MQSeries® Adapter Builder for Windows NT®

Using the Control Center

Version 1 Release 0

GC34-5882-01

MQSeries® Adapter Builder for Windows NT®

Using the Control Center

Version 1 Release 0

GC34-5882-01

Note: Before using this information and the product it supports, read the information in Natices” on page 43.

Second Edition (December 2000)

This edition applies to version 1, release 0 of MQSeries Adapter Builder for Windows NT (product number 5639-L40)
and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at ldrcf@hursleyibm con.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

mailto:idrcf@hursley.ibm.com

Contents

Figures.

Tables.

Welcome to the MQSeries Adapter Builder
Who should use this information .

Related information

Conventions.

Summary of changes .

. Vii

iX

. ix
. ix

. Xi

. Xiii

Chapter 1. About MQSeries Adapter Offering 1

Benefits of MQSeries Adapter Offermg
Adapters
Build time and run tlme

Chapter 2. About the builder

Benefits of the builder .

The Control Center . .o

Importing and creating messages

Composing connector flows . .
Examples of composing connector flows
Connector flow components.

Generating an adapter

Chapter 3. Planning to install the builder
Hardware.
Software .
Builder.
Adapters .
Year 2000 statement .
Components of the builder .

Chapter 4. Installing the builder.

© Copyright IBM Corp. 2000

W W N

NN

O

.13
. 16

19

.19
.19
. 20
. 20
. 20
.21

. 23

Prepare for installation
Install .
Remove the bullder

Chapter 5. Build an adapter .
Procedures for building an adapter
Start the builder.

Deploy an adapter .

Chapter 6. Manage your workspaces and
the repository .
Workspaces and the rep0s1t0ry
Manage the repository .
Manage workspaces and versions of
workspace content . e e
Techniques for managing your workspaces
and the repository .
Tasks: Manage your workspaces and the
repository .
Build an adapter and export the
workspace .
Import a workspace, and modlfy to bu1ld
an adapter

Chapter 7. Obtaining additional information

Available on the Internet.
MQSeries Adapter Offermg mformatlon
References . S

Notices
Trademarks .

Glossary .

Index .

.23
.23
.24
. 25
. 26

. 26
. 26

. 29
. 29
. 33
. 35
. 38
. 40
. 40

. 41

43

.43
. 43
. 43

. 45
. 47

. 49

. 55

iii

iV MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Figures

1.

2.

Evolution from point-to-point integration

to one-to-any integration . . .1
Components of the MQSeries Adapter
Builder4
Example of draggmg types to mstantlate
nodes
Example of control connectlon Input
Terminal node and Iteration node . . . 12
Example of data connection, Decision

node and Data Context node12

© Copyright IBM Corp. 2000

Example of completed, simple connector
flow in the builder’s Adapters view
Workspaces and their content in the
repository . .

Manage the rep051tory 1tse1f

Managing workspaces and versions of
workspace content .

.13

.31
. 33

. 37

Vi MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Tables

1. Connector flow components that are
supplied with the builder.14

© Copyright IBM Corp. 2000 vii

viii MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Welcome to the MQSeries Adapter Builder

This information describes the MQSeries Adapter Builder and explains how to
plan for, install and use it.

Who should use this information

This information is for those who need to plan for, install or use the MQSeries
Adapter Builder.

In order to use this information to help you build adapters, it is assumed that
you already know:

* Programming terms, concepts, and methods that are appropriate to the
messages with which you are working: C language, XML or XML OAG.

* About the MQSeries Adapter Kernel. Refer to the MQSeries Adapter Kernel
documentation for more information.

* About the source applications and target applications that you are
integrating.

Related information

See:

 The readme.txt file first. This file contains information that became
available after this book was completed. Before installation, the readme.txt
file is located in the same directory as setup.exe on the CD-ROM or local
area network. After installation, the readme.txt file is located in the root
directory of the MQSeries Adapter Builder installation.

* MQSeries Adapter Builder’s extensive help system.

* The MQSeries Adapter Offering’s website at
Bim// i of ™ os/ad = ey

By following links from this website you can:

— Obtain the latest information about MQSeries Adapter Offering.
— Access tutorials, lab exercises and similar resources.

» The MQSeries product family website at

By following links from this website you can:

— Obtain the latest information about the MQSeries product family,
including the MQSeries Adapter Offering.

© Copyright IBM Corp. 2000 ix

http://www.ibm.com/software/ts/mqseries/adapter/information/
http://www.ibm.com/software/ts/mqseries/

Welcome to MQSeries Adapter Builder

— Access the MQSeries books in HTML and PDF formats, potentially
including a more recent edition of this book.

— Download MQSeries SupportPacs.

X MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Conventions

Knowing the conventions used in this book will help you use it more
efficiently.

* Many terms are defined in the EGlossary” on page 4d.

© Copyright IBM Corp. 2000

xi

Xii MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Summary of changes

The second edition includes the following changes from the first edition:

* Updates to the examples that includes changes to the user mterface and
adapter modeling components. See X

”

» Updates to the connector flow component descriptions. See Connectos

”

* Updates to the repository references.
 Updates of the installation instructions to reflect MQSeries Adapter Builder

version 1.0. See IChapter 4_Installing the builder” on page 23.
¢ Added LCha.pienﬁ_Mana.ge_youuLanksp.aﬂ_and_tbe_mpasnor;Lad

© Copyright IBM Corp. 2000 xiii

XiV MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Chapter 1. About MQSeries Adapter Offering

IBM MQSeries Adapter Builder is part of a set of application integration
products that together are called IBM MQSeries Adapter Offering.

IBM MQSeries Adapter Offering works with MQSeries messaging to enable
you to reduce the risk, complexity and cost of managing the point-to-point
integration of your business processes.

In point-to-point integration, each application interfaces with all the other
applications, individually. Each interface is different and there are many
different interfaces. One change in one application typically requires changes
to many interfaces. As the number of applications increases, point-to-point
integration becomes rapidly less cost-effective. Adding each new application
typically requires more work than adding the most recent-added application.

With MQSeries Adapter Offering, you can evolve from using point-to-point
integration to one-to-any integration.

point-to-point integration one-to-any integration

unique interface a point-to-point integration common interface application

= = =

Figure 1. Evolution from point-to-point integration to one-to-any integration

On the left side of w, in point-to-point integration, each of five
applications each integrate individually and separately with each of the other
applications. There are 10 distinct integrations. On the right side, in

© Copyright IBM Corp. 2000

About MQSeries Adapter Offering

one-to-any integration, each of the five applications integrate to one common
interface in the center. In this case, there are five integrations.

MQSeries Adapter Offering supports both kinds of integration and facilitates
evolution toward one-to-any integration.

MQSeries Adapter Offering supports integration of:
* C-language based applications.

* Other applications, if used in conjunction with user-written code that wraps
an applications non-C interface, for example, RPG for the AS/400 and file
import/export, with a C language interface.

Benefits of MQSeries Adapter Offering

MQSeries Adapter Offering has several benefits:
+ All applications can use one common interface.

* Data from a source application, in the form of a message, is routed to one or
more target applications.

* A change in one application typically affects only that one interface.

* Using a common interface that is application-neutral, such as an industry
standard, can be even more cost-effective. More applications can be
supported with less effort.

* As the number of applications increase, one-to-any integration becomes
even more cost-effective. Adding each new application typically does not
require significant changes to the interfaces to the other applications.

* The MQSeries Adapter Offering can be deployed without changing
applications or business processes at all. Typically, all the integration work
is performed in MQSeries Adapter Offering.

* Integration work can be facilitated through the use of templates.

* Business processes and each application can remain isolated from the
specifics of middleware, message details and other applications. A common
interface for messaging enables adding new applications without changing
existing applications or business processes.

* MQSeries Adapter Offering can reduce the need to write custom code.

MQSeries Adapter kernel can be deployed in two tiers. One tier is the source
side of the run time; the other tier is the target side of the run time. Two tier
deployment can provide more efficient operation and less administrative
overhead. A third tier for routing and delivery is not required to reside
between the two sides of the run time.

As an option, MQSeries Integrator can be added to perform brokering, such

as complex routing, data transformation and data mediation, as well as
message transformation. It would add a third tier.

2 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

About MQSeries Adapter Offering

Adapters

In MQSeries Adapter Offering, the interface to or from one application is
provided by an adapter. All applications need an adapter to provide the
interface between the application environment and the MQSeries
environment. Each adapter is specific to an application.

