
MQSeries Integrator IBM

Introduction and Planning
Version 2.0.1

 GC34-5599-01

MQSeries Integrator IBM

Introduction and Planning
Version 2.0.1

 GC34-5599-01

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix C, “Notices”
on page 175.

Second edition (August 2000)

This edition applies to IBM MQSeries Integrator Version 2 and to all subsequent releases and modifications until otherwise
indicated in new editions.

 Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . ix
Who this book is for . ix
What you need to know to understand this book x
Terms used in this book . x
Where to find more information . x

MQSeries Integrator publications . x
MQSeries publications . xii
MQSeries Publish/Subscribe . xiii
MQSeries Workflow publications . xiii
DB2 publications . xiii
MQSeries information available on the Internet xiii

Summary of changes . xv
| Changes for this edition (GC34-5599-01) . xv

Part 1. Introduction . 1

Chapter 1. MQSeries and business integration 3
The MQSeries family . 3
Using MQSeries for business integration . 4
Using MQSeries Integrator in your business . 5
Getting started with MQSeries Integrator . 6

Chapter 2. MQSeries Integrator overview and concepts 9
The Configuration Manager . 9
Brokers . 11
Business processing rules (message flows) . 13
Messages and message sets . 17
The Control Center . 19
Applications and clients . 22
The User Name Server . 24
Dependencies . 26

| Release to release migration . 28

Chapter 3. MQSeries Integrator: a business scenario 31
The retail scenario . 31

Part 2. Business process planning . 39

Chapter 4. Message flows . 41
What is a message flow? . 41
Execution groups . 48
Message flows and message sets . 49
Message flows for publish/subscribe services . 49
Supplied message flows and nodes . 50
Adding or enhancing message processing nodes 53

Chapter 5. Messages . 55
Predefined and self-defining messages . 55

 Copyright IBM Corp. 2000 iii

 Contents

Message parsers . 59
Using message templates and messages . 61
Creating additional parsers . 62

Part 3. Application planning . 63

Chapter 6. Application design . 65
Communication models . 65
Application programming . 66
Reusing existing applications . 68
Writing new applications . 69
MQSeries queues . 70
Message order . 70
Transaction support . 71
Security . 73
Summary . 73

Chapter 7. Designing publish/subscribe applications 75
How publish/subscribe applications interact with a broker 75
Publications . 75
Subscriptions . 78
Topics . 82
Broker networks . 86
Topic-based security . 87
Summary . 92

Part 4. Systems planning . 93

Chapter 8. System requirements . 95
| Summary of system requirements . 95
| System requirements for AIX components . 96
| System requirements for Sun Solaris components 98

System requirements for Windows NT components 100
| Database support . 103

Client requirements . 104
License information . 104
National language support . 104

Chapter 9. Planning your MQSeries Integrator network 105
Planning MQSeries Integrator resources . 105
Designing the MQSeries infrastructure . 112
Planning database resources . 117
Planning security . 119

| Planning for data conversion . 131

Chapter 10. Managing your MQSeries Integrator network 133
Managing broker domain components . 133
Monitoring and analysis . 134

Chapter 11. Enhancing your broker domain 139
General guidance for writing plug-ins . 139
Writing your own message processing node types 140

iv MQSeries Integrator Introduction and Planning

 Contents

Writing your own parsers . 140

Part 5. Appendixes . 141

Appendix A. Planning for migration and integration 143
MQSeries Integrator Version 1 . 143
MQSeries Publish/Subscribe . 148

| Appendix B. The product packages . 169
| The MQSeries Integrator for AIX package . 169
| The MQSeries Integrator for Sun Solaris package 170

The MQSeries Integrator for Windows NT package 172

Appendix C. Notices . 175
Trademarks . 177

Glossary of terms and abbreviations . 179

Index . 185

 Contents v

 Contents

vi MQSeries Integrator Introduction and Planning

 Figures � Tables

 Figures

1. The Configuration Manager . 10
2. The broker . 12
3. A collective . 13
4. Message flow components . 15
5. A simple message flow: case 1 . 16
6. A simple message flow: case 2 . 16
7. A simple message flow: case 3 . 17
8. A simple message flow: case 4 . 17
9. Applications connecting to a broker . 24

10. The User Name Server . 25
11. SRU headquarters and branch hierarchy 32
12. Branches and back-end systems . 32
13. SRU receipt . 33
14. The business flow (simplified) . 36
15. Publish/subscribe with a single broker . 76
16. Example topic tree . 83
17. Publish/subscribe in a network . 86
18. Inheriting ACLs in a topic tree . 90
19. Collectives with a broker domain . 109
20. A heterogeneous network . 156
21. Stream authorities . 158

 Tables

1. Recipient information . 34
2. ACL permissions . 89

| 3. The ACLs for inheritance . 90
| 4. Summary of installation options . 96
| 5. Supported databases for brokers and user data 103
| 6. Summary of authorization in the UNIX environments 124

7. Summary of authorizations . 125
8. MQRFH and MQRFH2 mapping . 151
9. Summary of message option support . 152

10. MQRFH and MQRFH2 client application options 155
11. Migration inhibitors checklist . 167

 Copyright IBM Corp. 2000 vii

 Tables

viii MQSeries Integrator Introduction and Planning

 About this book

About this book

This book provides an overview of IBM MQSeries Integrator Version 2.0.1. It
introduces the concepts of the product, and provides the information to help you
plan for an MQSeries Integrator network.

Part 1, “Introduction” on page 1 gives you a broad understanding of the MQSeries
family of products, and an introduction to MQSeries Integrator. It also discusses
additional, related offerings from IBM. It provides background information that can
benefit everyone working with MQSeries Integrator.

Part 2, “Business process planning” on page 39 builds on the introduction in Part
1, providing information that helps your business planners develop message
structure and processing requirements that will support a successful MQSeries
Integrator environment.

You can find implementation details for the tasks covered in this part in MQSeries
Integrator Version 2 Using the Control Center.

Part 3, “Application planning” on page 63 explores the application aspects of your
environment, further clarifying the introduction in Part 1 and guiding you through the
considerations for application planning and development.

You can find implementation details for the tasks covered in this part in the
MQSeries Integrator Version 2 Programming Guide.

Part 4, “Systems planning” on page 93 provides details of the infrastructure you
will need, and how you can configure it, to complement your applications and
achieve your business goals. It provides system administrators with hardware and
software requirements, and the infrastructure required to support your environment.

You can find implementation details for the tasks covered in this part in the
MQSeries Integrator Version 2 Administration Guide.

Appendixes provide information on migration, and on the contents of the MQSeries
Integrator product package.

A glossary is also provided.

| For details of installing MQSeries Integrator for AIX, see the MQSeries Integrator
| for AIX Version 2 Installation Guide. For details of installing MQSeries Integrator
| for Sun Solaris, see the MQSeries Integrator for Sun Solaris Version 2 Installation
| Guide. For details of installing MQSeries Integrator for Windows NT, see the
| MQSeries Integrator for Windows NT Version 2 Installation Guide.

Who this book is for
This book is for business administrators who need an understanding of MQSeries
Integrator to enable them to make a purchasing decision. When the product has
been purchased, this book provides information to business and system
administrators on how to make the best use of the product within their environment.

 Copyright IBM Corp. 2000 ix

 MQSeries publications

What you need to know to understand this book
To understand this book, you should have some familiarity with the concepts of
application integration, and a thorough understanding of your existing and planned
business tasks and objectives.

An understanding of MQSeries concepts is also useful.

Terms used in this book
All references in this book to MQSeries Integrator are to MQSeries Integrator
Version 2 unless otherwise stated.

All new terms introduced in this book are defined in “Glossary of terms and
abbreviations” on page 179. These terms are shown like this at their first use.

The book uses the following shortened names:

� MQSeries: a general term for IBM MQSeries messaging products.
� MQSeries Publish/Subscribe: the MQSeries Publish/Subscribe SupportPac

available on the Internet for several MQSeries server operating systems (the
Internet URL is given in “MQSeries information available on the Internet” on
page xiii).

| � CICS: a general term for IBM CICS products including CICS, TXSeries, and
| Websphere.

� DB2: a general term to encompass IBM DB2 Universal Database Enterprise
Edition, Connect Enterprise Edition and Extended Enterprise Edition.

Where to find more information
Becoming familiar with the MQSeries Integrator library will help you accomplish
MQSeries Integrator tasks quickly. The library covers planning, installation,
administration, and client application tasks.

The library also contains references to complementary product libraries, including
the MQSeries Family library.

MQSeries Integrator publications
| The following books make up the MQSeries Integrator Version 2 library:

| � IBM MQSeries Integrator Version 2 Introduction and Planning, GC34-5599 (this
| book)

| � IBM MQSeries Integrator for AIX Version 2 Installation Guide, GC34-5841

| � IBM MQSeries Integrator for Sun Solaris Version 2 Installation Guide,
| GC34-5864

| � IBM MQSeries Integrator for Windows NT Version 2 Installation Guide,
| GC34-5600

� IBM MQSeries Integrator Version 2 Messages, GC34-5601

� IBM MQSeries Integrator Version 2 Using the Control Center, SC34-5602

� IBM MQSeries Integrator Version 2 Programming Guide, SC34-5603

x MQSeries Integrator Introduction and Planning

 MQSeries publications

� IBM MQSeries Integrator Version 2 Administration Guide, SC34-5792

The appropriate MQSeries Integrator Installation Guide is provided in hardcopy with
the product. This book is also available in hardcopy.

All books in the MQSeries Integrator library are provided in softcopy in Adobe
Portable Document Format (PDF) in a searchable PDF library.

| You can install the library as follows:

| � On AIX, invoke install -d and select the documentation fileset. After
| installation, run the command mqsidocs. This launches Acrobat reader and
| opens the PDF package.

| � On Sun Solaris, invoke pkgadd -d and select mqsi-docs from the menu. After
| installation, run the command mqsidocs. This launches Acrobat reader and
| opens the PDF package.

| � On Windows NT, select the Documentation component on a custom installation,
| or do a full installation. After installation, select
| Start->Programs->MQSeries Integrator Version 2.0->Documentation.

| Note: If you cut and paste examples of commands from the PDF files to a
| command line for execution you must check the content is correct before you press
| enter. Some characters might be corrupted by local system and font settings.

| The MQSeries Integrator Version 1.1 publications are also supplied as PDFs and
| can be installed with MQSeries Integrator Version 2.0.1. They can also be
| retrieved from the MQSeries Web site given in “MQSeries information available on
| the Internet” on page xiii.

� IBM MQSeries Integrator Version 1.1 Installation and Configuration Guide,
GC34-5503

� IBM MQSeries Integrator Version 1.1 User’s Guide, GC34-5504

� IBM MQSeries Integrator Version 1.1 System Management Guide, SC34-5505

� IBM MQSeries Integrator Version 1.1 Programming Reference for NEONRules,
SC34-5506

� IBM MQSeries Integrator Version 1.1 Programming Reference for
NEONFormatter, SC34-5507

� IBM MQSeries Integrator Version 1.1 Application Development Guide,
SC34-5508

You can read PDFs using Adobe Acrobat Reader, or in a Web browser (with
Acrobat Reader as a plug-in). Version 4 is required. You can also print your own
copies of these books.

You can download a free copy of Acrobat Reader from the Adobe Web site at

http://www.adobe.com

 About this book xi

 MQSeries publications

 MQSeries publications
The following books are referenced in this book to point you to the information you
need to complete MQSeries messaging product tasks as part of MQSeries
Integrator tasks.

| For AIX installation tasks you might need:

| � IBM MQSeries for AIX V5.1 Quick Beginnings, GC33-1867

| This book is included, in hardcopy, in the MQSeries Integrator for AIX package.

| For Sun Solaris installation tasks you might need:

| � IBM MQSeries for Sun Solaris V5.1 Quick Beginnings, GC33-1870

| This book is included, in hardcopy, in the MQSeries Integrator for Sun Solaris
| package.

For Windows NT installation tasks you might need:

� IBM MQSeries for Windows NT V5.1 Quick Beginnings, GC33-1871

This book is included, in hardcopy, in the MQSeries Integrator for Windows NT
package.

For planning and configuration tasks you might need:

� IBM MQSeries Intercommunication, SC33-1872

This book defines the concepts of distributed queuing and explains how to set
up a distributed queuing network.

� IBM MQSeries System Administration, SC33-1873

This book supports day-to-day management of local and remote MQSeries
objects. It includes topics such as security, recovery and restart, transactional
support, and problem determination.

� IBM MQSeries Queue Manager Clusters, SC34-5349

This book describes the concepts and implementation of MQSeries clusters.

� IBM MQSeries Command Reference, SC33-1369.

This book contains the syntax of the MQSC commands.

� IBM MQSeries Clients, GC33-1632

This book describes how to install, configure, use, and manage MQSeries
clients.

� IBM MQSeries Messages, GC33-1876

This book describes the messages issued by MQSeries.

For application programming tasks you might need:

� IBM MQSeries Application Programming Reference, SC33-1673

This book provides comprehensive reference information for users of the
Message Queue Interface (MQI).

� IBM MQSeries Application Programming Guide, SC33-0807

This book provides guidance for users of the MQI. It describes how to design,
write, and build an MQSeries application. The techniques explored are equally
applicable in an MQSeries Integrator environment.

� IBM MQSeries Application Messaging Interface, SC34-5604

xii MQSeries Integrator Introduction and Planning

 MQSeries publications

This book provides comprehensive reference information for users of the
Application Messaging Interface (AMI), including call syntax and return codes.

For a complete list of MQSeries messaging product publications, refer to the
information on the MQSeries Web site (“MQSeries information available on the
Internet”).

 MQSeries Publish/Subscribe
If you have installed MQSeries Publish/Subscribe and plan to migrate brokers to
MQSeries Integrator Version 2, or to establish a mixed network, refer to the
following publication:

� IBM MQSeries Publish/Subscribe User’s Guide, GC34-5269

You can download this book and the MQSeries Publish/Subscribe SDK package
from the MQSeries Web site (given in “MQSeries information available on the
Internet”).

MQSeries Workflow publications
The MQSeries Workflow product has a comprehensive library. Refer to the
following book for introductory information, and for details about other product
publications:

� IBM MQSeries Workflow Concepts and Architecture, GH12-6285

For a complete list of MQSeries Workflow publications, refer to the information on
the MQSeries Web site (given in “MQSeries information available on the Internet”).

 DB2 publications
If you want more information about DB2, you can download the product
publications from the DB2 Web site at

http://www.ibm.com/software/data/db2

MQSeries information available on the Internet
The MQSeries Business Solution, of which MQSeries Integrator is a part, has a
Web site at:

http://www.ibm.com/software/ts/mqseries

By following links from this Web site you can:

� Obtain latest information about all MQSeries products.
� Access the MQSeries family books.
� Down-load MQSeries SupportPacs.

You might be interested in the MQSeries Integrator problem determination Q&A
SupportPac (MHI1) that you can access from:

http://www.ibm.com/software/ts/mqseries/txppacs/

 About this book xiii

 MQSeries publications

xiv MQSeries Integrator Introduction and Planning

 Changes

Summary of changes

| This section describes changes to this edition of MQSeries Integrator Introduction
| and Planning. Changes since the previous edition of the book are marked by
| vertical lines to the left of the changes.

| Changes for this edition (GC34-5599-01)
| Major changes for this edition include:

| � Additional information to cover the following product changes:

| – New products MQSeries Integrator for AIX Version 2.0.1. and MQSeries
| Integrator for Sun Solaris Version 2.0.1.

| – New IBM primitive nodes (FlowOrder, Label, and RouteToLabel)

| � Minor technical and editorial improvements throughout the book

 Copyright IBM Corp. 2000 xv

 Changes

xvi MQSeries Integrator Introduction and Planning

 Part 1. Introduction

This part provides introductory level information that will benefit everyone working
with MQSeries Integrator. It includes the following chapters:

� Chapter 1, “MQSeries and business integration” on page 3 introduces the
products in the MQSeries family, and the way in which they support business
integration.

� Chapter 2, “MQSeries Integrator overview and concepts” on page 9 discusses
the function of MQSeries Integrator, giving an outline of the support it provides.
It also gives references to more detailed information in the remainder of this
book, and in the other books in the MQSeries Integrator library.

� Chapter 3, “MQSeries Integrator: a business scenario” on page 31 explores a
business scenario that illustrates the value that MQSeries Integrator adds to
your IT environment.

 Copyright IBM Corp. 2000 1

2 MQSeries Integrator Introduction and Planning

 MQSeries family

Chapter 1. MQSeries and business integration

The last few years have seen a growing interest and investment in messaging
middleware. IBM’s MQSeries is an industry leader in this area, and provides a
messaging infrastructure to many diverse businesses and applications.

IBM has developed a family of products, based around the messaging transport
layer, that provides not only the fundamental requirements of secure, reliable
information exchange, but also incorporates services and business process support
to help you to make best use of your investment in systems and applications. The
richness and flexibility of this support enables you to respond to new opportunities
that arise when your business grows and diversifies.

The MQSeries family
The MQSeries family consists of three complementary offerings:

 � “MQSeries”
 � “MQSeries Integrator”
� “MQSeries Workflow” on page 4

 MQSeries
MQSeries provides assured, once-only delivery of messages between your IT
systems. It connects more than thirty industry platforms including those from IBM,
Microsoft, and Sun, using a variety of communications protocols.

MQSeries provides rich support for applications:

� Application programming interfaces: the Message Queue Interface (MQI) and
Application Messaging Interface (AMI) are supported in several programming
languages.

� Communication models: point-to-point (including request/reply and client/server)
and publish/subscribe are supported.

� The complexities of communications programming are handled by the
messaging services and are therefore removed from the application logic.

� Applications can access other systems and interfaces through gateways and
adapters to products such as Lotus Domino, Microsoft Exchange/Outlook,
SAP/R3, and IBM’s CICS and IMS/ESA products.

 MQSeries Integrator
MQSeries Integrator works with MQSeries messaging, extending its basic
connectivity and transport capabilities to provide a powerful message broker
solution driven by business rules. Messages are formed, routed, and transformed
according to the rules defined by an easy-to-use graphical user interface.

Diverse applications can exchange information in unlike forms, with brokers
handling the processing required for the information to arrive in the right place in
the correct format, according to the rules you have defined. The applications have
no need to know anything other than their own conventions and requirements.

 Copyright IBM Corp. 2000 3

 Business integration

Applications also have much greater flexibility in selecting which messages they
wish to receive, because they can specify a topic filter, or a content-based filter, or
both, to control the messages made available to them.

MQSeries Integrator provides a framework that supports supplied, basic, functions
along with plug-in enhancements, to enable rapid construction and modification of
business processing rules that are applied to messages in the system.

 MQSeries Workflow
MQSeries Workflow works with MQSeries messaging to add a further dimension to
your business integration by aligning and integrating an organization’s staff
resources, processes, and capabilities with business strategies. It enables
organizations to accelerate process flow, optimize costs, eliminate errors and
improve workgroup productivity.

MQSeries Workflow is designed to enable integration of all participants in the
business process, including those external to your organization. It ensures the right
information gets to the right person at the right time.

MQSeries Workflow can be used in combination with MQSeries Integrator,
providing a high level of flexibility to allow business and message processing to be
as simple or as complicated as your business demands.

Using MQSeries for business integration
MQSeries is the focal point of the IBM Business Integration strategy, which
addresses integration of applications, data, and processes from both business and
IT perspectives.

Business integration is the coordination and cooperation of all your business
processes and applications. It involves bringing together the data and process
intelligence in your enterprise, and harnessing these to enable all your applications
and your users to achieve their business needs.

Business integration means that:

� You can connect customers, suppliers, partners, and service providers, with
continuing security and control, to enable newly built and re-engineered
applications for more effective business processes (for example, Supply Chain
Management).

� You can make mergers and acquisitions a success by integrating dissimilar IT
infrastructures from two or more companies so they can work as a single entity.

� You can react more quickly to market trends and opportunities because your IT
systems are flexible and dependable, and no longer constraining.

� The barriers of diverse computer systems, geographic boundaries, time
differences, language and format differences, and different methods of working
can all be overcome.

4 MQSeries Integrator Introduction and Planning

 Using MQSeries Integrator

You can use the MQSeries family products to support your business integration
needs:

� MQSeries messaging provides a secure and far-reaching communications
infrastructure.

� MQSeries Integrator and MQSeries Workflow provide a range of services that
allow you to apply intelligence to your business data as it travels through your
network.

Using MQSeries Integrator in your business
MQSeries Integrator addresses the needs of business and application integration
through management of information flow. It provides services based on message
brokers to allow you to:

� Route a message to several destinations, using rules that act on the contents
of one or more of the fields in the message or message header.

� Transform a message, so that applications using different formats can
exchange messages in their own formats.

� Store and retrieve a message, or part of a message, in a database.

� Modify the contents of a message (for example, by adding data extracted from
a database).

� Publish a message to make it available to other applications. Other
applications can choose to receive publications that relate to specific topics, or
that have specific content, or both.

� Create structured topic names, topic-based access control functions,
content-based subscriptions, and subscription points.

� Exploit a plug-in interface to develop message processing node types that can
be incorporated into the broker framework to complement or replace the
supplied nodes, or to incorporate node types developed by Independent
Software Vendors (ISVs).

� Enable instrumentation by products such as those developed by Tivoli, using
system management hooks.

The benefits of MQSeries Integrator can be realized both within and beyond your
enterprise:

� Your processes and applications can be integrated by providing message and
data transformations in a single place, the broker. This helps reduce costs of
application upgrades and modifications.

� You can extend your systems to reach your suppliers and customers, by
meeting their interface requirements within your brokers. This can help you
improve the quality of your interactions and allow you to respond more quickly
to changing or additional requirements.

For a practical illustration of the use of MQSeries Integrator in business, see
Chapter 3, “MQSeries Integrator: a business scenario” on page 31.

 Chapter 1. MQSeries and business integration 5

 Getting started

MQSeries Integrator Version 2.0.1 and previous IBM offerings
The following offerings from IBM are enhanced and extended by MQSeries
Integrator Version 2.0.1:

� MQSeries Integrator Version 1
 � MQSeries Publish/Subscribe

MQSeries Integrator Version 2.0.1 extends the capabilities of MQSeries Integrator
Version 1 and MQSeries Publish/Subscribe by supporting:

� Integration of the publish/subscribe and rules and transformation functions,
enabling the output from the rules engine to be directed straight to the
publish/subscribe service without use of an intermediate queue.

� Enhanced publish/subscribe function through exploitation of structured topic
names, access control, content-based subscriptions, and subscription points.

� Enhancement of message processing through the addition of new message
processing nodes to complement or replace the supplied nodes.

� Interfaces that allow messages to be enriched with information from a
database, or to be stored in a database.

You can upgrade your applications, messages, and brokers to take advantage of
the enhancements in Version 2.0.1 You can also continue to use your existing
applications and messages unchanged, by tailoring your Version 2.0.1 system to
provide compatible support.

MQSeries Integrator Version 2.0.1 brokers can interact with MQSeries
Publish/Subscribe brokers in a common publish/subscribe environment, to provide
coexistence within a single mixed broker network.

If you already have MQSeries Integrator Version 1, or MQSeries Publish/Subscribe,
or both, see Appendix A, “Planning for migration and integration” on page 143 and
the MQSeries Integrator Administration Guide for details of planning for and
implementing your migration.

Getting started with MQSeries Integrator
The information in this book helps you to:

1. Assess how MQSeries Integrator meets your business needs, and make a
purchasing decision.

� Chapter 2, “MQSeries Integrator overview and concepts” on page 9
introduces the concepts and components of MQSeries Integrator, and
explains their relationships.

� Chapter 3, “MQSeries Integrator: a business scenario” on page 31
describes a scenario that explains how MQSeries Integrator helps you to
solve business integration problems.

2. Plan for implementation and deployment of MQSeries Integrator.

� Part 2, “Business process planning” on page 39 discusses your business
processes and entities. It describes message flows, messages, and
message sets, and the rules that define how these messages are
processed.

6 MQSeries Integrator Introduction and Planning

 Getting started

When you understand the concepts, and have completed the planning
tasks to define your environment, refer to MQSeries Integrator Using the
Control Center for details of how to implement these plans and carry out
your business administration tasks.

� Part 3, “Application planning” on page 63 describes how you can integrate
existing applications, and create new ones, to complete the processing of
messages flowing through your network.

Detailed guidance for writing and deploying these applications is provided
in the MQSeries Integrator Programming Guide.

� Part 4, “Systems planning” on page 93 summarizes the infrastructure
requirements of your network, and discusses how you can configure the
MQSeries Integrator components to provide the support your business
processing requires.

| You can find full details of the system requirements for MQSeries Integrator
| in the MQSeries Integrator Installation Guide for your operating system.
| These books also contain instructions for installing MQSeries Integrator on
| your chosen operating system, and guides you through some simple tasks
| that help you verify that installation.

You can find details for system administration tasks in the MQSeries
Integrator Administration Guide.

� Appendix A, “Planning for migration and integration” on page 143 provides
the information you require if you already use MQSeries Integrator Version
1, or have downloaded and deployed MQSeries Publish/Subscribe. It helps
you plan for deployment of MQSeries Integrator Version 2.0.1 brokers in
your current environment.

For details of how you can upgrade your current environment to MQSeries
Integrator Version 2.0.1, refer to the MQSeries Integrator Administration
Guide.

 Chapter 1. MQSeries and business integration 7

 Getting started

8 MQSeries Integrator Introduction and Planning

 Configuration Manager

Chapter 2. MQSeries Integrator overview and concepts

MQSeries Integrator Version 2.0.1 supports business processes that meet your
application and business integration needs. This support is provided by a number of
components and services that work together to manage the resources required by
your applications and business processes.

This chapter looks at the MQSeries Integrator components, their relationships, and
the services they provide. It concludes with a summary of MQSeries Integrator’s
dependencies on other software products and the levels required.

The following topics are introduced:

� “The Configuration Manager”
� “Brokers” on page 11
� “Business processing rules (message flows)” on page 13
� “Messages and message sets” on page 17
� “The Control Center” on page 19
� “Applications and clients” on page 22
� “The User Name Server” on page 24
� “Dependencies” on page 26
� “Release to release migration” on page 28

The Configuration Manager
The Configuration Manager is the central component of your MQSeries Integrator
environment. The components and resources managed by the Configuration
Manager constitute the broker domain. The Configuration Manager serves three
main functions:

� It maintains configuration details in the configuration repository. This is a set of
database tables that provide a central record of the broker domain components.

� It manages the initialization and deployment of brokers and message
processing operations in response to actions initiated through the Control
Center. It communicates with other components in the broker domain using
MQSeries transport services.

� It checks the authority of defined user IDs to initiate those actions.

You must install, create, and start a single Configuration Manager to manage your
| broker domain. The Configuration Manager must be installed and configured in the
| Windows NT environment. It is not supported on any other operating system. Once

started, the Configuration Manager runs in the background.

You can view, create, modify, and delete the contents of the configuration
| repository using the Control Center. The Control Center must also be installed on
| Windows NT. It is not supported on any other operating system. A fuller

description of the Control Center is given in “The Control Center” on page 19.

The Configuration Manager provides a service to the other components in the
broker domain, providing them with configuration updates in response to actions
you take from the Control Center. The Configuration Manager validates that the

 Copyright IBM Corp. 2000 9

 Configuration Manager

user requesting each action from the Control Center is authorized to perform that
action.

Figure 1. The Configuration Manager

When you create the Configuration Manager, the following resources are also
created:

� A set of tables in a database, known as the configuration repository. This
database must be created using IBM DB2 Universal Database for Windows NT.
The Configuration Manager uses a JDBC (Java Database Connectivity)
connection to this database.

� A set of tables in a database, known as the message repository. This database
must be created using IBM DB2 Universal Database for Windows NT. The
Configuration Manager uses an ODBC (Open Database Connectivity)
connection to this database.

� A set of fixed-name queues, defined to the queue manager that hosts the
Configuration Manager. You must identify this queue manager when you create
the Configuration Manager, and it must exist on the same physical system as
the Configuration Manager. It will be created when the Configuration Manager
is created, if it does not already exist.

� A server connection, defined to the queue manager that hosts the Configuration
Manager. This connection is used by all instances of the Control Center.

10 MQSeries Integrator Introduction and Planning

 Brokers

 Brokers
The broker is a named resource that hosts and controls your business processes,
which you define as message flows. Your applications communicate with the
broker to take advantage of the services provided by the message flows.
Applications send new messages to the message flow, and receive processed
messages from the message flow, using MQSeries queues and connections.

You can install, create, and start any number of brokers within a broker domain.
You can create more than one broker on any one physical system if you choose,
but you must specify a unique queue manager for each broker. However, a single
broker can share a queue manager with the Configuration Manager.

When you create a broker, the following resources are also created:

| � A set of tables in a database to hold the broker’s local data. This database can
| be created using a number of database products, depending on the operating
| system on which you install MQSeries Integrator:

| – IBM DB2 Universal Database
| – Microsoft SQL Server (Windows NT only)
| – Oracle
| – Sybase

| The broker uses an ODBC connection to its database. These broker tables are
| also referred to as the broker’s local persistent store. For more information
| about supported databases, see Table 5 on page 103.

� A set of fixed-name queues, defined to the queue manager that hosts this
broker. You must identify this queue manager when you create the broker, and
it must exist on the same physical system as the broker. It is created when the
broker is created, if it does not already exist.

When you create a broker on the system on which you have installed the broker
component, the information about the broker’s configuration is not automatically
recorded in the configuration repository (managed by the Configuration Manager).
You must use the Control Center (the Topology view) to create a reference to this
broker with the same name that you specified when you created that broker (see
“The Control Center” on page 19 for more information about the Control Center).
Creating a reference:

� Stores the broker information in the configuration repository.

� Defines a default execution group on this broker. You can define further
execution groups if you want. Each message flow providing a service on this
broker must be deployed to an execution group before that service can be used
by applications.

 Chapter 2. MQSeries Integrator overview and concepts 11

 Brokers

Figure 2. The broker

When you have created the broker reference, you must deploy the changes to your
broker domain for them to take effect. The deploy action:

� Initiates communications between the Configuration Manager and the broker.

� Initializes the broker so that it is ready to execute message flows. The broker
receives configuration information from the Configuration Manager, and stores it
in its database.

When you have created the broker reference, you can assign message flows (see
“Business processing rules (message flows)” on page 13) to the broker’s execution
groups, and any message sets (see “Messages and message sets” on page 17)
required by those message flows to the broker. These changes must also be
deployed before they can be activated. You can deploy these resources
individually, or together, but until all related resources (for example, a broker, a
message flow and the message set it uses) are deployed, you cannot use the
message flow on that broker.

Connecting brokers for publish/subscribe
If you plan to create message flows that provide a publish/subscribe service, you
can consider connecting a number of your brokers in a collective using the Control
Center. A collective contains a number of brokers that are all physically
interconnected (that is, each broker in the collective is able to connect directly
through the network to every other broker in the collective). All the broker queue
managers must be connected by pairs of MQSeries channels.

A collective optimizes the publish/subscribe messages in your broker domain by
reducing the number of clients per broker, without increasing the hops taken by any
message by more than one. In this way, collectives are more efficient than a tree
hierarchy.

You can also connect collectives to other collectives, and to other individual
brokers. If you are connecting one collective to another collective, or to a
stand-alone broker, only one broker in each collective must provide the connection.

Messages published to any one broker are propagated to all connected brokers
(whether or not they are in a collective) to which an application has subscribed to
the message’s topic or content.

12 MQSeries Integrator Introduction and Planning

 Message flows

Figure 3. A collective

Figure 3 on page 13 illustrates a collective of three brokers.

System management interfaces
The brokers also provide a service for independent system management agents.
This enables a central management facility to access information about any
network that includes an MQSeries Integrator broker domain.

This support ensures that existing system management agents, such as those
developed by Tivoli, can be extended to include MQSeries Integrator resources.

| You can find information about using the Tivoli interface with MQSeries Integrator
| on the product CD.

MQSeries Integrator brokers publish event messages, using fixed topics, in
response to configuration changes, state changes, and user actions such as
subscription registrations.

A system management agent can subscribe to these topics, or to a subset of these
topics, to receive the detailed information about activity and state changes in the
MQSeries Integrator broker domain. The event messages have a fixed structure,
defined in XML (Extensible Markup Language).

For further details of this support, see the MQSeries Integrator Administration
Guide.

Business processing rules (message flows)
You define the processing for your messages as a set of actions, or rules, executed
between receipt of the message by the broker, and delivery of the message to the
target applications. Each action, or subset of actions, is performed by a message
processing node. These nodes are grouped together in a sequence to form a

 Chapter 2. MQSeries Integrator overview and concepts 13

 Message flows

message flow. A particular message flow provides a particular service, that is
implemented by the rules that the message flow nodes contain.

Creating message flows
You can create message flows by selecting and connecting message processing
nodes, using the Control Center. MQSeries Integrator supplies a number of
predefined message processing node types, known as IBM primitives. These
provide basic functions including input, output, filter (on message data content), and
compute (manipulate message content: for example, add data from a database).
You can connect one node to another (the output terminal of the first node and the
input terminal of the second node) to form a sequence.

The primitives nodes are described in Chapter 4, “Message flows” on page 41.
You can include these primitive nodes in your message flows to define the
processing you need for each of your messages. If you need additional or alternate
function not provided by the primitives, you can create new node types, using a
system programming interface supplied by MQSeries Integrator. This interface is
described in the MQSeries Integrator Programming Guide.

Message flows can range from very simple, performing just one action on a
message, to complex, providing a number of actions on the message to transform
its format and content.

Within a message flow, you can define the action to be taken according to the
message template, the message topic, or the data within the message itself.
Alternatively, the identity of the message originator, or the destination to which the
message is sent, might be important. Any combination of one or more of these
attributes, or others, can define the rules by which the messages are processed,
and determine the sequence of nodes you put together to form the message flow.

A message flow can process one message in several ways to deliver a number of
output messages, perhaps with different format and content, to a number of target
applications. You can embed one message flow within another, enabling you to
reuse a particular sequence of nodes, that provide a commonly required function,
many times.

| You can request that the actions taken within a message flow are assured by the
| implementation of XA technology. That is, all actions succeed or are rolled back to
| preserve the integrity of your message processing. If the actions taken by your
| message flow include updating a database, you must use a DB2 database to take
| advantage of this coordination. For more information about transaction
| coordination, see “Transaction support” on page 71.

| If you do not request coordination, or you are not using DB2 for your external
| database, MQSeries Integrator commits or rolls back each action taken by the
| message flow but cannot assure that success or failure is reflected by all actions.

Figure 4 on page 15 illustrates the components of a message flow.

14 MQSeries Integrator Introduction and Planning

 Message flows

Figure 4. Message flow components

Message flow input and output
The message flows you create receive messages at input nodes. Every message
flow must have at least one input node.

The input nodes must be of the type MQInput (one of the primitives supplied).
Each MQInput node represents an MQSeries queue, which can be unique to this
node, or used to supply messages to multiple nodes.

The sequence of nodes in a message flow usually end with one or more output
nodes that put one or more messages to one or more queues that are read by
applications that want to receive messages processed by that message flow.

| The output nodes are of the primitive type MQOutput or the primitive type
| MQReply (that uses the reply-to queue) or the primitive type Publication. These

nodes also represent unique or shared MQSeries queues. The queues for
published messages are specified by the applications that have registered an
interest in the information available.

Other message flows might simply store the message in a database for later
processing, and not use an output node at all.

 Publish/subscribe services
Message flows that incorporate a publication node provide a particular service,
known as a publish/subscribe service. Messages are supplied to the message flow
by publishers (applications that publish messages), and retrieved from the message
flow by subscribers (applications that have registered a subscription with a broker:
the subscription defines their interest in published messages).

A single message flow can include more than one publication node. Any number of
nodes can be included between the input nodes and the publication nodes, but you
cannot define any node to follow the publication node.

Each publication node has a subscription point. A subscription point differentiates
the publication node from other publication nodes on the same message flow, and
therefore represents a specific path through the message flow. For example, a
message including a share price might be needed in both dollars and sterling. The
message is processed, and two messages generated, one with the dollar price, the
other in sterling. The subscribers register specifying the identification of the
subscription point of the publication node that provides the currency they require.

 Chapter 2. MQSeries Integrator overview and concepts 15

 Message flows

You can include an unnamed publication node (one that does not have a specific
subscription point) in your message flow: this is known as the default subscription
point.

You can find out more details about publish/subscribe applications in “Applications
and clients” on page 22.

Associating message flows with brokers
When the broker has been defined to the broker domain topology, you can assign a
message flow to one of the broker’s execution groups. The same message flow
can be assigned to multiple brokers. Each message flow executes in an execution
group: each execution group is isolated from all others to increase data integrity
within the broker.

From the Assignment view of the Control Center you can drag and drop the
message flows you have created to the execution group in which they are to
execute. Each execution group can host multiple message flows.

Simple message flow examples
Here are a few simple message flows that use the primitives nodes.

1. MQInput->Compute->MQOutput. The compute node transforms a message
from one format to another, so that sending and receiving applications can
communicate with each other in their own formats.

Figure 5. A simple message flow: case 1

2. MQInput->Filter->MQOutputA or MQOutputB. A message is routed to
application A, or application B, depending on the contents of the message.

Figure 6. A simple message flow: case 2

3. MQInput->Database->MQOutput. The Database node stores a copy of a
message in the database, or updates the database with information from the
message.

16 MQSeries Integrator Introduction and Planning

 Messages

Figure 7. A simple message flow: case 3

4. MQInput->Publication. This publish/subscribe service sends publications to
registered applications. Applications register with the publish/subscribe service,
and are sent the relevant publications directly by the publication node.

Figure 8. A simple message flow: case 4

For more information on creating message flows like these, and others, and for
details on the message processing node primitives and how to use them, see
Chapter 4, “Message flows” on page 41.

If you want to know more about creating your own message processing nodes, see
Chapter 11, “Enhancing your broker domain” on page 139.

Messages and message sets
Each message flowing through your system has a specific structure, which is
important and meaningful to the applications that send or receive that message.
MQSeries Integrator refers to the structure as the message template. Message
template information comprises the message domain, message set, message type,
and wire format of the message. Together these values identify the structure of the
data the message contains. Every message flow that processes a message
conforming to this template must understand the template to enable the message
bit-stream to be interpreted.

| You can use:

| � Messages with a message template predefined to the message repository
| using the Control Center.

| � Messages with a message template predefined to the NEON database using
| the NEONFormatter interface.

| � Messages with a self-defining template.

Messages predefined in the Control Center
When you create a message using the Control Center, you define the fields
(Elements) in the message, along with any special field types you might need, and
any specific values (Valid Values) the fields might be restricted to (note that the
Valid Values defined are for documentation purposes only and are not currently
policed by the broker).

 Chapter 2. MQSeries Integrator overview and concepts 17

 Messages

| You can also create messages using the SmartGuide. This provides an easy to use
| interface to define simple messages, and allows you to define and arrange the
| fields within the message structure.

Every message predefined in the Control Center must be a member of a message
set. You can group related messages together in a message set: for example,
request and response messages for a bank account query can be defined in a
single message set. All message and message set definitions are maintained in
the message repository.

When you assign and deploy a message set to a broker, the definition of that
message set is sent by the Configuration Manager to the broker in the form of a
message dictionary (illustrated in Figure 2 on page 12). The broker can manage
multiple message sets simultaneously.

Importing legacy message definitions
You can use the facilities of the Control Center to import message structures
previously defined as C and COBOL data structures. The Control Center creates a
message set for you in a way that is consistent with all other message definitions in
the message repository.

The import facility allows continued use of messages defined in C and COBOL data
structures by your existing applications that use those structures. It also enhances
the existing support by giving you the flexibility to examine and modify the data in
these messages using message processing nodes. You can therefore route and
transform these messages using MQSeries Integrator Version 2.0.1 facilities without
having to redefine them.

You can find further information on how this is supported in Chapter 5, “Messages”
on page 55.

| Importing messages predefined by the Control Center
| If you create message temples in the message repository on one system, you can
| export those definitions in XML format to a file, and import them into the message
| repository on another system. The command mqsimrmimpexp supports both
| export and import.

Messages predefined by the NEONFormatter
You can use messages that you have defined using the NEONFormatter with
MQSeries Integrator Version 2.0.1 message flows. You can continue to use the
NEONFormatter to create new definitions of message formats. These definitions
are not held in the message repository, but in a separate database set up
specifically for this purpose and controlled by the NEON support component of
MQSeries Integrator.

When you want to use these message formats in the broker, you do not assign and
deploy them through the Control Center, but must ensure that the broker has
access to the database in which the definitions exist.

There are two primitive message processing nodes that provide processing
equivalent to MQSeries Integrator Version 1.1: these are the NEONRules and
NEONFormatter nodes. All IBM primitive nodes can read messages with
NEONFormatter input formats. Only the NEONFormatter and NEONRules nodes
can create messages with NEONFormatter output formats. The NEONFormatter

18 MQSeries Integrator Introduction and Planning

 Control Center

node can redefine output formats into alternative supported message types to
facilitate further processing.

 Self-defining messages
You can create and route messages that are self-defining. These use the XML
standard to provide structure to the message, so that it can be interpreted and

| modified. If you are using JMS messages (jms_map and jms_stream) these are
| supported as XML messages.

Self-defining messages can also be predefined in the message repository though
the Control Center. This permits the use of the logical message template by nodes
within a message flow. However, these message set definitions do not need to be
deployed to the brokers that support those message flows.

 Parsing messages
Message template information for predefined messages is usually included in the
message header, so that the message flows recognize the messages when they
receive them. Other messages might not have headers that identify the template,
but you can set up your message flow input nodes to indicate the structure of
messages that are processed by this message flow. If a message is not

| recognized, it is treated as an opaque unit, known as a blob. A blob can be
| interpreted as a string of hexadecimal characters, and can therefore be modified or
| examined in the message flow by specifying the location of the subset of the string.

When a message is processed by the nodes in a message flow, and its header or
body is referenced by a node, the message bit-stream is decoded by a message
parser. MQSeries Integrator supplies several message parsers that parse known
message templates and message headers. These include parsers for all messages
defined to the Control Center or the NEONFormatter, and generic XML messages.
The complete list is given in “Message parsers” on page 59.

If you need to process and parse messages that the supplied parsers do not
handle, you can create new parsers using an MQSeries Integrator system
programming interface. For more details of this interface, see Chapter 11,
“Enhancing your broker domain” on page 139.

Associating message sets with brokers
If you create messages and message sets through the Control Center, you must
assign the message set or sets to each broker that hosts a message flow that
requires them. A single definition of a message set can be used by the broker for
all message flows, and does not have to be assigned to a specific execution group.
The same message set can be assigned to multiple brokers. When you deploy the
changes, the message set is stored in the broker as a message dictionary.

The Control Center
The Control Center interacts with the Configuration Manager to allow you to
configure and control your broker domain. The Control Center and Configuration
Manager exchange messages (using MQSeries) to provide the information you
request, and to make updates to your broker domain configuration.

