
MQSeries® Integrator

Introduction and Planning
Version 2.0.2

GC34-5599-02

���

MQSeries® Integrator

Introduction and Planning
Version 2.0.2

GC34-5599-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 171.

Third edition (April 2001)

This edition applies to IBM® MQSeries Integrator Version 2 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xii
What you need to know to understand this book. . xii
Terms used in this book xii

Summary of changes xiii
Changes for this edition (GC34-5599-02) xiii
Changes for the second edition (GC34-5599-01) . . xiii

Part 1. Introduction 1

Chapter 1. MQSeries and business
integration 3
The MQSeries family 3

MQSeries 3
MQSeries Integrator 3
MQSeries Workflow 4

Using MQSeries for business integration 4
Using MQSeries Integrator in your business 5

MQSeries Integrator Version 2 and previous IBM
offerings 5

Getting started with MQSeries Integrator 6

Chapter 2. MQSeries Integrator overview
and concepts 9
The Configuration Manager 9
Brokers 11

Connecting brokers for publish/subscribe . . . 12
System management interfaces 13

Business processing rules (message flows) 13
Creating message flows 14
Message flow input and output. 15
Publish/subscribe services 15
Associating message flows with brokers 16
Simple message flow examples 16

Messages and message sets 17
Messages predefined in the Control Center . . . 18
Messages predefined by the NEONFormatter . . 18
Self-defining messages. 19
Parsing messages 19
Associating message sets with brokers 19

The Control Center 20
Updates, assignment, and deployment 20
Exporting and importing resource definitions . . 21
Help and online Tour 22

Applications and clients 22
Point-to-point applications 23
Publish/subscribe applications 23
Client connections to brokers and message flows 24

Special considerations for MQSeries Everyplace
and SCADA 25

The User Name Server 27
Access Control Lists 28

Dependencies. 29
MQSeries dependencies 29
Database dependencies 30

Release to release migration 31

Chapter 3. MQSeries Integrator: a
business scenario 33
The retail scenario 33

Business data 35
Business needs 36
Business solution using MQSeries Integrator
Version 2 36
Implementing the business solution 38

Part 2. Business process planning 39

Chapter 4. Message flows 41
What is a message flow? 41

What does a message flow consist of? 41
Message flows and units of work 42
Parallel processing of message flow instances . . 42
Interaction of message flows. 43
Transformation 43
Intelligent routing 44
Enriching message content 45
What is a message processing node? 45

Execution groups 48
Message flows and message sets 48
Message flows for publish/subscribe services . . . 49
Supplied message flows and nodes 49

Primitive node types 50
Supplied message flows 53

Adding or enhancing message processing nodes . . 54
Solving message flow problems with the Debugger 54

Chapter 5. Messages. 55
Predefined and self-defining messages 55

Predefined messages 55
Self-defining messages. 57
How messages are processed in a message flow 58
Exporting and importing MRM message sets . . 59

Message parsers 59
Default message parsers 59

Using message templates and messages 61
Client access to messages 61

Creating additional parsers 62

Part 3. Application planning 63

© Copyright IBM Corp. 2000, 2001 iii

||

||

|
||

||

Chapter 6. Application design 65
Communication models 65

Point-to-point communications 66
Publish/subscribe communications 66

Application programming 66
Message headers 67

Reusing existing applications 68
Send and forget 68
Request/reply 68
Publish/subscribe 69

Writing new applications 69
MQSeries queues 70
Message order 70

Publish/subscribe 71
Transaction support 71

Message persistence 72
Security 73
Summary 73

Chapter 7. Designing publish/subscribe
applications 75
How publish/subscribe applications interact with a
broker 75
Publications 76

Retained publications 76
Local and global publications 78
Conference-type applications 78

Subscriptions 78
Subscription points 79
Filters 80
Local subscriptions 81
Retained publications 81
Message persistence 82

Topics 82
Special characters in topics 83
Topic semantics and usage 84
Using wildcards with topics 85
Multiple topics 85

Broker networks 85
Collectives. 86

Topic-based security 86
Principals and the User Name Server 86
Access control lists 87
Checking publications and subscriptions. . . . 91

Summary 92

Part 4. Systems planning. 93

Chapter 8. System requirements. . . . 95
Summary of system requirements 95
System requirements for AIX components 96

Hardware requirements 96
Disk space required 97
Software requirements 97

System requirements for HP-UX components . . . 98
Hardware requirements 98
Disk space required 98
Software requirements 98

System requirements for Sun Solaris components 100
Hardware requirements 100

Disk space required 100
Software requirements 100

System requirements for Windows NT components 102
Hardware requirements 102
Disk space required 102
Software requirements 102

Database support 105
Client requirements 105
License information 105
National language support 105

Chapter 9. Planning your MQSeries
Integrator network 107
Planning MQSeries Integrator resources 107

Naming conventions 107
Broker domain basics. 109
Client applications. 113

Designing the MQSeries infrastructure 114
MQSeries resources for brokers 114
MQSeries resources for the Configuration
Manager 115
MQSeries resources for the User Name Server 116
MQSeries resources for the Control Center . . 116
MQSeries resources for client applications . . . 116
MQSeries clusters 117

Planning database resources 118
Database requirements 118
Databases and code pages 119
Database locations. 120
Database backup and recovery 120

Planning security 120
Security and principals 121
Operational security 127
Control Center security 128
Application security 129

Planning for data conversion 131

Chapter 10. Managing your MQSeries
Integrator network 133
Managing broker domain components 133

Managing application and business processes 134
Monitoring and analysis 134

Problem determination 134
Managing workload and performance 137
System management 138

Chapter 11. Enhancing your broker
domain 139
General guidance for writing plug-ins 139
Writing your own message processing node types 139
Writing your own parsers 140

Part 5. Appendixes 141

Appendix A. Planning for migration
and integration. 143
MQSeries Integrator Version 1 143

Installation 143
Run-time 144

iv MQSeries Integrator Introduction and Planning

||
||
||
||

||

MQSeries Publish/Subscribe 147
Scenarios for migration and integration. . . . 147
Product differences 148
Scenario 1: running two independent broker
networks 160
Scenario 2: creating and operating a
heterogeneous network 161
Scenario 3: migrating MQSeries
Publish/Subscribe brokers 162

Appendix B. The product packages 165
The MQSeries Integrator for AIX package 165
The MQSeries Integrator for HP-UX package . . . 166
The MQSeries Integrator for Sun Solaris package 167
The MQSeries Integrator for Windows NT package 168

Appendix C. Notices 171
Trademarks 173

Glossary of terms and abbreviations 175

Bibliography. 181
MQSeries Integrator Version 2.0.2 cross-platform
publications 181
MQSeries Integrator Version 2.0.2 platform-specific
publications 181
MQSeries Everyplace publications 181
NEONRules and NEONFormatter Support for
MQSeries Integrator publications 181
Softcopy books 182

Portable Document Format (PDF) 182
MQSeries library references 183
MQSeries Publish/Subscribe publications 183
MQSeries Workflow publications 183
DB2 publications 184
MQSeries information available on the Internet . . 184

Index 185

Sending your comments to IBM . . . 189

Contents v

||

||

vi MQSeries Integrator Introduction and Planning

Figures

1. The Configuration Manager 10
2. The broker 12
3. A collective 13
4. Message flow components 15
5. A simple message flow: case 1 16
6. A simple message flow: case 2 16
7. A simple message flow: case 3 17
8. A simple message flow: case 4 17
9. Applications connecting to a broker 24

10. The User Name Server 28
11. SRU headquarters and branch hierarchy 34

12. Branches and back-end systems 35
13. SRU receipt 35
14. The business flow (simplified) 38
15. Publish/subscribe with a single broker 76
16. Example topic tree 83
17. Publish/subscribe in a network 86
18. Inheriting ACLs in a topic tree 90
19. Collectives with a broker domain 111
20. A heterogeneous network 153
21. Stream authorities 155

© Copyright IBM Corp. 2000, 2001 vii

viii MQSeries Integrator Introduction and Planning

Tables

1. Recipient information 36
2. ACL permissions. 89
3. The ACLs for inheritance 90
4. Summary of installation options 95
5. Supported databases for brokers and user

data. 105
6. Summary of authorization in the UNIX

environments 125

7. Summary of authorizations in the Windows
NT environment 125

8. MQRFH and MQRFH2 mapping 149
9. Summary of message option support 150

10. MQRFH and MQRFH2 client application
options 152

11. Migration inhibitors checklist 164
12. File names of MQSeries Integrator book PDFs 182

© Copyright IBM Corp. 2000, 2001 ix

|
||

||

x MQSeries Integrator Introduction and Planning

About this book

This book provides an overview of IBM MQSeries Integrator Version 2.0.2. It
introduces the concepts of the product, and provides the information to help you
plan for an MQSeries Integrator network.

“Part 1. Introduction” on page 1 gives you a broad understanding of the MQSeries
family of products, and an introduction to MQSeries Integrator. It also discusses
additional, related offerings from IBM. It provides background information that
can benefit everyone working with MQSeries Integrator.

“Part 2. Business process planning” on page 39 builds on the introduction in Part 1,
providing information that helps your business planners develop message
structure and processing requirements that will support a successful MQSeries
Integrator environment.

You can find implementation details for the tasks covered in this part in MQSeries
Integrator Using the Control Center and MQSeries Integrator ESQL Reference.

“Part 3. Application planning” on page 63 explores the application aspects of your
environment, further clarifying the introduction in Part 1 and guiding you through
the considerations for application planning and development.

You can find implementation details for the tasks covered in this part in the
MQSeries Integrator Programming Guide.

“Part 4. Systems planning” on page 93 provides details of the infrastructure you
will need, and how you can configure it, to complement your applications and
achieve your business goals. It provides system administrators with hardware and
software requirements, and the infrastructure required to support your
environment. It also tells you how you can enhance your broker domain by
writing plug-ins for new parsers and message processing nodes.

You can find implementation details for the tasks covered in this part in the
MQSeries Integrator Administration Guide.

Appendixes provide information on migration, and on the contents of the
MQSeries Integrator product package.

A glossary and a bibliography are provided at the back of the book.

For details of installing MQSeries Integrator on the supported platforms, see:
v MQSeries Integrator for AIX Installation Guide

v MQSeries Integrator for HP-UX Installation Guide

v MQSeries Integrator for Sun Solaris Installation Guide

v MQSeries Integrator for Windows NT Installation Guide

© Copyright IBM Corp. 2000, 2001 xi

|
|

|
|

|

|

Who this book is for
This book is for business administrators who need an understanding of MQSeries
Integrator to enable them to make a purchasing decision. When the product has
been purchased, this book provides information to business and system
administrators on how to make the best use of the product within their
environment.

What you need to know to understand this book
To understand this book, you should have some familiarity with the concepts of
application integration, and a thorough understanding of your existing and
planned business tasks and objectives.

An understanding of MQSeries concepts is also useful.

Terms used in this book
All references in this book to MQSeries Integrator are to MQSeries Integrator
Version 2 unless otherwise stated.

All references in this book to Windows NT® are also applicable to Windows® 2000
unless otherwise stated. MQSeries Integrator components that are installed and
operated on Windows NT can also be installed and operated on Windows 2000.

All new terms introduced in this book are defined in “Glossary of terms and
abbreviations” on page 175. These terms are shown like this at their first use.

The book uses the following shortened names:
v MQSeries: a general term for IBM MQSeries messaging products.
v MQSeries Publish/Subscribe: the MQSeries Publish/Subscribe SupportPac™

available on the Internet for several MQSeries server operating systems (the
Internet URL is given in “MQSeries information available on the Internet” on
page 184).

v CICS®: a general term for IBM CICS products including CICS, TXSeries™, and
WebSphere™.

v DB2®: a general term to encompass IBM DB2 Universal Database® Enterprise
Edition, Connect Enterprise Edition and Extended Enterprise Edition.

v UNIX®: the UNIX-based platforms, such as AIX®, HP-UX, and Sun Solaris.

About this book

xii MQSeries Integrator Introduction and Planning

|
|
|

|

Summary of changes

This section describes changes in this edition of MQSeries Integrator Introduction and
Planning. Changes since the previous edition of the book are marked by vertical
lines to the left of the changes.

Changes for this edition (GC34-5599-02)
Major changes for this edition include:
v Addition of the new product MQSeries Integrator for HP-UX Version 2.0.2
v Additional information to cover the following product changes:

– Improved national language support
– Debugger function added to the Control Center
– Windows 2000 added as an alternative platform for MQSeries Integrator for

Windows NT
– Oracle XA support available on MQSeries Integrator for Sun Solaris
– New NEON nodes and a new parser added to provide access to NEONRules

and NEONFormatter Support
– New MQSeries Everyplace and SCADA nodes added
– Windows NT Server Version 4.0, running on an Integrated IBM ~

xSeries™ installed in an IBM ~ iSeries™ 400® (AS/400®), is listed as a
suitable platform for the MQSeries Integrator for Windows NT components
that run under Windows NT

v Minor technical and editorial improvements throughout the book

The usability of the Control Center is also improved in this version of MQSeries
Integrator. See MQSeries Integrator Using the Control Center for full details.

Changes for the second edition (GC34-5599-01)
Major changes for this edition include:
v Additional information to cover the following product changes:

– New products MQSeries Integrator for AIX Version 2.0.1 and MQSeries
Integrator for Sun Solaris Version 2.0.1.

– New IBM primitive nodes (FlowOrder, Label, and RouteToLabel)
v Minor technical and editorial improvements throughout the book

© Copyright IBM Corp. 2000, 2001 xiii

|

|

|

|

|

|

|
|

|

|
|

|

|
|
|
|

|

|
|

Changes

xiv MQSeries Integrator Introduction and Planning

Part 1. Introduction

This part provides introductory level information that will benefit everyone
working with MQSeries Integrator. It includes the following chapters:
v “Chapter 1. MQSeries and business integration” on page 3 introduces the

products in the MQSeries family, and the way in which they support business
integration.

v “Chapter 2. MQSeries Integrator overview and concepts” on page 9 discusses the
function of MQSeries Integrator, giving an outline of the support it provides. It
also gives references to more detailed information in the remainder of this book,
and in the other books in the MQSeries Integrator library.

v “Chapter 3. MQSeries Integrator: a business scenario” on page 33 explores a
business scenario that illustrates the value that MQSeries Integrator adds to your
IT environment.

© Copyright IBM Corp. 2000, 2001 1

2 MQSeries Integrator Introduction and Planning

Chapter 1. MQSeries and business integration

The last few years have seen a growing interest and investment in messaging
middleware. IBM’s MQSeries is an industry leader in this area, and provides a
messaging infrastructure to many diverse businesses and applications.

IBM has developed a family of products, based around the messaging transport
layer, that provides not only the fundamental requirements of secure, reliable
information exchange, but also incorporates services and business process support
to help you to make best use of your investment in systems and applications. The
richness and flexibility of this support enables you to respond to new opportunities
that arise when your business grows and diversifies.

The MQSeries family
The MQSeries family consists of three complementary offerings:
v “MQSeries”
v “MQSeries Integrator”
v “MQSeries Workflow” on page 4

MQSeries
MQSeries provides assured, once-only delivery of messages between your IT
systems. It connects more than thirty industry platforms including those from IBM,
Microsoft®, and Sun, using a variety of communications protocols.

MQSeries provides rich support for applications:
v Application programming interfaces: the Message Queue Interface (MQI) and

Application Messaging Interface (AMI) are supported in several programming
languages.

v Communication models: point-to-point (including request/reply and client/server)
and publish/subscribe are supported.

v The complexities of communications programming are handled by the
messaging services and are therefore removed from the application logic.

v Applications can access other systems and interfaces through gateways and
adapters to products such as Lotus® Domino™, Microsoft Exchange/Outlook,
SAP/R3, and IBM’s CICS and IMS/ESA® products.

MQSeries Integrator
MQSeries Integrator works with MQSeries messaging, extending its basic
connectivity and transport capabilities to provide a powerful message broker
solution driven by business rules. Messages are formed, routed, and transformed
according to the rules defined by an easy-to-use graphical user interface (GUI).

Diverse applications can exchange information in unlike forms, with brokers
handling the processing required for the information to arrive in the right place in
the correct format, according to the rules you have defined. The applications have
no need to know anything other than their own conventions and requirements.

Applications also have much greater flexibility in selecting which messages they
wish to receive, because they can specify a topic filter, or a content-based filter, or
both, to control the messages made available to them.

© Copyright IBM Corp. 2000, 2001 3

MQSeries Integrator provides a framework that supports supplied, basic, functions
along with plug-in enhancements, to enable rapid construction and modification of
business processing rules that are applied to messages in the system.

MQSeries Workflow
MQSeries Workflow works with MQSeries messaging to add a further dimension
to your business integration by aligning and integrating an organization’s staff
resources, processes, and capabilities with business strategies. It enables
organizations to accelerate process flow, optimize costs, eliminate errors and
improve workgroup productivity.

MQSeries Workflow is designed to enable integration of all participants in the
business process, including those external to your organization. It ensures the right
information gets to the right person at the right time.

MQSeries Workflow can be used in combination with MQSeries Integrator,
providing a high level of flexibility to allow business and message processing to be
as simple or as complicated as your business demands.

Using MQSeries for business integration
MQSeries is the focal point of the IBM Business Integration strategy, which
addresses integration of applications, data, and processes from both business and
IT perspectives.

Business integration is the coordination and cooperation of all your business
processes and applications. It involves bringing together the data and process
intelligence in your enterprise, and harnessing these to enable all your applications
and your users to achieve their business needs.

Business integration means that:
v You can connect customers, suppliers, partners, and service providers, with

continuing security and control, to enable newly built and re-engineered
applications for more effective business processes (for example, Supply Chain
Management).

v You can make mergers and acquisitions a success by integrating dissimilar IT
infrastructures from two or more companies so they can work as a single entity.

v You can react more quickly to market trends and opportunities because your IT
systems are flexible and dependable, and no longer constraining.

v The barriers of diverse computer systems, geographic boundaries, time
differences, language and format differences, and different methods of working
can all be overcome.

You can use the MQSeries family products to support your business integration
needs:
v MQSeries messaging provides a secure and far-reaching communications

infrastructure.
v MQSeries Integrator and MQSeries Workflow provide a range of services that

allow you to apply intelligence to your business data as it travels through your
network.

MQSeries family

4 MQSeries Integrator Introduction and Planning

Using MQSeries Integrator in your business
MQSeries Integrator addresses the needs of business and application integration
through management of information flow. It provides services based on message
brokers to allow you to:
v Route a message to several destinations, using rules that act on the contents of

one or more of the fields in the message or message header.
v Transform a message, so that applications using different formats can exchange

messages in their own formats.
v Store and retrieve a message, or part of a message, in a database.
v Modify the contents of a message (for example, by adding data extracted from a

database).
v Publish a message to make it available to other applications. Other applications

can choose to receive publications that relate to specific topics, or that have
specific content, or both.

v Create structured topic names, topic-based access control functions,
content-based subscriptions, and subscription points.

v Exploit a plug-in interface to develop message processing node types that can be
incorporated into the broker framework to complement or replace the supplied
nodes, or to incorporate node types developed by Independent Software
Vendors (ISVs).

v Enable instrumentation by products such as those developed by Tivoli®, using
system management hooks. Tivoli support is not available on the HP-UX platform.

The benefits of MQSeries Integrator can be realized both within and beyond your
enterprise:
v Your processes and applications can be integrated by providing message and

data transformations in a single place, the broker. This helps reduce costs of
application upgrades and modifications.

v You can extend your systems to reach your suppliers and customers, by meeting
their interface requirements within your brokers. This can help you improve the
quality of your interactions and allow you to respond more quickly to changing
or additional requirements.

For a practical illustration of the use of MQSeries Integrator in business, see
“Chapter 3. MQSeries Integrator: a business scenario” on page 33.

MQSeries Integrator Version 2 and previous IBM offerings
The following offerings from IBM are enhanced and extended by MQSeries
Integrator Version 2:
v MQSeries Integrator Version 1
v MQSeries Publish/Subscribe

MQSeries Integrator Version 2 extends the capabilities of MQSeries Integrator
Version 1 and MQSeries Publish/Subscribe by supporting:
v Integration of the publish/subscribe and rules and transformation functions,

enabling the output from the rules engine to be directed straight to the
publish/subscribe service without use of an intermediate queue.

v Enhanced publish/subscribe function through exploitation of structured topic
names, access control, content-based subscriptions, and subscription points.

v Enhancement of message processing through the addition of new message
processing nodes to complement or replace the supplied nodes.

Using MQSeries Integrator

Chapter 1. MQSeries and business integration 5

|

v Interfaces that allow messages to be enriched with information from a database,
or to be stored in a database.

v XA technology for enhanced transactional integrity on MQSeries Integrator for
Sun Solaris using Oracle as well as DB2 databases.

v Easier problem resolution using the Debugger facilities of the Control Center.
v Interaction with MQSeries Everyplace applications for lightweight and mobile

devices, using the new MQeInput and MQeOutput nodes.
v Interaction with very lightweight publish and subscribe applications, used by

specialist hardware and companies that use SCADA Device Protocol, by using
the new SCADAInput, SCADAOutput, and enhanced Publication nodes.

v Access to the NEONRules and NEONFormatter Support component by using
the new NEONTransform, NEONMap, and NEONRulesEvaluation nodes, and
the parser for the new NEONMSG message domain.

v Availability of MQSeries Integrator on the HP-UX platform.

You can upgrade your applications, messages, and brokers to take advantage of the
enhancements in Version 2. You can also continue to use your existing applications
and messages unchanged, by tailoring your Version 2 system to provide
compatible support.

MQSeries Integrator Version 2 brokers can interact with MQSeries
Publish/Subscribe brokers in a common publish/subscribe environment, to
provide coexistence within a single mixed broker network.

If you already have MQSeries Integrator Version 1, or MQSeries Publish/Subscribe,
or both, see “Appendix A. Planning for migration and integration” on page 143 and
the MQSeries Integrator Administration Guide for details of planning for and
implementing your migration.

Getting started with MQSeries Integrator
The information in this book helps you to:
1. Assess how MQSeries Integrator meets your business needs, and make a

purchasing decision.
v “Chapter 2. MQSeries Integrator overview and concepts” on page 9

introduces the concepts and components of MQSeries Integrator, and
explains their relationships.

v “Chapter 3. MQSeries Integrator: a business scenario” on page 33 describes a
scenario that explains how MQSeries Integrator helps you to solve business
integration problems.

2. Plan for implementation and deployment of MQSeries Integrator.
v “Part 2. Business process planning” on page 39 discusses your business

processes and entities. It describes message flows, messages, and message sets,
and the rules that define how these messages are processed.
When you understand the concepts, and have completed the planning tasks
to define your environment, refer to MQSeries Integrator Using the Control
Center for details of how to implement these plans and carry out your
business administration tasks.

v “Part 3. Application planning” on page 63 describes how you can integrate
existing applications, and create new ones, to complete the processing of
messages flowing through your network.