Several examples of adapters are:

* Add a sales order.

* Synchronize a customer record.

* Synchronize an inventory record.
¢ Synchronize an item.

* Synchronize a sales order.

Build time and run time

The MQSeries Adapter Offering consists of two environments: build time and
run time.

build time
Via an intuitive visual interface, the MQSeries Adapter Builder enables
ﬁou to build an adapter for virtually any application. See

MQSeries Adapter Builder consists of several major components:

* Several importers that enable you to import an application’s
interface into the MQSeries Adapter Builder in the form of
messages, where then you can work on it. The importers import:

— C header files containing function prototypes and structure
definitions. Only ANSI C is supported.

— XML Data Type Definitions (DTDs).

— XML Data Type Definitions (DTDs) that contain standard data
formats known as Business Object Documents (BODs) that have
been defined by the Open Applications Group (OAG).

e The Control Center, the user interface. It is similar to MQSeries
Integrator’s user interface. Via the Control Center, you can:

— Control the import of messages by the importers.

— Modify imported messages or manually create new messages.

— Compose the adapter model. The adapter model can contain a
wide variety of functionalities, such as control flow, data flow,
sequential navigation, conditional branching including decision
and iteration, data typing, storing data context, transformation of
data elements (known as mapping), logical operations and
custom code.

Chapter 1. About MQSeries Adapter Offering 3

About MQSeries Adapter Offering

C header file
prototype
and

structures

DTD

XML H

L~
DTD

XML OAG H
L~

Store your work in the repository.
Control the generation of adapter code by the generator.

The repository, a directory in the builder’s file system that contains
the messages and adapter models.

The generator that generates adapter code: C header (ANSI standard
compliant), C source code (ANSI standard compliant), C make file
for each platform, C export file for each platform and, in some
cases, a Java wrapper. The following platforms are supported:

Microsoft Windows NT 4/2000
IBM AIX v4.3.x

IBM OS/400 v4r4/5

HP-UX vi1

Sun Solaris 7/8.

MQSeries Adapter Builder

¢ Import modify and
control center create messages. C head
« Compose adapter | eader
model. >
Control import L
and generation.
|] C source
importers ~ -
C make file
| c —(per platform
B
C export file
= XML »per platform
B
— XML OAG Java
P wrapper
T — _

Figure 2. Components of the MQSeries Adapter Builder

You move the adapter code to the desired platform to compile it and
then you test the adapter.

run time

adapter

The output of the MQSeries Adapter Builder. An adapter
provides the interface to an application or from an
application. Typically, you build each adapter to be specific to

4 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

About MQSeries Adapter Offering

one message type that is sent from or to an application. Thus,
the adapters themselves are not part of MQSeries Adapter
Offering.

An adapter consists of C source code that compiles to a
shared library. When the adapters and the MQSeries Adapter
Kernel execute together at run time, they perform the run
time functionality of the MQSeries Adapter Offering.

Depending on how you modeled it in the MQSeries Adapter
Builder, the adapter can contain a wide variety of
functionalities.

You may reuse adapters that you have created.

There are two types of adapters:
* Source adapters, for the application that sends the data.
* Target adapters, for the application that receives the data.

An adaEter is required for each message type. See W

for additional information, including a discussion
of how many adapters are required in an example site.

MQSeries Adapter Kernel
A set of application programming interfaces (APIs), several
executable programs in C and Java, and several configuration
files. The kernel enables the deployment and execution of the
adapters. In addition to directly supporting adapters, the
kernel performs related functions, including simple routing of
messages and infrastructure services such as message
construction, transactional control, tracing, and interfacing
with MQSeries or other messaging software.

The kernel is installed on each computer on which a source

adapter or a target adapter run.

MQSeries Adapter Offering can be complemented by service offerings from
IBM and others.

Except where specified, the rest of this information is about the MQSeries
Adapter Builder only. For detailed information about the MQSeries Adapter
Kernel, see the dedicated publications for that product.

Chapter 1. About MQSeries Adapter Offering 5

6 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Chapter 2. About the builder

The builder has several benefits and capabilities.

Benefits of the builder

The MQSeries Adapter Builder provides several major benefits:

It allows you to concentrate on the application domain rather than on low
level programming.

It provides a graphical display of the adapter during build time to show the
processing flow within the adapter.

Because of the builder’s structured approach, you can use the same
methodology to build a variety of different adapter types.

You can build an adapter once and deploy it on multiple, different
platforms.

The Adapter Builder’s user interface is based on MQSeries Integrator,
version 2.0. Therefore, if you know how to use MQSeries Integrator’s
Control Center, learning to use MQSeries Adapter Builder is relatively easy.

Adapters can be easily created, modified and regenerated.
Adapter maintenance is simplified.

The generated adapter includes tracing that can aid the test and debug of
the adapter during run time.

The generated adapter is compiled, which provides a higher level of
performance than an interpreted run time.

The Control Center

The Control Center is the user interface of the MQSeries Adapter Builder. You
use it to:

Import messages using the DTD, OAG DTD, and ANSI C importers. See

UImporting and creating messages” on page § for details.

Mod1fy 1mported messages or manually create new messages. See
” for details.

Compose the adapter model. The adapter model can contain a wide variety
of functionalities, such as control flow, data flow, sequential navigation,
conditional branching including decision and iteration, data typing, storing
data context, transformation of data elements (known as mapping), logical
operations and custom code.

Store your work in the repository.

© Copyright IBM Corp. 2000 7

* Generate adapter code.

The Control Center has two different views:

Message Sets view
Where you define the different components of a message set. You can
import messages, modify imported messages or manually create new
messages.

Adapters view
Where you define and model the adapter’s functionality. You create
connector flows by:
¢ Connecting various connector flow nodes with connections.

* Setting various properties of connector flow nodes and of
connections.

Importing and creating messages

The MQSeries Adapter Builder contains several importers that enable you to
import an application’s interface into the MQSeries Adapter Builder in the
form of messages, where then you can work on it. The importers are:

* C header file importer imports ANSI standard compliant C header files
containing function prototypes and structure definitions. It supports:

— Preprocessing of the header files, such as #includes, #defines, and so
forth.

— User definitions of macros.

— User specification of include path.

— User selection of the APIs and structures to be stored in the repository.
* XML importer imports XML Data Type Definitions (DTDs).

* OAG XML importer imports XML Data Type Definitions (DTDs) that contain
standard data formats known as Business Object Documents (BODs) that
have been defined by the Open Applications Group (OAG).

OAG has encoded valid values for Segment qualifiers and types by creating
parameter entities that consist of the segment name, the qualifier name, and
type name. The OAG XML importer recognizes these special entities and
adds the qualifier and type values as element qualifiers for the imported
messages.

After importing a message, you can modify and store it.

You use the builder’s Message Sets view to import and modify messages.

8 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Instead of importing a message, you can choose to create your own message
via the builder’s Message Sets view. See the online help system for details of
the builder’s capabilities in creating messages.

Composing connector flows

You can define and model the adapter’s functionality in the builder’s
Adapters view.

The Adapters view is split into two panes:

Adapter Tree View
Lists adapters and components, such as Connector Flow types and
Command types.

Connector Flow Definition
Composition pane where you define connector flows graphically. This
is called modeling.

The Adapter Tree View displays types. A type represents a template that can
be used as a building block in modeling the connector flow. When you drag a
type onto the Connector Flow Definition pane, it is instantiated and referred to
as a connector flow node. A single type can be used to create one or more
connector flow nodes (instances) as part of the same connector flow. In the
Connector Flow Definition pane, you connect the connector flow nodes
manually by means of connections and set their properties. The connections that
you see in the Connector Flow Definition pane show you how control and data
will flow through the connector flow.

See I'Examples of compasing connector flows” on page 11 for example figures

that illustrate how connector flows are composed.

A connector flow and associated terms are defined:

connector flow
A directed graph that models the processing of a message as it passes
within one adapter, from the input of the adapter to the output of the
adapter:

* Within the source adapter, the input terminal of the adapter is
where the message is received from the source application. The
output terminal of the adapter is where information may be
returned to the source adapter. Internally, within the adapter,
messages may be created, transformed and handed to the kernel to
be put on the MQSeries queue.