 Chapter 2. MQSeries Integrator overview and concepts 19

 Control Center

Figure 1 on page 10 illustrates the Control Center and its connection to the
Configuration Manager.

| You can install and invoke any number of Control Center instances in the Windows
| NT environment (the Control Center is not supported by any other operating
| system). The Control Center depends on the MQSeries Client for Java for its
| connection with the Configuration Manager. The Control Center can therefore be
| installed on the same physical system as the Configuration Manager, or on any
| other Windows NT system that can connect to the Configuration Manager.

The Control Center uses a client/server connection to connect to the Configuration
Manager’s queue manager (whether it is on the same or another physical system),
which it creates dynamically using information you provide when you first invoke the
program. This connection must be a TCP/IP connection.

The Control Center is structured as a number of views on the configuration and
message repositories. Users can choose which set of the views are currently
included by selecting one of five roles, one of which, “All roles”, shows every view.

Within the boundaries of what you are authorized to do, the Control Center allows
you to retrieve information selectively from:

� The message repository. This contains all the message templates that you (or
any other user) have created using the Control Center, those you have created
by importing legacy message definitions, and those you have imported using
the mqsimrmimpexp command.

� The configuration repository. This contains configuration information pertaining
to all other resources within your broker domain: brokers, execution groups,
collectives, message processing nodes, message flows, topics, and
subscriptions.

You can use the Control Center to:

� Develop, modify, assign, and deploy message flows.
� Develop, modify, assign, and deploy message sets.
� Define your broker domain topology and create collectives.
� Control topic security of messages by topic.
� View status information.

| � Export and resource definitions (excluding message sets).

Updates, assignment, and deployment
| When you work with the configuration and message repository data using the
| Control Center, you can choose to view the resources that are defined, or you can
| create, modify, and delete those resources. You must be authorized to perform
| these tasks.

If you want to make any changes, you must check out (request a locked copy of)
the resource you want to change. This allows updates to the central data to be
coordinated by the Configuration Manager. The Control Center shows you which
resources you currently have checked out. Once you have locked a resource, you
have exclusive control over it until you return it to the configuration repository using
check in, or until you relinquish control by unlocking it.

20 MQSeries Integrator Introduction and Planning

 Control Center

When you have made changes, or have created new resources, you can save a
local copy if you want. You can also check in the resources to save your changes
in the message or configuration repository, if you are authorized to do so. This
makes your changes visible to all other users of the Control Center.

When you have decided which message flows and message sets you want to use
in each broker, you can assign them from the Assignment view. Message flows are
assigned to an execution group within a broker. Message sets are assigned to the
broker itself.

Following your assignment of these resources, you must also deploy these changes
through the broker domain. Deployment results in the Configuration Manager
sending messages and information about the changes you have made to the
brokers. You can monitor the success and progress of this step using the
Operations view and the Log view.

For more detailed information about check in and check out, assignment and
deployment, and all the other tasks that the Control Center supports, refer to
MQSeries Integrator Using the Control Center. This book also provides further
description of the user roles and the Control Center’s interactions with the
Configuration Manager.

| Exporting and importing resource definitions
| The Control Center allows you to export definitions you have created for your
| broker domain topology, your topics, and your message flows. When you export
| these definitions, an XML file is generated containing the information retrieved from
| the configuration repository. You can use definitions exported in this way to
| populate another configuration repository in another broker domain, by using the
| import function within the Control Center, specifying the XML file.

| See the MQSeries Integrator Using the Control Center book and the online help for
| further information about these options.

| You cannot export message set definitions from the Control Center, or import them
| into the Control Center. You must use an MQSeries Integrator command,
| mqsimrmimpexp, to export and import message set definitions. See Chapter 5,
| “Messages” on page 55 for further details about message sets, and refer to the
| MQSeries Integrator Administration Guide for details of the import and export
| command.

Help and online Tour
The Control Center comes with comprehensive online help: it provides context
sensitive information for specific assistance, and provides general help, including
the MQSeries Integrator Tour. The Tour gives you an online overview of the
MQSeries Integrator product, its components, and the Control Center interface
itself.

The Tour is based on a simple example scenario, in which MQSeries Integrator is
used to integrate the processes of an international company. It introduces the
product in three ways:

� Providing introductory information that you can read, with links to further details
in the MQSeries Integrator books and online help.

 Chapter 2. MQSeries Integrator overview and concepts 21

 Applications

� Providing animated sequences of actions in the Control Center. For example,
you can see how a message flow and message set are created using the
Control Center.

� Creating objects in your own Control Center workspace so that you can
experiment with them yourself later.

Applications and clients
MQSeries Integrator provides support for point-to-point and publish/subscribe
application communication models.

Applications generating and consuming messages in either communication mode
can take advantage of the services provided by the message flows within the
brokers. Sending applications must place their messages on the MQSeries queues
read by the message flows providing the specific service they require. Receiving
applications must retrieve processed messages from the queues to which the
message flow writes them when its processing is complete.

Applications that use messages to send or receive data can communicate in
several ways. Most existing messaging middleware applications use point-to-point
communications. Now, using the services supported by MQSeries Integrator
Version 2.0.1, applications can exploit topic and content-based filtering in a
publish/subscribe communication mode.

 Point-to-point applications
MQSeries Integrator continues to support existing point-to-point applications.
Typically, these applications use a request/reply or client/server model, or
broadcast a message to many target applications using distribution lists. Others
send one-way send-and-forget or datagram traffic. You can create message flows
to process these messages, in any of these ways, and assign and deploy them to
your brokers.

MQSeries Integrator is able to continue to support these existing applications
because it supports the application programming interfaces commonly used by
messaging applications today. These interfaces, the Message Queue Interface
(MQI) and the Application Messaging Interface (AMI), are unaffected by MQSeries
Integrator. Existing applications written to these interfaces can usually run
unchanged in this new environment. You have only to define your message flows
to get messages from, and put messages to, the queues already used by your
applications, for the additional message processing to be completed without the
applications being aware of the change.

 Publish/subscribe applications
MQSeries Integrator also supports the application communication model known as
publish/subscribe. In this model, applications known as publishers send messages
and others, known as subscribers, receive messages. Applications can also be
both publishers and subscribers.

The publishers are not interested in where their publications are going, and the
subscribers are not concerned where the messages they receive have come from.
The network of brokers assures the integrity of the message source, and manages

22 MQSeries Integrator Introduction and Planning

 Applications

the distribution of the message according to the valid subscriptions registered in
that network.

If you already have applications that are written to the publish/subscribe model, and
use the MQI and AMI, you can probably integrate these applications into an
MQSeries Integrator broker domain without change.

You can also modify these applications, or write new ones, to take advantage of
the significant enhancements in publish/subscribe processing, particularly for
subscribers.

With MQSeries Integrator Version 2.0.1, your subscribing applications can now
select which publications they receive based not only on the topic of the
publication, but also on specific content, or both.

Every message, even one used for content-based subscriptions, must have an
associated topic (specified by the publisher or defined by the MQInput node).

Subscribers can also use the subscription point of the publication nodes in the
message flows to receive messages that have followed a particular path through
the message flow, and have therefore been processed in a specific way.

A topic is used to categorize the information in the message in some way that is
understood by subscribers. Each topic has a structure, delimited by the forward
slash character (/). The use of structuring creates the topics in a topic tree, in which
each node topic attaches to the branch that contains the previous structure level.
The top level topic is known as the topic root.

A topic can be associated with the publication message by the publisher. You can
also specify a topic on the MQInput node of your message flow: it is set as a
property of the node and is associated with a message when it arrives in the
message flow providing the publish/subscribe service. In the latter case, the topic
defined by the MQInput node is used to determine the publication’s routing, but is
not passed on to the subscriber. Messages without explicit topics are currently
treated as local only and are not sent to other brokers in the topology.

If the publisher does not provide a topic, and the MQInput node is not set up to
define a topic where one is needed, the Publication node treats the message as an
error and it is handled in whatever way you have determined in this message flow.

Client connections to brokers and message flows
All MQSeries Integrator applications, like MQSeries applications, can use all the
supported MQSeries interfaces to put messages to the message flow queues. In
fact, every MQSeries application is a potential MQSeries Integrator application, and
vice versa.

The applications can be connected as clients to any queue manager in the
MQSeries network, or can execute on the same system as the broker’s queue
manager, and connect locally. Figure 9 on page 24 illustrates three applications
connecting to a broker.

 Chapter 2. MQSeries Integrator overview and concepts 23

 User Name Server

Figure 9. Applications connecting to a broker

Receiving applications can get the messages put to the output queue or queues of
a message flow when they have been processed by that message flow. The
applications must be connected, either by a client/server connection, or via a local
connection, to the queue manager that owns the queue or queues defined as the
target for their messages. If the message flow provides a publish/subscribe
service, the publication node puts the messages to the queue specified by the
subscriber as its local receiver queue.

The User Name Server
If you plan to deploy message flows that provide a publish/subscribe service to your
applications, you might want to employ topic-based security. Topic-based security
gives you the ability to control the authority of applications, identified by the user ID
under which they are executing, to publish on topics, to subscribe to topics, and to
request persistent delivery of messages on topics.

To implement topic security, you must install, create, and start one User Name
Server. (Under exceptional circumstances you might consider installing more than
one, subject to your license agreement: this is discussed in “Employing topic-based
security” on page 110.)

| The User Name Server can be configured on Windows NT (all products), or on AIX
| (for MQSeries Integrator for AIX) or Sun Solaris (for MQSeries Integrator for Sun
| Solaris). Within the environment in which it is running, the User Name Server
| monitors the underlying security subsystem (for example, the Windows NT User
| Manager), and provides information about the valid principals in the system.
| (Principal is a general term for users and groups of users.) The User Name Server

shares this information with your brokers and the Configuration Manager, and
updates it at frequent intervals.

When you create the User Name Server, the following resources are also created:

24 MQSeries Integrator Introduction and Planning

 User Name Server

� A set of fixed-name queues, defined to the queue manager that hosts the User
Name Server. You must identify this queue manager when you create the User
Name Server, and it must exist on the same physical system. It is created

| when the User Name Server is created, if it does not already exist. The User
| Name Server can share a queue manager with the Configuration Manager, or
| with a single broker, or both, if supported by the product you have purchased.
| (For a summary of which components can be installed on which operating
| systems, see Table 4 on page 96.)

Figure 10 illustrates the place of the User Name Server in the broker domain.

Figure 10. The User Name Server

If you do not plan to support any publish/subscribe services in your brokers, or you
are willing to let every client have full access to all topics, you do not need to
consider topic-based security, nor do you need to install and create a User Name
Server in your broker domain. However, if it is possible that your requirements will
change later, it is easier to include a User Name Server in your broker domain
when you first design it. If you set global access (to all users) at the highest topic
level (the topic root), this is equivalent to having no specific topic-based security.
You can then introduce topic-based security on a more selective basis when you
need to do so.

| MQSeries Integrator relies on the operating system’s security control mechanism
| to define and maintain definition of principals.

| � On Windows NT, the User Manager supports the definition and deletion of
| principals (users and groups), and the assignment of user IDs to groups.

| � On UNIX systems, the basic user/group control (in the file system) supports
| creation, deletion, and modification of users and groups, and the assignment of
| users to groups.

The User Name Server interrogates the operating system and makes the principals
information available to other components in the broker domain.

For more information about configuring a User Name Server in your domain, and
deploying topic security, see Chapter 9, “Planning your MQSeries Integrator
network” on page 105.

 Chapter 2. MQSeries Integrator overview and concepts 25

 Dependencies

Access Control Lists
If you want to implement topic-based security, you must define Access Control Lists
(ACLs). You can create and maintain ACLs in the Topics view of the Control
Center. This view provides a display of the valid principals in your broker domain,
and allows you to associate these principals with specific topics. You are also able
to view the complete set of defined topics using this view.

You can create an explicit ACL for any topic in the topic tree, up to and including
the topic root. An ACL allows, denies, or inherits the authority to publish, to
subscribe, and to request persistent message delivery. If any topic does not have
an explicit ACL, it is governed by the ACL it inherits from its higher level (parent)
topic in the tree. The default ACL setting for the topic root is to allow public
access. This can be modified to restrict access by introducing ACLs at specific
points in the tree.

MQSeries Integrator also supports applications publishing messages on topics
created dynamically. If this option is used, the ACL applied is inherited from the
closest topic above it in the tree. For example, if the topic “Stock/IT” is defined in
the topic tree with an ACL, and a publisher publishes a message with topic
“Stock/IT/IBM” which is not defined in the topic tree, the ACL for the parent of that
topic is inherited. Therefore if this publisher is not allowed to publish on that topic, it
is prohibited from publishing on the dynamic topic, too.

For more information about publish/subscribe applications, and the use of topics
and ACLs, see Chapter 7, “Designing publish/subscribe applications” on page 75.

 Dependencies
A number of dependencies have been highlighted by this discussion of MQSeries
Integrator and its components. These dependencies are summarized here, to help
clarify the requirements that MQSeries Integrator has on your systems. For details
of software levels for other products (databases and MQSeries), see Chapter 8,
“System requirements” on page 95.

 MQSeries dependencies
MQSeries Integrator is heavily dependent on the facilities of MQSeries messaging
to provide connectivity, message integrity, and some transactional support. In
summary, these dependencies are:

� Queue managers. A single MQSeries queue manager can host at most one
broker. The Configuration Manager and the User Name Server both depend on
a queue manager, but can share this queue manager with each other, or with a
single broker, or both.

| � Communications. When you set up a network of queue managers to support
| MQSeries Integrator, you must define their connectivity. You can use any one
| of the communications protocols supported by the underlying MQSeries product
| (this varies according to operating system environment).

The client/server connection between the Control Center and the Configuration
Manager, however, is limited to a TCP/IP connection.

� The Configuration Manager depends on a queue manager, with a set of
fixed-name queues and a server connection channel that is defined when it is
created.

26 MQSeries Integrator Introduction and Planning

 Dependencies

The Configuration Manager also needs sender and receiver channels to be
able to communicate with every broker in the broker domain (except the one
broker, if defined, that is created with the same host queue manager).

� Each broker depends on a dedicated queue manager (a broker cannot share a
queue manager with another broker, although it can share a queue manager
with the Configuration Manager, or the User Name Server, or both). It also
needs a set of fixed-name queues that are defined when the broker is created.

The broker needs sender and receiver channels to be able to communicate
with the Configuration Manager. It also needs sender and receiver channels to
communicate with the User Name Server, and sender and receiver channels to
communicate with all brokers in the same collective, or to which it is identified
as a neighbor in the topology.

� Each application using MQSeries Integrator services must be able to connect to
a queue manager in the MQSeries network to allow it to put messages to the
queue serviced by the message flow that provides the service it requires. This
connection can be local, or can use any supported MQSeries client product,
with the appropriate server and client connection definitions.

Each application retrieving messages from a queue populated by a message
flow must be able to connect to the queue manager that owns that queue
(which can be local or remote to the queue manager that hosts the message
flow putting the message). This connection can be local, or can use any
supported MQSeries client product, with the appropriate server and client
connection definitions.

If the application retrieving messages is a subscriber to a publish/subscribe
service, the messages it receives are propagated to the broker to which it has
subscribed, regardless of the proximity of the broker (and its queue manager)
that hosts that publish/subscribe service.

� The User Name Server depends on a queue manager, with a set of fixed-name
queues defined when it is created. It can share a queue manager with the
Configuration Manager, or a single broker, or both.

The User Name Server also needs sender and receiver channels to be able to
communicate with the Configuration Manager, and with every broker in the
broker domain to which it provides principal definitions (except to the
Configuration Manager, or one broker, or both, with which it shares its host
queue manager).

| Further information on these dependencies is provided in Chapter 9, “Planning your
| MQSeries Integrator network” on page 105, and full details of exactly which
| component of MQSeries Integrator depends on which MQSeries component, and
| the software levels supported, are provided in the MQSeries Integrator Installation
| Guide for your product.

 Database dependencies
The MQSeries Integrator components use databases to store configuration and
operational information. In summary, these dependencies are:

� The Configuration Manager needs two independent sets of tables to support
the message repository and the configuration repository.

 Chapter 2. MQSeries Integrator overview and concepts 27

 Release to release migration

These tables are created and initialized when the Configuration Manager is
created. The two repositories can be created within a single database, or in two
separate databases. Both repositories must be created in a DB2 database.

The Configuration Manager can use either a local connection to the databases,
or a remote connection.

� Each broker needs access to a set of tables to support its operation.

| These tables are created and initialized when the first broker is created. The
| broker tables can be created in the following databases:

| – IBM DB2 Universal Database
| – Microsoft SQL Server (Windows NT only)
| – Oracle
| – Sybase

| For more information about supported databases, see Table 5 on page 103.

If you are using DB2 and your broker is on Windows NT, the broker tables can
be created within the same database as the configuration repository, or the
message repository, or both.

When you create subsequent brokers, they can share the same set of tables,
because every entry on each table (row) identifies an individual broker. If you
prefer, you can set up separate databases (and therefore sets of tables) for
each broker.

The broker can use either a local connection to the databases, or a remote
connection.

You can find instructions that tell you how to create these databases, and the
ODBC connections they require, in the MQSeries Integrator Administration Guide.

The actions supported by the Control Center provide the only interface you have to
the database tables used by MQSeries Integrator. You must not access these
tables directly using any other means, or you risk destroying the integrity of that
data.

| Further information on these dependencies is provided in Chapter 9, “Planning your
| MQSeries Integrator network” on page 105, and exact details of database product
| levels supported are provided in the MQSeries Integrator Installation Guide for your
| product.

| Release to release migration
| If you are migrating to MQSeries Integrator Version 2.0.1 from Version 2.0, you
| must refer to the Readme.txt file that is provided on the product CD. This gives the
| latest information about migration requirements. You must also be aware of the
| following points:

| � The Version 2.0.1 Control Center only operates if the Configuration Manager is
| also at Version 2.0.1.

| � You are recommended to upgrade all instances of the Control Center to
| Version 2.0.1 when you upgrade the Configuration Manager to Version 2.0.1.

| You must delete and recreate the Configuration Manager when you migrate it
| to Version 2.0.1. This makes available the new nodes and message sets
| supplied with the product.

28 MQSeries Integrator Introduction and Planning

 Release to release migration

| For information about migrating to Version 2 from Version 1, or from the MQSeries
| Publish/Subscribe, see Appendix A, “Planning for migration and integration” on
| page 143.

 Chapter 2. MQSeries Integrator overview and concepts 29

 Release to release migration

30 MQSeries Integrator Introduction and Planning

 Retail scenario

Chapter 3. MQSeries Integrator: a business scenario

This chapter uses a hypothetical scenario to explore a company’s existing business
problems, and to summarize the ways in which MQSeries Integrator solves those
problems.

This scenario illustrates the deployment of MQSeries Integrator, and refers to the
components and concepts discussed in Chapter 2, “MQSeries Integrator overview
and concepts” on page 9, enhancing your understanding by providing a practical
application of those concepts.

| The scenario is further described, with details of the implementation steps required,
| in the MQSeries Integrator Using the Control Center book.

However, this is just one scenario that has been chosen for more detailed
examination. Other scenarios might include:

� The financial industry, which needs to make sure that vast numbers of
transactions happen, happen correctly, and that they happen once and once
only.

� The health-care industry, which needs accurate information available across
multiple, heterogeneous, and often legacy, systems.

The retail scenario
SRU Corporation (SRU) is a chainstore that sells food. It has expanded rapidly in
the last three years with new branches opening in Amsterdam and London, and it
has greatly extended its range of products.

The company headquarters are in Vancouver, Canada. Its current warehouse
branches are in San Diego, California and Santiago, Chile, and the retail stores are
spread throughout the world. Trading information from all stores needs to be
available to many different members of SRU staff at different locations, using
different applications. A subset of information needs to be made available to
supplier companies. In the future, SRU intends to expand its business to support
shoppers on the Internet, and wants to introduce a loyalty card system.

SRU wants to bridge the gap between its existing applications and the increased
number of back-end systems. It also wants to ensure that access to some
information can be restricted to those applications that need it. It also needs a
solution that can be enhanced in the future. MQSeries Integrator can provide the
facilities that meet these major objectives:

� Bridging the gap: MQSeries Integrator provides message transformation
facilities that support the receipt of a message in one format and the
distribution of that message in one or more different formats, according to the
business needs of the target applications, without any application modification.

� Restricting information: MQSeries Integrator provides topic and content-based
message routing using controls to restrict the recipients of any message.

� Future extension: MQSeries Integrator provides a basic framework that can be
extended by parties such as ISVs. Message processing can be enriched by the
inclusion of tailor-made nodes in the message flow. New message formats can

 Copyright IBM Corp. 2000 31

 Retail scenario

be added to meet new application requirements, for example when new
systems are added to the network.

Figure 11 shows the overall hierarchy of the SRU IT configuration.

Figure 11. SRU headquarters and branch hierarchy

Figure 12 shows the relationships between the warehouse branches and the
back-end systems.

Figure 12. Branches and back-end systems

32 MQSeries Integrator Introduction and Planning

 Retail scenario

 Business data
Data is taken from receipts generated for each transaction that takes place within
each retail store. SRU gathers this data from its retail stores.

Figure 13 shows an example of a receipt from one of the stores:

SRU
SOUTHAMPTON
HAMPSHIRE

Cashier 112
Till no. %3
Date %%/%4/%1
Time 15:3%

Purchases

Figure 13. SRU receipt

1 tinned ham 3.99
056784637

1 tinned ham 3.99
056784637

1 garlic mash 2.92
047388567

1 skimmed milk 1.63
037809462

Total items 4
Multibuy Yes
Multibuy item tinned ham
Multibuy quantity 2
Total sales 11.46
Change 0.54

 Business needs
From this data, SRU has the following major information needs:

1. An audit trail of all transactions in the branches. All receipt information must be
stored for audit reasons. This information can also be used for offline data
access and mining.

2. Financial reports per store per month. With the rapid growth over the last three
years, sales within SRU are doing well. Headquarters are very happy with this
but want to know exact figures from each store on a monthly basis. The
finance department have been instructed to gather this information from each
store at the end of each month.

3. Stock levels for products supplied for its Distribution group. As sales are doing
well, stock levels must be kept up so that customers do not go elsewhere for
their goods. To do this, the number of items sold must be sent to the Stock
Distribution department so they are prepared to maintain stock levels. The
Stock Distribution department is on a back-end system that uses a different
operating system to that in use by the warehouse branches, so information
must be formatted in such a way that it can be understood by the Stock
Distribution system and applications.

 Chapter 3. MQSeries Integrator: a business scenario 33

 Retail scenario

4. Predicted peaks in demand for products from its partners. Headquarters want
to keep track of products that are doing well so that they do not run out of
them. If more than one of the same product is bought on the same transaction,
this is called a “multibuy”. For each of these multibuys, headquarters want to
inform their partners in order to ensure more of the product can be supplied.

Table 1 shows the information required by the recipients:

Table 1. Recipient information

Recipient Information required

1. Auditors All data from receipts

2. Finance Total Sales per receipt

3. Distribution Branch, Item Name, Item Quantity

4. Partners Multibuy items

Business solution using MQSeries Integrator Version 2
The business needs listed above can be satisfied using a solution with MQSeries
Integrator Version 2.0.1.

The first task is to represent the business data (that is, the receipt) as a message
with a structured format:

Store Details
 Store Name
 Branch No
 Cashier No
 Till No
 Date
 Time
Purchases
 Item Name
 Item Code
 Item Price
 Item Quantity
Totals
 Total Items
 Multibuy
 Total Sales
 Change

This message can be processed to handle the specific business needs. A message
flow is created that takes the message from an input queue and processes the
message to produce the required output messages. A simplified form of the
message flow is shown in Figure 14 on page 36.

The message flow includes four subflows that perform the processing required to
satisfy the business needs:

1. Initially, all messages are retrieved from the input queue by the MQInput node.
Each message is checked to ensure that it is a message of the correct format
for a receipt (in a Check node) and stored in a database (in a Warehouse
node) before it is passed to all three of the remaining subflows.

2. In the Finance flow, the fields Branch No, Date, Time and Total Sales are
| extracted from the input message in an Extract node. Each message is then

34 MQSeries Integrator Introduction and Planning

 Retail scenario

| traced by the Trace node. The records that are written to the trace log enable
| you to ensure that only the data extracted by the Extract node is sent to the
| Finance department by the Output node.

3. In the Stock flow, a Compute node sums up all instances of each item from
the input message. This information can then be formatted and sent in a
message containing Branch No, Item Name and Item Quantity by the Output
node to the Stock Distribution department.

4. In the Partner flow, multibuy records are placed into a database by a
DataInsert node and published to registered partners by the Publication node.

| Partners subscribe to messages based on a topic (Multibuy) or refine their
| subscriptions further by filtering on the content of a field (the item name) in a
| message.

| A reusable exception handling message flow is used to help with problem
| determination while the main message flow is being developed or upgraded.
| This exception handling flow can be embedded anywhere in the main flow.

Access Control Lists are defined in the Control Center to ensure that user IDs
associated with partners are restricted to subscribing to the items they produce.
For example, the partners producing the tinned ham product register a
subscription based on the topic Multibuy/tinned ham, and are not authorized to
receive messages published on any other topic.

Different applications within the partner organizations can also choose to
restrict the messages they receive even further, using content based
subscriptions. For example, one application might want to process only those
messages which indicate that a quantity of ten or more items have been bought
in one transaction.

 Chapter 3. MQSeries Integrator: a business scenario 35

 Retail scenario

Figure 14. The business flow (simplified)

36 MQSeries Integrator Introduction and Planning

 Retail scenario

Implementing the business solution
There are several steps you need to take to implement this, or any other business
solution:

1. First, you must plan your MQSeries Integrator system. For example, you must
decide how many brokers you need to meet your business requirements, what
message flows you need, and so on. This chapter has identified just one
message flow, but a more complex setup is very likely. This book helps you to
plan your MQSeries Integrator configuration, and to understand the implications
for the MQSeries infrastructure, security, performance and so on.

| 2. Next, you must implement the MQSeries Integrator system you have designed
| by installing and configuring the components you need on the appropriate
| systems following the guidance provided in the MQSeries Integrator
| Administration Guide and in the MQSeries Integrator Installation Guide for your
| product.

3. You must define your message sets and message flows. MQSeries Integrator
Using the Control Center has all the information you need to achieve this task.

4. You must write application programs to interact with the message flow using
the message structures you have created. The MQSeries Integrator
Programming Guide provides the information you need to do this.

If you have existing applications on the back-end systems, you must ensure
that the message flow generates messages for those existing applications in
the right formats, so the application source code does not have to be changed.
MQSeries Integrator Using the Control Center helps you to define the
transformations you need to provide compatible message formats from your
message flows.

5. Last, but not least, you must test the applications that generate the messages
for your message flow, and check the results.

 Chapter 3. MQSeries Integrator: a business scenario 37

 Retail scenario

38 MQSeries Integrator Introduction and Planning

Part 2. Business process planning

This part helps you plan the tasks to deploy the facilities of MQSeries Integrator to
meet your business objectives.

It provides the information your business planners need to understand the
environment that MQSeries Integrator provides for applications. It explains the
concepts introduced in Chapter 2, “MQSeries Integrator overview and concepts” on
page 9, and gives more details about the implications of using the various functions
of the product.

It contains the following chapters:

� Chapter 4, “Message flows” on page 41
� Chapter 5, “Messages” on page 55

The information here is an introduction to the detail provided in MQSeries Integrator
Using the Control Center.

 Copyright IBM Corp. 2000 39

40 MQSeries Integrator Introduction and Planning

 What is a message flow?

 Chapter 4. Message flows

This chapter gives you more information on message flows, and how they are
constructed and deployed in your broker domain. It covers the following:

� “What is a message flow?”
� “Execution groups” on page 48
� “Message flows and message sets” on page 49
� “Message flows for publish/subscribe services” on page 49
� “Supplied message flows and nodes” on page 50
� “Adding or enhancing message processing nodes” on page 53

What is a message flow?
The MQSeries Integrator message broker supports processing for messages after
one application has put a message to a queue, and before another application gets
that message from a queue. It provides this support by directing the message from
the initial queue to the target queue (or queues) through a message flow.

The content and execution characteristics of a message flow are discussed in the
following sections:

� “What does a message flow consist of?”
� “Parallel processing of message flow instances” on page 42
� “Interaction of message flows” on page 43
� “Transformation” on page 43
� “Intelligent routing” on page 44
� “Enriching message content” on page 45
� “What is a message processing node?” on page 45

What does a message flow consist of?
A message flow is a sequence of operations on a message, performed by a series
of message processing nodes. The actions are defined in terms of the message
format, its content, and the results of individual actions along the message flow.

MQSeries Integrator includes a range of message processing nodes, called
primitives, that provide most of the function that you will need in most situations. A
few of these nodes are used to illustrate the nature of a message flow in this
discussion. For details of these nodes, see “Primitive message processing node
types” on page 50. For details of how you can define your own message
processing nodes to extend the function available to a message flow, see
Chapter 11, “Enhancing your broker domain” on page 139.

A message flow and the message processing nodes it contains describes the
transformation and routing applied to an incoming message to transform it into
outgoing messages. These actions form the rules by which the message is
processed.

A message flow can also be made up of a sequence of other message flows, that
are joined together. This function allows you to define a message flow containing a
specific sequence of message processing nodes, and reuse that message flow in
other message flows wherever that action is needed.

 Copyright IBM Corp. 2000 41

 What is a message flow?

One example of why you would use this technique is error handling. You can define
a message flow of one or two nodes that perform the action you want taken when
an error is encountered, and include that message flow as a sub-message flow in
all your other message flows.

When you complete the creation of your message flow, you can assign it for
execution to one or more brokers. When you do this, the message flow must be
operationally complete. That is, it must contain at least one MQInput node (one of
the primitives). Most message flows will also contain at least one MQOutput or one
Publication node, although this is not required (both of these nodes are also
primitives).

You can choose to limit the number or the type of message flows (and therefore, by
inference, the type of messages processed) to run in any broker according to the
criteria you decide.

For example, you could deploy all message flows that access a particular database
to a single broker. You could choose to deploy the message flows that provide a
publish/subscribe service to a specialized group of brokers.

You can also control some aspects of how your message flows run, within a single
broker. Each broker can host a number of execution groups. An execution group
provides an execution environment, that offers protection and isolation.

“Execution groups” on page 48 has more information about using execution
groups.

Message flows and units of work
A message flow is transactional: you can define your message flows to perform all
processing within a single unit of work. Therefore the receipt of every message by
the input node, and the database operations performed as a result of that message
being received and processed by the message flow, are coordinated.

If an error occurs within a transactional message flow, the transaction is rolled back
and the message will be handled according to normal error handling rules
(described in “Error handling” on page 47).

You can also define a message flow to work outside of a unit of work if you do not
want this support.

Parallel processing of message flow instances
When you define, assign, and deploy a message flow, the broker automatically
starts an instance of the message flow for each input node (one or more). This is
the default behavior. Each instance retrieves a message from the input node, and
runs in parallel with other instances that retrieve a message from other input nodes.

If you want to further increase the throughput of this message flow, you can set a
property of the assigned message flow (that is, the property is available when you
have assigned the message flow to the broker’s execution group) that defines how
many additional instances are to be started by the broker for that message flow.
You can set properties of the input node to exercise control over the order in which
messages are processed: for example, you can force all messages received from a

42 MQSeries Integrator Introduction and Planning

 What is a message flow?

single client to be processed in order. This is discussed further in “Message order”
on page 70.

You can also increase message flow throughput by assigning more than one copy
of the message flow to the same broker. However, this is only appropriate if the
message order is not important, because the multiple copies of the message flow
are handled independently by the broker, with no correlation between them.

Therefore, if more than one copy of the same message flow is active within the
broker, each copy can be processing a message at the same time, from the same
queue. It is possible for the processing time of a message flow to vary, and multiple
message flows accessing the same queue could therefore read the messages from
the queue in a random order. Also, the order of messages produced by the

| message flows might not correspond to the order of the original messages. You
| can influence the order in which the input node removes messages from the queue
| (using the Order Mode property).

| You are therefore recommended to increase the instances of a single copy of the
| message flow if you want to increase throughput and parallel processing but wish
| to have control over the message order.

Interaction of message flows
In general, the message flows you define and deploy do not interact with other
message flows, nor will the processing of one message by the message flow
influence the processing of another message.

It is possible, however, to create message flows that do interact to achieve
particular outcomes. For example, one message flow could store a message in a
database: a second message flow could retrieve that message and use its contents
(for example, a currency exchange rate) to influence the contents of the message
currently being processed, by inserting fields, or recalculating a value.

Each instance of a message flow handles strictly one message at a time. A
message flow instance does not accept a second message (that is, read a new
message from the input queue) until the first message has been completely
processed.

 Transformation
Most enterprises have applications that have been developed over many years, on
different systems, using different programming languages, and different methods of
communication. Standard message queuing technology can bridge differences like
these, but applications still need to be aware of, and negotiate, the format in which
the messages flow.

MQSeries Integrator changes all that. The knowledge of each application is stored
just once in the broker and each message is translated into the receiving
application’s format.

For example, personal names are held in many forms in different applications.
Surname first or last, with or without middle initials, upper or lower case: these are
just some of the permutations. Because the broker knows the requirements of each
application, it can transform the message to the correct format without the sending
or receiving application needing any modification.

 Chapter 4. Message flows 43

 What is a message flow?

A message flow can completely rebuild a message, convert it from one format to
another (whether format means order of fields, byte order, language, and so on),
remove content from the message, or introduce specific data into it. For example, a
node can interact with a database to retrieve additional information, or store a copy
of the message (whole or part) in the database for offline processing.

A couple of other examples show how important message transformation can be:

� An order entry application has a Part ID in the body of the message, but its
partner stock application expects it in the message header. The message is
directed to a message flow that has knowledge of the two different formats, and
can therefore reformat the information as it is needed.

� A data-entry application creates messages containing stock trade information.
Some applications receiving this message need the information as provided,
but others need additional information added to the message about the price to
earnings (PE) ratio. The stock trade messages are directed to a message flow
which passes the message unchanged to some output nodes, but calculates
and adds the extra information for the others. The message flow does this by
looking up the current stock price in a database, and uses this value and the
trade information in the original message to calculate the PE value before
passing on the updated message.

 Intelligent routing
Intelligent routing encapsulates business knowledge of how information should be
distributed between sending and receiving applications throughout the enterprise.
This knowledge is stored in the broker as a set of rules that are applied to each
message as it passes through the broker. Routing is independent of the
requirement for message transformation, although you will usually define sets of
rules (as message flows) that combine the two in some way. Messages are
distributed according to criteria applied to the values of fields within the message.

For example, a money transfer application always sends messages to one other
application. You decide that every message with a transfer value of more than
$10,000 must now also be sent to a second application, to enable all high-value
transactions to be recorded.

In another example, a national auto club offers a premier service to specific
members for orders above a threshold value. Most orders are routed through the
usual channels, but if the membership number and order value meet certain
criteria, the order gets special treatment.

| You can also establish a more dynamic routing option by building additional routing
| information into the message when it is processed. Optional sets of rules are set
| up to receive messages according to values (destinations) set into the message.
| You can establish these rules such that a message is processed by one or more of
| the optional sets of rules, in an order determined by the added message content.

You can create, modify, and use these rules to develop a very flexible approach to
the distribution of information. New ideas and requirements can be stated clearly,
and turned into new or changed rules in the broker, and your business goals are
met. You don’t have to rework your applications.

44 MQSeries Integrator Introduction and Planning

 What is a message flow?

Your business processes range from the simple to the very complex. You can
create rules to cover every case, building new rules, and reusing and combining
existing ones to develop even the most complex solution.

Enriching message content
When a message is processed by a message flow, it is possible to update and add
to the message content. This allows you to add value between sender and receiver
in any way you choose.

A typical way in which you can enhance the message content is by adding data
from a database. This could be done by appending fields to the message, or
merging information from the two sources, for example by calculating a new field
value using the database information.

What is a message processing node?
A message processing node is a stand-alone procedure defined within a message
flow that receives a message, performs a specific action against it, and outputs
zero or more messages as a result of the action it has taken.

This section describes the types of nodes, using the primitives included in
MQSeries Integrator to illustrate the function they provide.

You can create additional message processing nodes to provide enhanced or
replacement function if you choose, except where noted. For further information
about this extension to MQSeries Integrator, see “Adding or enhancing message
processing nodes” on page 53.

Common node characteristics
Every message processing node has a fixed number of input points and output
points. These points are known as terminals. Each node normally has one input
terminal (on which it receives messages), and multiple output terminals to handle a
variety of situations. Output terminals are defined according to the characteristics of

| the individual node. For example, a filter node has true, false, failure, and unknown
| output terminals.

A Connector joins an output terminal of one node to an input terminal of the next
node in the message flow. You can leave an output terminal unconnected, or you
can connect a single output terminal to more than one target node.

Figure 4 on page 15 illustrates the relationships between connectors, terminals,
and nodes.

After a node has finished processing a message, the connectors defined from the
node’s output terminals determine which node, or nodes, process the message
next. If a node has more than one output terminal connected to a target node, the
node determines the order in which the different execution paths are executed. If a
single output terminal has more than one connector to a target node, the broker
determines the order in which the different execution paths are executed. You
cannot change the order of processing determined by the node or broker.

A node does not always produce an output message for every output terminal:
often it produces one output for a specific terminal depending on the message

 Chapter 4. Message flows 45

 What is a message flow?

received. For example, a filter node will typically send a message on either the
true terminal, or the false terminal, but not both.

When the processing determined by one connector has been completed, the node
issues the message again to the next connector, until all possible paths have been
completed. Updates to a message are never propagated to previously executed
nodes, only to nodes following the node in which the update has been made.

The message flow can only accept a new message for processing when all paths
through the message flow (that is, all connected nodes from all output terminals, as
appropriate) have been completed.

Input and output nodes
Some message nodes have special characteristics: they define points in the
message flow to which clients send messages (input nodes or MQInput), or from
which clients receive messages (output nodes or MQOutput).

These special nodes represent MQSeries queues. Client applications interact with
these nodes by putting messages to, or getting messages from, these queues.

A message flow has a set of (one or more) input nodes to which senders can post
their messages, and a set of output nodes from which receivers can pick up
messages.

If a message is being processed under transactional control, the output node only
puts the message to the destination queue when all processing by the message
flow has been successfully completed, unless the output node is set up to put the
message outside the global (message flow) transaction.

Before you can use a message flow, the input nodes must be associated with
queues that represent the sources of messages. An output node must also be
associated with a queue in most cases. However, you can set an output node
property that causes the node to put the message to every queue in a destination
list, which is contained within the message itself.

You must use the primitive MQInput node for every message flow input node: you
cannot replace it with one of your own. You can replace the output node if you
choose.

Publication nodes are a special type of output node that use the queues identified
by current subscribers whose subscriptions match the characteristics of the current
message. Subscribers provide the identity of the queue on which they want to
receive all matching publications.

 Processing messages
All nodes other than the input and output nodes receive an input message from the
previous node in the message flow and transform it into zero or more output
messages to be made available to the next node (or nodes) in the message flow.
Messages passing between nodes are not put to an intermediate queue: each
message is held in local memory.

46 MQSeries Integrator Introduction and Planning

 What is a message flow?

These nodes can perform any kind of processing on a message. For example,
they can:

� Reformat the message (NEONFormatter).

� Transform the message (Compute).

� Subset the data within the message (Extract).

� Route the message to one or more targets (NEONRules).

� Archive the message in a message warehouse (Warehouse).

� Update database information from the message content (Database).

 Error handling
All primitive message processing nodes have a failure output terminal, to which a

| message is transferred if an error is detected within the node. If the failure terminal
| is not connected to a target node, an exception is generated and propagated back
| towards the MQInput node:

| � If a TryCatch node is encountered before the exception reaches the MQInput
| node, the flow of control proceeds down the catch terminal. The message that
| is propagated through the catch terminal is the message originally received by
| the TryCatch node: any changes made to the message by later nodes in the
| message flow are not preserved. However, any external processing (for
| example, updates to a database through a Database node) are preserved. It is
| not possible to rollback these database updates from within the message flow.

| Before the TryCatch node passes on the message to the node connected to
| the catch terminal, it adds the exception information to the ExceptionList item in
| the message tree. Existing information in the ExceptionList field in the message
| is written to the local error log, and then overwritten with the new exception
| information.

| For further information about ExceptionLists, see the MQSeries Integrator Using
| the Control Center book.

� If the message reaches the input node:

| – If the input node’s catch terminal is connected to another node, the
| message is propagated to that node. In this case, an error is not recorded
| in the local error log (for further details of how MQSeries Integrator logs
| errors, see “Problem determination” on page 135).

| – If the input node’s catch terminal is not connected, and the message is
| being processed under transactional control, the message is returned to the
| input queue. An error is recorded in the local error log. The MQInput node
| will then read the message again for retry. It first checks to see if the
| backout count for this message has now exceeded the backout threshold:

| - If the backout count has not exceeded the threshold, the message
| processing is retried.

| - If the backout count has exceeded the threshold, and the failure
| terminal is connected to another node, the message is propagated to
| that node.

| If the failure terminal is not connected, the message is put on the
| backout queue, if one is defined for this input queue, or the queue
| manager’s dead-letter queue (DLQ), if a backout queue does not exist.

 Chapter 4. Message flows 47

 Execution groups

| If the queue manager does not have a DLQ defined, the message is
| left on the input queue. (If the broker’s queue manager has been
| created by the create broker command mqsicreatebroker, a DLQ has
| been defined and enabled for this queue manager.)

| – If the catch terminal is not connected and the message is not being
| processed under transactional control, the message is discarded.

| For more information about message processing under transactional control, see
| “Transaction support” on page 71.

You can provide a minimum level of error handling within every message flow you
define if you choose. This minimum level might includes:

� Define a dead-letter queue (DLQ) on the broker’s queue manager (or use the
default supplied DLQ).

� Change the queue manager’s attributes to use this DLQ.

For details of incorporating more sophisticated error handling, for example, the use
of the TryCatch node, see MQSeries Integrator Using the Control Center.

 Execution groups
The broker provides the run-time environment for a set of deployed message flows:
this environment is called an execution group. An execution group provides an
isolated execution environment, because each is started as a separate operating
system process.

One execution group, the default execution group, is set up ready for use whenever
you create a broker. By setting up additional execution groups, you can isolate
message flows that handle sensitive data such as payroll records, or security
information, or unannounced product information, from other nonsensitive message
flows.

If you create additional execution groups, you must give each a name that is
unique within the broker, and assign and deploy one or more message flows to
each one.

Within an execution group, the assigned message flows run in different thread
pools. You can specify the size of the thread pool (that is, the number of threads)
that are assigned for each message flow by specifying the number of additional
instances of each message flow (this is also discussed in “Parallel processing of
message flow instances” on page 42).

You do the creation, deployment, and assignment (of message flows and threads
for the message flows) using the Control Center.