Using MQSeries Integrator

6 MQSeries Integrator Introduction and Planning

|
|

|

|
|

|
|
|

|

|

|

Detailed guidance for writing and deploying these applications is provided
in the MQSeries Integrator Programming Guide.

v “Part 4. Systems planning” on page 93 summarizes the infrastructure
requirements of your network, and discusses how you can configure the
MQSeries Integrator components to provide the support your business
processing requires.
You can find full details of the system requirements for MQSeries Integrator
in the MQSeries Integrator Installation Guide for your operating system. These
books also contain instructions for installing MQSeries Integrator on your
chosen operating system, and guides you through some simple tasks that
help you verify that installation.
You can find details for system administration tasks in the MQSeries
Integrator Administration Guide.

v “Appendix A. Planning for migration and integration” on page 143 provides
the information you require if you already use an earlier version of MQSeries
Integrator, or have downloaded and deployed MQSeries Publish/Subscribe.
It helps you plan for deployment of MQSeries Integrator Version 2.0.2
brokers in your current environment.
For details of how you can upgrade your current environment to MQSeries
Integrator Version 2.0.2, refer to the MQSeries Integrator Administration Guide.

Getting started

Chapter 1. MQSeries and business integration 7

|
|
|
|
|

|
|

Getting started

8 MQSeries Integrator Introduction and Planning

Chapter 2. MQSeries Integrator overview and concepts

MQSeries Integrator Version 2.0.2 supports business processes that meet your
application and business integration needs. This support is provided by a number
of components and services that work together to manage the resources required
by your applications and business processes.

This chapter looks at the MQSeries Integrator components, their relationships, and
the services they provide. It concludes with a summary of MQSeries Integrator’s
dependencies on other software products and the levels required.

The following topics are introduced:
v “The Configuration Manager”
v “Brokers” on page 11
v “Business processing rules (message flows)” on page 13
v “Messages and message sets” on page 17
v “The Control Center” on page 20
v “Applications and clients” on page 22
v “The User Name Server” on page 27
v “Dependencies” on page 29
v “Release to release migration” on page 31

The Configuration Manager
The Configuration Manager is the central component of your MQSeries Integrator
environment. The components and resources managed by the Configuration
Manager constitute the broker domain. The Configuration Manager serves three
main functions:
v It maintains configuration details in the configuration repository. This is a set of

database tables that provide a central record of the broker domain components.
v It manages the initialization and deployment of brokers and message processing

operations in response to actions initiated through the Control Center. It
communicates with other components in the broker domain using MQSeries
transport services.

v It checks the authority of defined user IDs to initiate those actions.

You must install, create, and start a single Configuration Manager to manage your
broker domain. The Configuration Manager must be installed and configured in
the Windows NT environment. It is not supported on any other operating system.
Once started, the Configuration Manager runs in the background.

You can view, create, modify, and delete the contents of the configuration
repository using the Control Center. The Control Center must also be installed on
Windows NT. It is not supported on any other operating system. A fuller
description of the Control Center is given in “The Control Center” on page 20.

The Configuration Manager provides a service to the other components in the
broker domain, providing them with configuration updates in response to actions
you take from the Control Center. The Configuration Manager validates that the
user requesting each action from the Control Center is authorized to perform that
action.

© Copyright IBM Corp. 2000, 2001 9

When you create the Configuration Manager, the following resources are also
created:
v A set of tables in a database, known as the configuration repository. This

database must be created using IBM DB2 Universal Database for Windows NT.
The Configuration Manager uses a JDBC™ (Java™ Database Connectivity)
connection to this database.

v A set of tables in a database, known as the message repository. This database must
be created using IBM DB2 Universal Database for Windows NT. The
Configuration Manager uses an ODBC (Open Database Connectivity) connection to
this database.

v A set of fixed-name queues, defined to the queue manager that hosts the
Configuration Manager. You must identify this queue manager when you create
the Configuration Manager, and it must exist on the same physical system as the
Configuration Manager. It will be created when the Configuration Manager is
created, if it does not already exist.

v A server connection, defined to the queue manager that hosts the Configuration
Manager. This connection is used by all instances of the Control Center.

Configuration
Manager

Queue
manager

ODBC
connection

TCP/IP
connection

JDBC
connection Configuration

repository
(shared/deployed
data)

Message
repository

Configuration Manager system (Windows NT)

MQSeries Client for Java

Control
Center

Local
configuration

data

Figure 1. The Configuration Manager

Configuration Manager

10 MQSeries Integrator Introduction and Planning

Brokers
The broker is a named resource that hosts and controls your business processes,
which you define as message flows. Your applications communicate with the broker
to take advantage of the services provided by the message flows. Applications
send new messages to the message flow, and receive processed messages from the
message flow, using MQSeries queues and connections.

You can install, create, and start any number of brokers within a broker domain.
You can create more than one broker on any one physical system if you choose,
but you must specify a unique queue manager for each broker. However, a single
broker can share a queue manager with the Configuration Manager.

When you create a broker, the following resources are also created:
v A set of tables in a database to hold the broker’s local data. This database can be

created using a number of database products, depending on the operating
system on which you install MQSeries Integrator:
– IBM DB2 Universal Database
– Microsoft SQL Server (Windows NT only)
– Oracle
– Sybase

The broker uses an ODBC connection to its database. These broker tables are
also referred to as the broker’s local persistent store. For more information about
supported databases, see Table 5 on page 105.

v A set of fixed-name queues, defined to the queue manager that hosts this broker.
You must identify this queue manager when you create the broker, and it must
exist on the same physical system as the broker. It is created when the broker is
created, if it does not already exist.

When you create a broker on the system on which you have installed the broker
component, the information about the broker’s configuration is not automatically
recorded in the configuration repository (managed by the Configuration Manager).
You must use the Control Center (the Topology view) to create a reference to this
broker with the same name that you specified when you created that broker (see
“The Control Center” on page 20 for more information about the Control Center).
Creating a reference:
v Stores the broker information in the configuration repository.
v Defines a default execution group on this broker. You can define further execution

groups if you want. Each message flow providing a service on this broker must
be deployed to an execution group before that service can be used by
applications.

Brokers

Chapter 2. MQSeries Integrator overview and concepts 11

When you have created the broker reference, you must deploy the changes to your
broker domain for them to take effect. The deploy action:
v Initiates communications between the Configuration Manager and the broker.
v Initializes the broker so that it is ready to execute message flows. The broker

receives configuration information from the Configuration Manager, and stores it
in its database.

When you have created the broker reference, you can assign message flows (see
“Business processing rules (message flows)” on page 13) to the broker’s execution
groups, and any message sets (see “Messages and message sets” on page 17)
required by those message flows to the broker. These changes must also be
deployed before they can be activated. You can deploy these resources individually,
or together, but until all related resources (for example, a broker, a message flow
and the message set it uses) are deployed, you cannot use the message flow on
that broker.

Connecting brokers for publish/subscribe
If you plan to create message flows that provide a publish/subscribe service, you
can consider connecting a number of your brokers in a collective using the Control
Center. A collective contains a number of brokers that are all physically
interconnected (that is, each broker in the collective is able to connect directly
through the network to every other broker in the collective). All the broker queue
managers must be connected by pairs of MQSeries channels.

A collective optimizes the publish/subscribe messages in your broker domain by
reducing the number of clients per broker, without increasing the hops taken by
any message by more than one. In this way, collectives are more efficient than a
tree hierarchy.

You can also connect collectives to other collectives, and to other individual
brokers. If you are connecting one collective to another collective, or to a stand
alone broker, only one broker in each collective must provide the connection.

Messages published to any one broker are propagated to all connected brokers
(whether or not they are in a collective) to which an application has subscribed to
the message’s topic or content.

Broker

Execution group

Message flow

Message dictionary

Queue manager

Broker database

ODBC
connection

Figure 2. The broker

Brokers

12 MQSeries Integrator Introduction and Planning

Figure 3 illustrates a collective of three brokers.

System management interfaces
The brokers also provide a service for independent system management agents.
This enables a central management facility to access information about any
network that includes an MQSeries Integrator broker domain.

This support ensures that existing system management agents, such as those
developed by Tivoli, can be extended to include MQSeries Integrator resources.
You can find information about using the Tivoli interface with MQSeries Integrator
on the product CD. Tivoli support is not available on the HP-UX platform.

MQSeries Integrator brokers publish event messages, using fixed topics, in
response to configuration changes, state changes, and user actions such as
subscription registrations.

A system management agent can subscribe to these topics, or to a subset of these
topics, to receive the detailed information about activity and state changes in the
MQSeries Integrator broker domain. The event messages have a fixed structure,
defined in XML (Extensible Markup Language).

For further details of this support, see the MQSeries Integrator Administration Guide.

Business processing rules (message flows)
You define the processing for your messages as a set of actions, or rules, executed
between receipt of the message by the broker, and delivery of the message to the
target applications. Each action, or subset of actions, is performed by a message
processing node. These nodes are grouped together in a sequence to form a message
flow. A particular message flow provides a particular service, that is implemented
by the rules that the message flow nodes contain.

Queue manager B

Queue manager C

Broker A

Queue manager A

Broker C

Broker B

Figure 3. A collective

Brokers

Chapter 2. MQSeries Integrator overview and concepts 13

|

Creating message flows
You can create message flows by selecting and connecting message processing
nodes, using the Control Center. MQSeries Integrator supplies a number of
predefined message processing node types, known as IBM primitives. These
provide basic functions including input, output, filter (on message data content),
and compute (manipulate message content: for example, add data from a
database). You can connect one node to another (the output terminal of the first
node and the input terminal of the second node) to form a sequence.

The primitives nodes are described in “Chapter 4. Message flows” on page 41. You
can include these primitive nodes in your message flows to define the processing
you need for each of your messages. If you need additional or alternate function
not provided by the primitives, you can create new node types, using a system
programming interface supplied by MQSeries Integrator. This interface is described
in the MQSeries Integrator Programming Guide.

Message flows can range from very simple, performing just one action on a
message, to complex, providing a number of actions on the message to transform
its format and content.

Within a message flow, you can define the action to be taken according to the
message template, the message topic, or the data within the message itself.
Alternatively, the identity of the message originator, or the destination to which the
message is sent, might be important. Any combination of one or more of these
attributes, or others, can define the rules by which the messages are processed, and
determine the sequence of nodes you put together to form the message flow.

A message flow can process one message in several ways to deliver a number of
output messages, perhaps with different format and content, to a number of target
applications. You can embed one message flow within another, enabling you to
reuse a particular sequence of nodes, that provide a commonly required function,
many times.

You can request that the actions taken within a message flow are assured by the
implementation of XA technology. That is, all actions succeed or are rolled back to
preserve the integrity of your message processing. If the actions taken by your
message flow include updating a database, you must use a DB2 database (DB2 or
Oracle on MQSeries Integrator for Sun Solaris) to take advantage of this
coordination. For more information about transaction coordination, see
“Transaction support” on page 71.

If you do not request coordination, or you are not using DB2 (DB2 or Oracle on
MQSeries Integrator for Sun Solaris) for your external database, MQSeries
Integrator commits or rolls back each action taken by the message flow but cannot
assure that success or failure is reflected by all actions.

Figure 4 on page 15 illustrates the components of a message flow.

Message flows

14 MQSeries Integrator Introduction and Planning

|
|

|
|

Message flow input and output
The message flows you create receive messages at input nodes. Every message flow
must have at least one input node.

The input nodes must be one of the supplied primitives: MQInput, MQeInput, or
SCADAInput. MQInput nodes represent MQSeries queues, which can be unique
to this node, or used to supply messages to multiple nodes. MQeInput nodes
represent MQSeries Everyplace queues. SCADAInput nodes represent SCADA
input ports.

The sequence of nodes in a message flow usually end with one or more output
nodes that put one or more messages to one or more queues that are read by
applications that want to receive messages processed by that message flow.
SCADA message flows end with a Publication node, which knows how to handle
SCADA messages.

Several primitive output nodes are supplied, such as MQOutput, MQeOutput,
MQReply (that uses the reply-to queue), and Publication. (In exceptional
circumstances you can use the SCADAOutput node as a stand-alone node. In
normal circumstances you can use it as a sub-node within the Publication node.)
These nodes also represent unique or shared MQSeries or MQSeries Everyplace
queues. The queues for published messages are specified by the applications that
have registered an interest in the information available, although SCADA output
messages go directly to the specified SCADA port without being put to an output
queue.

Other message flows might simply store the message in a database for later
processing, and not use an output node at all.

Publish/subscribe services
Message flows that incorporate a publication node provide a particular service,
known as a publish/subscribe service. Messages are supplied to the message flow
by publishers (applications that publish messages), and retrieved from the message
flow by subscribers (applications that have registered a subscription with a broker:
the subscription defines their interest in published messages).

A single message flow can include more than one publication node. Any number
of nodes can be included between the input nodes and the publication nodes, but
you cannot define any node to follow the publication node.

Input
node

Output
node

Node
Connection

Output
terminal

Input
terminal

Figure 4. Message flow components

Message flows

Chapter 2. MQSeries Integrator overview and concepts 15

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

Each publication node has a subscription point. A subscription point differentiates
the publication node from other publication nodes on the same message flow, and
therefore represents a specific path through the message flow. For example, a
message including a share price might be needed in both dollars and sterling. The
message is processed, and two messages generated, one with the dollar price, the
other in sterling. The subscribers register specifying the identification of the
subscription point of the publication node that provides the currency they require.

You can include an unnamed publication node (one that does not have a specific
subscription point) in your message flow: this is known as the default subscription
point.

You can find out more details about publish/subscribe applications in
“Applications and clients” on page 22.

Associating message flows with brokers
When the broker has been defined to the broker domain topology, you can assign a
message flow to one of the broker’s execution groups. The same message flow can
be assigned to multiple brokers. Each message flow executes in an execution
group: each execution group is isolated from all others to increase data integrity
within the broker.

From the Assignment view of the Control Center you can drag and drop the
message flows you have created to the execution group in which they are to
execute. Each execution group can host multiple message flows.

Simple message flow examples
Here are a few simple message flows that use the primitives nodes.
1. MQInput->Compute->MQOutput. The compute node transforms a message

from one format to another, so that sending and receiving applications can
communicate with each other in their own formats.

2. MQInput->Filter->MQOutputA or MQOutputB. A message is routed to
application A, or application B, depending on the contents of the message.

MQInput Compute MQOutput

Figure 5. A simple message flow: case 1

MQInput Filter

MQOutput B

MQOutput A

Figure 6. A simple message flow: case 2

Message flows

16 MQSeries Integrator Introduction and Planning

3. MQInput->Database->MQOutput. The Database node stores a copy of a
message in the database, or updates the database with information from the
message.

4. MQInput->Publication. This publish/subscribe service sends publications to
registered applications. Applications register with the publish/subscribe service,
and are sent the relevant publications directly by the publication node.

In each of these examples, you could use MQeInput or SCADAInput nodes instead
of the MQInput nodes, and MQeOutput nodes instead of the MQOutput nodes.
(The Publication node knows how to handle SCADA messages.) A message flow
could start with an MQInput node, and end with an MQeOutput node or the
SCADA functionality of a Publication node, but in that case you must have an
MQeInput node or a SCADAInput node, as appropriate, in a message flow in the
same execution group.

For more information on creating message flows like these, and others, and for
details on the message processing node primitives and how to use them, see
“Chapter 4. Message flows” on page 41.

If you want to know more about creating your own message processing nodes, see
“Chapter 11. Enhancing your broker domain” on page 139.

Messages and message sets
Each message flowing through your system has a specific structure, which is
important and meaningful to the applications that send or receive that message.
MQSeries Integrator refers to the structure as the message template. Message
template information comprises the message domain, message set, message type, and
wire format of the message. Together these values identify the structure of the data
the message contains. Every message flow that processes a message conforming to
this template must understand the template to enable the message bit-stream to be
interpreted.

You can use:
v Messages with a message template predefined to the message repository using

the Control Center. These are referred to as predefined messages.
v Messages with a message template predefined to the NEON database using the

NEONFormatter interface.
v Messages with a self-defining template. These are called self-defining messages.

MQInput Database MQOutput

Figure 7. A simple message flow: case 3

MQInput Publication

Figure 8. A simple message flow: case 4

Message flows

Chapter 2. MQSeries Integrator overview and concepts 17

|
|
|
|
|
|
|

|

|

Messages predefined in the Control Center
When you create a message using the Control Center, you define the fields
(Elements) in the message, along with any special field types you might need, and
any specific values (Valid Values) the fields might be restricted to (note that the
Valid Values defined are for documentation purposes only and are not currently
policed by the broker).

You can also create messages using the SmartGuide. This provides an easy to use
interface to define simple messages, and allows you to define and arrange the
fields within the message structure.

Every message predefined in the Control Center must be a member of a message
set. You can group related messages together in a message set: for example, request
and response messages for a bank account query can be defined in a single
message set. All message and message set definitions are maintained in the
message repository.

When you assign and deploy a message set to a broker, the definition of that
message set is sent by the Configuration Manager to the broker in the form of a
message dictionary (illustrated in Figure 2 on page 12). The broker can manage
multiple message sets simultaneously.

Importing legacy message definitions
You can use the facilities of the Control Center to import message structures
previously defined as C and COBOL data structures. The Control Center creates a
message set for you in a way that is consistent with all other message definitions
in the message repository.

The import facility allows continued use of messages defined in C and COBOL
data structures by your existing applications that use those structures. It also
enhances the existing support by giving you the flexibility to examine and modify
the data in these messages using message processing nodes. You can therefore
route and transform these messages using MQSeries Integrator Version 2.0.2
facilities without having to redefine them.

You can find further information on how this is supported in “Chapter 5.
Messages” on page 55.

Importing messages predefined by the Control Center
If you create message templates in the message repository on one system, you can
export those definitions in XML format to a file, and import them into the message
repository on another system. The command mqsiimpexpmsgset supports both
export and import.

Messages predefined by the NEONFormatter
You can use messages that you have defined using the NEONFormatter with
MQSeries Integrator Version 2.0.2 message flows. You can continue to use the
NEONFormatter to create new definitions of message formats. These definitions
are not held in the message repository, but in a separate database set up
specifically for this purpose and controlled by the NEONRules and
NEONFormatter Support for MQSeries Integrator.

When you want to use these message formats in the broker, you do not assign and
deploy them through the Control Center, but must ensure that the broker has
access to the database in which the definitions exist.

Messages

18 MQSeries Integrator Introduction and Planning

|
|

Three primitive message processing nodes provide the functionality of NEONRules
and NEONFormatter Support:
v NEONRulesEvaluation node. This supersedes the NEONRules node, and has an

extra route terminal.
v NEONTransform node: This supersedes the NEONFormatter node, and adds

mapping operations.
v NEONMap node: This provides mapping operations, a subset of the

NEONTransform node’s functionality.

These message processing nodes provide processing equivalent to MQSeries
Integrator Version 1.1, plus extra functionality. Note that the NEON nodes cannot be
used unless the NEONRules and NEONFormatter Support component is installed.

Self-defining messages
You can create and route messages that are self-defining. These use the XML
standard to provide structure to the message, so that it can be interpreted and
modified. If you are using Java Message Service (JMS) messages (jms_map and
jms_stream) these are supported as XML messages.

Self-defining messages can also be predefined in the message repository through
the Control Center. This permits the use of the logical message template by nodes
within a message flow. However, these message set definitions do not need to be
deployed to the brokers that support those message flows.

Parsing messages
Message template information for predefined messages is usually included in the
message header, so that the message flows recognize the messages when they
receive them. Other messages might not have headers that identify the template,
but you can set up your message flow input nodes to indicate the structure of
messages that are processed by this message flow. If a message is not recognized, it
is treated as an opaque unit, known as a blob. A blob can be interpreted as a string
of hexadecimal characters, and can therefore be modified or examined in the
message flow by specifying the location of the subset of the string.

When a message is processed by the nodes in a message flow, and its header or
body is referenced by a node, the message bit-stream is decoded by a message
parser. MQSeries Integrator supplies several message parsers that parse known
message templates and message headers. These include parsers for all messages
defined to the Control Center or the NEONFormatter, and generic XML messages.
The complete list is given in “Message parsers” on page 59.

If you need to process and parse messages that the supplied parsers do not handle,
you can create new parsers using an MQSeries Integrator system programming
interface. For more details of this interface, see “Chapter 11. Enhancing your broker
domain” on page 139.

Associating message sets with brokers
If you create message sets through the Control Center, you must assign them to
each broker that hosts a message flow that requires them. A single definition of a
message set can be used by the broker for all message flows, and does not have to
be assigned to a specific execution group. The same message set can be assigned to
multiple brokers. When you deploy the changes, the message set is stored in the
broker as a message dictionary.

Messages

Chapter 2. MQSeries Integrator overview and concepts 19

|
|

|
|

|
|

|
|

|
|
|

The Control Center
The Control Center interacts with the Configuration Manager to allow you to
configure and control your broker domain. The Control Center and Configuration
Manager exchange messages (using MQSeries) to provide the information you
request, and to make updates to your broker domain configuration.

Figure 1 on page 10 illustrates the Control Center and its connection to the
Configuration Manager.

You can install and invoke any number of Control Center instances in the
Windows NT environment (the Control Center is not supported by any other
operating system). The Control Center depends on the MQSeries Client for Java for
its connection with the Configuration Manager. The Control Center can therefore
be installed on the same physical system as the Configuration Manager, or on any
other Windows NT system that can connect to the Configuration Manager.

The Control Center uses a client/server connection to connect to the Configuration
Manager’s queue manager (whether it is on the same or another physical system),
which it creates dynamically using information you provide when you first invoke
the program. This connection must be a TCP/IP connection.

The Control Center is structured as a number of views on the configuration and
message repositories. Users can choose which set of the views are currently
included by selecting one of five roles, one of which, “All roles”, shows every
view.

Within the boundaries of what you are authorized to do, the Control Center allows
you to retrieve information selectively from:
v The message repository. This contains all the message templates that you (or any

other user) have created using the Control Center, those you have created by
importing legacy message definitions, and those you have imported using the
mqsiimpexpmsgset command.

v The configuration repository. This contains configuration information pertaining
to all other resources within your broker domain: brokers, execution groups,
collectives, message processing nodes, message flows, topics, and subscriptions.

You can use the Control Center to:
v Develop, modify, assign, debug, and deploy message flows.
v Develop, modify, assign, and deploy message sets.
v Define your broker domain topology and create collectives.
v Control topic security of messages by topic.
v View status information.
v Export and import resource definitions (excluding message sets).

Updates, assignment, and deployment
When you work with the configuration and message repository data using the
Control Center, you can choose to view the resources that are defined, or you can
create, modify, and delete those resources. You must be authorized to perform
these tasks.

If you want to make any changes, you must check out (request a locked copy of)
the resource you want to change. This allows updates to the central data to be
coordinated by the Configuration Manager. The Control Center shows you which
resources you currently have checked out. Once you have locked a resource, you

Control Center

20 MQSeries Integrator Introduction and Planning

|

have exclusive control over it until you return it to the configuration repository
using check in, or until you relinquish control by unlocking it.

When you have made changes, or have created new resources, you can save a local
copy if you want. You can also check in the resources to save your changes in the
message or configuration repository, if you are authorized to do so. This makes
your changes visible to all other users of the Control Center.

Checking-in an object overwrites the previous version. If you need the ability to
recover earlier versions of objects, you should consider downloading MQSeries
SupportPac IC04 ″MQSeries Integrator V2 - Change Management and naming
standards examples″. This SupportPac provides suggested procedures for version
management and change control of MQSeries Integrator objects, and can be
downloaded from the Internet URL given in “MQSeries information available on
the Internet” on page 184.