Chapter 2. About the builder 9

* Within the target adapter, the input terminal of the adapter is where
a reply message may be sent back into the kernel. Internally within
the adapter, messages may be created and transformed and sent to
a target application.

Connector flows can be nested. In this case, the most outermost
nesting connector flow adheres to the standard definition for the
connector flow, but the nested connector flows do not. Instead of
interacting directly with the source or target adapters, a nested
connector flow gets a message from a nesting connector flow,
processes it, and then passes it back to the nesting connector flow.

The connector flow is the model describing the logic which is
implemented in the code that gets generated for the adapter. A
connector flow consists of a set of connector flow nodes and the
connections that connect them.

connector flow node
The generic term for any node in the connector flow. Each
type of connector flow node represents a well defined
processing stage. A set of connector flow nodes is provided
with the builder.

One of the connector flow components that is provided with
the builder is called “Connector Flow”. It models the adapter.
All of the other connector flow nodes and connectors that can
potentially be used in a connector flow are modeled within
the Connector Flow node.

connection
A wire that connects an output terminal of one connector flow
node to the input terminal of another. There are two types of
connections: control connection and data connection.

control connection
A connection that provides the logical relationship
between two nodes in a connector flow. Control and
data are passed from one node to the next via the
control connection.

data connection
A connection that establishes a relationship between
the data of two nodes in a connector flow. It is used
when the data is coming from anywhere except the
node from which control is being passed. It can be
used to support mapping.

10 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Examples of composing connector flows

Let’s look at some examples of composing connector flows.

Eigure 3 shows the builder’s Adapters view. You drag a type from the
collections of types in the Adapter Tree View on the left, to the Connector

Flow Definition Pane, where it becomes instantiated as a node.

[IS[=1 E3
File Edit Yiew Connector Flow Definition Help
D & u_.{ B Lﬁa{

Message Sets Adaptersl

| Adapters | O || me |

>
=

App_A_SourceFlow

Connector Flow Definition

-] Source MGAdapters

] Target MQAdapters

—J--_] Connector Flow Types

SourceFlow
-1 Command Types

-4 SendMessage

-4 SendReguestRespan

-] Data Cantext Types

- Syne_ltern_0021

-_] Decizion Types

-] Iteration Types

3 Map

-5 Input Terminal

=

Input Terminal1

e

Qutput Terminal1

4| | »

| [l |

LD o

DD

Sync_Item_00211

[}

SendMessage

e

| |

Figure 3. Example of dragging types to instantiate nodes

See the Adapter Tree View on the left:

* Source MQAdapters and Target MQAdapters are folders that contain the

adapters that you have already built.

* Connector Flow Types is a folder that contains the connector flows that you
have modeled. The connector flow that is being modeled in the figure is

called “App_A_SourceFlow”.

* The other items are collections of components that are provided with the

builder. See 'Connector flow components” on page 19 for details.

In w, several nodes have been instantiated but their properties are not

yet set and they are not yet connected:

Chapter 2. About the builder 11

* You right click on the node, select Properties and set the properties. Each
kind of node has different properties. See the online help system for details.
To perform transformation of data elements, known as mapping, you set
properties on a Map node.

* You connect nodes by holding down the left mouse button while the cursor
is over an outTerminal of a node and dragging a connecting line to the
inTerminal of a second node.

@ shows an Input Terminal node and a Iteration node connected by a
control connection.

o ({8

Input Record lteration

Figure 4. Example of control connection, Input Terminal node and Iteration node

w shows a Decision node and a Data Context node connected by a
control connection.

D@ = D@ =
Decision Sync_Item1

Figure 5. Example of data connection, Decision node and Data Context node

Note that the control connection and the data connection look different.

12 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

See Eigure d for an example of a completed, simple connector flow in the
builder’s Adapters view, Connector Flow Definition Pane.

o=

1]
File Edit Wiew Connector Flow Definition Help

IM[=1 E3

D®H B oE

Message Sets Adaptersl

T | | Adapters | O || w4 | App_A_SourceFlow

| Connectar Flow Definition |

-] Source MGAdapters
_1 Target MQAdapters

(&
)
Gl

E @SendRequestRespons InputTermmaI'l

= | Data Context Types
: S Sync_ltern_0021

-[ag]

Sync_Item_00211

6] \/E@T

Qutput Terminal1

| | »

| [l |

SendMessage

55

Lbo

| |

“ |

Figure 6. Example of completed, simple connector flow in the builder's Adapters view

Once composed and saved, a connector flow becomes a type on the Adapter

Tree View. Thus you can re-use connector flows.

You can nest a connector

flow node (that you have created previously) within other connector flows.

At this point, you can create the adapter by giving the adapter a name and
then associating the connector flow with the adapter. After you create the
adapter, the connector flow that is associated with it cannot be nested within

another connector flow.

Once the connector flow has been defined, you generate the adapter’s code.

See 'Generating an adapter” on page 14.

Connector flow components

The types of connector flow components that are supplied with the builder

come in several categories:

+ Simple: Components that do not consist of other components.

* Primitive: Simple components that are opaque. Their inputs and outputs are
visible to the user but their internals are not visible.

Chapter 2. About the builder

13

* Composed: Components that consist of other components that are
connected by control connections.

Several types of connector flow components are supplied with the builder.

Table 1. Connector flow components that are supplied with the builder

Icon

Name

Description

Connector Flow
node

A composed component that models the
adapter. All of the other connector flow
nodes and connectors that can potentially
be used in a connector flow are modeled
within the Connector Flow node.

Command node

A simple component that is used to
represent application APIs that you
import into the builder.

Command node

A simple component that is used to
represent the supplied MQAO Kernel
commands. The builder provides
commands that are used to send
messages from a source adapter to the
kernel which sends it to the target
adapter, and as an option, wait for a
response. The builder also supplies
begin, commit, and rollback commands
that support transaction processing
within the kernel.

B

Data Context node

A simple component that is used to store
data for later access via a data control
connector.

14 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Table 1. Connector flow components that are supplied with the builder (continued)

Icon

Name

Description

Decision node

A composed component that is used to
test a condition for true or false, to
resolve the control flow path.

Iteration node

A simple component that is used to
access repeatable patterns of logic or
mapping or both. It allows part of the
connector flow to repeat at run time. The
repetition can be based on user variables
or data values that occur during run
time. It consists of a loop condition that
can be tested for true or false, while or
until.

Map node

A composed component that models data
transformation. Data transformation can
include:

* Associating a field in one message
with a field in another message.

* String mapping such as specifying pad
characters.

» Date mapping, such as converting a
date in one format to a date in another
format.

* Putting literal data into messages.

* Adding custom code to perform other
data transformation functions.

Input Terminal
node

A primitive component that is used to
represent data types that are input to a
connector flow.

Chapter 2. About the builder 15

Table 1. Connector flow components that are supplied with the builder (continued)

Icon Name Description

Output Terminal A primitive component that is used to
node represent data types that are output from
a connector flow.

There are two types of Command nodes; each has a different icon.

The control connection and the data connection are primitive components that

are also supplied with the builder. They are defined in LCom.po.sm.g_mnneatoﬂ
flows” on page d.

Generating an adapter

After the messages have been imported or created, the connector flow has
been modeled and the adapter has been associated with the connector flow,
then the adapter can be generated.

The generator generates adapter code: C header (ANSI standard compliant), C
source code (ANSI standard compliant), C make file for each platform, C
export file for each platform and, for target adapters, a Java wrapper. Five
platforms are supported:

e Microsoft Windows NT 4/2000
* IBM AIX v4.3.x

e IBM 0OS/400 v4r4/5

* HP-UX vl

¢ Sun Solaris 7/8.

Before generation, the builder checks for:
* Forward references
* Dead branches

Before you can use the generated adapter, you must:
* Move adapter source files to a test system and compile and test.

* Move the compiled adapter to a production system, configure the kernel
appropriately if required and, if you are satisfied with the adapter that you
built, put it into production.

16 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

See

Chapter 2. About the builder

17

18 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Chapter 3. Planning to install the builder

After you read this chapter, you should follow the installation checklist in

7 77

This chapter lists the prerequisites for and components of the MQSeries
Adapter Builder.

For latest details, see the MQSeries product family Web site at:

IBM reserves the right to update the information shown here. For the latest
information regarding levels of supported software, refer to:

v - E — T

Hardware

The MQSeries Adapter Builder is a specialized graphical program that has
demanding requirements on the operating environment. The following setup
is recommended for systems on which it is installed:

* Any Year 2000 compliant Intel Pentium III (or above) processor-based IBM
PC machine or compatible, with 500+MHz processor speed.