For example, you might want to set up one execution group to support a connected
set of applications and their messages, and a second execution group for another
distinct set of applications and their messages.

The broker guarantees operating isolation of each execution group, thus
guaranteeing data integrity between execution groups, and improving robustness of
message flows.

48 MQSeries Integrator Introduction and Planning

 Message flows and message sets � Publish/subscribe services

Message flows and message sets
When you have created your message flows using the Control Center, you must
assign them to the brokers on which you want them to run, again using the Control
Center. Their assignment and subsequent deployment prompts the Configuration
Manager to send data and control information to the broker, enabling it to load and
execute the code contained within the message flow.

The same message flow can be assigned to any number of brokers, perhaps for
workload distribution. Similarly, a number of different message flows can be
assigned to the same broker.

However many message flows a broker hosts, the broker needs access to the
definitions of your predefined (that is, not self-defining) messages expected or
generated by those message flows.

Therefore if you assign a message flow that uses predefined messages to an
execution group, you must also assign one or more message sets to that broker, to
ensure the details of the messages are available when the message flow executes.

The message sets are assigned and deployed to the broker, but message flows are
assigned and deployed to an individual execution group.

The relationship between message flows and message sets is unlikely to be one to
one. You are very likely to have a number of related message flows executing in
one broker that use some or all of the same message sets.

For further details about messages and message sets, and how you define them,
refer to Chapter 5, “Messages” on page 55.

Message flows for publish/subscribe services
MQSeries Integrator supports message flows that provide publish/subscribe
services. If you define a message flow to support publish/subscribe, you must:

� Define the publish/subscribe topology that identifies a broker’s neighbors, to
which publications are propagated, using the Control Center. A publication is
only routed to a broker if there is a subscriber at that broker who has registered
an interest in the topic of that publication.

� Include a Publication node as the last message processing node in at least one
path through the message flow. A message flow can have a path in which the
end node is a Publication node as well as a path in which the end node is an
MQOutput node. It is also possible to have more than one Publication node or
MQOutput node on each path.

This node handles published messages by forwarding them on to all registered
subscribers, that is to applications that have registered an interest on the topic,
or content, or both, of the message at this node.

| To support publish/subscribe applications, you must define at least one message
| flow as described above, and design applications that publish to the input queue of
| the publish/subscribe message flow (the publication queue, identified by the
| MQInput node) and applications that register subscriptions for the published
| messages.

 Chapter 4. Message flows 49

 Supplied message flows and nodes

You can increase the throughput of this publish/subscribe message flow from
publication queue to subscribers by increasing the number of instances of that
message flow operating in the execution group. You can also deploy the same
message flow to multiple brokers, as you can with any message flow.

For more information about publish/subscribe processing, see Chapter 7,
“Designing publish/subscribe applications” on page 75.

Supplied message flows and nodes
MQSeries Integrator includes a number of message processing nodes and
message flows that you can use.

Primitive message processing node types
Message processing nodes perform the real work of handling the message within
the message flows deployed to the broker. MQSeries Integrator incorporates a set
of node types that provide basic out-of-the-box message processing function.
These are known as the primitive node types, and can be considered in the
following categories:

� Receiving and routing messages

� Transforming a message to an alternative representation

� Selecting a message for further processing based upon the message’s content

� Interacting with an external repository to augment a message or store the
whole or part of a message

� Responding to events and errors

MQSeries Integrator Version 2.0.1 also includes the NEONRules and
NEONFormatter engines from MQSeries Integrator Version 1. You can use these
within any message flow as you can any other message processing node. This
allows you to migrate applications and messages from MQSeries Integrator Version
1. MQSeries Integrator Version 2.0.1 also supplies the graphical interfaces from
MQSeries Integrator Version 1.1 that support management of the rules and formats
in this scheme.

Receiving and routing

| Label Provide a target for routing from the RouteToLabel node.. The
| identity of the Label node is used to match message content
| and thus determine the route a particular message takes at a
| particular point in the message flow.

| FlowOrder Define the exact order in which subsequent subflows in the
| message flow are executed. The order is normally
| unpredictable: you can use this node to force one particular
| path to process the message before another path.

MQInput Read the next message from the input queue and establish the
processing environment for this message (for example, the
transactional context). You must use this node for input, you
cannot replace this with your own input node.

50 MQSeries Integrator Introduction and Planning

 Supplied message flows and nodes

MQOutput Write the current message to the queue specified by the node
properties, or defined by a destination list associated with the
message.

MQReply Write the current message to the reply queue defined by the
message’s header or the node properties.

NEONRules Invoke the NEONRules engine. This provides routing function
defined by the NEONRules GUI.

Publication Deliver the message to a set of subscribers that are defined in
the subscription table and have a subscription for the node’s
subscription point. This node also stores retained publications
when appropriate.

| RouteToLabel Interrogate the destination list in the message to determine the
| identity of the Label node within the current message flow to
| which the message must be sent for processing. You can
| create or modify a destination list within the Compute node.

Message transformation

Compute Derive an output message from the contents of an input
message.

Output message elements (including destination lists) can be
defined using expressions, defined in SQL, based on input
message elements and external data sources. The expression
can use arithmetic operators, text operators (for example,
concatenation), logical operators, and other built-in functions.

The rich subset of SQL operations you can specify in this node
is described in MQSeries Integrator Using the Control Center.

The output message can inherit all of the headers associated
with the input message, or the node can be set up to select a
subset of those headers for the input header, or to insert a new
header (or headers), replacing the input message headers.

The Compute node can be used to make a copy of a message
(that is, duplicate the message), prior to manipulating the
message content.

Note: The compute node cannot create a message in a
NEON format.

Extract Create a new message from the input message using only
specified elements. Any elements from the input message that
are not specified for the output message are discarded. This is
a specialized form of Compute.

NEONFormatter Invoke the NEONFormatter to transform a message from a
known input format to a specified output format. The message
definitions and transformations are defined using the NEON
Formatter GUI (a method of defining messages provided in
addition to the Control Center).

| Reset Content Descriptor

Reparse the bit stream of an input message. This node
provides equivalent function to an MQOutput node followed by

 Chapter 4. Message flows 51

 Supplied message flows and nodes

an MQInput node. It allows the message to be interpreted by
an additional message parser within a single message flow.

Selecting a message based on content

| Check Test one or more of the message properties within the
| message template. The exact nature of the test is defined by
| the node properties.

| The Check node validates the message properties in the
| message header against values specified in the node: it does
| not check the message body. If the test fails, the message is

passed to the failure terminal.

Filter Route the message according to message content, using a
filter expression specified in SQL. In addition to including
elements of the message or message properties, the filter
expressions can also reference data held in an external
database.

The rich subset of SQL operations you can specify in this node
is described in MQSeries Integrator Using the Control Center.

Interacting with an external database

Database Modify the content of one or more database tables using a
specified SQL expression. The expression can contain
elements derived from the input message. The input message
is propagated along the message flow without change. The
Control Center provides customized nodes for simple tasks
such as inserting a single row into a table (DataInsert),
updating a single row in a table (DataUpdate), and deleting a
single row from a table (DataDelete).

The rich subset of SQL operations you can specify in this node
is described in MQSeries Integrator Using the Control Center.

Warehouse Write a message to a data warehouse. This is a specialization
of the Database node that inserts a single row into the
specified database table, and provides additional options for
time-stamping the message and including the entire message
content as a blob.

Recording and responding to events and errors

TryCatch Provide a special handler for exception processing. The input
message is initially propagated on this node’s try terminal. If
an exception is thrown by a downstream node it is caught by
this node, which then propagates the original input message on
its catch terminal.

Throw Provide a means to throw an explicit exception in a message
flow.

Trace Write a specified expression (that can include the content of the
fields in the message) to the user trace log, or to a file
specified as an property of the node.

52 MQSeries Integrator Introduction and Planning

 Adding message processing nodes

Supplied message flows
A set of message flows are supplied with the product. These are in two broad
categories:

1. Default message flows. These are:

| � The Version 1 Migration/Compatibility flow.

This message flow can be deployed in any broker in your broker domain to
provide equivalence to an MQSeries Integrator Version 1.1 daemon. It
incorporates the NEONRules node to process messages according to the
NEON rules engine. An input node, to read messages from an input queue,
and a set of output nodes, that provide failure, no-hit and process action
functions, are connected to the NEONRules node.

� The publish/subscribe message flow.

This message flow provides the simplest message flow processing that
provides a publish/subscribe service. It emulates exactly the basic
publish/subscribe function supported by the MQSeries Publish/Subscribe
SupportPac, and is equally appropriate for all publish/subscribe services in
which no additional processing of the message content is required.

2. Installation verification message flows. These are:

| � The ScribbleInversion message flow. This is the message flow required by
| the Scribble application, described in the MQSeries Integrator Installation
| Guide for your product.

| � The Soccer message flow. This is the message flow required by the Soccer
| Results Service, described in the MQSeries Integrator Installation Guide for
| your product.

| � The Postcard message flow. This is the message flow required by the
| Postcard application, described in the MQSeries Integrator Installation
| Guide for your product.

| The definitions of these message flows are provided in the import file
| SamplesWorkspaceForImport. The import file PostcardMS.mrp provides the
| definitions for the message set required by the Postcard message flow. Each
| MQSeries Integrator Installation Guide describes the Installation Verification
| Program (IVP) message flows and message set in detail, and tells you how to
| import the supplied files and save the definitions for future use. MQSeries
| Integrator Using the Control Center provides more information about the default
| message flows, and guidelines for using them.

Adding or enhancing message processing nodes
MQSeries Integrator provides an external interface that allows you to add new
capabilities to the broker by implementing new node types. The interface comprises
a set of calls implemented in the C language. These calls are of two kinds:

� Calls that the broker makes to the node, for example to initialize the node.

� Calls that the node makes to the broker, for example, to inquire about the
content of the message being processed.

 Chapter 4. Message flows 53

 Adding message processing nodes

Examples of additional node types might include:

� A timer node, that re-invokes itself periodically at a set timer interval, to perform
a series of actions before passing the message on to the next node in the
message flow.

� Reading one or more records from a specified data file: this node type might be
used in conjunction with a timer node to provide a mechanism for performing
batch processing at predetermined intervals, or times of day.

� Raising events that get displayed in a systems management console.

You’ll find more details about this facility in Chapter 11, “Enhancing your broker
domain” on page 139. The implementation details of the system programming
interface are given in the MQSeries Integrator Programming Guide.

54 MQSeries Integrator Introduction and Planning

 Messages � Predefined messages

 Chapter 5. Messages

Data and information is generated and distributed through your broker domain in
the form of messages. This chapter describes the messages that MQSeries
Integrator supports, and how they are interpreted by the message flows.

� “Predefined and self-defining messages”
� “Message parsers” on page 59
� “Using message templates and messages” on page 61
� “Creating additional parsers” on page 62

Predefined and self-defining messages
The format and content of each message has to be known by the process that is
constructing or examining it. In MQSeries Integrator, messages are always in one
of two broad categories:

� Predefined. The content of a predefined message is described by the message
template.

� Self-defining. The content of a self-defining message is described by the
message itself.

 Predefined messages
A message can be considered in a couple of ways:

� It has a logical structure. This defines the contents of the message using a tree
structure that identifies each field and its relation to other fields.

For example, a message might contain three fields, in the following order:

AccountNumber
AccountName
AccountBalance

The applications sending and receiving messages like this understand this
format, and the type of each field. For example, they might use a C structure
that shows AccountNumber is an eight byte character field, AccountName is a
20 byte character field, and AccountBalance is an eight byte character field.

� It has a physical structure, also known as a wire format.

Using the above example, the wire format will be a string of bytes that would
look something like:

 %1234567BILL␣WILLIAMSON␣␣␣␣␣%%%%89%7

 where the character ␣ represents a blank space

MQSeries Integrator provides two interfaces for message definition and
management:

1. The Control Center

Messages defined through the Control Center are stored in the message
repository, which is created and maintained in your database, to hold all
message templates in the broker domain. The message repository is managed

 Copyright IBM Corp. 2000 55

 Message templates

by a component within the Configuration Manager known as the Message
Repository Manager (MRM).

Each field in each message must be specified to the Control Center, using the
default set of simple types, or using compound types you have defined, also
through the Control Center.

Before you start to define a message, you must define a message set to which
the message belongs. Message sets keep the individual message templates
linked together, and simplify their administration and distribution.

 2. The NEONFormatter

| If you have existing MQSeries Integrator Version 1 messages, or plan to create
| new messages using NEON formats, or both, you can use these messages by
| defining message flows that include the NEONFormatter or NEONRules
| message processing nodes (or both). For more details about using NEON
| format messages, see the MQSeries Integrator Installation Guide for your
| operating system.

You can also use this interface to create new message formats. For more
information about defining new, or updating existing, NEON message formats,
refer to the MQSeries Integrator Version 1.1 User’s Guide.

| If you have messages already defined within another message repository you can
| do one of the following:

| � Export these messages to C or COBOL format and use the Control Center to
| import the headers or copybooks created into your MQSeries Integrator
| environment.

| � Provide a parser that interprets these messages. For more details about
| providing additional parsers, see “Creating additional parsers” on page 62.

You can then use these messages with message flows you develop to support the
applications that use them. Details of how to do this are described in the MQSeries
Integrator Using the Control Center.

 Message templates
A message template is made up of four values contained within the message
header information:

| 1. The message domain. This describes the source of the message definition. For
| example, it can identify that the message has been defined using the Control
| Center (domain is set to MRM), or the NEONFormatter (domain is set to
| NEON).

2. The message set. This identifies the grouping of messages within the message
domain, as you have defined it. Typically a message set contains a number of
related messages that provide the definitions required for a specific business

| task or application suite. This is equivalent to the application group
| (OPT_APP_GRP) in Version 1.

3. The message type. This identifies the logical structure of the data in the
message. For example, the number and location of character strings, and their
relationships.

4. The message format. This describes the wire format of the message, its
physical representation in the bit-stream. This attribute is only valid for
messages defined through the Control Center, not for self-defining messages,

56 MQSeries Integrator Introduction and Planning

 Self-defining messages

or those created using the NEONFormatter. It can have one of three values,
which are fully explained in MQSeries Integrator Using the Control Center:

 � XML

 � PDF1

� CWFxxxx (where xxxx is an arbitrary string that you assign when you
create the message set in the Control Center).

 Self-defining messages
A self-defining message uses the XML standard to structure its content. If the
example Account message is structured using XML, it would look something like:

<?xml version "1.%"?>
 <AccountMessage>
 <AccountNumber>%1234567</AccountNumber>
 <AccountName>BILL WILLIAMSON></AccountName>
 <AccountBalance>%%%%89%7</AccountBalance>
 </AccountMessage>

Self-defining messages can be used in any message flow on any broker. The
primitive nodes provided by MQSeries Integrator, with the exception of the
NEONRules and NEONFormatter nodes, all support this type. You do not have to
define these messages using the Control Center to enable the message flows to
interpret them. However, you can define them if you want a visualization of the
message structure to facilitate manipulation of the messages in any of the nodes in
your message flows. You do not need to assign these definitions to brokers, nor
deploy them in your topology.

 XML support
XML is an open messaging standard, providing a cross-platform portable
mechanism for exchanging data. XML refers to a family of specifications based on
a tagged message format for metadata. The tag language has been developed
from older markup standards including GML and SGML.

XML definitions for specific business objects (for example, messages used by EDI
or financial applications) are grouped using “schemas” or “document type
definitions” (DTDs).

The XML standard is fast-growing, and is being adapted to and supported by
increasing numbers of products. MQSeries Integrator’s ability to support it is
therefore critical in providing comprehensive business integration. For up-to-date
information about XML, and further references, see the IBM Web site

http://www.ibm.com/developer/xml

MQSeries messaging products support XML, and can send and receive XML
structured messages. MQSeries Integrator Version 2 extends this support:

� You can use the Control Center for XML message definition. You do not have
to define these messages, but if you include message processing nodes in your
message flows that manipulate the message content, you will need the

1 The PDF format referenced here is specific to the Control Center and the message repository, and has no relation to Adobe’s
Portable Document Format, also known as PDF.

 Chapter 5. Messages 57

 How messages are processed � Import and export

definition when you set the node properties (for example, using SQL to change
fields in a Compute node). You do not need to assign the message definitions
to the brokers that will use them.

� XML is used to compose status messages that can be monitored by external
systems management agents.

� Messages can be transformed from XML to any message format defined by the
Control Center (XML and non-XML) by the broker.

� Message filtering, routing, and processing can be based on XML structured
messages without any dictionary definition of the message.

� You can generate XML DTDs from the message repository.

How messages are processed in a message flow
The message characteristics are identified by the input node of a message flow in
the following ways:

| � If the header immediately preceding the message body is recognized, it is
| examined to check for a supported value in the format field.

� If the message has an MQRFH or MQRFH2 architected header, the input node
checks values in that message header.

See the MQSeries Integrator Programming Guide for more details about the
content and use of these headers.

� If the message does not have an MQRFH or MQRFH2 header, the input node
uses the default message template, defined as a property of the input node, to
determine how the message must be parsed.

To get full integration across your enterprise, you probably need a variety of
message templates. For example:

� Internally defined messages. You can define your own standards for messages
between newly developed pieces of software. For example, messages of this
type can contain XML.

� Legacy message formats. These are determined by the legacy applications
themselves. They include, for example, COBOL record structures used for
interacting with CICS or IMS applications. Other examples are 3270
data-streams and other forms of screen map.

� Inter-enterprise message sets (for example, EDI).

� Java message formats defined by JMS.

Your application programmers create and receive messages based on the message
type, the environment the programmer is working in, and the language that the
programmer is using. For example, a COBOL programmer manipulates a message
as a COBOL data structure, a Notes programmer views it as a Notes document.

| Exporting and importing MRM message sets
| You can export the MRM message sets you have created in the message
| repository using a command provided by MQSeries Integrator. This command,
| mqsimrmimpexp, works on whole message sets (that is, you cannot export an
| individual message within the message set) and generates an XML file that defines

58 MQSeries Integrator Introduction and Planning

 Message parsers

| the message set. The command interacts directly with the message repository to
| generate the XML file.

| You can reuse the exported file to populate another message repository in another
| broker domain, by importing it using the same MQSeries Integrator command.

| The Control Center does not provide import or export functions for message sets,
| you must use the command. See the MQSeries Integrator Administration Guide for
| further information.

 Message parsers
MQSeries Integrator can handle any message template for which a suitable parser
is available. The parsers interact with the message templates stored in message
dictionaries. You can extend the range of messages supported by creating your
own message parsers. MQSeries Integrator provides an external interface to enable
you to do this.

Default message parsers
A number of parsers are included with MQSeries Integrator. These can be
considered in two broad groups, depending on the source of the message
definitions.

1. Messages managed using the Control Center

When you use the Control Center to define new messages and message sets,
the Control Center and Configuration Manager accept, check, and maintain the
definition of these messages in the broker domain’s message repository. When
a message set is assigned to a broker, the information passed to the broker
allows it to determine correct use of them (and therefore correct message
manipulation) by the message flows.

� Record-oriented data structures

If you want to communicate with existing applications which generate
messages by overlaying a data structure (typically COBOL or C) on an
array of bytes, you need a definition for these that can be interpreted by the
parsers.

You can achieve this by:

– Creating or purchasing a plug-in to construct and parse the messages.
See “Creating additional parsers” on page 62 for further information
about plug-in facilities for message parsers.

– Using the Control Center to import data structures created using any
other method. See MQSeries Integrator Using the Control Center for
full details of import options.

 � XML messages

You can also define messages to the message repository with a wire
format of XML. Their format is specific to the Control Center, and the DTD
for these messages is controlled by the message repository manager.

 Chapter 5. Messages 59

 Message parsers

2. All other messages

Messages not managed by the Control Center and Configuration Manager are
also supported. These include:

 � Generic XML

The broker performs simple content-based routing and manipulation on any
well-formed XML message. These messages are treated as self-defining,
so no schema is required. The message content can be manipulated, but
no validation of the resulting message content is possible.

� Message formats defined in the NEON dictionary

If you already have messages defined using the NEON tools, you can
continue to use these formats: MQSeries Integrator correctly parses these
formats. You can add new formats to your existing ones by using the
NEONFormatter interface.

Any other message, for which no parser can be identified (either because the
format field in the immediately preceding header is not set, or is set to an unknown
value), is handled as a blob. That is, the remaining body of the message is passed
through the message flow intact, and the content is left untouched.

A message flow that receives a blob message therefore can’t perform
content-based routing, message manipulation or message transformation. However,
the message can be stored in a database, be routed according to topic, or have
headers added or removed.

Parsers are also provided in the product for the following headers:

| � MQCFH (the programmable command format (PCF) headers).
� MQCIH (the CICS bridge header).
� MQDLH (the DLQ header).
� MQIIH (the IMS bridge header).
� MQMD (message descriptor).
� MQMDE (message descriptor extension).
� MQRFH and MQRFH2 (rules and format headers).
� MQRMH (reference message header).
� MQSAPH (the SAP link header).
� MQWIH (the workload information header).

| � SMQ_BMH (the SAP link bad message header).

The broker needs to deal with all messages in a general way, and therefore it does
not handle the sequence of bytes directly but instead references syntax elements
around which it navigates to deduce the structure of the message.

This implementation allows parsers to navigate the message tree structure, in any
way. For example, a parser can access an element’s parent, or its children or
siblings. Other functions allow manipulation of the elements themselves, for
example to set or query the values, to insert new elements into the tree or to
remove elements from the tree.

60 MQSeries Integrator Introduction and Planning

 Using messages

Using message templates and messages
You must make the information about your message templates and messages
available in the broker domain, where it is needed: that is, in any broker that hosts
message flows that use these particular templates.

When you develop the topology of your broker domain using the Control Center,
you make decisions about which message flows run on which brokers, and
therefore need to decide at the same time which message templates are required
by each broker.

If you define message templates using the Control Center, you specify the
message sets that are required at each broker by assigning them to that broker, in
the same way that you assign the message flows that are to be executed in that
broker. You do this using the Control Center.

When you have made these decisions, you must update the repository with your
changes, by checking in all the resources you have been working with. You must
then request that these changes are propagated as required through the broker
domain. This function, known as deployment, is handled by the Configuration
Manager when you request the deploy using the Control Center.

Each message set is sent to the broker in the form of a message dictionary, which
allows the broker to interpret the messages it receives. Each broker can manage a
number of message dictionaries concurrently.

You can’t modify dictionaries in the broker directly. However, you can delete and
add message sets using the Control Center, and deploy the updated configuration,
which achieves the same result.

If you create new message sets, or modify existing ones, you can assign and
deploy these through the Control Center. Message flows can access new message
dictionaries when the broker has implemented these changes.

If you define message templates using the NEONFormatter, you must make these
available to the broker by setting values in the configuration file located by the
MQSI_PARAMETERS_FILE environment variable. If you update these message
templates, you must force the NEON nodes in the message flows to reaccess the
database using the command provided by MQSeries Integrator Version 2.0.1 (the
command mqsinrfreload, described in the MQSeries Integrator Administration
Guide).

See MQSeries Integrator Using the Control Center for details of creating messages
and assigning message sets to brokers.

Client access to messages
Client applications also need access to message definitions to be able to construct
messages they send, and interpret messages they receive.

� If the message formats in the message repository have been imported from C
or COBOL structures using the Control Center, your applications can continue
to use the same C and COBOL data structures that were imported to create
the message dictionary (that will be used by the brokers).

 Chapter 5. Messages 61

 Additional parsers

� If the messages are defined to the NEONFormatter, you must ensure the
clients have access to the database in which the formats are stored (a local or
remote connection is valid).

� If the messages are self-defining XML, the client applications must construct
valid messages using structures that will be understood by the recipients of the
message.

Creating additional parsers
You can create additional parsers if you need to process messages (bit-streams)
which for one reason or another don’t fit into the categories of messages supported
by the default parsers.

MQSeries Integrator provides a system programming interface, in the C language,
that allows you to construct a parser to work with message processing nodes.

You can use your new parsers with existing message processing nodes (that is,
those provided by MQSeries Integrator) and with your own additional plug-in
message processing nodes.

You’ll find further information about using this interface in Chapter 11, “Enhancing
your broker domain” on page 139. Implementation details of the programming
interface are in the MQSeries Integrator Programming Guide.

62 MQSeries Integrator Introduction and Planning

 Part 3. Application planning

This part provides the information your application architects need to understand
the environment that MQSeries Integrator provides for applications.

It explains the concepts introduced in Chapter 2, “MQSeries Integrator overview
and concepts” on page 9, and gives more details about the implications of using
the various functions of the product.

It contains the following chapters:

� Chapter 6, “Application design” on page 65
� Chapter 7, “Designing publish/subscribe applications” on page 75

The information here is an introduction to the detail in the MQSeries Integrator
Programming Guide.

 Copyright IBM Corp. 2000 63

64 MQSeries Integrator Introduction and Planning

 Communication models

 Chapter 6. Application design

This chapter introduces the main aspects of application design that you need to
consider for your particular environment and applications.

This chapter covers:

 � “Communication models”
� “Application programming” on page 66
� “Reusing existing applications” on page 68
� “Writing new applications” on page 69
� “MQSeries queues” on page 70
� “Message order” on page 70
� “Transaction support” on page 71
� “Security” on page 73
� “Summary” on page 73

If you are writing publish/subscribe applications, refer to Chapter 7, “Designing
publish/subscribe applications” on page 75 for additional information.

 Communication models
MQSeries Integrator supports two general application communication models;
point-to-point and publish/subscribe. These two models, introduced in Chapter 2,
“MQSeries Integrator overview and concepts” on page 9, are explored in more
detail in this chapter and the next.

In point-to-point, one application sends messages to a queue associated with an
MQInput node of a message flow. After processing by the nodes in the message
flow, the resultant message is sent directly to the receiving application’s queue by
an MQOutput node.

In publish/subscribe, one application (the publisher) sends messages to a queue
associated with an input node of a message flow that contains a Publication node.
Another application (a subscriber) can send a subscription request to the broker,
which then sends relevant publication messages to the subscriber’s queue.

A single application can also mix the two styles, if appropriate. In this case the
message flow contains at least one output node and at least one publication node
(in addition to one or more input nodes).

| The retail scenario introduced in Chapter 3, “MQSeries Integrator: a business
| scenario” on page 31 is implemented using the two styles. Its implementation is
| detailed in the MQSeries Integrator Using the Control Center.

This broad application support enables you to exploit your existing MQSeries clients
and applications, and to develop new applications to take advantage of the more
advanced features of MQSeries Integrator. Both existing and new applications work
together before and after a broker is introduced into the network.

 Copyright IBM Corp. 2000 65

 Application programming

 Point-to-point communications
Point-to-point applications exchange information with known partners. Each
application is aware of the identity of the one or more applications with which it is
communicating. In some cases, messages are sent from one application to
another, but no response is required. These are known as send and forget
messages or datagrams. In other cases, data exchange involves pairs of
messages sent as requests and replies. This is called request/response messaging.

Your existing applications written using the point-to-point model can run unchanged
in an MQSeries Integrator environment. However, you should check “Reusing
existing applications” on page 68 for more detailed guidance.

You can enhance and extend your existing application function by using the
facilities of the broker to include additional partners. For example, an application
that handles similar data but in a different format can now participate, because the
original message can be transformed by the broker into the expected format,
without the sending or receiving application changing.

If you identify a message that needs additional application processing, you can
create another copy of the message in the message flow, and send it to a new
application developed to provide that processing. The original applications are
unaware of the new action on the message and continue to work unchanged.

 Publish/subscribe communications
Some applications are not tied to particular partners. They deal with data and have
no specific requirements as to who is receiving that information, or where the
message comes from. The publish/subscribe model allows data to be made
available at any time, to whoever is interested at that time, without the sender or
receiver being aware of the other.

Messages published by any one publisher can be received by any number of
subscribers. Subscribers might also receive messages, on the same or different
topics, from any number of publishers.

Your existing applications written using MQSeries Publish/Subscribe can run
unchanged in an MQSeries Integrator environment. However, you should check
“Reusing existing applications” on page 68 for more detailed guidance.

 Application programming
MQSeries Integrator does not provide any new application programming interfaces.
Applications can be written to the existing Message Queue Interface (MQI) and
Application Messaging Interface (AMI).

The MQI provides a small number of calls that allow an application to interact with
other applications across an MQSeries network of queue managers. The calls
support a large range of parameters that allow a rich choice of processing options
for each and every message.

The AMI is designed to simplify the application programmer’s task, by centralizing
the selection of optional parameters outside the application program. It also
provides support for the more advanced functions available from the message

66 MQSeries Integrator Introduction and Planning

 Application programming

broker. The AMI is designed for general messaging applications whether a broker
is involved or not.

The principal functions of the AMI are administrator-defined packets of options
known as policies and services. An application specifies a service to determine the
underlying messaging support required, and associates a policy with sending or
receiving a message to control attributes for message processing, such as priority.

Client applications using the MQI can run on any supported MQSeries operating
system, and therefore any limitations as to language or function are defined by the
relevant product for that operating system.

| Client applications using the AMI are restricted to the operating systems and
| programming languages supported by this interface. Check the current level of the
| MQSeries Application Messaging Interface book for details, or visit the MQSeries
| Web site (identified in “MQSeries information available on the Internet” on
| page xiii).

 Message headers
MQSeries Integrator supports applications that use different headers.

Messages begin with an MQSeries Message Descriptor, or MQMD. Defined by the
MQSeries products, this precedes user or application data in every message. The
MQMD contains basic control information that must travel with the message, such
as:

� The message identifier
� The destination of the reply, if one is to be sent
� Reply and report options (for example, confirm on delivery report)
� The format of any following data in the message

When a message is used in an MQSeries Integrator system, it usually (but not
necessarily) has one or more additional headers. The header following the MQMD
is always identified in the format field within the MQMD, and itself contains another
format field to identify what follows.

The additional headers can include:

� MQRFH. The Rules and Formatting header is used by MQSeries
Publish/Subscribe and MQSeries Integrator Version 1 applications.

� MQRFH2. The updated version of MQRFH allows unicode strings to be
transported without translation, and it can carry numeric datatypes. The
MQRFH2 header carries a description of the message contents, so that
MQSeries Integrator can select the correct message parser when
content-based processing is carried out on the message. In addition, this
header contains publish/subscribe command messages.

You are recommended to use the MQRFH2 header in all new applications
written for the MQSeries Integrator environment. If you do so, you must
include the MQRFH2 header immediately before the body of the message.

 Chapter 6. Application design 67

 Application reuse

Reusing existing applications
Existing MQSeries applications are supported unchanged by MQSeries Integrator.
The broker can be added into an existing MQSeries network, and therefore into the
path taken by a message, to provide additional function, such as warehousing of
message traffic. The applications that send and receive the message are not aware
that the broker is now intercepting that message.

MQSeries Integrator Version 2:

� Accepts messages without MQRFH or MQRFH2 headers. If content-based
processing of the message is to be carried out in a message flow, you need to
describe the message contents in the properties of the MQInput node (see
MQSeries Integrator Using the Control Center).

� Provides both the MQSeries Integrator Version 1 NEONRules and
NEONFormatter as compatible message processing nodes, ready to be
included as required in any message flow defined to the broker. The graphical
user interface tools for creation and management of the rules and formats used
by these nodes are also supplied with MQSeries Integrator Version 2.

For more details of how to incorporate these nodes into message flows, refer to
MQSeries Integrator Using the Control Center.

� Accepts publish/subscribe messages from MQSeries Publish/Subscribe using
the MQRFH header, in addition to the more comprehensive MQRFH2 header
used in MQSeries Integrator Version 2.

For details of the MQRFH header, see the MQSeries Publish/Subscribe User’s
Guide, and for the MQRFH2 header, see the MQSeries Integrator Programming
Guide.

Send and forget
For simple one-way message flows, additional function is easily achieved. You can
design and deploy a message flow that implements the desired functions within the
broker, and use queue aliasing to redirect the original message stream to the new
input queue for this new message flow.

Define the nodes that provide the new processing you require, then define the
output node of the message flow to represent the original queue. This will result in
a message being processed by the new message flow, and being written to the
queue read by the receiving application after processing is complete.

 Request/reply
MQSeries Integrator also supports request/reply applications. You can set up a
message flow to process the request in whatever way you need. Somewhere
within that message flow (in a database, for example), record the parameters you
need from the sending application’s message descriptor (MQMD). You will need the
ReplyTo queue and queue manager, and perhaps other fields such as the report
options. You might find it necessary or most convenient to save the complete
MQMD.

You must then update the original MQMD with the required new values. For
example, insert a new ReplyTo queue and queue manager to represent the input
node of the message flow you create to handle the responses.

68 MQSeries Integrator Introduction and Planning

 New applications

When the reply is processed by this second message flow, the processing must
include retrieval of the original MQMD values (such as the ReplyTo queue identifier
recorded by the first message flow) or the entire saved MQMD to ensure the
message is delivered as expected.

This technique works regardless of the number of replies expected to any request
message. You have to provide the extra logic and processing within the message
flows created to handle both request and reply, but this leaves the applications
themselves unchanged. This can be particularly valuable if you do not own these
applications, but are interacting with other departments or businesses.

If the reply message does not have to be processed in any way, you do not need
to create a second message flow, and the first message flow (processing the
request message) can simply propagate the original ReplyTo field in the message
header intact.

If you have a client/server suite of applications, where multiple clients expect
responses from a single server, you might find the applications need modifying to
use additional techniques to match requests and replies (such as a CorrelId) and
ensure the replies are correctly delivered.

 Publish/subscribe
Publish/subscribe client applications written to the MQSeries Publish/Subscribe
interface execute unchanged. You need to create and deploy a message flow that
contains a Publication node, define the publication queue to the broker’s queue
manager, and specify it in the MQInput node of the message flow.

MQSeries Integrator uses the same broker control queue as MQSeries
Publish/Subscribe (SYSTEM.BROKER.CONTROL.QUEUE), therefore existing
subscriber applications do not have to be changed.

For other migration considerations, check Appendix A, “Planning for migration and
integration” on page 143.

Writing new applications
You can write applications that use more of the function of the MQSeries Integrator
broker by adding the MQRFH2 header to some or all of your messages.

The MQRFH2 header (described in detail in the MQSeries Integrator Programming
Guide) is used to define the message set and format for the body of the message,
and to define publish/subscribe command messages. This header is extensible,
allowing client applications to define fields that can be accessed and processed by
customized message processing nodes. This header must immediately precede
the body of the message.

If you are writing a request/reply application, you can store the ReplyTo queue and
queue manager for the reply message (and any other options you require) in a
folder contained in the MQRFH2 header, instead of using a database node as
described in “Reusing existing applications” on page 68.

In some applications, it might be convenient to carry the application data in folders
in the MQRFH2 header. You can create your own folders within the header. The

 Chapter 6. Application design 69

 MQSeries queues � Message order

MQRFH2 header, and suggested naming conventions for your own folders, are
described in the MQSeries Integrator Programming Guide.

If you are writing new client applications, use the MQRFH2 header. This enables
your applications to exploit all the function contained in MQSeries Integrator.

 MQSeries queues
MQSeries Integrator uses a number of dedicated queues, defined by each broker,
the Configuration Manager and the User Name Server, for specific functions. You
can find a full list of these queues, and their purpose, in the MQSeries Integrator
Installation Guide.

Application designers need to be aware of the system-defined queues with which
they need to interact: for example, the broker control queue for publish/subscribe
(SYSTEM.BROKER.CONTROL.QUEUE).

As you develop new applications, or integrate existing applications into your broker
environment, you must agree on a naming convention for the queues you use for
message exchange. (Input and output queues for point-to-point; input and
subscriber queues for publish/subscribe.) Make sure these names do not start with
the characters SYSTEM.BROKER, to avoid conflict with the system defined
queues.

A subscribing application can specify a temporary dynamic queue as its subscriber
queue (the queue to which publications should be sent). In this case, the broker
will automatically deregister the subscription when the queue is deleted.

 Message order
If message ordering is important, you can use the techniques recommended for all
MQI and AMI users. See the MQSeries Application Programming Guide for
programs written to the MQI, and MQSeries Application Messaging Interface for
programs written to the AMI.

| If you have set the ‘Additional Instances’ property of a message flow to define more
| than one instance of that message flow, you can use the ‘Order Mode’ property of
| each MQInput node within that message flow to influence the order of message
| processing by that node:

| � If you set ‘Order Mode’ to ‘By User ID’, the node will ensure that messages
| from a specific user (identified by UserIdentifier field in the MQMD) are
| processed in guaranteed order. A second message from one user will not be
| processed by an instance of the message flow if a previous message from this
| user is currently being processed by another instance of the message flow.

| � If you set ‘Order Mode’ to ‘By Queue Order’, the node will process a single
| message at a time to preserve the order in which the messages are read from
| the queue. Therefore, this node behaves as though the ‘additionalInstances’
| property of the message flow is set to zero.

70 MQSeries Integrator Introduction and Planning

 Transaction support

 Publish/subscribe
Additional considerations apply to publish/subscribe applications. For any given
topic, messages are published by brokers in the same order as they are received
from publishers (subject to reordering based on message priority). This normally
means that each subscriber receives messages from a particular broker, on a
particular topic, from a particular publisher, in the order that they are published by
that publisher.

However, in common with all messages using the MQSeries transport layer, it is
possible for messages, occasionally, to be delivered out of order. This could
happen, for example, if a link in the network fails and subsequent messages are
routed via another link.

If you need to ensure the order in which messages are received, you can use
either the SeqNum (sequence number) or PubTime (publish time stamp) parameter
on the Publish command for each published message, to calculate the order of
publishing. Check the MQSeries Integrator Programming Guide for details of how
to implement these message ordering techniques.

 Transaction support
Message flows hosted by brokers might provide vital processing and data
manipulation that must have full transactional integrity. That is, the message flow
must complete all processing successfully, or must complete none. Any part of the
processing that completed successfully (for example, the reading of the input
message from the input queue) must be rolled back if there are problems that
prevent later processing from completing successfully.

| If the message flow processing includes interaction with an external database, the
| transaction can be coordinated using XA technology to assure all participants
| update or return to a consistent state. This external coordination support is
| provided by the underlying MQSeries facilities and the ODBC support provided for
| the database. This level of XA support is only available if the database you are
| using is DB2.

MQSeries Integrator provides the required level of transactional integrity in several
ways.

� You can specify that a message flow is to be fully globally coordinated, which
means that MQSeries itself will be used as an XA Transaction Manager to
coordinate the transaction associated with the message flow. The reading and
writing of MQSeries messages and all interactions with capable external
databases are coordinated in a single unit of work (UOW).

Fully globally coordinated transactions are only possible if the external
databases are DB2 databases.

You must configure your external DB2 databases and MQSeries to enable this
support. All actions in the message flow therefore either complete successfully,
or are rolled back to the point where the original input message is restored on
the input queue.

This feature is controlled using the ‘Coordinated Transaction’ property of the
message flow: the default is for the transaction not to be globally coordinated.

 Chapter 6. Application design 71

 Transaction support

� A message flow that is not fully globally coordinated is said to be fully broker
coordinated by default. The reading and writing of MQSeries messages and
interactions with external databases are not coordinated within a single unit of
work (UOW). However, the message flow ensures that all database
transactions are committed automatically at the completion of processing a
message through that flow.

� A message flow can also be partially broker coordinated. This means that
some processing nodes will commit their operation immediately, instead of
waiting until message flow completion as in a fully broker coordinated message
flow. You can specify property values on the nodes that interact with databases
to allow their processing to be committed immediately.

� In a fully globally coordinated or partially broker coordinated message flow, all
messages subsequently sent by any MQOutput node in the same instance of
the message flow are put under syncpoint, unless you set the output node
properties to explicitly override this. If you do this, then the message flow is
also be said to be partially broker coordinated.

| You can mix these different transaction types by using different settings in multiple
| nodes with one message flow. The MQSeries Integrator Administration Guide has
| details of how to work with transactions in this way.

 Message persistence
MQSeries messaging products provide an additional level of support for message
integrity. This is message persistence, which defines the longevity of the message
in the system. Nonpersistent messages are lost in the event of system or queue
manager failure. Persistent messages are always recovered if a failure occurs.

Message persistence is controlled by these factors:

� The option specified by the application putting the message to the queue (using
the MQI or AMI calls)

� The default message persistence of the input queue

� The action taken by a message processing node in the message flow

� The option specified by the output node’s persistence property

� The message persistence requested by the subscriber

When a message is read from an input queue by the input node, the default action
is to use the persistence defined in the MQSeries message header (MQMD), that
has been set either by the application creating the message, or by the default
persistence of the input queue. The message retains this persistence throughout
the message flow, unless it is changed in a subsequent message processing node.

You can override the persistence value of each message when the message flow
terminates at an output node. This node has a property that allows you to specify
the message persistence of each message when it is put to the output queue,
either as the required value, or as a default value. If you specify default, the
message takes the persistence value defined for the (one or more) queues to which
the messages are written.

If a subscriber has requested persistent message delivery, and is authorized to do
so by explicit or implicit (inherited) ACL, the message is delivered persistently

72 MQSeries Integrator Introduction and Planning

 Security � Summary

regardless of its existing persistence property. Also, if the user has requested
nonpersistent message delivery, the message is delivered nonpersistent regardless
of its existing persistence property.

 Security
Access and authority requirements for MQSeries client applications to connect to
queue managers and use MQSeries resources are unchanged by the introduction
of MQSeries Integrator into your application environment.

You must therefore ensure that applications are authorized to put messages to
input queues serviced by the message flow that provides the required processing,
and are able to get messages from the message flow output queues.

For publish/subscribe applications, additional control is available to you. This is
defined in “Topic-based security” on page 87.

 Summary
This chapter has provided the information you require to make the following design
decisions for your applications:

� What message header to use (MQRFH2 for new applications, MQRFH or no
header for existing applications)

� What queues to use for sending and receiving messages (they need to be set
up in the message flow nodes)

� What programming interface to use (MQI or AMI)

� What communication model to use (point-to-point, publish/subscribe, or both)

� What other features you need (transactional processing, message persistence,
message ordering)

For more information about publish/subscribe applications, see Chapter 7,
“Designing publish/subscribe applications” on page 75.

For information about writing the applications, having made the design decisions,
see the MQSeries Integrator Programming Guide.

 Chapter 6. Application design 73

 Summary

74 MQSeries Integrator Introduction and Planning

 Interactions � Publications

Chapter 7. Designing publish/subscribe applications

If you are using the publish/subscribe facilities of MQSeries Integrator, you need to
consider the following aspects of application design in addition to those discussed
in Chapter 6, “Application design” on page 65. This chapter covers:

� “How publish/subscribe applications interact with a broker”
 � “Publications”
� “Subscriptions” on page 78
� “Topics” on page 82
� “Broker networks” on page 86
� “Topic-based security” on page 87
� “Summary” on page 92

How publish/subscribe applications interact with a broker
The simplest model of publish/subscribe communications involves a single broker,
one application that publishes messages, and one application that subscribes to
messages.