When you have decided which message flows and message sets you want to use
in each broker, you can assign them from the Assignment view. Message flows are
assigned to an execution group within a broker. Message sets are assigned to the
broker itself.

Following your assignment of these resources, you must also deploy these changes
through the broker domain. Deployment results in the Configuration Manager
sending messages and information about the changes you have made to the
brokers. You can monitor the success and progress of this step using the Operations
view and the Log view.

For more detailed information about check in and check out, assignment and
deployment, and all the other tasks that the Control Center supports, refer to
MQSeries Integrator Using the Control Center. This book also provides further
description of the user roles and the Control Center’s interactions with the
Configuration Manager.

Exporting and importing resource definitions
The Control Center allows you to export definitions you have created for your
broker domain topology, your topics, and your message flows. When you export
these definitions, an XML file is generated containing the information retrieved
from the configuration repository. You can export individual message flows, and
choose whether the resources you export are saved in separate XML files or one
big one. You can use definitions exported in this way to populate another
configuration repository in another broker domain, by using the import function
within the Control Center, specifying the XML file.

See the MQSeries Integrator Using the Control Center book and the online help for
further information about these options.

You cannot export message set definitions from the Control Center, or import them
into the Control Center. You must use an MQSeries Integrator command,
mqsiimpexpmsgset, to export and import message set definitions. See “Chapter 5.
Messages” on page 55 for further details about message sets, and refer to the
MQSeries Integrator Administration Guide for details of the import and export
command.

Control Center

Chapter 2. MQSeries Integrator overview and concepts 21

|
|
|
|
|
|
|

|
|
|

Help and online Tour
The Control Center comes with comprehensive online help: it provides context
sensitive information for specific assistance, and provides general help, including
the MQSeries Integrator Tour. The Tour gives you an online overview of the
MQSeries Integrator product, its components, and the Control Center interface
itself.

The Tour is based on a scenario in which MQSeries Integrator is used to integrate
the processes of an international company. It introduces the product in two ways:
v Providing introductory information that you can read, with links to further

details in the MQSeries Integrator books and online help.
v Providing animated sequences of actions in the Control Center. For example, you

can see how a message flow and message set are created using the Control
Center.

To access any section of the Tour, click on the title of the section in the left-hand
panel. When you run the animated sequences, there are four buttons at the bottom
of the panel. These buttons let you play, pause, stop, and view a particular
segment of the movie you are playing.

To use the Tour:
v Your logon user ID must be a member of one of the MQSeries Integrator groups

(mqbrkrs, mqbrasgn, mqbrdevt, mqbrops, or mqbrtpic).
v You must have one of the following Control Center roles:

– Message flow and message set developer
– Message flow and message set designer
– Operational domain controller
– All roles

To run the animated sequences supplied as part of the Tour you need to have
installed two plug-ins:
v Java Plug-in 1.1.2_001
v Lotus Media 2.0

If you did not install these plug-ins when you installed the Control Center, you can
install them now from the TourXtra directory on the product CD.

Applications and clients
MQSeries Integrator provides support for point-to-point and publish/subscribe
application communication models.

Applications generating and consuming messages in either communication mode
can take advantage of the services provided by the message flows within the
brokers. Sending applications must place their messages on the input resources
(MQSeries or MQSeries Everyplace queues or SCADA input port) read by the
message flows providing the specific service they require. Receiving applications
must retrieve processed messages from the output resources (queues or SCADA
output ports) to which the message flow sends them when its processing is
complete.

Applications that use messages to send or receive data can communicate in several
ways. Most existing messaging middleware applications use point-to-point

Control Center

22 MQSeries Integrator Introduction and Planning

|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|

|
|

|

|

|

|

|

|
|

|

|

|
|

|
|
|
|
|
|

communications. Now, using the services supported by MQSeries Integrator
Version 2.0.2, applications can exploit topic and content-based filtering in a
publish/subscribe communication mode.

Point-to-point applications
MQSeries Integrator continues to support existing point-to-point applications.
Typically, these applications use a request/reply or client/server model, or
broadcast a message to many target applications using distribution lists. Others send
one-way send-and-forget or datagram traffic. You can create message flows to process
these messages, in any of these ways, and assign and deploy them to your brokers.

MQSeries Integrator is able to continue to support these existing applications
because it supports the application programming interfaces commonly used by
messaging applications today. These interfaces, the Message Queue Interface (MQI)
and the Application Messaging Interface (AMI), are unaffected by MQSeries
Integrator. Existing applications written to these interfaces can usually run
unchanged in this new environment. You have only to define your message flows
to get messages from, and put messages to, the queues already used by your
applications, for the additional message processing to be completed without the
applications being aware of the change.

Publish/subscribe applications
MQSeries Integrator also supports the application communication model known as
publish/subscribe. In this model, applications known as publishers send messages
and others, known as subscribers, receive messages. Applications can also be both
publishers and subscribers.

The publishers are not interested in where their publications are going, and the
subscribers are not concerned where the messages they receive have come from.
The network of brokers assures the integrity of the message source, and manages
the distribution of the message according to the valid subscriptions registered in
that network.

If you already have applications that are written to the publish/subscribe model,
and use the MQI and AMI, you can probably integrate these applications into an
MQSeries Integrator broker domain without change.

You can also modify these applications, or write new ones, to take advantage of
the significant enhancements in publish/subscribe processing, particularly for
subscribers.

With MQSeries Integrator Version 2.0.2, your subscribing applications can now
select which publications they receive based not only on the topic of the
publication, but also on specific content, or both.

Every message, even one used for content-based subscriptions, must have an
associated topic (specified by the publisher or defined by the input node).

Subscribers can also use the subscription point of the publication nodes in the
message flows to receive messages that have followed a particular path through
the message flow, and have therefore been processed in a specific way.

A topic is used to categorize the information in the message in some way that is
understood by subscribers. Each topic has a structure, delimited by the forward
slash character (/). The use of structuring creates the topics in a topic tree, in which

Applications

Chapter 2. MQSeries Integrator overview and concepts 23

|

each node topic attaches to the branch that contains the previous structure level.
The top level topic is known as the topic root.

A topic can be associated with the publication message by the publisher. You can
also specify a topic on the input node of your message flow: it is set as a property
of the node and is associated with a message when it arrives in the message flow
providing the publish/subscribe service. In the latter case, the topic defined by the
input node is used to determine the publication’s routing, but is not passed on to
the subscriber. Messages without explicit topics are currently treated as local only
and are not sent to other brokers in the topology.

If the publisher does not provide a topic, and the input node is not set up to
define a topic where one is needed, the Publication node treats the message as an
error and it is handled in whatever way you have determined in this message
flow.

Client connections to brokers and message flows
All MQSeries Integrator applications, like MQSeries applications, can use all the
supported MQSeries interfaces to put messages to the message flow queues. In
fact, every MQSeries application is a potential MQSeries Integrator application, and
vice versa.

The applications can be connected as clients to any queue manager in the
MQSeries network, or can execute on the same system as the broker’s queue
manager, and connect locally. Figure 9 illustrates three applications connecting to a
broker.

Receiving applications can get the messages put to the output queue or queues of
a message flow when they have been processed by that message flow. The
applications must be connected, either by a client/server connection, or via a local
connection, to the queue manager that owns the queue or queues defined as the

Broker

Queue manager

Local
connection

Client/server
connection

Client/server
connection

Application A

Application C

Application B

Figure 9. Applications connecting to a broker

Applications

24 MQSeries Integrator Introduction and Planning

|

|

|

target for their messages. If the message flow provides a publish/subscribe service,
the publication node puts the messages to the queue specified by the subscriber as
its local receiver queue.

Special considerations for MQSeries Everyplace and SCADA
MQSeries Everyplace and the SCADA protocols are specifically designed for use
with pervasive computing devices. MQSeries Everyplace is typically used on small,
handheld devices, such as mobile phones and PDAs. SCADA is also used on small
footprint devices, but these tend to be remote, unattended sensors and controllers
of levels, flowrates, or temperatures, for example.

MQSeries Everyplace and SCADA applications work in rather different ways to
’normal’ MQSeries Integrator applications — there are different concepts and
procedures involved in setting up and configuring an MQSeries Integrator system
to operate with MQSeries Everyplace and SCADA.

MQSeries Everyplace and SCADA are described separately. This is a very brief
summary — if you want to use either of them with your MQSeries Integrator
applications, refer to SupportPac ID03, ″MQSeries Integrator - Working with
MQSeries Everyplace and SCADA″ which can be downloaded from the Internet
URL given in “MQSeries information available on the Internet” on page 184.

MQSeries Everyplace applications
If you want to use MQSeries Everyplace messages with MQSeries Integrator, you
will need an understanding of how MQSeries Everyplace works. MQSeries
Everyplace is configured through the use of ’devices’ and ’gateways’. The ’device’
in this case is a computer running the MQSeries Everyplace device code. This code
is supplied as part of the MQSeries Integrator installation. If a device is running on
the same machine as an MQSeries Integrator installation, and the location of the
appropriate jar files are defined in the CLASSPATH environment variable, it is not
necessary to install the MQSeries Everyplace device code separately.

An MQSeries Everyplace gateway is a computer running the MQSeries Everyplace
gateway code. Gateways are primarily used as servers to simultaneously attach
multiple MQSeries Everyplace devices. Gateways are also the mechanism through
which an MQSeries Everyplace network exchanges messages with an MQSeries
network, using part of the MQSeries Everyplace code referred to as the MQSeries
Bridge code. The MQeInput node provides access to MQSeries Everyplace gateway
function.

Devices use dynamic channels (so called to distinguish them from the MQSeries
client and messaging channels) to communicate. Dynamic channels are
bi-directional, and support both synchronous and asynchronous messaging.
Gateways necessarily also support dynamic channels, to communicate with
devices, and optionally support MQSeries client channels to communicate with
MQSeries servers.

Unlike MQSeries messages (which are defined as byte arrays with a message
header and a message body), MQSeries Everyplace messages are all passed as Java
objects, typically objects of the MQeMsgObject class. This class does not put any
restrictions on the fields it can contain, and so only predefined fields are
transferred to the MQMD when the message is passed to an MQSeries network —
the remaining fields are put, ’unparsed’, in the message body. You should use this
class if it is not necessary to parse the payload of the message.

Applications

Chapter 2. MQSeries Integrator overview and concepts 25

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

An alternative class, MQeMbMsgObject, is specifically designed to map to an MQMD
— any undefined fields are ignored. This class is more restrictive than
MQeMsgObject, but it does allow you to define the payload of the message so that it
can be parsed by nodes in a message flow — for example, to be stored in a
database. These two message classes produce different behaviors, and each has
advantages in particular circumstances.

You can incorporate MQSeries Everyplace applications into MQSeries Integrator by
getting input from an MQeInput node which has defined an MQSeries Everyplace
bridge queue listening on a particular port. The MQSeries Everyplace queue
manager runs as part of MQSeries Integrator. Returning output to MQSeries
Everyplace is achieved through the MQeOutput node, which puts messages destined
for MQSeries Everyplace on an MQSeries Everyplace queue. If appropriate, the
Publication node can also be used for output to MQSeries Everyplace, because it
embeds an MQeOutput node. All MQSeries Integrator message flows that
incorporate an MQeOutput node must also have an MQeInput node, which is used to
configure MQSeries Everyplace.

The SupportPac ID03 gives further details of the requirements needed to achieve
intercommunication between MQSeries Everyplace and MQSeries Integrator. For
further details of how to program with MQSeries Everyplace, you should refer to
the MQSeries Everyplace library. Whitepaper: MQSeries Everyplace for Windows
Version 1.1 provides a useful overview of MQSeries Everyplace. This Whitepaper is
available by following the Library-Whitepaper links from the Internet URL given
in “MQSeries information available on the Internet” on page 184. For information
specific to the use of MQSeries Everyplace nodes in MQSeries Integrator, refer to
Appendix D. ″MQSeries Everyplace Nodes″ in the MQSeries Integrator Programming
Guide and Chapter 5. ″Working with message flows″ in the MQSeries Integrator Using
the Control Center book.

SCADA applications
The device protocol, MQIsdp, is specialized for gaining access to a message broker,
typically from remote devices characterized by requiring a low bandwidth
communication. It employs TCP/IP for communication and uses a
publish/subscribe communications model. A typical system might comprise several
hundred client devices communicating with a single MQSeries Integrator broker,
with each client identified by a unique ID.

You can incorporate SCADA applications into MQSeries Integrator by getting input
from a SCADAInput node. But because SCADA is solely a publish/subscribe
protocol, you would normally use the Publication node (which embeds a
SCADAOutput node) to return output to the SCADA application. Only in advanced
applications might you need to use the SCADAOutput node directly — for example if
you want to write your own publication node.

Unlike both MQSeries and MQSeries Everyplace, SCADA does not incorporate any
form of security, although you can encrypt data if necessary.

SCADA has a concept of ’Quality of Service’ (QoS), similar to persistence in
MQSeries:
v QoS0: ″At most once″ delivery. Delivery is not assured; no acknowledgment is

expected.
v QoS1: ″At least once″ delivery. Successful delivery is assured and an

acknowledgment sent.

Applications

26 MQSeries Integrator Introduction and Planning

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

v QoS2: ″Exactly once″ delivery. As for QoS1, but the message is assured not to be
duplicated.

The SCADAInput node listens on a defined port and receives messages from clients
using the MQIsdp protocol. A SCADA listener can be started and stopped using a
publish message with a specific topic. This can be done for all ports, or for a single
port identified in the message.

The Publication node filters and transmits the output from a message flow to
subscribers who have registered an interest in a particular set of topics. Normally,
this would be done by putting the message to the queue on the queue manager
specified in the subscription. But because the Publication node contains a
SCADAOutput node, the message can just as easily be delivered to a subscribing
SCADA client over TCP/IP.

The SupportPac ID03 gives further details of the requirements needed to achieve
intercommunication between MQSeries Integrator and SCADA. For details of the
SCADA protocol, see Appendix C. ″MQSeries Integrator SCADA Device Protocol″ in
the MQSeries Integrator Programming Guide, and for information specific to the use
of SCADA nodes in MQSeries Integrator, refer to Chapter 5. ″Working with message
flows″ in the MQSeries Integrator Using the Control Center book.

The User Name Server
If you plan to deploy message flows that provide a publish/subscribe service to
your applications, you might want to employ topic-based security. Topic-based
security gives you the ability to control the authority of applications, identified by
the user ID under which they are executing, to publish on topics, to subscribe to
topics, and to request persistent delivery of messages on topics.

To implement topic security, you must install, create, and start one User Name
Server. (Under exceptional circumstances you might consider installing more than
one, subject to your license agreement: this is discussed in “Employing topic-based
security” on page 112.)

The User Name Server can be configured on any supported platform. Within the
environment in which it is running, the User Name Server monitors the underlying
security subsystem (for example, the Windows NT User Manager), and provides
information about the valid principals in the system. (Principal is a general term for
users and groups of users.) The User Name Server shares this information with
your brokers and the Configuration Manager, and updates it at frequent intervals.

When you create the User Name Server, the following resources are also created:
v A set of fixed-name queues, defined to the queue manager that hosts the User

Name Server. You must identify this queue manager when you create the User
Name Server, and it must exist on the same physical system. It is created when
the User Name Server is created, if it does not already exist. The User Name
Server can share a queue manager with the Configuration Manager, or with a
single broker, or both, if supported by the product you have purchased. (For a
summary of which components can be installed on which operating systems, see
Table 4 on page 95.)

Figure 10 on page 28 illustrates the place of the User Name Server in the broker
domain.

Applications

Chapter 2. MQSeries Integrator overview and concepts 27

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|

If you do not plan to support any publish/subscribe services in your brokers, or
you are willing to let every client have full access to all topics, you do not need to
consider topic-based security, nor do you need to install and create a User Name
Server in your broker domain. However, if it is possible that your requirements
will change later, it is easier to include a User Name Server in your broker domain
when you first design it. If you set global access (to all users) at the highest topic
level (the topic root), this is equivalent to having no specific topic-based security.
You can then introduce topic-based security on a more selective basis when you
need to do so.

MQSeries Integrator relies on the operating system’s security control mechanism to
define and maintain definition of principals.
v On Windows NT, the User Manager supports the definition and deletion of

principals (users and groups), and the assignment of user IDs to groups.
v On UNIX systems, the basic user/group control (in the file system) supports

creation, deletion, and modification of users and groups, and the assignment of
users to groups.

The User Name Server interrogates the operating system and makes the principals
information available to other components in the broker domain.

For more information about configuring a User Name Server in your domain, and
deploying topic security, see “Chapter 9. Planning your MQSeries Integrator
network” on page 107.

Access Control Lists
If you want to implement topic-based security, you must define Access Control Lists
(ACLs). You can create and maintain ACLs in the Topics view of the Control Center.
This view provides a display of the valid principals in your broker domain, and
allows you to associate these principals with specific topics. You are also able to
view the complete set of defined topics using this view.

You can create an explicit ACL for any topic in the topic tree, up to and including
the topic root. An ACL allows, denies, or inherits the authority to publish, to
subscribe, and to request persistent message delivery. If any topic does not have an
explicit ACL, it is governed by the ACL it inherits from its higher level (parent)

Queue manager

User Name Server Security
subsystem

Queue manager

Queue manager

Broker

Configuration
Manager

Figure 10. The User Name Server

User Name Server

28 MQSeries Integrator Introduction and Planning

topic in the tree. The default ACL setting for the topic root is to allow public
access. This can be modified to restrict access by introducing ACLs at specific
points in the tree.

MQSeries Integrator also supports applications publishing messages on topics
created dynamically. If this option is used, the ACL applied is inherited from the
closest topic above it in the tree. For example, if the topic “Stock/IT” is defined in
the topic tree with an ACL, and a publisher publishes a message with topic
“Stock/IT/IBM” which is not defined in the topic tree, the ACL for the parent of
that topic is inherited. Therefore if this publisher is not allowed to publish on that
topic, it is prohibited from publishing on the dynamic topic, too.

For more information about publish/subscribe applications, and the use of topics
and ACLs, see “Chapter 7. Designing publish/subscribe applications” on page 75.

Dependencies
A number of dependencies have been highlighted by this discussion of MQSeries
Integrator and its components. These dependencies are summarized here, to help
clarify the requirements that MQSeries Integrator has on your systems. For details
of software levels for other products (databases and MQSeries), see “Chapter 8.
System requirements” on page 95.

MQSeries dependencies
MQSeries Integrator is heavily dependent on the facilities of MQSeries messaging
to provide connectivity, message integrity, and some transactional support. In
summary, these dependencies are:
v Queue managers. A single MQSeries queue manager can host at most one

broker. The Configuration Manager and the User Name Server both depend on a
queue manager, but can share this queue manager with each other, or with a
single broker, or both.

v Communications. When you set up a network of queue managers to support
MQSeries Integrator, you must define their connectivity. You can use any one of
the communications protocols supported by the underlying MQSeries product
(this varies according to operating system environment).
The client/server connection between the Control Center and the Configuration
Manager, however, is limited to a TCP/IP connection, and the Control Center
depends on the MQSeries client for Java.

v The Configuration Manager depends on a queue manager, with a set of
fixed-name queues and a server connection channel that is defined when it is
created.
The Configuration Manager also needs sender and receiver channels to be able
to communicate with every broker in the broker domain (except the one broker,
if defined, that is created with the same host queue manager).

v Each broker depends on a dedicated queue manager (a broker cannot share a
queue manager with another broker, although it can share a queue manager
with the Configuration Manager, or the User Name Server, or both). It also
needs a set of fixed-name queues that are defined when the broker is created.
The broker needs sender and receiver channels to be able to communicate with
the Configuration Manager. It also needs sender and receiver channels to
communicate with the User Name Server, and sender and receiver channels to
communicate with all brokers in the same collective, or to which it is identified
as a neighbor in the topology.

User Name Server

Chapter 2. MQSeries Integrator overview and concepts 29

|
|

v Each MQSeries application using MQSeries Integrator services must be able to
connect to a queue manager in the MQSeries network to allow it to put
messages to the queue serviced by the message flow that provides the service it
requires. This connection can be local, or can use any supported MQSeries client
product, with the appropriate server and client connection definitions.
Each MQSeries application retrieving messages from a queue populated by a
message flow must be able to connect to the queue manager that owns that
queue (which can be local or remote to the queue manager that hosts the
message flow putting the message). This connection can be local, or can use any
supported MQSeries client product, with the appropriate server and client
connection definitions.
If the MQSeries application retrieving messages is a subscriber to a
publish/subscribe service, the messages it receives are propagated to the broker
to which it has subscribed, regardless of the proximity of the broker (and its
queue manager) that hosts that publish/subscribe service.

v SCADA and MQSeries Everyplace message flows containing SCADA and
MQSeries Everyplace nodes must reside in a single execution group within the
broker. If a message flow uses an MQeOutput node there must be an MQeInput
node in a message flow in the same execution group. If a message flow uses the
SCADA functionality of a Publication node there must be a SCADAInput node
in a message flow in the same execution group.

v The User Name Server depends on a queue manager, with a set of fixed-name
queues defined when it is created. It can share a queue manager with the
Configuration Manager, or a single broker, or both.
The User Name Server also needs sender and receiver channels to be able to
communicate with the Configuration Manager, and with every broker in the
broker domain to which it provides principal definitions (except to the
Configuration Manager, or one broker, or both, with which it shares its host
queue manager).

Further information on these dependencies is provided in “Chapter 9. Planning
your MQSeries Integrator network” on page 107, and full details of exactly which
component of MQSeries Integrator depends on which MQSeries component, and
the software levels supported, are provided in the MQSeries Integrator Installation
Guide for your product.

Database dependencies
The MQSeries Integrator components use databases to store configuration and
operational information. In summary, these dependencies are:
v The Configuration Manager needs two independent sets of tables to support the

message repository and the configuration repository.
These tables are created and initialized when the Configuration Manager is
created. The two repositories can be created within a single database, or in two
separate databases. Both repositories must be created in a DB2 database.
The Configuration Manager can use either a local connection to the databases, or
a remote connection.

v Each broker needs access to a set of tables to support its operation.
These tables are created and initialized when the first broker is created. The
broker tables can be created in the following databases:
– IBM DB2 Universal Database
– Microsoft SQL Server (Windows NT only)
– Oracle
– Sybase

Dependencies

30 MQSeries Integrator Introduction and Planning

|

|

|

|
|
|
|
|
|

For more information about supported databases, see Table 5 on page 105.

If you are using DB2 and your broker is on Windows NT, the broker tables can
be created within the same database as the configuration repository, or the
message repository, or both. However, three separate databases (for the broker
tables, the configuration repository, and the message repository) is the preferred
arrangement for easier restart and recovery.

When you create subsequent brokers, they can share the same set of tables,
because every entry on each table (row) identifies an individual broker. If you
prefer, you can set up separate databases (and therefore sets of tables) for each
broker.

The broker can use either a local connection to the databases, or a remote
connection.

You can find instructions that tell you how to create these databases, the ODBC
connections they require, and the need for Microsoft Data Access Component
(MDAC), in the MQSeries Integrator Administration Guide.

The actions supported by the Control Center provide the only interface you have
to the database tables used by MQSeries Integrator. You must not access these
tables directly using any other means, or you risk destroying the integrity of that
data.

