java. Consult the source code to
| find out how the programs achieve this functionality. The C samples are provided
| for both the high-level interface and the object interface.

Table 5. The sample programs for Unix and Windows platforms

Description C high-level C object-level C++ Java

A sample that sends a datagram
message, expecting no reply.

amtshsnd amtsosnd SendAndForget SendAndForget

A sample that receives a message,
with no selection.

amtshrcv amtsorcv Receiver Receiver

A sample that sends a request and
receives a reply to this request (a
simple client program).

amtshclt amtsoclt Client Client

A sample that receives requests
and sends replies to these
requests (a simple server
program).

amtshsvr amtsosvr Server Server

A sample that periodically
publishes information on the
weather.

amtshpub amtsopub Publisher Publisher

A sample that subscribes to
information on the weather, and
receives publications based on this
subscription.

amtshsub amtsosub Subscriber Subscriber

A sample that sends messages
using simulated group support.

- amtsosgs - -

A sample that receives messages
using simulated group support.

- amtsosgs - -

| A sample that performs a file
| transfer send on a user supplied
| text file,

| amtshfsn| amtsofsn| SendFile| Sendfile

| A sample that performs a file
| transfer receive on a user supplied
| text file,

| amtshfrc| amtsofrc| ReceiveFile| ReceiveFile

To find the source code and the executables for the samples, see “Directory
structure” on page 435 (AIX), page 440 (HP-UX), page 444 (Solaris), and page 447
(Windows).

464 MQSeries Application Messaging Interface

 The sample programs

Running the Unix and Windows sample programs
Before you can run the sample programs on Unix or Windows platforms, there are
a number of actions to be taken.

 MQSeries objects
The sample programs require some MQSeries objects to be defined. This can be
done with an MQSeries MQSC file, amtsamp.tst, which is shipped with the
samples.

First start the local queue manager by typing the following at a command line:

 strmqm {QMName}

where {QMName} is the name of your MQSeries queue manager.

Then run the sample MQSC script by typing one of the following:

runmqsc {QMName} < {Location}/amtsamp.tst (UNIX)

runmqsc {QMName} < {Location}\amtsamp.tst (Windows)

where {QMName} is the name of your MQSeries queue manager and {Location} is
the location of the amtsamp.tst file.

Repository and host files
Copy the sample repository file, amt.xml, into the default location for your platform
(see “Local host and repository files (Unix and Windows)” on page 454).

Modify the host file so that your MQSeries queue manager name, {QMName}, is
known as defaultConnection.

MQSeries Publish/Subscribe broker
If you are running any of the publish/subscribe samples, you must also start the
MQSeries Publish/Subscribe broker. Type the following at a command line:

strmqbrk -m {QMName}

where {QMName} is the name of your MQSeries queue manager.

Setting the runtime environment
Before you run the AMI samples, make sure that you have set up the runtime
environment. See “Setting the runtime environment” on page 434 (AIX), page 439
(HP-UX), page 443 (Solaris), and page 446 (Windows).

Running the C and C++ samples
You can run a C or C++ sample program by typing the name of its executable at a
command line. For example:

 amtsosnd

will run the “Send and forget” sample written using the C object interface.

 Chapter 17. Installation and sample programs 465

 The sample programs

Running the Java samples
The AMI samples for Java are in a package called:

 com.ibm.mq.amt.samples

In order to invoke them you need to specify the name of the sample plus its
package name. For example, to run the “Send and forget” sample use:

 java com.ibm.mq.amt.samples.SendAndForget

| Sample programs for OS/390
| There are 18 basic sample programs in C for the OS/390 platform, and a matching
| set in COBOL that perform approximately the same function. Consult the source
| code to find out how the programs achieve this functionality. The samples are
| provided for both the high-level interface and the object-level interface in most
| cases.

| There is also a C header file amts39sp that implements environment-specific I/O
| functions for CICS and IMS. This header file is not required to build the samples
| for Batch.

466 MQSeries Application Messaging Interface

 The sample programs

| Table 6. The sample programs for OS/390 (‘batch’ includes RRS-batch)

| Description| C High level| C Object level| COBOL
| High level
| COBOL
| Object level

| A sample that sends a datagram
| message, expecting no reply.
| AMTSHSND| AMTSOSND| AMTVHSND| AMTVOSND

| A sample that receives a message,
| with no selection.
| AMTSHRCV| AMTSORCV| AMTVHRCV| AMTVORCV

| A sample that sends a request and
| receives a reply to this request (a
| simple client program).

| AMTSHCLT| AMTSOCLT| AMTVHCLT| AMTVOCLT

| A sample that receives requests
| and sends replies to these
| requests (a simple server
| program).

| AMTSHSVR| AMTSOSVR| AMTVHSVR| AMTVOSVR

| A sample that periodically
| publishes information on the
| weather.

| AMTSHPUB| AMTSOPUB| AMTVHPUB| AMTVOPUB

| A sample that subscribes to
| information on the weather, and
| receives publications based on this
| subscription.

| AMTSHSUB| AMTSOSUB| AMTVHSUB| AMTVOSUB

| A sample that sends simulated
| group messages. This uses
| object-level calls only.

| Not applicable| AMTSOSGS| Not applicable| AMTVOSGS

| A sample that receives simulated
| group messages. This uses
| object-level calls only.

| Not applicable| AMTSOSGR| Not applicable| AMTVOSGR

| A sample that performs a file
| transfer send on a user-supplied
| text file. Not for use under CICS.

| AMTSHFSN| AMTSOFSN| AMTVHFSN| AMTVOFSN

| A sample that performs a file
| transfer receive on a user-supplied
| text file. Not for use under CICS.

| AMTSHFRC| AMTSOFRC| AMTVHFRC| AMTVOFRC

| To find the source code for the samples, see “Directory structure (OS/390)” on
| page 452.

| Running the sample programs (OS/390)
| Before you can run the sample programs on the OS/390 platform, there are a
| number of actions to be taken.

| Building the sample programs
| The samples for OS/390 are provided as source code only, so you must build them
| before you can run them. See “Building C applications” on page 27 and “COBOL
| applications on OS/390” on page 241.

 Chapter 17. Installation and sample programs 467

 The sample programs

| MQSeries objects
| The sample programs require some MQSeries objects to be defined. This can be
| done with an MQSeries MQSC file, AMTSAMP, which is shipped with the samples.

| First start the local queue manager, as described in the MQSeries System
| Management Guide. If you are using the CICS environment, ensure that the
| MQSeries CICS adapter is set up and the CICS region is connected to the queue
| manager.

| Then run the sample MQSC script AMTSAMP (located in the hlq.SCSQPROC
| dataset) using the MQSeries utility program CSQUTIL. Following is a JCL fragment
| to help you run the utility:

| //COMMAND EXEC PGM=CSQUTIL,PARM='QMGR'
| //STEPLIB DD DSN=hlq.SCSQAUTH,DISP=SHR
| // DD DSN=hlq.SQSCANLE,DISP=SHR
| //AMTSAMP DD DSN=hlq.SCSQPROC(AMTSAMP),DISP=SHR
| //SYSPRINT DD SYSOUT=:
| //SYSIN DD :
| COMMAND DDNAME(AMTSAMP)
| /:

| where hlq is the high level qualifier of your MQSeries installation, and OMGR is your
| queue manager name.

| Repository and host files
| The sample repository AMT (located in hlq.SCSQPROC) is appropriate for use with all
| the sample programs (though many of the samples will work correctly without a
| repository). If you wish to use the repository file, ensure that the sample program
| has access to it, as described in “Local host and repository files (OS/390)” on
| page 456.

| For batch, RRS-batch, and IMS programs (not CICS), copy the sample host file
| AMTHOST from hlq.SCSQPROC to another location, and modify it so that your MQSeries
| queue manager name is defaultConnection. Ensure that the sample program has
| access to the host file, using DD statements as described in “Local host and
| repository files (OS/390)” on page 456.

| MQSeries Publish/Subscribe broker
| In order to use the publish/subscribe samples, you need access to an MQSeries
| Publish/Subscribe broker. Because this is not available on OS/390, you must have
| an MQSeries queue manager and publish/subscribe broker running on another
| platform. You must then set up appropriate channels between the queue managers
| to enable messages sent by the queue managers to reach each other. Finally,
| alter or add queue definitions to ensure that the messages from the sample
| programs flow to the broker, and the messages from the broker flow to the sample
| program.

| Ensure that the remote queue manager and broker are running, and that the
| channels are running.

468 MQSeries Application Messaging Interface

 The sample programs

| Setting the runtime environment
| Make sure your environment has been set to pick up the AMI runtime binary files,
| as described in “Setting the runtime environment” on page 450.

| Running the batch samples
| You can run batch sample programs by constructing a piece of JCL to run the
| program, and submitting that JCL from ISPF. The batch samples can also be used
| as RRS-batch sample programs.

| Running the CICS samples
| Ensure that the CICS DFHRPL includes the load library containing the sample, as
| well as the AMI library. Define the sample program to CICS, as well as a
| transaction to run the program. Finally ensure that the AMI library, sample program
| and sample transaction are installed in your CICS region. Type the transaction
| name into a CICS console to run the sample.

| Running the IMS samples
| Ensure that the IMS message processing region JCL includes the load library that
| contains the sample, as well as the AMI library. Define the sample program and
| transaction name to IMS. Type the transaction name into an IMS console to run
| the sample.

 Chapter 17. Installation and sample programs 469

 The sample programs

470 MQSeries Application Messaging Interface

 Services and policies

Chapter 18. Defining services and policies

Definitions of services and policies created by a system administrator are held in a
repository. The Application Messaging Interface provides a tool to enable the
administrator to set up new services and policies, and to specify their attributes
(see “The administration tool” on page 460).

This chapter contains:

� “Services and policies”

� “Service definitions” on page 474

� “Policy definitions” on page 477

Services and policies
A repository file contains definitions for policies and services. A service is the
generic name for any object to which a send or receive request can be issued, that
is:

 � Sender

 � Receiver

 � Distribution list

| � Subscriber

| � Publisher

Sender and receiver definitions are represented in the repository by a single
definition called a service point.

Policies, and services other than distribution lists, can be created with or without a
corresponding repository definition; distribution lists can be created only with a
corresponding repository definition.

To create a service or policy using the repository, the repository must contain a
definition of the appropriate type with a name that matches the name specified by
the application. To create a sender object named ‘DEBITS’ (using
amSesCreateSender in C, for example) the repository must have a service point
definition named ‘DEBITS’.

Policies and services created with a repository have their contents initialized from
the named repository definition.

If the repository does not contain a matching name, a warning is issued (such as
AMRC_POLICY_NOT_IN_REPOS). The service or policy is then created without
using the repository (unless it is a distribution list).

 Copyright IBM Corp. 1999, 2000 471

 Services and policies

Policies and services created without a repository (either for the above reason, or
because the repository is not used), have their contents initialized from one of the
system provided definitions (see “System provided definitions”).

Definition names in the repository must not start with the characters ‘AMT’ or
‘SYSTEM’.

System provided definitions
The AMI provides a set of definitions for creating services and policies without
reference to a repository.

Table 7. System provided definitions

Definition Description

| AMT.SYSTEM.POLICY| This provides a policy definition with the defaults specified in “Policy
| definitions” on page 477, except that Wait Interval Read Only is not
| selected in the Receive attributes.

| AMT.SYSTEM.SYNCPOINT.POLICY| This provides a policy definition the same as AMT.SYSTEM.POLICY,
| except that Syncpoint is selected in the General attributes.

AMT.SYSTEM.SENDER This provides a sender definition with the defaults specified in
“Service definitions” on page 474, with the Queue Name the same as
the Sender object.

AMT.SYSTEM.RESPONSE.SENDER This provides a sender definition the same as
AMT.SYSTEM.SENDER, except that Definition Type, Queue Name
and Queue Manager Name are set to ‘Undefined’ (that is, set when
used).

AMT.SYSTEM.RECEIVER This provides a receiver definition the same as
AMT.SYSTEM.SENDER.

| AMT.SYSTEM.SUBSCRIBER| This provides a subscriber definition in which the Sender Service has
| the same name as the Subscriber object, and the Receiver Service
| has the same name with the suffix ‘.RECEIVER’.

| AMT.SYSTEM.PUBLISHER| This provides a publisher definition in which the Broker Service has
| the same name as the Publisher object.

System default objects
A set of system default objects is created at session creation time. This removes
the overhead of creating the objects from applications using these defaults. The
system default objects are available for use from the high-level and object-level
interfaces in C. They cannot be accessed using C++ or Java (these languages can
use the built-in definitions to create an equivalent set of objects if required).

The default objects are created using the system provided definitions, as shown in
the following table.

472 MQSeries Application Messaging Interface

 Services and policies

Table 8. System default objects

Default object Definition

SYSTEM.DEFAULT.POLICY AMT.SYSTEM.POLICY

SYSTEM.DEFAULT.SYNCPOINT.POLICY AMT.SYSTEM.SYNCPOINT.POLICY

SYSTEM.DEFAULT.SENDER AMT.SYSTEM.SENDER

SYSTEM.DEFAULT.RESPONSE.SENDER AMT.SYSTEM.RESPONSE.SENDER

SYSTEM.DEFAULT.RECEIVER AMT.SYSTEM.RECEIVER

| SYSTEM.DEFAULT.SUBSCRIBER| AMT.SYSTEM.SUBSCRIBER

| SYSTEM.DEFAULT.PUBLISHER| AMT.SYSTEM.PUBLISHER

SYSTEM.DEFAULT.SEND.MESSAGE N/A

SYSTEM.DEFAULT.RECEIVE.MESSAGE N/A

The default objects can be used explicitly using the AMI constants (see
Appendix B, “Constants” on page 515), or used to provide defaults if a particular
parameter is omitted (by specifying NULL, for instance).

| Handle synonyms are also provided for these objects, for use from the object
| interface (see Appendix B, “Constants” on page 515). Note that the first parameter
| on a call must be a real handle; you cannot use a synonym handle in this case.

 Chapter 18. Defining services and policies 473

 Service definitions

 Service definitions
This section gives the service definitions for:

� service point (sender/receiver)

 � distribution list

| � subscriber

| � publisher

Service point (sender/receiver)

Table 9 (Page 1 of 2). Service point (sender/receiver)

Attribute Comments

Name Mandatory name, specified on AMI calls. �1�

Queue Name Name of the queue representing the service that messages are sent to or received from.
Required if the Definition Type is ‘Predefined’. �2�

Queue Manager
Name

Name of the queue manager that owns Queue Name. If blank, the local queue manager
name is used. �2�

Model Queue
Name

Name of a model queue definition used to create a dynamic queue (normally a Reply
Service to receive response messages). Required if the Definition Type is ‘Dynamic’. �2�

Dynamic Queue
Prefix

Name of a prefix used when creating a dynamic queue from Model Queue Name.
| Required if the Definition Type is ‘Dynamic’. If the last non-blank character in positions 1
| to 33 of the prefix is ':', the ':' is replaced by a string that guarantees that the name
| generated is unique. �2�

Definition Type Defines how the AMI obtains the queue name for the service point. If set to ‘Predefined’
(the default), the Queue Name and Queue Manager Name as specified above are used.
If set to ‘Dynamic’, the Model Queue Name and Dynamic Queue Prefix are used to create
a dynamic queue.

Service Type Defines the RF header (if any) that is sent with the message data, and the parameters
within the header.

| Set to ‘Native’ for a native MQ service (default).

| Set to ‘MQSeries Integrator V1’ for MQSeries Integrator Version 1 (adds the
| OPT_APP_GROUP and OPT_MSG_TYPE fields to the MQRFH header).

| Set to ‘RF Header V1’ for MQSeries Publish/Subscribe applications.

| Set to 'MQSeries Integrator V2' to use the appropriate publish and subscribe policy
| options when sending publish, subscribe and unsubscribe requests to the MQSeries
| Integrator Version 2 broker. The AMI will insert each of the (non-blank) default MCD
| values defined for the service point into any message being sent using this service point.

| If Service Type is set to RF_HEADER_V2, a Version 2 RF Header will be used when
| applicable but the MQSeries Integrator V2 specific policy properties (Default MCD Domain,
| Default MCD Set, Default MCD Type, Default MCD Format, Delivery Persistence and
| Subscription Point) are not added to the message.

| Default Format| Optional format name to insert in the MQMD, if a format value of FMT_NONE is set in the
| message object. Also used as the MsgType when the service is an MQSeries Integrator

Version 1 broker, if AMFMT_NONE is set in the message object and the MsgType has not
been added explicitly (using amMsgAddElement or equivalent). �3�

474 MQSeries Application Messaging Interface

 Service definitions

Table 9 (Page 2 of 2). Service point (sender/receiver)

Attribute Comments

| Default MCD
| Domain
| Defines the default message service domain value. This is added to any message being
| sent using this service point if the Service Type is 'MQSeries Integrator V2', the value of
| this field is non-blank and a message service domain element has not been explicitly
| added to the message by the application.�4�

| Default MCD Set| Defines the default message set value. This is added to any message being sent using
| this service point if the Service Type is 'MQSeries Integrator V2', the value of this field is
| non-blank, and a message set element has not been explicitly added to the message by
| the application.�4�

| Default MCD Type| Defines the default message type value. This is added to any message being sent using
| this service point if the Service Type is 'MQSeries Integrator V2', the value of this field is
| non-blank, and a message type element has not been explicitly added to the message by
| the application.�4�

| Default MCD
| Format
| Defines the default message format value. This is added to any message being sent using
| this service point if the Service Type is 'MQSeries Integrator V2', the value of this field is
| non-blank, and a message format element has not been explicitly added to the message
| by the application. �4�

CCSID Coded character set identifier of the destination application. Can be used by sending
applications to prepare a message in the correct CCSID for the destination. Leave blank
if the CCSID is unknown (the default), or set to the CCSID number.

Encoding Integer encoding of the destination application. Can be used by sending applications to
prepare a message in the correct encoding for the destination. Set to ‘Unspecified’ (the
default), ‘Reversed’, ‘Normal’, ‘Reversed With 390 Floating Point’, or ‘Normal With 390
Floating Point’.

| Simulated Group
| Support
| Select to enable the sending and receiving of messages that form part of a message
| group to or from a target MQSeries queue manager that does not provide native support
| for groups. (Currently, this only applies to MQSeries for OS/390 Version 2.x.)

Notes:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
'/', '_' and '%'.

�2�The name is a maximum of 48 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
'/', '_' and '%'.

�3�The name is a maximum of 8 characters, and can contain any character from a single byte character set (it is
recommended that the characters are restricted to A-Z, 5-9).

�4�This attribute is applicable only for Service Type ‘MQSeries Integrator V2’ and is ignored for other Service
Type settings.

 Chapter 18. Defining services and policies 475

 Service definitions

 Distribution list

Table 10. Distribution list

Attribute Comments

Name Mandatory name, specified on AMI calls. �1�

Available Service
Points

List of service points that make up the distribution list. They must be valid service point
names.