The publisher generates a message it wants to publish on a topic. The behavior of
the publisher and the ways in which it can publish a message are discussed in
“Publications.” “Topics” on page 82 describes topics and explains how they can be
constructed.

A message flow running in the broker retrieves the publication from its input queue
(read by the input node), performs any processing that is defined for publications
received in that message flow, and passes the message to a publication node for
distribution to a subscriber.

The publication node only knows about, and can therefore only provide messages
to, an application that has registered as a subscriber. When the application
registers as a subscriber, it must specify a queue on which it wants to receive
messages, and a definition that restricts the messages it wants to receive. This
definition is based on a combination of the topic of the message, or specific content
within the message, or both. This is discussed in detail in “Subscriptions” on
page 78.

Figure 15 on page 76 shows the messages that pass between a broker and a
publisher, and the broker and a subscriber.

 Publications
When designing a publish/subscribe system, you need to consider if publications
should be retained by the broker after they have been sent to subscribers. You can
also choose to publish to subscribers at your local broker only, instead of allowing
publications to be propagated throughout the network of brokers. These options are
described in the following sections.

 Copyright IBM Corp. 2000 75

 Publications

Figure 15. Publish/subscribe with a single broker

 Retained publications
By default, a broker discards a publication when it has sent that publication to all
interested subscribers. However, a publisher can specify that it wants the broker to
keep a copy of a publication, which is then called a retained publication. The copy
can be sent by the broker to subsequent subscribers who register an interest in the
topic. This means that new subscribers don’t have to wait for information to be
published again before they receive it.

For example, a subscriber registering a subscription to a stock price would receive
the current price straightaway, without waiting for the stock price to change (and
hence be re-published).

The broker retains only one publication for each topic and subscription point, so the
old publication is deleted when a new one arrives. See “Subscription points” on
page 79 for further details about subscription points.

State and event information
Information being published can be categorized as state information or event
information. This section explains these concepts, and helps you to understand
why you might want to use retained publications to provide these two categories of
information.

State information is information about the current state of something, such as the
price of stock or the current score in a soccer match. When something happens (for
example, the stock price falls, or the soccer score changes), the previous state
information is no longer required because it is superseded by the new information.

A subscriber usually wants to receive the current version of the state information
when it starts up, and to be sent new information whenever the state changes.

76 MQSeries Integrator Introduction and Planning

 Publications

Event information is information about individual events that occur, such as a trade
in some stock or the scoring of a particular goal. Each of these events is
independent of the others.

A subscriber usually wants to receive information about events when they happen.

Using retained publications
When deciding whether to use retained publications, you must consider several
factors:

� What sort of information will your publications contain (state or event
information)?

Event information does not usually have to be retained, but state information is
often retained. However, if all the subscriptions to a topic are in place before
any publications are made on that topic (and no new ones expected), there is
no need to retain publications even for state information, because they are
delivered to all the subscribers as soon as they are published.

Publications of state information might also not need to be retained if they are
very frequent (for example, every second). With this frequency of publishing,
any new subscriber (or a subscriber recovering from a failure) receives the
current state almost immediately after it subscribes.

� Do you want to receive publications on request only?

If you use retained publications, subscribers can register using the ‘Publish on
Request Only’ option. This means that the broker will not send any publications
to that subscriber until the subscriber requests an update. The broker then
sends to the subscriber the current retained publication that matches the
subscription.

� Can retained publications be mixed with non-retained publications on the same
topic?

This is not recommended. If you have a retained publication, and then publish
a non-retained publication on the same topic, the existing retained publication is
still retained (it will not be updated by the non-retained publication). If you have
a subscriber that has registered with the ‘Publish on Request Only’ option, it will
not be able to access any non-retained publications (the broker sends only the
current retained publication in response to a request for an update).

� Can you have more than one application publishing retained publications on the
same topic?

You are recommended not to have two or more applications publishing retained
publications on the same topic. If you do and the timing is close to
simultaneous, it is indeterminate which publication is retained. If the publishers
use different brokers, it is possible that different retained publications for the
same topic could be held at each broker.

� How will the subscriber application recover from failure?

If the publisher does not use retained publications, the subscriber application
might need to store its current state locally. If the publisher does use retained
publications, the subscriber can request an update to refresh its state
information after a restart.

The broker continues to send publications to a registered subscriber even if
that subscriber is not running. This could lead to a build-up of messages on

 Chapter 7. Designing publish/subscribe applications 77

 Subscriptions

the subscriber queue, which can be avoided if the subscriber registers with the
‘Publish on Request Only’ option. The subscriber must then refresh its state
periodically by requesting an update or by using a temporary dynamic queue.

� What are the performance implications of retaining publications?

The broker needs to store retained publications in a database, which reduces
throughput. If the publications are very large, a considerable amount of disk
space will be needed to store the retained publication of each topic. In a
multi-broker environment, retained publications are stored by all other
connected brokers that have a matching subscription.

| The sample verification applications that are shipped with MQSeries Integrator
| include the Soccer Results service. This sample uses retained publications to
| record the latest score in each soccer match it is monitoring. The sample code
| illustrates the programming required to support this option.

Local and global publications
Publications can be categorized as either global or local.

 Global publication
A global publication is distributed throughout the broker domain to all connected
brokers. Each broker delivers a global publication to all its neighbors that have a
subscriber registered with a subscription that matches the publication. Controls are
in place to ensure these publications do not get into a loop.

It is possible to have more than one group of connected brokers within a single
broker domain. A global publication can only be delivered to brokers that are
interconnected, so its distribution is limited by the topology of your broker domain.

 Local publication
Publishers can choose to restrict access to their publications to subscribers
registered to the same broker as the publisher.

The publisher can specify the ‘Local’ option when it sends a publication. Local
publications are not forwarded to other brokers.

 Conference-type applications
In some cases, a publisher might also be a subscriber. For example, a group of
applications can all subscribe to the same topic (such as “Conference”), and
receive publications on this topic. Using the ‘Other Subscribers Only’ option
ensures that each application will receive publications from the other applications,
but not those that it has published itself.

 Subscriptions
Subscriptions are supported by MQSeries Integrator in a dynamic fashion. The
broker is unaware of the intention of the subscriber to register, and cannot know at
any time about any subscribers other than those currently subscribed. Subscribers
can register and deregister at any time, and as often as they choose.

Client applications (subscribers) issue subscription registration requests to their
local broker when they want to receive published messages. All the information
associated with the subscription is recorded by the broker in the subscription table.

78 MQSeries Integrator Introduction and Planning

 Subscriptions

It can only be removed from this table when the subscriber deregisters, or when the
subscription expires, or is deleted by the Control Center.

If the subscriber specifies a temporary dynamic queue as the queue to which
publications should be sent, the broker will deregister the subscription automatically
when the queue is deleted.

The subscribing application specifies the following information on the registration
request:

� The topic or topics of the published messages in which it has an interest (see
“Topics” on page 82).

If you specify the multi-level wildcard (“#”) by itself, all published messages with
matching subscription points and content filters (if specified) are valid, including
event publications. (For more information about the multi-level wildcard, see
“The multi-level wildcard” on page 84.)

� The subscription point (see “Subscription points”) from which it wants to receive
publications.

This value should match the subscription point property set for at least one
publication node defined in this broker (this could be the default subscription
point). If it does not match, the subscriber will not receive any publications
(unless a publication node is defined subsequently with this subscription point
name).

� The content filter (see “Filters” on page 81) to be applied to the published
message.

This information is optional: the subscriber does not have to include a content
filter. If it does not, all published messages with matching subscription points
and topics, if specified, are valid.

� The identity of the queue (the subscriber queue) on which it wants to receive
publications that match the criteria it has selected. An optional CorrelId can
be specified (this is useful if several subscribers share the same queue).

When the publication node receives a message, it checks through the subscription
table to determine if there are any subscription requests that specify this particular
node’s subscription point, that match the content, or topic, or both, of the message
received.

For every match found, the node delivers the published message on the subscriber
queue, using the optional CorrelId if specified (otherwise a fixed value is used).
Each subscriber receives a single copy of each publication regardless of the
number of matching subscriptions the client has.

When the node has sent the publication to any subscribers that have a matching
subscription, the publication is discarded (unless it is a retained publication).

 Subscription points
A message flow used for publish/subscribe must contain at least one MQInput
node, and at least one Publication node. A subscription point is the name by
which a subscriber requests publications from a particular set of publication nodes.
You can use the default subscription point, or set up specific subscription points,

 Chapter 7. Designing publish/subscribe applications 79

 Subscriptions

and you can have more than one publication node associated with a particular
subscription point.

The default subscription point
If you define a publication node without specifying its subscription point property, it
is associated with the default subscription point. A subscriber that registers a
subscription without specifying a subscription point will receive publications from
any such publication node (provided they match the topic and filter specified by the
subscriber).

This applies to all message flows running in all brokers connected in the same
network (unless the ‘Local’ option has been specified).

Using subscription points
If you have more than one publication node in a message flow, you can
differentiate between them by specifying subscription points. These should have
values that reflect the nature of the messages routed to each publication node.

For example, a message flow might apply a filter to a message for publication, and
apply two different compute operations to the outputs of the Filter node before
sending the resultant messages to separate publication nodes. In this case, the
subscription point names for these publication nodes should reflect the operations
carried out by the message flow. Other message flows could have publication
nodes associated with either or both of these subscription points, if appropriate.

Alternatively, allow one publication node to have the default subscription point, and
apply a meaningful name to the subscription point of each additional publication
node. If more than one publication node in a message flow has the same
subscription point property, subscribers might receive more than one copy of each
publication, unless the conditions under which messages reach publication nodes
are mutually exclusive.

 Example
Suppose you have an application that publishes stock prices. The prices that are
available from the first publication node in the message flow are in dollars. This
publication node uses the default subscription point.

You can define a second path through the message flow that takes the price in
dollars, and converts this using some defined conversion value, to produce the
same message but with the stock price in pounds. These messages are published
at a second publication node that has its subscription point property set to ‘Pounds’.

You might have another message flow (running in the same broker, or a connected
broker) that publishes stock prices in pounds on the same topic. Make sure it uses
the ‘Pounds’ subscription point, and that any other message flows publishing their
stock prices in dollars use the default subscription point.

Subscribers specifying the relevant topic (for example, ‘stock’) can then choose to
receive the information in dollars or pounds, by using the default subscription point
or the ‘Pounds’ subscription point when they subscribe.

80 MQSeries Integrator Introduction and Planning

 Subscriptions

 Filters
When you register a subscription, you can specify a content-based filter to select
publications according to their contents, in addition to specifying a topic and
subscription point. MQSeries Integrator needs to know how to parse the contents
of the message correctly. This can be achieved in a number of ways:

� The message is a self-defining XML message.

� The message template is defined in the MQRFH2 header.

� If the message has an MQRFH header, the message set and type are taken
from that header.

� Otherwise, the message is assumed to be as defined in the properties (domain,
set, type and format) of the input node.

The filter itself is entered as an expression with SQL syntax, for example:

Body.Name LIKE ‘Smit%’

This means that the contents of a field called Name in the body of a publication
message (that is, the publication data that follows the MQRFH2 header) will be
extracted and compared to the string given in the expression. If the string in the
message starts with the characters “Smit”, the expression evaluates to TRUE and
so the publication will be sent to the subscriber.

The language used in the specification of filters for content-based routing forms a
proper subset of the Filter node’ language. For more information about the syntax
of filter expressions, see the MQSeries Integrator Programming Guide.

If you want to select publications using filters only, without specifying a topic, you
can register a subscription with the required filter and a topic of “#” (all topics). You
will receive publications only on those topics for which you have access authority.
However, this subscription will result in all publications from all connected brokers
being sent to the broker that is local to the subscriber. If you have set up a network
of brokers, you are not advised to use this technique for performance reasons.

 Local subscriptions
Subscribers can specify a local option on registration. If they do so, they are
requesting that their subscription registration is not forwarded to other brokers, but
held by the local broker. Any message published at this broker that matches the
subscription is received by this subscriber, but messages published to other brokers
are not normally available (unless the subscriber has also registered a global
subscription with an overlapping topic and the same subscription point).

 Retained publications
If retained publications are used, the subscriber can specify the following options
when it registers a subscription.

Publish on request only
If the ‘Publish on Request Only’ option is used, the broker will not send publications
to the subscriber until the subscriber sends a ‘Request Update’ message to the
broker. The broker then sends any current retained publication that matches the
subscription.

 Chapter 7. Designing publish/subscribe applications 81

 Topics

New publications only
Normally the broker will send the current retained publication that matches the
subscription when a subscriber registers that subscription. If the subscriber uses
the ‘New Publications Only’ option, the broker will wait until a new publication is
received before sending it to the subscriber.

 Message persistence
You are recommended to send all subscription registration messages as persistent
messages. All subscriptions are maintained persistently by the broker.

Brokers maintain the persistence of publications as set by the publisher, unless
changed by options specified when the subscription is registered. These options
are nonpersistent, persistent, persistence as queue, or persistence as publisher
(the default).

The system administrator decides which users are allowed to have publications
sent persistently (see “Access control lists” on page 87).

 Topics
A topic specifies a subject of common interest to producers and consumers of
messages (publishers and subscribers). Almost any string of characters can act as
a topic to describe the topic category of a message. However, there are three
reserved characters, described in “Special characters in topics” on page 83.

Topics provide the key to the delivery of messages between publishers and
subscribers. They provide an anonymous alternative to citing specific destination
addresses. The broker attempts to match a topic on a published message with a
list of clients who have subscribed to that topic. Topics can also be used to control
which subscribers are authorized to receive publications.

You create the topics needed by your messages in a tree hierarchy, using the
facilities of the Control Center. The tree can be defined before being used, and, if
you choose, added to dynamically when new topics are created by client
applications.

Thoughtful design of topic names and topic trees can save time and effort later for
routine operations, including:

� Subscribing to multiple topics.

� Establishing security policies.

� Automatically reacting to messages on a specific topic, for example sending an
alert to a manager’s pager.

Individual topics serve as elements (that is, nodes) in the topic tree. New elements
are added as you define them through the Control Center, or are specified by
applications, to create topic trees. Although it can be flat (linear), a topic tree
usually builds from one or more root topics, adding other topics in levels of
parent/child relationships to create a hierarchical naming structure.

82 MQSeries Integrator Introduction and Planning

 Topics

The following figure illustrates a topic tree structure.

USA

Alabama Alaska

Auburn Mobile Montgomery Juneau

Figure 16. Example topic tree

The structure of the tree follows a format with levels of increasing granularity:
“country/state/city”. Each string in the figure represents a node on the topic tree.
Complete topic names aggregate nodes at one or more levels in the topic tree.
Levels are separated by the “/” character (see “Special characters in topics”). Topic
names fully specify the path to a specific node from the root of the tree in this
format: “root/level2/level3”.

In Figure 16, the string “USA” acts as a root node, the first level of a topic name for
topics in this tree. Valid topics include “USA”, “USA/Alabama” and
“USA/Alabama/Montgomery”.

When you design topic names and topic trees, it is important to remember that the
message broker does not interpret or attempt to derive meaning from the topic
name itself. It only uses the topic name to send related messages to clients who
have subscribed to that topic.

Special characters in topics
The topic of a message can contain any of the characters found in the Unicode
character set. Three of these characters have a special meaning for MQSeries
Integrator.

The three are the topic level separator “/”, the multi-level wildcard “#”, and the
single-level wildcard “+”. The first of these is used to introduce structure to the
topic, and can therefore be specified within the topic for that purpose. The latter
two are wildcards used for subscriptions (see “Using wildcards with topics” on
page 85) and cannot be used within a topic when a message is published.

Note: If you are migrating your applications from MQSeries Publish/Subscribe
environment, refer to Appendix A, “Planning for migration and integration” on
page 143 for further details about topics and wildcards.

The topic level separator
The topic level separator character “/” provides a hierarchical structure to the topic
space. It must be used by applications to denote levels within a topic tree. The use
of the topic level separator is significant when the two wildcard characters are
encountered in topics specified by subscribers.

Topic hierarchy is important in administration of access control, described in
“Access control lists” on page 87.

 Chapter 7. Designing publish/subscribe applications 83

 Topics

The multi-level wildcard
The multi-level wildcard character “#” is used to match any number of levels within
a topic, typically an unknown number. It can be used only at the beginning or the
end of a topic (but not both). For example, you can subscribe to “USA/#”, and
receive messages on topics “USA/Alabama” and “USA/Alabama/Auburn”.

The way the multi-level wildcard is implemented means it can represent zero or
more levels. Therefore “USA/#” can also match the singular “USA”, where #
represents zero levels. The topic level separator is meaningless in this context,
because there is no level to separate.

You can only use the multi-level wildcard next to the topic level separator character
unless you specify the multi-level wildcard on its own. For example, “USA#” is not
valid, but “#” is.

The single-level wildcard
The single-level wildcard character “+” matches one (and only one) topic level. For
example, “USA/+” matches “USA/Alabama” but not “USA/Alabama/Auburn”. Also,
because the single-level wildcard matches a single level only, “USA/+” does not
match “USA”.

This wildcard can be used at any level in the topic tree, and in conjunction with the
multi-level wildcard. However, you can only use the single-level wildcard next to the
topic level separator character unless you specify the single-level wildcard on its
own. For example, “USA+” is not valid, but “+” is valid.

Note: A finer level of filtering can be provided using content filters (see “Filters” on
page 81).

Topic semantics and usage
When you build an application, the topic tree design is important to the application’s
communication model. The design should account for the following principles of
topic name syntax and semantics:

� Topic names are case sensitive. For example, MQSeries Integrator recognizes
“ACCOUNTS” and “Accounts” as two different topics.

� Topic names can include the space character. For example, you can define
“Accounts payable” as a valid topic.

� Though not recommended, a topic level can be an empty string. For example,
“a//c” is a three level topic name with an empty middle level.

� A leading “/” creates a distinct topic: “/USA” is not the same as “USA” and
“/USA’ will match “+/+” and “/+” but not “+”.

� For portability reasons, you should not include the null character (Unicode
\x0000) in any topic.

MQSeries Integrator applies the following conditions to the construction and content
of a topic tree:

� There is no limit to the levels of depth (the number of topic levels) in the tree.

� There is no limit to the length of any level name in the tree.

� There can be any number of “root” nodes (that is, any number of topic trees).
These are defined below the root “”, which is the root of all root nodes. It is

84 MQSeries Integrator Introduction and Planning

 Topics

referred to as “topicRoot”, although there is no corresponding topic name.
Applications cannot publish or subscribe to this virtual root.

� The topic trees with roots of “$SYS” and “$ISYS” are reserved for use by
MQSeries Integrator.

If you are using topic-based security, only brokers can publish messages on
these topics, and only brokers can subscribe to messages with a topic of
“$ISYS”, regardless of the topic Access Control Lists (ACLs) defined using the
Control Center. For more details about topic-based security and ACLs, see
“Topic-based security” on page 87.

Using wildcards with topics
Wildcards are used only when subscribing to topics, deregistering, requesting
updates, and deleting publications. Messages must always be published with a
fully specified topic name.

Using wildcards in subscriptions is not difficult, but needs to be done with care.
Remember that wildcards can be used at any level in the topic name string (within
the restrictions already discussed). However, you are recommended to use them
only at the end of a topic name. Although the single-level wildcard is accepted
anywhere, the product is optimized to it being specified at the end of the string.
The multi-level wildcard can only be used at the beginning or end of the string.

You should create well-formed applications that structure topics into subject trees.
This allows the applications to subscribe to sub-trees by placing the multi-level
wildcard “#” at the end of a topic.

You can specify more than one wildcard within a subscription, as long as their use
conforms to the guidelines given. For example, “+/Alabama/#” is valid.

If you subscribe with “#”, you will receive all publications from all connected
brokers. You are therefore recommended to use this type of subscription with care,
to minimize the impact of workload in your broker network.

 Multiple topics
It is permissible to specify more than one topic for a publication. One use of this is
as follows.

Suppose an application publishes information under the topic ‘Topic 1’. The
application might then be enhanced to provide additional information, which it might
publish under the topic ‘Topic 1 enhanced’. If the new publications specify the
original ‘Topic 1’ as well, then existing subscribers will receive both old and new
publications, while subscribers who want to receive only the enhanced publications
can register with ‘Topic 1 enhanced’.

Note that an application that subscribes to both topics will receive one copy only of
each publication.

 Chapter 7. Designing publish/subscribe applications 85

 Broker networks

 Broker networks
The interactions between a broker and its publishing and subscribing applications,
described in “How publish/subscribe applications interact with a broker” on
page 75, are equally valid in a broker network, in which publish/subscribe
applications are interacting with any one of a number of connected brokers.

Subscriptions and published messages are propagated through the MQSeries
Integrator broker domain. You can set up a network of brokers using the Control
Center so that each has an explicit or implicit connection to a group of other
brokers. You can have more than one group of connected brokers in the broker
domain. Brokers propagate subscription registrations through each network of
connected brokers, and publications are forwarded to all brokers that have
matching subscriptions.

It doesn’t matter, therefore, which broker a message is published to. Any
application that has registered a subscription to a connected broker will receive
publications matching that subscription.

Figure 17 illustrates a simple example of the publish and subscribe messages
flowing through a network of two brokers.

Figure 17. Publish/subscribe in a network

Each broker records subscription information from its local subscribers and
information from remote subscribers forwarded by its neighbor brokers in its
subscription table, which holds all the current subscription information known to that
broker (for all execution groups and message flows).

86 MQSeries Integrator Introduction and Planning

 Topic-based security

 Collectives
You can group your brokers in collectives. This is a way of organizing a network of
brokers to get the most effective environment for publish/subscribe applications.

You can define collectives and organize your brokers using the Control Center. For
more details about setting up a network with collectives, see “Supporting
publish/subscribe services” on page 108.

 Topic-based security
You can control access to messages on particular topics by implementing security
measures governed by Access Control Lists (ACLs), which are based on the
definition of principals to the underlying security control facility. A principal can be
an individual user ID (for example, a logon ID), or a user group. User groups can
contain other user groups, as well as individual users, to the level of nesting
supported by the underlying security facility.

Principals and the User Name Server
The message descriptor assigned to each message transmitted by MQSeries
contains the identity of the principal that initiated the message. MQSeries sets this
identity in an operating system dependent manner, but this can be augmented at
an MQSeries installation by use of standard MQSeries exits. The principal in the
message descriptor is used to determine authority for the topic being published or
subscribed to.

MQSeries Integrator security architecture is based on the assumption that the
network is heterogeneous: although MQSeries includes a form of Windows NT
domain information for client platform identification, MQSeries Integrator does not
exploit this information.

The MQSeries Integrator User Name Server manages the set of principals already
defined in your network, on behalf of the brokers and the Configuration Manager.

All brokers within the broker domain interact with the User Name Server to retrieve
the total set of users and groups against which the access control lists are built and
publish/subscribe requests validated.

Access control lists
ACLs allow you to define, for any intersection of topic and principal, the right of that
principal to publish on or subscribe to a given topic, or to request persistent
delivery. You specify these definitions using the Topics view in the Control Center.

Access control is set explicitly on an individual topic, but can be inherited if there is
no explicit ACL in place. Inheritance is from an ancestor (parent) topic, defined by
the hierarchical structure of the topic tree. If none of the parent topics up to the
topic root has an explicit ACL, the individual topic inherits the ACL of the topic root.

Any defined principal (user or group) known to the User Name Server can be
associated with the topic in this way.

 Chapter 7. Designing publish/subscribe applications 87

 Topic-based security

 PublicGroup authorizations
In addition to the groups that you define, MQSeries Integrator provides an implicit
group, “PublicGroup”, to which all users automatically belong. This implicit group
simplifies the specification of ACLs in a topic tree. In particular, this group is used
in the specification of the ACL for the topic root. You can view and change this ACL
using the Control Center, but you cannot remove it. It determines the default
permissions for the entire topic tree. You can specify ACLs for the “PublicGroup”
elsewhere in the topic tree, wherever you want to define permissions for all users.

If you have a principal named “Public” defined in your existing security environment,
you cannot use this for topic-based security. If you specify this principal within any
ACL, it is equated to “PublicGroup” and therefore provides global access in all
cases.

 mqbrkrs authorizations
MQSeries Integrator grants special publish/subscribe access control privileges to
members of the mqbrkrs group, and to the corresponding Domain mqbrkrs global
group if appropriate (see “Using Windows NT security domains” on page 122 for
details).

Brokers need special privileges to perform internal publish and subscribe operations
in networks where access control is enabled. When you create a broker in such a
network, you must specify a user ID that belongs to the group mqbrkrs as the
service user ID for the broker (as shown in Table 7 on page 125). The mqbrkrs
group is given implicit privileges that allow its members to publish, subscribe and
request the persistent delivery of messages on the topic root (“”). All other topics
will inherit these permissions. If you attempt to configure any ACLs for the
mqbrkrs group through the Control Center, these ACLs are ignored by MQSeries
Integrator.

Resolving ACL conflicts
If the principals in your broker domain include one or more users in more than one
group, it is possible that the explicit or inherited ACL values conflict.

� If the user has an explicit user ACL on the topic of interest, this always takes
priority and the broker verifies the current operation on that basis.

� If the user does not have an explicit user ACL on the topic of interest, but has
explicit user ACLs against an ancestor in the topic tree, the closest ancestor
ACL for that user takes priority and the broker verifies the current operation on
that basis.

� If there are no explicit user ACLs for the user on the topic of interest or its
ancestors, the broker attempts to verify the current operation on the basis of
group ACLs:

– If the user is a member of a group that has an explicit group ACL on the
topic of interest, the broker will verify the current operation on the basis of
that group ACL.

– If the user is not a member of a group that has an explicit group ACL on
the topic of interest, but is a member of a group with explicit group ACLs
against an ancestor in the topic tree, the closest ancestor ACL takes
priority and the broker verifies the current operation on that basis.

88 MQSeries Integrator Introduction and Planning

 Topic-based security

– If, at a particular level in the topic tree, the user ID is contained in more
than one group with an explicit ACL, permission is granted if any of the
specifications are positive, otherwise it is denied.

You can’t associate ACLs with topics that include one or more wildcards. However,
your client application access is resolved correctly when the subscription
registration is made, even when that application specifies a wildcard in the topic.

ACLs and system topics
Messages that are used for internal publish and subscribe operations are published
throughout the broker domain using system topics, which begin with the strings
“$SYS” and “$ISYS”. These topics must be published and subscribed to by
members of mqbrkrs only, with the exception of the following two scenarios:

1. If you are migrating topics from MQSeries Publish/Subscribe, you can configure
ACLs on topics that begin with the string “$SYS/STREAM” (see “MQSeries
Publish/Subscribe” on page 148 for further details about migration).

2. Clients can subscribe to topics that begin with the string “$SYS”, which allows
applications that provide a management function to subscribe to the broker for
administrative events.

You are recommended not to configure ACLs on topics that begin with the string
“$ISYS”. You are not prevented from doing so, but they are ignored.

Setting access control on topics
All members of the group mqbrtpic are permitted to define and manipulate the
ACLs that define which principals are permitted to publish on and subscribe to
topics. ACLs can also limit delivery of persistent messages. All defined principals
(users or groups) can be associated with any topic: the permissions that can be set
are shown in Table 2.

Persistent access control behavior is not identical to the publish and subscribe
control:

� Clients that are denied Publish access have their publication messages
refused. Clients that are denied Subscribe access do not receive the
publication.

� The persistent access control does not deny the message to subscribers, but
denies them persistence, so denied subscribers always receive messages
(subject to their subscribe access control), but always have the message sent
to them nonpersistently, regardless of the persistence of the original message.

Table 2. ACL permissions

Option Description

Publish Permits or denies the principal to publish messages on this topic.

Subscribe Permits or denies the principal to subscribe to messages on this topic.

Persistent Specifies whether the principal can receive messages persistently. If
the principal is not permitted, all messages are sent nonpersistently.
Each individual subscription indicates whether the subscriber requires
persistent messages.

 Chapter 7. Designing publish/subscribe applications 89

 Topic-based security

Inheritance of security policies
Topics are organized in a hierarchical tree. The ACL of a parent topic can be
inherited by some or all of its descendent topics that do not have an explicit ACL.
Therefore, it is not necessary to have an explicit ACL associated with each and
every topic. Every topic has an ACL policy which is that of its parent. If all parent
topics up to the root topic do not have explicit ACLs, that topic inherits the ACL of
the root topic.

For example, in the topic tree in Figure 18, the topic root is not shown but is
assumed to have an ACL for “PublicGroup” that allows permission to publish,
subscribe, and receive persistent publications. Table 3 summarizes the ACL for
each topic in the tree shown.

Figure 18. Inheriting ACLs in a topic tree

| Table 3. The ACLs for inheritance

| Topic| Publishers| Subscribers| Persistent

| A| only joe| everyone| no-one

| A/P| only joe| everyone| only joe

| A/K| only joe| everyone| no-one

| A/K/M| only joe| everyone| no-one

| A/K/M/N| only mary, joe| everyone| everyone except
| nat

| A/B| allen, joe| HR| no-one

Dynamically created topics
Topics that are not explicitly administered, but are created dynamically in response
to client publish or subscribe messages, are treated in the same way as those that
are administered, but have no explicit ACLs. That is, the ACLs for dynamically
created topics are inherited from the closest ancestor in the topic tree that has an
explicit policy. It is therefore not necessary to define leaf topics in the tree if they
do not have explicit ACLs.

90 MQSeries Integrator Introduction and Planning

 Topic-based security

ACLs and wildcard topics
MQSeries Integrator does not allow you to associate an explicit security policy with
a wildcard topic (for example, you cannot associate an ACL with topic “A/+”, which
represents a two level hierarchy and includes “A/B”, “A/K”, and “A/P”).

However, MQSeries Integrator does guarantee correct access mediation when a
client subscribes to a wildcard topic.

For example, the topic “A/+” does not (and cannot) have a security policy
associated with it. Therefore, “A/+” inherits its policy from “A”. Any user can
subscribe to “A/+” because the subscribe ACL includes everyone.

When a message is published on “A/P” or “A/K”, the broker delivers it to the user
who subscribed to “A/+”. However, when a message is published to “A/B”, that
message is only delivered to subscribers who are in the HR group.

If the system administrator changes the subscribe ACL of any topic that matches
“A/+”, the broker correctly enforces the ACL when the message is delivered.
Subscribing to a wildcard topic has the semantics to deliver messages on all topics
that match the wildcard, and for which the subscriber has authorization to receive
that message.

ACLs and subscription resolution
The broker enforces access control through the topic of the message to be
delivered. Messages are only delivered to those clients that have not had subscribe
access denied, either explicitly or through inheritance. The final decision to deliver
a message to a subscriber cannot be made by the broker until a specific message
with a topic is being processed. A subscription can contain a wildcard, therefore the
actual match against the topic namespace, and hence the topic ACLs, cannot be
made at the time the subscription is received.

Activating topic ACL updates
Updates to a topic ACL does not become active until deployed and activated
across the MQSeries Integrator broker domain from the Control Center. You must
be a member of the group mqbrops to deploy ACLs.

Checking publications and subscriptions
The broker makes a number of checks on requests from publishers and
subscribers.

 The publisher
When a publisher application publishes a message on a topic, the broker verifies
that the publisher is authorized to publish on that topic:

� If the publisher is not authorized, the broker rejects the publish request and
returns a warning message to the publisher.

� If the publisher is authorized, the broker delivers the message to all authorized
subscribers to the topic.

 Chapter 7. Designing publish/subscribe applications 91

 Summary

 The subscriber
When a broker receives a subscription request, it verifies the following:

� The subscriber has authority to put to the subscriber queue specified in the
subscription request. You must set up this authorization using MQSeries
facilities: this is independent of the authorizations established for the subscriber
in the Control Center.

� No other user is using the same combination of queue name, queue manager
name, and correlation ID (if specified).

� The client is permitted to subscribe to the topic, according to the ACL in force
for the combination of that topic and user. This can only be checked at this
time if the client has not specified a wildcard in the topic for subscription.

If any of these checks fail, the broker rejects the subscription request.

When a broker is ready to deliver a publication, it checks the following:

� The subscriber is authorized to receive persistent publications, if persistent
delivery on the topic has been requested.

� The client is permitted to subscribe to that topic, according to the ACL in force
for the combination of that topic and user. (Any wildcard the client specified is
resolved when a specific message is available: publications have fully-specified
topics that do not contain any wildcards.) Messages are delivered only to
those clients that have not had subscribe access denied, either explicitly or
through inheritance.

� If a client has subscribed by content, the broker matches the content specified,
then checks the topic in the publication and consults the appropriate ACL for
permission.

If any of these checks fail, the publication is not delivered to the subscriber.

Detailed information about creating and managing ACLs is provided in MQSeries
Integrator Using the Control Center.

 Summary
This chapter has provided the information you require to make the following design
decisions for your publish/subscribe applications:

� The topic trees you use for publications (including the use of wildcards for
subscriptions)

� The options you want to use as a publisher (retained, local, other subscribers
only)

� The options you want to use as a subscriber (subscription point, filter, local,
new publications only, publish on request only)

� The subscriber queues you use to receive publications (with optional correlation
identifiers)

� The use of access control lists

For information about writing the applications, having made the design decisions,
see the MQSeries Integrator Programming Guide.

92 MQSeries Integrator Introduction and Planning

 Part 4. Systems planning

This part further explores the planning needed to establish the correct broker
domain topology for your business.

It provides the information needed by your systems administrators to understand
the infrastructure required to achieve your business purposes, and to determine
how to create a new MQSeries network, or enhance and integrate MQSeries
Integrator with your existing MQSeries network.

It contains the following chapters:

� Chapter 8, “System requirements” on page 95
� Chapter 9, “Planning your MQSeries Integrator network” on page 105
� Chapter 10, “Managing your MQSeries Integrator network” on page 133
� Chapter 11, “Enhancing your broker domain” on page 139

The information here is an introduction to the detail provided in the MQSeries
Integrator Administration Guide.

 Copyright IBM Corp. 2000 93

94 MQSeries Integrator Introduction and Planning

 Systems summary

 Chapter 8. System requirements

This chapter summarizes the hardware and software requirements for MQSeries
Integrator. It also includes information about licensing agreements and national
language support.

The information provided here is an overview: for full details you must refer to the
MQSeries Integrator Installation Guide for your operating system and to the
Readme.txt file provided on your product CD which gives the latest and most
complete information.

| Summary of system requirements
| MQSeries Integrator is supported on three operating systems:

| � AIX

| � Sun Solaris

| � Windows NT

| Table 4 on page 96 summarizes the installation options for all components of each
| of the three products; MQSeries Integrator for AIX, MQSeries Integrator for Sun
| Solaris, and MQSeries Integrator for Windows NT.

| The key points to note are:

| � You can install and configure the broker only on the operating system for which
| you have purchased MQSeries Integrator.

| � You can install the User Name Server on either Windows NT or the operating
| system for which you have purchased MQSeries Integrator.

| � You must install and configure the Configuration Manager and Control Center
| on Windows NT.

| If you purchase MQSeries Integrator for AIX or MQSeries Integrator for Sun Solaris
| the package includes the MQSeries Integrator for Windows NT CD from which you
| must install the components that run on Windows NT. Full package details are
| provided in Appendix B, “The product packages” on page 169.

 Copyright IBM Corp. 2000 95

 AIX requirements � Hardware requirements

The following sections identify the requirements for the components that can be
installed on each operating system.

| Table 4. Summary of installation options

| Product| Component| System to install on

| MQSeries
| Integrator for AIX
| Configuration Manager| Windows NT only

| Control Center| Windows NT only

| RuntimeE| AIX only

| User Name ServerE| AIX or Windows NT

| SDK| AIX only

| Online documentation| AIX only

| MQSeries
| Integrator for Sun
| Solaris

| Configuration Manager| Windows NT only

| Control Center| Windows NT only

| RuntimeE| Sun Solaris only

| User Name ServerE| Sun Solaris or Windows NT

| SDK| Sun Solaris only

| Online documentation| Sun Solaris only

| MQSeries
| Integrator for
| Windows NT

| All components including
| online documentation
| Windows NT only

| Notes:

| 1. The Runtime component on UNIX includes the broker and the User Name Server.
| You must install this component on UNIX. If you choose to control topic-based
| security on Windows NT, you can install the User Name Server component on
| Windows NT. A single licence entitles you to configure a single User Name Server.
| Therefore if you install the User Name Server component on Windows NT, you
| cannot configure a second User Name Server on UNIX.

| System requirements for AIX components
| This section summarizes the system requirements for the following components
| that can be installed on AIX:

| � Runtime
| � NEON interface and run-time support
| � Tivoli Interface
| � SDK
| � Online documentation

| Hardware requirements
| The hardware required for AIX components of MQSeries Integrator are:

| � One of the following:

| – IBM RS/6000 POWERserver
| – IBM RS/6000 POWERstation
| – IBM Scalable POWERparallel

96 MQSeries Integrator Introduction and Planning

 Disk space � Software requirements

| � Any communications hardware supporting NetBIOS, SNA LU6.2, SPX, and
| TCP/IP.

| � A minimum of 512MB of RAM to support run-time operation

| Disk space required
| The installation requirements depend on which components you install. Full details
| are in the MQSeries Integrator for AIX Installation Guide: requirements range from
| a minimum of 280MB to approximately 400MB.

| Temporary space of approximately 150MB is required in the /tmp directory. This
| temporary space is freed up when installation is complete.

| Software requirements
| The following software products are prerequisites for operating MQSeries
| Integrator. If AIX, MQSeries, and the JDK are not at the correct level, installation
| will not continue. For optional products that you can use with MQSeries Integrator
| see the MQSeries Integrator for AIX Installation Guide.

| Minimum supported levels are shown. Later compatible levels, if any, are supported
| unless otherwise stated. You must refer to the MQSeries Integrator for AIX
| Installation Guide and the Readme.txt file to check latest CSD and FixPack details
| for these products.

| � AIX Version 4.3.3

| You must ensure that your AIX system includes JDK 1.1.8. This level is
| supplied with the AIX CDs.

| � MQSeries for AIX Version 5.1

| This must be at service level Corrective Service Diskette (CSD) 2 or above.

| The installation program checks that you have MQSeries for AIX Version 5.1
| installed, and that it is at the correct service level. For full details of which
| MQSeries Integrator component requires which MQSeries component, see the
| MQSeries Integrator for AIX Installation Guide.

| The MQSeries product is supplied in the MQSeries Integrator package. This
| version is packaged with CSD4 applied. You therefore do not have to install
| any additional CSDs if you install MQSeries from this CD. CSD4 is also
| supplied independently in this package: if you already have MQSeries Version
| 5.1 you can install this latest CSD if you choose.

| Note: Version 5.0 is not supported at any service level.

| � A database for internal broker data

| The MQSeries Integrator broker requires access to a database for internal
| caching and for storing internal control information.

| If your installation choices require a database to be present for internal broker
| support, the MQSeries Integrator installation program checks for a suitable
| database installed on this system.

| If you already have a database product in the supported list below, you can use
| it to support MQSeries Integrator.

 Chapter 8. System requirements 97

 Sun Solaris requirements � Hardware requirements

| If the installation program detects that you have a level of database prior to
| those indicated here, it highlights the need to upgrade your existing license.
| You must upgrade your database before you can use MQSeries Integrator.

| Supported databases are:

| – DB2 Universal Database for AIX Version 6.1 (Enterprise Edition, Connect
| Enterprise Edition, or Extended Enterprise Edition)

| – Oracle Version 8.1.5

| – Sybase Version 11 or Version 12

| Each database requires an ODBC driver: the driver for DB2 is supplied by DB2,
| the drivers for Oracle and Sybase are included with MQSeries Integrator.

| If you do not have a suitable database installed, the MQSeries Integrator
| installation program launches the installation program for DB2 Version 6.1,
| which is included on the MQSeries Integrator CD.

| DB2 installation requires an additional 250MB of disk storage. You will also
| need approximately 10MB for each set of tables you create (for the broker
| tables, for the configuration repository, and for message repository).

| DB2 has no additional prerequisites.

| This DB2 product has restricted license terms and agreements. You must only
| use this DB2 installation in association with your licensed use of MQSeries
| Integrator for message management, and only the MQSeries Integrator
| components can make calls to the DB2 database.

| The use of a database by the MQSeries Integrator components is independent
| of the use of databases by your applications. You are not restricted to the
| databases listed here for application and data storage and retrieval. If you have
| a requirement for XA coordination, your choice of database can be affected.
| See the MQSeries Integrator Administration Guide for more details about how
| MQSeries Integrator supports transactions.

| For further details of database support for brokers, see Table 5 on page 103.

| System requirements for Sun Solaris components
| This section summarizes the system requirements for the following components
| that can be installed on Sun Solaris:

| � Runtime
| � NEON interface and run-time support
| � Tivoli Interface
| � SDK
| � Online documentation

| Hardware requirements
| The hardware requirements for the Sun Solaris components of MQSeries Integrator
| are:

| � Any Sun SPARC or UltraSPARC desktop or server system

| � Any communicatons hardware supporting NetBIOS, SNA LU6.2, SPX, and
| TCP/IP

| � A minimum of 512MB of RAM to support runtime operation

98 MQSeries Integrator Introduction and Planning

 Disk space � Software requirements

| Disk space required
| The installation requirements depend on which components you install. Full details
| are in the MQSeries Integrator for Sun Solaris Installation Guide: requirements
| range from a minimum of 280MB to approximately 400MB.

| Temporary space of approximately 150MB is required in the /tmp directory. This
| temporary space is freed up when installation is complete.

| Software requirements
| The following software products are prerequisites for operating MQSeries
| Integrator. These prerequisites are checked at installation time but do not cause
| installation to fail. However, you must ensure these prerequisite products are
| available before you start to use MQSeries Integrator. For optional products that
| you can use with MQSeries Integrator see the MQSeries Integrator for Sun Solaris
| Installation Guide.

| Minimum supported levels are shown. Later compatible levels, if any, are supported
| unless otherwise stated. You must refer to the MQSeries Integrator for Sun Solaris
| Installation Guide and the Readme.txt file to check latest CSD and FixPack details
| for these products.

| � Sun Solaris Version 2.7 with the latest Sun recommended patches

| � IBM MQSeries for Sun Solaris Version 5.1

| This must be at service level Corrective Service Diskette (CSD) 2 or above.

| The installation program checks that you have MQSeries for Sun Solaris
| Version 5.1 installed, and that it is at the correct service level. For full details of
| which MQSeries Integrator component requires which MQSeries component,
| see the MQSeries Integrator for Sun Solaris Installation Guide.

| The MQSeries product is supplied in the MQSeries Integrator package. This
| version is packaged with CSD4 applied. You therefore do not have to install
| any additional CSDs if you install MQSeries from this CD. CSD4 is also
| supplied independently in this package: if you already have MQSeries Version
| 5.1 you can install this latest CSD if you choose.

| Note: Version 5.0 is not supported at any service level.

| � A database for internal broker data.

| The MQSeries Integrator broker requires access to a database for internal
| caching and for storing internal control information.

| If your installation choices require a database to be present for internal broker
| support, the MQSeries Integrator installation program checks for a suitable
| database installed on this system.

| If you already have a database product in the supported list below, you can use
| it to support MQSeries Integrator.

| If the installation program detects that you have a level of database prior to
| those indicated here, it highlights the need to upgrade your existing license.
| You must upgrade your database before you can use MQSeries Integrator.