Further information on these dependencies is provided in “Chapter 9. Planning
your MQSeries Integrator network” on page 107, and exact details of database
product levels supported are provided in the MQSeries Integrator Installation Guide
for your product.

Release to release migration
If you are migrating to MQSeries Integrator Version 2.0.2 from Version 2.0 or from
Version 2.0.1, you must refer to the Readme.txt file that is provided on the product
CD. This gives the latest information about migration requirements. You must also
be aware of the following points:
v The Version 2.0.2 Control Center only operates if the Configuration Manager is

also at Version 2.0.2.
v You are recommended to upgrade all instances of the Control Center to Version

2.0.2 when you upgrade the Configuration Manager to Version 2.0.2.
You must delete and recreate the Configuration Manager when you migrate it to
Version 2.0.2. This makes available the new nodes and message sets supplied
with the product.

v You need to migrate NEON Rules and NEON Formats in databases used with
Version 2.0 or 2.0.1 to the new format that is compatible with the updated
NEONRules and NEONFormatter support included with Version 2.0.2.

For information about migrating to Version 2 from Version 1, or from MQSeries
Publish/Subscribe, see “Appendix A. Planning for migration and integration” on
page 143.

Dependencies

Chapter 2. MQSeries Integrator overview and concepts 31

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

Release to release migration

32 MQSeries Integrator Introduction and Planning

Chapter 3. MQSeries Integrator: a business scenario

This chapter uses a hypothetical scenario to explore a company’s existing business
problems, and to summarize the ways in which MQSeries Integrator solves those
problems.

This scenario illustrates the deployment of MQSeries Integrator, and refers to the
components and concepts discussed in “Chapter 2. MQSeries Integrator overview
and concepts” on page 9, enhancing your understanding by providing a practical
application of those concepts.

However, this is just one scenario that has been chosen for more detailed
examination. Other scenarios might include:
v The financial industry, which needs to make sure that vast numbers of

transactions happen, happen correctly, and that they happen once and once only.
v The health-care industry, which needs accurate information available across

multiple, heterogeneous, and often legacy, systems.

The retail scenario, and others, are available by downloading the MQSeries
SupportPac IC03. The Internet URL is given in “MQSeries information available on
the Internet” on page 184.

The retail scenario
SRU Corporation (SRU) is a chainstore that sells food. It has expanded rapidly in
the last three years with new branches opening in Amsterdam and London, and it
has greatly extended its range of products.

The company headquarters are in Vancouver, Canada. Its current warehouse
branches are in San Diego, California and Santiago, Chile, and the retail stores are
spread throughout the world. Trading information from all stores needs to be
available to many different members of SRU staff at different locations, using
different applications. A subset of information needs to be made available to
supplier companies. In the future, SRU intends to expand its business to support
shoppers on the Internet, and wants to introduce a loyalty card system.

SRU wants to bridge the gap between its existing applications and the increased
number of back-end systems. It also wants to ensure that access to some
information can be restricted to those applications that need it. It also needs a
solution that can be enhanced in the future. MQSeries Integrator can provide the
facilities that meet these major objectives:
v Bridging the gap: MQSeries Integrator provides message transformation facilities

that support the receipt of a message in one format and the distribution of that
message in one or more different formats, according to the business needs of the
target applications, without any application modification.

v Restricting information: MQSeries Integrator provides topic and content-based
message routing using controls to restrict the recipients of any message.

v Future extension: MQSeries Integrator provides a basic framework that can be
extended by parties such as ISVs. Message processing can be enriched by the

© Copyright IBM Corp. 2000, 2001 33

|
|
|

inclusion of tailor-made nodes in the message flow. New message formats can
be added to meet new application requirements, for example when new systems
are added to the network.

Figure 11 shows the overall hierarchy of the SRU IT configuration.

Figure 12 on page 35 shows the relationships between the warehouse branches and
the back-end systems.

San Diego

Headquaters

Branches

Santiago

HQ:
Vancouver

Amsterdam

London

Figure 11. SRU headquarters and branch hierarchy

Retail scenario

34 MQSeries Integrator Introduction and Planning

Business data
Data is taken from receipts generated for each transaction that takes place within
each retail store. SRU gathers this data from its retail stores.

Figure 13 shows an example of a receipt from one of the stores:

MQSeries V5.2

Auditors:
(Vancouver)

Distribution:
(Santiago)
(London)

Partners:
(London)
(Amsterdam)
(San Diego)

MQSeries
Integrator
Version 2

HQ:
(Vancouver)

London

San Diego

Santiago

Amsterdam

Figure 12. Branches and back-end systems

SRU
SOUTHAMPTON
HAMPSHIRE

Cashier 112
Till no. 03
Date 00/04/01
Time 15:30

Purchases

1 tinned ham 3.99
056784637

1 tinned ham 3.99
056784637

1 garlic mash 2.92
047388567

1 skimmed milk 1.63
037809462

Total items 4
Multibuy Yes
Multibuy item tinned ham
Multibuy quantity 2
Total sales 11.46
Change 0.54

Figure 13. SRU receipt

Retail scenario

Chapter 3. MQSeries Integrator: a business scenario 35

Business needs
From this data, SRU has the following major information needs:
1. An audit trail of all transactions in the branches. All receipt information must

be stored for audit reasons. This information can also be used for offline data
access and mining.

2. Financial reports per store per month. With the rapid growth over the last three
years, sales within SRU are doing well. Headquarters are very happy with this
but want to know exact figures from each store on a monthly basis. The finance
department have been instructed to gather this information from each store at
the end of each month.

3. Stock levels for products supplied for its Distribution group. As sales are doing
well, stock levels must be kept up so that customers do not go elsewhere for
their goods. To do this, the number of items sold must be sent to the Stock
Distribution department so they are prepared to maintain stock levels. The
Stock Distribution department is on a back-end system that uses a different
operating system to that in use by the warehouse branches, so information
must be formatted in such a way that it can be understood by the Stock
Distribution system and applications.

4. Predicted peaks in demand for products from its partners. Headquarters want
to keep track of products that are doing well so that they do not run out of
them. If more than one of the same product is bought on the same transaction,
this is called a “multibuy”. For each of these multibuys, headquarters want to
inform their partners in order to ensure more of the product can be supplied.

Table 1 shows the information required by the recipients:

Table 1. Recipient information

Recipient Information required

1. Auditors All data from receipts

2. Finance Total Sales per receipt

3. Distribution Branch, Item Name, Item Quantity

4. Partners Multibuy items

Business solution using MQSeries Integrator Version 2
The business needs listed above can be satisfied using a solution with MQSeries
Integrator Version 2.0.2.

The first task is to represent the business data (that is, the receipt) as a message
with a structured format:
Store Details

Store Name
Branch No
Cashier No
Till No
Date
Time

Purchases
Item Name
Item Code
Item Price
Item Quantity

Totals

Retail scenario

36 MQSeries Integrator Introduction and Planning

Total Items
Multibuy
Total Sales
Change

This message can be processed to handle the specific business needs. A message
flow is created that takes the message from an input queue and processes the
message to produce the required output messages. A simplified form of the
message flow is shown in Figure 14 on page 38.

The message flow includes four subflows that perform the processing required to
satisfy the business needs:
1. Initially, all messages are retrieved from the input queue by the MQInput node.

Each message is checked to ensure that it is a message of the correct format for
a receipt (in a Check node) and stored in a database (in a Warehouse node)
before it is passed to all three of the remaining subflows.

2. In the Finance flow, the fields Branch No, Date, Time and Total Sales are
extracted from the input message in an Extract node. Each message is then
traced by the Trace node. The records that are written to the trace log enable
you to ensure that only the data extracted by the Extract node is sent to the
Finance department by the Output node.

3. In the Stock flow, a Compute node sums up all instances of each item from the
input message. This information can then be formatted and sent in a message
containing Branch No, Item Name and Item Quantity by the Output node to
the Stock Distribution department.

4. In the Partner flow, multibuy records are placed into a database by a
DataInsert node and published to registered partners by the Publication node.
Partners subscribe to messages based on a topic (Multibuy) or refine their
subscriptions further by filtering on the content of a field (the item name) in a
message.
A reusable exception handling message flow is used to help with problem
determination while the main message flow is being developed or upgraded.
This exception handling flow can be embedded anywhere in the main flow.
Access Control Lists are defined in the Control Center to ensure that user IDs
associated with partners are restricted to subscribing to the items they produce.
For example, the partners producing the tinned ham product register a
subscription based on the topic Multibuy/tinned ham, and are not authorized to
receive messages published on any other topic.
Different applications within the partner organizations can also choose to
restrict the messages they receive even further, using content based
subscriptions. For example, one application might want to process only those
messages which indicate that a quantity of ten or more items have been bought
in one transaction.

Retail scenario

Chapter 3. MQSeries Integrator: a business scenario 37

Implementing the business solution
There are several steps you need to take to implement this, or any other business
solution:
1. First, you must plan your MQSeries Integrator system. For example, you must

decide how many brokers you need to meet your business requirements, what
message flows you need, and so on. This chapter has identified just one
message flow, but a more complex setup is very likely. This book helps you to
plan your MQSeries Integrator configuration, and to understand the
implications for the MQSeries infrastructure, security, performance and so on.

2. Next, you must implement the MQSeries Integrator system you have designed
by installing and configuring the components you need on the appropriate
systems following the guidance provided in the MQSeries Integrator
Administration Guide and in the MQSeries Integrator Installation Guide for your
product.

3. You must define your message sets and message flows. MQSeries Integrator
Using the Control Center has all the information you need to achieve this task.

4. You must write application programs to interact with the message flow using
the message structures you have created. The MQSeries Integrator Programming
Guide provides the information you need to do this.
If you have existing applications on the back-end systems, you must ensure
that the message flow generates messages for those existing applications in the
right formats, so the application source code does not have to be changed.
MQSeries Integrator Using the Control Center helps you to define the
transformations you need to provide compatible message formats from your
message flows.

5. Last, but not least, you must test the applications that generate the messages
for your message flow, and check the results.

Trace

WarehouseCheckInput

PublicationDataInsertFilter Partners

OutputCompute
Stock

Distribution

Output

Topic Multibuy

Yes

Reformat

Extract
Finance

department

FINANCE FLOW

STOCK FLOW

PARTNER FLOW

The Business Flow

Figure 14. The business flow (simplified)

Retail scenario

38 MQSeries Integrator Introduction and Planning

Part 2. Business process planning

This part helps you plan the tasks to deploy the facilities of MQSeries Integrator to
meet your business objectives.

It provides the information your business planners need to understand the
environment that MQSeries Integrator provides for applications. It explains the
concepts that are introduced in “Chapter 2. MQSeries Integrator overview and
concepts” on page 9, and gives more details about the implications of using the
various functions of the product.

It contains the following chapters:
v “Chapter 4. Message flows” on page 41
v “Chapter 5. Messages” on page 55

The information here is an introduction to the detail provided in MQSeries
Integrator Using the Control Center.

© Copyright IBM Corp. 2000, 2001 39

40 MQSeries Integrator Introduction and Planning

Chapter 4. Message flows

This chapter gives you more information on message flows, and how they are
constructed and deployed in your broker domain. It covers the following:
v “What is a message flow?”
v “Execution groups” on page 48
v “Message flows and message sets” on page 48
v “Message flows for publish/subscribe services” on page 49
v “Supplied message flows and nodes” on page 49
v “Adding or enhancing message processing nodes” on page 54

What is a message flow?
The MQSeries Integrator message broker supports processing for messages after
one application has put a message to a queue, and before another application gets
that message from a queue. It provides this support by directing the message from
the initial queue to the target queue (or queues) through a message flow. Note that
in the case of SCADA applications, messages arrive and leave via a port rather
than a queue, but the principle is the same.

The content and execution characteristics of a message flow are discussed in the
following sections:
v “What does a message flow consist of?”
v “Parallel processing of message flow instances” on page 42
v “Interaction of message flows” on page 43
v “Transformation” on page 43
v “Intelligent routing” on page 44
v “Enriching message content” on page 45
v “What is a message processing node?” on page 45

What does a message flow consist of?
A message flow is a sequence of operations on a message, performed by a series of
message processing nodes. The actions are defined in terms of the message format,
its content, and the results of individual actions along the message flow.

MQSeries Integrator includes a range of message processing nodes, called
primitives, that provide most of the function that you will need in most situations.
A few of these nodes are used to illustrate the nature of a message flow in this
discussion. For details of these nodes, see “Primitive node types” on page 50. For
details of how you can define your own message processing nodes to extend the
function available to a message flow, see “Chapter 11. Enhancing your broker
domain” on page 139.

A message flow and the message processing nodes it contains describes the
transformation and routing applied to an incoming message to transform it into
outgoing messages. These actions form the rules by which the message is
processed.

A message flow can also be made up of a sequence of other message flows, that
are joined together. This function allows you to define a message flow containing a
specific sequence of message processing nodes, and reuse that message flow in
other message flows wherever that action is needed.

© Copyright IBM Corp. 2000, 2001 41

|
|
|

One example of why you would use this technique is error handling. You can
define a message flow of one or two nodes that perform the action you want taken
when an error is encountered, and include that message flow as a sub-message
flow in all your other message flows.

When you complete the creation of your message flow, you can assign it for
execution to one or more brokers. When you do this, the message flow must be
operationally complete. That is, it must contain at least one of the supplied input
nodes, such as MQInput node (one of the primitives). Most message flows will
also contain at least one output node, such as MQOutput, or one Publication
node, although this is not required (both of these nodes are also primitives).

You can choose to limit the number or the type of message flows (and therefore, by
inference, the type of messages processed) to run in any broker according to the
criteria you decide.

For example, you could deploy all message flows that access a particular database
to a single broker. You could choose to deploy the message flows that provide a
publish/subscribe service to a specialized group of brokers.

You can also control some aspects of how your message flows run, within a single
broker. Each broker can host a number of execution groups. An execution group
provides an execution environment, that offers protection and isolation.

“Execution groups” on page 48 has more information about using execution
groups.

Message flows and units of work
A message flow is transactional: you can define your message flows to perform all
processing within a single unit of work. Therefore the receipt of every message by
the input node, and the database operations performed as a result of that message
being received and processed by the message flow, are coordinated.

If an error occurs within a transactional message flow, the transaction is rolled
back and the message will be handled according to normal error handling rules
(described in “Error handling” on page 47).

You can also define a message flow to work outside of a unit of work if you do
not want this support.

Parallel processing of message flow instances
When you define, assign, and deploy a message flow, the broker automatically
starts an instance of the message flow for each input node (one or more). This is
the default behavior. Each instance retrieves a message from the input node, and
runs in parallel with other instances that retrieve a message from other input
nodes.

If you want to further increase the throughput of this message flow, you can set a
property of the assigned message flow (that is, the property is available when you
have assigned the message flow to the broker’s execution group) that defines how
many additional instances are to be started by the broker for that message flow.
You can set properties of the input node to exercise control over the order in which
messages are processed: for example, you can force all messages received from a
single client to be processed in order. This is discussed further in “Message order”
on page 70.

What is a message flow?

42 MQSeries Integrator Introduction and Planning

|
|
|

You can also increase message flow throughput by assigning more than one copy
of the message flow to the same broker. However, this is only appropriate if the
message order is not important, because the multiple copies of the message flow
are handled independently by the broker, with no correlation between them.

Therefore, if more than one copy of the same message flow is active within the
broker, each copy can be processing a message at the same time, from the same
queue. It is possible for the processing time of a message flow to vary, and
multiple message flows accessing the same queue could therefore read the
messages from the queue in a random order. Also, the order of messages produced
by the message flows might not correspond to the order of the original messages.
You can influence the order in which the input node removes messages from the
queue (using the Order Mode property).

You are therefore recommended to increase the instances of a single copy of the
message flow if you want to increase throughput and parallel processing but wish
to have control over the message order.

Interaction of message flows
In general, the message flows you define and deploy do not interact with other
message flows, nor will the processing of one message by the message flow
influence the processing of another message.

It is possible, however, to create message flows that do interact to achieve
particular outcomes. For example, one message flow could store a message in a
database: a second message flow could retrieve that message and use its contents
(for example, a currency exchange rate) to influence the contents of the message
currently being processed, by inserting fields, or recalculating a value.

Each instance of a message flow handles strictly one message at a time. A message
flow instance does not accept a second message (that is, read a new message from
the input queue or SCADA port) until the first message has been completely
processed.

Transformation
Most enterprises have applications that have been developed over many years, on
different systems, using different programming languages, and different methods
of communication. Standard message queuing technology can bridge differences
like these, but applications still need to be aware of, and negotiate, the format in
which the messages flow.

MQSeries Integrator changes all that. The knowledge of each application is stored
just once in the broker and each message is translated into the receiving
application’s format.

For example, personal names are held in many forms in different applications.
Surname first or last, with or without middle initials, upper or lower case: these
are just some of the permutations. Because the broker knows the requirements of
each application, it can transform the message to the correct format without the
sending or receiving application needing any modification.

A message flow can completely rebuild a message, convert it from one format to
another (whether format means order of fields, byte order, language, and so on),
remove content from the message, or introduce specific data into it. For example, a

What is a message flow?

Chapter 4. Message flows 43

|

node can interact with a database to retrieve additional information, or store a
copy of the message (whole or part) in the database for offline processing.

A couple of other examples show how important message transformation can be:
v An order entry application has a Part ID in the body of the message, but its

partner stock application expects it in the message header. The message is
directed to a message flow that has knowledge of the two different formats, and
can therefore reformat the information as it is needed.

v A data-entry application creates messages containing stock trade information.
Some applications receiving this message need the information as provided, but
others need additional information added to the message about the price to
earnings (PE) ratio. The stock trade messages are directed to a message flow
which passes the message unchanged to some output nodes, but calculates and
adds the extra information for the others. The message flow does this by looking
up the current stock price in a database, and uses this value and the trade
information in the original message to calculate the PE value before passing on
the updated message.

Intelligent routing
Intelligent routing encapsulates business knowledge of how information should be
distributed between sending and receiving applications throughout the enterprise.
This knowledge is stored in the broker as a set of rules that are applied to each
message as it passes through the broker. Routing is independent of the requirement
for message transformation, although you will usually define sets of rules (as
message flows) that combine the two in some way. Messages are distributed
according to criteria applied to the values of fields within the message.

For example, a money transfer application always sends messages to one other
application. You decide that every message with a transfer value of more than
$10,000 must now also be sent to a second application, to enable all high-value
transactions to be recorded.

In another example, a national auto club offers a premier service to specific
members for orders above a threshold value. Most orders are routed through the
usual channels, but if the membership number and order value meet certain
criteria, the order gets special treatment.

You can also establish a more dynamic routing option by building additional
routing information into the message when it is processed. Optional sets of rules
are set up to receive messages according to values (destinations) set into the
message. You can establish these rules such that a message is processed by one or
more of the optional sets of rules, in an order determined by the added message
content.

You can create, modify, and use these rules to develop a very flexible approach to
the distribution of information. New ideas and requirements can be stated clearly,
and turned into new or changed rules in the broker, and your business goals are
met. You don’t have to rework your applications.

Your business processes range from the simple to the very complex. You can create
rules to cover every case, building new rules, and reusing and combining existing
ones to develop even the most complex solution.

What is a message flow?

44 MQSeries Integrator Introduction and Planning

Enriching message content
When a message is processed by a message flow, it is possible to update and add
to the message content. This allows you to add value between sender and receiver
in any way you choose.

A typical way in which you can enhance the message content is by adding data
from a database. This could be done by appending fields to the message, or
merging information from the two sources, for example by calculating a new field
value using the database information.

What is a message processing node?
A message processing node is a stand alone procedure defined within a message
flow that receives a message, performs a specific action against it, and outputs zero
or more messages as a result of the action it has taken.

This section describes the types of nodes, using the primitives included in
MQSeries Integrator to illustrate the function they provide.

You can create additional message processing nodes to provide enhanced or
replacement function if you choose, except where noted. For further information
about this extension to MQSeries Integrator, see “Adding or enhancing message
processing nodes” on page 54.

Common node characteristics
Every message processing node has a fixed number of input points and output
points. These points are known as terminals. Each node normally has one input
terminal (on which it receives messages), and multiple output terminals to handle
a variety of situations. Output terminals are defined according to the characteristics
of the individual node. For example, a filter node has true, false, failure, and
unknown output terminals.

A connector joins an output terminal of one node to an input terminal of the next
node in the message flow. You can leave an output terminal unconnected, or you
can connect a single output terminal to more than one target node.

Figure 4 on page 15 illustrates the relationships between connectors, terminals, and
nodes.

After a node has finished processing a message, the connectors defined from the
node’s output terminals determine which node, or nodes, process the message
next. If a node has more than one output terminal connected to a target node, the
node determines the order in which the different execution paths are executed. If a
single output terminal has more than one connector to a target node, the broker
determines the order in which the different execution paths are executed. You
cannot change the order of processing determined by the node or broker.

A node does not always produce an output message for every output terminal:
often it produces one output for a specific terminal depending on the message
received. For example, a filter node will typically send a message on either the true
terminal, or the false terminal, but not both.

When the processing determined by one connector has been completed, the node
issues the message again to the next connector, until all possible paths have been
completed. Updates to a message are never propagated to previously executed
nodes, only to nodes following the node in which the update has been made.

What is a message flow?

Chapter 4. Message flows 45

The message flow can only accept a new message for processing when all paths
through the message flow (that is, all connected nodes from all output terminals,
as appropriate) have been completed.

Input and output nodes
Some message nodes have special characteristics: they define points in the message
flow to which clients send messages (input nodes such as MQInput), or from
which clients receive messages (output nodes such as MQOutput).

These special nodes reference MQSeries or MQSeries Everyplace queues or SCADA
ports — referred to here as I/O resources. Client applications interact with these
nodes by putting messages to, or getting messages from, these I/O resources.

A message flow has a set of (one or more) input nodes to which senders can post
their messages, and a set of output nodes from which receivers can pick up
messages.

If a message is being processed under transactional control, the output node only
puts the message to the destination I/O resource when all processing by the
message flow has been successfully completed, unless the output node is set up to
put the message outside the global (message flow) transaction.

Before you can use a message flow, the input nodes must be associated with I/O
resources that represent the sources of messages. An output node must also be
associated with an I/O resource in most cases. However, you can set an output
node property that causes the node to put the message to every I/O resource in a
destination list, which is contained within the message itself.

You must use one of the supplied primitive nodes for every message flow input
node: you cannot use one of your own. You should use the MQInput node in most
cases, but you should use the MQeInput node when interfacing with MQSeries
Everyplace applications, and the SCADAInput node when interfacing with remote
SCADA (Supervisory Control And Data Acquisition) devices.

You can use the supplied MQOutput node, or you can replace it if you choose.
You will need to use the supplied MQeOutput node for MQSeries Everyplace
applications, and the Publication node for typical SCADA applications. (The
Publication node knows how to handle SCADA messages — you will only need to
use the SCADAOutput node in exceptional circumstances.)

Publication nodes are a special type of output node that use the queues identified
by current subscribers whose subscriptions match the characteristics of the current
message. Subscribers provide the identity of the queue on which they want to
receive all matching publications.