* A minimum of 256 Megabytes (MB) of RAM.

MQSeries Adapter Builder requires a minimum of approximately 40
megabytes (MB) of disk space for product code and data, using NTFS. Online
documentation requires 10 MB.

You should also allow disk space for the adapters that you build. Their size is
highly dependent on the size of the data structures, on the complexity of
mappings and on the custom code used.

In addition, allow a minimum of 20 MB for working space for the builder.
Working space requirements can vary based on a number of factors, such as
the size of message sets, the amount and complexity of data mapping, and the
size and complexity of the connector flow that you compose. In addition, you
should allow working space for your adapters.

Software

The prerequisites for the builder and for the adapters that you build with it
are different.

© Copyright IBM Corp. 2000 19

http://www.ibm.com/software/ts/mqseries/
http://www.ibm.com/software/ts/mqseries/platforms/supported.html

Planning to install the builder

Builder
The supported level for the builder is shown.
¢ Microsoft Windows NT Version 4, Service Pack 5.

You can determine the version and service pack of Windows NT. On the
Windows NT Task Manager, select Help > About Task Manager.

The builder’s installation program includes all other software needed to run
the builder.

Note: MQSeries Adapter Offering uses Java run time environment (JRE) 1.2.2
which is included with the installation program.
Adapters

There are different requirements for compiling, running and testing the
adapters that you build.

* Each platform on which you will compile the adapters that you built
requires a C compiler. The following compiler is supported:

— Microsoft C++ Compiler, Version 6.
* The builder generates adapter code that, after compilation, can run on:
— Microsoft Windows NT 4/2000
— IBM AIX v4.3.x
- IBM OS/400 v4r4/5
- HP-UX vil
— Sun Solaris 7/8.

* Testing and running your adapters also requires the MQSeries Adapter
Kernel to be installed and properly configured on each computer on which
an adapter runs. Refer to MQSeries Adapter Kernel documentation for
details.

Year 2000 statement

MQSeries Adapter Builder, when used in accordance with its associated
documentation, is capable of correctly processing, providing, and/or receiving
date information within and between the twentieth and twenty-first centuries,
provided that all products (for example, hardware, software, and firmware)
used with this IBM program properly exchange accurate date information
with it.

Customers should contact third party owners or vendors regarding the
readiness status of their products.

For the latest IBM statement regarding Year 2000 readiness, refer to:

hittp: / /wwwibm com /ibm /year200d

20 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

http://www.ibm.com/ibm/year2000

Planning to install the builder

Components of the builder

After installation, MQSeries Adapter Builder resides in its root directory,
default name IBM MQSeries Adapter Builder 1.0. It contains several
directories which in turn can contain other directories. The root and its
directories are listed, along with a summary of the files that are most relevant
to installation.

root
* mgab.jar file that contains:
— The Control Center executables.
— The generator.

* install.log file and uninstall.log file. These are created only if a
problem occurs during installation or uninstalling.

* All other MQSeries Adapter Builder directories.
* readme.txt file.
bin
¢ Importer DLLs.
com
* Properties files for national language support.
documentation

e HTML and PDF versions of manuals available in the
Information Center.

Help
e Help system.
images
¢ Images used by the Control Center.
jre
* Java Runtime Environment.
license
* International program license agreements.
Register
* Contains program registration information.
repository
The builder repository that contains:
* export directory — contains exported workspace files.
* working directory — contains the workspace files.

Chapter 3. Planning to install the builder 21

Planning to install the builder

* message sets, connector flows that you have modeled,
adapters that you have built, component types that are
provided with the builder and everything that they refer to,
such as primitives.

22 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Chapter 4. Installing the builder

Prepare for installation

You must have administrator authority in order for you to install MQSeries
Adapter Builder.

You must have permission to create and access files in the location where you
install MQSeries Adapter Builder. Ensure that all user IDs that will run the
builder have read, write and execute permission.

You do not have to install the kernel in order to install the MQSeries Adapter
Builder or to use it to build your adapters. You do need the kernel to compile,
test and deploy your adapters.

Install

Use these procedures:

__ Step 1.

__ Step 2.

__ Step 3.

__ Step 4.

__ Step 5.

© Copyright IBM Corp. 2000

Read the readme.txt file on the CD-ROM or local area network
first. It contains important information that became available after
this book was completed. It is located in the same directory as
setup.exe.

You can choose to visit the MQSeries website at

http-/ /www ibm com /software/ts/mgqseries /. Tt might contain

important information that became available after this book was
published, possibly including a new edition of this book.

Check that the prerequisites have been installed. See m

”

Check that you have prepared for installation, for examgle, that

Eou are authorized to install the builder. See

You do not have to copy setup.exe to another location before you

double click it. During the installation process, you are asked to

choose where to install MQSeries Adapter Builder:

* If you are installing from a local area network, double click on
setup.exe on the local area network to start the process.

* If you are installing from a CD-ROM, insert the MQSeries
Adapter Builder for Windows NT CD-ROM into the CD-ROM
drive.

23

http://www.ibm.com/software/ts/mqseries/

Installing the builder

* If autorun is enabled, the installation process starts. If it is not,
double click on setup.exe in the root directory on the CD-ROM
to start the installation process.

__Step 6. The setup program will configure the Windows Installer on your
system. You will need to restart your system to continue with the
installation.

__ Step 7. After restarting your system, follow the actions described in the
InstallShield Wizard screens that are presented to you.

Note: If the installation process is interrupted, you should remove
the builder (see ERemove the builderd), and then run the

installation process again.
__Step 8. The builder is installed and ready to use.

__ Step 9. Start the builder by selecting its menu item under the MQSeries
Adapter Builder root menu from the Start menu.

Remove the builder

There are two ways that you can remove the builder:

* You can the run the MQSeries Adapter Builder install.exe program. The
installation program detects that you have MQSeries Adapter Builder
installed on your system and then gives you the option to Remove the
Builder.

* Alternately, use the Add/Remove Programs utility in the Control Panel.

24 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Chapter 5. Build an adapter

Adapters are modeled and built in the Control Center. Before you model and
build an adapter, you must understand:

* The MQSeries Adapter Kernel. Adapters work with the kernel. See the

MQSeries Adapter Kernel documentation. Several items in the kernel are of
particular importance when you build an adapter. You must coordinate
these items in the kernel with the associated items in the adapter that you
build:

— Message control values in messages that:

1. The kernel uses to control the marshalling and routing of messages
during run time.

2. Each adapter uses to control, in part, how it performs its
functionality.

Message control values include:

- Source logical identifier

- Destination logical identifier

- Respond to logical identifier

- Body category

- Body type

- Acknowledgment requested

You set these values in the Command node. See the online help system

for details.

In the kernel, the application identifier of the source application or target

application with which the adapter is associated.

You set this value in the Application Name field when you generate the

adapter. See the online help system for details.

* The source application or target application for which you are building the

adapter. Each adapter is specific to an application.

The general procedure for building an adapter is as follows:

1.

a s~ wbn

Import or create messages.

Compose a connector flow.

Perform data mapping, in the connector flow.

Create an adapter and associate a connector flow with it.

Generate adapter code (C header, C source code, one make file per
platform, one export file per platform and optionally a Java wrapper).

© Copyright IBM Corp. 2000 25

Build an adapter

6. Move adapter source files to a test system and compile and test.

7. Move the compiled adapter to a production system, configure the kernel
appropriately if required and, if you are satisfied with the adapter that
you built, put it into production.

See the online help system for details.

Procedures for building an adapter

The detailed procedures for building an adapter are provided in the builder’s
online help system. See the online help system.

Start the builder

To start the builder, you click its menu item under the MQSeries Adapter
Builder root menu on the Start menu.

Deploy an adapter

After you generate and then compile an adapter, you must deploy it in order
to test it and to put it into production.

Follow this procedure to deploy a new compiled adapter for either test or
production:

__Step 1. Keep a backup copy of your compiled adapter in a safe location in
case you need to recover it.

__ Step 2. Move the compiled adapter from the working directory on your
computer to the computer on which the kernel is installed,
verified and capable of functioning.

__Step 3. Create a directory for the adapter. To simplify your organization, it
is recommended that you keep all your source adapters in one
directory and all your target adapters in a different directory.