Note:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
'/', '_' and '%'.

| Subscriber

| Table 11. Subscriber

| Attribute| Comments

| Name| Mandatory name, specified on AMI calls. �1�

| Sender Service| The name of the sender service that defines the publish/subscribe broker. It must be a
| valid service point name.

| Receiver Service| The name of the receiver service that defines where publication messages are to be sent.
| It must be a valid service point name.

| Note:

| �1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
| '/', '_' and '%'.

| Publisher

| Table 12. Publisher

| Attribute| Comments

| Name| Mandatory name, specified on AMI calls. �1�

| Sender Service| The name of a sender service that defines the publish/subscribe broker. It must be a valid
| service point name.

| Note:

| �1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
| '/', '_' and '%'.

476 MQSeries Application Messaging Interface

 Policy definitions

 Policy definitions
This section describes the policy definitions for the following attributes:

 � initialization

 � general

 � send

 � receive

 � subscribe

 � publish

 Initialization attributes

Table 13. Initialization attributes

Attribute Comments

Name Mandatory policy name, specified on AMI calls. �1�

| Connection Name| If Connection Mode is set to ‘Real’, Connection Name is the name of the queue manager
| the application will connect to. If blank, the default local queue manager is used. If
| Connection Mode is ‘Logical’, then the Connection Name attribute is required and is the
| name of the logical connection used with the local host file to generate the queue
| manager to which connection is made. �2�

Connection Mode If Connection Mode is set to ‘Real’ (the default), Connection Name is used as the queue
manager name for connection. If Connection Mode is set to ‘Logical’, Connection Name is
used as a key to the host file on the system where the application is running that maps

| Connection Name to a queue manager name. This allows applications running on
| different systems in the network to use the same repository (connection name) to connect
| to different local queue managers.

Connection Type If Connection Type is set to ‘Auto’ (the default), the application automatically detects if it
should connect directly, or as a client. If Connection Type is ‘Client’, the application
connects as a client. If Connection Type is ‘Server’, the application connects directly to
the queue manager.

Trusted Option If set to ‘Normal’ (the default), no fastpath is used. If set to ‘Trusted’, the application can
| use fastpath facilities that might compromise integrity. This option is only supported on
| Windows.

Notes:

�1�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
'/', '_' and '%'.

�2�The name is a maximum of 48 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
'/', '_' and '%'.

 Chapter 18. Defining services and policies 477

 Policy definitions

 General attributes

Table 14. General attributes

Attribute Comments

Message Context Defines how the message context is set in messages sent by the application. The default
is ‘Set By Queue Manager’ (the queue manager sets the context).

If set to ‘Pass Identity’, the identity of the request message is passed to any output
messages. If set to ‘Pass All’, all the context of the request message is passed to any
output messages. If set to ‘No Context’, no context is passed.

| Syncpoint| If selected, the send or receive is part of a unit of work (default is ‘not selected’).

478 MQSeries Application Messaging Interface

 Policy definitions

 Send attributes

Table 15 (Page 1 of 2). Send attributes

Attribute Values Default Comments

| Implicit Open| Selected
| Not selected
| Implicit Open| The queue is opened implicitly (must be selected for
| the C and COBOL high-level interfaces). �1�

| Leave Queue
| Open
| Selected
| Not selected
| Leave Queue
| Open
| If selected, a queue that was implicitly opened will be
| left open. �1�

| Priority| 0-9
| As Transport
| As Transport| The priority set in the message (the default uses the
| value from the queue definition). Note that you need to
| deselect ‘As Transport:’ before you can set a priority
| value.

| Persistence| Yes
| No
| As Transport

| As Transport| The persistence set in the message (the default uses
| the value from the underlying queue definition).

Expiry Interval 0-999999999
Unlimited

Unlimited A period of time (in tenths of a second) after which the
message will not be delivered.

Retry Count 0-999999999 0 The number of times a send will be retried if the return
code gives a temporary error. Retry will be attempted
under the following conditions: Queue full, Queue
disabled for put, Queue in use.

Retry Interval 0-999999999 1000 The interval (in milliseconds) between each retry.

Response Correl Id Message Id
Correl Id

Message Id Response or report messages have their Correl Id set
to the Message Id or Correl Id of the request
message.

Exception Action Discard
DLQ

DLQ If a message cannot be delivered it will be discarded
or put to the dead-letter queue.

Report Data Report
With Data
With Full Data

Report Specifies if data (first 100 bytes) or full data is included
in a report messages. Default is ‘Report’ (no data).

| Report Type
| Exception
| Selected
| Not selected
| No exception
| reports
| Specifies if Exception reports are required.

| Report Type COA| Selected
| Not selected
| No COA
| reports
| Specifies if Confirm on Arrival reports are required.

| Report Type COD| Selected
| Not selected
| No COD
| reports
| Specifies if Confirm on Delivery reports are required.

| Report Type Expiry| Selected
| Not selected
| No expiry
| reports
| Specifies if Expiry reports are required.

| Segmentation| Selected
| Not selected
| No
| segmentation
| Segmentation of the message is allowed.

| Split File| Logical
| Physical
| Physical| ‘Logical’ specifies that the file will be split into separate
| messages on record boundaries. On Windows,
| HP-UX, AIX, and Sun Solaris, this is the end of a line.
| On OS/390, this is a record boundary. ‘Physical’
| specifies that the file will be split into separate
| messages on boundaries that are determined by AMI.

 Chapter 18. Defining services and policies 479

 Policy definitions

Table 15 (Page 2 of 2). Send attributes

Attribute Values Default Comments

| Bind On Open| Yes
| No
| As Transport

| As Transport| Bind On Open controls the binding of a service point
| to a particular instance of an MQSeries cluster queue.
| If set to Yes, the service point is bound to the
| destination queue when the service is opened. If set
| to No, the service point is not bound to a specific
| destination and successive sends using this service
| point may result in messages being sent to different
| instances of the destination queue. If set to 'As
| Transport', the behavior is determined by the value
| specified in the underlying queue definition.

Application Group Name Optional application group name used when the
service represents an MQSeries Integrator Version 1
broker. �2�

Notes:

| �1�If Implicit Open is selected and Leave Open is not selected, MQPUT1 is used for send operations.

| �2�The name is a maximum of 256 characters, and can contain the following characters: A-Z, a-z, 5-9, '.',
| '/', '_' and '%'.

480 MQSeries Application Messaging Interface

 Policy definitions

 Receive attributes

Table 16 (Page 1 of 2). Receive attributes

Attribute Values Default Comments

| Implicit Open| Selected
| Not selected
| Implicit
| Open
| The queue is opened implicitly (must be selected for
| the C and COBOL high-level interfaces). �1�

| Leave Queue Open| Selected
| Not selected
| Leave
| Queue Open
| If selected, a queue that was implicitly opened will
| be left open. �1�

Delete On Close Yes
No
Purge

No Dynamic queues are deleted when closed (a
permanent dynamic queue is only deleted if it
contains no messages). ‘Purge’ causes deletion
even if there are messages on the queue.

Wait Interval 0-999999999
Unlimited

Unlimited A period of time (in milliseconds) that the receive
waits for a message to be available.

| Wait Interval Read Only| Selected
| Not selected
| Wait interval
| is read only
| If not selected, an application can override the Wait
| Interval value in the policy object.

| Convert| Selected
| Not selected
| Message
| conversion
| is enabled

| The message is code page converted by the
| message transport when received.

| Wait For Whole Group| Selected
| Not selected
| Wait for
| whole group
| If selected, all messages in a group must be
| available before any message is returned by the
| receive. If not selected,
| AMRC_NO_MSG_AVAILABLE may be returned to
| the application before the complete group is
| received. In this case, any simulated group state
| information is destroyed and any remaining
| messages in a simulated group are orphaned.

| Handle Poison
| Message
| Selected
| Not selected
| Handle
| poison
| message

| Enables poison message handling. �1�

| Accept Truncated
| Message
| Selected
| Not selected
| Accept
| truncated
| message

| Truncated messages are accepted.

| Open Shared| Selected
| Not selected
| Open a
| shared
| queue

| The queue is opened as a shared queue.

 Chapter 18. Defining services and policies 481

 Policy definitions

Table 16 (Page 2 of 2). Receive attributes

Attribute Values Default Comments

| File Disposition| New
| Overwrite
| Append

| New| The incoming file is created as a new file,
| overwrites an existing file, or is appended to an
| existing file.

Note:

| �1� A poison message is one for which the count of the number of times it has been backed-out during a unit of
| work exceeds the maximum backout limit specified by the underlying MQSeries transport queue object. If poison

message handling is enabled during a receive request the AMI will handle it as follows:

If a poison message is successfully requeued to the backout-requeue queue (specified by the underlying
MQSeries transport queue), the message is returned to the application with completion code MQCC_WARNING
and reason code MQRC_BACKOUT_LIMIT_ERR.

If a poison message requeue attempt (as described above) is unsuccessful, the message is returned to the
application with completion code MQCC_WARNING and reason code MQRC_BACKOUT_REQUEUE_ERR.

If a poison message is part of a message group (and not the only message in the group), no attempt is made to
requeue the message. The message is returned to the application with completion code MQCC_WARNING and
reason code MQRC_GROUP_BACKOUT_LIMIT_ERR.

 Subscribe attributes

Table 17. Subscribe attributes

Option Values Default Comments

| Subscribe Locally| Selected
| Not selected
| Not selected| The subscriber is sent publications that
| were published with the Publish Locally
| option, at the local broker only.

| New Publications Only| Selected
| Not selected
| Not selected| The subscriber is not sent existing
| retained publications when it registers.

| Publish On Request
| Only
| Selected
| Not selected
| Not selected| The subscriber is not sent retained
| publications unless it requests them by
| using Request Update.

| Inform If Retained| Selected
| Not selected
| Selected| The broker informs the subscriber if a
| publication is retained.

| Unsubscribe All| Selected
| Not selected
| Not selected| All topics for this subscriber are to be
| deregistered.

| Anonymous
| Registration
| Selected
| Not selected
| Not selected| The subscriber registers anonymously.

| Use Correl Id As Id| Selected
| Not selected
| Not selected| The Correl Id is used by the broker as
| part of the subscriber’s identity.

| Delivery Persistence| Persistent
| Non Persistent
| As Published
| As Transport

| As Published| This controls the persistence of
| messages sent from the broker and
| applies only to MQSeries Integrator
| Version 2.

| Subscription Point|
|
| | The subscription point to which the
| subscription is to be attached. If not
| specified, the default subscription point
| is assumed. This applies only to
| MQSeries Integrator Version 2.

482 MQSeries Application Messaging Interface

 Policy definitions

 Publish attributes

Table 18. Publish attributes

Option Values Default Comments

| Retain| Selected
| Not selected
| Not selected| The publication is retained by the broker.

| Publish To Others Only| Selected
| Not selected
| Not selected| The publication is not sent to the
| publisher if it has subscribed to the
| same topic (used for conference-type
| applications).

| Suppress Registration| Selected
| Not selected
| Selected| Implicit registration of the publisher is
| suppressed. (This attribute is ignored
| for MQSeries Integrator Version 2.)

| Publish Locally| Selected
| Not selected
| Not selected| The publication is only sent to
| subscribers that are local to the broker.

| Accept Direct Requests| Selected
| Not selected
| Not selected| The publisher should accept direct
| requests from subscribers.

| Anonymous
| Registration
| Selected
| Not selected
| Not selected| The publisher registers anonymously.

| Use Correl Id As Id| Selected
| Not selected
| Not selected| The Correl Id is used by the broker as
| part of the publisher’s identity.

 Chapter 18. Defining services and policies 483

 Policy definitions

484 MQSeries Application Messaging Interface

 Using trace (Unix and Windows)

 Chapter 19. Problem determination

This chapter shows you how to use the trace facility in the Application Messaging
Interface, and gives some information about finding the causes of problems. See:

� “Using trace (Unix and Windows)”

� “Using trace (OS/390)” on page 493

� “When your AMI program fails” on page 496

Using trace (Unix and Windows)
The Application Messaging Interface includes a trace facility to help identify what is
happening when you have a problem. It shows the paths taken when you run your
AMI program. Unless you have a problem, you are recommended to run with
tracing set off to avoid any unnecessary overheads on your system resources.

There are three environment variables that you set to control trace:

 AMT_TRACE
 AMT_TRACE_PATH
 AMT_TRACE_LEVEL

You set these variables in one of two ways.

1. From a command prompt. It is effective locally, so you must then start your AMI
program from this prompt.

2. By putting the information into your system startup file; this is effective globally.
To do this:

� Select Main -> Control Panel on Windows NT and Windows 98
� Edit your .profile file on UNIX systems

When deciding where you want the trace files written, ensure that the user has
sufficient authority to write to, not just read from, the disk.

If you have tracing switched on, it will slow down the running of your AMI program,
but it will not affect the performance of your MQSeries environment. When you no
longer need a trace file, it is your responsibility to delete it. You must stop your AMI
program running to change the status of the AMT_TRACE variable. The AMI trace
environment variable is different to the trace environment variable used within the
MQSeries range of products. Within the AMI, the trace environment variable turns
tracing on. If you set the variable to a string of characters (any string of characters)
tracing will remain switched on. It is not until you set the variable to NULL that
tracing is turned off.

Trace filename and directory
The trace file name takes the form AMTnnnnn.trc, where nnnnn is the ID of the AMI
process running at the time.

 Copyright IBM Corp. 1999, 2000 485

 Using trace (Unix and Windows)

Commands on UNIX
export AMT_TRACE_PATH=/directory

Sets the trace directory where the trace file will be written.

unset AMT_TRACE_PATH
Removes the AMT_TRACE_PATH environment variable; the trace file is
written to the current working directory (when the AMI program was started).

echo $AMT_TRACE_PATH
Displays the current setting of the trace directory path.

export AMT_TRACE_LEVEL=n
Sets the trace level, where n is an integer from 0 through 9. 0 represents
minimal tracing, and 9 represents a fully detailed trace.

In addition, you can suffix the value with a + (plus) or - (minus) sign. Using the
plus sign, the trace includes all control block dump information and all
informational messages. Using the minus sign includes only the entry and exit
points in the trace with no control block information or text output to the trace
file.

unset AMT_TRACE_LEVEL
Removes the AMT_TRACE_LEVEL environment variable. The trace level is set
to its default value of 2.

echo $AMT_TRACE_LEVEL
Displays the current setting of the trace level.

export AMT_TRACE=xxxxxxxx
This sets tracing ON. You switch tracing on by putting one or more characters
after the '=' sign. For example:

 export AMT_TRACE=yes
 export AMT_TRACE=no

In both of these examples, tracing will be set ON.

unset AMT_TRACE
Sets tracing off

echo $AMT_TRACE
Displays the contents of the environment variable.

Commands on Windows
SET AMT_TRACE_PATH=drive:\directory

Sets the trace directory where the trace file will be written.

SET AMT_TRACE_PATH=
Removes the AMT_TRACE_PATH environment variable; the trace file is
written to the current working directory (when the AMI program was started).

SET AMT_TRACE_PATH
Displays the current setting of the trace directory.

SET AMT_TRACE_LEVEL=n
Sets the trace level, where n is an integer from 0 through 9. 0 represents
minimal tracing, and 9 represents a fully detailed trace.

In addition, you can suffix the value with a + (plus) or - (minus) sign. Using the
plus sign, the trace includes all control block dump information and all
informational messages. Using the minus sign includes only the entry and exit

486 MQSeries Application Messaging Interface

 Using trace (Unix and Windows)

points in the trace with no control block information or text output to the trace
file.

SET AMT_TRACE_LEVEL=
Removes the AMT_TRACE_LEVEL environment variable. The trace level is set
to its default value of 2.

SET AMT_TRACE_LEVEL
Displays the current setting of the trace level.

SET AMT_TRACE=xxxxxxxx
This sets tracing ON. You switch tracing on by putting one or more characters
after the '=' sign. For example:

 SET AMT_TRACE=yes
 SET AMT_TRACE=no

In both of these examples, tracing will be set ON.

SET AMT_TRACE=
Sets tracing OFF

SET AMT_TRACE
Displays the contents of the environment variable.

C++ and Java
For these language bindings there is more control over the production of trace. In
each case, the AmSessionFactory has two methods which control trace:

 1. setTraceLocation(location);
 2. setTraceLevel(level);

The behavior of these methods matches exactly the behavior of the environment
variables:

 1. AMT_TRACE_PATH
 2. AMT_TRACE_LEVEL

Once an AmSession has been created using an AmSessionFactory, the trace level
and location are set for the complete life of that AmSession.

If set, the values of the properties in the AmSessionFactory take precedence over
any AMT trace environment variables.

 Chapter 19. Problem determination 487

 Using trace (Unix and Windows)

 Example trace
The example trace below shows 'typical' trace output.

Trace for program d:\output\bin\amITSR.exe <<< AMT trace >>>
 started at Sat Jun 12 58:28:33 1999

@(!) <<< ::: Code Level is 1.5.5 ::: >>>
!(53787) BuildDate Jun 11 1999
!(53787) Trace Level is 2

(53787)@58:28:33.728
 -->xmq_xxxInitialize

 ---->ObtainSystemCP
!(53787) Code page is 437

<----ObtainSystemCP (rc = 5)

<--xmq_xxxInitialize (rc = 5)

 -->amSessCreateX

 ---->amCheckAllBlanks()

<----amCheckAllBlanks() (rc = 5)

 ---->amCheckValidName()

<----amCheckValidName() (rc = 1)
!(53787) Session name is: plenty

 ---->amHashTableCreate()

<----amHashTableCreate() (rc = AM_ERR_OK)

 ---->amSessClearErrorCodes

<----amSessClearErrorCodes (rc = 5)

 ...

 ---->amMaSrvCreate
!(53787) Service object created [9282325]

<----amMaSrvCreate (rc = AM_ERR_OK)

 ---->amMaSrvSetSessionHandle
!(53787) Object handle[9282325]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

488 MQSeries Application Messaging Interface

 Using trace (Unix and Windows)

 ---->amMaSrvCreate
!(53787) Service object created [9285144]

<----amMaSrvCreate (rc = AM_ERR_OK)

 ---->amMaSrvSetSessionHandle
!(53787) Object handle[9285144]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

(53787)@58:28:33.738
 ---->amMaSrvCreate

!(53787) Service object created [9287968]

<----amMaSrvCreate (rc = AM_ERR_OK)

 ---->amMaSrvSetSessionHandle
!(53787) Object handle[9287968]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

 ---->amMaSrvCreate
!(53787) Service object created [9295792]

<----amMaSrvCreate (rc = AM_ERR_OK)

 ---->amMaSrvSetSessionHandle
!(53787) Object handle[9295792]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

 ---->amMaSrvCreate

!(53787) Service object created [9293616]

<----amMaSrvCreate (rc = AM_ERR_OK)

 ---->amMaSrvSetSessionHandle
!(53787) Object handle[9293616]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

 Chapter 19. Problem determination 489

 Using trace (Unix and Windows)

 ---->amMaSrvCreate
!(53787) Service object created [9296445]

<----amMaSrvCreate (rc = AM_ERR_OK)

 ---->amMaSrvSetSessionHandle
!(53787) Object handle[9296445]

<----amMaSrvSetSessionHandle (rc = AM_ERR_OK)

 ---->amMaSrvSetSubReceiverHandle
!(53787) Object handle[9293616]

<----amMaSrvSetSubReceiverHandle (rc = AM_ERR_OK)

 ---->amMaMsgCreate
!(53787) message object created -[15425288]

<----amMaMsgCreate (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

 ---->amMaMsgCreate
!(53787) message object created -[15432445]

<----amMaMsgCreate (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

 ---->amMaPolCreate
!(53787) policy object created.
!(53787) policy object initialized.