Processing messages
All nodes other than the input and output nodes receive an input message from
the previous node in the message flow and transform it into zero or more output
messages to be made available to the next node (or nodes) in the message flow.
Messages passing between nodes are not put to an intermediate queue: each
message is held in local memory.

These nodes can perform any kind of processing on a message. For example, they
can:
v Transform the message (Compute).
v Subset the data within the message (Extract).

What is a message flow?

46 MQSeries Integrator Introduction and Planning

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

v Route the message to one or more targets (RouteToLabel).
v Archive the message in a message warehouse (Warehouse).
v Update database information from the message content (Database).

Error handling
All primitive message processing nodes have a failure output terminal, to which a
message is transferred if an error is detected within the node. If the failure
terminal is not connected to a target node, an exception is generated and
propagated back towards the input node:
v If a TryCatch node is encountered before the exception reaches the input node,

the flow of control proceeds down the catch terminal. The message that is
propagated through the catch terminal is the message originally received by the
TryCatch node: any changes made to the message by later nodes in the message
flow are not preserved. However, any external processing (for example, updates
to a database through a Database node) are preserved. It is not possible to
rollback these database updates from within the message flow.
Before the TryCatch node passes on the message to the node connected to the
catch terminal, it adds the exception information to the ExceptionList item in the
message tree. Existing information in the ExceptionList field in the message is
written to the local error log, and then overwritten with the new exception
information.
For further information about ExceptionLists, see the MQSeries Integrator ESQL
Reference book.

v If the message reaches the input node:
– If the input node’s catch terminal is connected to another node, the message

is propagated to that node. In this case, an error is not recorded in the local
error log (for further details of how MQSeries Integrator logs errors, see
“Problem determination” on page 134).

– If the input node’s catch terminal is not connected, and the message is being
processed under transactional control, the message is returned to the input
queue. An error is recorded in the local error log. The input node will then
read the message again for retry. It first checks to see if the backout count for
this message has now exceeded the backout threshold:
- If the backout count has not exceeded the threshold, the message

processing is retried.
- If the backout count has exceeded the threshold, and the failure terminal is

connected to another node, the message is propagated to that node.
If the failure terminal is not connected, the message is put on the backout
queue, if one is defined for this input queue, or the queue manager’s
dead-letter queue (DLQ), if a backout queue does not exist.
If the queue manager does not have a DLQ defined, the message is left on
the input queue. (If the broker’s queue manager has been created by the
create broker command mqsicreatebroker, a DLQ has been defined and
enabled for this queue manager.)

– If the catch terminal is not connected and the message is not being processed
under transactional control, the message is discarded.

For more information about message processing under transactional control, see
“Transaction support” on page 71.

What is a message flow?

Chapter 4. Message flows 47

|

|

|

|
|

|

You can provide a minimum level of error handling within every message flow
you define if you choose. This minimum level might include:
v Define a dead-letter queue (DLQ) on the broker’s queue manager (or use the

default supplied DLQ).
v Change the queue manager’s attributes to use this DLQ.

For details of incorporating more sophisticated error handling, for example, the use
of the TryCatch node, see MQSeries Integrator Using the Control Center.

Execution groups
The broker provides the run-time environment for a set of deployed message
flows: this environment is called an execution group. An execution group provides
an isolated execution environment, because each is started as a separate operating
system process.

One execution group, the default execution group, is set up ready for use
whenever you create a broker. By setting up additional execution groups, you can
isolate message flows that handle sensitive data such as payroll records, or security
information, or unannounced product information, from other nonsensitive
message flows.

If you create additional execution groups, you must give each a name that is
unique within the broker, and assign and deploy one or more message flows to
each one.

Within an execution group, the assigned message flows run in different thread
pools. You can specify the size of the thread pool (that is, the number of threads)
that are assigned for each message flow by specifying the number of additional
instances of each message flow (this is also discussed in “Parallel processing of
message flow instances” on page 42).

You do the creation, deployment, and assignment (of message flows and threads
for the message flows) using the Control Center.

For example, you might want to set up one execution group to support a
connected set of applications and their messages, and a second execution group for
another distinct set of applications and their messages.

The broker guarantees operating isolation of each execution group, thus
guaranteeing data integrity between execution groups, and improving robustness
of message flows.

Message flows and message sets
When you have created your message flows using the Control Center, you must
assign them to the brokers on which you want them to run, again using the
Control Center. Their assignment and subsequent deployment prompts the
Configuration Manager to send data and control information to the broker,
enabling it to load and execute the code contained within the message flow.

The same message flow can be assigned to any number of brokers, perhaps for
workload distribution. Similarly, a number of different message flows can be
assigned to the same broker.

What is a message flow?

48 MQSeries Integrator Introduction and Planning

However many message flows a broker hosts, the broker needs access to the
definitions of your predefined (that is, not self-defining) messages expected or
generated by those message flows.

Therefore if you assign a message flow that uses predefined messages to an
execution group, you must also assign one or more message sets to that broker, to
ensure the details of the messages are available when the message flow executes.

The message sets are assigned and deployed to the broker, but message flows are
assigned and deployed to an individual execution group.

The relationship between message flows and message sets is unlikely to be one to
one. You are very likely to have a number of related message flows executing in
one broker that use some or all of the same message sets.

For further details about messages and message sets, and how you define them,
refer to “Chapter 5. Messages” on page 55.

Message flows for publish/subscribe services
MQSeries Integrator supports message flows that provide publish/subscribe
services. If you define a message flow to support publish/subscribe, you must:
v Define the publish/subscribe topology that identifies a broker’s neighbors, to

which publications are propagated, using the Control Center. A publication is
only routed to a broker if there is a subscriber at that broker who has registered
an interest in the topic of that publication.

v Include a Publication node as the last message processing node in at least one
path through the message flow. A message flow can have a path in which the
end node is a Publication node as well as a path in which the end node is an
output node. It is also possible to have more than one Publication node or
output node on each path.
This node handles published messages by forwarding them on to all registered
subscribers, that is to applications that have registered an interest on the topic,
or content, or both, of the message at this node.

To support publish/subscribe applications, you must define at least one message
flow as described above, and design applications that publish to the input queue
of the publish/subscribe message flow (the publication queue, identified by the
input node) and applications that register subscriptions for the published
messages.

You can increase the throughput of this publish/subscribe message flow from
publication queue to subscribers by increasing the number of instances of that
message flow operating in the execution group. You can also deploy the same
message flow to multiple brokers, as you can with any message flow.

For more information about publish/subscribe processing, see “Chapter 7.
Designing publish/subscribe applications” on page 75.

Supplied message flows and nodes
MQSeries Integrator includes a number of message processing nodes and message
flows that you can use.

Message flows and message sets

Chapter 4. Message flows 49

|
|

|

Primitive node types
Message processing nodes perform the real work of handling the message within
the message flows deployed to the broker. MQSeries Integrator incorporates a set
of node types that provide basic out-of-the-box message processing function. These
are known as the primitive node types, and can be considered in the following
categories:
v Receiving and routing messages
v Transforming a message to an alternative representation
v Selecting a message for further processing based upon the message’s content
v Interacting with an external repository to augment a message or store the whole

or part of a message
v Responding to events and errors

The NEONRules and NEONFormatter Support component of MQSeries Integrator
Version 2.0.2 replaces the NEONRules and NEONFormatter engines from
MQSeries Integrator Version 1. You can use the NEON nodes that incorporate this
function within any message flow, as you can any other message processing node.
This allows you to migrate applications and messages from MQSeries Integrator
Version 1. The MQSeries Integrator Version 2.0.2 Control Center also supplies the
graphical user interfaces (GUIs) that support management of the rules and formats
in this scheme.

Receiving and routing

Label Provide a target for routing from the RouteToLabel node. The identity of
the Label node is used to match message content and thus determine the
route a particular message takes at a particular point in the message flow.

FlowOrder
Define the exact order in which subsequent subflows in the message flow
are executed. The order is normally unpredictable: you can use this node
to force one particular path to process the message before another path.

MQeInput
Allows MQSeries Everyplace clients to connect and propagate messages
into the broker via an MQSeries Everyplace queue, and retrieve messages
from the MQSeries Everyplace queues. You must use this node for
MQSeries Everyplace input, you cannot replace this with your own input
node.

MQeOutput
Write the current message to the MQSeries Everyplace queue specified by
the node properties, or defined by a destination list associated with the
message, or to the reply queue specified in the message header.

MQInput
Read the next message from the input queue and establish the processing
environment for this message (for example, the transactional context). You
cannot replace this node with your own input node.

MQOutput
Write the current message to the queue specified by the node properties, or
defined by a destination list associated with the message.

MQReply
Write the current message to the reply queue defined by the message’s
header or the node properties.

Supplied message flows and nodes

50 MQSeries Integrator Introduction and Planning

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

NEONRulesEvaluation (supersedes NEONRules)
Invoke the NEONRules engine. This provides routing function defined by
the NEONRules GUI.

Note that the NEON nodes cannot be used unless the NEONRules and
NEONFormatter Support component is installed.

Publication
Deliver the message to a set of MQSeries, MQSeries Everyplace or SCADA
subscribers that are defined in the subscription table and have a
subscription for the node’s subscription point. This node also stores retained
publications when appropriate.

RouteToLabel
Interrogate the destination list in the message to determine the identity of
the Label node within the current message flow to which the message
must be sent for processing. You can create or modify a destination list
within the Compute node.

SCADAInput
Allows MQIsdp clients to publish and subscribe to the information within
a publication node via the port specified within this node.

SCADAOutput
Write the current message to all the subscribed SCADA clients defined by
the destination list associated with the message. This node is available, and
typically used, as a sub-node within the Publication node. You should use
it as a stand-alone node only in advanced solutions where the normal
publish/subscribe environment is not suitable.

Message transformation

Compute
Derive an output message from the contents of an input message.

Output message elements (including destination lists and exception lists)
can be defined using expressions, defined in ESQL, based on input
message elements and external data sources. The expressions can use
arithmetic operators, text operators (for example, concatenation), logical
operators, and other built-in functions.

The rich subset of ESQL operations you can specify in this node is
described in MQSeries Integrator ESQL Reference.

The output message can inherit all of the headers associated with the input
message, or the node can be set up to select a subset of those headers for
the input header, or to insert a new header (or headers), replacing the
input message headers.

The Compute node can be used to make a copy of a message (that is,
duplicate the message), prior to manipulating the message content.

Extract
Create a new message from the input message using only specified
elements. Any elements from the input message that are not specified for
the output message are discarded. This is a specialized form of Compute.

NEONTransform (supersedes NEONFormatter)
Invoke the NEONFormatter to map and transform (reformat) a message
from a known input format to a specified output format. For details, see
NEONRules and NEONFormatter Support for MQSeries Integrator

Supplied message flows and nodes

Chapter 4. Message flows 51

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

Programming Reference for NEONFormatter. The message definitions and
transformations are defined using the NEON Formatter GUI.

Note that the NEON nodes cannot be used unless the NEONRules and
NEONFormatter Support component is installed.

NEONMap
This node provides the map function of the NEONTransform node, but no
output operations are carried out.

Note that the NEON nodes cannot be used unless the NEONRules and
NEONFormatter Support component is installed.

ResetContentDescriptor

Reparse the bit stream of an input message. This node provides equivalent
function to an MQOutput node followed by an MQInput node. It allows
the message to be interpreted by an additional message parser within a
single message flow.

Selecting a message based on content

Check
Test one or more of the message properties within the message template.
The exact nature of the test is defined by the node properties.

The Check node validates the message properties in the message header
against values specified in the node: it does not check the message body. If
the test fails, the message is passed to the failure terminal.

Filter Route the message according to message content, using a filter expression
specified in ESQL. In addition to including elements of the message or
message properties, the filter expressions can also reference data held in an
external database.

The rich subset of ESQL operations you can specify in this node is
described in MQSeries Integrator ESQL Reference.

Interacting with an external database

Database
Modify the content of one or more database tables using a specified ESQL
expression. The expression can contain elements derived from the input
message. The input message is propagated along the message flow without
change. The Control Center provides customized nodes for simple tasks
such as inserting a single row into a table (DataInsert), updating a single
row in a table (DataUpdate), and deleting a single row from a table
(DataDelete).

The rich subset of ESQL operations you can specify in this node is
described in MQSeries Integrator ESQL Reference.

Warehouse
Write a message to a data warehouse. This is a specialization of the
Database node that inserts a single row into the specified database table,
and provides additional options for time-stamping the message and
including the entire message content as a blob.

Recording and responding to events and errors

TryCatch
Provide a special handler for exception processing. The input message is

Supplied message flows and nodes

52 MQSeries Integrator Introduction and Planning

|
|

|
|

|
|
|

|
|

|

|
|

|

|
|

initially propagated on this node’s try terminal. If an exception is thrown
by a downstream node it is caught by this node, which then propagates
the original input message on its catch terminal.

Throw
Provide a means to throw an explicit exception in a message flow.

Trace Write a specified expression (that can include the content of the fields in
the message) to the user trace log, or to a file specified as a property of the
node.

Supplied message flows
A set of message flows are supplied with the product. These are in two broad
categories:
1. Default message flows. These are:

v The Version 1 Migration/Compatibility flow for MQSeries Integrator Version
2.0.2.
This message flow can be deployed in any Version 2.0.2 broker in your
broker domain to provide equivalence to an MQSeries Integrator Version 1.1
daemon. It incorporates the NEONRulesEvaluation node to process messages
according to the NEON rules engine. An input node, to read messages from
an input queue, and a set of output nodes, that provide failure, no-hit and
process action functions, are connected to the NEONRulesEvaluation node.

v The publish/subscribe message flow.
This message flow provides the simplest message flow processing that
provides a publish/subscribe service. It emulates exactly the basic
publish/subscribe function supported by the MQSeries Publish/Subscribe
SupportPac, and is equally appropriate for all publish/subscribe services in
which no additional processing of the message content is required.

2. Installation verification message flows. These are:
v The ScribbleInversion message flow. This is the message flow required by the

Scribble application, described in the MQSeries Integrator Installation Guide for
your product.

v The Soccer message flow. This is the message flow required by the Soccer
Results Service, described in the MQSeries Integrator Installation Guide for
your product.

v The Postcard message flow. This is the message flow required by the Postcard
application, described in the MQSeries Integrator Installation Guide for your
product.

The definitions of these message flows are provided in the import file
SamplesWorkspaceForImport. The import file PostcardMS.mrp provides the
definitions for the message set required by the Postcard message flow. Each
MQSeries Integrator Installation Guide describes the Installation Verification Program
(IVP) message flows and message set in detail, and tells you how to import the
supplied files and save the definitions for future use. MQSeries Integrator Using the
Control Center provides more information about the default message flows, and
guidelines for using them.

A collection of sample business scenarios is available by downloading the
MQSeries SupportPac IC03. The Internet URL is given in “MQSeries information
available on the Internet” on page 184.

Supplied message flows and nodes

Chapter 4. Message flows 53

|
|

|
|
|
|
|
|

|
|
|

Adding or enhancing message processing nodes
MQSeries Integrator provides an external interface that allows you to add new
capabilities to the broker by implementing new node types. The interface
comprises a set of calls implemented in the C language. These calls are of two
kinds:
v Calls that the broker makes to the node, for example to initialize the node.
v Calls that the node makes to the broker, for example, to inquire about the

content of the message being processed.

Examples of additional node types might include:
v A timer node, that re-invokes itself periodically at a set timer interval, to

perform a series of actions before passing the message on to the next node in the
message flow.

v Reading one or more records from a specified data file: this node type might be
used in conjunction with a timer node to provide a mechanism for performing
batch processing at predetermined intervals, or times of day.

v Raising events that get displayed in a systems management console.

You’ll find more details about this facility in “Chapter 11. Enhancing your broker
domain” on page 139. The implementation details of the system programming
interface are given in the MQSeries Integrator Programming Guide.

Solving message flow problems with the Debugger
The Control Center provides facilities that help you to validate that a message flow
is performing the desired actions under all conditions, and determine the cause of
unexpected processing within a message flow. As well as user tracing and trace
nodes, you can use the Debugger, which is presented as an alternative screen
under the Message Flows view of the Control Center.

The Debugger lets you define break points within a message flow. When a break
point is encountered during message processing, control is returned to you, and
you can then inspect and modify the message contents. This helps you to analyze
and solve unexpected situations with message flows, such as:
v Wrongly connected nodes, such as outputs connected to incorrect inputs
v Filter nodes with incorrect conditions
v Compute nodes with incorrect logic
v Database nodes making incorrect entries into their target databases
v Incorrect messages generated by applications, or having contents that the

message flow does not expect
v Feedback loops that are never exited
v User programmed plug-ins that contain errors, or are not reentrant

An example use of the Debugger is to track a single message through a message
flow one step at a time. Another example is to put a breakpoint on a filter output,
triggered by an erroneous message; there may be hundreds of messages generated
by the input application before the bad message occurs and triggers the
breakpoint.

Full details of the Debugger are provided in MQSeries Integrator Using the Control
Center.

Adding message processing nodes

54 MQSeries Integrator Introduction and Planning

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|
|

|

|

|
|
|
|
|

|
|

Chapter 5. Messages

Data and information is generated and distributed through your broker domain in
the form of messages. This chapter describes the messages that MQSeries
Integrator supports, and how they are interpreted by the message flows.
v “Predefined and self-defining messages”
v “Message parsers” on page 59
v “Using message templates and messages” on page 61
v “Creating additional parsers” on page 62

Predefined and self-defining messages
The format and content of each message has to be known by the process that is
constructing or examining it. In MQSeries Integrator, messages are always in one
of two broad categories:
v Predefined. The content of a predefined message is described by the message

template.
v Self-defining. The content of a self-defining message is described by the message

itself.

Predefined messages
A message can be considered in a couple of ways:
v It has a logical structure. This defines the contents of the message using a tree

structure that identifies each field and its relation to other fields. For example, a
message might contain three fields, in the following order:
AccountNumber
AccountName
AccountBalance

The applications sending and receiving messages like this understand this
format, and the type of each field. For example, they might use a C structure
that shows AccountNumber is an eight byte character field, AccountName is a
20 byte character field, and AccountBalance is an eight byte character field.

v It has a physical structure, also known as a wire format. Using the above
example, the wire format will be a string of bytes that would look something
like:
01234567BILL�WILLIAMSON�����00008907

where the character � represents a blank space

The Control Center provides the main Graphical User Interface (GUI) for message
definition and management. Messages defined through the Control Center are
stored in the message repository, which is created and maintained in your
database, to hold all message templates in the broker domain. The message
repository is managed by a component within the Configuration Manager known
as the Message Repository Manager (MRM).

Each field in each message must be specified to the Control Center, using the
default set of simple types, or using compound types you have defined, also
through the Control Center.

© Copyright IBM Corp. 2000, 2001 55

|
|
|
|
|
|

Before you define a message, you must define a message set to which the message
belongs. Message sets keep the individual message templates linked together, and
simplify their administration and distribution.

The NEONFormatter interface is available through the Control Center, as well as
directly. If you have existing MQSeries Integrator Version 1 messages, or plan to
create new messages using NEON formats, or both, you can use these messages by
defining message flows that include the NEONRulesEvaluation, NEONTransform,
and NEONMap message processing nodes. (These three nodes supersede the
NEONRules and NEONFormatter nodes.) For more details about using NEON
format messages, see the MQSeries Integrator Administration Guide. You can also use
the NEONFormatter interface to create new message formats. For more
information, refer to the NEONRules and NEONFormatter Support for MQSeries
Integrator User’s Guide. Note that NEON messages can be viewed, but not edited,
in the Messages view of the Control Center.

If you have messages already defined within another message repository you can
do one of the following:
v Export these messages to C or COBOL format and use the Control Center to

import the headers or copybooks created into your MQSeries Integrator
environment.

v Provide a parser that interprets these messages. For more details, see “Creating
additional parsers” on page 62.

You can then use these messages with message flows you develop to support the
applications that use them. Details of how to do this are described in MQSeries
Integrator Using the Control Center.

Message templates
A message template is made up of four values contained within the message
header information:
1. The message domain. This describes the source of the message definition:

MRM identifies messages defined using the Control Center

NEONMSG
identifies messages defined using the NEONMSG user interfaces

XML identifies self-defining messages, including JMS messages

BLOB identifies messages that have no defined format

NEON
identifies messages defined using the superseded NEON interface, for
backwards compatibility

2. The message set. This identifies the grouping of messages within the message
domain, as you have defined it. Typically a message set contains a number of
related messages that provide the definitions required for a specific business
task or application suite. This is equivalent to the application group
(OPT_APP_GRP) in MQSeries Integrator Version 1.

3. The message type. This identifies the logical structure of the data in the
message. For example, the number and location of character strings, and their
relationships.

Predefined messages

56 MQSeries Integrator Introduction and Planning

|
|
|
|
|
|
|
|
|
|
|

|

||

|
|

||

||

|
|
|

|

4. The message format. This describes the wire format of the message, its physical
representation in the bit-stream. This attribute is only valid for messages
defined through the Control Center, not for self-defining messages, or those
created using the NEONFormatter. It can have one of three values:
v XML
v PDF1

v CWFxxxx (where xxxx is an arbitrary string that you assign when you create
the message set in the Control Center).

Self-defining messages
A self-defining message uses the XML standard to structure its content. If the
example Account message is structured using XML, it would look something like:
<?xml version "1.0"?>
<AccountMessage>

<AccountNumber>01234567</AccountNumber>
<AccountName>BILL WILLIAMSON></AccountName>
<AccountBalance>00008907</AccountBalance>

</AccountMessage>

Self-defining messages can be used in any message flow on any broker. The
primitive nodes provided by MQSeries Integrator support this type, except the
superseded NEONRules and NEONFormatter nodes, the MQeInput and
MQeOutput nodes, and the SCADAInput and SCADAOutput nodes. You do not
have to define these messages using the Control Center to enable the message
flows to interpret them. However, you can define them if you want a visualization
of the message structure to facilitate manipulation of the messages in any of the
nodes in your message flows. You do not need to assign these definitions to
brokers, nor deploy them in your topology.

XML support
XML is an open messaging standard, providing a cross-platform portable
mechanism for exchanging data. XML refers to a family of specifications based on
a tagged message format for metadata. The tag language has been developed from
older markup standards including GML and SGML.

XML definitions for specific business objects (for example, messages used by EDI
or financial applications) are grouped using “schemas” or “document type
definitions” (DTDs).

The XML standard is fast-growing, and is being adapted to and supported by
increasing numbers of products. MQSeries Integrator’s ability to support it is
therefore critical in providing comprehensive business integration. For up-to-date
information about XML, and further references, see the IBM Web site
http://www.ibm.com/developer/xml

MQSeries messaging products support XML, and can send and receive XML
structured messages. MQSeries Integrator Version 2 extends this support:
v You can use the Control Center for XML message definition. You do not have to

define these messages, but if you include message processing nodes in your
message flows that manipulate the message content, you will need the definition

1. The PDF format referenced here stands for ″portable data format″, the native format of the GOLD messaging standard used in
financial messaging applications. It is specific to the Control Center and the message repository, and has no relation to Adobe’s
Portable Document Format, also known as PDF.