 Chapter 8. System requirements 99

 Windows NT requirements � Hardware requirements

| Supported databases are:

| – DB2 Universal Database for Sun Solaris Version 6.1 (Enterprise Edition,
| Connect Enterprise Edition, or Extended Enterprise Edition)

| – Oracle Version 8.1.5

| – Sybase Version 11 or Version 12

| Each database requires an ODBC driver: the driver for DB2 is supplied by DB2,
| the drivers for Oracle and Sybase are included with MQSeries Integrator.

| If you do not have a suitable database installed, the MQSeries Integrator
| installation program launches the installation program for DB2 Version 6.1,
| which is included on the MQSeries Integrator CD.

| DB2 installation requires an additional 250MB of disk storage. You will also
| need approximately 10MB for each set of tables you create (for the broker
| tables, for the configuration repository, and for message repository).

| DB2 has no additional prerequisites.

| This DB2 product has restricted license terms and agreements. You must only
| use this DB2 installation in association with your licensed use of MQSeries
| Integrator for message management, and only the MQSeries Integrator
| components can make calls to the DB2 database.

| The use of a database by the MQSeries Integrator components is independent
| of the use of databases by your applications. You are not restricted to the
| databases listed here for application and data storage and retrieval. If you have
| a requirement for XA coordination, your choice of database can be affected.
| See the MQSeries Integrator Administration Guide for more details about how
| MQSeries Integrator supports transactions.

| For further details of database support, see Table 5 on page 103.

System requirements for Windows NT components
This section summarizes the system requirements for the following components
that can be installed on Windows NT:

 � Configuration Manager
 � Control Center
 � Broker
� User Name Server

 � SDK
 � Online documentation

 Hardware requirements
The hardware requirements for the Windows NT components are:

� Any Year 2000 compliant Intel Pentium II (or above) processor-based IBM PC
machine or compatible, that is explicitly compatible and fully capable of running
the specified operating system, all the corresponding supporting software
shown below, and any associated applications unmodified.

� Any communications hardware supporting NetBIOS, SNA LU 6.2, SPX, and
TCP/IP.

100 MQSeries Integrator Introduction and Planning

 Disk space � Software requirements

� If all components are installed on a single system (MQSeries Integrator for
Windows NT only), a minimum of 512 megabytes (MB) of RAM are
recommended to support run-time operation.

� If only the Configuration Manager and Control Center components are installed
on a single system, a minimum of 300 megabytes (MB) of RAM are
recommended to support runtime operation.

� If the Configuration Manager, the Control Center, and the User Name Server
are installed on a single system, a minimum of 350 megabytes (MB) of RAM
are recommended to support runtime operation.

Disk space required
The installation requirements depend on which components you install and how
much working space you need. See the MQSeries Integrator Installation Guide for
the appropriate operating system for full details.

If DB2 is installed by the MQSeries Integrator installation program, an additional
250MB is required.

Temporary space of 150MB (for a full installation) to 300MB (for a custom
installation) is required on the operating system drive.

 Software requirements
The following software products are prerequisites for operating MQSeries
Integrator. These prerequisites are checked at installation time but do not cause
installation to fail. However, you must ensure these prerequisite products are
available before you start to use MQSeries Integrator. For optional products that
you can use with MQSeries Integrator see the MQSeries Integrator for Windows NT
Installation Guide.

Minimum supported levels are shown. Later compatible levels, if any, are supported
| unless otherwise stated. You must refer to the MQSeries Integrator for Windows
| NT Installation Guide and the Readme.txt file to check latest CSD and FixPack
| details for these products.

� Microsoft Windows NT Version 4.0, including TCP/IP, NetBIOS, and SPX, with
Service Pack 5 or Service Pack 6A, either of which provides relevant Year
2000 fixes and Euro support.

Note: Service Pack 6 is not supported.

Both Windows NT Workstation and Windows NT Server products are
supported. You can download Windows NT upgrades from the Microsoft Web
site at:

http://support.microsoft.com/directory/

If you intend to run the Tour feature of the Control Center, you must install
Microsoft Internet Explorer Version 5.

� IBM MQSeries for Windows NT Version 5.1.

This must be at service level Corrective Service Diskette (CSD) 2 or above.

The installation program checks that you have MQSeries for Windows NT
Version 5.1 installed, and that it is at the correct service level. For full details of
which MQSeries Integrator component requires which MQSeries component,
see the MQSeries Integrator for Windows NT Installation Guide.

 Chapter 8. System requirements 101

 Software requirements

The MQSeries product is supplied in the MQSeries Integrator package. This
version is packaged with CSD4 applied. You therefore do not have to install
any additional CSDs if you install MQSeries from this CD. CSD4 is also
supplied independently in this package: if you already have MQSeries Version
5.1 you can install this latest CSD if you choose.

Note: Version 5.0 is not supported at any service level.

MQSeries for Windows NT requires a number of other software products to
install and operate a server successfully.

MQSeries for Windows NT server prerequisites are:

– Internet Explorer Version 4.01 with Service Pack 1.

This is available from the Microsoft Web site at:

http://www.microsoft.com

– Active Directory Services Interface Version 2.0.

This is provided on the MQSeries CD.

– Microsoft Management Console Version 1.1.

This is provided on the MQSeries CD.

If you install only an MQSeries client with your MQSeries Integrator
components, check the client installation details in the MQSeries Release
Notes folder to determine the client’s prerequisites.

� A database product.

MQSeries Integrator broker and Configuration Manager components require
access to a database for internal caching and for storing internal control
information. The Control Center and User Name Server do not need access to
a database.

You can use any of the database products listed below:

– DB2 Universal Database for Windows NT Version 5.2 with Fixpack 12, or
Version 6.1 (Enterprise Edition, Connect Enterprise Edition, or Extended
Enterprise Edition).

You must use this database for the Configuration Manager requirements.
This database can also be used with the broker component.

– Microsoft SQL Server Version 6.5 with Service Pack 5a or Version 7 with
Service Pack 1, both of which are Year 2000 compatible.

This database can be used with the broker component.

| – Oracle Version 8.1.5.

| This database can be used with the broker component.

| – Sybase Version 11.5 or Version 12.

| This database can be used with the broker component.

| The installation program checks for a current DB2 installation, and determines
| the level installed. If DB2 is not present, or needs to be upgraded, installation
| asks you if you want to install DB2 6.1 from the CD. You can cancel this if you
| are using another database, or plan to install a suitable database product after
| you have installed MQSeries Integrator.

102 MQSeries Integrator Introduction and Planning

 Databases

| Each database requires an ODBC driver: the drivers for DB2 and SQL Server
| are supplied by the database product, the drivers for Oracle and Sybase are
| included with MQSeries Integrator.

| If you do not have a suitable database installed, the MQSeries Integrator
| installation program launches the installation program for DB2 Version 6.1,
| which is included on the MQSeries Integrator CD.

DB2 installation requires an additional 250MB of disk storage. You will also
need approximately 10MB for each set of tables you create (for the broker
tables, for the configuration repository, and for message repository).

DB2 has no additional prerequisites.

This DB2 product has restricted license terms and agreements. You must only
use this DB2 installation in association with your licensed use of MQSeries
Integrator for message management, and only the MQSeries Integrator
components can make calls to the DB2 database.

The use of a database by the MQSeries Integrator components is independent
of the use of databases by your applications. You are not restricted to the
databases listed here for application and data storage and retrieval. If you have
a requirement for XA coordination, your choice of database can be affected.
See the MQSeries Integrator Administration Guide for more details about how
MQSeries Integrator supports transactions.

For further details of database support, see Table 5.

| Database support
| Table 5 summarizes the supported versions of databases that you can use for the
| broker database and for user databases accessed in message flow nodes on each
| operating system.

| Table 5. Supported databases for brokers and user data

| Database| AIX| Sun Solaris| Windows NT

| DB2E F | 6.1G| 6.1G| 5.2 plus fixpack 12
| 6.1G

| Microsoft SQL Server| not applicable| not applicable| 6.5 plus SP 5a
| 7.0 plus SP1

| Oracle| 7.3.4H
| 8.1.5
| 7.3.4H
| 8.1.5
| 7.3.4H
| 8.1.5

| Sybase| 11.5
| 12
| 11.5
| 12
| 11.5
| 12

| Notes:

| 1. DB2 6.1 is the only DBMS supported by MQSeries Integrator that permits a
| database to participate as a Resource Manager in a distributed XA transaction, and
| coordinated by MQSeries as the XA Transaction Manager. In MQSeries Integrator,
| this is referred to as supporting a globally coordinated message flow.

| 2. Oracle 7.3.4 is not supported for use as a broker internal database.

| 3. You must use DB2 for the configuration and message repository databases
| maintained by the Configuration Manager. No other database is supported for this
| purpose.

| 4. Please check the Readme.txt file for your product to check if a Fixpack is required.

 Chapter 8. System requirements 103

 Clients � National language support

 Client requirements
You can run MQSeries Integrator applications on all platforms for which MQSeries
provides a client.

 License information
Under the terms of the MQSeries Integrator Version 2.0.1 license agreement, you
can install one instance of each component at any one time on any one system,
with the exception of the Control Center. You can install the Control Center on
multiple systems provided that each Control Center is interacting with the same
single Configuration Manager. You can create multiple brokers on a single system.

| For details of which component can be installed on which operating system, see
| Table 4 on page 96.

National language support
MQSeries Integrator Version 2.0.1 is enabled for national language support, but the
user interface and message catalogs are currently available in US English only.

| MQSeries Integrator Version 2.0.1 can process and construct messages in any
| code page for which MQSeries supports conversion to and from unicode, on all
| operating systems. Supported code pages are listed in the MQSeries Application
| Programming Reference.

Note: The NEONRules and NEONFormatter nodes support only the Latin1 code
page in ASCII and EBCDIC. If you include these nodes within a message flow, this
might restrict the messages that can be processed.

MQSeries Integrator interacts with MQSeries installed in any supported language.
All languages for the MQSeries messaging products are included on the single
MQSeries for Windows NT Version 5.1 CD.

All messages generated for internal intercomponent message exchange are
generated in code page 1208.

| DB2 Version 6.1 is fully NLS-enabled and is provided in all supported languages on
| the MQSeries Integrator CD.

104 MQSeries Integrator Introduction and Planning

 MQSeries Integrator network

Chapter 9. Planning your MQSeries Integrator network

This chapter provides information about how you plan network of MQSeries
Integrator resources that support your business processes. It discusses:

� “Planning MQSeries Integrator resources”
� “Designing the MQSeries infrastructure” on page 112
� “Planning database resources” on page 117
� “Planning security” on page 119

| � “Planning for data conversion” on page 131

Planning MQSeries Integrator resources
When you plan an MQSeries Integrator network, you must consider what
components you will install, and where, and how you will organize and use them
together. The information here helps you to do that, by explaining the initial
considerations and by identifying decisions you must make.

Note: You must configure your broker domain subject to your license agreement,
described in “License information” on page 104.

The following areas are discussed:

 � “Naming conventions”
� “Broker domain basics” on page 107
� “Client applications” on page 111

 Naming conventions
When you plan a new MQSeries Integrator network, one of your first tasks must be
to establish a convention for naming the resources that you will create within this
network. There are three aspects to this:

� “MQSeries Integrator resources”
� “MQSeries resources” on page 106
� “Database resources” on page 107

MQSeries Integrator resources
A naming convention for MQSeries Integrator resources throughout your network
ensures that names are unique, and that users creating new resources can be
confident of not introducing duplication or confusion.

The resources you must create and name within an MQSeries Integrator network
are:

� Brokers. When you create a broker, you give it a name that must be unique
within your broker domain. You must use the same name for the same broker
when you create it on the system in which it is installed (using the command
mqsicreatebroker) and when you create a reference to that broker in the
broker domain topology in the Control Center. The latter is a representation of
the physical broker (created by mqsicreatebroker) in the configuration

| repository, and this single name links the two. Broker names are
| case-sensitive except on Windows NT.

� Execution groups. Each execution group name must be unique within a broker.

 Copyright IBM Corp. 2000 105

 MQSeries Integrator network

� Message flows and message processing nodes. Each message processing
node must be unique within the message flow it is assigned to. For example, if
you include two MQOutput nodes to a single message flow, you must provide a
unique name for each.

Message flow names must be unique within the broker domain. Any reference
to that name within the broker domain is always to the same message flow.
You can therefore assign the same message flow to many brokers.

� Message sets and messages. Each message name must be unique within the
message set to which it belongs.

Message set names must be unique within the broker domain. Any reference
to that name within the broker domain is always to the same message set. You
can therefore assign the same message set to many brokers.

The Configuration Manager and User Name Server are not allocated names when
you create them. They are identified only by the name of the MQSeries queue
manager that hosts the services they provide.

There are a few restrictions for naming resources: see the MQSeries Integrator
Administration Guide for details.

 MQSeries resources
All MQSeries Integrator resources have dependencies on MQSeries services and
objects. You must therefore also consider what conventions you will adopt for
MQSeries object names. If you already have an MQSeries naming convention, you
are recommended to use a compatible extension of this convention for MQSeries
Integrator resources.

When you create a broker or a Configuration Manager, you must specify a queue
manager name. This queue manager is created for you if it does not already exist.
Because the broker and Configuration Manager each use a unique set of MQSeries
queues, they can share one queue manager, if appropriate. However, every broker
must have a dedicated queue manager.

If you set up a User Name Server in your broker domain, this also uses a unique
set of MQSeries queues. The User Name Server can therefore also share a queue
manager with a broker, or the Configuration Manager, or both.

You must ensure that every queue manager name is unique within your network of
interconnected queue managers, whether or not every queue manager is in your
MQSeries Integrator network. This ensures that each queue manager can
unambiguously identify the target queue manager to which any given message
must be sent, and that MQSeries Integrator applications can also interact with basic
MQSeries applications.

MQSeries supports a number of objects defined to queue managers. These objects
(queues, channels, and processes) also have naming conventions and restrictions,
that are defined in the MQSeries Command Reference. In summary, the
restrictions are:

� All names must be a maximum of 48 characters in length (channels have a
maximum of 20 characters).

� The name of each object must be unique within its type (for example, queue or
channel).

106 MQSeries Integrator Introduction and Planning

 MQSeries Integrator network

� Names for all objects starting with the characters “SYSTEM.” are reserved for
use by IBM.

For full details of all restrictions and recommendations, you must refer to the
MQSeries Planning Guide and to MQSeries System Administration.

 Database resources
You must consider the naming conventions you use for databases, both for
databases you create for MQSeries Integrator product use (for broker tables, the
configuration repository, and the message repository), and for databases you create
for application use.

Your configuration and message repositories are owned and managed by the
Configuration Manager: because there is only one Configuration Manager you
should not find any conflict with names. Database tables used for brokers can be
unique and local to the broker, or can be shared because the rows of the tables
specific to each individual broker incorporate the name of the broker. You might
need to align the naming of all of these databases with other databases in use in
your broker domain.

| For details of the database tables created for MQSeries Integrator use, see the
| MQSeries Integrator Installation Guide for your product.

You must also ensure that the databases used for application data (accessed
through message flows) are uniquely named throughout your network, so there is
no opportunity for confusion or error.

Broker domain basics
This section covers the following topics:

 � “General guidelines”
� “Supporting publish/subscribe services” on page 108

 General guidelines
Before you start planning a full deployment of MQSeries Integrator, you must
understand a few basic rules and recommendations:

� You must install and initialize a single Configuration Manager within your broker
domain. This component controls and maintains all configuration and
administration information for all the components, and the resources defined to
those components in the configuration repository. It also manages the message
repository that contains all definitions created through the Control Center. The
Configuration Manager therefore defines the scope of the broker domain. It is in
constant contact with all other components created and deployed in the broker
domain.

When you create the Configuration Manager, you specify the security domain
that is used to check users’ authority to complete tasks in the broker domain.
For a discussion of security in the broker domain, see “Planning security” on
page 119.

� You must install at least one Control Center. This provides your only means of
viewing and managing the configuration and message repositories maintained
by the Configuration Manager. The Control Center is a central point of control
for the business processes of your broker domain, enabling you to create and

 Chapter 9. Planning your MQSeries Integrator network 107

 MQSeries Integrator network

modify messages and message flows, and assign and deploy these resources
to the brokers.

The Control Center does not control system administration aspects of the
broker domain. System administration (for example, creation and activation of a
broker) is supported by a set of commands.

� You must install and initialize at least one broker. The broker supports the
services (defined as message flows acting on messages) that are required by
your applications. You must also use the Control Center to define this broker
to the Configuration Manager (using the same name in both places), and
deploy the broker domain topology, to register and activate this broker in the
broker domain. Deployment initiates the communications between the
Configuration Manager and the broker.

The MQSeries Integrator Installation Guide illustrates a step-by-step approach to
setting up a very simple broker domain configuration using the components listed
above. It also illustrates how you can expand that simple broker domain by creating
a User Name Server to employ topic-based security (this is discussed in
“Supporting publish/subscribe services”).

The configuration tasks for establishing a broker domain are supported by a set of
| commands you can enter at the command prompt. On Windows NT, a subset of
| these commands (to create, modify, and delete) are also available through a
| graphical administrative interface, the MQSeries Integrator Command Assistant.

For example, you can create a broker using the command mqsicreatebroker,
delete it using the command mqsideletebroker, and modify its properties using the
command mqsichangebroker. For full details of all these commands, and the
Command Assistant, see the MQSeries Integrator Administration Guide.

Supporting publish/subscribe services
If your applications exploit publish/subscribe services, there are two additional
considerations for planning your broker domain:

� “Setting up collectives.”
� “Employing topic-based security” on page 110.

These are both optional: you can support publish/subscribe services without
implementing either of these options.

Setting up collectives: A collective is a set of one or more brokers that are
directly connected to each other. A single broker can belong to only one collective.
Brokers within one collective can exist on the same physical system, or on separate
systems.

A collective provides these benefits:

� Messages destined for a specific broker in the same collective are transported
directly to that broker and do not need to pass through any intermediate broker.
This improves broker performance and optimizes interbroker publish/subscribe
traffic, relative to a hierarchical tree configuration.

� If your clients are geographically dispersed, you can set up a collective in each
location, and connect the collectives (by joining a single broker in each
collective) to optimize the flow of publications and subscription registrations
through the network.

108 MQSeries Integrator Introduction and Planning

 MQSeries Integrator network

� You can group clients according to the shared topics they publish and
subscribe to.

Clients that share common topics can connect to brokers within a collective.
The common publications will be transported efficiently within the collective,
because they will not pass through any brokers that do not have clients with an
interest in those common topics.

� A client can connect to its nearest broker, to improve its own performance. The
broker receives all messages that match the subscription registration of the
client from all brokers within the collective.

Client application performance is also enhanced for any other service
requested from this broker, or the broker’s queue manager. A single client
application can use both publish/subscribe and point-to-point messaging.

� The number of clients per broker can be reduced by adding more brokers to
the collective to share workload within that collective.

Figure 19 illustrates one way of connecting your publish/subscribe brokers in
collectives.

Collective

Collective

Collective

Collective

Collective
Operating system

image

Collective

Figure 19. Collectives with a broker domain

When you create a collective, the Control Center ensures that the connections you
make to other collectives and brokers are valid. You are prevented from making
connections that would cause messages to cycle forever within the network. You
are also prevented from deploying a collective of brokers that does not have the
required MQSeries connections already defined.

Each broker in the collective maintains a list of its neighbors. A neighbor is a
broker in the same collective, or a broker outside its own collective to which it has
an explicit connection (that is, for which it is acting as a gateway). The complete
list of neighboring brokers forms a broker’s neighborhood.

Any broker with at least one deployed execution group can receive publications and
subscription registrations, and receive and pass on publications from or to its

 Chapter 9. Planning your MQSeries Integrator network 109

 MQSeries Integrator network

neighbors, even if you have not assigned and deployed any message flow
containing a publication node to that broker.

Employing topic-based security: You can choose to limit application access to
particular messages. For example, if a client application publishes messages
containing sensitive company finance information, or personnel details, you might
want to restrict who has access to those messages.

If you want to restrict message access in this way, you must:

� Install and configure a User Name Server to provide information on the
principals valid in your broker domain.

When you create the User Name Server, you specify the security domain that
is used to check users’ authority to publish on and subscribe to specific topics,
and their authority to request persistent delivery. For a discussion of security in
the broker domain, see “Planning security” on page 119.

� Ensure that a topic is associated with every message that is to be restricted
(either specified explicitly in the message by the publisher, or associated with
the message by the input node when it gets the message from the input
queue).

� Create Access Control Lists (ACLs), through the Control Center to associate
principals with topics.

You are strongly recommended to configure a single User Name Server in your
broker domain. However, there are circumstances in which it is appropriate to
consider creating more than one (subject to your license agreement):

 � Performance

If you have a large number of brokers in your broker domain, the requests they
send to the User Name Server can be handled more quickly. You could also
benefit if your broker domain configuration is complex, and brokers can interact
more efficiently (in terms of network traffic) if more than one User Name Server
is installed.

 � Resilience

Although no standby mechanism is provided by MQSeries Integrator, you might
want to be able to redirect requests to a second User Name Server if a system
error occurs on the system of your first User Name Server.

If you do have more than one User Name Server, and more than one is active at
once, you must ensure that all of them are able to reference a single source of
principal definitions.

You must also ensure that each User Name Server is associated with a unique
MQSeries queue manager, to ensure that the User Name Server associated with
the Configuration Manager and each broker can be identified, and that there is no
conflict in the User Name Server’s use of MQSeries fixed name queues.

For more details of administering User Name Servers in your broker domain, see
the MQSeries Integrator Administration Guide.

How publications and subscriptions flow through the network: When a client
registers a subscription, the broker registers a matching subscription with its
neighbors. This is called a “proxy subscription”. If an identical subscription has

110 MQSeries Integrator Introduction and Planning

 MQSeries Integrator network

already been registered, the broker does not register again: only one proxy
subscription will be in effect at any one time. Likewise, when a client deregisters a
subscription from a broker, the broker de-registers the proxy subscription from its
neighbors, if the client is the last (or only) client for which the broker is holding the
proxy.

Content-based filters are not included in proxy subscriptions. Therefore a superset
of messages might be received by the broker to which a subscriber that specified a
content filter is registered, but will not be passed on to that subscriber by its local
broker unless there is a content match.

All proxy subscriptions are made with the PersistenceAsPublisher option. This
results in messages being delivered to neighboring brokers with the persistence
specified by the publisher. Client subscription persistence options only take effect at
the local broker (that is, the broker with which the clients have registered).

Therefore a subscriber that requests persistent delivery always receives a
persistent message for matching publications. However, the message could be
delivered through the broker network as a nonpersistent message if this was
specified by the publisher. If a problem occurs during the transmission of a
message between publisher and subscriber, it is therefore possible that the
subscriber will never get the message despite specifying persistent delivery as an
option on subscription registration.

 Client applications
MQSeries Integrator client applications are applications that use the services
provided by the message flows deployed within one or more brokers in the broker
domain.

These applications can use one of two techniques for gaining access to the
broker’s services:

� An application can use an MQSeries client connection. You can use all of the
MQSeries clients supported by MQSeries Version 5.1, giving you the freedom
to connect applications running in a wide variety of environments into your
broker domain. An application running on the same system as the queue
manager to which it connects can also use a client connection.

| � An application running on the same system as a broker can use a local
| connection to the queue manager that hosts that broker.

For more details about applications, putting and getting messages, and the use of
MQSeries clients, see MQSeries Clients and the MQSeries Application
Programming Guide. MQSeries Integrator does not impose any particular
conditions or restrictions on applications.

The Control Center application
The Control Center is a special MQSeries Integrator client application. It uses an
MQSeries client for Java connection over TCP/IP to the broker that hosts the
Configuration Manager, regardless of whether the Configuration Manager is on the
same system as the Control Center or a different system.

When the Configuration Manager is created, the required server connection
channel is defined. This allows any number of Control Center clients to connect to
the Configuration Manager’s queue manager. When you invoke the Control Center,

 Chapter 9. Planning your MQSeries Integrator network 111

 MQSeries

it dynamically creates the client connection channel to complete the connection with
the Configuration Manager.

Designing the MQSeries infrastructure
MQSeries Integrator depends on the MQSeries transport services to support
internally generated communications between components. Some of these
resources are created for you, when you create MQSeries Integrator components
that depend on them. Others depend on the exact setup of your broker domain,
and you must therefore create these resources yourself.

Communications between MQSeries Integrator components are
protocol-independent, with the exception of the connection between every instance
of the Control Center and the Configuration Manager. This must be a TCP/IP

| connection. Other connections can use any of the protocols supported by the
| MQSeries messaging product for the operating system for your MQSeries Integrator
| product.

All applications that use broker services must also use MQSeries to send and
receive all messages. The resources required by your applications (queues and
client connection and server connection channels) are application specific, and you
must therefore create these resources yourself.

The information here concentrates on the specific requirements that MQSeries
Integrator imposes on an MQSeries network. For a full description of designing
and connecting an MQSeries network, see MQSeries Intercommunication, which
covers the basics, such as setting up transmission queues and channels, in detail.

For more specific details of how to implement the MQSeries infrastructure for your
MQSeries Integrator broker domain, see the MQSeries Integrator Administration
Guide.

This section includes the following information:

� “MQSeries resources for brokers”
� “MQSeries resources for the Configuration Manager” on page 113
� “MQSeries resources for the User Name Server” on page 114
� “MQSeries resources for the Control Center” on page 114
� “MQSeries resources for client applications” on page 115
� “MQSeries clusters” on page 115

MQSeries resources for brokers
Each broker depends on a number of MQSeries resources, some of which are
always required, others are dependent on the broker domain setup:

1. Each broker must be associated with a queue manager to host its services.
You must specify a queue manager name when you create the broker. If this
queue manager does not exist, it is created for you.

| The broker cannot share a queue manager with any other broker. However, it
| can share a queue manager with the Configuration Manager, or the User Name
| Server, or both, subject to the installation options in effect for your MQSeries
| Integrator product. See Table 4 on page 96 for a summary of the options
| available.

112 MQSeries Integrator Introduction and Planning

 MQSeries

The broker and its queue manager can share the same name, subject to
naming restrictions for both products.

2. Each broker must have a number of fixed-name queues on its queue manager.
These allow it to exchange information with other components in the broker
domain. These queues are defined for you when the broker is created. The use
of these fixed-name queues dictates that each broker to be hosted by a unique
queue manager.

3. Each broker must communicate with the Configuration Manager. If the broker
and the Configuration Manager do not share a queue manager, you must
define the channels and transmission queues that support communications
between the two queue managers.

4. If you have included a User Name Server in your broker domain, each broker
must communicate with it. If the broker and the User Name Server do not share
a queue manager, you must define transmission queues and channels that
support two-way communications between the two queue managers.

5. The broker’s queue manager must have a listener to receive messages from
other components that do not share its queue manager, and from clients on
other physical systems. You must create a listener for every protocol used for
connections to the broker. If any connection uses the TCP/IP protocol, you
must decide which port the listener must listen on.

6. If the broker is connected to other brokers, either in a collective, or to
communicate with another collective, the queue manager needs transmission
queues and channel definitions to support two-way communications with each
of the other brokers’ queue managers.

MQSeries resources for the Configuration Manager
The Configuration Manager depends on a number of MQSeries resources, some of
which must be available, others are dependent on the broker domain setup:

1. The Configuration Manager must be associated with a queue manager to host
its services. You must specify a queue manager name when you create the
Configuration Manager. If this queue manager does not exist, it is created for

| you. The Configuration Manager can share a queue manager with a broker, or
| the User Name Server, or both, subject to the installation options in effect for
| your MQSeries Integrator product. See Table 4 on page 96 for a summary of
| the options available.

2. The Configuration Manager must have a number of fixed-name queues on its
queue manager. These allow it to exchange information with other components
in the broker domain. These queues are defined for you when the Configuration
Manager is created.

3. The Configuration Manager must communicate with every broker in the broker
domain. You must define transmission queues and channels to support
two-way communications between the Configuration Manager and every broker
except the one (if defined) that shares its queue manager.

4. If you have included a User Name Server in your broker domain, the
Configuration Manager must communicate with it. If the Configuration Manager
and the User Name Server do not share a queue manager, you must define
transmission queues and channels to support two-way communications
between the two queue managers.

 Chapter 9. Planning your MQSeries Integrator network 113

 MQSeries

5. The Configuration Manager’s queue manager must have a listener to receive
messages from the Control Center, and from other components and clients that
do not share its queue manager. You must create a listener for every protocol

| used for the inter component connections. If the connection is TCP/IP you
| must also decide which port the listener must listen on: no other listener must
| be active on this port.

6. The Configuration Manager’s queue manager must have a server connection
This is defined for you when the Configuration Manager is created. Every
Control Center client can use this single definition.

MQSeries resources for the User Name Server
The User Name Server depends on a number of MQSeries resources, some of
which must be available, others are dependent on the broker domain setup:

1. The User Name Server must be associated with a queue manager to host its
services. You must specify a queue manager name when you create the User
Name Server. If this queue manager does not exist, it is created for you.

| The User Name Server can share a queue manager with a broker, or the
| Configuration Manager, or both, subject to the installation options in effect for
| your MQSeries Integrator product. See Table 4 on page 96 for a summary of
| the options available.

2. The User Name Server must have a number of fixed-name queues on its
queue manager. These allow it to exchange information with other components
in the broker domain. These queues are defined for you when the User Name
Server is created.

3. The User Name Server must communicate with the Configuration Manager. If
the two do not share a queue manager, you must define the transmission
queues and channels to support two-way communications between the two
queue managers.

4. The User Name Server must communicate with every broker in the broker
domain. You must define transmission queues and channels to support
two-way communications between the User Name Server and every broker
except the one (if defined) that shares its queue manager.

5. The User Name Server’s queue manager must have a listener to receive
messages from other components that do not share its queue manager. You
must create a listener for every protocol used for connections to the User Name
Server. If you create a TCP/IP listener, you must also decide which port it must
listen on.

MQSeries resources for the Control Center
The Control Center depends on a number of required MQSeries resources:

1. The fixed-name queues defined by the Configuration Manager (described
above).

2. The Configuration Managers’s listener (described above).

3. The server connection defined to the Configuration Manager’s queue manager
(described above). This is always defined as a TCP/IP connection and cannot
be changed.

4. The client connection. This is dynamically created when you initialize the
Control Center.

114 MQSeries Integrator Introduction and Planning

 MQSeries

All necessary resources are defined and created for you, and you do not have to
take any additional action to enable the Control Center.

MQSeries resources for client applications
A client application can run on a system anywhere in the MQSeries network. The
application can access MQSeries Integrator services in two ways.

1. The application can make a local connection to either:

� The broker’s queue manager

You do not have to define any MQSeries resources to support this client
configuration.

� Another queue manager in the network

You must ensure that definitions are in place to support communications
between the queue manager to which the client has connected and the
queue manager that hosts the broker that provides the required service.

2. The application can make an MQSeries client connection to either:

� The broker’s queue manager

You must set up the appropriate client connection and server connection
definitions to support this option.

� Another queue manager in the network

You must ensure that definitions are in place to support communications
between the queue manager to which the client has connected and the
queue manager that hosts the broker that provides the required service.

Applications can only get messages from queues owned by the queue manager to
which it is connected (this is true for all MQSeries applications). Therefore, if an
application expects to receive messages from a queue populated by a service
within a particular broker and owned by that broker’s queue manager, it must
connect to that broker’s queue manager (either local, or using an MQSeries client
connection).

An application that puts messages, however, can be connected to any queue
manager in the network, as long as the queue manager can resolve the target
destination in some way. In all cases, the queue manager to which the client
application is connected must know the whereabouts of the queue or queues to
which the application puts messages (for example using remote queue definitions).

 MQSeries clusters
When you design the MQSeries network underlying your MQSeries Integrator
broker domain, you must consider whether it is desirable to use clustering. Queue
manager clusters bring two significant benefits:

� Reduced system administration. Clusters need fewer definitions to establish a
network, and allow you to set up and change your network more quickly and
easily.

� Increased availability and workload balancing. In addition to simpler
administration, you can benefit by defining instances of the same queue on
more than one queue manager, thus distributing workload through the cluster.

 Chapter 9. Planning your MQSeries Integrator network 115

 MQSeries

You can use clusters with MQSeries Integrator, but must consider the following
points:

� For broker, Configuration Manager, and User Name Server administration:

If you define the queue managers that support your brokers, the Configuration
Manager, and the User Name Server to a cluster, you can benefit from the
simplified administration provided by MQSeries clusters. You might find this
particularly relevant for the brokers in a collective, which must all have
MQSeries interconnections.

� For SYSTEM.BROKER queues:

The SYSTEM.BROKER queues are defined for you when you create MQSeries
Integrator components, and are not defined as cluster queues. You must not
change this attribute.

� For message flow input queues:

– If you define an input queue as a cluster queue, you must consider the
implications for the order of messages or the segments of a segmented
message. The implications are the same as they are for any MQSeries
cluster queue. In particular, the application must ensure that if it is sending
segmented messages then all segments will be processed by the same
target queue, and therefore by the same instance of the message flow at
the same broker.

� For message flow output queues:

– MQSeries Integrator always specifies MQOO_BIND_AS_Q_DEF when it
opens a queue for output. If you expect segmented messages to be put to
an output queue, or want a series of messages to be handled by the same
process, you must specify DEFBIND(OPEN) when you define that queue.
This ensures that all segments of a single message, or all messages within
a sequence, are put to the same target queue and are processed by the
same instance of the receiving application.

– If you create your own output nodes, you are recommended to specify
MQOO_BIND_AS_Q_DEF when you open the output queue, and
DEFBIND(OPEN) when you define the queue, if you need to guarantee
message order, or ensure a single target for segmented messages.

 � For publish/subscribe:

– If the target queue for a publication is a cluster queue, you must deploy the
publish/subscribe message flow to all the brokers on queue managers in
the cluster. However, the cluster does not provide any of the failover
function to the broker domain topology and function. If a broker to which a
message is published, or a subscriber registers, is unavailable, the
distribution of the publication or registration will not be taken over by
another broker.

– When a client registers a subscription with a broker running on a queue
manager that is a member of a cluster, the broker forwards a proxy
registration to its neighbors within the broker domain: the registration details
are not advertised to other members of the cluster.

For a fuller understanding and discussion of clusters, and the implications of using
cluster queues, see the MQSeries Queue Manager Clusters book.

116 MQSeries Integrator Introduction and Planning

 Databases

Planning database resources
MQSeries Integrator requires a number of databases to contain control and
configuration information. You must create these immediately after installation,
because they are populated when you create your MQSeries Integrator
components and resources.

Under normal circumstances, you do not need to be aware of the nature of these
databases, or how the various components make use of, or update, the information
they contain. However, it is useful to understand these basics:

 � “Database requirements”
� “Databases and code pages” on page 118
� “Database locations” on page 118
� “Database backup and recovery” on page 119

 Database requirements
MQSeries Integrator uses three sets of tables within databases. You can choose to
create these in a single database, or you can create a different database for each
set.

The three sets of tables required by MQSeries Integrator are:

1. The configuration repository. This set of tables is managed by the Configuration
Manager. It contains all configuration information for you broker domain. When
you create and modify the resources in your broker domain using the Control
Center (for example, if you create message flows), the changes you make are
initially stored in your local system. You must deploy these changes for those
updates to be processed by the Configuration Manager and reflected in the
configuration repository.

The Configuration Manager is the only component that accesses this database.
You can view and manage the data in this repository using the Control Center,
which interacts with the Configuration Manager on your behalf.

You must create this database using DB2.

2. The broker database (also known as the broker’s local persistent storage). This
contains control information used by the brokers in maintaining their state and
other internal information. The database contains one set of tables: the rows
within each table include the broker name to ensure the integrity of the data.

When you make changes to the broker’s environment, and deploy those
changes, the Configuration Manager sends messages to the broker to update
its local persistent store. For example, if you assign and deploy a new message
flow to the broker, the data is updated.

| You can create the broker database to hold this information using the following
| database products:

| � IBM DB2 Universal Database
| � Microsoft SQL Server (on Windows NT only)
| � Oracle Version 8.1.5
| � Sybase Version 11 or Version 12

| You can use a separate database for each broker if you choose. For more
| information about supported databases, see Table 5 on page 103.

 Chapter 9. Planning your MQSeries Integrator network 117

 Databases

3. The message repository. This set of tables is managed by the Configuration
Manager. It contains all the message and message set definitions you have
created using the Control Center and deployed in your broker domain. If you
import externally defined message definitions using the Control Center, these
are also stored in this repository.

You must create this database using DB2.

This repository does not contain definitions for messages created using the
NEONFormatter user interface. For information on the database requirements
for NEON message formats, see Appendix A, “Planning for migration and
integration” on page 143.

| MQSeries Integrator uses ODBC to connect to the message repository and the
| broker databases: ODBC drivers for DB2 and SQL Server are provided with the
| database products, ODBC drivers for Oracle and Sybase are provided by MQSeries
| Integrator.

Databases and code pages
Subscription data retrieved from client applications (for example, topics from
publishers and subscribers, and content filters from subscribers) and the character
data entered using the Control Center (for example, message flow names) are
stored in the configuration and message repositories. This data is translated from
its originating code page to the code page of the process in which the broker or
Configuration Manager is running, and then by the database manager to the code
page in which the database or databases were created.

To preserve data consistency and integrity, you must ensure that all this
subscription data and Control Center character data is originated in a compatible
code page to the two code pages to which it is translated. If you do not do so,
unpredictable results and loss of data might result.

Data stored in the broker’s local persistent store is not affected in this way.

The restrictions described above are not applicable to user data in messages. It is
your responsibility to ensure that any data in messages generated by your
applications is compatible with the code page of any database you access from
your message flows.

SQL statements generated as a result of explicit reference to databases within
message processing nodes can contain character data that has a variety of
sources. For example, it might have been entered through the Control Center,
derived from message content, or read from another database. All this data is
translated from its originating code page to the code page in which the broker is
running, and then by the database manager to the code page in which the
database was created. You must ensure that these three code pages are
compatible to avoid data conversion problems.

 Database locations
The databases used by the product components can be located on any system that
is accessible by the component that creates and maintains the tables within them.

118 MQSeries Integrator Introduction and Planning

 Security

You can set up a local database for each component if you choose, or you can set
up a central database on a shared server, and set up remote access to that server
for each and every system hosting a component that requires that access.

There are advantages and disadvantages to local and remote database usage. You
must refer to the documentation supporting the database you are using for
MQSeries Integrator to determine the best options for your specific environment.

Note: The User Name Server has no requirement for access to any of these
databases.

Database backup and recovery
You must include the databases used by MQSeries Integrator in your regular
database backup routines to ensure that the data critical to the operation of your
broker domain is secure and recoverable in the event of system or disk storage
failure.

| For more details of the databases and tables, see the MQSeries Integrator
| Installation Guide for your product. For more information about recovery
| procedures, see the MQSeries Integrator Administration Guide.

 Planning security
An important part of planning your broker domain is considering the security
controls that are available, and the levels of security you want to implement for
those controls.

| MQSeries Integrator exploits MQSeries and the operating system facilities to control
| security of components and tasks:

| � Topic-based security.

| The MQSeries Integrator User Name Server interacts with the operating system
| security system to control user and group access to publications and
| subscriptions.

| � Operational control of components.

| MQSeries Integrator uses the operating system access control.

| � Operational roles used in the Control Center.

| MQSeries Integrator uses Windows NT access control. (The Control Center
| runs on Windows NT only.)

 Chapter 9. Planning your MQSeries Integrator network 119

 Security

| You must review the following information to understand the implications for your
| configuration. The following sections describe the controls that are available, and
| how they affect the operation of your broker domain:

| � “Security and principals”
| � “Operational security” on page 126
| � “Control Center security” on page 128
| � “Application security” on page 129
| � “Message flow security” on page 129

| Security and principals
| Security control of MQSeries Integrator components, resources, and tasks depends
| on the definition of users and groups of users (principals) to the security subsystem
| of the operating system (the Windows NT User Manager or the UNIX user/group
| database).

| The MQSeries Integrator local groups are:

| � mqbrkrs
| � mqbrasgn
| � mqbrdevt
| � mqbrops
| � mqbrtpic

| The requirement for and creation of these groups differs on each operating system:

| � On Windows NT, MQSeries Integrator creates all these groups on the system
| on which it is installed.

| � On AIX systems, MQSeries Integrator creates the local group mqbrkrs on the
| system on which a component is installed.

| � On Sun Solaris systems, you must create the local group mqbrkrs yourself,
| before you install MQSeries Integrator components.

| � The groups other than mqbrkrs are used to control Control Center tasks and
| configuration repository access, and therefore are not required on UNIX
| systems.

You must assign users (or other groups) to the local groups to allow them to
perform specific tasks. These assignments are summarized in Table 7 on
page 125 and Table 6 on page 124.

The local groups provide the following authorities:

 � mqbrkrs

Users in this group are authorized as service user IDs for the brokers, the
Configuration Manager, and the User Name Server. (Service user IDs have
other authority requirements, detailed in Table 7 on page 125.)

 � mqbrdevt

Members of this group (which can be users or other groups) are permitted to
perform the following tasks in the Control Center:

– Design messages, message sets, and message flows.

120 MQSeries Integrator Introduction and Planning

 Security

 � mqbrasgn

Members of this group (which can be users or other groups) are permitted to
perform the following tasks in the Control Center:

– Manage execution groups within brokers.

– View messages and message flows.

– Assign message flows to execution groups.

– Assign message sets to brokers.

 � mqbrops

Members of this group (which can be users or other groups) are permitted to
perform the following tasks in the Control Center:

– Create brokers. (This creates a reference within the Control Center and the
configuration repository to a broker you have created on the system on
which it is to execute. This reference must have the same name as the
physical broker).

– Deploy, start, and stop message flows.

– Start and stop trace activity on message flows.

– Manage and deploy the broker domain topology, including collectives.

– View the whole deployed system, including messages, message flows, and
subscriptions.

 – Deploy topics.

– View logs that report on the deployment activity.

 � mqbrtpic

Members of this group (which can be users or other groups) are permitted to
perform the following tasks in the Control Center:

– Manage topics, and the access controls lists for the topic tree.

 – Deploy topics.

– View the logs that report on that deployment activity.

MQSeries Integrator security architecture is designed to be platform independent.
If you are running MQSeries Integrator in an environment that includes clients on
heterogeneous platforms, you are recommended to ensure that all the principals
you define for MQSeries Integrator task authorizations are limited to eight
characters or less. If you have a Windows NT homogeneous environment, you can
create principals of up to twelve bytes (the limit set by the user identifier field in the
MQSeries MQMD, which is used by MQSeries Integrator), but you must only use
these longer names if you are sure you will not later include a UNIX system in your
MQSeries Integrator network.