<----amMaPolCreate (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

 ---->amMaPolCreate
!(53787) policy object created.
!(53787) policy object initialized.

<----amMaPolCreate (rc = AM_ERR_OK)

 ---->amHashTableAddHandle()

<----amHashTableAddHandle() (rc = AM_ERR_OK)

490 MQSeries Application Messaging Interface

 Using trace (Unix and Windows)

 ---->amMaPolSetIntProps
!(53787) Object handle[15446656]
!(53787) [AMPOL_IPR_APR_CON_CNT] set to [5x1]

(53787)@58:28:33.748
<----amMaPolSetIntProps (rc = AM_ERR_OK)

 ---->amMaPolSetStringProp
!(53787) Object handle[15446656]
!(53787) [AMPOL_SPR_APR_MGR_NAME] set to [plenty]

<----amMaPolSetStringProp (rc = AM_ERR_OK)

 ---->amMaPolSetStringProp
!(53787) Object handle[15446656]
!(53787) [AMPOL_SPR_APR_CON_NAME] set to [plenty]

<----amMaPolSetStringProp (rc = AM_ERR_OK)

 ---->amMaSrvSetStringProp
!(53787) Object handle[9282325]
!(53787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.SENDER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

 ---->amMaSrvSetStringProp
!(53787) Object handle[9285144]
!(53787) [AMSRV_SPR_QUEUE_NAME] set to []

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

 ---->amMaSrvSetStringProp
!(53787) Object handle[9287968]
!(53787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.RECEIVER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

 ---->amMaSrvSetStringProp
!(53787) Object handle[9295792]
!(53787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.PUBLISHER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

 ---->amMaSrvSetStringProp
!(53787) Object handle[9293616]
!(53787) [AMSRV_SPR_QUEUE_NAME] set to [SYSTEM.DEFAULT.SUBSCRIBER]

<----amMaSrvSetStringProp (rc = AM_ERR_OK)

 ---->amMaPolSetIntProps
!(53787) Object handle[15451354]
!(53787) [AMPOL_IPR_SMO_SYNCPOINT] set to [5xc535553]

<----amMaPolSetIntProps (rc = AM_ERR_OK)

 Chapter 19. Problem determination 491

 Using trace (Unix and Windows)

 ---->amMaPolSetIntProps
!(53787) Object handle[15451354]
!(53787) [AMPOL_IPR_RMO_SYNCPOINT] set to [5xd565552]

<----amMaPolSetIntProps (rc = AM_ERR_OK)

 ---->amActivateFiles
!(53787) No DATAPATH specified from API
!(53787) No repository FILE specified from API

 !(53787) Repository[H:\MQSeries\amt\\amt.xml]
!(53787) Repository ACTIVE
!(53787) No local host FILE specified from API
!(53787) Local Host[H:\MQSeries\amt\\amthost.xml]
!(53787) Local Host File ACTIVE

<----amActivateFiles (rc = 1)

 ---->amErrTranslate

<----amErrTranslate (rc = 5)

<--amSessCreateX (rc = 5)

 ...

492 MQSeries Application Messaging Interface

 Using trace (OS/390)

| Using trace (OS/390)
| The AMI provides two types of trace on OS/390:

| Formatted trace Records spooled to a printer or directed to a file, which can
| be directly interpreted using TSO/ISPF browse, edit or print
| utilities.

| GTF trace Data captured on entry to and exit from high level and object
| level AMI function calls, which must be formatted by IPCS
| before viewing.

| Formatted Trace
| Formatted trace records are written on function entry and exit and at other points of
| execution where useful information can be gathered.

| The format of the records is as follows:

| Entry:
| hh:mm:ss.tttt ---->function name()

| Exit:
| hh:mm:ss.tttt <----function name() (rc = n)

| Data:
| ! information

| Timestamps of entry and exit records are in local time, and are accurate to 1/10000
| second. The function call depth is indicated for entry and exit records by the
| dashes in the ‘---->’ or ‘<----’ prefixes; two dashes per call level. For exit records,
| ‘n’ indicates the reason code on completion of the function. The default is to trace
| up to a depth of two function call levels, but this can be varied for batch
| applications. See “Control of formatted trace.”

| This a sample fragment from a formatted trace:

| 13:26:58.3263 -->amSendMsg
| 13:26:58.3264 ---->amSesGetSenderHandle
| ! amHashTableGetHandle failed.
| 13:26:58.3266 <----amSesGetSenderHandle (rc = [18][5x12])
| 13:26:58.3268 ---->amSesGetDistListHandle
| ! amHashTableGetHandle failed.
| 13:26:58.3269 <----amSesGetDistListHandle (rc = [18][5x12])
| 13:26:58.3275 ---->amSesCreateSender

| For IMS, batch, or RRS-batch applications, formatted trace is directed to a dataset
| specified by the user. In the CICS environment, formatted trace entries are written
| to the current CICS trace destination as determined by the CICS administrator.

| Control of formatted trace
| For IMS, batch, or RRS-batch applications, formatted trace can be turned on by
| specifying a JCL ‘DD’ statement for DD name ‘AMTTRACE’. This can be assigned
| to SYSOUT or to a DASD dataset. If assigned to SYSOUT, the trace records are
| written to a single spool file.

| AMI formatted trace will not be started unless ‘//AMTTRACE DD’ is specified.

 Chapter 19. Problem determination 493

 Using trace (OS/390)

| If the trace dataset becomes full during an AMI session, the file will automatically
| be reopened and the trace will wrap.

| For CICS applications, the AMI formatted trace is started if, at AMI session start,
| CICS internal and/or auxiliary trace is switched on. If the CICS trace destinations
| are stopped, AMI will perform no tracing for the session. The CICS administrator
| can use the CICS-supplied ‘CEMT’ transaction to control CICS trace.

| For batch AMI applications, the trace level can be varied by specifying the
| Language Environment program parameter ‘ENVAR(AMT_TRACE_LEVEL=n)’. For
| example, to specify the formatted trace level for a C application program:

| //JOBSTEP EXEC PGM=AMIapp,PARM='ENVAR(AMT_TRACE_LEVEL=5)/'

| For COBOL programs, Language Environment parameters are specified following
| the ‘/’ delimiter. For example:

| //JOBSTEP EXEC PGM=AMICob,PARM='/ENVAR(AMT_TRACE_LEVEL=9)'

| Because CICS applications cannot easily set environment variables to control the
| trace level, the trace level defaults under CICS to a high setting, ensuring that all
| AMI trace points will be captured.

| GTF Trace
| AMI captures trace data for GTF at entry to and exit from each user-callable object
| level and high level AMI function. Entry trace data include function name and
| parameters. Exit trace data include function name and returned values.

| IMS, batch, and RRS-batch AMI applications direct the trace data to GTF as user
| entries, using GTF event identifiers ‘5E9’ for entry, and ‘5EA’ for exit. These
| identifiers are the same as those used by MQSeries for OS/390 Application GTF
| trace, allowing for AMI and MQSeries trace entries to be selected together in IPCS
| and formatted in a single, chronological, stream. Unlike MQSeries, however, the
| GTF format identifier for AMI GTF trace records is ‘00’, causing IPCS to display
| these records in dump (hexadecimal/character) form, without using a bespoke
| formatting routine.

| The following extract from IPCS formatted output shows an entry/exit pair of AMI
| GTF trace records:

| HEXFORMAT AID FF FID 55 EID E5E9
| +5555 55F63585 C1F8E2D5 C5D3D3E2 8194E285] .6..A8SNELLSamSe]
| +5515 A2C39385 8199C599 999699C3 968485A2] sClearErrorCodes]
| +5525 55555555 55555555 55555555 5FA55B15]ú.]
| GMT-11/55/1999 14:49:51.564812 LOC-11/55/1999 14:49:51.564812

| HEXFORMAT AID FF FID 55 EID E5EA
| +5555 55F63585 C1F8E2D5 C5D3D3E2 8194E285] .6..A8SNELLSamSe]
| +5515 A2C39385 8199C599 999699C3 968485A2] sClearErrorCodes]
| +5525 55555555 55555555 55555555 55555555]]
| +5535 55555555]]
| GMT-11/55/1999 14:49:51.564956 LOC-11/55/1999 14:49:51.564956

| AMI applications on CICS do not directly trace to GTF. AMI writes the same data to
| the current CICS trace destination(s) along with AMI formatted trace records. CICS
| tracing is controlled by the CICS administrator using the CICS-supplied transaction
| 'CEMT'.

494 MQSeries Application Messaging Interface

 Using trace (OS/390)

| Control of GTF Trace
| AMI writes GTF trace records if, at AMI session start, GTF is started for the
| application’s job name with option ‘TRACE=USR’. GTF is usually started from the
| OS/390 operator’s console using an installation defined procedure. The chapter
| “Using trace for problem determination” in the MQSeries for OS/390 Problem
| Determination Guide describes a typical GTF start-up prompt/reply sequence. If
| AMI and MQSeries GTF trace entries are to be captured to the same dataset, the
| job names for both the AMI application and the MQSeries queue manager must be
| specified.

| If GTF is not started at the start of the AMI session, no GTF tracing will be
| performed for the remainder of the session.

 Chapter 19. Problem determination 495

 When your AMI program fails

When your AMI program fails

 Reason Codes
When an AMI function call fails, it reports the level of the failure in the completion
code of the call. AMI has three completion codes:

AMCC_OK The call completed successfully

AMCC_WARNING The call completed with unexpected results

AMCC_FAILED An error occurred during processing

In the last two cases, AMI supplies a reason code that provides an explanation of
the failure. A list of AMI reason codes is given in Appendix A, “Reason codes” on
page 501.

In addition, if MQSeries is the reason for the failure, AMI supplies a secondary
reason code. The secondary reason codes can be found in the MQSeries
Application Programming Reference book.

First failure symptom report (Unix and Windows)
A first failure symptom report is produced for unexpected and internal errors. This
report is found in a file named AMTnnnnn.FDC, where nnnnn is the ID of the AMI
process that is running at the time. You find this file in the working directory from
which you started your AMI program, or the name of the path specified in the
AMT_TRACE_PATH environment variable. If you receive a first failure symptom
report you should contact IBM support personnel.

| First failure symptom report (OS/390)
| In the unlikely event that AMI detects an internal processing error from which no
| recovery is possible, the following actions are taken:

| 1. A dump is taken of the application’s data.

| 2. A first failure symptom report is produced.

| Batch AMI applications write a Language Environment dump to SYSOUT. CICS
| AMI applications create a CICS transaction dump, with identifier ‘AMT1’.

| Batch AMI applications write the first failure symptom report to the formatted trace
| data set (AMTTRACE), if allocated, otherwise to SYSOUT. CICS AMI applications
| write the symptom report to SYSOUT.

| The formatted diagnostic information starts with a summary that includes:

| Date/Time
| Code Level
| Function Name
| Probe Id (code point within function)
| Build Date
| Major Error Code
| Minor Error Code
| Comment Lines

496 MQSeries Application Messaging Interface

 When your AMI program fails

| Following the summary is a list of the stored function stack, indicating the current
| function call sequence. Following this is a list of the latest 40 function calls. Each
| item contains:

| Entry/Exit indicator Function name Return Code

Other sources of information
AMI makes use of MQSeries as a transport mechanism and so MQSeries error
logs and trace information can provide useful information. See the MQSeries
System Administration manual for details of how to activate these problem
determination aids.

Common causes of problems
� With the C object interface, most functions require a handle to the object they

refer to. If this handle is not valid, the results are unpredictable.

� Completion code 2 (AMRC_ERROR) together with reason code 110
(AMRC_TRANSPORT_NOT_AVAILABLE) returned by amInitialize or
amSesOpen (or the equivalent in COBOL, C++ and Java) normally indicates
that the underlying MQSeries queue manager the AMI is attempting to use is
not started (or does not exist). This might be because of a missing or incorrect
xml repository file or because the data in the local host file is incorrect.

� Completion code 2 (AMRC_ERROR) together with reason code 47
(AMRC_TRANSPORT_ERR) indicates that an error was detected by the
underlying MQSeries transport. The secondary reason code returned by the
appropriate ‘get last error’ function for the object concerned will provide the
related the MQSeries reason code. This error occurs most frequently during an
attempt to open an underlying MQSeries queue object that does not exist (or
has an incorrect type). This can be because it has never been created or
because a missing or incorrect xml repository file is providing an incorrect
queue name.

 Chapter 19. Problem determination 497

 When your AMI program fails

498 MQSeries Application Messaging Interface

 Part 8. Appendixes

 Copyright IBM Corp. 1999, 2000 499

500 MQSeries Application Messaging Interface

 Reason code (warning)

 Appendix A. Reason codes

This chapter contains a description of the AMRC_* reason codes, divided into three
sections according to the value of the corresponding completion code. Within each
section they are in alphabetic order. For a list of reason codes in numeric order,
see Appendix B, “Constants” on page 515.

In some circumstances the AMI returns a secondary reason code that comes from
MQSeries, the underlying transport layer. Please refer to the MQSeries Application
Programming Reference manual for details of these reason codes.

Reason code: OK
The following reason code is returned with completion code: AMCC_OK

AMRC_NONE
The request was successful with no error or warning returned.

Reason code: Warning
The following reason codes are returned with completion code: AMCC_WARNING

AMRC_BACKED_OUT
The unit of work has been backed out.

AMRC_BACKOUT_LIMIT_ERR
The backout count of a received message was found to have exceeded its
backout limit. The message was returned to the application and was
requeued to the backout requeue queue.

AMRC_BACKOUT_REQUEUE_ERR
The backout count of a received message was found to have exceeded its
backout limit. The message was returned to the application. It could not
be requeued to the backout requeue queue.

AMRC_CCSID_NOT_SUPPORTED
OS/390 V2 R9 (or later) is required to enable AMI publish subscribe or
message element support under CICS. Ensure that your Language
Environment installation is set up to use Unicode character conversion.
See “Unicode character conversion” on page 450 for more details, and
see the OS/390 C/C++ Programming Guide for a list of the coded
character sets supported under OS/390.

AMRC_CLOSE_SESSION_ERR
An error occurred while closing the session. The session is closed.

AMRC_ENCODING_INCOMPLETE
The message contains mixed values for integer, decimal, and floating point
encodings, one or more of which are undefined. The encoding value
returned to the application reflects only the encoding values that were
defined.

 Copyright IBM Corp. 1999, 2000 501

 Reason code (warning)

AMRC_ENCODING_MIXED
The message contains mixed values for integer, decimal and floating point
encodings, one or more of which conflict. An encoding value of undefined
was returned to the application.

| AMRC_FILE_ALREADY_EXISTS
| The AMI was unable to receive the file as the current file disposition is
| 'new', and a file with the same name already exists on your system. The
| first message of the file transfer is returned to the application. If this
| occours we recommend that the current unit of work is backed out. This
| will ensure that the messages received from the service are in a consistent
| state.

| AMRC_FILE_FORMAT_CONVERTED
| The AMI received a file successfully, but needed to convert between
| different file types. An example is from an OS/390 fixed-length dataset to
| a UNIX file or between OS/390 datasets with different geometries.

| AMRC_FILE_NOT_WRITTEN
| The file used for a receive could not be opened. The first message of the
| file is returned to the application. If this occurs we recommend that the
| current unit of work is backed out. This will ensure that the messages
| held on the service are in a consistent state.

| AMRC_FILE_SYSTEM_ERROR
| A filesystem error occurred during a file transfer call. If this occurs, we
| recommend that the current unit of work is backed out. This will ensure
| the messages put to or received from the service are in a consistent state.

| AMRC_FILE_TRUNCATED
| On a file send or receive operation, the entire file was not processed. We
| recommend that the current unit of work is backed out. This will ensure
| that the messages put to or received from the service are in a consistent
| state.

AMRC_GROUP_BACKOUT_LIMIT_ERR
The backout count of a received message was found to have exceeded its
backout limit. The message was returned to the application. It was not
requeued to the backout requeue queue because it represented a single
message within a group of more than one.

AMRC_MULTIPLE_REASONS
A distribution list open or send was only partially successful and returned
multiple different reason codes in its underlying sender services.

AMRC_MSG_TRUNCATED
The received message that was returned to the application has been
truncated.

AMRC_NO_REPLY_TO_INFO
A response sender service specified when attempting to receive a request
message was not updated with reply-to information because the request
message contained no reply-to information. An attempt to send a reply
message using the response sender will fail.

502 MQSeries Application Messaging Interface

 Reason code (warning)

| AMRC_NOT_A_FILE
| A message was received from the service, but it does not appear to have
| been sent as part of a (physical mode) file transfer operation. The
| message is returned to the application.

AMRC_NOT_CONVERTED
Data conversion of the received message was unsuccessful. The message
was removed from the underlying message transport layer with the
message data unconverted.

AMRC_POLICY_NOT_IN_REPOS
The definition name that was specified when creating a policy was not
found in the repository. The policy was created using default values.

AMRC_PUBLISHER_NOT_IN_REPOS
The definition name that was specified when creating a publisher was not
found in the specified repository. The publisher was created using default
values.

AMRC_RECEIVER_NOT_IN_REPOS
The definition name that was specified when creating a receiver was not
found in the repository. The receiver was created using default values.

AMRC_REPOS_WARNING
A warning associated with the underlying repository data was reported.

| AMRC_RFH2_FORMAT_ERR
| The format of an MQRFH2 rules and formatting header of a received
| message was not valid.

AMRC_SENDER_NOT_IN_REPOS
The definition name that was specified when creating a sender was not
found in the repository. The sender was created using default values.

AMRC_SUBSCRIBER_NOT_IN_REPOS
The definition name that was specified when creating a subscriber was not
found in the repository. The subscriber was created using default values.

AMRC_TRANSPORT_WARNING
A warning was reported by the underlying (MQSeries) message transport
layer. The message transport reason code can be obtained by the
secondary reason code value returned from a 'GetLastError' request for
the AMI object concerned.

AMRC_UNEXPECTED_RECEIVE_ERR
An unexpected error occurred after a received message was removed
from the underlying transport layer. The message was returned to the
application.

AMRC_UNEXPECTED_SEND_ERR
An unexpected error occurred after a message was successfully sent.
Output information updated as a result of the send request should never
occur.

 Appendix A. Reason codes 503

 Reason code (failed)

Reason code: Failed
The following reason codes are returned with completion code: AMCC_FAILED

| AMRC_BACKOUT_INVALID
| The backout request was not valid. On OS/390 under CICS, IMS, or RRS
| this can be due to calling the AMI backout functions rather than the
| transaction managers' own functions.

AMRC_BEGIN_INVALID
The begin request was not valid because there were no participating
resource managers registered.

AMRC_BROWSE_OPTIONS_ERR
The specified browse options value was not valid or contained an invalid
combination of options.

AMRC_CCSID_ERR
The specified coded character value was not valid.

| AMRC_CCSID_NOT_SUPPORTED
| The coded character set of name/value elements in the rules and
| formatting header of a received message, or that specified for passing
| elements between the application and the AMI, is not supported.