___Step 4. You must set environment variables to point to the compiled
adapter and to its Java class files:

On Windows NT:

¢ Add the directory containing the adapter’s DLL to the PATH
system environment variable.

* Add the directory containing the Java class files to the
CLASSPATH system environment variable.

On AIX:

* Add the directory containing the adapter’s library (1ibxxx.so)
file to the LIBPATH environment variable.

26 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Build an adapter

* Add the directory containing the Java class files to the
CLASSPATH environment variable.

__ Step 5. Configure the kernel to support the adapter. See MQSeries
Adapter Kernel documentation.

__ Step 6. Make the changes to environment variables active:
On Windows NT:
* If you have updated the environment variables in an earlier
step, restart the computer to make the changes active.
On AIX:

 If you have updated the environment variables in an earlier
step, log off and then log on to make the changes active.

__ Step 7. Take appropriate steps on each platform to start the kernel:

* Re-start the process in which the source adapter is run. Note
that the source adapter is run in the source application’s
process. Any daemon or server that contains the source adapter
needs to be started. You do not start the source adapter.

* Re-start the adapter daemon.

Follow the instructions for startup in the MQSeries Adapter
Kernel documentation.

To modify a compiled adapter that has already been run, you follow the same
step except that setting environment variables might not be necessary.

Chapter 5. Build an adapter 27

28 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Chapter 6. Manage your workspaces and the repository

You can use the builder to manage your workspaces and the repository. For
the most important information on this topic, read:

Workspaces and the repository

A workspace is a view of what you can work with at one time. A workspace is
displayed as the graphical space in the builder where you build adapters. The
workspace’s content is:

* Certain message sets, which are displayed in the Message Sets view.

* The connector flows that you have modeled (that are associated with the
message sets), the adapters that you have built and the component types
provided with the builder, which are displayed in the Adapters view.

¢ Everything that the message sets, connector flows and adapters refer to,
such as primitives.

See Figure 7 on page 31|,

You can create a new workspace. You can open a workspace to display and
modify its content. You can save the open workspaces, including its content.
You can import and export a workspace, including its content. The
characteristics of each workspace (but not its content) are contained in a
workspace file. Workspace files are stored in the working directory.

The contents of all workspaces are stored in the repository.

The repository is a directory in the builder’s file system that contains:
* The working directory in which all the workspace files reside.
* The contents of all the workspaces.

¢ The export directory to which a workspace and its content can be exported.

The repository also contains things that are no longer part of any workspace.
For example, you could have a message in your workspace. After you remove
it from your workspace, it may not be in any workspace anymore.

Two versions of each workspace’s content can be stored:

development version
The workspace content that you can actively work on. You develop on

© Copyright IBM Corp. 2000 29

the development version. You can create and open workspaces, you
can import or create messages and model new connector flows, you
can modify messages and connector flow, and you can create
adapters. You save workspaces, including their content, to protect the
work that you have done but before you have completed building the
adapter.

committed version
The workspaces and their content that you have completed work on.
You have committed the workspace’s content: the message sets,
connector flows and the adapters. You can export the committed
version to an export file in the export directory. You can make the export
file available to enable someone else to use the workspace and its
content on their copy of the builder. To here, you can import a
workspace and its content that had previously been exported to an
export file.

export file
A compressed “zip” format file that contains one workspace
file and all of the workspace’s content. An export file is
self-sufficient as long as all message sets had been in the
workspace when it was exported. It contains everything that
is required to enable someone to import the workspace and
then work on its content “as is”.

Note: Do not confuse the two types of importing that you can
perform:

* Importing an application’s interface in the form of
messages where you can work on it. You select and
right-click to import. After you import, they are
saved as a development version of a message set.

* Importing a workspace. You perform this import
from the File menu.

Within the repository:

* Each message set is contained within a directory named by a universal
unique identifier.

* The development versions of all workspaces are stored in one directory.
* The committed versions of all workspaces are stored in another directory.

* Each file contains its own status, that is, whether it is a development
version or a committed version.

See [Figure 7 on page 31,

30 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Figure 7. Workspaces and their content in the repository.

builder

repository

display

open,

create, _|

modify
and
save

working directory
workspace

a view of what you can

files:—
work with

export
directory
"

export]
fle

Seif sufficient:

workspace and
its content

development version

Adapters view:

Data . L
- Iteration J Decision

SRR e

Context J Iteration Decision

Message Set view: a

1 8

Legend:
Content of current
workspace

%/ Referto

a Locked

In this example, workspace B has been opened. It shows a view of the
development version of message set 2 and certain connector flows that you
have modeled, adapters that you have created and everything that they refer
to. They can refer to the development version or to the committed version. In
this workspace, you can create a new message or message set or you can
model a new connector flow or you can create an adapter.

Chapter 6. Manage your workspaces and the repository

31

Creating anything (except message sets) and saving it makes the development
version. In this example, message 4 has been created and saved. Thus, there is
a development version but no committed version yet.

When you create a message set, its committed version is made but it is
immediately and automatically checked out. The result is that a newly created
message set exists in both versions. The development version is in memory
until you save it to make the development version.

32 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Manage the repository

You can manage the repository itself. See [Figure d.

Figure 8. Manage the repository itself.

builder backup via file system

repository
display
\W/

Data || . L
Context Iteration J Decision

Message Sets |
view:

workmg directory

workspace

_//
flles \\u
- -

Adapters view: - N

Data . .
Cante J Iteration Decision u

Message Sets view:

Copy to LAN
or send in
mail

export @ Self sufficient
file

* Content of current
workspace

N7 Referto
9 Locked

The repository resides in the builder that runs on your computer. It cannot
reside on a network drive or other remote drive. The builder uses the
Windows file system to manage the repository. The repository is not managed
by a database.

Chapter 6. Manage your workspaces and the repository 33

You can and should backup and, if needed, restore the repository as a whole,
by direct action through the file system. You could backup the repository
directory by zipping and storing it on a network drive or removable media or
offsite. You can copy export files from the export directory to make them
available to others, by direct action through the file system.

The repository itself is not shared. However you can:

* Share the committed version of your workspace and its content, in the form
of an export file, with others for use with their copy of the builder.

* Share others” export files by importing them into your copy of the builder.

You share with others by making your export files available to others by
direct action through the file system, such as by copying it to a network drive
or attaching it to an e-mail.

34 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Manage workspaces and versions of workspace content

You can manage workspaces and versions of workspace content. You manage

them within the repository. See [Figure 9 on page 37.

* You save the workspace, that is, what you have built in the graphical space in
the builder. This stores your workspace and the development version of its
content.

* You can check in any item in the content of a workspace, or all of the
content of one workspace or all development versions. This creates the
committed version.

There are several ways to check in:

check in » list
You can select any number of items in the workspace and check
them in.

check in » all in workspace
You check in:

— Everything in the displayed workspace that had already been
saved as a development version, including everything that it
refers to.

— Anything that is visible in the displayed workspace but that had
not yet been saved as a development version.

check in » all
You check in:

— All development versions that have been saved. This includes
anything that had been checked out and anything that has been
saved but not yet checked in.

— All development versions that have not been saved, that it, that
reside in memory. This includes anything that has never been
saved, in other words, new, and anything that had been checked
out and edited but not saved yet.

Check in » all works on all development versions, even those that
do not belong to any workspace. For example, you could have
something in your workspace that is checked in. If you check it out
and then remove it from your workspace, it might not be in any
workspace anymore but it still gets checked in.

When you check in the workspace content or any item in the content, the
builder creates the committed version and then deletes the development
version. The builder also releases the lock that had been put on it when it was

checked out. In Figure 9 on page 37, message 4 is being checked in.

Typically, you would check in before exporting, to release all locks and thus
enable someone else to work on the exported workspace.

Chapter 6. Manage your workspaces and the repository 35

* You can check out the committed version of an item. When you check out an
item, the builder creates the development version based on a copy of the
committed version. The committed version remains, but the builder locks it.

In Eigure 9 on page 37, message 3 is being checked out. Because the

committed version of message 3 is checked out, it is locked.