 Chapter 9. Planning your MQSeries Integrator network 121

 Security

MQSeries Integrator has three primary sets of principals:

� Operational user IDs. These are defined as:

– The user IDs that configure and manage MQSeries Integrator components.

– The service user IDs under which the major components (broker,
Configuration Manager, and User Name Server) operate. You must specify
a service user ID when you create each component.

For more details about operational user IDs, see “Operational security” on
page 126.

� Control Center user IDs. You must assign these to the MQSeries Integrator
groups according to the set of tasks they will undertake. These groups are
checked by the Configuration Manager, and must be defined to the security
domain that you specify when you create the Configuration Manager. The user
IDs you assign to these groups must be defined to the same security domain.

For more details about Control Center user IDs, see “Control Center security”
on page 128.

� Application user IDs. Users that participate in publish/subscribe must be
assigned to groups that you create to control topic-based security. These
groups and users must be defined to the security domain that you specify when
you create the User Name Server. If you create the User Name Server on
Windows NT, you are recommended to specify the same security domain as
the one you specify when you create the Configuration Manager, but you are
not forced to do this.

For more details about application user IDs, see “Application security” on
page 129.

Using Windows NT security domains
MQSeries Integrator draws principals from either a Windows NT local account
security domain, or a Windows NT primary domain, or a Windows NT trusted
domain. For more information about Windows NT security domains, refer to the
Microsoft web site at

http://www.microsoft.com/ntserver/security/deployment/default.asp

In particular, you are advised to review the contents of the Security Deployment
Resources Roadmap on this Web page.

Principals must be defined to a specific Windows NT security domain. You must
decide which domain you want to use for MQSeries Integrator, and define your
principals to that domain (using the Windows NT User Manager on the security
domain server). If you already have a security domain set up to control access to
MQSeries resources, you are advised to use this same domain for MQSeries
Integrator: this will not cause any conflict and will ease your security administration.

122 MQSeries Integrator Introduction and Planning

 Security

If you plan to use MQSeries Integrator within a primary or trusted security domain,
global groups are created in your primary or trusted security domain controller
during installation. The global groups, that mirror the local groups, are:

 � Domain mqbrkrs
 � Domain mqbrasgn
 � Domain mqbrdevt
 � Domain mqbrops
 � Domain mqbrtpic

(These groups are not used by MQSeries for any purpose, therefore the 12
character restriction does not apply.)

These groups must be made members of the local security domain’s equivalent
MQSeries Integrator groups (Domain mqbrkrs must be a member of mqbrkrs,
and so on).

� If you install MQSeries Integrator on the domain controller of a primary or a
trusted security domain, the MQSeries Integrator installation program creates
the local and global groups, and adds the global groups to the local groups.

If you do not intend to install MQSeries Integrator on the domain controller, you
can create these groups yourself using the Windows NT User Manager.

� If you install MQSeries Integrator on a workstation member of a primary
security domain, the MQSeries Integrator installation program creates the local
groups. If the global groups already exist in the primary security domain, it also
adds each global group to the appropriate local group in the local domain.

� If you install MQSeries Integrator on a workstation member of a trusted domain,
MQSeries Integrator cannot recognize the trusted domain, and does not add
the global groups to the local groups. You must do this step yourself.

� If you install MQSeries Integrator on a workstation that is a member of both a
trusted security domain and a primary security domain, the installation program
creates the local groups. If the global groups already exist in the primary
security domain, it also adds each global group to the appropriate local group
in the local domain. It cannot detect the trusted domain and therefore does not
add the global groups of the trusted security domain to the local groups. If you
want these trusted security domain global groups in the local groups instead of,
or in addition to, the primary security global groups, you must make these
updates yourself.

When you define a new user ID to your security domain, you must assign this ID to
the domain group that is authorized for the tasks this user ID is to perform, so that
it is authorized globally.

For further details of how to implement security in the Windows NT environment,
see the MQSeries Integrator Administration Guide.

| Using UNIX security domains
| On UNIX platforms, MQSeries Integrator draws principals from the operating
| system’s user and group tables.

 Chapter 9. Planning your MQSeries Integrator network 123

 Security

| Summary of authorizations
| The authorizations required for the major tasks in both Windows NT and UNIX
| environments are summarized here. For further details, refer to the MQSeries
| Integrator Administration Guide.

| Table 6 summarizes the authorization and security requirements for some of the
| major tasks in the UNIX environments.

| Table 7 on page 125 summarizes the authorization and security requirements for
| some of the major tasks in the Windows NT environment.

| Table 6. Summary of authorization in the UNIX environments

| User is...| UNIX domain

| Creating broker, User Name Server| � Member of mqbrkrs
| � The broker or User Name Server will run under the service
| user ID specified on the create command in most
| situations: however ‘root’ can nominate any user to run the
| broker.

| Installing| User must be a superuser

| Uninstalling| User must be a superuser

| Changing broker, User Name Server| User that the broker or User Name Server runs as, or ‘root’

| Deleting broker, User Name Server| User that the broker or User Name Server runs as, or ‘root’

| Starting and stopping broker, User Name
| Server
| Member of mqbrkrs
| The broker or User Name Server will run under the service
| user ID specified in the create command

| Listing broker, User Name Server| Member of mqbrkrs

| Changing, displaying, retrieving trace
| information
| Member of mqbrkrs

| Running User Name Server (service user ID| Member of mqbrkrs

| Running Configuration Manager (service user
| ID)
| Not applicable on UNIX systems

| Running broker (MQSeries trusted appl)
| (service user ID)
| Member of mqbrkrs

| Running broker (MQSeries trusted appl)
| (service user ID)
| � Service user ID must be mqm
| � mqm must be a member of mqbrkrs

| Clearing, joining, listing MQSeries
| publish/subscribe brokers
| Member of mqbrkrs

| Running Control Center| Not applicable on UNIX systems

| Running publish/subscribe applications| Any user, subject to MQSeries Integrator topic and MQSeries
| queue access control

Table 7 on page 125 summarizes the security requirements for the major tasks. It
illustrates what group memberships are required if you are using a local security
domain defined on your local system SALONE, or a primary domain named
PRIMARY, or a trusted domain named TRUSTED. The contents of this table
assume that you have created both the Configuration Manager and the User Name
Server with the same security domain.

124 MQSeries Integrator Introduction and Planning

 Security

Table 7 (Page 1 of 2). Summary of authorizations

User is... Local domain (SALONE) Primary Domain (PRIMARY) Trusted domain (TRUSTED)

Installing � Member of
Administrators

Not applicable. Not applicable.

Uninstalling � Member of
Administrators

Not applicable. Not applicable.

Creating
broker,
Configuration
Manager, User
Name Server

� Must be a user ID
defined in SALONE

 � Member of
Administrators

� Must be a user ID defined in
PRIMARY

 � Member of
SALONE\Administrators

� Must be a user ID defined in
TRUSTED

 � Member of
SALONE\Administrators

Starting broker,
Configuration
Manager, User
Name Server

 � Member of
Administrators

Not applicable. Not applicable.

Running User
Name Server
(service user
ID)

� Must be a user ID
defined in SALONE

� Member of mqbrkrs

� Must be a user ID defined in
PRIMARY

 � Member of
PRIMARY\Domain mqbrkrs

� Must be a user ID defined in
TRUSTED

 � Member of
TRUSTED\Domain mqbrkrs

Running
Configuration
Manager
(service user
ID)

� Must be a user ID
defined in SALONE

� Member of mqbrkrs
� Member of mqm

� Must be a user ID defined in
PRIMARY

 � Member of
PRIMARY\Domain mqbrkrs

� Member of SALONE\mqm
(see note 1)

� Must be a user ID defined in
TRUSTED

 � Member of
TRUSTED\Domain mqbrkrs

 � Member of
SALONE\Domain mqm (see
note 2)

Running broker
(service user
ID) (see note
5)

� Must be a user ID
defined in SALONE

� Member of mqbrkrs

� Must be a user ID defined in
PRIMARY

 � Member of
PRIMARY\Domain mqbrkrs

� Must be a user ID defined in
TRUSTED

 � Member of
TRUSTED\Domain mqbrkrs

Running
Control Center
(see note 3)

� Must be a user ID
defined in SALONE (see
note 4)
For example,
SALONE\User1 is valid,
PRIMARY\User2 and
TRUSTED\User3 are
not

� Member of one or more
of mqbrasgn,
mqbrdevt, mqbrops,
mqbrtpic

� Must be a user ID defined in
PRIMARY (see note 4)
For example, PRIMARY\User2
is valid, SALONE\User1 and
TRUSTED\User3 are not.

� Member of one or more of
PRIMARY\Domain mqbrasgn,
PRIMARY\Domain mqbrdevt,
and so on.

� Must be a user ID defined in
TRUSTED (see note 4)
For example, TRUSTED\User3
is valid, SALONE\User1 and
PRIMARY\User2 are not.

� Member of one or more of
TRUSTED\Domain mqbrasgn,
TRUSTED\Domain mqbrdevt,
and so on.

 Chapter 9. Planning your MQSeries Integrator network 125

 Security

Table 7 (Page 2 of 2). Summary of authorizations

User is... Local domain (SALONE) Primary Domain (PRIMARY) Trusted domain (TRUSTED)

Running
publish/subscribe
applications

� Must be a user ID
defined in SALONE
For example,
SALONE\User1 is valid,
PRIMARY\User2 and
TRUSTED\User3 are
not.

� Must be a user ID defined in
PRIMARY
For example, PRIMARY\User2
is valid, SALONE\User1 and
TRUSTED\User3 are not.

� Must be a user ID defined in
TRUSTED
For example, TRUSTED\User3
is valid, SALONE\User1 and
PRIMARY\User2 are not.

Notes:

1. If you are running in a primary domain, you can also:

� Define the user ID in the domain PRIMARY.

� Add this ID to the group PRIMARY\Domain mqm.

� Add the PRIMARY\Domain mqm group to the group SALONE\mqm.

2. If you are running in a trusted domain, you can also:

� Define the user ID in the domain TRUSTED.

� Add this ID to the group TRUSTED\Domain mqm.

� Add the TRUSTED\Domain mqm group to the group SALONE\mqm.

3. All Control Center users need read access to the MQSeries java\lib subdirectory of the MQSeries home directory (the
default is X:\Program Files\MQSeries, where X: is the operating system disk). This access is restricted to users in the local
group mqm by MQSeries. MQSeries Integrator installation overrides this restriction and gives read access for this
subdirectory to all users.

4. If a valid user ID is defined in the domain used by the Configuration Manager (for example, PRIMARY\User4) an identical
user ID defined in a different domain (for example, DOMAIN2\User4) will be able to access the Control Center with the
authorities of PRIMARY\User4.

5. The broker can be run as an MQSeries trusted application. If it is, security requirements are changed. See the MQSeries
Integrator Administration Guide for full details.

 Operational security
When you create and activate your broker domain, there are two aspects of
security that control the authorizations of users to perform these tasks:

� Configurational security, that controls the right of users to configure and
manage MQSeries Integrator resources using the supplied commands.

� Run-time security, that controls the right of users to execute processes as
service user IDs.

For a full definition of the commands that support these tasks and the authority
required to invoke each one, see the MQSeries Integrator Administration Guide.

For a better understanding of MQSeries and database resource security for
MQSeries Integrator components, see the MQSeries Integrator Administration
Guide. For further details of MQSeries security, refer to MQSeries Planning and
MQSeries System Administration. For further details of database security, refer to
the documentation for the database you are using.

126 MQSeries Integrator Introduction and Planning

 Security

 Configurational security
MQSeries Integrator provides a set of configuration and operation commands that
support system administration tasks that are not available through the Control
Center.

The authorizations required by the user invoking these commands varies,
depending on the task the command performs. These tasks are:

� Creating, changing, and deleting broker, the Configuration Manager, and the
User Name Server

� Starting, stopping, listing, and tracing brokers, the Configuration Manager, and
the User Name Server

The authorizations required for a subset of these commands is illustrated in
Table 7 on page 125 and Table 6 on page 124. You can find a more complete
summary of authorizations in the MQSeries Integrator Administration Guide.

 Run-time security
When you start the broker, Configuration Manager, and User Name Server
components on Windows NT, they are started up as Windows NT services running
under the user ID that you specify as the service user ID when you create that
component. When you start the broker or the User Name Server components on
UNIX, they are started as normal processes running under the service user ID.

The authorizations required by these user IDs are illustrated in Table 7 on
page 125 and Table 6 on page 124. You can find a more complete summary of
authorizations in the MQSeries Integrator Administration Guide.

You must also use the MQSeries facilities to authorize the broker service user IDs
to access the message flow input and output queues. Typically, this needs to be
set for get and inq for input queues, and put and setall for output queues. See
MQSeries System Administration for more information about setting queue access
authorities.

| Database security
| The service user IDs for the brokers and the User Name Server must also be
| authorized to access databases:

| � The Configuration Manager service user ID must be authorized for create and
| update tasks on the database in which both configuration and message
| repositories are defined. (This might be one or two databases: both must be
| DB2.)

| � Each broker service user ID must be authorized for create and update tasks on
| the database that contains the broker internal tables.

| � Each broker service user ID must also be authorized for the appropriate access
| for every database referenced and accessed by a message processing node in
| any deployed message flow.

 Chapter 9. Planning your MQSeries Integrator network 127

 Security

Control Center security
All users can invoke the Control Center: there is no initial check when the program
is invoked. However, in order to perform Control Center tasks, a user must choose
the role they want to assume during this session. The role maps to a Windows NT
group, and you must therefore define and configure the user and groups to meet
your requirements, using the guidelines that are summarized in Table 7 on
page 125. This configuration is independent of the implementation of topic-based
security and the installation of a User Name Server.

To select a specific role, the user must choose one of the following from the
File->Preferences dialog (User’s role pane):

1. Message flow and message set developer

This role equates to the permissions of the mqbrdevt group members.

2. Message flow and message set assigner

This role equates to the permissions of the mqbrasgn group members.

3. Operational domain controller

This role equates to the permissions of the mqbrops group members.

4. Topic security administrator

This role equates to the permissions of the mqbrtpic group members.

 5. All roles

This role combines all four roles, authorizing the user to perform all tasks.

The role determines what the user can view within the Control Center, and
therefore limits the tasks that are available to that user. However, the authorization
of that user to perform a given task is not checked until the request is processed by
the Configuration Manager. To be able to perform any action, therefore, a user
must be defined to the security domain specified when you created the
Configuration Manager.

The Control Center passes the request in a message to the queue
SYSTEM.BROKER.CONFIG.QUEUE: the Configuration Manager sends responses
to the queue SYSTEM.BROKER.CONFIG.REPLY (both queues are defined to the
Configuration Manager’s queue manager).

All groups in the Configuration Manager’s security domain have get and put
authority to both queues. On receipt of the message, the Configuration Manager
checks that the user ID is in the group that is authorized to complete the specific
task. Therefore you are recommended to encourage Control Center users to
assume the role that corresponds to their authorization.

Additional authorizations required by users of the Control Center are summarized in
Table 7 on page 125. For more details of the roles defined, and the facilities of
the Control Center, see MQSeries Integrator Using the Control Center.

128 MQSeries Integrator Introduction and Planning

 Security

The IBMMQSI2 superuser
A superuser user ID is recognized by the Control Center and the Configuration
Manager. This user ID, IBMMQSI2, is a privileged user ID that provides these
essential functions:

� It has the authority to unlock any resources locked to another user ID. If a user
ID is removed for any reason (for example, if an employee leaves the
company) and resources are left locked to that user ID, you can start the
Control Center with the privileged user ID and unlock the locked resources.

� The IBM primitive message processing nodes (described in “Primitive message
processing node types” on page 50) are locked under this user ID. If
maintenance that includes updates to these nodes is supplied by IBM, you
must use this user ID to check out the existing primitive nodes, import the
replacement nodes, and check them in to the configuration repository.

You must define this user ID to the security domain specified when you create the
Configuration Manager using the mqsicreateconfigmgr command. You must also
add this user ID to the MQSeries Integrator groups necessary for it to be authorized
to complete the task required on the system on which you are running the Control
Center:

� If you are using a primary or trusted security domain, you must add this user ID
to the appropriate Domain mqbrxxxx groups.

� If you are using a local security domain, you must add this user ID to the
appropriate local mqbrxxx groups.

 MQSeries authorizations
The Control Center connects to the Configuration Manager using an MQSeries
client/server connection. For details of the security available for this connection, see
the MQSeries Clients book (the chapter entitled “Setting up MQSeries client
security”).

 Application security
You need to consider application security in two areas:

� “Message flow security.”
� “Topic-based security” on page 130.

Message flow security
When you deploy a message flow on one or more brokers, applications can start to
feed messages into the message flow by putting messages to the queue that is
identified as the input queue. You set up the association between the input node
and the queue by setting the queue name as a property of the node.

Similarly, applications access queues to receive messages placed on those queues
by MQOutput or Publication nodes, when the message flow has completed
processing for those messages.

The user IDs under which applications are executing must therefore be authorized
to write to, or read from, the queues used by the message flow the applications are
interacting with.

 Chapter 9. Planning your MQSeries Integrator network 129

 Security

You must also authorize every subscriber (that is, every application making a
subscription registration) to put messages to the queue
SYSTEM.BROKER.CONTROL.QUEUE.

You must use the facilities provided by MQSeries to restrict which users are
permitted to have “put” or “get” access to the queues. For more details of applying
security to MQSeries resources, see MQSeries System Administration.

 Topic-based security
If you have applications that use the publish/subscribe services of a broker, you
have the option of applying an additional level of security to the topics on which
messages are published and subscribed. This additional security, known as
topic-based security, is managed by the User Name Server. The User Name Server
and the benefits of topic-based security are discussed in “Employing topic-based
security” on page 110.

If you want to take advantage of topic-based security in your MQSeries Integrator
broker domain, you must create, or update, your brokers and the Configuration
Manager to recognize the User Name Server. You can identify the User Name
Server to the brokers and the Configuration Manager by specifying the User Name
Server’s queue manager name as the –s parameter on the commands
mqsicreatebroker, mqsicreateconfigmgr, mqsichangebroker, and
mqsichangeconfigmgr.

If you have already created the Configuration Manager and one or more brokers,
you must stop them (using mqsistop) before you make these changes. You can
then restart the Configuration Manager and the brokers. and start the User Name
Server, using mqsistart. These steps are illustrated in the MQSeries Integrator
Installation Guide.

When you have configured your broker domain components to incorporate the User
Name Server, you can implement topic-based security by setting up Access Control
Lists (ACLs) from the Topics view of the Control Center. ACLs are lists of
principals, and are assigned to topics to control which principals can publish,
subscribe, and request persistent delivery on those topics.

The principals you can include in an ACL are notified to the Control Center by the
Configuration Manager, which requests the information from the User Name Server.

� If you created the User Name Server on Windows NT, it extracts principal
information from the domain server of the security domain that you specified
when you created the User Name Server. You must therefore define all users
and groups required by your implementation of topic security to the security
domain specified when you created the User Name Server.

� If you created the User Name Server on UNIX, it extracts principal information
from the user/group database. You must therefore define all users and groups
required by your implementation to the database accessed by the User Name
Server.

When a publisher publishes a message to a broker, or a match for a published
message for a particular subscriber is found, the broker checks its local copy of
principal and ACL information to determine if the user request is authorized by an
ACL for the specified topic.

130 MQSeries Integrator Introduction and Planning

 Data conversion

After the broker has determined that a client has the authority to receive a
particular publication, it makes a further check as to whether the client is authorized
to request persistent delivery on this topic. If the client has requested persistent
delivery, but is not authorized to do so, the broker does make the message
available to the client, but nonpersistently.

For more details on how to implement topic security, see MQSeries Integrator
Using the Control Center.

| Planning for data conversion
| If you are using a network of systems that use different methods for storing numeric
| values, or you need to communicate between users who view data in different code
| pages, you need to consider how to implement data conversion.

| � Numeric order

| For numeric and encoding aspects, you must consider:

| – Big Endian versus Little Endian

| – Encoding values in MQSeries (field Encoding in the MQMD)

| Encoding values are system specific. For example, Windows NT usually
| has an encoding of 546, hexadecimal value X'00000222'. The three final
| hexadecimal digits identify:

| 1. The float number format

| This value can be 1 (IEEE format byte order normal), 2 (IEEE format
| byte order reversed) or 3 (System/390 format byte order normal).

| 2. The packed decimal number format

| This value can be 1 (byte order normal) or 2 (byte order reversed).

| 3. The hexadecimal number format

| This value can be 1 (byte order normal) or 2 (byte order reversed).

| The bit order within a byte is never reversed. Byte order normal means that
| the least significant digit occupies the highest address.

| Systems that process numbers in normal byte order are Big Endian
| (System/390, AS/400, and UNIX). Systems that process numbers in
| reversed byte order are Little Endian (mainly PCs).

| For further details about numeric order, see Appendix D, Machine
| Encodings, in the MQSeries Application Programming Reference.

| � Code page conversions

| Code page conversion might be required for any of the following reasons:

| – ASCII versus EBCDIC

| – National languages

| – Operating system specific code pages

| For more information about code page support in MQSeries, see the MQSeries
| Application Programming Reference book.

 Chapter 9. Planning your MQSeries Integrator network 131

 Data conversion

| When you use MQSeries Integrator, you can use the data conversion facilities of
| MQSeries, or MQSeries Integrator, or both.

| � If you use MQSeries facilities, you must ensure that the MQInput nodes within
| your message flows are set up for conversion. That is, you must set the
| Convert property to yes, and enter the required encoding and CCSIDs (coded
| character set identifiers).

| Headers and message body are converted according to the MQMD values, and
| other header format names. You might have to set up data conversion exits to
| convert the body of your messages.

| When you use MQSeries facilities, the whole message is converted to the
| specified encoding and CCSID.

| For more detail about data conversion using MQSeries facilities, see Appendix
| F, Data Conversion, in the MQSeries Application Programming Reference.

| � If you use MQSeries Integrator facilities, you must define your messages in the
| message repository (using the Control Center), or use self-defining messages.
| You can then use the Compute node to define encoding and CCSIDs. The
| predefined elements of the messages are converted according to their type and
| Custom Wire Format characteristics. You do not need MQSeries data
| conversion exits.

| – String data is converted according to the CCSID setting.

| – Integer and Float Extended Decimal types are converted according to the
| CCSID setting.

| – Integer and Float (other physical data types) are converted according to the
| Encoding setting.

| – Binary and Boolean data is not converted.

| MQSeries Integrator can also convert those MQSeries headers for which
| parsers are provided (listed in “Default message parsers” on page 59).

| When you use MQSeries Integrator facilities, the whole message is not
| converted to the specified encoding and CCSID: you can specify a different
| encoding, or CCSID, or both, in each header to perform a different conversion
| for the following part of the message. The encoding and CCSID in the last
| header therefore defines the values for the message body.

| For an example of data conversion using MQSeries Integrator facilities, see
| Appendix C, SQL Reference, in MQSeries Integrator Using the Control Center.

132 MQSeries Integrator Introduction and Planning

 Managing the network

Chapter 10. Managing your MQSeries Integrator network

This chapter provides the information you need to understand how to manage your
MQSeries Integrator network, when you have planned and created it.

It covers the following topics:

� “Managing broker domain components”
� “Monitoring and analysis” on page 134

Managing broker domain components
When your configuration work is complete, you need to manage the components on
a day-to-day basis. MQSeries Integrator provides a set of commands that enable
you to control the broker domain in two ways:

1. Starting and stopping components

a. Start a component. You can use the command mqsistart to start up the
instances of broker, Configuration Manager and User Name Server created
by command. You must identify which component is to be started as the
first parameter on the command. If appropriate, the associated queue
manager is also started.

b. Stop a component. The command mqsistop terminates the component
specified by the first parameter on this command. You can also request
that the associated queue manager is stopped by this command.

2. Viewing and modifying components

a. List components or subcomponents available on a system. You can use
the command mqsilist to return a list of the components created on this
system, with the name of the queue manager that supports them

If you specify a broker name as a parameter on the command, it returns a
list of the broker’s execution groups. If you specify a broker name and
identify an execution group, it returns the message flows within that
execution group.

b. Change parameters of a component. If you need to update the parameters
currently set for a component, use the mqsichangebroker,
mqsichangeconfigmgr, or mqsichangeusernameserver command.
These set the newly specified value for each operand included on the
command, and leave all others unchanged.

The change commands listed, like the create and delete commands discussed in
“Planning MQSeries Integrator resources” on page 105, can be invoked using the
Command Assistant.

For full details of all these commands, and the use of the Command Assistant, see
the MQSeries Integrator Administration Guide.

For more information about managing the MQSeries resources associated with
these MQSeries Integrator components, see MQSeries System Administration,
MQSeries Clients, and MQSeries Intercommunication.

 Copyright IBM Corp. 2000 133

 Monitoring the network

Managing application and business processes
The Control Center provides all the facilities for managing application and business
processes. You can use the Control Center to:

� Define your broker domain, using the Topology view:

– Add new brokers and collectives.
– Remove a broker or collective.
– Change the connectivity between brokers and collectives.

� Work with message flows, using the Message Flow and Assignments views:

– Create new message flows using existing node types.
– Assign message flows to execution groups in brokers.
– Remove message flows from execution groups.

� Organize your messages, from the Messages and Assignments views:

– Define new message templates and message sets.
– Update message templates.
– Assign message sets to brokers.
– Delete messages or message sets.

� Control your publish/subscribe network, in the Topics and Subscriptions views:

– Define your topics.
– Ensure authorizations are valid and complete.
– Examine the subscriptions currently active.

� Manage your broker domain, using the Topology and Operations views:

– Deploy assigned resources to brokers.
– Check on the status of the latest resources deployed.
– Check on broker status.
– Switch on problem diagnosis tools.

� Monitor the success of deployments by viewing responses in the Log view.

For further information, and details of how to complete the tasks outlined here, see
MQSeries Integrator Using the Control Center.

Monitoring and analysis
When you have completed initial configuration and activation of your MQSeries
Integrator network, you need to be sure that it is running as efficiently as possible,
and that it is behaving as you want and expect.

The following topics describe how you can monitor your broker domain, and
analyze its activities to achieve these goals:

� “Problem determination” on page 135
� “Managing workload and performance” on page 137
� “System management” on page 138

134 MQSeries Integrator Introduction and Planning

 Monitoring the network

 Problem determination
When your broker domain is configured and activated, you might want to view
further information about how its operation is progressing, or you might need to
detect why it is not behaving as you expect.

MQSeries Integrator provides commands and facilities that help you understand
what is happening in your broker domain, and allow you to generate and review
more information when you need to. It provides two major sources of information:

� Traces generated by components
� Messages generated by commands

These facilities are fully described in the MQSeries Integrator Administration Guide.

You can also use information generated by other products used by MQSeries
Integrator (MQSeries, the databases, and ODBC) to help resolve problems.

 Traces
MQSeries Integrator always records a minimum level of activity in the broker
domain. You can activate further traces if the major components (broker,
Configuration Manager, and User Name Server), of the execution groups and
message flows you create within brokers, and for command utility programs.

Every level of additional tracing will affect the performance of your system.

| Local error log messages: MQSeries Integrator writes some events to local logs
| supported by the operating system in which the errors are generated.

| The logs used are:

| � The UNIX syslog. You can extract readable syslog content to a file to view the
| entries recorded. For further information on how to use the syslog, see the
| MQSeries Integrator Administration Guide.

| � The Windows NT event log (Application View).

| You can access the records in this log using the Windows NT Event Viewer
| service.

| Although you cannot select whether MQSeries Integrator takes the action to
| write these events to the Application event log, you can control the activity of
| the event log itself, at the operating system level.

| Records in the local log are written by all product components to record significant
| events. For example, a record is written when you stop and start brokers, the
| Configuration Manager, or the User Name Server. If an interaction with a database
| fails, this is also recorded. In some situations (for example, when you start the
| Configuration Manager), you are advised to view this information to ensure that the
| action you have taken completes successfully. You can also use the contents of
| this log for reference and error information when you are developing and running
| message flows.

| The local logs are of interest to your local operations department because they
| provide initial information about failures and unexpected behaviors. The information
| in these logs might also be requested to support the service trace information
| generated at the request of your IBM Support Center.

 Chapter 10. Managing your MQSeries Integrator network 135

 Monitoring the network

Optional traces: Optional traces are provided by MQSeries Integrator:

� User tracing. You can trace brokers, execution groups, and message flows.
You can use this facility when you are looking at problems or unexpected
behavior exhibited by your message flows.

� Service tracing. You can activate a more comprehensive broker trace, and start
tracing for the Configuration Manager, User Name Server, and Control Center,
and for the command utility programs (for example, mqsicreatebroker). You
are recommended to use these traces only when directed to do so by your IBM
Support Center. If you encounter a problem that you have to report to IBM for
resolution, you are likely to be given instructions to create and access the
service logs to provide supporting information.

Controlling user trace: Four commands are provided to activate optional traces,
and to access and review the contents of the logs generated. These commands
are:

� mqsichangetrace: to activate and deactivate trace, or to change trace settings
(for example, trace logfile size).

� mqsireporttrace: to report the current trace settings.

� mqsireadlog: to access and retrieve log file contents in XML format.

� mqsiformatlog: to format an XML log file (generated by mqsireadlog) for
easier interpretation.

For details of these commands, their usage, and other problem determination
techniques, see the MQSeries Integrator Administration Guide.

The Control Center also has an interface to start and stop tracing for execution
groups and message flows on specific brokers. You can use this method as an
alternative than the commands provided.

For example, if you do not have command line access on the system on which the
broker is running, the Control Center communicates with the remote broker to
achieve the same actions. The options available through this interface are a subset
of the support provided by the commands invoked on the command line on the

| broker’s local system. However, you must have local access to be able to extract
| the trace output from the system on which it is generated.

For details of trace options in the Control Center see MQSeries Integrator Using the
Control Center.

Tracing message flows: When you create a message flow, you can include a
Trace node. You can use the trace node to record additional information about the

| message being processed. The information generated is written to the standard
| trace logs or to a separate file.

Monitoring Control Center deployment: The Control Center displays additional
activity records in its Log view. These records provide information about the
success or failure of the actions taken by the user of the Control Center. For
example, if you deploy a message flow to a broker, a series of records are
displayed for you to check the progress of that deployment.

For more details about these options, see MQSeries Integrator Using the Control
Center.

136 MQSeries Integrator Introduction and Planning

 Monitoring the network

 Messages
When you invoke any of the commands that MQSeries Integrator supplies (for
example, mqsicreatebroker or mqsistart), responses are returned in the form of
messages. These messages, which are unique to MQSeries Integrator, have the
prefix BIP and a numeric value. Some messages are also generated by the
installation and uninstallation programs, and by the Control Center. You can check
the full meaning of these messages, and the actions you can take, in the MQSeries
Integrator Messages book.

For more information about MQSeries Integrator messages, see the MQSeries
Integrator Administration Guide.

Information available from other sources
In addition to MQSeries Integrator trace, you can refer to:

� The database messages and logs

You can determine additional information about MQSeries Integrator’s use of
databases from the messages issued by the database products, and from log
information generated by database trace activity.

� MQSeries messages and logs

You can access trace information generated by MQSeries in its log files. You
can also gain further information from MQSeries messages when these are
returned by MQSeries Integrator activities.

 � MQSeries events

You can control the generation of event messages by MQSeries queue
managers in response to specific conditions. For example, you can request an
event is generated when a queue becomes full.

 � ODBC traces

| You can initiate trace for ODBC activity. On Windows NT, you must select the
| Trace tab of the ODBC function available in the Control Panel. On UNIX, you
| must modify the .odbc.ini file to activate the trace.

You can find more information about these additional sources in the MQSeries
Integrator Administration Guide.

Managing workload and performance
When you have configured and activated your broker domain, its performance will
depend very heavily on the level of activity it is supporting.

There are several areas you can consider in making best use of the resources you
have defined. These are:

� “Using MQSeries trusted applications” on page 138
� “Tuning message flow performance” on page 138

 Chapter 10. Managing your MQSeries Integrator network 137

 Monitoring the network

Using MQSeries trusted applications
When you create the broker using the mqsicreatebroker command, you can
configure it to run as an “MQSeries trusted application”. This causes the broker and
the MQSeries queue manager agent to run in the same process, thus improving
overall system performance. By default the broker does not run as a trusted
application.

This does not affect the operation of any MQSeries channel agents or listeners. If
you want to run these as trusted applications, you must follow the guidance in
MQSeries Intercommunication, in the section entitled “Running channels and
listeners as trusted applications”.

You must be aware that MQSeries places a number of restrictions on the operation
of a trusted MQSeries application. If you want to enable a broker as a trusted
application, you must first review these restrictions for applicability to your own
environment. They are documented in the MQSeries Application Programming
Guide, in the section entitled “Connecting to a queue manager using the
MQCONNX call”.

You must also consider:

� MQSeries trusted applications must run with an effective user ID and group ID
of mqm. You must therefore have created the broker to run under this user ID.

� You must be careful if you are deploying plug-in nodes, or parsers, or both.
Because the trusted application (the broker) is running in the same operating
system process as the queue manager, an ill-behaved plug-in could
compromise the integrity of the queue manager.

You are therefore recommended to develop all plug-in components with full
consideration of the restrictions. You are also advised to test plug-in
components in a non-trusted environment before deploying them in a trusted
broker.

Tuning message flow performance
When you have assigned a message flow to a broker, you can modify the default
values of some of its properties to improve its throughput.

For more details of these properties, see MQSeries Integrator Using the Control
Center and the Control Center online help.

 System management
MQSeries Integrator uses architected messages to publish events related to the
status, and change in status, of the brokers. These messages are published using
the reserved topic root $SYS in code page 1208.

The format of these messages, constructed in XML, is detailed in the MQSeries
Integrator Administration Guide. The messages cover configuration changes, state
changes, error notifications, and detailed subscription and topic information (for
example, a subscription registration).

You can develop or buy in system management adapters or customized
administrative applications. These subscribe to the the system management topics
generated by MQSeries Integrator to receive information on the broker domain
activity.

138 MQSeries Integrator Introduction and Planning

 Writing plug-ins

Chapter 11. Enhancing your broker domain

This chapter discusses advanced options that extend the basic functions of the
broker and other components, and hence allow you to enhance your broker
domain.

Details of implementing the advanced functions discussed here are provided in the
MQSeries Integrator Programming Guide.

The topics covered are:

� “General guidance for writing plug-ins”
� “Writing your own message processing node types” on page 140
� “Writing your own parsers” on page 140

General guidance for writing plug-ins
MQSeries Integrator provides support for you to extend your system by writing
components which plug in to the framework provided by the product. The “plug-ins”
supported are message processing node types and message parsers. The
guidelines you need to understand and follow are mostly the same for both plug-in
types. The common considerations are discussed here, followed by sections which
indicate the special considerations for each plug-in type in turn.

| A plug-in, or broker extension, must be written in the C programming language. It
| must be distributed as a shared library. The file type of the shared library must be
| set to the value required by the operating system on which it will run (these values
| are given in the MQSeries Integrator Programming Guide).

If you plan to program using either of the supplied plug-in interfaces, you must
install the “Samples and SDK” optional component on at least one system. The
SDK provides the required header files and contains samples that you can modify
to your own requirements.

You can use your new node types or parsers on more than one operating system,
if you make them platform independent. You can achieve this by using the ANSI
standard C programming language, and avoiding any use of operating system
dependent functions.

Refer to the MQSeries Integrator Programming Guide for further information on:

� The programming interface for both plug-in types, including all the calls and
parameters

� How to create the icon, signature and help files for the message processing
node type

� How to build the required components for each interface

� The content of the supplied sample files

 Copyright IBM Corp. 2000 139

 Writing message processing nodes � Writing parsers

Writing your own message processing node types
You can create your own message processing node types to complement the
primitive node types provided by MQSeries Integrator.

You might want to do this, for example:

� If your messages need additional transformation not provided by the primitive
nodes. For example, you might need a currency converter node.

| � If you want to write messages into a flat file on the local system for later
| processing by another application or utility program.

You can use your new node types with existing primitive node types to create
message flows to achieve the processing your messages require.

MQSeries Integrator does not support plug-in input nodes. The MQInput node must
| be used as the input node (or nodes) for every message flow. You can augment
| the function provided by every other node.

Writing your own parsers
Message parsers are invoked by the processes within a broker to interpret the
bit-stream forming a message and its header (or headers). MQSeries Integrator
provides a number of message parsers that handle a wide range of messages and
headers, and cover the majority of formats that are expected to be processed within
a broker domain. These default parsers are described in “Message parsers” on
page 59.

However, you might need to use messages that are not covered by these default
parsers. To allow for this possibility, MQSeries Integrator provides an external
interface that enables you to supply your own parsers. These can be invoked by
the broker processes whenever a message of this new type is received, and can
work in the broker alongside the default parsers.

When you define a message, one of its attributes is the message domain. This is
the value that tells the broker which parser must be invoked to interpret the
bit-stream.

140 MQSeries Integrator Introduction and Planning

 Part 5. Appendixes

Appendix A. Planning for migration and integration 143
MQSeries Integrator Version 1 . 143
MQSeries Publish/Subscribe . 148

| Appendix B. The product packages . 169
| The MQSeries Integrator for AIX package . 169
| The MQSeries Integrator for Sun Solaris package 170

The MQSeries Integrator for Windows NT package 172

Appendix C. Notices . 175
Trademarks . 177

 Copyright IBM Corp. 2000 141

142 MQSeries Integrator Introduction and Planning

 MQSeries Integrator Version 1

Appendix A. Planning for migration and integration

This chapter helps you plan for migration to MQSeries Integrator Version 2.0.1 from
compatible IBM offerings. It gives you an overview of the tasks involved, and
provides references to the detailed information you need to complete these tasks.

Refer to the section giving details for your existing product:

� “MQSeries Integrator Version 1”
� “MQSeries Publish/Subscribe” on page 148

| If you are migrating from MQSeries Integrator Version 2.0 to Version 2.0.1, see
| “Release to release migration” on page 28.

MQSeries Integrator Version 1
Migration to MQSeries Integrator Version 2.0.1 is supported from the following
products:

� MQSeries Integrator Version 1.02

� MQSeries Integrator Version 1.1

The tasks you must plan for fall into two broad categories:

 � “Installation”:

This identifies tasks you must complete before and immediately after installation
of MQSeries Integrator Version 2.0.1.

These tasks are fully described in the MQSeries Integrator Installation Guide for
your product.

� “Run-time” on page 145:

This identifies tasks you must complete during normal operation to enable the
continued use of your Version 1 resources.

These tasks are fully described in either the MQSeries Integrator Administration
Guide, or in MQSeries Integrator Using the Control Center.

 Installation
There are four areas to consider when you plan the installation of MQSeries
Integrator Version 2.0.1. These are:

� “Backing up configuration files” on page 144

� “Preserving your MQSeries Integrator Version 1 rules and formats” on
page 144

� “Uninstallation of MQSeries Integrator Version 1” on page 144

� “Selecting a NEON database” on page 145

2 It is also possible to upgrade from NEON’s MQIntegrator product. The tasks required are identical to those specified for migrating
from MQSeries Integrator Version 1.0. However, the presence of this product is not detected by the MQSeries Integrator Version
2.0.1 installation program.

 Copyright IBM Corp. 2000 143

 MQSeries Integrator Version 1

Backing up configuration files
MQSeries Integrator Version 1 uses a number of configuration files to control
various aspects of its operation. Some of these files are reused by MQSeries
Integrator Version 2.0.1, and can be updated in some circumstances.

You are therefore advised, but not forced, to backup your MQSeries Integrator
Version 1 configuration files.

For details of configuration files, see the MQSeries Integrator Installation Guide for
your product.

Preserving your MQSeries Integrator Version 1 rules and formats
All the rules and formats you have defined in MQSeries Integrator Version 1 can be
reused by MQSeries Integrator Version 2.0.1. The message processing nodes that
provide the NEONRules and NEONFormatter function in MQSeries Integrator
Version 2.0.1 exactly mimic the MQSeries Integrator Version 1.1 behavior.

� If you have rules and formats defined by MQSeries Integrator Version 1.1, this
data can be used without any further action required.

� If you have data defined by MQSeries Integrator Version 1.0 that you want to
reuse, you must convert this data into MQSeries Integrator Version 1.1 format.
This action makes it compatible with the MQSeries Integrator Version 2.0.1
parser and nodes.

You must complete this action before you uninstall MQSeries Integrator Version
1.0, because it requires tools provided with the MQSeries Integrator Version 1.0
product to complete.

For details of how to convert your MQSeries Integrator Version 1.0 data, see the
MQSeries Integrator Installation Guide for your product.

Uninstallation of MQSeries Integrator Version 1
| If you already have the MQSeries Integrator Version 1 product installed on the
| current system, you must consider the following:

| � On AIX, the two products are installed into different directories. There is
| therefore no conflict between the two products, and no requirement to uninstall
| Version 1.

| � On Sun Solaris, the MQSeries Integrator Version 2.0.1 installation program
| detects the presence of the Version 1 product and will not continue. You must
| uninstall Version 1 before you can install Version 2.

| � On Windows NT, the MQSeries Integrator Version 2.0.1 installation program
| detects the presence of the Version 1 product. It removes the MQSeries
| Integrator Version 1 information from the PATH system environment variable
| before updating PATH with the values required by MQSeries Integrator Version
| 2.0.1.

| You are recommended to install MQSeries Integrator Version 2.0.1 into a
| directory that is different to the directory into which you installed MQSeries
| Integrator Version 1. Some files are common between the two versions and
| you will be unable to restore Version 1 at a later date if you do not use different
| directories. If you continue to use any processes that invoke Version 1
| function, you must be careful to ensure that you are accessing the correct
| version of the code.

144 MQSeries Integrator Introduction and Planning

 MQSeries Integrator Version 1

| If you want to revert to using Version 1, you must replace its entry in the PATH
| statement.

If you uninstall Version 1, you are recommended to select the option that preserves
data. This ensures that your existing rules and formats are not destroyed. You then
have the option of reinstalling at a later date and reusing your original data.

For more information about uninstalling, see the appropriate level of the MQSeries
Integrator Version 1 Installation and Configuration Guide.

For more information about directory structure for MQSeries Integrator Version
2.0.1, see the MQSeries Integrator Installation Guide for your product.

Selecting a NEON database
| You must install the appropriate run-time support for the NEON rules and formats
| database of your choice:

| � On UNIX, you must install the compatible run-time NEON support package from
| the /NEON subdirectory on the primary product CD. Change to the correct
| subdirectory (for example, /NEON/ora7 for Oracle Version 7 support).

| – On AIX, invoke smitty and select package mqsi.compat.mqsi11%.

| – On Sun Solaris, invoke ’pkgadd -d’.

| � On Windows NT, you are asked to identify the database used for NEON rules
| and formats on one of the installation windows. Select the appropriate option
| from the list displayed.

| Note: You are restricted to using one database for NEON data on a single system
| (this restriction also applies to MQSeries Integrator Version 1.1). All databases
| supported by MQSeries Integrator Version 1.1 are supported by MQSeries
| Integrator Version 2.0.1 for NEON data. For a complete list of database versions
| supported, see the MQSeries Integrator Version 1 Installation and Configuration
| Guide.