AMRC_CCSID_PTR_ERR
The specified coded character set id pointer was not valid.

AMRC_COMMAND_ALREADY_EXISTS
A publish, subscribe, or unsubscribe command could not be added to the

| message because the message already contained a command element. If
| this message is generated from the high-level interface, it may mean that
| you have tried to use the same message name for sending and receiving
| publish/subscribe messages. It can also occur if the same message object
| is reused to send a message without being reset.

| AMRC_COMMIT_INVALID
| The commit request was not valid. On OS/390 under CICS, IMS, or RRS
| this can be due to calling the AMI commit functions rather than the
| transaction managers' own functions.

AMRC_CONN_NAME_NOT_FOUND
The connection name obtained from the repository was not found in the
local host file.

AMRC_CORREL_ID_BUFF_LEN_ERR
The specified correlation id buffer length value was not valid.

AMRC_CORREL_ID_BUFF_PTR_ERR
The specified correlation id buffer pointer was not valid.

AMRC_CORREL_ID_LEN_ERR
The specified correlation id length value was too long.

AMRC_CORREL_ID_LEN_PTR_ERR
The specified correlation id length pointer was not valid.

504 MQSeries Application Messaging Interface

 Reason code (failed)

AMRC_CORREL_ID_PTR_ERR
The specified correlation id pointer was not valid.

AMRC_DATA_BUFF_LEN_ERR
The specified data buffer length value was not valid.

AMRC_DATA_BUFF_PTR_ERR
The specified data buffer pointer was not valid.

AMRC_DATA_LEN_ERR
The specified data length was not valid.

AMRC_DATA_LEN_PTR_ERR
The specified data length pointer was not valid.

| AMRC_DATA_OFFSET_ERR
| The specified data offset value was not valid.

AMRC_DATA_OFFSET_PTR_ERR
The specified data offset pointer was not valid.

AMRC_DATA_PTR_ERR
The specified data pointer was not valid.

AMRC_DATA_SOURCE_NOT_UNIQUE
Message data for a send operation was passed in an application data
buffer and was also found in the specified message object. Data can to be
sent can be included in either an application buffer or a message object
but not both. The message requires a reset first, to remove existing data.

AMRC_DEFN_TYPE_ERR
The definition type defined for the service point in the repository was
inconsistent with the definition type of the underlying message transport
queue object when it was opened.

AMRC_DEFN_TYPE_PTR_ERR
The specified definition type pointer was not valid.

AMRC_DIST_LIST_INDEX_ERR
The specified distribution list index value was not valid.

AMRC_DIST_LIST_NOT_IN_REPOS
The definition name specified for creating a distribution list was not found
in the repository. The object was not created.

AMRC_DIST_LIST_NOT_UNIQUE
The specified name could not be resolved to a unique distribution list
because more than one distribution list with that name exists.

AMRC_ELEM_COUNT_PTR_ERR
The specified element count pointer was not valid.

AMRC_ELEM_INDEX_ERR
The specified element index value was not valid.

AMRC_ELEM_NAME_LEN_ERR
The specified element name length value was not valid.

AMRC_ELEM_NAME_PTR_ERR
The specified element name pointer was not valid.

 Appendix A. Reason codes 505

 Reason code (failed)

AMRC_ELEM_NOT_FOUND
The specified element was not found.

AMRC_ELEM_PTR_ERR
The specified element pointer was not valid.

AMRC_ELEM_STRUC_ERR
The specified element structure was not valid. The structure id, version, or
a reserved field contained an invalid value.

AMRC_ELEM_STRUC_NAME_BUFF_ERR
At least one of the name buffer (length and pointer) fields in the specified
element structure was not valid.

AMRC_ELEM_STRUC_NAME_ERR
At least one of the name (length and pointer) fields in the specified
element structure was not valid. Ensure that the name length, pointer, and
name string are valid.

| AMRC_ELEM_STRUC_TYPE_BUFF_ERR
| At least one of the type buffer (length and pointer) fields in the specified
| element structure was not valid. Ensure that the type length, pointer and
| type string are valid.

| AMRC_ELEM_STRUC_TYPE_ERR
| At least one of the type (length and pointer) fields in the specified element
| structure was not valid.

AMRC_ELEM_STRUC_VALUE_BUFF_ERR
At least one of the value buffer (length and pointer) fields in the specified
structure was not valid.

AMRC_ELEM_STRUC_VALUE_ERR
At least one of the value (length and pointer) fields in the specified
element structure was not valid. Ensure that the value length, pointer, and
value string are valid.

AMRC_ENCODING_ERR
The specified encoding value was not valid.

AMRC_ENCODING_PTR_ERR
The specified encoding pointer was not valid.

| AMRC_FILE_FORMAT_NOT_SUPPORTED
| An attempt was made to send a file type that is not supported.
| Unsupported file types include OS/390 VSAM datasets, and OS/390
| partitioned datasets (though an individual member of a PDS may be sent).

| AMRC_FILE_MSG_FORMAT_ERR
| When using physical mode file transfer, only two message formats are
| allowed: AMFMT_STRING (for text mode transfer), and AMFMT_NONE
| (for binary mode transfer). When using logical mode file transfer, any
| message format may be used for messages generated from OS/390
| datasets. On other platforms and for HFS files on OS/390,
| AMFMT_STRING is the only option.

| AMRC_FILE_NAME_LEN_ERR
| The file name length passed in to a file transfer call was not valid.

506 MQSeries Application Messaging Interface

 Reason code (failed)

| AMRC_FILE_NAME_PTR_ERR
| The file name pointer passed in to a file transfer call was not valid.

| AMRC_FILE_NOT_FOUND
| The file supplied on a file send call could not be opened. Check that the
| file exists and that the application has read access to it.

| AMRC_FILE_TRANSFER_INVALID
| An application running under CICS on OS/390 tried to perform a file
| transfer operation, which is invalid in this environment.

AMRC_FORMAT_BUFF_LEN_ERR
The specified format buffer length value was not valid.

AMRC_FORMAT_BUFF_PTR_ERR
The specified format buffer pointer was not valid.

AMRC_FORMAT_LEN_ERR
The specified message format string was too long.

AMRC_FORMAT_LEN_PTR_ERR
The specified format length pointer was not valid.

AMRC_FORMAT_PTR_ERR
The specified format pointer was not valid.

AMRC_GROUP_STATUS_ERR
The specified group status value was not valid.

AMRC_GROUP_STATUS_PTR_ERR
The specified group status pointer was not valid.

AMRC_HEADER_INVALID
The RFH header structure of the message was not valid.

AMRC_HEADER_TRUNCATED
The RFH header of the message was truncated.

| AMRC_HOST_CACHE_ERR
| A module was loaded for use as a repository file cache, but the module
| does not appear to be a valid repository cache.

AMRC_HOST_FILE_ERR
The contents of the local host file are not valid.

AMRC_HOST_FILENAME_ERR
The local host file name was not valid. The value of the appropriate
environment variable should be corrected.

AMRC_HOST_FILE_NOT_FOUND
A local host file with the specified name was not found.

AMRC_INCOMPLETE_GROUP
The specified request failed because an attempt was made to send a
message that was not in a group when the existing message group was
incomplete.

AMRC_INSUFFICIENT_MEMORY
There was not enough memory available to complete the requested
operation.

 Appendix A. Reason codes 507

 Reason code (failed)

AMRC_INVALID_DIST_LIST_NAME
The specified distribution list name was too long, contained invalid
characters, or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_IF SERVICE_OPEN
The receiver queue name could not be set because the receiver or
subscriber service was open.

AMRC_INVALID_MSG_NAME
The specified message name was too long, contained invalid characters,
or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_POLICY_NAME
The specified policy name was too long, contained invalid characters, or
used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_PUBLISHER_NAME
The specified publisher service name was too long, contained invalid
characters, or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_Q_NAME
The specified queue name was too long, or contained invalid characters.

AMRC_INVALID_RECEIVER_NAME
The specified receiver service name was too long, contained invalid
characters, or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_SENDER_NAME
The specified sender service name was too long, contained invalid
characters, or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_SESSION_NAME
The specified session name was too long, contained invalid characters, or
used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_SUBSCRIBER_NAME
The specified subscriber service name was too long, contained invalid
characters, or used the reserved prefix ‘SYSTEM.’.

AMRC_INVALID_TRACE_LEVEL
A specified trace level was not valid.

AMRC_JAVA_CLASS_ERR
A class referenced in AMI Java code cannot be found in the AMI Java
native library. This is probably due to an incompatibility between the AMI
class files and the AMI Java library. (Not applicable to the C and C++
programming languages).

AMRC_JAVA_CREATE_ERR
An unexpected error occurred when creating an AMI Java object. This is
probably due to an incompatibility between the AMI class files and the AMI
Java library. (Not applicable to the C and C++ programming languages).

AMRC_JAVA_FIELD_ERR
A field referenced in AMI Java code cannot be found in the AMI Java
native library. This is probably due to an incompatibility between the AMI
class files and the AMI Java library. (Not applicable to the C and C++
programming languages).

508 MQSeries Application Messaging Interface

 Reason code (failed)

AMRC_JAVA_JNI_ERR
An unexpected error occurred when calling the AMI Java native library.
This is probably due to an incompatibility between the AMI class files and
the AMI Java library. (Not applicable to the C and C++ programming
languages).

AMRC_JAVA_METHOD_ERR
A method referenced in AMI Java code cannot be found in the AMI Java
native library. This is probably due to an incompatibility between the AMI
class files and the AMI Java library. (Not applicable to the C and C++
programming languages).

AMRC_JAVA_NULL_PARM_ERR
The AMI Java code detected a null parameter that is not valid. (Not
applicable to the C and C++ programming languages).

AMRC_MSG_HANDLE_ERR
The specified message handle was not valid.

AMRC_MSG_ID_BUFF_LEN_ERR
The specified message id buffer length value was not valid.

AMRC_MSG_ID_BUFF_PTR_ERR
The specified message id buffer pointer was not valid.

AMRC_MSG_ID_LEN_ERR
The specified message id length value was not valid.

AMRC_MSG_ID_LEN_PTR_ERR
The specified message id length pointer was not valid.

AMRC_MSG_ID_PTR_ERR
The specified message id pointer was not valid.

AMRC_MSG_NOT_FOUND
The specified message was not found, so the request was not carried out.

AMRC_MSG_NOT_UNIQUE
The specified name could not be resolved to a unique message because
more than one message object with that name exists.

| AMRC_MSG_TYPE_NOT_REPORT
| The message is not a report message.

| AMRC_MSG_TYPE_PTR_ERR
| The specified message type pointer was not valid.

AMRC_NAME_BUFF_LEN_ERR
The specified name buffer length value was not valid.

AMRC_NAME_BUFF_PTR_ERR
The specified name buffer pointer was not valid.

AMRC_NAME_LEN_PTR_ERR
The specified name length pointer was not valid.

AMRC_NO_MSG_AVAILABLE
No message was available for a receive request after the specified wait
time.

 Appendix A. Reason codes 509

 Reason code (failed)

AMRC_NO_RESP_SERVICE
The publish request was not successful because a response receiver
service is required for registration and was not specified.

AMRC_NOT_AUTHORIZED
The user is not authorized by the underlying transport layer to perform the
specified request.

AMRC_POLICY_HANDLE_ERR
The specified policy handle was not valid.

AMRC_POLICY_NOT_FOUND
The specified policy was not found, so the request was not carried out.

AMRC_POLICY_NOT_UNIQUE
The specified name could not be resolved to a unique policy because
more than one policy with that name exists.

| AMRC_PRIMARY_HANDLE_ERR
| The primary handle (i.e. the first parameter) passed on the API call was
| not valid. The most probable reason for failure is that the handle passed is
| a synonym handle, which is not valid as the primary handle on any call to
| the AMI.

AMRC_PUBLISHER_NOT_UNIQUE
The specified name could not be resolved to a unique publisher because
more than one publisher object with that name exists.

AMRC_Q_NAME_BUFF_LEN_ERR
The specified queue name buffer length value was not valid.

AMRC_Q_NAME_BUFF_PTR_ERR
The specified queue name buffer pointer was not valid.

AMRC_Q_NAME_LEN_ERR
The specified queue name length value was not valid.

AMRC_Q_NAME_LEN_PTR_ERR
The specified queue name length pointer was not valid.

AMRC_Q_NAME_PTR_ERR
The specified queue name pointer was not valid.

AMRC_READ_OFFSET_ERR
The current data offset used for reading bytes from a message is not valid.

AMRC_RECEIVE_BUFF_LEN_ERR
The buffer length specified for receiving data was not valid.

AMRC_RECEIVE_BUFF_PTR_ERR
The buffer pointer specified for receiving data was not valid.

AMRC_RECEIVE_DISABLED
The specified request could not be performed because the service in the
underlying transport layer is not enabled for receive requests.

AMRC_RECEIVER_NOT_UNIQUE
The specified name could not be resolved to a unique receiver because
more than one receiver object with that name exists.

510 MQSeries Application Messaging Interface

 Reason code (failed)

| AMRC_REPORT_CODE_PTR_ERR
| The specified report code pointer was not valid.

| AMRC_REPOS_CACHE_ERR
| A module was loaded for use as a host file cache, but the module does
| not appear to be a valid host cache.

AMRC_REPOS_ERR
An error was returned when initializing or accessing the repository. This
can occur for any of the following reasons:

� The repository XML file (for instance, amt.xml) contains data that is not
valid.

� The DTD file (amt.dtd) was not found or contains data that is not valid.
� The files needed to initialize the repository (located in directories

intlFiles and locales) could not be located.

Check that the DTD and XML files are valid and correctly located, and that
the path settings for the local host and repository files are correct.

AMRC_REPOS_FILENAME_ERR
The repository file name was not valid. The value of the appropriate
environment variable should be corrected.

AMRC_REPOS_NOT_FOUND
The repository file was not found. The value of the appropriate
environment variable should be corrected.

AMRC_RESERVED_NAME_IN_REPOS
The name specified for creating an object was found in the repository and
is a reserved name that is not valid in a repository. The specified object
was not created.

AMRC_RESP_RECEIVER_HANDLE_ERR
The response receiver service handle specified when sending a request
message was not valid.

AMRC_RESP_SENDER_HANDLE_ERR
The response sender service handle specified when receiving a request
message was not valid.

AMRC_RFH_ALREADY_EXISTS
A publish, subscribe, or unsubscribe command could not be added to the
message because the message already contained an RFH header. The
message requires a reset first, to remove existing data.

AMRC_SEND_DATA_PTR_ERR
The buffer pointer specified for sending data was not valid.

AMRC_SEND_DATA_LEN_ERR
The data length specified for sending data was not valid.

AMRC_SEND_DISABLED
The specified request could not be performed because the service in the
underlying transport layer is not enabled for send requests.

AMRC_SENDER_COUNT_PTR_ERR
The specified distribution list sender count pointer was not valid.

 Appendix A. Reason codes 511

 Reason code (failed)

AMRC_SENDER_NOT_UNIQUE
The specified name could not be resolved to a unique sender because
more than one sender object with that name exists.

AMRC_SENDER_USAGE_ERR
The specified sender service definition type was not valid for sending
responses. To be valid for sending a response, a sender service must not
have a repository definition, must have been specified as a response
service when receiving a previous request message and must not have
been used for any purpose other than sending responses.

AMRC_SERVICE_ALREADY_CLOSED
The specified (sender, receiver, distribution list, publisher or subscriber)
service was already closed.

AMRC_SERVICE_ALREADY_OPEN
The specified (sender, receiver, distribution list, publisher or subscriber)
service was already open.

AMRC_SERVICE_FULL
The specified request could not be performed because the service in the
underlying transport has reached its maximum message limit.

AMRC_SERVICE_HANDLE_ERR
The service handle specified for a sender, receiver, distribution list,
publisher, or subscriber was not valid.

AMRC_SERVICE_NOT_FOUND
The specified (sender, receiver, distribution list, publisher, or subscriber)
service was not found, so the request was not carried out.

AMRC_SERVICE_NOT_OPEN
The request failed because the specified (sender, receiver, distribution list,
publisher or subscriber) service was not open.

AMRC_SESSION_ALREADY_CLOSED
The session was already closed (or terminated).

AMRC_SESSION_ALREADY_OPEN
The session was already open (or initialized).

| AMRC_SESSION_EXPIRED
| Under the IMS environment, the current session has been marked as
| expired. See “Writing IMS applications using AMI” on page 427 for an
| explanation of why a session may be expired. Delete the current session
| and create new one for the duration of this transaction.

AMRC_SESSION_HANDLE_ERR
The specified session handle was not valid.

AMRC_SESSION_NOT_OPEN
The request failed because the session was not open.

AMRC_SUBSCRIBER_NOT_UNIQUE
The specified name could not be resolved to a unique subscriber because
more than one subscriber object with that name exists.

512 MQSeries Application Messaging Interface

 Reason code (failed)

AMRC_TRANSPORT_ERR
An error was reported by the underlying (MQSeries) message transport
layer. The message transport reason code can be obtained by the
secondary reason code value returned from a ‘GetLastError’ request for
the AMI object concerned. For more information, see “Common causes of
problems” on page 497.

AMRC_TRANSPORT_LIBRARY_ERR
An error occurred loading the transport library.

AMRC_TRANSPORT_NOT_AVAILABLE
The underlying transport layer is not available.

AMRC_UNEXPECTED_ERR
An unexpected error occurred.

AMRC_WAIT_TIME_ERR
The specified wait-time value was not valid.

AMRC_WAIT_TIME_PTR_ERR
The specified wait time pointer was not valid.

AMRC_WAIT_TIME_READ_ONLY
An attempt was made to set the wait time in a policy object for which the
wait-time was read-only.

 Appendix A. Reason codes 513

 Reason code (failed)

514 MQSeries Application Messaging Interface

 Constants

 Appendix B. Constants

This appendix lists the values of the named constants used by the functions
described in this manual. For information about MQSeries constants not in this list,
see the MQSeries Application Programming Reference manual and the MQSeries
Programmable System Management manual.

The constants are grouped according to the parameter or field to which they relate.
Names of the constants in a group begin with a common prefix of the form
AMxxxx_, where xxxx represents a string of 0 through 4 characters that indicates
the nature of the values defined in that group. Within each group, constants are
listed in numeric (or alphabetic) order.

Character strings are shown delimited by double quotation marks; the quotation
marks are not part of the value.