Message templates

Chapter 5. Messages 57

|
|
|
|
|
|
|
|
|

when you set the node properties (for example, using ESQL to change fields in a
Compute node). You do not need to assign the message definitions to the
brokers that will use them.

v XML is used to compose status messages that can be monitored by external
systems management agents.

v Messages can be transformed from XML to any message format defined by the
Control Center (XML and non-XML) by the broker.

v Message filtering, routing, and processing can be based on XML structured
messages without any dictionary definition of the message.

v You can generate XML DTDs from the message repository.

Note: JMS messages are also identified by the XML domain.

How messages are processed in a message flow
The characteristics of MQSeries messages are identified by the input node of a
message flow in the following ways:
v If the header immediately preceding the message body is recognized, it is

examined to check for a supported value in the format field.
v If the message has an MQRFH or MQRFH2 architected header, the input node

checks values in that message header.
See the MQSeries Integrator Programming Guide for more details about the content
and use of these headers.

v If the message does not have an MQRFH or MQRFH2 header, the input node
uses the default message template, defined as a property of the input node, to
determine how the message must be parsed.

The SCADAInput node creates messages with MQRFH2 headers from the
messages received by the listener on the TCP/IP port.

The MQeInput node, used in a publish/subscribe message flow, also creates
messages with MQRFH2 headers from the messages received by the listener on the
TCP/IP port.

In non publish/subscribe message flows, the MQeInput node action depends on
the type of message received by the listener on the TCP/IP port:
v For MQeMsgObject messages, the MQeInput node creates MQSeries messages

with an MQRFH2 header, and the whole dumped-data representation of the
message is copied into the message payload.

v For MQeMbMsgObject (message broker) messages, the MQeInput node creates
MQSeries messages with an MQRFH2 header. The fields defined in the
MQeMbMsgObject class are available inside the broker; all other fields are
discarded.

To get full integration across your enterprise, you probably need a variety of
message templates. For example:
v Internally defined messages. You can define your own standards for messages

between newly developed pieces of software. For example, messages of this type
can contain XML.

v Legacy message formats. These are determined by the legacy applications
themselves. They include, for example, COBOL record structures used for
interacting with CICS or IMS applications. Other examples are 3270 data-streams
and other forms of screen map.

Self-defining messages

58 MQSeries Integrator Introduction and Planning

|

|

|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

v Inter-enterprise message sets (for example, EDI).
v Java message formats defined by JMS.

Your application programmers create and receive messages based on the message
type, the environment the programmer is working in, and the language that the
programmer is using. For example, a COBOL programmer manipulates a message
as a COBOL data structure, a Notes™ programmer views it as a Notes document.

Exporting and importing MRM message sets
You can export the MRM message sets you have created in the message repository
using a command provided by MQSeries Integrator. This command,
mqsiimpexpmsgset, works on whole message sets (that is, you cannot export an
individual message within the message set) and generates an XML file that defines
the message set. The command interacts directly with the message repository to
generate the XML file.

You can reuse the exported file to populate another message repository in another
broker domain, by importing it using the same MQSeries Integrator command.

The Control Center does not provide import or export functions for message sets,
you must use the command. See the MQSeries Integrator Administration Guide for
further information.

Message parsers
MQSeries Integrator can handle any message template for which a suitable parser
is available. The parsers interact with the message templates stored in message
dictionaries. You can extend the range of messages supported by creating your
own message parsers. MQSeries Integrator provides an external interface to enable
you to do this.

Default message parsers
A number of parsers are included with MQSeries Integrator. These can be
considered in two broad groups, depending on the source of the message
definitions.
1. Messages managed using the Control Center

When you use the Control Center to define new messages and message sets,
the Control Center and Configuration Manager accept, check, and maintain the
definition of these messages in the broker domain’s message repository. When a
message set is assigned to a broker, the information passed to the broker allows
it to determine correct use of them (and therefore correct message
manipulation) by the message flows.
v Record-oriented data structures

If you want to communicate with existing applications which generate
messages by overlaying a data structure (typically COBOL or C) on an array
of bytes, you need a definition for these that can be interpreted by the
parsers.
You can achieve this by:
– Creating or purchasing a plug-in to construct and parse the messages. See

“Creating additional parsers” on page 62 for further information about
plug-in facilities for message parsers.

How messages are processed

Chapter 5. Messages 59

– Using the Control Center to import data structures created using any
other method. See MQSeries Integrator Using the Control Center for full
details of import options.

v XML messages
You can also define messages to the message repository with a wire format
of XML. Their format is specific to the Control Center, and the DTD for these
messages is controlled by the message repository manager.

2. All other messages
Messages not managed by the Control Center and Configuration Manager are
also supported. These include:
v Generic XML

The broker performs simple content-based routing and manipulation on any
well-formed XML message. These messages are treated as self-defining, so no
schema is required. The message content can be manipulated, but no
validation of the resulting message content is possible.

v Message formats defined in the NEON dictionary
If you already have messages defined using the NEON tools, you can
continue to use these formats: MQSeries Integrator correctly parses these
formats. You can add new formats to your existing ones by using the
NEONFormatter interface.

Any other message, for which no parser can be identified (either because the
format field in the immediately preceding header is not set, or is set to an
unknown value), is handled as a blob. That is, the remaining body of the message
is passed through the message flow intact, and the content is left untouched.

A message flow that receives a blob message therefore can’t perform content-based
routing, message manipulation or message transformation. However, the message
can be stored in a database, be routed according to topic, or have headers added or
removed.

Parsers are also provided in the product for the following headers:
v MQCFH (the programmable command format (PCF) headers).
v MQCIH (the CICS bridge header).
v MQDLH (the DLQ header).
v MQIIH (the IMS bridge header).
v MQMD (message descriptor).
v MQMDE (message descriptor extension).
v MQRFH and MQRFH2 (rules and format headers).
v MQRMH (reference message header).
v MQSAPH (the SAP link header).
v MQWIH (the workload information header).
v SMQ_BMH (the SAP link bad message header).

The broker needs to deal with all messages in a general way, and therefore it does
not handle the sequence of bytes directly but instead references syntax elements
around which it navigates to deduce the structure of the message.

This implementation allows parsers to navigate the message tree structure, in any
way. For example, a parser can access an element’s parent, or its children or
siblings. Other functions allow manipulation of the elements themselves, for
example to set or query the values, to insert new elements into the tree or to
remove elements from the tree.

Message parsers

60 MQSeries Integrator Introduction and Planning

Using message templates and messages
You must make the information about your message templates and messages
available in the broker domain, where it is needed: that is, in any broker that hosts
message flows that use these particular templates.

When you develop the topology of your broker domain using the Control Center,
you make decisions about which message flows run on which brokers, and
therefore need to decide at the same time which message templates are required by
each broker.

If you define message templates using the Control Center, you specify the message
sets that are required at each broker by assigning them to that broker, in the same
way that you assign the message flows that are to be executed in that broker. You
do this using the Control Center.

When you have made these decisions, you must update the repository with your
changes, by checking in all the resources you have been working with. You must
then request that these changes are propagated as required through the broker
domain. This function, known as deployment, is handled by the Configuration
Manager when you request the deploy using the Control Center.

Each message set is sent to the broker in the form of a message dictionary, which
allows the broker to interpret the messages it receives. Each broker can manage a
number of message dictionaries concurrently.

You can’t modify dictionaries in the broker directly. However, you can delete and
add message sets using the Control Center, and deploy the updated configuration,
which achieves the same result.

If you create new message sets, or modify existing ones, you can assign and
deploy these through the Control Center. Message flows can access new message
dictionaries when the broker has implemented these changes.

If you define message templates using the NEONFormatter, you must make these
available to the broker by setting values in the configuration file located by the
NN_CONFIG_FILE_PATH environment variable. If you update these message
templates, you must force the NEON nodes in the message flows to re-access the
database by stopping and restarting the broker.

See MQSeries Integrator Using the Control Center for details of creating messages and
assigning message sets to brokers.

Client access to messages
Client applications also need access to message definitions to be able to construct
messages they send, and interpret messages they receive.
v If the message formats in the message repository have been imported from C or

COBOL structures using the Control Center, your applications can continue to
use the same C and COBOL data structures that were imported to create the
message dictionary (that will be used by the brokers).

v If the messages are defined to the NEONFormatter, you must ensure the clients
have access to the database in which the formats are stored (a local or remote
connection is valid).

Using messages

Chapter 5. Messages 61

|

|

v If the messages are self-defining XML, the client applications must construct
valid messages using structures that will be understood by the recipients of the
message.

Creating additional parsers
You can create additional parsers if you need to process messages (bit-streams)
which for one reason or another don’t fit into the categories of messages supported
by the default parsers.

MQSeries Integrator provides a system programming interface, in the C language,
that allows you to construct a parser to work with message processing nodes.

You can use your new parsers with existing message processing nodes (that is,
those provided by MQSeries Integrator) and with your own additional plug-in
message processing nodes.

You’ll find further information about using this interface in “Chapter 11. Enhancing
your broker domain” on page 139. Implementation details of the programming
interface are in the MQSeries Integrator Programming Guide.

Using messages

62 MQSeries Integrator Introduction and Planning

Part 3. Application planning

This part provides the information your application architects need to understand
the environment that MQSeries Integrator provides for applications.

It explains the concepts introduced in “Chapter 2. MQSeries Integrator overview
and concepts” on page 9, and gives more details about the implications of using
the various functions of the product.

It contains the following chapters:
v “Chapter 6. Application design” on page 65
v “Chapter 7. Designing publish/subscribe applications” on page 75

The information here is an introduction to the detail in the MQSeries Integrator
Programming Guide.

© Copyright IBM Corp. 2000, 2001 63

64 MQSeries Integrator Introduction and Planning

Chapter 6. Application design

This chapter introduces the main aspects of application design that you need to
consider for your particular environment and applications.

This chapter covers:
v “Communication models”
v “Application programming” on page 66
v “Reusing existing applications” on page 68
v “Writing new applications” on page 69
v “MQSeries queues” on page 70
v “Message order” on page 70
v “Transaction support” on page 71
v “Security” on page 73
v “Summary” on page 73

If you are writing publish/subscribe applications, refer to “Chapter 7. Designing
publish/subscribe applications” on page 75 for additional information.

Communication models
MQSeries Integrator supports two general application communication models;
point-to-point and publish/subscribe. These two models, introduced in “Chapter 2.
MQSeries Integrator overview and concepts” on page 9, are explored in more detail
in this chapter and the next.

In point-to-point, one application sends messages to a queue associated with an
input node, such as MQInput, of a message flow. After processing by the nodes in
the message flow, the resultant message is sent directly to the receiving
application’s queue by an output node, such as MQOutput.

In publish/subscribe, one application (the publisher) sends messages to a queue
associated with an input node of a message flow that contains a Publication node.
Another application (a subscriber) can send a subscription request to the broker,
which then sends relevant publication messages to the subscriber’s queue.
However, with SCADA applications the source of the message for publication is
the port that the SCADAInput node is listening to.

A single application can also mix the two styles, if appropriate. In this case the
message flow contains at least one output node and at least one publication node
(in addition to one or more input nodes).

The retail scenario introduced in “Chapter 3. MQSeries Integrator: a business
scenario” on page 33 is implemented using the two styles. This scenario, and
others, are available by downloading the MQSeries SupportPac IC03. The Internet
URL is given in “MQSeries information available on the Internet” on page 184.

This broad application support enables you to exploit your existing MQSeries,
MQSeries Everyplace, and SCADA clients and applications, and to develop new
applications to take advantage of the more advanced features of MQSeries
Integrator. Both existing and new applications work together before and after a
broker is introduced into the network.

© Copyright IBM Corp. 2000, 2001 65

|

|

|
|

|
|
|
|

|

Point-to-point communications
Point-to-point applications exchange information with known partners. Each
application is aware of the identity of the one or more applications with which it is
communicating. In some cases, messages are sent from one application to another,
but no response is required. These are known as send and forget messages or
datagrams. In other cases, data exchange involves pairs of messages sent as requests
and replies. This is called request/response messaging.

Your existing applications written using the point-to-point model can run
unchanged in an MQSeries Integrator environment. However, you should check
“Reusing existing applications” on page 68 for more detailed guidance.

You can enhance and extend your existing application function by using the
facilities of the broker to include additional partners. For example, an application
that handles similar data but in a different format can now participate, because the
original message can be transformed by the broker into the expected format,
without the sending or receiving application changing.

If you identify a message that needs additional application processing, you can
create another copy of the message in the message flow, and send it to a new
application developed to provide that processing. The original applications are
unaware of the new action on the message and continue to work unchanged.

Publish/subscribe communications
Some applications are not tied to particular partners. They deal with data and have
no specific requirements as to who is receiving that information, or where the
message comes from. The publish/subscribe model allows data to be made
available at any time, to whoever is interested at that time, without the sender or
receiver being aware of the other.

Messages published by any one publisher can be received by any number of
subscribers. Subscribers might also receive messages, on the same or different
topics, from any number of publishers.

Your existing applications written using MQSeries Publish/Subscribe can run
unchanged in an MQSeries Integrator environment. However, you should check
“Reusing existing applications” on page 68 for more detailed guidance.

Application programming
MQSeries Integrator does not provide any new application programming
interfaces. Applications can be written to the existing Message Queue Interface
(MQI), Java Message Service (JMS), and Application Messaging Interface (AMI).

If you need to write SCADA applications, you should refer to the SCADA device
protocol appendix in the MQSeries Integrator Programming Guide, and for MQSeries
Everyplace applications refer to the MQSeries Everyplace appendix in the same
book.

The MQI provides a small number of calls that allow an application to interact
with other applications across an MQSeries network of queue managers. The calls
support a large range of parameters that allow a rich choice of processing options
for each and every message.

Communication models

66 MQSeries Integrator Introduction and Planning

|

|
|
|
|

The JMS is a Java Messaging API developed by IBM and other messaging vendors,
in partnership with Sun Microsystems. It provides a common API to access
different enterprise messaging systems, such as MQSeries, through the Java
programming language. Two messaging models are provided: point-to-point and
publish/subscribe.

The AMI is designed to simplify the application programmer’s task, by centralizing
the selection of optional parameters outside the application program. It also
provides support for the more advanced functions available from the message
broker. The AMI is designed for general messaging applications whether a broker
is involved or not.

The principal functions of the AMI are administrator-defined packets of options
known as policies and services. An application specifies a service to determine the
underlying messaging support required, and associates a policy with sending or
receiving a message to control attributes for message processing, such as priority.

Client applications using the MQI can run on any supported MQSeries operating
system, and therefore any limitations as to language or function are defined by the
relevant product for that operating system.

Client applications using the JMS interface are written in the Java programming
language, and are therefore restricted to the levels of JVM that are supported on
the operating system in question. For further information, see the MQSeries Using
Java book, or visit the MQSeries Web site (identified in “MQSeries information
available on the Internet” on page 184).

Client applications using the AMI are restricted to the operating systems and
programming languages supported by this interface. Check the current level of the
MQSeries Application Messaging Interface book for details, or visit the MQSeries Web
site (identified in “MQSeries information available on the Internet” on page 184).

Message headers
MQSeries Integrator supports applications that use different headers.

Messages begin with an MQSeries Message Descriptor, or MQMD. Defined by the
MQSeries products, this precedes user or application data in every message. The
MQMD contains basic control information that must travel with the message, such
as:
v The message identifier
v The destination of the reply, if one is to be sent
v Reply and report options (for example, confirm on delivery report)
v The format of any following data in the message

When a message is used in an MQSeries Integrator system, it usually (but not
necessarily) has one or more additional headers. The header following the MQMD
is always identified in the format field within the MQMD, and itself contains
another format field to identify what follows.

The additional headers can include:
v MQRFH. The Rules and Formatting header is used by MQSeries Integrator

Version 1 applications and MQSeries Publish/Subscribe.
v MQRFH2. The updated version of MQRFH allows Unicode strings to be

transported without translation, and it can carry numeric datatypes. The
MQRFH2 header carries a description of the message contents, so that MQSeries

Application programming

Chapter 6. Application design 67

|
|
|
|
|

|
|
|
|
|

Integrator can select the correct message parser when content-based processing
is carried out on the message. In addition, this header contains
publish/subscribe command messages. Messages created by the SCADAInput
node always have MQRFH2 headers.
You are recommended to use the MQRFH2 header in all new applications
written for the MQSeries Integrator environment. If you do so, you must include
the MQRFH2 header immediately before the body of the message.

Reusing existing applications
Existing MQSeries applications are supported unchanged by MQSeries Integrator.
The broker can be added into an existing MQSeries network, and therefore into the
path taken by a message, to provide additional function, such as warehousing of
message traffic. The applications that send and receive the message are not aware
that the broker is now intercepting that message.

MQSeries Integrator Version 2:
v Accepts messages without MQRFH or MQRFH2 headers. If content-based

processing of the message is to be carried out in a message flow, you need to
describe the message contents in the properties of the input node (see MQSeries
Integrator Using the Control Center).

v Provides the MQSeries Integrator Version 1 function via the
NEONRulesEvaluation, NEONTransform, and NEONMap nodes (and the
superseded NEONRules and NEONFormatter nodes) as compatible message
processing nodes, ready to be included as required in any message flow defined
to the broker. The graphical user interface tools for creation and management of
the rules and formats used by these nodes, and the Visual Tester, are also
supplied with MQSeries Integrator Version 2.
For more details of how to incorporate these nodes into message flows, refer to
MQSeries Integrator Using the Control Center.

v Accepts publish/subscribe messages from MQSeries Publish/Subscribe using the
MQRFH header, in addition to the more comprehensive MQRFH2 header used
in MQSeries Integrator Version 2.
For details of the MQRFH header, see the MQSeries Publish/Subscribe User’s
Guide, and for the MQRFH2 header, see the MQSeries Integrator Programming
Guide.

Send and forget
For simple one-way message flows, additional function is easily achieved. You can
design and deploy a message flow that implements the desired functions within
the broker, and use queue aliasing to redirect the original message stream to the
new input queue for this new message flow.

Define the nodes that provide the new processing you require, then define the
output node of the message flow to represent the original queue. This will result in
a message being processed by the new message flow, and being written to the
queue read by the receiving application after processing is complete.

Request/reply
MQSeries Integrator also supports request/reply applications. You can set up a
message flow to process the request in whatever way you need. Somewhere within
that message flow (in a database, for example), record the parameters you need
from the sending application’s message descriptor (MQMD). You will need the

Application programming

68 MQSeries Integrator Introduction and Planning

|
|

|

|
|
|
|
|
|
|

|
|

ReplyTo queue and queue manager, and perhaps other fields such as the report
options. You might find it necessary or most convenient to save the complete
MQMD.

You must then update the original MQMD with the required new values. For
example, insert a new ReplyTo queue and queue manager to represent the input
node of the message flow you create to handle the responses.

When the reply is processed by this second message flow, the processing must
include retrieval of the original MQMD values (such as the ReplyTo queue
identifier recorded by the first message flow) or the entire saved MQMD to ensure
the message is delivered as expected.

This technique works regardless of the number of replies expected to any request
message. You have to provide the extra logic and processing within the message
flows created to handle both request and reply, but this leaves the applications
themselves unchanged. This can be particularly valuable if you do not own these
applications, but are interacting with other departments or businesses.

If the reply message does not have to be processed in any way, you do not need to
create a second message flow, and the first message flow (processing the request
message) can simply propagate the original ReplyTo field in the message header
intact.

If you have a client/server suite of applications, where multiple clients expect
responses from a single server, you might find the applications need modifying to
use additional techniques to match requests and replies (such as a CorrelId) and
ensure the replies are correctly delivered.

Publish/subscribe
Publish/subscribe client applications written to the MQSeries Publish/Subscribe
interface execute unchanged. You need to create and deploy a message flow that
contains a Publication node, define the publication queue to the broker’s queue
manager, and specify it in the input node of the message flow.

MQSeries Integrator uses the same broker control queue as MQSeries
Publish/Subscribe (SYSTEM.BROKER.CONTROL.QUEUE), therefore existing
subscriber applications do not have to be changed.

For other migration considerations, check “Appendix A. Planning for migration
and integration” on page 143.

Writing new applications
You can write applications that use more of the function of the MQSeries
Integrator broker by adding the MQRFH2 header to some or all of your messages.

The MQRFH2 header (described in detail in the MQSeries Integrator Programming
Guide) is used to define the message set and format for the body of the message,
and to define publish/subscribe command messages. This header is extensible,
allowing client applications to define fields that can be accessed and processed by
customized message processing nodes. This header must immediately precede the
body of the message.

Application reuse

Chapter 6. Application design 69

|

If you are writing a request/reply application, you can store the ReplyTo queue
and queue manager for the reply message (and any other options you require) in a
folder contained in the MQRFH2 header, instead of using a database node as
described in “Reusing existing applications” on page 68.

In some applications, it might be convenient to carry the application data in folders
in the MQRFH2 header. You can create your own folders within the header. The
MQRFH2 header, and suggested naming conventions for your own folders, are
described in the MQSeries Integrator Programming Guide.

If you are writing new client applications, use the MQRFH2 header. This enables
your applications to exploit all the function contained in MQSeries Integrator.

MQSeries queues
MQSeries Integrator uses a number of dedicated queues, defined by each broker,
the Configuration Manager and the User Name Server, for specific functions. You
can find a full list of these queues, and their purpose, in the MQSeries Integrator
Installation Guide.

Application designers need to be aware of the system-defined queues with which
they need to interact: for example, the broker control queue for publish/subscribe
(SYSTEM.BROKER.CONTROL.QUEUE).

As you develop new applications, or integrate existing applications into your
broker environment, you must agree on a naming convention for the queues you
use for message exchange. (Input and output queues for point-to-point; input and
subscriber queues for publish/subscribe.) Make sure these names do not start with
the characters SYSTEM.BROKER, to avoid conflict with the system defined queues.

A subscribing application can specify a temporary dynamic queue as its subscriber
queue (the queue to which publications should be sent). In this case, the broker
will automatically de-register the subscription when the queue is deleted.

Message order
If message ordering is important, you can use the techniques recommended for all
MQI and AMI users. See the MQSeries Application Programming Guide for programs
written to the MQI, and MQSeries Application Messaging Interface for programs
written to the AMI.

Note that MQSeries Everyplace and SCADA applications use a different method of
message ordering — refer to the MQSeries Integrator Programming Guide for details.

If you have set the ‘Additional Instances’ property of a message flow to define
more than one instance of that message flow, you can use the ‘Order Mode’
property of each input node within that message flow to influence the order of
message processing by that node:
v If you set ‘Order Mode’ to ‘By User ID’, the node will ensure that messages from

a specific user (identified by UserIdentifier field in the MQMD) are processed in
guaranteed order. A second message from one user will not be processed by an
instance of the message flow if a previous message from this user is currently
being processed by another instance of the message flow.

v If you set ‘Order Mode’ to ‘By Queue Order’, the node will process a single
message at a time to preserve the order in which the messages are read from the

New applications

70 MQSeries Integrator Introduction and Planning

|
|

|

queue. Therefore, this node behaves as though the ‘Additional Instances’
property of the message flow is set to zero.

Publish/subscribe
Additional considerations apply to publish/subscribe applications. For any given
topic, messages are published by brokers in the same order as they are received
from publishers (subject to reordering based on message priority). This normally
means that each subscriber receives messages from a particular broker, on a
particular topic, from a particular publisher, in the order that they are published by
that publisher.

However, in common with all messages using the MQSeries transport layer, it is
possible for messages, occasionally, to be delivered out of order. This could
happen, for example, if a link in the network fails and subsequent messages are
routed via another link.