 Run-time
There are several operational aspects that you must consider when planning your
migration from MQSeries Integrator Version 1 to MQSeries Integrator Version 2.0.1.
These are:

� “NEON rules and formats”
� “Setting up an MQSeries Integrator Version 2.0.1 message flow” on page 147
� “Logging” on page 148

NEON rules and formats
MQSeries Integrator Version 2.0.1 provides a message parser that interprets the
NEON message formats, and this is used by any message processing node that
detects a NEON message has been received. Therefore interpretation of
messages in NEON formats can be provided to any message processing node, not
just the NEONRules and NEONFormatter nodes.

However, update of message content must be provided by the NEONFormatter
node. The Compute node is not able to write message content using the NEON
parser (although it can read these messages).

 Appendix A. Planning for migration and integration 145

 MQSeries Integrator Version 1

Access to the database containing existing definitions is defined by the
MQSIruleng.mpf configuration file (as it is in MQSeries Integrator Version 1). You
can:

� Use the default file of this name shipped with MQSeries Integrator Version
2.0.1. It is installed into the bin subdirectory of the MQSeries Integrator
Version 2.0.1 installation directory. You must edit this file after installation to
provide the database connection parameters required for access to your data.

The parameters used by MQSeries Integrator Version 2.0.1 are:

 – ServerName
 – Userid
 – Password
 – DatabaseInstance
 – DatabaseType

The MQSeries Integrator Version 2.0.1 code accesses the configuration file by
| interrogating the environment variable MQSI_PARAMETERS_FILE. You must
| set this variable to point to the default file supplied by MQSeries Integrator
| Version 2.0.1.

� Use the copy of this configuration file that you backed up prior to installation.
Set the MQSI_PARAMETERS_FILE to point to the file MQSIruleng.mpf that
you have restored.

| � You must restart your system to enable these changes.

You can encrypt the MQSIruleng.mpf file to protect the password. See the
MQSeries Integrator Version 1.1 System Management Guide for more details.

You must be aware that the rules and formats defined by the MQSeries Integrator
Version 1 tools are not distributed automatically to all brokers that need them, as
those defined by the MQSeries Integrator Version 2.0.1 Control Center are. You
must configure your system so that every broker running a message flow that
accesses your MQSeries Integrator Version 1 data has access to the database that
contains these definitions.

MQSeries Integrator Version 2.0.1 provides full support for MQRFH headers, as
well as MQRFH2 headers. If you are developing new applications, you are
recommended to use the new MQRFH2, which offers superior function.

For further details of these tasks, see the MQSeries Integrator Administration
Guide.

Enhancing existing rules and formats: MQSeries Integrator Version 2.0.1
provides support for you to continue to develop new and modify existing rules and
formats. It does this by installing the MQSeries Integrator Version 1.1 rules and
formats graphical utility programs.

You can therefore continue to maintain existing data, and can add new definitions
to your existing set. Refer to MQSeries Integrator Version 1.1 User’s Guide for
information on using these user interfaces.

| The Control Center, however, does not display the NEON formats. They are not
| interpreted and therefore no visual representation of the fields in the node
| properties dialogs is provided. You can, however, reference the fields by creating
| the appropriate SQL statements. You can only create a message with a NEON

146 MQSeries Integrator Introduction and Planning

 MQSeries Integrator Version 1

| format in the NEONFormatter and NEONRules nodes. You must use the
| NEONFormatter graphical interface to create new NEON message formats for use
| in the message flows.

Setting up an MQSeries Integrator Version 2.0.1 message flow
To provide continued support for your existing MQSeries Integrator Version 1
applications, you must deploy a message flow that emulates the function of the
MQSeries Integrator Version 1 product daemon.

A default MQSeries Integrator Version 1 message flow is provided for your use.
This message flow includes the NEONRules message processing node3 . In
addition, it includes:

� An MQInput node, that reads input messages from an input queue and delivers
them to the NEONRules node.

� Three MQOutput nodes, that handle messages for Output, Failure, and NoHit
processing.

Before you deploy the default message flow, you must edit the node properties of
the MQInput and MQOutput nodes to align with your MQSeries Integrator Version
1 use of queues.

You must also ensure that any broker to which you assign this message flow is
able to access the database in which your formats and rules are defined.

You can also use NEON format messages with other message processing nodes
within a message flow. You must define a message flow with the message
processing nodes providing the function your message processing requires. The
nodes detect the presence of a NEON header and invoke the NEON parser to
interpret the message.

If you want to change the content of the message, you must use the
NEONFormatter node. You cannot use any other node type to write NEON
formats.

You can also modify the default message flow supplied to include additional
function. For example, you can cause all messages to be stored in a warehouse by
adding a Warehouse node into the message flow prior to the NEONRules node.

If you include the NEONRules message processing node in your message flow,
you can continue to use existing subscriptions with that message flow. You can
also continue to use the NEONRules user interface to modify existing and create
new subscriptions. Or you could replace the node handling messages destined for
the NoHit queue with one that updates the message and returns it to the originator.

MQSeries Integrator Using the Control Center provides details on how to define,
modify, assign, and deploy message flows.

You can increase the throughput of NEON messages by assigning the same
message flow to multiple execution groups on a single broker, or to multiple

3 This message flow only emulates the function of an unmodified MQSeries Integrator Version 1.1 daemon. If you have modified the
daemon in your MQSeries Integrator Version 1.1 product, this message flow will not provide identical function. You must also
modify this message flow to recreate the modifications you have made to the daemon.

 Appendix A. Planning for migration and integration 147

 MQSeries Publish/Subscribe

brokers, or both. MQSeries Integrator Version 2.0.1 implements synchronization
controls around the NEON message processing nodes to ensure the integrity of the
multiple flows.

User exits: You can continue to use your existing MQSeries Integrator Version
1.1 user exits with MQSeries Integrator Version 2.0.1 message processing nodes.
The source of your exit programs can be used unchanged. However, you must
rebuild them to use the new dynamic link interface that is required by the MQSeries
Integrator Version 2.0.1 modules that provide the MQSeries Integrator Version 2.0.1
function. Full details of how to do this are included in MQSeries Integrator Using
the Control Center.

If you are migrating from MQSeries Integrator Version 1.0, your user exits must be
modified to be compatible with MQSeries Integrator Version 1.1 before that can be
used with MQSeries Integrator Version 2.0.1.

 Logging
All logging facilities are controlled at a message flow level in MQSeries Integrator
Version 2.0.1. All log information recorded by the NEONRules and
NEONFormatter message processing nodes remains unchanged, but its location is
changed. In MQSeries Integrator Version 2.0.1 the records are directed to the log
file identified for the message flow.

This new behavior has the advantage of integrating all relevant information in a
single place.

However, it does mean that if you use any systems management products that
access the MQSeries Integrator Version 1 logs, you must update these to use the
MQSeries Integrator Version 2.0.1 logs to preserve the functions provided.

For details about setting the log parameter in a message flow, see MQSeries
Integrator Using the Control Center.

For more information about logs and log records, see the MQSeries Integrator
Administration Guide.

 MQSeries Publish/Subscribe
MQSeries Publish/Subscribe is supported software that provides publish/subscribe
application support for MQSeries applications. It is available from the IBM Web site,
and can be installed on several MQSeries Messaging products servers, including:

 � AIX
 � HP-UX
 � Sun Solaris
 � Windows NT

You can find latest details of this product, including how to download the product
code, on the following web site:

http://www.ibm.com/software/ts/mqseries/txppacs/ma%c.html

If you plan to create a heterogeneous network including MQSeries Integrator
brokers and MQSeries Publish/Subscribe brokers, you must ensure your systems
have the appropriate level of MQSeries to run your brokers.

148 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

� MQSeries Version 5.0. For MQSeries Publish/Subscribe brokers, you must
install CSD7.

Note: You cannot run MQSeries Integrator brokers on MQSeries Version 5.0
at any service level. This option is only valid for MQSeries Publish/Subscribe
brokers.

� MQSeries Version 5.1. For MQSeries Publish/Subscribe brokers, you must
install CSD3 on Windows NT, or CSD1 on other platforms (AIX, Sun Solaris,
and so on).

| Note: CSD4 is supplied with the MQSeries Integrator Version 2.0.1 package:
| you can apply this service to provide the MQSeries upgrade required for the
| MQSeries Publish/Subscribe brokers.

If you do not upgrade MQSeries to these specified service levels, it is possible that
some publications sent by MQSeries Integrator brokers will be wrongly put to the
dead-letter queue (DLQ) by an MQSeries Publish/Subscribe neighbor.

Scenarios for migration and integration
If you are already using MQSeries Publish/Subscribe, you can take advantage of
the improved message processing function provided by MQSeries Integrator by
integrating your two networks of brokers and creating a heterogeneous network.

You can also migrate individual MQSeries Publish/Subscribe brokers to create
replacement MQSeries Integrator brokers, with support for their client applications
intact.

These two possibilities offer you a number of advantages:

� Publications from within the MQSeries Publish/Subscribe network can be
targeted by MQSeries Integrator subscribers. This includes messages
originating in environments not yet supported by MQSeries Integrator.

� Message flows can be created and deployed on MQSeries Integrator brokers
to:

– Analyze the information that is flowing around your enterprise.

– Invoke additional business logic dependent upon the content of the
publications.

– Consolidate the information within your enterprise in the form of new
publications, that can then be republished as a series of additional topics
available to both MQSeries Integrator and MQSeries Publish/Subscribe
clients.

There are three possible scenarios for exploiting the two networks:

1. You can choose to have two independent broker networks, and therefore have
two separate broker domains for publish/subscribe applications. This scenario is
described in “Scenario 1: running two independent broker networks” on
page 164.

2. You can connect the two networks to allow publications and subscriptions to
flow throughout the integrated network. Further details are provided in
“Scenario 2: creating and operating a heterogeneous network” on page 164.

 Appendix A. Planning for migration and integration 149

 MQSeries Publish/Subscribe

3. You can selectively and gradually migrate individual brokers from MQSeries
Publish/Subscribe to MQSeries Integrator Version 2.0.1. For more guidance on
this option, see “Scenario 3: migrating MQSeries Publish/Subscribe brokers” on
page 165.

Before you can make this choice, and create your migration plan, you must be
aware of the differences in the two products, described in “Product differences.”

 Product differences
There are differences in the support provided by the two products that you must
consider when you plan how you will integrate your two networks. These are
discussed in the following sections:

 � “Message formats”
� “Streams” on page 153
� “Stream authority” on page 157
� “Topics” on page 159
� “Wildcards” on page 159
� “Default topic routing” on page 160
� “Retained publications” on page 161
� “Metatopics” on page 161
� “Subscription points” on page 161
� “Content-based filtering” on page 162
� “Throughput” on page 163

 Message formats
You are recommended to use the MQRFH2 header for new client applications
developed for the MQSeries Integrator broker. These applications can then access
all of the function provided by MQSeries Integrator.

Existing MQSeries Publish/Subscribe applications using the MQRFH header are
also supported by MQSeries Integrator, but function is limited to that provided by
MQSeries Publish/Subscribe. MQSeries Publish/Subscribe does not support the
MQRFH2 format. Clients connected to MQSeries Publish/Subscribe brokers must
use the MQRFH format.

However, client applications that need to communicate with one another using
publish/subscribe can do so regardless of the format of the messages they are
using: MQSeries Integrator provides automatic conversion to ensure the subscriber
receives the message in the desired format.

Table 8 on page 151 shows the mapping between equivalent fields in the MQRFH
and MQRFH2 headers.

150 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

All the MQRFH2 fields shown are contained in a <psc> folder.

Field names that are not included in Table 8 do not have a common meaning, or
are only valid in one header or the other. Field names which are not recognized, or
not appropriate to the other format, are not copied. For example, the following
name-value area of an MQRFH:

MQPSCommand Publish
MQPSPubOpts RetainPub
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

is converted to this MQRFH2 folder:

<psc>
<Command>Publish</Command>
<PubOpt>RetainPub</PubOpt>
<Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
</psc>

Using these mapping rules, MQSeries Integrator ensures that MQRFH2
publications can still be received by MQRFH subscribers, and MQRFH publications
can be received by MQRFH2 subscribers.

Content-filters can also be specified by MQRFH2 subscribers even if the topic that
they are subscribing to is one published in MQRFH format by an MQSeries
Publish/Subscribe client, although there is some limit to compatibility. For more
information, see “Content-based filtering” on page 162.

Table 9 on page 152 summarizes the valid options for clients using the different
message formats.

Table 8. MQRFH and MQRFH2 mapping

MQRFH field name MQRFH2 field name

MQPSCommand Command

MQPSDelOpts DelOpt

MQPSPubOpts PubOpt

MQPSPubTime PubTime

MQPSQMgrName QMgrName

MQPSQName QName

MQPSRegOpts RegOpt

MQPSSeqNum SeqNum

MQPSTopic Topic

 Appendix A. Planning for migration and integration 151

 MQSeries Publish/Subscribe

Table 9 (Page 1 of 2). Summary of message option support

Message Option Name Option Value Support

All requests
(client to broker)

MQPSCommand DeletePub
DeregPub
DeregSub
Publish
RegPub
RegSub
ReqUpdate

yes
yesE
yes
yes
yesE
yes
yes

MQMD.Format MQFMT_PCF
MQFMT_RF_HEADER

no
yes

MQMD.Report MQRO_PAN
MQRO_NAN

yes
yes

MQMD.MsgType MQMT_REQUEST
MQMT_DATAGRAM

yes
yes

MQMD.MsgId yes

MQMD.CorrelId yesG

MQMD.ReplyToQ yes

MQMD.ReplyToQMgr yes

MQPSStreamName prefixed on topicF

MQPSTopic yes

All requests except
Delete Publication

MQPSQMgrName yes

MQPSQName yes

MQPSRegOpts CorrelAsId yes

Delete Publication MQPSDelOpts Local yesM

Deregister PublisherE MQPSRegOpts DeregAll yes

Deregister Subscriber MQPSRegOpts DeregAll yes

Publish MQMD fields As specified by MQPSH yes

MQPSRegOpts Anon yesN

Local yesM

DirectReq yesE

MQPSPubOpts NoReg yesE

RetainPub yes(set by publisher)

IsRetainedPub yes(set by broker)

OtherSubsOnly yes

MQPSPubTime yes

MQPSSeqNum yes

MQPSStringDataE yes

MQPSIntDataE yes

Register PublisherE MQPSRegOpts Anon yesN

Local yesM

DirectReq yesE

Register Subscriber MQPSRegOpts Anon yesN

Local yesM

NewPubsOnly yes

PubOnReqOnly yes

InclStreamName noF

InformIfRet yes

152 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

Table 9 (Page 2 of 2). Summary of message option support

Message Option Name Option Value Support

All responses
(broker to client)

MQPSCompCode new values addedO

MQPSReason new values addedO

MQPSReasonText values may addedO

MQPSCommand command to which this is
a response

Notes:

1. This option is supported for migration purposes.
2. MQPS is MQSeries Publish/Subscribe.
3. The stream name parameter is effectively prefixed on the topic. The stream name can be deduced from the queue name if

the property implicitStreamNaming of the Publication node is set (see “Streams” on page 153).
4. The client identity is determined as the concatenation of the queue manager name, the queue name, and optionally the

correlation id (when the correlation ID as identity option is set). The application identifier is thus
“MQPSQMgrName:MQPSQName[:correlId]”. The default values specified by MQSeries Publish/Subscribe are used if these
values are not present in a message.

5. The behavior of this option differs. See the MQSeries Integrator Programming Guide for an explanation of this option.
6. New values have been added. See the MQSeries Integrator Programming Guide for details.
7. Ignored by MQSeries Integrator Version 2.0.1.

Special rules also apply for MQRFH2 subscribers if the information is being
published on an MQSeries Publish/Subscribe stream other than the default,
SYSTEM.BROKER.DEFAULT.STREAM. These rules are summarized in Table 10
on page 155.

 Streams
MQSeries Publish/Subscribe primarily use streams as a means to partition the topic
name space. Sets of related topics could be grouped together into separate
streams allowing different security controls to be applied, and the publishing
workload of the broker to be better balanced.

MQSeries Integrator provides more flexible controls to achieve both of these
behaviors. The concept of a stream is only supported for MQRFH application
compatibility.

Stream names now only have the partitioning effect on the topic name space.
MQSeries Integrator provides more flexible security controls that allow authorization
to be applied to an individual topic level. Also, the publishing workload of the broker
can be more easily controlled by creating additional instances of publication
message flows either serving the same or different input queues.

MQSeries Integrator still allows MQRFH client applications to specify an
MQPSStreamName command parameter in their subscriptions and publications.
However, the stream name is only used to modify the topic in order to preserve the
partitioning characteristic of MQSeries Publish/Subscribe.

When the stream-name associated with a message is set to something other than
SYSTEM.BROKER.DEFAULT.STREAM, the message is processed as if the topic
(or topics) mentioned within the message had been prefixed with the string
“$SYS/STREAM/<streamname>/”. That is, a subscription to Topic1 that specifies a
stream-name of StreamX is processed as if the subscription had been made to
topic “$SYS/STREAM/StreamX/Topic1”.

 Appendix A. Planning for migration and integration 153

 MQSeries Publish/Subscribe

MQRFH2 publishing and subscribing applications can still target stream-related
topics, even though they themselves are not allowed to specify a stream-name in
the messages they send to the MQSeries Integrator broker. To do this, they must
prefix the topics with the appropriate stream prefix.

For example, an MQRFH2 subscriber must specify topic
“$SYS/STREAM/STOCK.STREAM/IBM/Latest” in order to subscribe to topic
“IBM/Latest” that is published on stream STOCK.STREAM within the MQSeries
Publish/Subscribe network.

MQSeries Publish/Subscribe only allows a stream-related publication to be sent to
a queue with the same name as the stream. However, MQSeries Integrator allows
publishing clients to send their publications to any input queue in a message flow.
MQRFH applications choosing explicitly to specify a stream-name parameter within
a publication can send it to any publication queue being serviced by the MQSeries
Integrator broker. The queue no longer needs to have the same name as the
stream. However, this behavior could affect the order in which publications are
received, and you must consider the importance of ordering for your applications.
For more details about ordering, see “Throughput” on page 163.

Each Publication node has an Implicit Stream Naming property that defaults to true.
This default option results in behavior identical to that in MQSeries
Publish/Subscribe when an MQRFH publication does not contain an explicit stream
name. If this property is false, and the publication contains no explicit stream name,
SYSTEM.BROKER.DEFAULT.STREAM is assumed.

Table 10 on page 155 summarizes the options available to both MQRFH and
MQRFH2 client applications publishing messages to either the default stream, or a
specific MQSeries Publish/Subscribe stream. An example stream name of StreamX
is used to illustrate the options.

154 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

Note: The “$SYS/STREAM/<streamname>/” prefix is removed from all topics in an
MQRFH2 publication when it is delivered to an MQRFH subscriber.

Streams and neighbor brokers: In an MQSeries Publish/Subscribe network it is
not mandatory for all brokers to support the same set of streams as its neighbors. If
a broker does not support a stream that is supported by one of its neighboring
brokers, publications associated with the uncommon stream are simply not
available to clients at that broker.

When an MQSeries Integrator broker joins the network, it acts as if it supports all
the streams of its neighboring MQSeries Publish/Subscribe broker. This means that
clients of the MQSeries Integrator broker are able to target publications for any
stream supported by any of its MQSeries Publish/Subscribe neighbors.

However, to make these publications available, you must define the stream queues,
and define and deploy the message flows that will support them, to the MQSeries
Integrator broker.

The effects of adding an MQSeries Integrator broker into a multistream MQSeries
Publish/Subscribe environment are illustrated by the example in Figure 20 on
page 156. The MQSeries Integrator broker, NEWBROKER, has been used to join
MQSeries Publish/Subscribe brokers, BROKERA and BROKERB.

Table 10. MQRFH and MQRFH2 client application options

MQRFH publisher MQRFH2 publisher

default
stream

StreamX default
stream

StreamX

MQRFH subscriber S1,P1 S2,P2 S1,P3 S2,P4
MQRFH2 subscriber S3,P1 S4,P2 S3,P3 S4,P4

Subscriber notes:

S1 Subscriber subscribes either without a stream name or with stream name
“SYSTEM.BROKER.DEFAULT.STREAM”.
S2 Subscriber subscribes with stream name “StreamX”.
S3 Subscriber subscribes on topic without adding “$SYS/STREAM/<streamname>/”.
S4 Subscriber subscribes prefixes topic with “$SYS/STREAM/StreamX/”.

Publisher Notes:

P1 Publisher publishes on any queue specifying stream name
“SYSTEM.BROKER.DEFAULT.STREAM”. or publishes without specifying a stream
name on any queue with the Implicit Stream Naming property set to false.
P2 Publisher publishes on any queue specifying stream name “StreamX”, or publishes
without specifying a stream name on queue “StreamX” with the Implicit Stream Naming
property set to true.
P3 Publisher publishes on any queue without adding the prefix
“$SYS/STREAM/<Stream>/” to the topic.
P4 Publisher publishes on any queue and adds the prefix “$SYS/STREAM/StreamX/” to
the topic.

 Appendix A. Planning for migration and integration 155

 MQSeries Publish/Subscribe

Figure 20. A heterogeneous network

The default stream queue SYSTEM.BROKER.DEFAULT.STREAM is always
supported by every broker in an MQSeries Publish/Subscribe network, and must be
defined at every MQSeries Integrator broker in a heterogeneous network. You must
also define and deploy a message flow at each broker to service this queue.

When an MQSeries Integrator broker is integrated into an MQSeries
Publish/Subscribe network, and links two or more MQSeries Publish/Subscribe
brokers that share common streams, you must define the common stream queues,
and define and deploy the message flows that service them, to the MQSeries
Integrator broker.

For example, the MQSeries Integrator broker NEWBROKER shown in Figure 20
must have a stream queue defined for BULLETIN.STREAM. It must also have a
message flow defined and deployed to provide a publication service for that queue.

You only need to define stream queues and associated message flows to the
MQSeries Integrator broker for the other streams shown in Figure 20 if it is
possible that one of its MQSeries Publish/Subscribe neighbors will send a message
to one of these queues. A message will be sent if one of the following occurs:

1. A subscription to a publication on one of these streams is registered by a client
of the MQSeries Integrator broker.

2. A DeletePublication command for the stream is issued by a client anywhere
within the broker network.

If you are unsure if the above cases might occur, you are recommended to create
stream queues and message flows in the MQSeries Integrator broker for every
stream that is supported by an MQSeries Publish/Subscribe neighbor. If you do not
do this, you might see the following results:

� Messages sent from MQSeries Publish/Subscribe brokers will be put to the
dead-letter queue (DLQ) of the MQSeries Integrator broker if the stream queue
does not exist on that broker.

� Messages will build up on stream queues on the MQSeries Integrator broker if
the stream queue exists but there is no message flow deployed to service it.

Streams and migration: When an MQSeries Publish/Subscribe broker is
migrated to an MQSeries Integrator broker (using the migmqbrk command), the
streams supported at the time of the migration are replicated exactly in the
MQSeries Integrator broker: no subsequent changes can be made (that is, no
streams can be added or removed from this replicated set). The migration is not
complete until you have created and deployed message flows that process all of
these streams.

156 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

 Stream authority
In MQSeries Publish/Subscribe, all publish and subscribe authority checks are
performed against the stream queue. Publishing applications need authority to put
messages to the stream queue. The MQSeries Publish/Subscribe broker also
checks the authority of subscribing applications which require browse authority on
the stream queue. A subscribing application also needs to have put authority for
the queue that it nominated to receive its publications.

The same check is made by MQSeries Integrator brokers, but the subscribe
authority (browse) is no longer checked. Instead, MQSeries Integrator provides a
more granular security model in which both publish and subscribe access can be
defined in a hierarchical manner right down to an individual topic level. You can
implement this model by creating Access Control Lists (ACLs) using the Control
Center. For more information about ACLs, refer to MQSeries Integrator Using the
Control Center.

Before you migrate an MQSeries Publish/Subscribe broker to a replacement
MQSeries Integrator broker, or migrate your MQSeries Publish/Subscribe
applications to run on MQSeries Integrator, you must consider the security
implications:

� Publishing applications are subject to the same checks even if your broker is
not running with topic security enabled, because the authority to put a message
to the stream or publication queue continues to be checked by MQSeries.

However, stream publications can be processed by MQSeries Integrator on any
input queue, because publishers no longer need to put to a queue with the
same name as the stream. You are therefore recommended to set up
equivalent ACLs for all streams using their corresponding topic level qualifiers

� The MQSeries Integrator broker does not check that subscribing applications
have browse authority on the stream queue. Instead, MQSeries Integrator
models streams by prefixing all topics that aren’t part of the default stream with
a unique prefix, $SYS/STREAM/<streamname>/. This maintains the partitioning
characteristics of streams and allows stream-specific ACLs to be set up. Topics
in the default stream are not altered by the broker, therefore the root topic can
be used to specify authorities for default stream topics.

Figure 21 on page 158 illustrates the stream authorities that are required. This
example assumes that you have updated the default ACL on the topic root for
principal PublicGroup with authority for publish, subscribe, and persistent delivery
all set to deny.

 Appendix A. Planning for migration and integration 157

 MQSeries Publish/Subscribe

Figure 21. Stream authorities

Using this example, assume that the following groups are defined:

� PDefault: the group of users authorized to publish on the default stream
� SDefault: the group of users authorized to subscribe to the default stream
� PStreamX: the group of users authorized to publish on StreamX
� SStreamX: the group of users authorized to subscribe to StreamX
� PStreamY: the group of users authorized to publish on StreamY
� SStreamY: the group of users authorized to subscribe to StreamY

You must grant and deny authorities by setting up ACLs as follows:

1. PDefault must be granted publish authority on the root, SDefault must be
granted subscribe authority on the root.

2. PDefault must be denied publish authority on $SYS/STREAM/, SDefault must
be denied subscribe authority on $SYS/STREAM/.

These settings ensure that publishers and subscribers on the default stream
are unable to publish on or subscribe to other streams automatically (that is,
without an explicit ACL that overrides that setting).

3. PStreamX must be granted publish authority on $SYS/STREAM/StreamX/,
SStreamX must be granted subscribe authority on $SYS/STREAM/StreamX/.

These settings override any setting on parent topics and limit publish and
subscribe activity to users within these specific groups.

4. PStreamY must be granted publish authority on $SYS/STREAM/StreamY/,
SStreamY must be granted subscribe authority on $SYS/STREAM/StreamY/.

These settings override any setting on parent topics and limit publish and
subscribe activity to users within these specific groups.

If you wanted to set up exceptions to this situation, you can do so by introducing an
ACL at the appropriate point. For example, if you wanted to grant authority to
publishers to the default stream (PDefault) to publish on StreamX, you must create
an explicit ACL at point (3) to grant that authority, thus overriding the denial at point
(2). In this scenario, users in PDefault could still not publish on StreamY.

158 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

 Topics
In MQSeries Publish/Subscribe, all publications must be tagged with an arbitrary
character string called a topic. This defines the subject matter of the publication.
MQSeries Publish/Subscribe recommends, though does not enforce, that topic
strings are structured into a number of fields or levels using the forward slash, “/”,
as a delimiter.

MQSeries Integrator publications also have an associated topic, and the topic
structure is delimited by the forward slash character. Therefore, if your existing
applications follow the MQSeries Publish/Subscribe recommendation, they are
better positioned to exploit the function provided by MQSeries Integrator, which
allows the structure of the topic to be externalized.

MQSeries Integrator allows you to control users’ authority to publish on, and
subscribe to, any topic at any level within the topic structure.

 Wildcards
Wildcards can be used by subscribing applications to broaden the scope of
publications they register an interest in. By specifying a wildcard, the subscriber is
specifying a general pattern of the topics they are interested in, rather than an
explicit topic.

This function is provided by both MQSeries Publish/Subscribe and MQSeries
Integrator. However, MQSeries Integrator provides a different set of wildcards that
allow a more extensive and flexible use of wildcards by subscribers.

� MQSeries Publish/Subscribe wildcards:

– An asterisk (*) matches zero or more characters.

– A question mark (?) matches exactly one character.

– The percent sign (%) can be used as an escape character to use an “*”, a
“?”, or a “%” character within a topic.

� MQSeries Integrator wildcards:

The wildcard characters are used to match specific levels within the structured
topic. The characters used are:

– The multi-level wildcard (the character #), that matches any number of
levels at the start or end of the topic.

– The single-level wildcard (the character +), that matches a single level
within the topic.

The full range of function of the MQSeries Integrator wildcards are only available to
MQRFH2 clients. Subscriptions made by MQRFH clients to MQSeries Integrator
brokers for topics that contain either of the MQSeries Integrator wildcards are
rejected with the MQRCCF_TOPIC_ERROR reason code.

Applications using MQRFH and connecting to MQSeries Publish/Subscribe brokers
in a heterogeneous network are therefore recommended not to publish on, or
subscribe to, topics containing either the multi-level wildcard (#) or single-level
wildcard (+) characters. MQSeries Publish/Subscribe brokers do not police this: if
your applications specify the MQSeries Integrator wildcards in topics when they
publish or register a subscription in a heterogeneous broker network, these
publications and subscriptions are ignored by MQSeries Integrator brokers within

 Appendix A. Planning for migration and integration 159

 MQSeries Publish/Subscribe

the network. You are therefore strongly advised to review and if necessary change
the topics being used within an MQSeries Publish/Subscribe implementation before
adding an MQSeries Integrator broker to the network.

When applications that use MQRFH2 use the MQSeries Integrator wildcards to
target multiple publications from within the MQSeries Publish/Subscribe network,
wildcard mapping is performed. In most cases, the broker replaces both the
multi-level wildcard and single-level wildcard characters with an asterisk. This does
not provide an exact match for either of the MQSeries Integrator wildcards, but
ensures a superset of the required publications are sent to the MQSeries Integrator
broker. The MQSeries Integrator broker evaluates the “#” and “+” wildcards to
match the correct publications.

For example, the topic “employee/+/development” is propagated as
“employee/*/development” to an MQSeries Publish/Subscribe neighbor. This might
cause redundant publications to be sent to the MQSeries Integrator broker from its
MQSeries Publish/Subscribe neighbor. However, none of these would be sent to
the original client when the MQSeries Integrator evaluates the original subscription.
The exception to this is a subscription to the topic “+” which is never propagated: it
cannot be represented as an “*” because this is the topic that is propagated if a
subscription to topic “#” is made at the MQSeries Integrator broker.

You are recommended not to specify the MQSeries Publish/Subscribe wildcard
characters in MQRFH2 client subscriptions. If you do specify one or more, they are
assumed by MQSeries Integrator to be part of the topic, and are therefore prefixed
by the escape character (%) before the subscription is sent on to an MQSeries
Publish/Subscribe neighbor.

For example, if your MQRFH2 client subscribes with a topic of
“USA/Alaska*/Juneau?”, this is modified and passed to an MQSeries
Publish/Subscribe broker neighbor as “USA/Alaska%*/Juneau%?”.

If an application using MQRFH connects to an MQSeries Integrator broker,
MQSeries Integrator emulates the behavior of the MQSeries Publish/Subscribe
wildcard characters * and ? using a mixture of its own wildcard characters and filter
expressions. Existing MQRFH applications that subscribe to an MQSeries Integrator
broker therefore receive the same publications as they would receive if they
subscribe to an MQSeries Publish/Subscribe broker.

Default topic routing
In MQSeries Integrator, the Topic property of the MQInput node can be used to
route messages that do not contain publish/subscribe parameters. This feature
does not apply to MQRFH subscribers.

MQRFH subscribers expect to receive publications, with a well-formed MQRFH
header, from both MQSeries Publish/Subscribe and MQSeries Integrator clients. In
the latter case, the original MQRFH2 header is converted as described in Table 8
on page 151. However, if the message does not contain publish/subscribe
information in either an MQRFH or an MQRFH2 header, the default topic will not be
used to send publications to an MQRFH subscriber.

160 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

 Retained publications
In MQSeries Publish/Subscribe, retained publications are published as
non-persistent messages and are therefore automatically deleted when the broker’s
queue manager is restarted. In MQSeries Integrator, retained publications are
persistent and are preserved across queue manager restarts.

 Metatopics
MQSeries Publish/Subscribe brokers provide information about publishers and
subscribers via a special set of topics called metatopics. These topics start with
the “MQ/S/” or “MQ/SA/” prefix, and are subscribed to by two categories of
applications, administration programs and clients.

MQSeries Integrator does not provide equivalent metatopics, and therefore any
existing program (administration or client) that subscribes to MQSeries
Publish/Subscribe metatopics cannot work with an MQSeries Integrator broker.
However, MQSeries Integrator does publish information about subscription events
using its own set of system topics. These are described in the MQSeries Integrator
Administration Guide.

The following considerations apply for the two categories of application in the
MQSeries Integrator environment:

� Administration programs such as the amqspsd sample use the MQSeries
Publish/Subscribe metatopics to display subscription information. This
information is provided by MQSeries Integrator in the Control Center, which
provides an interface to view and delete subscriptions throughout the broker
network.

� Applications use messages published on MQSeries Publish/Subscribe
metatopics, for example, to request information about their own current
subscriptions.

A client program can subscribe to MQSeries Integrator system topics and
process the event publications. MQSeries Integrator does not provide a topic
that reports all of the current subscriptions for a particular topic or client, but
does publish whenever subscriptions are added or removed. This information is
published as event information not state information (MQSeries
Publish/Subscribe metatopics are published as state information). For more
information about event and state publications, see “State and event
information” on page 76.

 Subscription points
Subscriptions points are a feature provided by MQSeries Integrator that can be
used to make information associated with a particular topic available in a number of
different formats.

For example, stock prices might be published with a default currency of dollars, but
might be required by subscribers in a number of other currencies.

This can be achieved by defining additional paths through the message flow that
take each publication and convert the dollar stock price into another currency, for
example sterling, before it is passed to its Publication node.

 Appendix A. Planning for migration and integration 161

 MQSeries Publish/Subscribe

Each additional currency must be associated with a different subscription point and
therefore a Publication node. The original publication in dollars is associated with
the default subscription point.

Subscribers can then subscribe to stock prices using a combination of topic and the
subscription point that provides the data in the correct currency.

Subscription points are not supported by MQSeries Publish/Subscribe. You must
therefore consider their use in a heterogeneous network carefully. In particular,
publications can only pass between MQSeries Integrator and MQSeries
Publish/Subscribe brokers on the default subscription point.

Also, all topics published in an MQSeries Publish/Subscribe broker domain are on
the default subscription point. These topics are only available to MQRFH2
subscribers that subscribe to the topics without specifying a subscription point (that
is, they are using the default subscription point).

Similarly, clients at MQSeries Publish/Subscribe brokers can only subscribe to
topics that are published on the default subscription point at MQSeries Integrator
brokers (at Publication nodes that do not have a subscription point set).

 Content-based filtering
MQSeries Integrator supports content-based filtering of publications. This is a
powerful and flexible option for publish/subscribe application suites. This option
significantly enhances the ability of the MQRFH2 subscriber to restrict the
messages they wish to receive.

When an MQRFH2 client registers a subscription with the local broker, it can
specify a filter to be applied to the content of fields within each publication
message.

An MQRFH2 subscriber can subscribe to MQRFH publications within the MQSeries
Publish/Subscribe part of a mixed broker network based upon the restrictions
mentioned in this chapter. All MQRFH publications are converted to MQRFH2
format by the broker before delivery to the MQRFH2 client (see Table 8 on
page 151 for conversion details).

An MQRFH2 subscriber can also request some very restricted content-based
filtering to be performed on the MQRFH publications they are subscribing to. This
can only be done if the body of the publication is in a format that can be parsed by
the broker: that is, it can be interpreted by one of the broker’s default parsers
(described in “Message parsers” on page 59). For example, messages in XML or
MQPCF format can be processed in this way.

If you want to make full use of content-based filtering, you must convert
publications into MQRFH2 format. This enables all messages defined in the
message repository to be interpreted by the brokers parsers. MQRFH clients are
not able to specify a content filter.

For more details about message formats, their construction, and the message
repository, see MQSeries Integrator Using the Control Center.

162 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

 Throughput
In MQSeries Publish/Subscribe a single thread processes publications on each of
the stream queues. This guaranteed the order in which publications were
processed from the queue. When you consider throughput for publications in an
MQSeries Integrator broker domain, you must also consider the importance of the
order in which messages are published. The techniques to increase throughput do
not necessarily guarantee order.

MQSeries Integrator supports two options that increase throughput:

1. You can configure the message flow with additional threads by setting the
Additional Instances property of the MQInput node. This property instructs the
broker to schedule additional threads to read messages from the input queue,
thus allowing publications from that queue to be processed concurrently by the
broker. You must also ensure that the stream (input) queue has the share
attribute set (MQSeries Publish/Subscribe required stream queues to have
noshare set).

If multiple threads process messages from a single queue, publications are not
guaranteed to be delivered to subscribers in the order in which they are placed
on the input queue. Therefore MQSeries Integrator provides a simple ordering
facility that can be used to allow concurrent processing of publications whilst
still maintaining some sequence:

You can set the Order Mode property of the MQInput node to the value By
User ID. This will ensure the order of delivery of publications sent to the broker
by a given user. When this property is set, the processing of messages that
carry a given UserIdentifier field in the MQMD will be held up if any other
thread servicing that message flow is currently processing a message that
carries the same UserIdentifier.

The benefits of running additional instances of the message flow will be
negated if all publishing applications are running under the same user ID. This
might be the case for publishing applications connected to a queue manager
remote to the broker’s queue manager. Messages from these remote
publishers arrive at the broker via a channel that might have been set up to
insert the channel program’s user ID in place of the originating client’s user ID.
Refer to the MQSeries Intercommunications book for more information on how
to set the PUTAUT channel attribute to change the default channel behavior.

2. You can configure one or more additional message flows (not instances) that
read publications from different queues. You must also update some of your
publishing applications to publish to the new queue (or queues). This has the
effect of splitting the stream, and therefore spreading the workload.

If you choose to increase throughput using this method, you must consider the
impact this has on the order in which publications are delivered. In particular
you must ensure that the publisher applications are split with respect to the
topics they are publishing on to ensure that order can be maintained per topic,
if this is important. If your applications publish to different queues (message
flows) on the same topic order cannot be guaranteed.

If you update the publisher applications to send publications to a new queue
which has a different name to the stream on which they are publishing, you
must also update these applications to explicitly include the stream name within
their publications using the MQPSStreamName parameter.

 Appendix A. Planning for migration and integration 163

 MQSeries Publish/Subscribe

Publishing applications that specify a stream parameter do not need to be
modified, as this parameter takes precedence. However, if publishing
applications do not specify the stream parameter, the behavior is determined by
the setting of the Implicit Stream Naming property of the publication node in the
message flow:

� If the property is set to false, the default stream is assumed.

� If the property is set to true, the stream name is assumed to be the same
as the name of the stream input queue.

Scenario 1: running two independent broker networks
If you already have an MQSeries Publish/Subscribe broker network, you can
continue to use this network unchanged. The introduction of MQSeries Integrator
Version 2.0.1 to your environment, and the creation of brokers in that broker
domain, does not affect your MQSeries Publish/Subscribe broker domain until you
take specific action to connect the two networks.

If you want to run in this mode with two separate, independent networks, you do
not have to take any specific actions. You can retain your existing MQSeries
Publish/Subscribe network, and install and configure an MQSeries Integrator
Version 2.0.1 network, without any interaction.

Your existing applications can continue to work unchanged. However, there can be
no interchange of publications in this scenario.

You must be aware that a single queue manager cannot support both an MQSeries
Publish/Subscribe broker and an MQSeries Integrator Version 2.0.1 broker. If you
have brokers of both types on the same system, each broker must have its own
dedicated queue manager.

You can implement this scenario while you assess the new product and the extra
functions contained within the publish/subscribe support. It also lets you plan for the
extent of integration or migration, or both, that you require, without affecting your
current environment.

Scenario 2: creating and operating a heterogeneous network
When you have operated two separate networks for a while, and understand the
benefits that MQSeries Integrator Version 2.0.1 provides, you can take the next
step of setting up an integrated network with a mix of MQSeries Publish/Subscribe
and MQSeries Integrator brokers.

A heterogeneous network enables publications and subscriptions to be propagated
through one logical network, made up of two physical networks.

Applications registered with all brokers (MQSeries Integrator Version 2.0.1 and
MQSeries Publish/Subscribe) are not aware that there is a heterogeneous network,
and, subject to authorizations being in place and the product differences addressed,
can publish and subscribe freely.

One of the significant advantages of creating and operating an heterogeneous
network is that it allows you to integrate MQSeries Publish/Subscribe brokers
running on operating systems that are currently not supported by MQSeries
Integrator Version 2.0.1. You can integrate them with new MQSeries Integrator

164 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

Version 2.0.1 brokers, or with those migrated from MQSeries Publish/Subscribe
brokers on the same operating system, or both.

You also create and operate a heterogeneous network while you implement
migration, because you are not required to migrate your whole MQSeries
Publish/Subscribe broker network in one step. See “Scenario 3: migrating
MQSeries Publish/Subscribe brokers” for details about migrating individual brokers.

To achieve a heterogeneous network, you must:

� Select the brokers that are to join the two networks together.

The hierarchical structure of the MQSeries Publish/Subscribe network, with a
single root broker (node) and a number of leaf nodes, allows you to integrate
the two networks in two ways:

– You can add a single MQSeries Integrator Version 2.0.1 broker to the
MQSeries Publish/Subscribe network as a root node. The MQSeries
Publish/Subscribe hierarchy results in the heaviest workload at the root
node. If you add an MQSeries Integrator Version 2.0.1 broker as a new
root, all MQSeries Publish/Subscribe message traffic will be processed by
this node.

– You can add one or more MQSeries Integrator Version 2.0.1 brokers to the
MQSeries Publish/Subscribe network as leaf nodes. This option minimizes
the additional workload placed on the MQSeries Integrator Version 2.0.1
broker.

� Establish message flows that provide the publish/subscribe services required in
the MQSeries Integrator broker.

The choices you have for implementing these message flows have already
been discussed in “Throughput” on page 163.

Details of how you implement these actions are described in the MQSeries
Integrator Administration Guide.

Scenario 3: migrating MQSeries Publish/Subscribe brokers
This third scenario describes the planning you must do when you decide to migrate
your MQSeries Publish/Subscribe brokers. This is likely to be the final stage of
your adoption of MQSeries Integrator into your current MQSeries Publish/Subscribe
environment.

The action of migrating an MQSeries Publish/Subscribe broker to an MQSeries
Integrator broker replaces the broker. This is a final step, from which it is difficult to
return.