AMB (Boolean constants)
 AMB_FALSE 5L
 AMB_TRUE 1L

AMBRW (Browse constants)
 AMBRW_UNLOCK 1L
 AMBRW_LOCK 2L
 AMBRW_FIRST 4L
 AMBRW_NEXT 8L
 AMBRW_CURRENT 16L
 AMBRW_RECEIVE_CURRENT 32L
 AMBRW_DEFAULT AMBRW_NEXT
AMBRW_LOCK_NEXT (AMBRW_LOCK + AMBRW_NEXT)
AMBRW_LOCK_FIRST (AMBRW_LOCK + AMBRW_FIRST)
AMBRW_LOCK_CURRENT (AMBRW_LOCK + AMBRW_CURRENT)

AMCC (Completion codes)
 AMCC_OK 5L
 AMCC_WARNING 1L
 AMCC_FAILED 2L

AMDEF (Service and policy definitions)
 AMDEF_POL "AMT.SYSTEM.POLICY"
 AMDEF_PUB "AMT.SYSTEM.PUBLISHER"
 AMDEF_RCV "AMT.SYSTEM.RECEIVER"
 AMDEF_RSP_SND "AMT.SYSTEM.RESPONSE.SENDER"
 AMDEF_SND "AMT.SYSTEM.SENDER"
 AMDEF_SUB "AMT.SYSTEM.SUBSCRIBER"
 AMDEF_SYNC_POINT_POL "AMT.SYSTEM.SYNCPOINT.POLICY"

 Copyright IBM Corp. 1999, 2000 515

 Constants

AMDT (Definition type constants)
 AMDT_UNDEFINED 5L
 AMDT_TEMP_DYNAMIC 2L
 AMDT_DYNAMIC 3L
 AMDT_PREDEFINED 4L

AMENC (Encoding constants)
 AMENC_NORMAL 5L
 AMENC_REVERSED 1L
 AMENC_NORMAL_FLOAT_395 2L
 AMENC_REVERSED_FLOAT_395 3L
 AMENC_UNDEFINED 4L
 AMENC_NATIVE AMENC_NORMAL (UNIX)
 AMENC_NATIVE AMENC_REVERSED (WIN32)

| AMENC_NATIVE AMENC_NORMAL_FLOAT_395 (OS/395

| AMFB (Feedback codes)
| AMFB_NONE 5L
| AMFB_EXPIRATION 1L
| AMFB_COA 2L
| AMFB_COD 3L
| AMFB_ERROR -1L

AMFMT (Format constants)
| AMFMT_NONE " "
| AMFMT_RF_HEADER "MQHRF "
| AMFMT_STRING "MQSTR "
| AMFMT_RF2_HEADER "MQHRF2 "

AMGF and AMGRP (Group status constants)
 AMGF_IN_GROUP 1L
 AMGF_FIRST 2L
 AMGF_LAST 4L

 AMGRP_MSG_NOT_IN_GROUP 5L
 AMGRP_FIRST_MSG_IN_GROUP (AMGF_IN_GROUP | AMGF_FIRST)
 AMGRP_MIDDLE_MSG_IN_GROUP AMGF_IN_GROUP
AMGRP_LAST_MSG_IN_GROUP (AMGF_IN_GROUP | AMGF_LAST)
AMGRP_ONLY_MSG_IN_GROUP (AMGF_IN_GROUP | AMGF_FIRST | AMGF_LAST)

AMH (Handle constants)
 AMH_NULL_HANDLE (AMHANDLE) 5L
 AMH_INVALID_HANDLE (AMHANDLE)-1L

AMLEN (String length constants)
 AMLEN_NULL_TERM -1L
 AMLEN_MAX_NAME_LENGTH 256L

516 MQSeries Application Messaging Interface

 Constants

| AMMCD (Message Content Descriptor tag names)
| AMMCD_MSG_SERVICE_DOMAIN "mcd.Msd"
| AMMCD_MSG_SET "mcd.Set"
| AMMCD_MSG_TYPE "mcd.Type"
| AMMCD_MSG_FORMAT "mcd.Fmt"

| AMMT (Message types)
| AMMT_REQUEST 1L
| AMMT_REPLY 2L
| AMMT_REPORT 4L
| AMMT_DATAGRAM 8L

 Appendix B. Constants 517

 Constants

 AMPS (Publish/subscribe)

Publish/subscribe tag names
 AMPS_COMMAND "MQPSCommand"
 AMPS_COMP_CODE "MQPSCompCode"
 AMPS_DELETE_OPTIONS "MQPSDelOpts"
 AMPS_ERROR_ID "MQPSErrorId"
 AMPS_ERROR_POS "MQPSErrorPos"
 AMPS_PARAMETER_ID "MQPSParmId"
 AMPS_PUBLICATION_OPTIONS "MQPSPubOpts"
 AMPS_TIMESTAMP "MQPSPubTime"
 AMPS_Q_MGR_NAME "MQPSQMgrName"
 AMPS_Q_NAME "MQPSQName"
 AMPS_REASON "MQPSReason"
 AMPS_REASON_TEXT "MQPSReasonText"
 AMPS_REGISTRATION_OPTIONS "MQPSRegOpts"
 AMPS_SEQUENCE_NUMBER "MQPSSeqNum"
 AMPS_STREAM_NAME "MQPSStreamName"
 AMPS_STRING_DATA "MQPSStringData"
 AMPS_TOPIC "MQPSTopic"
 AMPS_USER_ID "MQPSUserId"

| AMPS_FILTER "MQPSFilter"
| AMPS_SUBSCRIPTION_POINT "MQPSSubPoint"
| AMPS_SEQUENCE "MQPSSequence"
| AMPS_CONTROL "MQPSControl"

Publish/subscribe tag values
 AMPS_ANONYMOUS "Anon"
 AMPS_CORREL_ID_AS_ID "CorrelAsId"
 AMPS_DEREGISTER_ALL "DeregAll"
 AMPS_DIRECT_REQUESTS "DirectReq"
 AMPS_INCLUDE_STREAM_NAME "InclStreamName"
 AMPS_INFORM_IF_RETAINED "InformIfRet"
 AMPS_LOCAL "Local"
 AMPS_NEW_PUBS_ONLY "NewPubsOnly"
 AMPS_PUB_ON_REQUEST_ONLY "PubOnReqOnly"

| AMPS_DELETE_PUBLICATION "DeletePub"
| AMPS_DEREGISTER_PUBLISHER "DeregPub"
| AMPS_DEREGISTER_SUBSCRIBER "DeregSub"
| AMPS_PUBLISH "Publish"
| AMPS_REGISTER_PUBLISHER "RegPub"
| AMPS_REGISTER_SUBSCRIBER "RegSub"
| AMPS_REQUEST_UPDATE "ReqUpdate"
| AMPS_IS_RETAINED_PUBLICATION "IsRetainedPub"
| AMPS_NO_REGISTRATION "NoReg"
| AMPS_NONE "None"
| AMPS_OTHER_SUBSCRIBERS_ONLY "OtherSubsOnly"
| AMPS_RETAIN_PUBLICATION "RetainPub"
| AMPS_PERSISTENT "Pers"
| AMPS_NON_PERSISTENT "NonPers"
| AMPS_PERSISTENT_AS_PUBLISHER "PersAsPub"
| AMPS_PERSISTENT_AS_QUEUE "PersAsQueue"

518 MQSeries Application Messaging Interface

 Constants

Other publish/subscribe constants
 AMPS_APPL_TYPE "OPT_APP_GRP "
 AMPS_MSG_TYPE "OPT_MSG_TYPE "

 Appendix B. Constants 519

 Constants

AMRC (Reason codes)
 AMRC_NONE 5
 AMRC_UNEXPECTED_ERR 1
 AMRC_INVALID_Q_NAME 2
 AMRC_INVALID_SENDER_NAME 3
 AMRC_INVALID_RECEIVER_NAME 4
 AMRC_INVALID_PUBLISHER_NAME 5
 AMRC_INVALID_SUBSCRIBER_NAME 6
 AMRC_INVALID_POLICY_NAME 7
 AMRC_INVALID_MSG_NAME 8
 AMRC_INVALID_SESSION_NAME 9

 AMRC_INVALID_DIST_LIST_NAME 15
 AMRC_POLICY_HANDLE_ERR 11
 AMRC_SERVICE_HANDLE_ERR 12
 AMRC_MSG_HANDLE_ERR 13
 AMRC_SESSION_HANDLE_ERR 14
 AMRC_BROWSE_OPTIONS_ERR 15
 AMRC_INSUFFICIENT_MEMORY 16
 AMRC_WAIT_TIME_READ_ONLY 17
 AMRC_SERVICE_NOT_FOUND 18
 AMRC_MSG_NOT_FOUND 19

 AMRC_POLICY_NOT_FOUND 25
 AMRC_SENDER_NOT_UNIQUE 21
 AMRC_RECEIVER_NOT_UNIQUE 22
 AMRC_PUBLISHER_NOT_UNIQUE 23
 AMRC_SUBSCRIBER_NOT_UNIQUE 24
 AMRC_MSG_NOT_UNIQUE 25
 AMRC_POLICY_NOT_UNIQUE 26
 AMRC_DIST_LIST_NOT_UNIQUE 27
 AMRC_RECEIVE_BUFF_PTR_ERR 28
 AMRC_RECEIVE_BUFF_LEN_ERR 29

 AMRC_SEND_DATA_PTR_ERR 35
 AMRC_SEND_DATA_LEN_ERR 31
 AMRC_INVALID_IF_SERVICE_OPEN 32
 AMRC_SERVICE_ALREADY_OPEN 33
 AMRC_DATA_SOURCE_NOT_UNIQUE 34
 AMRC_NO_MSG_AVAILABLE 35
 AMRC_SESSION_ALREADY_OPEN 36
 AMRC_SESSION_ALREADY_CLOSED 37
 AMRC_ELEM_NOT_FOUND 38
 AMRC_ELEM_COUNT_PTR_ERR 39

520 MQSeries Application Messaging Interface

 Constants

 AMRC_ELEM_NAME_PTR_ERR 45
 AMRC_ELEM_NAME_LEN_ERR 41
 AMRC_ELEM_INDEX_ERR 42
 AMRC_ELEM_PTR_ERR 43
 AMRC_ELEM_STRUC_ERR 44
 AMRC_ELEM_STRUC_NAME_ERR 45
 AMRC_ELEM_STRUC_VALUE_ERR 46
 AMRC_ELEM_STRUC_NAME_BUFF_ERR 47
 AMRC_ELEM_STRUC_VALUE_BUFF_ERR 48
 AMRC_TRANSPORT_ERR 49

 AMRC_TRANSPORT_WARNING 55
 AMRC_ENCODING_INCOMPLETE 51
 AMRC_ENCODING_MIXED 52
 AMRC_ENCODING_ERR 53
 AMRC_BEGIN_INVALID 54
 AMRC_NO_REPLY_TO_INFO 55
 AMRC_SERVICE_ALREADY_CLOSED 56
 AMRC_SESSION_NOT_OPEN 57
 AMRC_DIST_LIST_INDEX_ERR 58
 AMRC_WAIT_TIME_ERR 59

 AMRC_SERVICE_NOT_OPEN 65
 AMRC_HEADER_TRUNCATED 61
 AMRC_HEADER_INVALID 62
 AMRC_DATA_LEN_ERR 63
 AMRC_BACKOUT_REQUEUE_ERR 64
 AMRC_BACKOUT_LIMIT_ERR 65
 AMRC_COMMAND_ALREADY_EXISTS 66
 AMRC_UNEXPECTED_RECEIVE_ERR 67
 AMRC_UNEXPECTED_SEND_ERR 68

 AMRC_SENDER_USAGE_ERR 75
 AMRC_MSG_TRUNCATED 71
 AMRC_CLOSE_SESSION_ERR 72
 AMRC_READ_OFFSET_ERR 73
 AMRC_RFH_ALREADY_EXISTS 74
 AMRC_GROUP_STATUS_ERR 75
 AMRC_MSG_ID_LEN_ERR 76
 AMRC_MSG_ID_PTR_ERR 77
 AMRC_MSG_ID_BUFF_LEN_ERR 78
 AMRC_MSG_ID_BUFF_PTR_ERR 79

 AMRC_MSG_ID_LEN_PTR_ERR 85
 AMRC_CORREL_ID_LEN_ERR 81
 AMRC_CORREL_ID_PTR_ERR 82
 AMRC_CORREL_ID_BUFF_LEN_ERR 83
 AMRC_CORREL_ID_BUFF_PTR_ERR 84
 AMRC_CORREL_ID_LEN_PTR_ERR 85
 AMRC_FORMAT_LEN_ERR 86
 AMRC_FORMAT_PTR_ERR 87
 AMRC_FORMAT_BUFF_PTR_ERR 88
 AMRC_FORMAT_LEN_PTR_ERR 89

 Appendix B. Constants 521

 Constants

 AMRC_FORMAT_BUFF_LEN_ERR 95
 AMRC_NAME_BUFF_PTR_ERR 91
 AMRC_NAME_LEN_PTR_ERR 92
 AMRC_NAME_BUFF_LEN_ERR 93
 AMRC_Q_NAME_LEN_ERR 94
 AMRC_Q_NAME_PTR_ERR 95
 AMRC_Q_NAME_BUFF_PTR_ERR 96
 AMRC_Q_NAME_LEN_PTR_ERR 97
 AMRC_Q_NAME_BUFF_LEN_ERR 98
 AMRC_WAIT_TIME_PTR_ERR 99

 AMRC_CCSID_PTR_ERR 155
 AMRC_ENCODING_PTR_ERR 151
 AMRC_DEFN_TYPE_PTR_ERR 152
 AMRC_CCSID_ERR 153
 AMRC_DATA_LEN_PTR_ERR 154
 AMRC_GROUP_STATUS_PTR_ERR 155
 AMRC_DATA_OFFSET_PTR_ERR 156
 AMRC_RESP_SENDER_HANDLE_ERR 157
 AMRC_RESP_RECEIVER_HANDLE_ERR 158
 AMRC_NOT_AUTHORIZED 159

 AMRC_TRANSPORT_NOT_AVAILABLE 115
 AMRC_BACKED_OUT 111
 AMRC_INCOMPLETE_GROUP 112
 AMRC_SEND_DISABLED 113
 AMRC_SERVICE_FULL 114
 AMRC_NOT_CONVERTED 115
 AMRC_RECEIVE_DISABLED 116
 AMRC_GROUP_BACKOUT_LIMIT_ERR 117
 AMRC_SENDER_COUNT_PTR_ERR 118
 AMRC_MULTIPLE_REASONS 119

 AMRC_NO_RESP_SERVICE 125
 AMRC_DATA_PTR_ERR 121
 AMRC_DATA_BUFF_LEN_ERR 122
 AMRC_DATA_BUFF_PTR_ERR 123
 AMRC_DEFN_TYPE_ERR 124

522 MQSeries Application Messaging Interface

 Constants

| AMRC_BACKOUT_INVALID 125
| AMRC_COMMIT_INVALID 126
| AMRC_DATA_OFFSET_ERR 127
| AMRC_FILE_SYSTEM_ERR 128
| AMRC_FILE_ALREADY_EXISTS 129
| AMRC_REPORT_CODE_PTR_ERR 135
| AMRC_MSG_TYPE_PTR_ERR 131
| AMRC_FILE_FORMAT_CONVERTED 132
| AMRC_FILE_TRUNCATED 133
| AMRC_FILE_NOT_FOUND 134
| AMRC_NOT_A_FILE 135
| AMRC_FILE_NAME_LEN_ERR 136
| AMRC_FILE_NAME_PTR_ERR 137
| AMRC_RFH2_FORMAT_ERR 138
| AMRC_CCSID_NOT_SUPPORTED 139
| AMRC_FILE_MSG_FORMAT_ERR 145
| AMRC_MSG_TYPE_NOT_REPORT 141
| AMRC_ELEM_STRUC_TYPE_ERR 142
| AMRC_ELEM_STRUC_TYPE_BUFF_ERR 143
| AMRC_FILE_TRANSFER_INVALID 144
| AMRC_FILE_NOT_WRITTEN 145
| AMRC_FILE_FORMAT_NOT_SUPPORTED 146

 AMRC_INVALID_TRACE_LEVEL 455
 AMRC_CONN_NAME_NOT_FOUND 451
 AMRC_HOST_FILE_NOT_FOUND 452
 AMRC_HOST_FILENAME_ERR 453
 AMRC_HOST_FILE_ERR 454
 AMRC_POLICY_NOT_IN_REPOS 455
 AMRC_SENDER_NOT_IN_REPOS 456
 AMRC_RECEIVER_NOT_IN_REPOS 457
 AMRC_DIST_LIST_NOT_IN_REPOS 458
 AMRC_PUBLISHER_NOT_IN_REPOS 459
 AMRC_SUBSCRIBER_NOT_IN_REPOS 415

 AMRC_RESERVED_NAME_IN_REPOS 411
 AMRC_REPOS_FILENAME_ERR 414
 AMRC_REPOS_WARNING 415
 AMRC_REPOS_ERR 416
 AMRC_REPOS_NOT_FOUND 418
 AMRC_TRANSPORT_LIBRARY_ERR 419

| AMRC_HOST_CACHE_ERR 425
| AMRC_REPOS_CACHE_ERR 421
| AMRC_PRIMARY_HANDLE_ERR 422
| AMRC_SESSION_EXPIRED 423

The following AMRC values are applicable only to the
Java programming language.

 AMRC_JAVA_FIELD_ERR 555
 AMRC_JAVA_METHOD_ERR 551
 AMRC_JAVA_CLASS_ERR 552
 AMRC_JAVA_JNI_ERR 553
 AMRC_JAVA_CREATE_ERR 554
 AMRC_JAVA_NULL_PARM_ERR 555

 Appendix B. Constants 523

 Constants

AMSD (System default names and handle synonyms)

 Default names
 AMSD_POL "SYSTEM.DEFAULT.POLICY"
 AMSD_PUB "SYSTEM.DEFAULT.PUBLISHER"
 AMSD_PUB_SND "SYSTEM.DEFAULT.PUBLISHER"
 AMSD_RCV "SYSTEM.DEFAULT.RECEIVER"
 AMSD_RCV_MSG "SYSTEM.DEFAULT.RECEIVE.MESSAGE"
 AMSD_RSP_SND "SYSTEM.DEFAULT.RESPONSE.SENDER"
 AMSD_SND "SYSTEM.DEFAULT.SENDER"
 AMSD_SND_MSG "SYSTEM.DEFAULT.SEND.MESSAGE"
 AMSD_SESSION_NAME "SYSTEM.DEFAULT.SESSION"
 AMSD_SUB "SYSTEM.DEFAULT.SUBSCRIBER"
 AMSD_SUB_SND "SYSTEM.DEFAULT.SUBSCRIBER"
 AMSD_SUB_RCV "SYSTEM.DEFAULT.SUBSCRIBER.RECEIVER"
 AMSD_SYNC_POINT_POL "SYSTEM.DEFAULT.SYNCPOINT.POLICY"

Default handle synonyms
 AMSD_RSP_SND_HANDLE (AMHSND)-5L
 AMSD_RCV_HANDLE (AMHRCV)-6L
 AMSD_POL_HANDLE (AMHPOL)-7L
 AMSD_SYNC_POINT_POL_HANDLE (AMHPOL)-8L
 AMSD_SND_MSG_HANDLE (AMHMSG)-9L
 AMSD_RCV_MSG_HANDLE (AMHMSG)-15L

AMWT (Wait time constant)
 AMWT_UNLIMITED -1L

524 MQSeries Application Messaging Interface

 Notices

 Appendix C. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

 Copyright IBM Corp. 1999, 2000 525

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

526 MQSeries Application Messaging Interface

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both:

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

AIX IBM MQSeries SupportPac OS/390

 Appendix C. Notices 527

 Notices

528 MQSeries Application Messaging Interface

Part 9. Glossary and index

 Copyright IBM Corp. 1999, 2000 529

530 MQSeries Application Messaging Interface

 Connection � Queue manager

Glossary of terms and abbreviations

This glossary defines terms and abbreviations used in
this book. If you do not find the term you are looking
for, see the Index or the IBM Dictionary of Computing,
New York: McGraw-Hill, 1994.