Note: Locked Committed Version. A locked committed version can be
exported. The locked condition is exported also. After the workspace
content has been imported to another copy of the builder, its
committed version is locked on that copy of the builder. When the
other user attempts to check the locked workspace content out, the
other user is warned that the workspace content is locked. This
prompts the other user to check with the original user to determine if
the export file is actually ready to be worked on:

— If ready, the other user can unlock the committed version of the
item in the workspace via the builder. To unlock:

1. Determine under which user id the item was locked. When
you attempt to check out the item, the message will tell you
the user id. Disregard the user workstation.

2. Create that user id on your computer and sign on under it.

3. Open the workspace with the locked item, select it and invoke
Unlock.

4. Sign on under your own user id and continue to work on the
item.

— If not, the original user can complete work on it, check it in, and
re-send an export file that is ready.

* You can revert to committed. This means that you can return all development
versions of all workspaces’ content to their committed versions. This also:

— Deletes all development versions in the repository.
— Unlocks all committed versions in the repository.

Typically, you would revert to committed in order to:
— Discard work-in-progress that had been saved in a development version.
— Ensure that all committed versions are unlocked before you export them.

However, in order to save work-in-progress before exporting, you would
check in » all instead.

Revert to Committed works only on things that had been committed
earlier. If you create something new and invoke Revert to Committed, it
remains, either in memory only if it had never been saved or as a
development version if it had been saved.

36 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Attention: One key difference:

* You can import or export the entire workspace and its content. You cannot
import or export part of a workspace. You cannot import or export multiple
workspaces in one action.

* You can check in or check out only what you need: one or more items
within a workspace, or one workspace and all of its content, or all
workspaces and all their content.

Figure 9. Managing workspaces and versions of workspace content.

builder

repository

open, m;o/pment m

create, __| |

display

modify
and _
save Adapters view:
Data . -
i Iteration Decision

Message Sets |

workspace
files:

e

checkout

Not shown:

Adapters view — ————
checkin all in workspace P =<2
Data . L
Context J Iteration Decision

Message Sets view: ﬁ

[
1 3 4
Legend:
* Content of current
workspace
7 Refer to
Locked

Chapter 6. Manage your workspaces and the repository 37

Techniques for managing your workspaces and the repository
CAUTION:

Do not manage workspaces by direct action through the file system, except
for backups, restorations and copying export files. Unpredictable results
might occur.

You should use these techniques for managing your workspaces and the
repository.
Repository

Back up the repository directory via the file system routinely to protect
your work. You could backup the repository directory by zipping and
storing it on a network drive or removable media or offsite. Store the
backups off site.

Save the workspace before you back up in order to ensure that all contents
of the workspace are protected by the backup.

Save, import and export workspace, and check in and check out

Before you import any export file, back up the repository directory via the
file system.

If you cancel during the act of importing an export file, the files that were
imported to the repository before you cancelled remain imported. In the
case when you are importing something new, this might not cause a
problem. However, if you were importing a workspace and if you already
had a different version of it (including anything that it referred to) in the
repository, then there is a risk that the contents of the workspace will not be
synchronized. Unpredictable results might occur. To prevent this, back up
the repository before you import anything. Then restore the repository if a
problem like this occurs.

Checking in, checking out, and exporting and importing workspaces can
take some number of minutes. A very complex structure can require a large
number of files to represent it.

Saving the workspace to create the development version and checking in to
create the committed version perform very limited validation. These acts
validate only the relationship among nodes in the connector flow. They do
not validate values in property sheets.

Importing an export file performs virtually no validation except to check
that it contains a workspace file.

Importing an application’s interface

Creating or importing an application’s interface might create many files and
several directories in the repository. Each message set has its own directory.
Within that message set directory are directories for each of the kinds of
objects that the message set contains. For example, there is one directory for
messages in that message set, one directory for transactions, one for fields

38 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

in a message, one for valid values and so on. Every object (in other words,
every message, transaction, valid value and so on) actually has two files.
One file contains the object’s content. The other file contains properties of
the object, for example, lock status and name.

* Before you import an application’s interface, make sure that you have saved
the workspace.

— If a problem happens as a result of the import of the applications’s
interface, then before you save, you can immediately open the current
workspace again. This will restore the workspace to its state before you
imported.

— If you import an application’s interface and then attempt to import
another one before saving first, an out of memory error might occur. It is
a good practice to save after each time you import an application’s
interface.

* If an out of memory error occurs during an attempt to import an
application’s interface, you might need to increase the memory available to
the builder. Edit the batch file that starts the builder. Increase the value
—Xmyx; it appears several times in the batch file; make all values the same.
This value controls the amount of heap space that is allocated to the Java
virtual machine that runs the builder. Take into account the memory that is
present in the computer when you determine which value to use. Close and
re-start the builder. Try again.

* If you import an application’s interface:

— And if you do not plan to change it immediately, it is most efficient to
check it in and thus create the committed version. Later you can check
out what you want to edit.

— And if you do plan to change it immediately, it is most efficient to save
the workspace thus creating the development version and then edit it
and finally check it in.

Chapter 6. Manage your workspaces and the repository 39

Tasks: Manage your workspaces and the repository

Generally, you should manage workspaces and the repository in the following

ays. Read [i

w
m before you perform these tasks.

Build an adapter and export the workspace

1.
2.

Open or create a workspace.

Before you import an application’s interface, make sure that you have
saved the workspace.

a. If a problem happens as a result of the import of the applications’s
interface, then before you save, you can immediately open the current
workspace again. This will restore the workspace to its state before you
imported.

Create or import an application’s interface and model connector flows.

Save the workspace at any time to protect your work and thereby create
the development version of the workspace and its content. Repeat as
needed.

Generate, compile and test the adapter.
When the adapter meets your requirements, check the workspace content

in and thereby create the committed version. This deletes the development
version.

If desired:

a. Check out the committed version and thereby re-create the
development version. The committed version remains but it is locked.

Modify the development version.

When the adapter meets your requirements, check the workspace
content in and thereby write over the committed version, replacing the
previous committed version. (The new committed version is unlocked.)
This deletes the development version.

If desired, while the workspace is open, export the workspace and thereby
create the export file in the export directory. The export file is in zip
format.

 If you export the committed version while it is checked out and thus

locked, the locked status is exported also. See I'Note on locked

committed version” on page 34

Make the export file available to someone else. For example, you can copy
it to a network drive or attach it to an e-mail.

40 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Import a workspace, and modify to build an adapter

1.
2.

© o N o

10.
11.

Acquire an export file. The export file is in zip format.

Back up the repository. This will enable you to recover if importing
causes a problem.

Import the export file and thereby create the committed version of the
workspace content. This also creates a workspace file.

Open the workspace.

If required, check out the committed version of whatever you need to
modify and thereby create the development version.

a. When you attempt to check out the committed version, if you are
warned that it is locked, see L i ion”

After the workspace content has been checked out, the committed
version remains but it is locked.

Note: You might not need to modify anything. You might need only to
add new things. For example, the export file could contain a
message set and no adapters and you need only to create an
adapter with that message set. In this case, you do not need to
check anything out.

Modify the development version.
Save the workspace at any time to protect your work. Repeat as needed.
Generate, compile and test the adapter.

When the adapter meets your requirements, check the workspace content
in and thereby write over the committed version, replacing the previous
committed version. This deletes the development version.

If desired, check out and work on the workspace content again.
If desired, export the workspace.

* If you export the committed version while it is checked out and thus
locked, the locked status is exported also. See [!Nate on lacked|

| i Z erl

Chapter 6. Manage your workspaces and the repository ~ 41

42 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Chapter 7. Obtaining additional information

There are several sources of information that can be useful when you are
using MQSeries Adapter Offering.

Available on the Internet

The MQSeries product family Web site is at:

By following links from this Web site you can:

* Obtain latest information about the MQSeries product family, including the
MQSeries Adapter Offering.

* Access the MQSeries books in HTML and PDF formats, including a more
recent edition of this book.

¢ Download MQSeries SupportPacs.

MQSeries Adapter Offering information

See:
¢ The MQSeries Adapter Kernel’s books and online documentation on APlIs.
* The MQSeries Adapter Offering’s website at

Btio// i ot / os/ad PY; oyl

By following links from this website you can:

— Obtain the latest information about MQSeries Adapter Offering.
— Access tutorials, lab exercises and similar resources.

References

You might find these sources of reference information useful:
* The Open Applications Group website at

* Extensible Markup Language (XML) 1.0 W3C Recommendation at

These are not IBM websites.