If you need to ensure the order in which messages are received, you can use either
the SeqNum (sequence number) or PubTime (publish time stamp) parameter on the
Publish command for each published message, to calculate the order of
publishing. Check the MQSeries Integrator Programming Guide for details of how to
implement these message ordering techniques.

Transaction support
Message flows hosted by brokers might provide vital processing and data
manipulation that must have full transactional integrity. That is, the message flow
must complete all processing successfully, or must complete none. Any part of the
processing that completed successfully (for example, the reading of the input
message from the input queue) must be rolled back if there are problems that
prevent later processing from completing successfully.

If the message flow processing includes interaction with an external database, the
transaction can be coordinated using XA technology to assure all participants
update or return to a consistent state. This external coordination support is
provided by the underlying MQSeries facilities and the ODBC support provided
for the database. This level of XA support is only available if the database you are
using is DB2 (DB2 or Oracle on MQSeries Integrator for Sun Solaris).

MQSeries Integrator provides the required level of transactional integrity in several
ways.
v You can specify that a message flow is to be fully globally coordinated, which

means that MQSeries itself will be used as an XA Transaction Manager to
coordinate the transaction associated with the message flow. The reading and
writing of MQSeries messages and all interactions with capable external
databases are coordinated in a single unit of work (UOW).
Fully globally coordinated transactions are only possible if the external databases
are DB2 (DB2 or Oracle on MQSeries Integrator for Sun Solaris).
You must configure your external databases and MQSeries to enable this
support. All actions in the message flow therefore either complete successfully,
or are rolled back to the point where the original input message is restored on
the input queue (or in the DB2 table for SCADA message flows).
This feature is controlled using the ‘Coordinated Transaction’ property of the
message flow: the default is for the transaction not to be globally coordinated.

Message order

Chapter 6. Application design 71

|

|

|
|
|
|

v A message flow that is not fully globally coordinated is said to be fully broker
coordinated by default. The reading and writing of MQSeries messages and
interactions with external databases are not coordinated within a single unit of
work (UOW). However, the message flow ensures that all database transactions
are committed automatically at the completion of processing a message through
that flow.

v A message flow can also be partially broker coordinated. This means that some
processing nodes will commit their operation immediately, instead of waiting
until message flow completion as in a fully broker coordinated message flow.
You can specify property values on the nodes that interact with databases to
allow their processing to be committed immediately.

v In a fully globally coordinated or partially broker coordinated message flow, all
messages subsequently sent by any output node in the same instance of the
message flow are put under syncpoint, unless you set the output node
properties to explicitly override this. If you do this, then the message flow is
also be said to be partially broker coordinated.

You can mix these different transaction types by using different settings in multiple
nodes with one message flow. The MQSeries Integrator Administration Guide has
details of how to work with transactions in this way.

Message persistence
MQSeries messaging products provide an additional level of support for message
integrity. This is message persistence, which defines the longevity of the message in
the system. Non-persistent messages are lost in the event of system or queue
manager failure. Persistent messages are always recovered if a failure occurs.
SCADA applications use appropriate settings of quality of service instead of message
persistence.

Message persistence is controlled by these factors:
v The option specified by the application putting the message to the queue (using

the MQI or AMI calls)
v The default message persistence of the input queue, or the quality of service of

the SCADA message
v The action taken by a message processing node in the message flow
v The option specified by the output node’s persistence property
v The message persistence requested by the subscriber

When a message is read from an input queue by the input node, the default action
is to use the persistence defined in the MQSeries message header (MQMD), that
has been set either by the application creating the message, or by the default
persistence of the input queue. The message retains this persistence throughout the
message flow, unless it is changed in a subsequent message processing node.

You can override the persistence value of each message when the message flow
terminates at an output node. This node has a property that allows you to specify
the message persistence of each message when it is put to the output queue, either
as the required value, or as a default value. If you specify default, the message
takes the persistence value defined for the (one or more) queues to which the
messages are written.

If a subscriber has requested persistent message delivery, and is authorized to do
so by explicit or implicit (inherited) ACL, the message is delivered persistently

Transaction support

72 MQSeries Integrator Introduction and Planning

|

|
|

|
|

regardless of its existing persistence property. Also, if the user has requested
non-persistent message delivery, the message is delivered non-persistent regardless
of its existing persistence property.

Security
Access and authority requirements for MQSeries client applications to connect to
queue managers and use MQSeries resources are unchanged by the introduction of
MQSeries Integrator into your application environment.

You must therefore ensure that applications are authorized to put messages to
input queues serviced by the message flow that provides the required processing,
and are able to get messages from the message flow output queues.

SCADA applications have less control over access, because any device can connect
using any client ID it chooses, and can therefore masquerade as an authorised ID.

For publish/subscribe applications, additional control is available to you. This is
defined in “Topic-based security” on page 86.

Summary
This chapter has provided the information you require to make the following
design decisions for your applications:
v What message header to use (MQRFH2 for new applications, MQRFH or no

header for existing applications)
v What queues or ports to use for sending and receiving messages (they need to

be set up in the message flow nodes)
v What programming interface to use (MQI, JMS, or AMI)
v What communication model to use (point-to-point, publish/subscribe, or both)
v What other features you need (transactional processing, message persistence,

message ordering)

For more information about publish/subscribe applications, see “Chapter 7.
Designing publish/subscribe applications” on page 75.

For information about writing the applications, having made the design decisions,
see the MQSeries Integrator Programming Guide.

Transaction support

Chapter 6. Application design 73

|
|

|

|

Summary

74 MQSeries Integrator Introduction and Planning

Chapter 7. Designing publish/subscribe applications

If you are using the publish/subscribe facilities of MQSeries Integrator, you need
to consider the following aspects of application design in addition to those
discussed in “Chapter 6. Application design” on page 65. This chapter covers:
v “How publish/subscribe applications interact with a broker”
v “Publications” on page 76
v “Subscriptions” on page 78
v “Topics” on page 82
v “Broker networks” on page 85
v “Topic-based security” on page 86
v “Summary” on page 92

How publish/subscribe applications interact with a broker
The simplest model of publish/subscribe communications involves a single broker,
one application that publishes messages, and one application that subscribes to
messages.

The publisher generates a message it wants to publish on a topic. The behavior of
the publisher and the ways in which it can publish a message are discussed in
“Publications” on page 76. “Topics” on page 82 describes topics and explains how
they can be constructed.

A message flow running in the broker retrieves the publication from its input
queue (read by the input node), performs any processing that is defined for
publications received in that message flow, and passes the message to a publication
node for distribution to a subscriber. With SCADA applications, the SCADAInput
node receives the message from the SCADA port before processing by the message
flow.

The publication node only knows about, and can therefore only provide messages
to, an application that has registered as a subscriber. When the application registers
as a subscriber, it must specify a queue on which it wants to receive messages, and
a definition that restricts the messages it wants to receive. This definition is based
on a combination of the topic of the message, or specific content within the
message, or both. This is discussed in detail in “Subscriptions” on page 78. SCADA
subscribers need to specify the topic or topics that they are interested in.

Figure 15 on page 76 shows the messages that pass between a broker and a
publisher, and the broker and a subscriber.

© Copyright IBM Corp. 2000, 2001 75

|
|
|

|
|

Publications
When designing a publish/subscribe system, you need to consider if publications
should be retained by the broker after they have been sent to subscribers. You can
also choose to publish to subscribers at your local broker only, instead of allowing
publications to be propagated throughout the network of brokers. These options
are described in the following sections.

Retained publications
By default, a broker discards a publication when it has sent that publication to all
interested subscribers. However, a publisher can specify that it wants the broker to
keep a copy of a publication, which is then called a retained publication. The copy
can be sent by the broker to subsequent subscribers who register an interest in the
topic. This means that new subscribers don’t have to wait for information to be
published again before they receive it.

For example, a subscriber registering a subscription to a stock price would receive
the current price straightaway, without waiting for the stock price to change (and
hence be republished).

The broker retains only one publication for each topic and subscription point, so
the old publication is deleted when a new one arrives. See “Subscription points”
on page 79 for further details about subscription points.

State and event information
Information being published can be categorized as state information or event
information. This section explains these concepts, and helps you to understand why
you might want to use retained publications to provide these two categories of
information.

State information is information about the current state of something, such as the
price of stock or the current score in a soccer match. When something happens (for

Publisher

Broker

Subscriber

Publish

SubscribePublish

Figure 15. Publish/subscribe with a single broker

Publications

76 MQSeries Integrator Introduction and Planning

example, the stock price falls, or the soccer score changes), the previous state
information is no longer required because it is superseded by the new information.

A subscriber usually wants to receive the current version of the state information
when it starts up, and to be sent new information whenever the state changes.

Event information is information about individual events that occur, such as a trade
in some stock or the scoring of a particular goal. Each of these events is
independent of the others.

A subscriber usually wants to receive information about events when they happen.

Using retained publications
When deciding whether to use retained publications, you must consider several
factors:
v What sort of information will your publications contain (state or event

information)?
Event information does not usually have to be retained, but state information is
often retained. However, if all the subscriptions to a topic are in place before any
publications are made on that topic (and no new ones expected), there is no
need to retain publications even for state information, because they are delivered
to all the subscribers as soon as they are published.
Publications of state information might also not need to be retained if they are
very frequent (for example, every second). With this frequency of publishing,
any new subscriber (or a subscriber recovering from a failure) receives the
current state almost immediately after it subscribes.

v Do you want to receive publications on request only?
If you use retained publications, subscribers can register using the ‘Publish on
Request Only’ option. This means that the broker will not send any publications
to that subscriber until the subscriber requests an update. The broker then sends
to the subscriber the current retained publication that matches the subscription.

v Can retained publications be mixed with non-retained publications on the same
topic?
This is not recommended. If you have a retained publication, and then publish a
non-retained publication on the same topic, the existing retained publication is
still retained (it will not be updated by the non-retained publication). If you
have a subscriber that has registered with the ‘Publish on Request Only’ option,
it will not be able to access any non-retained publications (the broker sends only
the current retained publication in response to a request for an update).

v Can you have more than one application publishing retained publications on the
same topic?
You are recommended not to have two or more applications publishing retained
publications on the same topic. If you do and the timing is close to
simultaneous, it is indeterminate which publication is retained. If the publishers
use different brokers, it is possible that different retained publications for the
same topic could be held at each broker.

v How will the subscriber application recover from failure?
If the publisher does not use retained publications, the subscriber application
might need to store its current state locally. If the publisher does use retained
publications, the subscriber can request an update to refresh its state information
after a restart.
The broker continues to send publications to a registered subscriber even if that
subscriber is not running. This could lead to a buildup of messages on the

Publications

Chapter 7. Designing publish/subscribe applications 77

subscriber queue, which can be avoided if the subscriber registers with the
‘Publish on Request Only’ option. The subscriber must then refresh its state
periodically by requesting an update or by using a temporary dynamic queue.

v What are the performance implications of retaining publications?
The broker needs to store retained publications in a database, which reduces
throughput. If the publications are very large, a considerable amount of disk
space will be needed to store the retained publication of each topic. In a
multi-broker environment, retained publications are stored by all other
connected brokers that have a matching subscription.

The sample verification applications that are shipped with MQSeries Integrator
include the Soccer Results service. This sample uses retained publications to record
the latest score in each soccer match it is monitoring. The sample code illustrates
the programming required to support this option.

Local and global publications
Publications can be categorized as either global or local.

Global publication
A global publication is distributed throughout the broker domain to all connected
brokers. Each broker delivers a global publication to all its neighbors that have a
subscriber registered with a subscription that matches the publication. Controls are
in place to ensure these publications do not get into a loop.

It is possible to have more than one group of connected brokers within a single
broker domain. A global publication can only be delivered to brokers that are
interconnected, so its distribution is limited by the topology of your broker
domain.

Local publication
Publishers can choose to restrict access to their publications to subscribers
registered to the same broker as the publisher.

The publisher can specify the ‘Local’ option when it sends a publication. Local
publications are not forwarded to other brokers.

Conference-type applications
In some cases, a publisher might also be a subscriber. For example, a group of
applications can all subscribe to the same topic (such as “Conference”), and receive
publications on this topic. Using the ‘Other Subscribers Only’ option ensures that
each application will receive publications from the other applications, but not those
that it has published itself.

Subscriptions
Subscriptions are supported by MQSeries Integrator in a dynamic fashion. The
broker is unaware of the intention of the subscriber to register, and cannot know at
any time about any subscribers other than those currently subscribed. Subscribers
can register and de-register at any time, and as often as they choose.

Client applications (subscribers) issue subscription registration requests to their
local broker when they want to receive published messages. All the information
associated with the subscription is recorded by the broker in the subscription table.
It can only be removed from this table when the subscriber de-registers, or when
the subscription expires, or is deleted by the Control Center.

Publications

78 MQSeries Integrator Introduction and Planning

If the subscriber specifies a temporary dynamic queue as the queue to which
publications should be sent, the broker will de-register the subscription
automatically when the queue is deleted.

The subscribing application specifies the following information on the registration
request:
v The topic or topics of the published messages in which it has an interest (see

“Topics” on page 82).
If you specify the multi-level wildcard (“#”) by itself, all published messages with
matching subscription points and content filters (if specified) are valid, including
event publications. (For more information about the multi-level wildcard, see
“The multi-level wildcard” on page 83.)

v The subscription point (see “Subscription points”) from which it wants to receive
publications.
This value should match the subscription point property set for at least one
publication node defined in this broker (this could be the default subscription
point). If it does not match, the subscriber will not receive any publications
(unless a publication node is defined subsequently with this subscription point
name). For SCADA applications, the SCADA connection port is the implied
subscription point.

v The content filter (see “Filters” on page 80) to be applied to the published
message.
This information is optional: the subscriber does not have to include a content
filter. If it does not, all published messages with matching subscription points
and topics, if specified, are valid. Content filters cannot be used with SCADA
messages.

v The identity of the queue (the subscriber queue) on which it wants to receive
publications that match the criteria it has selected. An optional CorrelId can be
specified (this is useful if several subscribers share the same queue). For SCADA
applications, the SCADA port receives the publications without needing to be
specified.

When the publication node receives a message, it checks through the subscription
table to determine if there are any subscription requests that specify this particular
node’s subscription point, that match the content, or topic, or both, of the message
received.

For every match found, the node delivers the published message on the subscriber
queue, using the optional CorrelId if specified (otherwise a fixed value is used).
Each subscriber receives a single copy of each publication regardless of the number
of matching subscriptions the client has. SCADA applications subscribe and
publish via the SCADA port, and CorrelId is not applicable.

When the node has sent the publication to any subscribers that have a matching
subscription, the publication is discarded (unless it is a retained publication).

Subscription points
A message flow used for publish/subscribe must contain at least one of the
supplied input nodes, such as MQInput, and at least one Publication node. (Note
that SCADA publish/subscribe applications also need the publication node, or
exceptionally the SCADAOutput node.) A subscription point is the name by which
a subscriber requests publications from a particular set of publication nodes. You

Subscriptions

Chapter 7. Designing publish/subscribe applications 79

|

|
|

|
|
|

|
|

|
|
|
|

can use the default subscription point, or set up specific subscription points, and
you can have more than one publication node associated with a particular
subscription point.

The default subscription point
If you define a publication node without specifying its subscription point property,
it is associated with the default subscription point. A subscriber that registers a
subscription without specifying a subscription point will receive publications from
any such publication node (provided they match the topic and filter specified by
the subscriber).

This applies to all message flows running in all brokers connected in the same
network (unless the ‘Local’ option has been specified).

Using subscription points
If you have more than one publication node in a message flow, you can
differentiate between them by specifying subscription points. These should have
values that reflect the nature of the messages routed to each publication node.

For example, a message flow might apply a filter to a message for publication, and
apply two different compute operations to the outputs of the Filter node before
sending the resultant messages to separate publication nodes. In this case, the
subscription point names for these publication nodes should reflect the operations
carried out by the message flow. Other message flows could have publication
nodes associated with either or both of these subscription points, if appropriate.

Alternatively, allow one publication node to have the default subscription point,
and apply a meaningful name to the subscription point of each additional
publication node. If more than one publication node in a message flow has the
same subscription point property, subscribers might receive more than one copy of
each publication, unless the conditions under which messages reach publication
nodes are mutually exclusive.

Example
Suppose you have an application that publishes stock prices. The prices that are
available from the first publication node in the message flow are in dollars. This
publication node uses the default subscription point.

You can define a second path through the message flow that takes the price in
dollars, and converts this using some defined conversion value, to produce the
same message but with the stock price in pounds. These messages are published at
a second publication node that has its subscription point property set to ‘Pounds’.

You might have another message flow (running in the same broker, or a connected
broker) that publishes stock prices in pounds on the same topic. Make sure it uses
the ‘Pounds’ subscription point, and that any other message flows publishing their
stock prices in dollars use the default subscription point.

Subscribers specifying the relevant topic (for example, ‘stock’) can then choose to
receive the information in dollars or pounds, by using the default subscription
point or the ‘Pounds’ subscription point when they subscribe.

Filters
When you register a subscription, you can specify a content-based filter to select
publications according to their contents, in addition to specifying a topic and

Subscriptions

80 MQSeries Integrator Introduction and Planning

subscription point. MQSeries Integrator needs to know how to parse the contents
of the message correctly. This can be achieved in a number of ways:
v The message is a self-defining XML message.
v The message template is defined in the MQRFH2 header.
v If the message has an MQRFH header, the message set and type are taken from

that header.
v Otherwise, the message is assumed to be as defined in the properties (domain,

set, type and format) of the input node.

The filter itself is entered as an expression with ESQL syntax, for example:
Body.Name LIKE ‘Smit%’

This means that the contents of a field called Name in the body of a publication
message (that is, the publication data that follows the MQRFH2 header) will be
extracted and compared to the string given in the expression. If the string in the
message starts with the characters “Smit”, the expression evaluates to TRUE and so
the publication will be sent to the subscriber.

The language used in the specification of filters for content-based routing forms a
proper subset of the Filter node’ language. For more information about the syntax
of filter expressions, see the MQSeries Integrator Programming Guide.

If you want to select publications using filters only, without specifying a topic, you
can register a subscription with the required filter and a topic of “#” (all topics).
You will receive publications only on those topics for which you have access
authority. However, this subscription will result in all publications from all
connected brokers being sent to the broker that is local to the subscriber. If you
have set up a network of brokers, you are not advised to use this technique for
performance reasons.

Local subscriptions
Subscribers can specify a local option on registration. If they do so, they are
requesting that their subscription registration is not forwarded to other brokers,
but held by the local broker. Any message published at this broker that matches
the subscription is received by this subscriber, but messages published to other
brokers are not normally available (unless the subscriber has also registered a
global subscription with an overlapping topic and the same subscription point).

Retained publications
If retained publications are used, the subscriber can specify the following options
when it registers a subscription.

Publish on request only
If the ‘Publish on Request Only’ option is used, the broker will not send
publications to the subscriber until the subscriber sends a ‘Request Update’
message to the broker. The broker then sends any current retained publication that
matches the subscription.

New publications only
Normally the broker will send the current retained publication that matches the
subscription when a subscriber registers that subscription. If the subscriber uses
the ‘New Publications Only’ option, the broker will wait until a new publication is
received before sending it to the subscriber.

Subscriptions

Chapter 7. Designing publish/subscribe applications 81

|

Message persistence
You are recommended to send all subscription registration messages as persistent
messages. All subscriptions are maintained persistently by the broker.

Brokers maintain the persistence of publications as set by the publisher, unless
changed by options specified when the subscription is registered. These options are
non-persistent, persistent, persistence as queue, or persistence as publisher (the
default).

The system administrator decides which users are allowed to have publications
sent persistently (see “Access control lists” on page 87).

Topics
A topic specifies a subject of common interest to producers and consumers of
messages (publishers and subscribers). Almost any string of characters can act as a
topic to describe the topic category of a message. However, there are three reserved
characters, described in “Special characters in topics” on page 83.

Topics provide the key to the delivery of messages between publishers and
subscribers. They provide an anonymous alternative to citing specific destination
addresses. The broker attempts to match a topic on a published message with a list
of clients who have subscribed to that topic. Topics can also be used to control
which subscribers are authorized to receive publications.

You create the topics needed by your messages in a tree hierarchy, using the
facilities of the Control Center. The tree can be defined before being used, and, if
you choose, added to dynamically when new topics are created by client
applications.

Thoughtful design of topic names and topic trees can save time and effort later for
routine operations, including:
v Subscribing to multiple topics.
v Establishing security policies.
v Automatically reacting to messages on a specific topic, for example sending an

alert to a manager’s pager.

Individual topics serve as elements (that is, nodes) in the topic tree. New elements
are added as you define them through the Control Center, or are specified by
applications, to create topic trees. Although it can be flat (linear), a topic tree
usually builds from one or more root topics, adding other topics in levels of
parent/child relationships to create a hierarchical naming structure.

The following figure illustrates a topic tree structure.

Subscriptions

82 MQSeries Integrator Introduction and Planning

The structure of the tree follows a format with levels of increasing granularity:
“country/state/city”. Each string in the figure represents a node on the topic tree.
Complete topic names aggregate nodes at one or more levels in the topic tree.
Levels are separated by the “/” character (see “Special characters in topics”). Topic
names fully specify the path to a specific node from the root of the tree in this
format: “root/level2/level3”.

In Figure 16, the string “USA” acts as a root node, the first level of a topic name
for topics in this tree. Valid topics include “USA”, “USA/Alabama” and
“USA/Alabama/Montgomery”.

When you design topic names and topic trees, it is important to remember that the
message broker does not interpret or attempt to derive meaning from the topic
name itself. It only uses the topic name to send related messages to clients who
have subscribed to that topic.

Special characters in topics
The topic of a message can contain any of the characters found in the Unicode
character set. Three of these characters have a special meaning for MQSeries
Integrator.

The three are the topic level separator “/”, the multi-level wildcard “#”, and the
single-level wildcard “+”. The first of these is used to introduce structure to the
topic, and can therefore be specified within the topic for that purpose. The latter
two are wildcards used for subscriptions (see “Using wildcards with topics” on
page 85) and cannot be used within a topic when a message is published.

Note: If you are migrating your applications from MQSeries Publish/Subscribe
environment, refer to “Appendix A. Planning for migration and integration”
on page 143 for further details about topics and wildcards.

The topic level separator
The topic level separator character “/” provides a hierarchical structure to the
topic space. It must be used by applications to denote levels within a topic tree.
The use of the topic level separator is significant when the two wildcard characters
are encountered in topics specified by subscribers.

Topic hierarchy is important in administration of access control, described in
“Access control lists” on page 87.

The multi-level wildcard
The multi-level wildcard character “#” is used to match any number of levels
within a topic, typically an unknown number. It can be used only at the beginning

USA

Alabama Alaska

Auburn Mobile Montgomery Juneau

Figure 16. Example topic tree

Topics

Chapter 7. Designing publish/subscribe applications 83

or the end of a topic (but not both). For example, you can subscribe to “USA/#”,
and receive messages on topics “USA/Alabama” and “USA/Alabama/Auburn”.

The way the multi-level wildcard is implemented means it can represent zero or
more levels. Therefore “USA/#” can also match the singular “USA”, where #
represents zero levels. The topic level separator is meaningless in this context,
because there is no level to separate.