C
Connection. An AMI connection maps a logical queue
manager name in a policy to a real queue manager
name. This allows applications running on different
nodes to use the same policy to connect to different
queue managers.

Correlation identifier. This is used as a key to a
message, for example to correlate a response message
with a request message. The AMI normally sets this in
a response message by copying the message identifier
from the request message. See also request/response
and selection message.

D
Datagram. The simplest message that MQSeries
supports. Also known as send-and-forget. This type of
message does not require a reply. Compare with
request/response.

Distribution list. An AMI service. It contains a list of
sender services, enabling a message to be sent to
multiple destinations in one operation.

L
Local host file. Defines the mapping from a logical
connection name to a real MQSeries queue manager
on the local machine.

M
Message. A message defines what is sent from one
program to another in an AMI application. See also
service and policy.

Message descriptor (MQMD). Control information
describing the message format and properties that is
carried as part of an MQSeries message.

Message identifier. An identifier for the message. It is
usually unique, and typically it is generated by the
message transport (MQSeries).

Message object. An AMI object. It contains attributes
of the message, such as the message identifier and

correlation identifier, and options that are used when
sending or receiving the message (most of which come
from the policy definition). It can also contain the
message data.

Message queue. See queue.

Message queue interface (MQI). The programming
interface provided by MQSeries queue managers. It
allows application programs to access message
queuing services. The AMI provides a simpler interface
to these services.

MQRFH header. Header added to an MQSeries
message to carry control information, typically for use
by a broker (for example, in a publish/subscribe
system).

P
Point-to-point. Style of messaging application in
which the sending application knows the destination of
the message. Compare with publish/subscribe.

Policy. A policy defines how a message is sent in an
AMI application. It encapsulates many of the options
available in the MQI. Its definition can be stored in a
repository. See also service.

Publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

Publisher. (1) An AMI service. It contains a sender
service where the destination is a publish/subscribe
broker. (2) An application that makes information about
a specified topic available to a broker in a
publish/subscribe system.

Q
Queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

Queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that

 Copyright IBM Corp. 1999, 2000 531

 Receiver � Topic

programs can access messages on the queues that the
queue manager owns.

R
Receiver. An AMI service. It represents a source
(such as an MQSeries queue) from which messages
are received. Its definition is stored in a repository as a
service point.

Repository. A repository provides definitions for
services and policies. If the name of a service or policy
is not found in the repository, or an AMI application
does not have a repository, the definitions built into the
AMI are used. See also repository file.

Repository file. File that stores repository definitions
in XML (Extensible Markup Language) format.

Request/response. Type of messaging application in
which a request message is used to request a response
from another application. Compare with datagram. See
also response sender and selection message.

Response sender. A special type of sender service
that is used to send a response to a request message.
It must use the definition built into the AMI, so it must
not be defined in the repository.

S
Selection message. A message object that is used to
selectively receive a message by specifying its
correlation identifier. Used in request/response
messaging to correlate a response message with its
request message.

Send-and-forget. See datagram.

Sender. An AMI service. It represents a destination
(such as an MQSeries queue) to which messages are
sent. Its definition is stored in a repository as a service
point.

Service. A service defines where a message is sent in
an AMI application. Senders, receivers, distribution
lists, publishers, and subscribers are all types of
service. Their definitions can be stored in a repository.
See also policy.

Service point. The definition in a repository of a
sender or receiver service.

Session. An AMI object. It creates and manages all
other AMI objects (message, service, policy and
connection objects), and it provides the scope for a unit
of work when transactional processing is used.

Subscriber. (1) An AMI service. It contains a sender
service to send subscribe and unsubscribe messages to
a publish/subscribe broker, and a receiver service to
receive publications from the broker. (2) An application
that requests information about a specified topic from a
publish/subscribe broker.

T
Topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

532 MQSeries Application Messaging Interface

 Index

 Index

A
Accept Direct Requests attribute 483
Accept Truncated Message attribute 481
addElement

AmMessage (C++) 189
AmMessage (Java) 392

addFilter
AmMessage (C++) 190
AmMessage (Java) 393

addTopic
AmMessage (C++) 190
AmMessage (Java) 393

administration tool 460
AIX

C applications 28
C++ applications 159
installation 433
Java applications 369
prerequisites 431

AMB constants 515
amBackout 39
amBegin 40
amBrowseMsg 41
AMBRW constants 515
AmBytes (C++)

cmp 215
constructors 215
cpy 216
dataPtr 216
destructor 216
length 216
operators 216
overview 177
pad 216

AMCC constants 515
amCommit 43
AmConstants (Java) 418
AMDEF constants 515
AmDistributionList (C++)

clearErrorCodes 205
close 205
enableWarnings 205
getLastErrorStatus 205
getName 205
getSender 205
getSenderCount 206
open 206
overview 173
send 206
sendFile 206

AmDistributionList (Java)
clearErrorCodes 408
close 408
enableWarnings 408
getLastErrorStatus 408
getName 408
getSender 408
getSenderCount 409
open 409
overview 378
send 409
sendFile 409

AMDLCL 336
AMDLCLEC 336
AMDLGTLE 336
AMDLGTNA 337
AMDLGTSC 337
AMDLGTSH 338
AMDLOP 338
AMDLSN 339
AMDLSNFL 339
amDstClearErrorCodes 126
amDstClose 126
amDstGetLastError 126
amDstGetName 127
amDstGetSenderCount 127
amDstGetSenderHandle 128
amDstOpen 128
amDstSend 129
amDstSendFile 130
AMDT constants 516
AMELEM structure 22, 237
AmElement (C++)

constructor 217
getName 217
getValue 217
getVersion 217
overview 177
setVersion 217
toString 217
using 155

AmElement (Java)
constructor 419
getName 419
getValue 419
getVersion 419
overview 382
setVersion 419
toString 419
using 364

AMENC constants 516

 Copyright IBM Corp. 1999, 2000 533

 Index

AmErrorException (C++)
getClassName 223
getCompletionCode 223
getMethodName 223
getReasonCode 223
getSource 223
overview 179
toString 223

AmErrorException (Java)
getClassName 423
getCompletionCode 423
getMethodName 423
getReasonCode 423
getSource 423
overview 383
toString 423

AmException (C++)
getClassName 222
getCompletionCode 222
getMethodName 222
getReasonCode 222
getSource 222
overview 179
toString 222
using 155

AmException (Java)
getClassName 422
getCompletionCode 422
getMethodName 422
getReasonCode 422
getSource 422
overview 383
toString 422
using 365

AMFB constants 516
AMFMT constants 516
AMGF constants 516
AMGRP constants 516
AMH constants 516
AMHBACK 247
AMHBEGIN 248
AMHBRMS 249
AMHCMIT 251
AMHINIT 252
AMHPB 253
AMHRCFL 254
AMHRCMS 256
AMHRCPB 258
AMHRCRQ 260
AMHSB 267
AMHSNFL 262
AMHSNMS 264
AMHSNRQ 265
AMHSNRS 266
AMHTERM 269

AMHUN 270
amInitialize 44
AMLEN constants 516
AMMCD constants 517
AmMessage (C++)

addElement 189
addFilter 190
addTopic 190
clearErrorCodes 190
deleteElement 190
deleteFilter 190
deleteNamedElement 190
deleteTopic 191
enableWarnings 191
getCCSID 191
getCorrelationId 191
getDataLength 191
getDataOffset 191
getElement 192
getElementCCSID 192
getElementCount 192
getEncoding 192
getFilter 192
getFilterCount 192
getFormat 193
getGroupStatus 193
getLastErrorStatus 193
getMessageId 193
getName 193
getNamedElement 193
getNamedElementCount 194
getReportCode 194
getTopic 194
getTopicCount 194
getType 194
overview 169
readBytes 195
reset 195
setCCSID 195
setCorrelationId 195
setDataOffset 195
setElementCCSID 196
setEncoding 196
setFormat 196
setGroupStatus 196
writeBytes 197

AmMessage (Java)
addElement 392
addFilter 393
addTopic 393
clearErrorCodes 393
deleteElement 393
deleteFilter 393
deleteNamedElement 393
deleteTopic 394
enableWarnings 394

534 MQSeries Application Messaging Interface

 Index

AmMessage (Java) (continued)
getCCSID 394
getCorrelationId 394
getDataLength 394
getDataOffset 394
getElement 395
getElementCount 395
getEncoding 395
getFilter 395
getFilterCount 395
getFormat 396
getGroupStatus 396
getLastErrorStatus 396
getMessageId 396
getName 396
getNamedElement 397
getNamedElementCount 397
getReportCode 397
getTopic 397
getTopicCount 397
getType 397
overview 374
readBytes 398
reset 398
setCCSID 398
setCorrelationId 398
setDataOffset 398
setEncoding 399
setFormat 399
setGroupStatus 399
writeBytes 400

AMMSADEL 301
AMMSADFI 302
AMMSADTO 302
AMMSCLEC 303
AMMSDEEL 303
AMMSDEFI 303
AMMSDENE 304
AMMSDETO 304
amMsgAddElement 90
amMsgAddFilter 91
AmMsgAddStreamName 107
amMsgAddTopic 91
amMsgClearErrorCodes 92
amMsgDeleteElement 92
amMsgDeleteFilter 92
amMsgDeleteNamedElement 93
amMsgDeleteTopic 93
AMMSGELC 305
amMsgGetCCSID 94
amMsgGetCorrelId 94
amMsgGetDataLength 94
amMsgGetDataOffset 95
amMsgGetElement 95
amMsgGetElementCCSID 95

amMsgGetElementCount 96
amMsgGetEncoding 96
amMsgGetFilter 96
amMsgGetFilterCount 97
amMsgGetFormat 97
amMsgGetGroupStatus 98
amMsgGetLastError 98
amMsgGetMsgId 99
amMsgGetName 99
amMsgGetNamedElement 100
amMsgGetNamedElementCount 100
AmMsgGetPubTimeStamp 107
amMsgGetReportCode 101
AmMsgGetStreamName 107
amMsgGetTopic 101
amMsgGetTopicCount 102
amMsgGetType 102
amMsgReadBytes 102
amMsgReset 103
amMsgSetCCSID 103
amMsgSetCorrelId 103
amMsgSetDataOffset 104
amMsgSetElementCCSID 104
amMsgSetEncoding 104
amMsgSetFormat 105
amMsgSetGroupStatus 105
AMMSGTCC 305
AMMSGTCI 306
AMMSGTDL 306
AMMSGTDO 306
AMMSGTEC 307
AMMSGTEL 307
AMMSGTEN 308
AMMSGTFC 308
AMMSGTFI 308
AMMSGTFO 309
AMMSGTGS 310
AMMSGTLE 310
AMMSGTMI 311
AMMSGTNA 311
AMMSGTNC 312
AMMSGTNE 312
AMMSGTRC 313
AMMSGTTC 314
AMMSGTTO 313
AMMSGTTY 314
amMsgWriteBytes 106
AMMSREBY 314
AMMSRS 315
AMMSSELC 317
AMMSSTCC 315
AMMSSTCI 316
AMMSSTDO 316
AMMSSTEN 317
AMMSSTFO 318

 Index 535

 Index

AMMSSTGS 318
AMMSWRBY 319
AMMT constants 517
AmObject (C++)

clearErrorCodes 218
getLastErrorStatus 218
getName 218
overview 177

AmObject (Java)
clearErrorCodes 420
getLastErrorStatus 420
getName 420
overview 382

AMPBCL 341
AMPBCLEC 341
AMPBGTCC 341
AMPBGTEN 342
AMPBGTLE 342
AMPBGTNA 343
AMPBOP 343
AMPBPB 344
AMPOCLEC 352
AMPOGTLE 352
AMPOGTNA 353
AMPOGTWT 353
amPolClearErrorCodes 143
amPolGetLastError 143
amPolGetName 144
amPolGetWaitTime 144
AmPolicy (C++)

clearErrorCodes 214
enableWarnings 214
getLastErrorStatus 214
getName 214
getWaitTime 214
overview 176
setWaitTime 214

AmPolicy (Java)
clearErrorCodes 417
enableWarnings 417
getLastErrorStatus 417
getName 417
getWaitTime 417
overview 381
setWaitTime 417

amPolSetWaitTime 144
AMPOSTWT 353
AMPS constants 518
amPubClearErrorCodes 132
amPubClose 132
amPubGetCCSID 132
amPubGetEncoding 133
amPubGetLastError 133
amPubGetName 134
amPublish 45

AmPublisher (C++)
clearErrorCodes 208
close 208
enableWarnings 208
getCCSID 208
getEncoding 208
getLastErrorStatus 208
getName 209
open 209
overview 174
publish 209

AmPublisher (Java)
clearErrorCodes 411
close 411
enableWarnings 411
getCCSID 411
getEncoding 411
getLastErrorStatus 411
getName 412
open 412
overview 379
publish 412

amPubOpen 134
amPubPublish 135
AMRC constants 520
AMRCBR 326
AMRCBRSE 327
AMRCCL 329
AMRCCLEC 329
AMRCGTDT 329
AMRCGTLE 330
AMRCGTNA 330
AMRCGTQN 331
AMRCOP 331
AMRCRC 332
AMRCRCFL 333
AMRCSTQN 334
amRcvBrowse 115
amRcvBrowseSelect 117
amRcvClearErrorCodes 118
amRcvClose 119
amRcvGetDefnType 119
amRcvGetLastError 120
amRcvGetName 120
amRcvGetQueueName 121
amRcvOpen 121
amRcvReceive 122
amRcvReceiveFile 124
amRcvSetQueueName 125
amReceiveFile 46
amReceiveMsg 48
amReceivePublication 50
AmReceiver (C++)

browse 201
clearErrorCodes 202
close 202

536 MQSeries Application Messaging Interface

 Index

AmReceiver (C++) (continued)
enableWarnings 202
getDefinitionType 202
getLastErrorStatus 203
getName 203
getQueueName 203
open 203
overview 172
receive 203
receiveFile 204, 407
setQueueName 204

AmReceiver (Java)
browse 404
clearErrorCodes 405
close 405
enableWarnings 405
getDefinitionType 405
getLastErrorStatus 406
getName 406
getQueueName 406
open 406
overview 377
receive 406
setQueueName 407

amReceiveRequest 52
AMSBCL 345
AMSBCLEC 345
AMSBGTCC 345
AMSBGTDT 346
AMSBGTEN 346
AMSBGTLE 347
AMSBGTNA 347
AMSBGTQN 348
AMSBOP 348
AMSBRC 349
AMSBSB 350
AMSBSTQN 349
AMSBUN 351
AMSD constants 524
AMSEBG 288
AMSECL 289
AMSECLEC 288
AMSECM 289
AMSECR 289
AMSECRDL 290
AMSECRMS 290
AMSECRPB 291
AMSECRPO 291
AMSECRRC 292
AMSECRSB 293
AMSECRSN 292
AMSEDL 293
AMSEDLDL 294
AMSEDLMS 294
AMSEDLPB 295

AMSEDLPO 294
AMSEDLRC 295
AMSEDLSB 296
AMSEDLSN 295
AMSEGHDL 296
AMSEGHMS 297
AMSEGHPB 298
AMSEGHPO 297
AMSEGHRC 298
AMSEGHSB 299
AMSEGHSN 299
AMSEGTLE 296
AmSender (C++)

clearErrorCodes 198
close 198
enableWarnings 198
getCCSID 198
getEncoding 199
getLastErrorStatus 199
getName 199
open 199
overview 171
send 199
sendFile 200

AmSender (Java)
clearErrorCodes 401
close 401
enableWarnings 401
getCCSID 401
getEncoding 402
getLastErrorStatus 402
getName 402
open 402
overview 376
send 402
sendFile 403

amSendFile 54
amSendMsg 55
amSendRequest 56
amSendResponse 57
AMSEOP 299
AMSERB 300
amSesBegin 78
amSesClearErrorCodes 78
amSesClose 79
amSesCommit 79
amSesCreate 79
amSesCreateDistList 80
amSesCreateMessage 80
amSesCreatePolicy 80
amSesCreatePublisher 81
amSesCreateReceiver 81
amSesCreateSender 82
amSesCreateSubscriber 82
amSesDelete 83

 Index 537

 Index

amSesDeleteDistList 83
amSesDeleteMessage 83
amSesDeletePolicy 84
amSesDeletePublisher 84
amSesDeleteReceiver 84
amSesDeleteSender 85
amSesDeleteSubscriber 85
amSesGetDistListHandle 85
amSesGetLastError 86
amSesGetMessageHandle 86
amSesGetPolicyHandle 87
amSesGetPublisherHandle 87
amSesGetReceiverHandle 87
amSesGetSenderHandle 88
amSesGetSubscriberHandle 88
amSesOpen 88
amSesRollback 89
AmSession (C++)

begin 184
clearErrorCodes 184
close 184
commit 184
createDistributionList 185
createMessage 185
createPolicy 185
createPublisher 185
createReceiver 185
createSender 186
createSubscriber 186
deleteDistributionList 186
deleteMessage 186
deletePolicy 186
deletePublisher 187
deleteReceiver 187
deleteSender 187
deleteSubscriber 187
enableWarnings 187
getLastErrorStatus 187
getName 187
getTraceLevel 188
getTraceLocation 188
open 188
overview 167
rollback 188
transaction coordination 184
unit of work 184

AmSession (Java)
begin 388
clearErrorCodes 388
close 388
commit 388
createDistributionList 389
createMessage 389
createPolicy 389
createPublisher 389
createReceiver 389

AmSession (Java) (continued)
createSender 390
createSubscriber 390
enableWarnings 390
getLastErrorStatus 390
getName 390
getTraceLevel 390
getTraceLocation 391
open 391
overview 373
rollback 391
transaction coordination 388
unit of work 388

AmSessionFactory (C++)
constructors 182
createSession 182
deleteSession 182
getFactoryName 182
getLocalHost 182
getRepository 182
getTraceLevel 183
getTraceLocation 183
overview 166
setLocalHost 183
setRepository 183
setTraceLevel 183
setTraceLocation 183

AmSessionFactory (Java)
constructor 386
createSession 386
getFactoryName 386
getLocalHost 386
getRepository 386
getTraceLevel 386
getTraceLocation 386
overview 372
setLocalHost 387
setRepository 387
setTraceLevel 387
setTraceLocation 387

AMSNCL 320
AMSNCLEC 320
amSndClearErrorCodes 109
amSndClose 109
amSndGetCCSID 110
amSndGetEncoding 110
amSndGetLastError 111
amSndGetName 111
amSndOpen 112
amSndSend 112
amSndSendFile 113
AMSNGTCC 321
AMSNGTEN 321
AMSNGTLE 322
AMSNGTNA 322

538 MQSeries Application Messaging Interface

 Index

AMSNOP 323
AMSNSN 323
AMSNSNFL 324
AmStatus (C++)

constructor 219
getCompletionCode 219
getReasonCode 219
getReasonCode2 219
overview 178
toString 219
using 155

AmStatus (Java)
constructor 421
getCompletionCode 421
getReasonCode 421
getReasonCode2 421
overview 382
toString 421
using 365