© Copyright IBM Corp. 2000 43

http://www.ibm.com/software/ts/mqseries/
http://www.ibm.com/software/ts/mqseries/adapter/information/
http://www.openapplications.org/
http://www.w3.org/TR/1998/Rec-xml-19980210

44 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Notices

This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make

© Copyright IBM Corp. 2000 45

Notices

improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

46 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Notices

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX IBM MQSeries

Lotus and LotusScript are trademarks of Lotus Development Corporation in
the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other

countries.

Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 47

48 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Glossary

The glossary contains key terms and their
meanings as used in the information.

If a particular concept or term appears in
one section only, it might not be contained
in the glossary. It might, however, be found

via the tdndex” on page 53,

The glossary does not contain terms of other
IBM products such as MQSeries.

adapter. The output of the MQSeries Adapter
Builder. Typically, the user builds each adapter to
be specific to one message type that is sent from or
to an application. Thus, the adapters themselves
are not part of MQSeries Adapter Offering. An
adapter consists of C source code that compiles
to a shared library. When the adapters and the
MQSeries Adapter Kernel execute together at run
time, they perform the run time functionality of
the MQSeries Adapter Offering. Depending on
how it was modeled by the user in the MQSeries
Adapter Builder, the adapter can contain a wide
variety of functionalities such as controlflow,
dataflow, sequential navigation, conditional
branching including decision and iteration, data
typing, storing data context, transformation of
data elements, logical operations and custom
code. The user may reuse adapters that the user
has created.

The adapter is built in two complementary ways:

* The structures of messages are imported or
created and maintained in the form of message
sets, in the Message Set view. See

* The processing of messages is modeled in the
form of a connector flow in the Adapters view.
See d ”

There are two types: source adapters and target
adapters. To send one type of message from one
application to a second application typically
requires one source adapter and one target
adapter. If the second application must send one

© Copyright IBM Corp. 2000

type of message to the first application, another
source adapter and another target adapter are
required. Thus, in this case, in order to

Send one type of message from the first
application to the second application and

Then to send another type of message from
the second application back to the first
application,

four adapters are typically deployed.

For example, assume that a site consists of
applications A, B and C and that they all are
different, that is, no two applications, in the
absence of the kernel, support the same message
types:

1. A sends 4 message types to B and 2 messages
types to C. A is acting as the source
application and B and C are acting as the
target applications. You would build 6 source
adapters for A and 6 target adapters, 4 for B
and 2 for C.

2. B sends 3 message types to A and no
messages to C. B is acting as the source
application and only A is acting as the target
application. You would build 3 source
adapters for B and 3 target adapters for A.

3. C sends 2 message types to A and 1 message
type to B. C is acting as the source
application and A and B are acting as the
target applications. You would build 3 source
adapters for C and 2 target adapters for A
and 1 target adapter for B. Because the
applications all are different, that is, no two
applications, in the absence of the kernel,
support the same message types, you could
not reuse adapters.

This site would require a total of 12 source
adapters and 12 target adapters. A would be
supported by 6 source adapters and 5 target
adapters. B would supported by 3 target

49

Glossary

adapters and 5 target adapters. C would be
supported by 3 source adapters and 2 target
adapters.

Assume that, in the absence of the kernel, two of
the applications were identical in terms of the
message types that they support. In this case,
you might not need to build as many adapters.
You might be able to reuse some adapters for the
two applications.

application-neutral format. See

’”

application programming interface (API). A
software interface that enables applications to
communicate with each other. An API is the set
of programming language constructs or
statements that can be coded in an application
program to obtain the specific functions and
services provided by an underlying operating
system or service program.

application-specific interface. An interface that
is between the source application and the source
adapter or between the target adapter and target
application. It is developed, outside of MQSeries
Adapter Offering, by the user for either of these
purposes:

* To enable the source adapter to acquire the
message from the source application.

* To enable the target application to acquire the
message from the target adapter.

The exact nature of the application-specific
interface depends on the characteristics of the
source application and of the target application.
Some examples of application-specific interfaces
include:

* API calls and user exits
* File reads and writes

* Database triggers

* MQSeries queues

Contrast with Econnectar flow’l and Frouting” od

APL See lapplication programming interface’].

BOD. Business Object Document. A
representation of a standard business process
that flows within an organization or between
organizations. Examples are add purchase order,
show product availability and add sales order.
BODs are defined by the OAG using XML. See
FOAG” on page 59 and EXMIL” an page 54.
BODs can be used by the MQSeries Adapter
Offering to define message bodies in its
intermediate formatted messages. Although use
of BODs is recommended, use of BODs is not
required.

builder. Synonymous with MQSeries Adapter
Builder.

committed version. The workspaces and their
content that you have completed work on. You
have committed them. You can export the
committed version to an export file in the export
directory. You can make the export file available
to enable someone else to use the workspace and
its content on their copy of the builder. To here,
you can import a workspace and its content that
had previously been exported to an export file.

connection. A wire that connects an output
terminal of one connector flow node to the input
terminal of another. There are two types of
connections: control connection and data

connection. See Fcontrol flow” on page 51 and
t'data flow connector” on page 51l

1z

connector flow. A directed graph that models
the processing of a message as it passes within
one adapter, from the input of the adapter to the
output of the adapter:

* Within the source adapter, the input terminal
of the adapter is where the message is
received from the source application. The
output terminal of the adapter is where
information may be returned to the source
adapter. Internally, within the adapter,
messages may be created, transformed and
handed to the kernel to be put on the
MQSeries queue.

* Within the target adapter, the input terminal of

the adapter is where a reply message may be
sent back into the kernel. Internally within the

50 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

adapter, messages may be created and
transformed and sent to a target application.

Connector flows can be nested. In this case, the
most outermost nesting connector flow adheres
to the standard definition for the connector flow,
but the nested connector flows do not. Instead of
interacting directly with the source or target
adapters, a nested connector flow gets a message
from a nesting connector flow, processes it, and
then passes it back to the nesting connector flow.

The connector flow is the model of the
functionality that is realized in the compiled
adapter. A connector flow consists of a set of
connector flow nodes and the connectors that
connect them.

Contrast with routing and application-specific
interface.

connector flow node. The generic term for any
node in the connector flow. Each type of
connector flow node represents a well defined
processing stage. A set of connector flow nodes is
provided with the builder.

One of the connector flow components that is
provided is called “Connector Flow”. All of the
other connector flow nodes and connectors that
can potentially be used in a connector flow are
modeled within the Connector Flow node.

control flow. See lcontrol flow connector’]

control flow connector. A connector that
provides the logical relationship between two
nodes in a connector flow. Control and data is
passed from one node to the next via the control
flow connector. The collective term for all of the
connector flow nodes in a connector flow is
control flow.

data flow. See l‘data flow cannector”].

data connection. A connection that establishes a
relationship between the data of two nodes in a
connector flow. It is used when the data is
coming from anywhere except the node from
which control is being passed. It can be used to

Glossary

support mapping. The collective term for all of
the data flow nodes in a connector flow is data
flow.

data transformation. See F‘mapping” an page 52.

development version. The workspace content
that you can actively work on. You develop on
the development version. You can create and
open workspaces, you can import or create
messages and model new connector flows, you
can modify messages and connector flow, and
you can create adapters. You save workspaces,
including their content, to protect the work that
you have done but before you have completed
building the adapter.

DTD. Under XML, Document Type Definition.
Usually a file (or several files used together) that
contains a formal definition of a particular type
of document. It sets out which names can be
used for elements within the DTD, where
elements may occur within the DTD and how
the elements fit together. In MQSeries Adapter
Offering, you can use DTDs to define message

bodies. See 'XML” on page 54 and Lintermediatd
formatted message’l

7

export file. A compressed "zip” format file that
contains one workspace file and all of the
workspace’s content. An export file is
self-sufficient as long as all message sets had
been in the workspace when it was exported. It
contains everything that is required to enable
someone to import the workspace and then work
on its content "as is".

intermediate formatted message.

The intermediate formatted message consists of
message control values plus the application data.
An example is an XML document that the source
adapter had transformed from the source
application’s format to XML.

Message control values are in the header portion
and the application data is in the message body.

The intermediate-formatted message is in a

format that is output by the source adapter and
input by the target adapter. It is trafficked only
within the MQSeries Adapter Kernel, MQSeries
and optionally MQSeries Integrator. The source

Glossary 51

Glossary

application and target application are not
required to be aware of the intermediate message
format.