You must therefore ensure you have considered the move carefully, and have
taken any actions or decisions necessary to ensure a smooth transition.

You are advised to consider the following:

� The order in which you migrate the brokers

You do not have to migrate all the brokers in the network at once. You can
migrate brokers one at a time, thus creating an intermediate state in which the
network consists of a mixture of MQSeries Publish/Subscribe and MQSeries
Integrator brokers.

 Appendix A. Planning for migration and integration 165

 MQSeries Publish/Subscribe

In fact, a mixed network of this nature might be the final state of the network,
because you cannot migrate brokers that have been created on an operating
system not supported by MQSeries Integrator.

If you have a choice of which brokers to migrate first, you are advised to
migrate leaf nodes first. These brokers have a single relation in the network (a
parent) and their migration is therefore easier to plan and implement.

� The place of each broker in the network

Each broker you migrate has at least one neighbor, its parent. You are
advised to quiesce client applications on every related brokers, and stop the
brokers, in addition to the one you are migrating.

� The use of collectives in the MQSeries Integrator network

A collective removes a single point of failure, and therefore increases the
resilience of every individual node in the publish/subscribe network. For more
information about using collectives, see “Supporting publish/subscribe services”
on page 108.

Table 11 on page 167 identifies the areas of potential incompatibility due to the
upgraded behavior of MQSeries Integrator. It provides some hints as to when, and
how, you might need to make changes to your client applications, or the topics they
use.

If you do make changes, you must test your changes for correctness by running the
changed items in your MQSeries Publish/Subscribe network for a reasonable period
of time before migrating to MQSeries Integrator.

 Migration checklist
When you have identified the MQSeries Publish/Subscribe broker or brokers that
you want to migrate to MQSeries Integrator, you must work through the items
presented in Table 11 on page 167 to ensure your migration is transparent to your
client applications.

You need an in-depth knowledge of both the broker, and the client applications that
are using it, to determine exactly which items affect your environment.

You will find the MQSeries Publish/Subscribe sample administration program,
amqspsd, which reports on the state of an MQSeries Publish/Subscribe broker,
helps you to identify some of the problem areas listed here. Refer to the MQSeries
Publish/Subscribe User’s Guide for full details of the operation of this program.

166 MQSeries Integrator Introduction and Planning

 MQSeries Publish/Subscribe

Table 11. Migration inhibitors checklist

Item Suggested discovery Suggested resolution Chkd

Topics

No topics contain the # or the +
character

Check full output from amqspsd. Redesign topicsE.

No applications are subscribing to
metatopics

Check full output from amqspsd
for subscription to topics starting
with either “MQ/S/” or “MQ/SA/”

No equivalent MQSeries Integrator
functionsH.

Streams

No user-defined topics have been
added to the administration stream

Check topics returned in the output
from amqspsd filtered by
administration stream

Move subscriptions and
publications to existing or new
streamF.

Common streams shared between
broker and its relations do not
need to changeG

No new common streams are
needed in the future

After migration, remove the
MQSeries Integrator broker from
the MQSeries Publish/Subscribe
network and add it (rejoin it) again

Capacity

Is the broker running near to full
capacity

Any reported instances of
messages building up on the
control queue or any of the stream
queues

After migration, create additional
message flow instances to spread
the workloadM

Message formats

No publishing applications are
using MQPCF messagesO

Check publishing applications Change applications to use
MQRFH format

User exit

No routing exit is being used Check for the presence of the
routingexit configuration parameter

No equivalent MQSeries Integrator
functionsN.

Notes:

1. If the topics being used by your publisher and subscriber applications need to be redesigned, this might involve more than
simply changing the affected client applications. Subscriptions and retained publications that reference the invalid topics
need to be removed. Also brokers need to be stopped so that all processing on the affected topics is suitably quiesced in
the entire broker network, prior to deploying the modified publisher and subscriber applications.

2. This issue is discussed in “Metatopics” on page 161. MQSeries Publish/Subscribe and MQSeries Integrator do not provide
fully compatible function for metatopics.

3. If the administration stream (stream queue SYSTEM.BROKER.ADMIN.STREAM) has been used for convenience by client
applications, these topics need to be moved to another stream supported by all brokers in the network. No subscriptions or
retained publications are migrated on this stream.

4. If the broker is part of multibroker network, MQSeries Integrator brokers will not respond to stream support changes at
neighboring MQSeries Publish/Subscribe brokers. If you require the replacement broker to support other streams, the
MQSeries Integrator broker must be removed from the MQSeries Publish/Subscribe network, and added again.

5. MQSeries Publish/Subscribe and MQSeries Integrator have different operational characteristics that make it difficult to
compare their performance directly. In particular, MQSeries Integrator stores its persistent data within a database. You are
advised to model your broker’s current workload with an MQSeries Integrator broker prior to migration. MQSeries Integrator
throughput can be increased in two ways: see “Throughput” on page 163 for details.

6. MQSeries Integrator brokers only accept publications made in MQRFH or MQRFH2 format. The migmqbrk command does
not export MQPCF retained publications to the replacement MQSeries Integrator broker.

7. If only a small majority of publications need to be processed by the user exit, an additional MQSeries Publish/Subscribe
broker could be created to host affected subscribers prior to migration. The subscribing applications themselves do not need
to be moved to the new broker, but their subscriptions do need to be rerouted. The user exit code can then run at the new
broker which would not be migrated.

 Appendix A. Planning for migration and integration 167

 MQSeries Publish/Subscribe

168 MQSeries Integrator Introduction and Planning

 Product package for AIX

| Appendix B. The product packages

| A summary of the contents of the packages for MQSeries Integrator for AIX,
| MQSeries Integrator for Sun Solaris, and MQSeries Integrator for Windows NT are
| provided in the following sections. For exact details, you must refer to the product
| Readme.txt file, and to the MQSeries Integrator Installation Guide for you product.

| The MQSeries Integrator for AIX package
| The MQSeries Integrator for AIX package includes the following CDs:

| 1. MQSeries Integrator for AIX Version 2.0.1

| This CD includes the installable documentation package and the NEON support
| and Tivoli interface support files and documentation. For more information,
| see the Readme.txt.

| 2. MQSeries Integrator for Windows NT Version 2.0.1

| 3. MQSeries Integrator for AIX Version 2.0.1 supplemental material

| � MQSeries for AIX Version 5.1 CSD 4.

| This CSD is provided to enable you to upgrade a new or existing
| installation of MQSeries for AIX Version 5.1.

| � DB2 Universal Database Clients for AIX.

| The Administration Client and the Run-time client are provided in all
| available national languages.

| � The MQSeries Integrator Version 2.0.1 documentation PDF package that
| can be viewed without installation.

| Note: You are recommended to install the PDF package from the primary
| product CD, but you might choose to refer to the product library before
| installation.

| � Any additional product service updates required for any product supplied in
| this package are included on this CD. Up-to-date details of the service
| levels required are included in the MQSeries Integrator Version 2.0.1
| Readme.txt file on the primary product CD.

| 4. MQSeries Integrator for Windows NT Version 2.0.1 supplemental material

| � MQSeries for Windows NT Version 5.1 CSD 4.

| This CSD is provided to enable you to upgrade an existing installation of
| MQSeries for Window NT Version 5.1.

| � DB2 Universal Database Clients for Windows NT.

| The Administration Client and the Run-time client are provided in all
| available national languages.

| � Any additional product service updates required for any product supplied in
| this package are included on this CD. Up-to-date details of the service
| levels required are included in the MQSeries Integrator Version 2.0.1
| Readme.txt file on the primary product CD.

 Copyright IBM Corp. 2000 169

 Product package for Sun Solaris

| 5. DB2 Enterprise Edition for AIX Version 6.1

| This is supplied for specific use with MQSeries Integrator. If you do not already
| have a suitable database to use, you must install this product before you install
| MQSeries Integrator.

| 6. MQSeries for AIX Version 5.1

| If you install this product, you must ensure that you also install CSD4 from the
| supplemental CD before you install MQSeries Integrator.

| The MQSeries Integrator installation program checks that you have the
| appropriate components of MQSeries installed on your system. The Runtime
| component requires the MQSeries for AIX V5.1 server. Other components have
| no MQSeries dependency.

| If any MQSeries component is required for MQSeries Integrator installation, and
| you do not have the correct level already installed, you must install this CD. If
| you already have Version 5.0, you can use these CDs to upgrade to Version
| 5.1.

| 7. MQSeries for Windows NT Version 5.1

| This CD has CSD4 already included: if you install the MQSeries product form
| this CD you do not have to install any additional CSDs.

| The installation program checks that you have the appropriate components of
| MQSeries installed on your system. Some MQSeries Integrator components
| require MQSeries for Windows NT V5.1 server, the Control Center requires the
| MQSeries Client for Java. A few components have no MQSeries dependency.

| If any MQSeries component is required for MQSeries Integrator installation, and
| you do not have the correct level already installed, you must install this CD. If
| you already have Version 5.0, you can use these CDs to upgrade to Version
| 5.1.

| 8. MQSeries Clients

| MQSeries Clients for all platforms in all available national languages are
| included on this CD.

| The following hardcopy installation books are supplied:

| � The MQSeries Integrator for AIX Version 2 Installation Guide
| � MQSeries for AIX Version 5.1 Quick Beginnings
| � MQSeries for Windows NT Version 5.1 Quick Beginnings

| The MQSeries Integrator for Sun Solaris package
| The MQSeries Integrator for Sun Solaris package includes the following CDs:

| 1. MQSeries Integrator for Sun Solaris Version 2.0.1

| This CD includes the installable documentation package and the NEON support
| and Tivoli interface support files and documentation. For more information,
| see the Readme.txt.

| 2. MQSeries Integrator for Windows NT Version 2.0.1

170 MQSeries Integrator Introduction and Planning

 Product package for Sun Solaris

| 3. MQSeries Integrator for Sun Solaris Version 2.0.1 supplemental material

| � MQSeries for Sun Solaris Version 5.1 CSD 4.

| This CSD is provided to enable you to upgrade a new or existing
| installation of MQSeries for Sun Solaris Version 5.1.

| � DB2 Universal Database Clients for Sun Solaris.

| The Administration Client and the Run-time client are provided in all
| available national languages.

| � The MQSeries Integrator Version 2.0.1 documentation PDF package that
| can be viewed without installation.

| Note: You are recommended to install the PDF package from the primary
| product CD, but you might choose to refer to the product library before
| installation.

| � Any additional product service updates required for any product supplied in
| this package are included on this CD. Up-to-date details of the service
| levels required are included in the MQSeries Integrator Version 2.0.1
| Readme.txt file on the primary product CD.

| 4. MQSeries Integrator for Windows NT Version 2.0.1 supplemental material

| � MQSeries for Windows NT Version 5.1 CSD 4.

| This CSD is provided to enable you to upgrade an existing installation of
| MQSeries for Window NT Version 5.1.

| � The DB2 Universal Database Clients for Windows NT.

| The Administration Client and the Run-time client are provided in all
| available national languages.

| � Any additional product service updates required for any product supplied in
| this package are included on this CD. Up-to-date details of the service
| levels required are included in the MQSeries Integrator Version 2.0.1
| Readme.txt file on the primary product CD.

| 5. DB2 Enterprise Edition for Sun Solaris Version 6.1

| This is supplied for specific use with MQSeries Integrator. If you do not already
| have a suitable database to use, you must install DB2 from this CD (before or
| after MQSeries Integrator installation).

| 6. MQSeries for Sun Solaris Version 5.1

| If you install this product, you must ensure that you also install CSD4 from the
| supplemental CD before you install MQSeries Integrator.

| The MQSeries Integrator installation program checks that you have the
| appropriate components of MQSeries installed on your system. The runtime
| component requires the MQSeries for Sun Solaris V5.1 server. Other
| components have no MQSeries dependency.

| If any MQSeries component is required for MQSeries Integrator installation, and
| you do not have the correct level already installed, you must install this CD. If
| you already have Version 5.0, you can use these CDs to upgrade to Version
| 5.1.

 Appendix B. The product packages 171

 Product package for Windows NT

| 7. MQSeries for Windows NT Version 5.1

| This CD has CSD4 already included: if you install the MQSeries product form
| this CD you do not have to install any additional CSDs.

| The installation program checks that you have the appropriate components of
| MQSeries installed on your system. Some MQSeries Integrator components
| require MQSeries for Windows NT V5.1 server, the Control Center requires the
| MQSeries Client for Java. A few components have no MQSeries dependency.

| If any MQSeries component is required for MQSeries Integrator installation, and
| you do not have the correct level already installed, you must install this CD. If
| you already have Version 5.0, you can use these CDs to upgrade to Version
| 5.1.

| 8. MQSeries Clients

| MQSeries Clients for all platforms in all available national languages are
| included on this CD.

| The following hardcopy installation books are supplied:

| � The MQSeries Integrator for Sun Solaris Version 2 Installation Guide
| � MQSeries for Sun Solaris Version 5.1 Quick Beginnings
| � MQSeries for Windows NT Version 5.1 Quick Beginnings

The MQSeries Integrator for Windows NT package
The MQSeries Integrator for Windows NT package includes the following CDs:

1. MQSeries Integrator for Windows NT Version 2.0.1

This CD also contains DB2 Enterprise Edition Version 6.1, which is supplied for
| specific use with MQSeries Integrator. If you do not have a suitable database
| to use, you can install this product during MQSeries Integrator installation.

| This CD includes the installable documentation. The NEON support is
| integrated with the broker component.

2. MQSeries Integrator for Windows NT Version 2.0.1 supplemental material

� MQSeries for Windows NT Version 5.1 CSD 4.

This CSD is provided to enable you to upgrade an existing installation of
MQSeries for Window NT Version 5.1.

� DB2 Universal Database Clients for Windows NT.

The Administration Client and the Run-time client are provided in all
available national languages.

| � The MQSeries Integrator Version 2.0.1 documentation PDF package that
| can be viewed without installation.

| Note: You are recommended to install the PDF package from the primary
| product CD, but you might choose to refer to the product library before
| installation.

| � The Tivoli interface support files and documentation. For more
| information, see the Readme.txt.

172 MQSeries Integrator Introduction and Planning

 Product package for Windows NT

� Any additional product service updates required for any product supplied in
this package are included on this CD. Up-to-date details of the service
levels required are included in the MQSeries Integrator Version 2.0.1
Readme.txt file on the primary product CD.

3. MQSeries for Windows NT Version 5.1

This CD has CSD4 already included: if you install the MQSeries product from
this CD you do not have to install any additional CSDs.

The installation program checks that you have the appropriate components of
MQSeries installed on your system. Some MQSeries Integrator components
require MQSeries for Windows NT V5.1 server, the Control Center requires the
MQSeries Client for Java. A few components have no MQSeries dependency.

If any MQSeries component is required for MQSeries Integrator installation, and
you do not have the correct level already installed, you must install this CD. If
you already have Version 5.0, you can use these CDs to upgrade to Version
5.1.

 4. MQSeries Clients

MQSeries Clients for all platforms in all available national languages are
included on this CD.

The following hardcopy installation books are supplied:

� The MQSeries Integrator for Windows NT Version 2 Installation Guide
� MQSeries for Windows NT Version 5.1 Quick Beginnings

 Appendix B. The product packages 173

 Product package for Windows NT

174 MQSeries Integrator Introduction and Planning

 Notices

 Appendix C. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

 Copyright IBM Corp. 2000 175

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

176 MQSeries Integrator Introduction and Planning

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both:

| Lotus is a trademark of Lotus Development Corporation in the United States, other
| countries, or both.

| Tivoli is a trademark of Tivoli Systems Inc. in the United States, other countries, or
| both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

AIX AS/400 CICS
DB2 DB2 Universal Database IBM
IMS/ESA Lotus MQSeries
POWERparallel POWERserver RS/6000
SupportPac System/390 Tivoli
TXSeries Websphere

 Appendix C. Notices 177

 Notices

178 MQSeries Integrator Introduction and Planning

 Access Control List (ACL) � deploy

Glossary of terms and abbreviations

This glossary defines MQSeries Integrator terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute. Copies may be ordered
from the American National Standards Institute, 11
West 42 Street, New York, New York 10036. Definitions
are identified by the symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that
have explicit permissions (to publish, to subscribe to,
and to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The
programming interface provided by MQSeries that
defines a high level interface to message queuing
services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid entity
that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a
common configuration, together with the single
Configuration Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are
related in some way. For example, messages that
relate to a particular application.

| check in. The Control Center action that stores a new
| or updated resource in the configuration or message
| respository.

| check out. The Control Center action that extracts and
| locks a resoource from the configuration or message
| respository for local modification by a user. Resources
| from the two repositories can only be worked on when
| they are checked out by an authorized user, but can be
| viewed (read only) without being checked out.

collective. A hyperconnected (totally connected) set of
brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers,
execution groups, message flows and message sets
assigned to them, topics and access control
specifications.

Configuration Manager. A component of MQSeries
Integrator that acts as the interface between the
configuration repository and an executing set of brokers.
It provides brokers with their initial configuration, and
updates them with any subsequent changes. It
maintains the broker domain configuration.

configuration repository. Persistent storage for
broker configuration and topology definition.

connector. See message processing node
connector.

content-based filter. An expression that is applied to
the content of a message to determine how the
message is to be processed.

context tag. A tag that is applied to an element within
a message to enable that element to be treated
differently in different contexts. For example, an element
could be mandatory in one context and optional in
another.

Control Center. The graphical interface that provides
facilities for defining, configuring, deploying, and
monitoring resources of the MQSeries Integrator
network.

D
datagram. The simplest form of message that
MQSeries supports. Also known as send-and-forget.
This type of message does not require a reply.
Compare with request/reply.

deploy. Make operational the configuration and
topology of the broker domain.

 Copyright IBM Corp. 2000 179

 destination list � JMS

| destination list. A list of internal and external
| destinations to which a message is sent. These can be
| nodes within a message flow (for example, when using
| the RouteToLabel and Label nodes) or MQSeries
| queues (when the list is examined by an MQOutput
| node to determine the final target for the message).

distribution list. A list of MQSeries queues to which a
message can be put using a single statement.

| Document Type Definition. The rules that specify the
| structure for a particular class of SGML or XML
| documents. The DTD defines the structure with
| elements, attributes, and notations, and it establishes
| constraints for how each element, attribute, and notation
| can be used within the particular class of documents. A
| DTD is analogous to a database schema in that the
| DTD completely describes the structure for a particular
| markup language.

| DTD. Document Type Definition

E
e-business. A term describing the commercial use of
the Internet and World Wide Web to conduct business
(short for electronic-business).

element. A unit of data within a message that has
business meaning, for example, street name

element qualifier. See context tag.

| ESQL. Extended SQL. A specialized set of SQL
| statements based on regular SQL, but extended with
| statements that provide specialized functions unique to
| MQSeries Integrator.

| exception list. A list of exceptions that have been
| generated during the processing of a message, with
| supporting information.

execution group. A named grouping of message
flows that have been assigned to a broker. The broker
is guaranteed to enforce some degree of isolation
between message flows in distinct execution groups by
ensuring that they execute in separate address spaces,
or as unique processes.

Extensible Markup Language (XML). A W3C
standard for the representation of data.

F
filter. An expression that is applied to the content of a
message to determine how the message is to be
processed.

format. A format defines the internal structure of a
message, in terms of the fields and order of those
fields. A format can be self-defining, in which case the
message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a
software product that is graphical rather than textual. It
refers to window-based operational characteristics.

I
implementation function. Function written by a
third-party developer for a plug-in node or parser. Also
known as a callback function.

input node. A message flow node that represents a
source of messages for the message flow.

installation mode. The installation mode can be Full,
Custom, or Broker only. The mode defines the
components of the product installed by the installation
process on Windows NT systems.

J
Java Database Connectivity (JDBC). An application
programming interface that has the same characteristics
as ODBC but is specifically designed for use by Java
database applications.

Java Development Kit (JDK). A software package
that can be used to write, compile, debug, and run Java
applets and applications.

Java Message Service (JMS). An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment. A subset of the Java
Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes and supporting files.

JDBC. Java Database Connectivity.

JDK. Java Development Kit.

JMS. Java Message Service. See also AMI and MQI.

180 MQSeries Integrator Introduction and Planning

 JRE � output node

JRE. Java Runtime Environment.

| L
| local error log. A generic term that refers to the logs
| to which MQSeries Integrator writes records on the local
| system. On Windows NT, this is the Event log. On
| UNIX systems, this is the syslog. See also system log.
| Note that MQSeries records many events in the log that
| are not errors, but information about events that occur
| during operation, for example, successful deployment of
| a configuration.

M
message broker. A set of execution processes
hosting one or more message flows.

messages. Entities exchanged between a broker and
its clients.

message dictionary. A repository for (predefined)
message type specifications.

message domain. The source of a message
definition. For example, a domain of MRM identifies
messages defined using the Control Center, a domain
of NEON identifies messages created using the NEON
user interfaces.

message flow. A directed graph that represents the
set of activities performed on a message or event as it
passes through a broker. A message flow consists of a
set of message processing nodes and message
processing node connectors.

message flow component. See message flow.

message parser. A program that interprets a message
bitstream.

message processing node. A node in the message
flow, representing a well defined processing stage. A
message processing node can be one of several
primitive types or can represent a subflow.

message processing node connector. An entity that
connects the output terminal of one message
processing node to the input terminal of another. A
message processing node connector represents the
flow of control and data between two message flow
nodes.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. The
programming interface allows application programs to

access message queuing services. See also AMI and
JMS.

message repository. A database holding message
template definitions.

message set. A grouping of related messages.

message template. A named and managed entity that
represents the format of a particular message. Message
templates represent a business asset of an
organization.

message type. The logical structure of the data within
a message. For example, the number and location of
character strings.

metadata. Data that describes the characteristic of
stored data.

MQI. Message queue interface.

MQRFH. An architected message header that is used
to provide metadata for the processing of a message.
This header is supported by MQSeries
Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing
enhanced function in message processing.

multi-level wildcard. A wildcard that can be specified
in subscriptions to match any number of levels in a
topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and non-relational database management
systems. Using this API, database applications can
access data stored in database management systems
on a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the X/Open
SQL Access Group.

output node. A message processing node that
represents a point at which messages flow out of the
message flow.

 Glossary of terms and abbreviations 181

 plug-in � subscription filter

P
plug-in. An extension to the broker, written by a
third-party developer, to provide a new message
processing node or message parser in addition to those
supplied with the product. See also implementation
function and utility function.

point-to-point. Style of messaging application in which
the sending application knows the destination of the
message. Compare with publish/subscribe.

POSIX. Portable Operating System Interface For
Computer Environments. An IEEE standard for
computer operating systems (for example, AIX and Sun
Solaris).

predefined message. A message with a structure that
is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied
with the product.

principal. An individual user ID (for example, a log-in
ID) or a group. A group can contain individual user IDs
and other groups, to the level of nesting supported by
the underlying facility.

property. One of a set of characteristics that define
the values and behaviors of objects in the Control
Center. For example, message processing nodes and
deployed message flows have properties.

publication node. An end point of a specific path
through a message flow to which a client application
subscribes. A publication node has an attribute,
subscription point. If this is not specified, the publication
node represents the default subscription point for the
message flow.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. An application that makes information
about a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other

types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that
programs can access messages on the queues that the
queue manager owns.

R
retained publication. A published message that is
kept at the broker for propagation to clients that
subscribe at some point in the future.

request/reply. Type of messaging application in which
a request message is used to request a reply from
another application. Compare with datagram.

rule. A rule is a definition of a process, or set of
processes, applied to a message on receipt by the
broker. Rules are defined on a message format basis,
so any message of a particular format will be subjected
to the same set of rules.

S
self-defining message. A message that defines its
structure within its content. For example, a message
coded in XML is self-defining. Compare with pre-defined
message.

send and forget. See datagram.

setup type. The definition of the type of installation
requested on Windows NT systems. This can be one of
Full, Broker only, or Custom.

shared. All configuration data that is shared by users
of the Control Center. This data is not operational until it
has been deployed.

signature. The definition of the external characteristics
of a message processing node.

single-level wildcard. A wildcard that can be specified
in subscriptions to match a single level in a topic.

subscriber. An application that requests information
about a specified topic from a publish/subscribe broker.

subscription. Information held within a publication
node, that records the details of a subscriber
application, including the identity of the queue on which
that subscriber wants to receive relevant publications.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

182 MQSeries Integrator Introduction and Planning

 subscription point � XML

subscription point. An attribute of a publication node
that differentiates it from other publication nodes on the
same message flow and therefore represents a specific
path through the message flow. An unnamed
publication node (that is, one without a specific
subscription point) is known as the default publication
node.

| system log. A generic term used in the MQSeries
| Integrator messages (BIPxxx) that refers to the local
| error logs to which records are written on the local
| system. On Windows NT, this is the Event log. On
| UNIX systems, this is the syslog. See also local error
| log.

T
terminal. The point at which one node in a message
flow is connected to another node. Terminals enable
you to control the route that a message takes,
depending whether the operation performed by a node
on that message is successful.

topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

| topic based subscription. A subscription specified by
| a subscribing application that includes a topic for
| filtering of publications.

| topic security. The use of ACLs applied to one or
| more topics to control subscriber access to published
| messages.

topology. In the broker domain, the brokers,
collectives, and connections between them.

transform. A defined way in which a message of one
format is converted into one or more messages of
another format.

U
| Uniform Resource Identifier. The generic set of all
| names and addresses that refer to World Wide Web
| resources.

| Uniform Resource Locator. A specific form of URI
| that identifies the address of an item on the World Wide

| Web. It includes the protocol followed by the fully
| qualified domain name (sometimes called the host
| name) and the request. The Web server typically maps
| the request portion of the URL to a path and file name.
| Also known as Universal Resource Locator.

| URI. Uniform Resource Identifier

| URL. Uniform Resource Locator

User Name Server. The MQSeries Integrator
component that interfaces with operating system
facilities to determine valid users and groups.

utility function. Function provided by MQSeries
Integrator for the benefit of third-party developers writing
plug-in nodes or parsers.

W
warehouse. A persistent, historical datastore for
events (or messages). The Warehouse node within a
message flow supports the recording of information in a
database for subsequent retrieval and processing by
other applications.

wildcard. A character that can be specified in
subscriptions to match a range of topics. See also
multilevel wildcard and single-level wildcard.

wire format. This describes the physical
representation of a message within the bit-stream.

W3C. World Wide Web Consortium. An international
industry consortium set up to develop common
protocols to promote evolution and interoperability of the
World Wide Web.

X
XML. Extensible Markup Language.

 Glossary of terms and abbreviations 183

184 MQSeries Integrator Introduction and Planning

 Index

 Index

A
access control list 26

activating 91
checking 91
deployment 91
dynamic topics 90
explicit 87
inheritance 87, 90
permissions 89
persistent delivery 89
PublicGroup 88
resolution of conflicts 88
setting 89
settings 87
subscription resolution 91
system topics 89
wildcards 91

ACL
See access control list

AIX installation
delivery media 169
disk space requirements 97
hardware requirements 96
software requirements 97

AMI
See Application Messaging Interface

Application Messaging Interface 22, 66
applications

communication models 65
design 65
existing 68
MQSeries resources 115
point-to-point 65, 66
programming interfaces 66
publish/subscribe 65, 66, 69
request/reply 68
security 73
send and forget 68
transaction support 71
writing new 69

B
broker 11

associating message flows 16
associating message sets 19
broker tables 11
client connections 23
collective 12
connections for publish/subscribe 12
creating a reference 11

broker (continued)
execution group 48
message flows 12
message sets 12
MQSeries resources 112
publish/subscribe interactions 75
system management interface 13

broker domain
advanced options 139
basics 107
business processes 134
changing components 133
client applications 111
Control Center 111
listing components 133
managing components 133
monitoring 134
MQSeries infrastructure 112
performance 137
planning 105
plug-ins 139
starting components 133
stopping components 133
supporting publish/subscribe 108
system management 138
workload 137

business integration 4
MQSeries family 5

business process rules 3, 13
business scenario

business data 33
business needs 33
implementation 37
MQSeries Integrator solution 34
retail 31

C
CICS 3
clusters, MQSeries 115
code page support 104
code page, database 118
collective 12, 108
communication models

point-to-point 3, 22
publish/subscribe 3, 22

Configuration Manager 9
configuration repository 9, 10
message repository 10
Message Repository Manager (MRM) 56
MQSeries resources 113

 Copyright IBM Corp. 2000 185

 Index

configuration repository 9
Control Center 19

assigning 21
check in 21
check out 20
connection to Configuration Manager 20
deploying 21
export 21
import 21
MQSeries authority 129
MQSeries resources 114
roles 128
security 128
superuser 129
updating 20

D
data conversion 131

code pages 131
numeric order 131

database 27, 117
backup and recovery 119
code page support 118
DB2 dependency 27
location 118
ODBC drivers 103, 118
ODBC drivers (AIX) 98
ODBC drivers (Sun Solaris) 100
ODBC drivers (Windows NT) 102
requirements 117
support 103

DB2 104
publications xiii

dynamic routing 44
dynamic topics

ACLs 90

E
error handling 135

use of local logs 135
error handling in message flows 47
events 13
execution group 48
export message set 58
exporting resource definitions 21

I
IBMMQSI2 129
IBMPrimitive nodes

check 52
compute 51
database 52
extract 51

IBMPrimitive nodes (continued)
filter 52
FlowOrder 50
Label 50
MQInput 50
MQOutput 51
MQReply 51
NEONFormatter 51
NEONRules 51
publication 51
reset content descriptor 51
RouteToLabel 51
throw 52
trace 52
trycatch 52
warehouse 52

import message set 58
importing resource definitions 21
IMS/ESA 3

L
license agreement

DB2 on AIX 98
DB2 on Sun Solaris 100
DB2 on Windows NT 103
MQSeries Integrator 104

Lotus 3

M
message 55

client access 61
Control Center definition 17, 55
creating with SmartGuide 17
dictionaries 61
headers 67
importing 18
message flows 41
message set 18
MQRFH and MQRFH2 mapping 150
NEON definition 56
NEON definitions 18
order 70
parsing 19, 59, 140
persistence 72, 82
predefined 17, 18, 55
processing in message flow 58
self-defining 19, 57
template 17, 56
using messages 61
using templates 61
wire format 57
within transactions 71
XML 57

186 MQSeries Integrator Introduction and Planning

 Index

message dictionary
using with clients 61

message flow 41
assigning to brokers 49
business process rules 13
common node characteristics 45
contents 41
creating 14
default 53
definition 41
dynamic routing 44
enriching message content 45
error handling 47
examples 16
exception list 47
execution group 48
for IVP 53
input 15
interaction 43
message order 43
message processing node 13, 45
output 15
parallel processing 42
processing messages 46
publish/subscribe 15, 49
routing 44
subflow 41
supplied 53
supplied defaults 53
supplied verification 53
throughput 42
tracing 136
transformation 43
tuning for performance 138
unit of work 42
using the DLQ 48

message headers
MQRFH 67
MQRFH2 67

message parser 19, 59, 140
adding 62
default 59

message processing node
adding 53
common node characteristics 45
creating new 140
enhancing 53
IBMPrimitives 50
input 46
input node 15
MQInput 15
MQOutput 15
output 46
output node 15
primitives 14
publication node 15

Message Queue Interface 22, 66
message set

assigning to brokers 49
assignment 18
deployment 18
export 58
for IVP 53
import 58
message dictionary

message template 56
migration

MQIntegrator 143
MQSeries Integrator Version 1 143
MQSeries Publish/Subscribe 148

MQI
See Message Queue Interface

MQRFH 67
mapping to MQRFH2 150

MQRFH2 67
mapping to MQRFH 150

MQSeries
AMI 3
business integration 3
clusters 115
MQI 3
trusted applications 138
Web site xiii

MQSeries family
business integration 5
MQSeries Integrator Version 2.0.1 3
MQSeries messaging 3
MQSeries Workflow 4

MQSeries Integrator Version 1 migration
backing up files 144
considerations for installation 143
enhancing rules and formats 146
existing rules and formats 145
logging 148
MQSeries Integrator Version 2.0.1 message

flow 147
preserving data 144
run-time tasks 145
selecting a database 145
uninstalling 144
user exits 148

MQSeries Integrator Version 2.0.1
applications 22
broker 11
business integration 5
business scenario 31
components 9
Configuration Manager 9
Control Center 19
dependencies 26

database 27
MQSeries 26

 Index 187

 Index

MQSeries Integrator Version 2.0.1 (continued)
enhancements 6
getting started 6
package contents 169
Tour 21
upgrading from previous products 6
User Name Server 24

MQSeries Publish/Subscribe integration
See MQSeries Publish/Subscribe migration

MQSeries Publish/Subscribe migration 148
checklist 166
heterogeneous networks 164
independent networks 164
migrating a network 165
MQSeries support 148
product differences 150

content-based filtering 162
default topic routing 160
message formats 150
metatopics 161
stream authority 157
streams 153
streams and migration 156
streams and neighbor brokers 155
subscription points 161
throughput 163
topics 159
wildcards 159

scenarios 149
MQSeries resources 70

application use of queues 70
multilevel wildcard 84

N
National Language Support 104
NEON

accessing rules and formats 147
existing rules and formats 145
message definitions 18
NEONFormatter 104
NEONRules 104
rules and formats 144
selecting a database 145

nodes 46

O
ODBC

drivers 118
drivers on AIX 98
drivers on Sun Solaris 100
drivers on Windows NT 102

P
parsers 59
PDF library xi
planning

database resources 107
MQSeries Integrator resources 105
MQSeries resources 106
naming conventions 105

plug-ins
guidelines 139
message parser 140
message processing node 140

primary security domain 122
principals 120

IBMMQSI2 129
mqbrkrs 88

problem determination 135
commands 136
database logs 137
database messages 137
messages 137
MQSeries events 137
MQSeries logs 137
MQSeries messages 137
ODBC traces 137
optional traces 136
service trace 136
UNIX syslog 135
user trace 136
user traces 135
Windows NT event log 135

problem determination Q&A website xiii
publication access 91
publications

DB2 xiii
MQSeries xii
MQSeries Integrator Version 1 xi
MQSeries Integrator Version 2.0.1 x
MQSeries Publish/Subscribe xiii
MQSeries Workflow xiii
publish/subscribe

event information 76
global 78
local 78
retained 76, 81
state information 76

publish/subscribe 75
ACLs 26
collectives 87, 108
default ACL 26
filters 81
interactions with broker 75, 86
messages 110
multiple topics 85
publication node 15

188 MQSeries Integrator Introduction and Planning

 Index

publish/subscribe (continued)
reserved characters 83
security 87
special characters 83
subscription point 15
throughput 49
topic 23
topic root 25
topic-based security 24, 110
topics 82
wildcards 83

R
resource definition

import and export 21
retained publications 76
rules 3

S
security

ACLs 89, 130
applications 129
configuration 127
Control Center roles 128
database 127
domain 120
message flows 129
operational 126
primary security domain 122
principals 120
public access 88
run-time 127
topic-based 130
trusted security domain 122

single-level wildcard 84
SmartGuide for message creation 17
special characters

topic level separator 83
subscription points 79

default 80
subscriptions

content filter 79
local 81
registration 78
subscriber queue 79
subscription point 79

Sun Solaris installation
delivery media 170
disk space requirements 99
hardware requirements 98
software requirements 99

superuser, IBMMQSI2 129
system management 13, 138

T
throughput

message flow 42
publish/subscribe message flow 49

Tivoli 13
topic access 91
topic-based security 87, 110
topics

publish/subscribe 82
semantics 84
wildcards 85

trace commands 136
transactionality 46
transactions 71

database interactions 71
trusted security domain 122

U
User Name Server 24, 110

MQSeries resources 114
multiple 110
principals 87

W
wildcard

multilevel 84
single-level 84

Windows NT installation
database 102
delivery media 172
disk space requirements 101
hardware requirements 100
MQSeries 101
operating system software 101
software requirements 101

X
XML messages 57

 Index 189

Sending your comments to IBM
MQSeries Integrator

Introduction and Planning

GC34-5599-01

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries Integrator

Introduction and Planning

GC34-5599-01
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries Integrator

MQSeries Integrator Introduction and Planning GC34-5599-01

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5599-%1

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	Where to find more information
	MQSeries Integrator publications
	MQSeries publications
	MQSeries Publish/Subscribe
	MQSeries Workflow publications
	DB2 publications
	MQSeries information available on the Internet

	Summary of changes
	Changes for this edition (GC34-5599-01)

	Part 1. Introduction
	Chapter 1. MQSeries and business integration
	The MQSeries family
	MQSeries
	MQSeries Integrator
	MQSeries Workflow

	Using MQSeries for business integration
	Using MQSeries Integrator in your business
	MQSeries Integrator Version 2.0.1 and previous IBM offerings

	Getting started with MQSeries Integrator

	Chapter 2. MQSeries Integrator overview and concepts
	The Configuration Manager
	Brokers
	Connecting brokers for publish/subscribe
	System management interfaces

	Business processing rules (message flows)
	Creating message flows
	Message flow input and output
	Publish/subscribe services
	Associating message flows with brokers
	Simple message flow examples

	Messages and message sets
	Messages predefined in the Control Center
	Importing legacy message definitions
	Importing messages predefined by the Control Center

	Messages predefined by the NEONFormatter
	Self-defining messages
	Parsing messages
	Associating message sets with brokers

	The Control Center
	Updates, assignment, and deployment
	Exporting and importing resource definitions
	Help and online Tour

	Applications and clients
	Point-to-point applications
	Publish/subscribe applications
	Client connections to brokers and message flows

	The User Name Server
	Access Control Lists

	Dependencies
	MQSeries dependencies
	Database dependencies

	Release to release migration

	Chapter 3. MQSeries Integrator: a business scenario
	The retail scenario
	Business data
	Business needs
	Business solution using MQSeries Integrator Version 2
	Implementing the business solution

	Part 2. Business process planning
	Chapter 4. Message flows
	What is a message flow?
	What does a message flow consist of?
	Message flows and units of work
	Parallel processing of message flow instances
	Interaction of message flows
	Transformation
	Intelligent routing
	Enriching message content
	What is a message processing node?
	Common node characteristics
	Input and output nodes
	Processing messages
	Error handling

	Execution groups
	Message flows and message sets
	Message flows for publish/subscribe services
	Supplied message flows and nodes
	Primitive message processing node types
	Supplied message flows

	Adding or enhancing message processing nodes

	Chapter 5. Messages
	Predefined and self-defining messages
	Predefined messages
	Message templates

	Self-defining messages
	XML support

	How messages are processed in a message flow
	Exporting and importing MRM message sets

	Message parsers
	Default message parsers

	Using message templates and messages
	Client access to messages

	Creating additional parsers

	Part 3. Application planning
	Chapter 6. Application design
	Communication models
	Point-to-point communications
	Publish/subscribe communications

	Application programming
	Message headers

	Reusing existing applications
	Send and forget
	Request/reply
	Publish/subscribe

	Writing new applications
	MQSeries queues
	Message order
	Publish/subscribe

	Transaction support
	Message persistence

	Security
	Summary

	Chapter 7. Designing publish/subscribe applications
	How publish/subscribe applications interact with a broker
	Publications
	Retained publications
	State and event information
	Using retained publications

	Local and global publications
	Global publication
	Local publication

	Conference-type applications

	Subscriptions
	Subscription points
	The default subscription point
	Using subscription points
	Example

	Filters
	Local subscriptions
	Retained publications
	Publish on request only
	New publications only

	Message persistence

	Topics
	Special characters in topics
	The topic level separator
	The multi-level wildcard
	The single-level wildcard

	Topic semantics and usage
	Using wildcards with topics
	Multiple topics

	Broker networks
	Collectives

	Topic-based security
	Principals and the User Name Server
	Access control lists
	PublicGroup authorizations
	mqbrkrs authorizations
	Resolving ACL conflicts
	ACLs and system topics
	Setting access control on topics
	Inheritance of security policies
	Dynamically created topics
	ACLs and wildcard topics
	ACLs and subscription resolution
	Activating topic ACL updates

	Checking publications and subscriptions
	The publisher
	The subscriber

	Summary

	Part 4. Systems planning
	Chapter 8. System requirements
	Summary of system requirements
	System requirements for AIX components
	Hardware requirements
	Disk space required
	Software requirements

	System requirements for Sun Solaris components
	Hardware requirements
	Disk space required
	Software requirements

	System requirements for Windows NT components
	Hardware requirements
	Disk space required
	Software requirements

	Database support
	Client requirements
	License information
	National language support

	Chapter 9. Planning your MQSeries Integrator network
	Planning MQSeries Integrator resources
	Naming conventions
	MQSeries Integrator resources
	MQSeries resources
	Database resources

	Broker domain basics
	General guidelines
	Supporting publish/subscribe services

	Client applications
	The Control Center application

	Designing the MQSeries infrastructure
	MQSeries resources for brokers
	MQSeries resources for the Configuration Manager
	MQSeries resources for the User Name Server
	MQSeries resources for the Control Center
	MQSeries resources for client applications
	MQSeries clusters

	Planning database resources
	Database requirements
	Databases and code pages
	Database locations
	Database backup and recovery

	Planning security
	Security and principals
	Using Windows NT security domains
	Using UNIX security domains
	Summary of authorizations

	Operational security
	Configurational security
	Run-time security
	Database security

	Control Center security
	The IBMMQSI2 superuser
	MQSeries authorizations

	Application security
	Message flow security
	Topic-based security

	Planning for data conversion

	Chapter 10. Managing your MQSeries Integrator network
	Managing broker domain components
	Managing application and business processes

	Monitoring and analysis
	Problem determination
	Traces
	Messages
	Information available from other sources

	Managing workload and performance
	Using MQSeries trusted applications
	Tuning message flow performance

	System management

	Chapter 11. Enhancing your broker domain
	General guidance for writing plug-ins
	Writing your own message processing node types
	Writing your own parsers

	Part 5. Appendixes
	Appendix A. Planning for migration and integration
	MQSeries Integrator Version 1
	Installation
	Backing up configuration files
	Preserving your MQSeries Integrator Version 1 rules and formats
	Uninstallation of MQSeries Integrator Version 1
	Selecting a NEON database

	Run-time
	NEON rules and formats
	Setting up an MQSeries Integrator Version 2.0.1 message flow
	Logging

	MQSeries Publish/Subscribe
	Scenarios for migration and integration
	Product differences
	Message formats
	Streams
	Stream authority
	Topics
	Wildcards
	Default topic routing
	Retained publications
	Metatopics
	Subscription points
	Content-based filtering
	Throughput

	Scenario 1: running two independent broker networks
	Scenario 2: creating and operating a heterogeneous network
	Scenario 3: migrating MQSeries Publish/Subscribe brokers
	Migration checklist

	Appendix B. The product packages
	The MQSeries Integrator for AIX package
	The MQSeries Integrator for Sun Solaris package
	The MQSeries Integrator for Windows NT package

	Appendix C. Notices
	Trademarks

	Glossary of terms and abbreviations
	Index