AmString (C++)
cat 220
cmp 220
constructors 220
contains 220
cpy 220
destructor 221
length 221
operators 221
overview 178
pad 221
split 221
strip 221
text 221
truncate 221

amSubClearErrorCodes 136
amSubClose 136
amSubGetCCSID 136
amSubGetDefnType 137
amSubGetEncoding 137
amSubGetLastError 138
amSubGetName 138
amSubGetQueueName 139
amSubOpen 139
amSubReceive 140
amSubscribe 58
AmSubscriber (C++)

clearErrorCodes 210
close 210
enableWarnings 210
getCCSID 210
getDefinitionType 210
getEncoding 211
getLastErrorStatus 211
getName 211
getQueueName 211
open 211

AmSubscriber (C++) (continued)
overview 175
receive 212
setQueueName 212
subscribe 213
unsubscribe 213

AmSubscriber (Java)
clearErrorCodes 413
close 413
enableWarnings 413
getCCSID 413
getDefinitionType 413
getEncoding 414
getLastErrorStatus 414
getName 414
getQueueName 414
open 414
overview 380
receive 415
setQueueName 415
subscribe 416
unsubscribe 416

amSubSetQueueName 140
amSubSubscribe 141
amSubUnsubscribe 142
amtc.h header 27
AMTELEMV and AMTELEML copybooks 237
amTerminate 60
amUnsubscribe 61
AmWarningException (C++)

getClassName 224
getCompletionCode 224
getMethodName 224
getReasonCode 224
getSource 224
overview 179
toString 224

AmWarningException (Java)
getClassName 424
getCompletionCode 424
getMethodName 424
getReasonCode 424
getSource 424
overview 383
toString 424

AMWT constants 524
Anonymous Registration attribute 482, 483
appearance of text in this book x
Application Group attribute 479
application messaging interface

basic model 7
description 4
interoperability 3
introduction 3
main components 3
programming languages 4

 Index 539

 Index

application messaging interface (continued)
receiving messages 3
sending messages 3

applications, building
C 27
C++ 159
COBOL 241
Java 369

applications, writing
C 14
C++ 149
COBOL 230
Java 359

attributes, policy
general 478
initialization 477
publish 483
receive 481
send 479
subscribe 482

Available Service Points attribute 476

B
base classes

C++ 147, 181
Java 357, 385

begin
AmSession (C++) 184
AmSession (Java) 388

Bind On Open attribute 479
Boolean constants 515
Broker Service attribute 476
browse

AmReceiver (C++) 201
AmReceiver (Java) 404
constants 515

building applications
C 27
C++ 159
COBOL 241
Java 369

C
C applications

AIX 28
HP-UX 29
OS/390 32
Solaris 31
Windows 32

C high-level interface
equivalent object interface functions 74
overview 36
reference information 38
using 11

C object interface
overview 63
reference information 77
using 11

C++ applications
AIX 159
HP-UX 160
Solaris 162
Windows 163

C++ interface
overview 165
reference information 181
using 147

cache, repository and local host (OS/390) 457
CCSID attribute 474
class (C++)

base 147, 181
exception 148, 181
helper 148, 181

class (Java)
base 357, 385
exception 358, 385
helper 358, 385

clearErrorCodes
AmDistributionList (C++) 205
AmDistributionList (Java) 408
AmMessage (C++) 190
AmMessage (Java) 393
AmObject (C++) 218
AmObject (Java) 420
AmPolicy (C++) 214
AmPolicy (Java) 417
AmPublisher (C++) 208
AmPublisher (Java) 411
AmReceiver (C++) 202
AmReceiver (Java) 405
AmSender (C++) 198
AmSender (Java) 401
AmSession (C++) 184
AmSession (Java) 388
AmSubscriber (C++) 210
AmSubscriber (Java) 413

close
AmDistributionList (C++) 205
AmDistributionList (Java) 408
AmPublisher (C++) 208
AmPublisher (Java) 411
AmReceiver (C++) 202
AmReceiver (Java) 405
AmSender (C++) 198
AmSender (Java) 401
AmSession (C++) 184
AmSession (Java) 388
AmSubscriber (C++) 210
AmSubscriber (Java) 413

540 MQSeries Application Messaging Interface

 Index

closing a session
C 14
C++ 149
COBOL 230
Java 359

COBOL applications
OS/390 241

COBOL high-level interface
equivalent object interface functions 284
overview 244
reference information 246
using 227

COBOL object interface
overview 273
reference information 287
using 227

commit
AmSession (C++) 184
AmSession (Java) 388

compilers 432
completion code constants 515
connecting to MQSeries 461
Connection Mode attribute 477
Connection Name attribute 477
Connection Type attribute 477
constants

Boolean 515
browse 515
completion codes 515
definition type 516
encoding 516
feedback codes 516
format 516
group status 516
handle 516
Message Content Descriptor tag names 517
message types 517
publish/subscribe 518
reason codes 520
service and policy definitions 515
string length 516
system default names and handles 524
wait time 524

content-based publish/subscribe 462
Convert attribute 481
createDistributionList

AmSession (C++) 185
AmSession (Java) 389

createMessage
AmSession (C++) 185
AmSession (Java) 389

createPolicy
AmSession (C++) 185
AmSession (Java) 389

createPublisher
AmSession (C++) 185

createPublisher (continued)
AmSession (Java) 389

createReceiver
AmSession (C++) 185
AmSession (Java) 389

createSender
AmSession (C++) 186
AmSession (Java) 390

createSession
AmSessionFactory (C++) 182
AmSessionFactory (Java) 386

createSubscriber
AmSession (C++) 186
AmSession (Java) 390

creating MQSeries objects 463
creating objects

C++ 149
Java 359

D
data types, C 27
datagram

C 14
C++ 150
COBOL 230
Java 360

Default Format attribute 474
Default MCD Domain attribute 474
Default MCD Format attribute 474
Default MCD Set attribute 474
Default MCD Type attribute 474
default objects

C 12
C++ 148
COBOL 228
Java 358
system 472

definition
distribution list 476
policy 471, 477
publisher 476
service 471
service point (sender/receiver) 474
subscriber 476
system provided 472

Definition Type attribute 474
definition type constants 516
Delete On Close attribute 481
deleteDistributionList

AmSession (C++) 186
deleteElement

AmMessage (C++) 190
AmMessage (Java) 393

deleteFilter
AmMessage (C++) 190

 Index 541

 Index

deleteFilter (continued)
AmMessage (Java) 393

deleteMessage
AmSession (C++) 186

deleteNamedElement
AmMessage (C++) 190
AmMessage (Java) 393

deletePolicy
AmSession (C++) 186

deletePublisher
AmSession (C++) 187

deleteReceiver
AmSession (C++) 187

deleteSender
AmSession (C++) 187

deleteSession
AmSessionFactory (C++) 182

deleteSubscriber
AmSession (C++) 187

deleteTopic
AmMessage (C++) 191
AmMessage (Java) 394

deleting C++ objects 150
directory structure

AIX 435
HP-UX 440
OS/390 452
Solaris 444
Windows 447

disk space 431
distribution list definition 476
distribution list interface

overview (C) 70
overview (C++) 173
overview (COBOL) 280
overview (Java) 378

distribution list interface (C)
amDstClearErrorCodes 126
amDstClose 126
amDstGetLastError 126
amDstGetName 127
amDstGetSenderCount 127
amDstGetSenderHandle 128
amDstOpen 128
amDstSend 129
amDstSendFile 130

distribution list interface (COBOL)
AMDLCL 336
AMDLCLEC 336
AMDLGTLE 336
AMDLGTNA 337
AMDLGTSC 337
AMDLGTSH 338
AMDLOP 338
AMDLSN 339
AMDLSNFL 339

Dynamic Queue Prefix attribute 474

E
elements, name/value

C 22
C++ 155
COBOL 237
Java 364

enableWarnings
AmDistributionList (C++) 205
AmDistributionList (Java) 408
AmMessage (C++) 191
AmMessage (Java) 394
AmPolicy (C++) 214
AmPolicy (Java) 417
AmPublisher (C++) 208
AmPublisher (Java) 411
AmReceiver (C++) 202
AmReceiver (Java) 405
AmSender (C++) 198
AmSender (Java) 401
AmSession (C++) 187
AmSession (Java) 390
AmSubscriber (C++) 210
AmSubscriber (Java) 413

Encoding attribute 474
encoding constants 516
error handling

C 24
C++ 155
COBOL 239
Java 365

examples
C 14
C++ 149
COBOL 230
Java 359

Exception Action attribute 479
exception classes

C++ 148, 181
Java 358, 385

Expiry Interval attribute 479

F
failure (of AMI program)

common causes 497
reason codes 496
symptom report (OS/390) 496
symptom report (Unix and Windows) 496

feedback codes 516
Field Disposition attribute 481
field limits

C 26
C++ 158

542 MQSeries Application Messaging Interface

 Index

field limits (continued)
COBOL 240
Java 368

file transfer
C 19
C++ 153
COBOL 235
Java 363

filters 462
filters for publish/subscribe 462
format constants 516
format of this book ix

G
getCCSID

AmMessage (C++) 191
AmMessage (Java) 394
AmPublisher (C++) 208
AmPublisher (Java) 411
AmSender (C++) 198
AmSender (Java) 401
AmSubscriber (C++) 210
AmSubscriber (Java) 413

getClassName
AmErrorException (C++) 223
AmErrorException (Java) 423
AmException (C++) 222
AmException (Java) 422
AmWarningException (C++) 224
AmWarningException (Java) 424

getCompletionCode
AmErrorException (C++) 223
AmErrorException (Java) 423
AmException (C++) 222
AmException (Java) 422
AmStatus (C++) 219
AmStatus (Java) 421
AmWarningException (C++) 224
AmWarningException (Java) 424

getCorrelationId
AmMessage (C++) 191
AmMessage (Java) 394

getDataLength
AmMessage (C++) 191
AmMessage (Java) 394

getDataOffset
AmMessage (C++) 191
AmMessage (Java) 394

getDefinitionType
AmReceiver (C++) 202
AmReceiver (Java) 405
AmSubscriber (C++) 210
AmSubscriber (Java) 413

getElement
AmMessage (C++) 192

getElement (continued)
AmMessage (Java) 395

getElementCCSID
AmMessage (C++) 192

getElementCount
AmMessage (C++) 192
AmMessage (Java) 395

getEncoding
AmMessage (C++) 192
AmMessage (Java) 395
AmPublisher (C++) 208
AmPublisher (Java) 411
AmSender (C++) 199
AmSender (Java) 402
AmSubscriber (C++) 211
AmSubscriber (Java) 414

getFactoryName
AmSessionFactory (C++) 182
AmSessionFactory (Java) 386

getFilter
AmMessage (C++) 192
AmMessage (Java) 395

getFilterCount
AmMessage (C++) 192
AmMessage (Java) 395

getFormat
AmMessage (C++) 193
AmMessage (Java) 396

getGroupStatus
AmMessage (C++) 193
AmMessage (Java) 396

getLastErrorStatus
AmDistributionList (C++) 205
AmDistributionList (Java) 408
AmMessage (C++) 193
AmMessage (Java) 396
AmObject (C++) 218
AmObject (Java) 420
AmPolicy (C++) 214
AmPolicy (Java) 417
AmPublisher (C++) 208
AmPublisher (Java) 411
AmReceiver (C++) 203
AmReceiver (Java) 406
AmSender (C++) 199
AmSender (Java) 402
AmSession (C++) 187
AmSession (Java) 390
AmSubscriber (C++) 211
AmSubscriber (Java) 414

getLocalHost
AmSessionFactory (C++) 182
AmSessionFactory (Java) 386

getMessageId
AmMessage (C++) 193
AmMessage (Java) 396

 Index 543

 Index

getMethodName
AmErrorException (C++) 223
AmErrorException (Java) 423
AmException (C++) 222
AmException (Java) 422
AmWarningException (C++) 224
AmWarningException (Java) 424

getName
AmDistributionList (C++) 205
AmDistributionList (Java) 408
AmElement (C++) 217
AmElement (Java) 419
AmMessage (C++) 193
AmMessage (Java) 396
AmObject (C++) 218
AmObject (Java) 420
AmPolicy (C++) 214
AmPolicy (Java) 417
AmPublisher (C++) 209
AmPublisher (Java) 412
AmReceiver (C++) 203
AmReceiver (Java) 406
AmSender (C++) 199
AmSender (Java) 402
AmSession (C++) 187
AmSession (Java) 390
AmSubscriber (C++) 211
AmSubscriber (Java) 414

getNamedElement
AmMessage (C++) 193
AmMessage (Java) 397

getNamedElementCount
AmMessage (C++) 194
AmMessage (Java) 397

getQueueName
AmReceiver (C++) 203
AmReceiver (Java) 406
AmSubscriber (C++) 211
AmSubscriber (Java) 414

getReasonCode
AmErrorException (C++) 223
AmErrorException (Java) 423
AmException (C++) 222
AmException (Java) 422
AmStatus (C++) 219
AmStatus (Java) 421
AmWarningException (C++) 224
AmWarningException (Java) 424

getReasonCode2
AmStatus (C++) 219
AmStatus (Java) 421

getReportCode
AmMessage (C++) 194
AmMessage (Java) 397

getRepository
AmSessionFactory (C++) 182

getRepository (continued)
AmSessionFactory (Java) 386

getSender
AmDistributionList (C++) 205
AmDistributionList (Java) 408

getSenderCount
AmDistributionList (C++) 206
AmDistributionList (Java) 409

getSource
AmErrorException (C++) 223
AmErrorException (Java) 423
AmException (C++) 222
AmException (Java) 422
AmWarningException (C++) 224
AmWarningException (Java) 424

getTopic
AmMessage (C++) 194
AmMessage (Java) 397

getTopicCount
AmMessage (C++) 194
AmMessage (Java) 397

getTraceLevel
AmSession (C++) 188
AmSession (Java) 390
AmSessionFactory (C++) 183
AmSessionFactory (Java) 386

getTraceLocation
AmSession (C++) 188
AmSession (Java) 391
AmSessionFactory (C++) 183
AmSessionFactory (Java) 386

getType
AmMessage (C++) 194
AmMessage (Java) 397

getValue
AmElement (C++) 217
AmElement (Java) 419

getVersion
AmElement (C++) 217
AmElement (Java) 419

getWaitTime
AmPolicy (C++) 214
AmPolicy (Java) 417

glossary 531
group status constants 516

H
handle constants 516
Handle Poison Message attribute 481
header file

C 27
C++ 159

helper classes
C++ 148, 181
Java 358, 385

544 MQSeries Application Messaging Interface

 Index

helper macros 107
high-level interface

equivalent object interface functions 74
using 11

high-level interface (C)
amBackout 39
amBegin 40
amBrowseMsg 41
amCommit 43
amInitialize 44
amPublish 45
amReceiveFile 46
amReceiveMsg 48
amReceivePublication 50
amReceiveRequest 52
amSendFile 54
amSendMsg 55
amSendRequest 56
amSendResponse 57
amSubscribe 58
amTerminate 60
amUnsubscribe 61
overview 36
reference information 38

high-level interface (COBOL)
AMHBACK 247
AMHBEGIN 248
AMHBRMS 249
AMHCMIT 251
AMHINIT 252
AMHPB 253
AMHRCFL 254
AMHRCMS 256
AMHRCPB 258
AMHRCRQ 260
AMHSB 267
AMHSNFL 262
AMHSNMS 264
AMHSNRQ 265
AMHSNRS 266
AMHTERM 269
AMHUN 270
equivalent object interface functions 284
overview 244
reference information 246
using 227

HP-UX
C applications 29
C++ applications 160
installation 438
Java applications 369
prerequisites 431

I
Implicit Open attribute 479, 481
include file

C 27
C++ 159

Inform If Retained attribute 482
initial values for structures 27
installation

administration tool 460
AIX 433
HP-UX 438
OS/390 450
prerequisites 431
Solaris 442
Windows 446

interface
C high-level 35, 36
C object 63, 77
C++ 165, 181
COBOL high-level 243, 244
COBOL object 273, 287
Java 371, 385

interoperability 3

J
jar file (Java) 369
Java applications

AIX 369
HP-UX 369
Solaris 369
Windows 369

Java interface
overview 371
reference information 385
using 357

L
Leave Queue Open attribute 479, 481
local host cache (OS/390) 457
local host file 454
local host file (OS/390) 456

M
macros, helper 107
Message Content Descriptor tag names 517
Message Context attribute 478
message interface

overview (C) 66
overview (C++) 169
overview (COBOL) 276
overview (Java) 374

message interface (C)
amMsgAddElement 90

 Index 545

 Index

message interface (C) (continued)
amMsgAddFilter 91
AmMsgAddStreamName 107
amMsgAddTopic 91
amMsgClearErrorCodes 92
amMsgDeleteElement 92
amMsgDeleteFilter 92
amMsgDeleteNamedElement 93
amMsgDeleteTopic 93
amMsgGetCCSID 94
amMsgGetCorrelId 94
amMsgGetDataLength 94
amMsgGetDataOffset 95
amMsgGetElement 95
amMsgGetElementCCSID 95
amMsgGetElementCount 96
amMsgGetEncoding 96
amMsgGetFilter 96
amMsgGetFilterCount 97
amMsgGetFormat 97
amMsgGetGroupStatus 98
amMsgGetLastError 98
amMsgGetMsgId 99
amMsgGetName 99
amMsgGetNamedElement 100
amMsgGetNamedElementCount 100
AmMsgGetPubTimeStamp 107
amMsgGetReportCode 101
AmMsgGetStreamName 107
amMsgGetTopic 101
amMsgGetTopicCount 102
amMsgGetType 102
amMsgReadBytes 102
amMsgReset 103
amMsgSetCCSID 103
amMsgSetCorrelId 103
amMsgSetDataOffset 104
amMsgSetElementCCSID 104
amMsgSetEncoding 104
amMsgSetFormat 105
amMsgSetGroupStatus 105
amMsgWriteBytes 106
helper macros 107

message interface (COBOL)
AMMSADEL 301
AMMSADFI 302
AMMSADTO 302
AMMSCLEC 303
AMMSDEEL 303
AMMSDEFI 303
AMMSDENE 304
AMMSDETO 304
AMMSGELC 305
AMMSGTCC 305
AMMSGTCI 306
AMMSGTDL 306

message interface (COBOL) (continued)
AMMSGTDO 306
AMMSGTEC 307
AMMSGTEL 307
AMMSGTEN 308
AMMSGTFC 308
AMMSGTFI 308
AMMSGTFO 309
AMMSGTGS 310
AMMSGTLE 310
AMMSGTMI 311
AMMSGTNA 311
AMMSGTNC 312
AMMSGTNE 312
AMMSGTRC 313
AMMSGTTC 314
AMMSGTTO 313
AMMSGTTY 314
AMMSREBY 314
AMMSRS 315
AMMSSELC 317
AMMSSTCC 315
AMMSSTCI 316
AMMSSTDO 316
AMMSSTEN 317
AMMSSTFO 318
AMMSSTGS 318
AMMSWRBY 319

message types 517
messages 4
messages, poison 481
messages, publish/subscribe

C 20
C++ 153
COBOL 235
Java 363

messages, receiving
C 16
C++ 151
COBOL 232
Java 361

messages, request/response
C 17
C++ 152
COBOL 233
Java 362

messages, sending
C 14
C++ 150
COBOL 230
Java 360

Migrating AMI applications
model of the AMI 7
Model Queue Name attribute 474
MQSeries client

connecting to 461

546 MQSeries Application Messaging Interface

 Index

MQSeries client (continued)
prerequisites 432

MQSeries environment 432
MQSeries function calls

C 26
C++ 158
COBOL 240
Java 368

MQSeries Integrator V2 474
Migrating API applications to 462
Using the AMI with 461