The message body is not required to be in an
application-neutral format. Although this is not
recommended, the format of the message body
could be proprietary or otherwise specialized.

kernel. Synonymous with MQSeries Adapter
Kernel.

mapping. The act of the user who models data
transformation via a Map node between an
output terminal on one node and an input
terminal on another node. Data transformation
can include a variety of functions:

* Associating a field in one message with a field
in another message.

* String mapping such as specifying pad
characters.

* Date mapping, such as converting a date in
one format to a date in another format.

¢ DPutting literal data into messages.
* Adding custom code to perform other data
transformation functions.

A map can also simply copy data from one field
in the input message to another field in the
output message.

message. In MQSeries, including MQSeries
Adapter Kernel, a collection of data that is sent
by one program and intended for another
program.

message control values. A collective term for a
set of values in messages that:

1. The kernel uses to control the marshalling
and routing of messages during run time.

2. Each adapter uses to control, in part, how it
performs its functionality.

Message control values that you can set in the

adapter to control routing include:

* Source logical identifier

* Destination logical identifier

* Respond to logical identifier

¢ Body category

* Body type
* Acknowledgment requested

See the MQSeries Adapter Kernel documentation
for details about message control values and
routing.

message set. A collection of messages and the
components that make them up.

message set. After you import or when you
create and modify the structures of messages in
the MQSeries Adapter Builder, they are
maintained in the form of message sets in the
builder’s Message Set view.

MQSeries Adapter Builder. The MQSeries
Adapter Builder provides support to define and
build an adapter for most applications. It does so
by providing an intuitive user interface. The user
interface is similar to MQSeries Integrator’s user

interface. See Madapter” on page 4d.

MQSeries Adapter Kernel. A set of APIs and
several executable programs, in C and Java, and
several configuration files. The kernel works with
and supports the adapters. See

. In addition to directly supporting
adapters, the kernel performs related functions,
among the most important: routing of messages
and infrastructure services such as message
construction, tracing and interfacing with
MQSeries.

The kernel is installed on each computer on
which a source adapter or a target adapter run.

MQSeries Adapter Offering. A set of
application integration products that consists of
the MQSeries Adapter Builder and the MQSeries
Adapter Kernel.

OAG. Open Applications Group. It is a
non-profit industry consortium comprised of
many prominent stakeholders in the business
software component interoperability arena. The
OAG defines Business Object Documents (BODs).
See L. ” .

repository. In MQSeries Adapter Builder, a file
system directory that contains definitions of the
adapters. It is not used when running an

52 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

adapter; it is only used by MQSeries Adapter
Builder when defining an adapter and generating
the adapter code.

routing. The process, performed by the kernel,
of sending a message from the source adapter
and delivering it to the appropriate target
adapter. Routing is performed between the
source adapter and the target adapter.

Routing is performed in two stages:

1. The source side of the kernel puts the
message on the appropriate MQSeries queue.
As an option, if MQSeries Integrator has been
configured as the destination, MQSeries
Integrator can perform certain brokering
functions. Then, whether via MQSeries or via
MQSeries and MQSeries Integrator, the
message arrives on the appropriate MQSeries
queue.

2. The target side of the kernel gets the message
from the MQSeries queue and invokes the
appropriate target adapter.

The adapter’s message control values help

control routing. See 'message contral values” ord

Contrast with Econnector flow” on page 50 and

source adapter. An adapter that

* Accepts or otherwise acquires structured data
from a source application (typically via an
application-specific interface that is developed
by a user outside the adapter).

* Processes the structured data according to how
the adapter had been modeled.

e Transforms the structured data into an
intermediate message format.

* Via the kernel, puts the message onto an
MQSeries queue, for delivery to one or more
target adapters and thence to the target
application.

For each message type, there is one source
adapter. Typically, a source application can send
multiple message types; therefore in most cases,
a source application is supported by multiple
source adapters.

Glossary

See

source application. Program that is required to
send data via a computer network to a program
(known as the target application) that typically
resides on another computer.

source side of the kernel. In this information,
the part of the kernel functionality that begins
when the message is received from the source
adapter and that ends when the message is put
onto the MQSeries queue.

target adapter. An adapter that:

* Receives a message (via the kernel and
MQSeries) that had been sent by a source
adapter.

* Processes the intermediate-formatted message
according to how the adapter had been
modeled.

* Transforms the intermediate-formatted
message into an application-specific
formatted-message that the target application
can receive.

¢ Sends the message to the target application via
an application-specific interface.

* Lets the kernel know when it has completed
sending the message to the target application,
to enable the worker to send an
acknowledgment.

If the target application can receive the
intermediate-formatted message, then a target
adapter might not be required.

For each message type, there is one target
adapter. Typically, a target application can accept
multiple message types; therefore in most cases,
a target application is supported by multiple
target adapters.See L. ”

target application. Program that is required to
receive data via a computer network from a
program (known as the source application) that
typically resides on another computer.

target side of the kernel. In this information,
the part of the kernel functionality that begins

Glossary 53

Glossary

when the message is gotten from the MQSeries
queue and that ends when the message is sent to
the target adapter.

workspace. A workspace is a view of what you
can work with at one time. A workspace is
displayed as the graphical space in the builder
where you build adapters. The workspace’s
content is:

* The particular message sets, which are
displayed in the Message Sets view.

* The connector flows that you have modeled
(that are associated with the message sets), the
adapters that you have built and the
component types provided with the builder,
which are displayed in the Adapters view.

* Everything that the message sets, connector
flows and adapters refer to, such as primitives.

XML. Extensible Markup Language. A W3C
standard for the representation of data.

54 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Index

Special Characters

—Xmx value 39

A

adapter
examples 3
functionality 4

size
disk space 19
types 5

application identifier
in the kernel
and generation of the
adapter 25
Application Name field
in the builder
generation of the adapter 25
authority
prerequisite 23

C
check in 35

techniques for managing 38
check out 36

techniques for managing 38
committed version 30

D

development version 29

E

error
out of memory 39
export
workspace 30
techniques for managing 38
export file 30
sharing with others 34

H

heap space
Java virtual machine 39

import
workspace 30
techniques for managing 38

© Copyright IBM Corp. 2000

importing
application’s interface
files and directories in the
repository 38
problems 39
workspace
validation 38
installation
procedures 23

lock 36
locked committed version 36

M

message
message control values 25
types

adapter 5

MQSeries Adapter Offering
benefits 1
environments 3
service offerings 5
tiers 2

O

out of memory error 39

P

procedures
high level
"cookbook” ix

R

repository

about 27

back up 33

managing 33

tasks 40

restore 33

techniques for managing 38

validation 38
revert to committed 36
routing

message control values 25

U

unlock 35
tasks 36

wW

websites
MQSeries
platforms 19
MQSeries product family 43
MQSeries SupportPacs ix
Open Applications Group 43
publications ix
related information ix
XML 43
working directory 29
workspace
about 27
managing
tasks 40
saving 32

Index

56 MQSeries® Adapter Builder for Windows NT®: Using the Control Center

Printed in U.S.A.

GC34-5882-01

	Contents
	Figures
	Tables
	Welcome to the MQSeries Adapter Builder
	Who should use this information
	Related information

	Conventions
	Summary of changes
	Chapter 1. About MQSeries Adapter Offering
	Benefits of MQSeries Adapter Offering
	Adapters
	Build time and run time

	Chapter 2. About the builder
	Benefits of the builder
	The Control Center
	Importing and creating messages
	Composing connector flows
	Examples of composing connector flows
	Connector flow components

	Generating an adapter

	Chapter 3. Planning to install the builder
	Hardware
	Software
	Builder
	Adapters

	Year 2000 statement
	Components of the builder

	Chapter 4. Installing the builder
	Prepare for installation
	Install
	Remove the builder

	Chapter 5. Build an adapter
	Procedures for building an adapter
	Start the builder
	Deploy an adapter

	Chapter 6. Manage your workspaces and the repository
	Workspaces and the repository
	Manage the repository
	Manage workspaces and versions of workspace content
	Techniques for managing your workspaces and the repository
	Tasks: Manage your workspaces and the repository
	Build an adapter and export the workspace
	Import a workspace, and modify to build an adapter

	Chapter 7. Obtaining additional information
	Available on the Internet
	MQSeries Adapter Offering information
	References

	Notices
	Trademarks

	Glossary
	Index