MQSeries Integrator Version 1, using 461
MQSeries objects, creating 463
MQSeries publications x
MQSeries Publish/Subscribe 461
MQSeries server

connecting to 461
prerequisites 432

multithreading
C 25
C++ 157
COBOL 240
Java 367

N
Name attribute

distribution list 476
policy 477
publisher 476
service point 474

name/value elements
C 22
C++ 155
COBOL 237
Java 364

New Publications Only attribute 482

O
OAMAS subset 26
oamasami.h header 26
object interface

overview 63
reference information 77

object interface (COBOL)
overview 273
reference information 287

object-style interface 11
object-style interface (COBOL) 227
objects

C 11
C++ 147
COBOL 227
Java 357

open
AmDistributionList (C++) 206
AmDistributionList (Java) 409
AmPublisher (C++) 209
AmPublisher (Java) 412
AmReceiver (C++) 203
AmReceiver (Java) 406
AmSender (C++) 199
AmSender (Java) 402
AmSession (C++) 188
AmSession (Java) 391
AmSubscriber (C++) 211
AmSubscriber (Java) 414

Open Shared attribute 481
opening a session

C 14
C++ 149
COBOL 230
Java 359

opening objects
C++ 149
Java 359

operating systems 431
OS/390

C applications 32
COBOL applications 241
installation 450
prerequisites 431

OS/390 subsystems, application advice 427
overloading

C++ 149
Java 359

overview
C high-level interface 36
C object interface 63
C++ interface 165
COBOL high-level interface 244
COBOL object interface 273
Java interface 371

P
PDF (Portable Document Format) xii
Persistence attribute 479
point-to-point 5
poison messages 481
policy

constants 515
defining 471
general attributes 478
initialization attributes 477
publish attributes 483
receive attributes 481
send attributes 479
subscribe attributes 482
summary 6

 Index 547

 Index

policy interface
overview (C) 73
overview (C++) 176
overview (COBOL) 283
overview (Java) 381

policy interface (C)
amPolClearErrorCodes 143
amPolGetLastError 143
amPolGetName 144
amPolGetWaitTime 144
amPolSetWaitTime 144

policy interface (COBOL)
AMPOCLEC 352
AMPOGTLE 352
AMPOGTNA 353
AMPOGTWT 353
AMPOSTWT 353

Portable Document Format (PDF) xii
prerequisites

compilers 432
disk space 431
MQSeries environment 432
OAMAS subset 26
operating systems 431

Priority attribute 479
problem determination 485
problems, causes of 497
procedural interface 11
procedural interface (COBOL) 227
programming languages 4
publications, MQSeries x
publish

AmPublisher (C++) 209
AmPublisher (Java) 412

Publish Locally attribute 483
Publish On Request Only attribute 482
Publish To Others Only attribute 483
publish/subscribe

constants 518
content-based 462
filters 462
introduction 5
using 461

publish/subscribe messaging
C 20
C++ 153
COBOL 235
Java 363

publisher definition 476
publisher interface

overview (C) 71
overview (C++) 174
overview (COBOL) 281
overview (Java) 379

publisher interface (C)
amPubClearErrorCodes 132

publisher interface (C) (continued)
amPubClose 132
amPubGetCCSID 132
amPubGetEncoding 133
amPubGetLastError 133
amPubGetName 134
amPubOpen 134
amPubPublish 135

publisher interface (COBOL)
AMPBCL 341
AMPBCLEC 341
AMPBGTCC 341
AMPBGTEN 342
AMPBGTLE 342
AMPBGTNA 343
AMPBOP 343
AMPBPB 344

Q
Queue Manager Name attribute 474
Queue Name attribute 474

R
readBytes

AmMessage (C++) 195
AmMessage (Java) 398

reason codes
constants 520
description 501

receive
AmReceiver (C++) 203, 204, 407
AmReceiver (Java) 406
AmSubscriber (C++) 212
AmSubscriber (Java) 415

receiver definition 474
receiver interface

overview (C) 69
overview (C++) 172
overview (COBOL) 279
overview (Java) 377

receiver interface (C)
amRcvBrowse 115
amRcvBrowseSelect 117
amRcvClearErrorCodes 118
amRcvClose 119
amRcvGetDefnType 119
amRcvGetLastError 120
amRcvGetName 120
amRcvGetQueueName 121
amRcvOpen 121
amRcvReceive 122
amRcvReceiveFile 124
amRcvSetQueueName 125

548 MQSeries Application Messaging Interface

 Index

receiver interface (COBOL)
AMRCBR 326
AMRCBRSE 327
AMRCCL 329
AMRCCLEC 329
AMRCGTDT 329
AMRCGTLE 330
AMRCGTNA 330
AMRCGTQN 331
AMRCOP 331
AMRCRC 332
AMRCRCFL 333
AMRCSTQN 334

Receiver Service attribute 476
receiving files

C 19
receiving messages

C 16
C++ 151
COBOL 232
Java 361

reference information
C high-level interface 38
C object interface 77
C++ interface 181
COBOL high-level interface 246
COBOL object interface 287
Java interface 385

Report Data attribute 479
Report Type COA attribute 479
Report Type COD attribute 479
Report Type Exception attribute 479
Report Type Expiry attribute 479
repository cache (OS/390) 457
repository file 454
repository file (OS/390) 456
repository, using

C 12
C++ 148
COBOL 228
Java 358

request/response messaging
C 17
C++ 152
COBOL 233
Java 362

reset
AmMessage (C++) 195
AmMessage (Java) 398

Response Correl Id attribute 479
Retain attribute 483
Retry Count attribute 479
Retry Interval attribute 479
RF Header 474
rollback

AmSession (C++) 188

rollback (continued)
AmSession (Java) 391

runtime environment
AIX 434
HP-UX 439
OS/390 450
Solaris 443
Windows 446

S
sample programs

OS/390 466
Unix 464
Windows 464

Segmentation attribute 479
send

AmDistributionList (C++) 206
AmDistributionList (Java) 409
AmSender (C++) 199
AmSender (Java) 402

sender definition 474
sender interface

overview (C) 68
overview (C++) 171
overview (COBOL) 278
overview (Java) 376

sender interface (C)
amSndClearErrorCodes 109
amSndClose 109
amSndGetCCSID 110
amSndGetEncoding 110
amSndGetLastError 111
amSndGetName 111
amSndOpen 112
amSndSend 112
amSndSendFile 113

sender interface (COBOL)
AMSNCL 320
AMSNCLEC 320
AMSNGTCC 321
AMSNGTEN 321
AMSNGTLE 322
AMSNGTNA 322
AMSNOP 323
AMSNSN 323
AMSNSNFL 324

sendFile
AmDistributionList (C++) 206
AmDistributionList (Java) 409
AmSender (C++) 200
AmSender (Java) 403

sending files
C 19

sending group messages
C 25

 Index 549

 Index

sending group messages (continued)
C++ 157
COBOL 240
Java 367

sending messages
C 14
C++ 150
COBOL 230
Java 360

service
constants 515
defining 471
summary 5

service point 474
Service Type attribute 474
session factory

overview (C++) 166
overview (Java) 372

session interface
overview (C) 64
overview (C++) 167
overview (COBOL) 274
overview (Java) 373

session interface (C)
amSesBegin 78
amSesClearErrorCodes 78
amSesClose 79
amSesCommit 79
amSesCreate 79
amSesCreateDistList 80
amSesCreateMessage 80
amSesCreatePolicy 80
amSesCreatePublisher 81
amSesCreateReceiver 81
amSesCreateSender 82
amSesCreateSubscriber 82
amSesDelete 83
amSesDeleteDistList 83
amSesDeleteMessage 83
amSesDeletePolicy 84
amSesDeletePublisher 84
amSesDeleteReceiver 84
amSesDeleteSender 85
amSesDeleteSubscriber 85
amSesGetDistListHandle 85
amSesGetLastError 86
amSesGetMessageHandle 86
amSesGetPolicyHandle 87
amSesGetPublisherHandle 87
amSesGetReceiverHandle 87
amSesGetSenderHandle 88
amSesGetSubscriberHandle 88
amSesOpen 88
amSesRollback 89
transaction coordination 78
unit of work 78

session interface (COBOL)
AMSEBG 288
AMSECL 289
AMSECLEC 288
AMSECM 289
AMSECR 289
AMSECRDL 290
AMSECRMS 290
AMSECRPB 291
AMSECRPO 291
AMSECRRC 292
AMSECRSB 293
AMSECRSN 292
AMSEDL 293
AMSEDLDL 294
AMSEDLMS 294
AMSEDLPB 295
AMSEDLPO 294
AMSEDLRC 295
AMSEDLSB 296
AMSEDLSN 295
AMSEGHDL 296
AMSEGHMS 297
AMSEGHPB 298
AMSEGHPO 297
AMSEGHRC 298
AMSEGHSB 299
AMSEGHSN 299
AMSEGTLE 296
AMSEOP 299
AMSERB 300
transaction coordination 288
unit of work 288

setCCSID
AmMessage (C++) 195
AmMessage (Java) 398

setCorrelationId
AmMessage (C++) 195
AmMessage (Java) 398

setDataOffset
AmMessage (C++) 195
AmMessage (Java) 398

setElementCCSID
AmMessage (C++) 196

setEncoding
AmMessage (C++) 196
AmMessage (Java) 399

setFormat
AmMessage (C++) 196
AmMessage (Java) 399

setGroupStatus
AmMessage (C++) 196
AmMessage (Java) 399

setLocalHost
AmSessionFactory (C++) 183
AmSessionFactory (Java) 387

550 MQSeries Application Messaging Interface

 Index

setQueueName
AmReceiver (C++) 204
AmReceiver (Java) 407
AmSubscriber (C++) 212
AmSubscriber (Java) 415

setRepository
AmSessionFactory (C++) 183
AmSessionFactory (Java) 387

setTraceLevel
AmSessionFactory (C++) 183
AmSessionFactory (Java) 387

setTraceLocation
AmSessionFactory (C++) 183
AmSessionFactory (Java) 387

setVersion
AmElement (C++) 217
AmElement (Java) 419

setWaitTime
AmPolicy (C++) 214
AmPolicy (Java) 417

simulated group messages 25, 240
Simulated Group Support attribute 474
Solaris

C applications 31
C++ applications 162
installation 442
Java applications 369
prerequisites 431

Split File attribute 479
string length constants 516
structure of the AMI

C 11
C++ 147
COBOL 227
Java 357

structure of this book ix
structures, initial values 27
subscribe

AmSubscriber (C++) 213
AmSubscriber (Java) 416
content-based 462
filters 462

Subscribe Locally attribute 482
subscriber definition 476
subscriber interface

overview (C) 72
overview (C++) 175
overview (COBOL) 282
overview (Java) 380

subscriber interface (C)
amSubClearErrorCodes 136
amSubClose 136
amSubGetCCSID 136
amSubGetDefnType 137
amSubGetEncoding 137
amSubGetLastError 138

subscriber interface (C) (continued)
amSubGetName 138
amSubGetQueueName 139
amSubOpen 139
amSubReceive 140
amSubSetQueueName 140
amSubSubscribe 141
amSubUnsubscribe 142

subscriber interface (COBOL)
AMSBCL 345
AMSBCLEC 345
AMSBGTCC 345
AMSBGTDT 346
AMSBGTEN 346
AMSBGTLE 347
AMSBGTNA 347
AMSBGTQN 348
AMSBOP 348
AMSBRC 349
AMSBSB 350
AMSBSTQN 349
AMSBUN 351

Suppress Registration attribute 483
Syncpoint attribute 478
system default handle synonyms 524
system default names 524
system default objects

C 12
C++ 148
COBOL 228
Java 358

T
terminology used in this book 531
tool, administration 460
topics, publish/subscribe

C 20
C++ 153
COBOL 235
Java 363

toString
AmElement (C++) 217
AmElement (Java) 419
AmErrorException (C++) 223
AmErrorException (Java) 423
AmException (C++) 222
AmException (Java) 422
AmStatus (C++) 219
AmStatus (Java) 421
AmWarningException (C++) 224
AmWarningException (Java) 424

trace
C++ and Java 487
example 488
UNIX 486

 Index 551

 Index

trace (continued)
using, OS/390 493
using, Unix and Windows 485
Windows 486

transaction coordination
C 78
C++ 184
COBOL 288
Java 388

transaction support
C 24
C++ 157
COBOL 239
Java 367

Trusted Option attribute 477

U
Unicode character conversion 450
unit of work

C 24, 78
C++ 157, 184
COBOL 239, 288
Java 367, 388

unsubscribe
AmSubscriber (C++) 213
AmSubscriber (Java) 416

Unsubscribe All attribute 482
Use Correl Id As Id attribute 482, 483
Using AMI with MQSeries Integrator V2
using the AMI

C 11
C++ 147
COBOL 227
Java 357

W
Wait For Whole Group attribute 481
Wait Interval attribute 481
Wait Interval Read Only attribute 481
wait time constants 524
what you need to know ix
who this book is for ix
Windows

C applications 32
C++ applications 163
installation 446
Java applications 369
prerequisites 431

writeBytes
AmMessage (C++) 197
AmMessage (Java) 400

writing applications
C 14
C++ 149

writing applications (continued)
COBOL 230
Java 359

writing applications for OS/390 subsystems 427
writing IMS applications 427

552 MQSeries Application Messaging Interface

IBM

Printed in U.S.A.

SC34-5654-52

	About this book
	Format of this book
	Who this book is for
	What you need to know to understand this book
	Structure of this book
	Appearance of text in this book

	MQSeries publications
	MQSeries information on the Internet
	Portable Document Format (PDF)

	Summary of changes
	Changes for this edition (SC34-5604-02)

	Part 1. Introduction
	Chapter 1. Introduction
	Main components of the AMI
	Description of the AMI
	Application Messaging Interface model
	Further information

	Part 2. The C interface
	Chapter 2. Using the Application Messaging Interface in C
	Structure of the AMI
	Writing applications in C
	Building C applications

	Chapter 3. The C high-level interface
	Overview of the C high-level interface
	Reference information for the C high-level interface
	amBackout
	amBegin
	amBrowseMsg
	amCommit
	amInitialize
	amPublish
	amReceiveFile
	amReceiveMsg
	amReceivePublication
	amReceiveRequest
	amSendFile
	amSendMsg
	amSendRequest
	amSendResponse
	amSubscribe
	amTerminate
	amUnsubscribe

	Chapter 4. C object interface overview
	Session interface functions
	Message interface functions
	Sender interface functions
	Receiver interface functions
	Distribution list interface functions
	Publisher interface functions
	Subscriber interface functions
	Policy interface functions
	High-level functions

	Chapter 5. C object interface reference
	Session interface functions
	Message interface functions
	Message interface helper macros
	Sender interface functions
	Receiver interface functions
	Distribution list interface functions
	Publisher interface functions
	Subscriber interface functions
	Policy interface functions

	Part 3. The C++ interface
	Chapter 6. Using the Application Messaging Interface in C++
	Structure of the AMI
	Writing applications in C++
	Building C++ applications

	Chapter 7. C++ interface overview
	Base classes
	AmSessionFactory
	AmSession
	AmMessage
	AmSender
	AmReceiver
	AmDistributionList
	AmPublisher
	AmSubscriber
	AmPolicy
	Helper classes
	Exception classes

	Chapter 8. C++ interface reference
	Base classes
	AmSessionFactory
	AmSession
	AmMessage
	AmSender
	AmReceiver
	AmDistributionList
	AmPublisher
	AmSubscriber
	AmPolicy
	AmBytes
	AmElement
	AmObject
	AmStatus
	AmString
	AmException
	AmErrorException
	AmWarningException

	Part 4. The COBOL interface
	Chapter 9. Using the Application Messaging Interface in COBOL
	Structure of the AMI
	Writing applications in COBOL
	Building COBOL applications

	Chapter 10. The COBOL high-level interface
	Overview of the COBOL high-level interface
	Reference information for the COBOL high-level interface
	AMHBACK (backout)
	AMHBEGIN (begin)
	AMHBRMS (browse message)
	AMHCMIT (commit)
	AMHINIT (initialize)
	AMHPB (publish)
	AMHRCFL (receive file)
	AMHRCMS (receive message)
	AMHRCPB (receive publication)
	AMHRCRQ (receive request)
	AMHSNFL (send file)
	AMHSNMS (send message)
	AMHSNRQ (send request)
	AMHSNRS (send response)
	AMHSB (subscribe)
	AMHTERM (terminate)
	AMHUN (unsubscribe)

	Chapter 11. COBOL object interface overview
	Session interface functions
	Message interface functions
	Sender interface functions
	Receiver interface functions
	Distribution list interface functions
	Publisher interface functions
	Subscriber interface functions
	Policy interface functions
	High-level functions

	Chapter 12. COBOL object interface reference
	Session interface functions
	Message interface functions
	Sender interface functions
	Receiver interface functions
	Distribution list interface functions
	Publisher interface functions
	Subscriber interface functions
	Policy interface functions

	Part 5. The Java interface
	Chapter 13. Using the Application Messaging Interface in Java
	Structure of the AMI
	Writing applications in Java
	Building Java applications

	Chapter 14. Java interface overview
	Base classes
	AmSessionFactory
	AmSession
	AmMessage
	AmSender
	AmReceiver
	AmDistributionList
	AmPublisher
	AmSubscriber
	AmPolicy
	Helper classes
	Exception classes

	Chapter 15. Java interface reference
	Base classes
	AmSessionFactory
	AmSession
	AmMessage
	AmSender
	AmReceiver
	AmDistributionList
	AmPublisher
	AmSubscriber
	AmPolicy
	AmConstants
	AmElement
	AmObject
	AmStatus
	AmException
	AmErrorException
	AmWarningException

	Part 6. OS/390 Subsystems
	Chapter 16. Writing applications for OS/390 subsystems

	Part 7. Setting up an AMI installation
	Chapter 17. Installation and sample programs
	Prerequisites
	Installation on AIX
	Installation on HP-UX
	Installation on Sun Solaris
	Installation on Windows
	Installation on OS/390
	Local host and repository files (Unix and Windows)
	Local host and repository files (OS/390)
	The administration tool
	Connecting to MQSeries
	The sample programs

	Chapter 18. Defining services and policies
	Services and policies
	Service definitions
	Policy definitions

	Chapter 19. Problem determination
	Using trace (Unix and Windows)
	Using trace (OS/390)
	When your AMI program fails

	Part 8. Appendixes
	Appendix A. Reason codes
	Reason code: OK
	Reason code: Warning
	Reason code: Failed

	Appendix B. Constants
	Appendix C. Notices
	Trademarks

	Part 9. Glossary and index
	Glossary of terms and abbreviations
	Index