You can only use the multi-level wildcard next to the topic level separator
character unless you specify the multi-level wildcard on its own. For example,
“USA#” is not valid, but “#” is.

The single-level wildcard
The single-level wildcard character “+” matches one (and only one) topic level. For
example, “USA/+” matches “USA/Alabama” but not “USA/Alabama/Auburn”.
Also, because the single-level wildcard matches a single level only, “USA/+” does
not match “USA”.

This wildcard can be used at any level in the topic tree, and in conjunction with
the multi-level wildcard. However, you can only use the single-level wildcard next
to the topic level separator character unless you specify the single-level wildcard
on its own. For example, “USA+” is not valid, but “+” is valid.

Note: A finer level of filtering can be provided using content filters (see “Filters”
on page 80).

Topic semantics and usage
When you build an application, the topic tree design is important to the
application’s communication model. The design should account for the following
principles of topic name syntax and semantics:
v Topic names are case sensitive. For example, MQSeries Integrator recognizes

“ACCOUNTS” and “Accounts” as two different topics.
v Topic names can include the space character. For example, you can define

“Accounts payable” as a valid topic.
v Though not recommended, a topic level can be an empty string. For example,

“a//c” is a three level topic name with an empty middle level.
v A leading “/” creates a distinct topic: “/USA” is not the same as “USA” and

“/USA’ will match “+/+” and “/+” but not “+”.
v For portability reasons, you should not include the null character (Unicode

\x0000) in any topic.

MQSeries Integrator applies the following conditions to the construction and
content of a topic tree:
v There is no limit to the levels of depth (the number of topic levels) in the tree.
v There is no limit to the length of any level name in the tree.
v There can be any number of “root” nodes (that is, any number of topic trees).

These are defined below the root “”, which is the root of all root nodes. It is
referred to as “topicRoot”, although there is no corresponding topic name.
Applications cannot publish or subscribe to this virtual root.

v The topic trees with roots of “$SYS” and “$ISYS” are reserved for use by
MQSeries Integrator.
If you are using topic-based security, only brokers can publish messages on these
topics, and only brokers can subscribe to messages with a topic of “$ISYS”,

Topics

84 MQSeries Integrator Introduction and Planning

regardless of the topic Access Control Lists (ACLs) defined using the Control
Center. For more details about topic-based security and ACLs, see “Topic-based
security” on page 86.

Using wildcards with topics
Wildcards are used only when subscribing to topics, de-registering, requesting
updates, and deleting publications. Messages must always be published with a
fully specified topic name.

Using wildcards in subscriptions is not difficult, but needs to be done with care.
Remember that wildcards can be used at any level in the topic name string (within
the restrictions already discussed). However, you are recommended to use them
only at the end of a topic name. Although the single-level wildcard is accepted
anywhere, the product is optimized to it being specified at the end of the string.
The multi-level wildcard can only be used at the beginning or end of the string.

You should create well-formed applications that structure topics into subject trees.
This allows the applications to subscribe to sub-trees by placing the multi-level
wildcard “#” at the end of a topic.

You can specify more than one wildcard within a subscription, as long as their use
conforms to the guidelines given. For example, “+/Alabama/#” is valid.

If you subscribe with “#”, you will receive all publications from all connected
brokers. You are therefore recommended to use this type of subscription with care,
to minimize the impact of workload in your broker network.

Multiple topics
It is permissible to specify more than one topic for a publication. One use of this is
as follows.

Suppose an application publishes information under the topic ‘Topic 1’. The
application might then be enhanced to provide additional information, which it
might publish under the topic ‘Topic 1 enhanced’. If the new publications specify
the original ‘Topic 1’ as well, then existing subscribers will receive both old and
new publications, while subscribers who want to receive only the enhanced
publications can register with ‘Topic 1 enhanced’.

Note that an application that subscribes to both topics will receive one copy only of
each publication.

Broker networks
The interactions between a broker and its publishing and subscribing applications,
described in “How publish/subscribe applications interact with a broker” on
page 75, are equally valid in a broker network, in which publish/subscribe
applications are interacting with any one of a number of connected brokers.

Subscriptions and published messages are propagated through the MQSeries
Integrator broker domain. You can set up a network of brokers using the Control
Center so that each has an explicit or implicit connection to a group of other
brokers. You can have more than one group of connected brokers in the broker
domain. Brokers propagate subscription registrations through each network of
connected brokers, and publications are forwarded to all brokers that have
matching subscriptions.

Topics

Chapter 7. Designing publish/subscribe applications 85

It doesn’t matter, therefore, which broker a message is published to. Any
application that has registered a subscription to a connected broker will receive
publications matching that subscription.

Figure 17 illustrates a simple example of the publish and subscribe messages
flowing through a network of two brokers.

Each broker records subscription information from its local subscribers and
information from remote subscribers forwarded by its neighbor brokers in its
subscription table, which holds all the current subscription information known to
that broker (for all execution groups and message flows).

Collectives
You can group your brokers in collectives. This is a way of organizing a network
of brokers to get the most effective environment for publish/subscribe applications.

You can define collectives and organize your brokers using the Control Center. For
more details about setting up a network with collectives, see “Supporting
publish/subscribe services” on page 110.

Topic-based security
You can control access to messages on particular topics by implementing security
measures governed by Access Control Lists (ACLs), which are based on the
definition of principals to the underlying security control facility. A principal can
be an individual user ID (for example, a logon ID), or a user group which can
contain individual users.

Principals and the User Name Server
The message descriptor assigned to each message transmitted by MQSeries
contains the identity of the principal that initiated the message. MQSeries sets this

Publisher 1 Publisher 2

Broker Broker

Subscriber

Publish 1 Publish 2

Subscribe
(Forwarded)

Publish 2

Subscribe
Publish 1

Publish 2

Figure 17. Publish/subscribe in a network

Broker networks

86 MQSeries Integrator Introduction and Planning

|
|

identity in an operating system dependent manner, but this can be augmented at
an MQSeries installation by use of standard MQSeries exits. The principal in the
message descriptor is used to determine authority for the topic being published or
subscribed to.

MQSeries Integrator security architecture is based on the assumption that the
network is heterogeneous: although MQSeries includes a form of Windows NT
domain information for client platform identification, MQSeries Integrator does not
exploit this information.

The MQSeries Integrator User Name Server manages the set of principals already
defined in your network, on behalf of the brokers and the Configuration Manager,
for use in publish/subscribe. On Windows NT, this list of users is drawn from the
domain specified on the mqsicreateconfigmgr command.

All brokers within the broker domain interact with the User Name Server to
retrieve the total set of users and groups against which the access control lists are
built and publish/subscribe requests validated.

The Configuration Manager interacts with the User Name Server and displays
users/groups in ACL creation in the Topics view from the Control Center.

The User Name Server is made known to both the broker and the Configuration
Manager by specifying the User Name Server queue manager on the create
command for both components.

Access control lists
ACLs allow you to define, for any intersection of topic and principal, the right of
that principal to publish on or subscribe to a given topic, or to request persistent
delivery. You specify these definitions using the Topics view in the Control Center.

Access control is set explicitly on an individual topic, but can be inherited if there
is no explicit ACL in place. Inheritance is from an ancestor (parent) topic, defined
by the hierarchical structure of the topic tree. If none of the parent topics up to the
topic root has an explicit ACL, the individual topic inherits the ACL of the topic
root.

Any defined principal (user or group) known to the User Name Server can be
associated with the topic in this way.

PublicGroup authorizations
In addition to the groups that you define, MQSeries Integrator provides an implicit
group, “PublicGroup”, to which all users automatically belong. This implicit group
simplifies the specification of ACLs in a topic tree. In particular, this group is used
in the specification of the ACL for the topic root. Note that the default setting of
the topic root allows publish and subscribe operation for the “PublicGroup”. You
can view and change this ACL using the Control Center, but you cannot remove it.
It determines the default permissions for the entire topic tree. You can specify
ACLs for the “PublicGroup” elsewhere in the topic tree, wherever you want to
define permissions for all users.

If you have a principal named “Public” defined in your existing security
environment, you cannot use this for topic-based security. If you specify this
principal within any ACL, it is equated to “PublicGroup” and therefore provides
global access in all cases.

Topic-based security

Chapter 7. Designing publish/subscribe applications 87

|
|

|
|

|
|
|

|
|

mqbrkrs authorizations
MQSeries Integrator grants special publish/subscribe access control privileges to
members of the mqbrkrs group, and to the corresponding Domain mqbrkrs global
group if appropriate (see “Using Windows NT security domains” on page 123 for
details).

Brokers need special privileges to perform internal publish and subscribe
operations in networks where access control is enabled. When you create a broker
in such a network, you must specify a user ID that belongs to the group mqbrkrs
as the service user ID for the broker (as shown in Table 7 on page 125). The
mqbrkrs group is given implicit privileges that allow its members to publish,
subscribe and request the persistent delivery of messages on the topic root (“”). All
other topics will inherit these permissions. If you attempt to configure any ACLs
for the mqbrkrs group through the Control Center, these ACLs are ignored by
MQSeries Integrator.

Resolving ACL conflicts
If the principals in your broker domain include one or more users in more than
one group, it is possible that the explicit or inherited ACL values conflict.
v If the user has an explicit user ACL on the topic of interest, this always takes

priority and the broker verifies the current operation on that basis.
v If the user does not have an explicit user ACL on the topic of interest, but has

explicit user ACLs against an ancestor in the topic tree, the closest ancestor ACL
for that user takes priority and the broker verifies the current operation on that
basis.

v If there are no explicit user ACLs for the user on the topic of interest or its
ancestors, the broker attempts to verify the current operation on the basis of
group ACLs:
– If the user is a member of a group that has an explicit group ACL on the

topic of interest, the broker will verify the current operation on the basis of
that group ACL.

– If the user is not a member of a group that has an explicit group ACL on the
topic of interest, but is a member of a group with explicit group ACLs against
an ancestor in the topic tree, the closest ancestor ACL takes priority and the
broker verifies the current operation on that basis.

– If, at a particular level in the topic tree, the user ID is contained in more than
one group with an explicit ACL, permission is granted if any of the
specifications are positive, otherwise it is denied.

You can’t associate ACLs with topics that include one or more wildcards. However,
your client application access is resolved correctly when the subscription
registration is made, even when that application specifies a wildcard in the topic.

ACLs and system topics
Messages that are used for internal publish and subscribe operations are published
throughout the broker domain using system topics, which begin with the strings
“$SYS” and “$ISYS”. These topics must be published and subscribed to by
members of mqbrkrs only, with the exception of the following two scenarios:
1. If you are migrating topics from MQSeries Publish/Subscribe, you can

configure ACLs on topics that begin with the string “$SYS/STREAM” (see
“MQSeries Publish/Subscribe” on page 147 for further details about migration).

2. Clients can subscribe to topics that begin with the string “$SYS”, which allows
applications that provide a management function to subscribe to the broker for
administrative events.

Topic-based security

88 MQSeries Integrator Introduction and Planning

You are recommended not to configure ACLs on topics that begin with the string
“$ISYS”. You are not prevented from doing so, but they are ignored.

Setting access control on topics
All members of the group mqbrtpic are permitted to define and manipulate the
ACLs that define which principals are permitted to publish on and subscribe to
topics. ACLs can also limit delivery of persistent messages. All defined principals
(users or groups) can be associated with any topic: the permissions that can be set
are shown in Table 2.

Table 2. ACL permissions

Option Description

Publish Permits or denies the principal to publish messages on this topic.

Subscribe Permits or denies the principal to subscribe to messages on this topic.

Persistent Specifies whether the principal can receive messages persistently. If the
principal is not permitted, all messages are sent non-persistently. Each
individual subscription indicates whether the subscriber requires
persistent messages.

Persistent access control behavior is not identical to the publish and subscribe
control:
v Clients that are denied Publish access have their publication messages refused.

Clients that are denied Subscribe access do not receive the publication.
v The persistent access control does not deny the message to subscribers, but

denies them persistence, so denied subscribers always receive messages (subject
to their subscribe access control), but always have the message sent to them
non-persistently, regardless of the persistence of the original message.

Inheritance of security policies
Topics are organized in a hierarchical tree. The ACL of a parent topic can be
inherited by some or all of its descendent topics that do not have an explicit ACL.
Therefore, it is not necessary to have an explicit ACL associated with each and
every topic. Every topic has an ACL policy which is that of its parent. If all parent
topics up to the root topic do not have explicit ACLs, that topic inherits the ACL of
the root topic.

For example, in the topic tree in Figure 18 on page 90, the topic root is not shown
but is assumed to have an ACL for “PublicGroup” that allows permission to
publish, subscribe, and receive persistent publications. (The symbol “¬” means
“not”.) Table 3 on page 90 summarizes the ACL for each topic in the tree shown.

Topic-based security

Chapter 7. Designing publish/subscribe applications 89

|
|

Table 3. The ACLs for inheritance

Topic Publishers Subscribers Persistent

A only joe everyone no-one

A/P only joe everyone only joe

A/K only joe everyone no-one

A/K/M only joe everyone no-one

A/K/M/N only mary, joe everyone everyone except nat

A/B allen, joe HR no-one

Dynamically created topics
Topics that are not explicitly administered, but are created dynamically in response
to client publish or subscribe messages, are treated in the same way as those that
are administered, but have no explicit ACLs. That is, the ACLs for dynamically
created topics are inherited from the closest ancestor in the topic tree that has an
explicit policy. It is therefore not necessary to define leaf topics in the tree if they
do not have explicit ACLs.

ACLs and wildcard topics
MQSeries Integrator does not allow you to associate an explicit security policy
with a wildcard topic (for example, you cannot associate an ACL with topic
“A/+”, which represents a two level hierarchy and includes “A/B”, “A/K”, and
“A/P”).

However, MQSeries Integrator does guarantee correct access mediation when a
client subscribes to a wildcard topic.

For example, the topic “A/+” does not (and cannot) have a security policy
associated with it. Therefore, “A/+” inherits its policy from “A”. Any user can
subscribe to “A/+” because the subscribe ACL includes everyone.

When a message is published on “A/P” or “A/K”, the broker delivers it to the
user who subscribed to “A/+”. However, when a message is published to “A/B”,
that message is only delivered to subscribers who are in the HR group.

If the system administrator changes the subscribe ACL of any topic that matches
“A/+”, the broker correctly enforces the ACL when the message is delivered.

A

K P

M

B

N

Publish ACL: joe
Subscribe ACL: Public Group
Persistent ACL: Public Group

Publish ACL: allen
Subscribe ACL: HR, Public Group

Publish ACL: joe
Persistent ACL: joe

Publish ACL: mary, joe
Subscribe ACL: nat
Persistent ACL: Public Group, nat

Figure 18. Inheriting ACLs in a topic tree

Topic-based security

90 MQSeries Integrator Introduction and Planning

Subscribing to a wildcard topic has the semantics to deliver messages on all topics
that match the wildcard, and for which the subscriber has authorization to receive
that message.

ACLs and subscription resolution
The broker enforces access control through the topic of the message to be
delivered. Messages are only delivered to those clients that have not had subscribe
access denied, either explicitly or through inheritance. The final decision to deliver
a message to a subscriber cannot be made by the broker until a specific message
with a topic is being processed. A subscription can contain a wildcard, therefore
the actual match against the topic namespace, and hence the topic ACLs, cannot be
made at the time the subscription is received.

Activating topic ACL updates
Updates to a topic ACL do not become active until deployed and activated across
the MQSeries Integrator broker domain from the Control Center. You must be a
member of the group mqbrops to deploy ACLs.

Checking publications and subscriptions
The broker makes a number of checks on requests from publishers and subscribers.

The publisher
When a publisher application publishes a message on a topic, the broker verifies
that the publisher is authorized to publish on that topic:
v If the publisher is not authorized, the broker rejects the publish request and

returns a warning message to the publisher.
v If the publisher is authorized, the broker delivers the message to all authorized

subscribers to the topic.

The subscriber
When a broker receives a subscription request, it verifies the following:
v The subscriber has authority to put to the subscriber queue specified in the

subscription request. You must set up this authorization using MQSeries
facilities: this is independent of the authorizations established for the subscriber
in the Control Center.

v No other user is using the same combination of queue name, queue manager
name, and correlation ID (if specified).

v The client is permitted to subscribe to the topic, according to the ACL in force
for the combination of that topic and user. This can only be checked at this time
if the client has not specified a wildcard in the topic for subscription.

If any of these checks fail, the broker rejects the subscription request.

When a broker is ready to deliver a publication, it checks the following:
v The subscriber is authorized to receive persistent publications, if persistent

delivery on the topic has been requested.
v The client is permitted to subscribe to that topic, according to the ACL in force

for the combination of that topic and user. (Any wildcard the client specified is
resolved when a specific message is available: publications have fully-specified
topics that do not contain any wildcards.) Messages are delivered only to those
clients that have not had subscribe access denied, either explicitly or through
inheritance.

Topic-based security

Chapter 7. Designing publish/subscribe applications 91

v If a client has subscribed by content, the broker matches the content specified,
then checks the topic in the publication and consults the appropriate ACL for
permission.
If any of these checks fail, the publication is not delivered to the subscriber.

Detailed information about creating and managing ACLs is provided in MQSeries
Integrator Using the Control Center.

Summary
This chapter has provided the information you require to make the following
design decisions for your publish/subscribe applications:
v The topic trees you use for publications (including the use of wildcards for

subscriptions)
v The options you want to use as a publisher (retained, local, other subscribers

only)
v The options you want to use as a subscriber (subscription point, filter, local, new

publications only, publish on request only)
v The subscriber queues you use to receive publications (with optional correlation

identifiers)
v The use of access control lists

For information about writing the applications, having made the design decisions,
see the MQSeries Integrator Programming Guide.

Topic-based security

92 MQSeries Integrator Introduction and Planning

Part 4. Systems planning

This part further explores the planning needed to establish the correct broker
domain topology for your business.

It provides the information needed by your systems administrators to understand
the infrastructure required to achieve your business purposes, and to determine
how to create a new MQSeries network, or enhance and integrate MQSeries
Integrator with your existing MQSeries network.

It contains the following chapters:
v “Chapter 8. System requirements” on page 95
v “Chapter 9. Planning your MQSeries Integrator network” on page 107
v “Chapter 10. Managing your MQSeries Integrator network” on page 133
v “Chapter 11. Enhancing your broker domain” on page 139

The information here is an introduction to the detail provided in the MQSeries
Integrator Administration Guide.

© Copyright IBM Corp. 2000, 2001 93

94 MQSeries Integrator Introduction and Planning

Chapter 8. System requirements

This chapter summarizes the hardware and software requirements for MQSeries
Integrator. It also includes information about licensing agreements and national
language support.

The information provided here is an overview: for full details you must refer to the
MQSeries Integrator Installation Guide for your operating system and to the
Readme.txt file provided on your product CD which gives the latest and most
complete information.

Summary of system requirements
MQSeries Integrator is supported on these operating systems:
v AIX
v HP-UX
v Sun Solaris
v Windows NT — this includes Windows NT Server 4.0 running on an Integrated

IBM ~ xSeries installed in an IBM ~ iSeries 400 (AS/400)

Table 4 summarizes the installation options for all components of each of the four
products; MQSeries Integrator for AIX, MQSeries Integrator for HP-UX, MQSeries
Integrator for Sun Solaris, and MQSeries Integrator for Windows NT.

The key points to note are:
v You can install and configure the broker only on the operating system for which

you have purchased MQSeries Integrator.
v You can install the User Name Server on either Windows NT or the operating

system for which you have purchased MQSeries Integrator.
v You must install and configure the Configuration Manager and Control Center

on Windows NT.

If you purchase MQSeries Integrator for AIX, MQSeries Integrator for HP-UX, or
MQSeries Integrator for Sun Solaris the package includes the MQSeries Integrator
for Windows NT CD from which you must install the components that run on
Windows NT. Full package details are provided in “Appendix B. The product
packages” on page 165.

Table 4. Summary of installation options

Product Component System to install on

MQSeries Integrator
for AIX

Configuration Manager Windows NT only

Control Center Windows NT only

Runtime¹ AIX only

User Name Server¹ AIX or Windows NT

SDK AIX only

Online documentation AIX or Windows NT

© Copyright IBM Corp. 2000, 2001 95

|

|

|

|

|
|

|
|
|

|
|
|
|
|

Table 4. Summary of installation options (continued)

Product Component System to install on

MQSeries Integrator
for HP-UX

Configuration Manager Windows NT only

Control Center Windows NT only

Runtime¹ HP-UX only

User Name Server¹ HP-UX or Windows NT

SDK HP-UX only

Online documentation HP-UX or Windows NT

MQSeries Integrator
for Sun Solaris

Configuration Manager Windows NT only

Control Center Windows NT only

Runtime¹ Sun Solaris only

User Name Server¹ Sun Solaris or Windows NT

SDK Sun Solaris only

Online documentation Sun Solaris or Windows NT

MQSeries Integrator
for Windows NT

All components including online
documentation

Windows NT only

Notes:

1. The Runtime component on UNIX includes the broker and the User Name Server. You
must install this component on UNIX. If you choose to control topic-based security on
Windows NT, you can install the User Name Server component on Windows NT. A
single licence entitles you to configure a single User Name Server. Therefore if you
install the User Name Server component on Windows NT, you cannot configure a
second User Name Server on UNIX.

The following sections identify the requirements for the components that can be
installed on each operating system.

System requirements for AIX components
This section summarizes the system requirements for the following components
that can be installed on AIX:
v Runtime
v NEONRules and NEONFormatter Support
v Tivoli Interface
v SDK
v Online documentation
v NLS nessages

Hardware requirements
The hardware required for AIX components of MQSeries Integrator are:
v One of the following:

– IBM ~ pSeries™ (RS/6000®)
– IBM RS/6000 POWERserver®

– IBM RS/6000 POWERstation
– IBM Scalable POWERparallel®

v Any communications hardware supporting NetBIOS, SNA LU6.2, SPX, or
TCP/IP

v A minimum of 512MB of RAM to support run-time operation

Systems summary

96 MQSeries Integrator Introduction and Planning

|
|
||

||

||

||

||

||

|

|

Disk space required
The installation requirements depend on which components you install. Full details
are in the : requirements range from a minimum of 280MB to approximately
400MB.

Temporary space of approximately 150MB is required in the /tmp directory. This
temporary space is freed up when installation is complete.

Software requirements
The following software products are prerequisites for operating MQSeries
Integrator. If AIX, MQSeries, and the Java Development Kit (JDK™) are not at the
correct level, installation will not continue. For optional products that you can use
with MQSeries Integrator see the MQSeries Integrator for AIX Installation Guide.

Minimum supported levels are shown. Later compatible levels, if any, are
supported unless otherwise stated. You must refer to the MQSeries Integrator for
AIX Installation Guide and the Readme.txt file to check latest Corrective Service
Diskette (CSD) and FixPack details for these products.
v AIX Version 4.3.3

You must ensure that your AIX system includes JDK 1.1.8. This level is supplied
with the AIX CDs.

v MQSeries for AIX Version 5.1
This must be at service level CSD4 or above.
The installation program checks that you have MQSeries for AIX Version 5.1 or
later installed, and that it is at the correct service level. For full details of which
MQSeries Integrator component requires which MQSeries component, see the
MQSeries Integrator for AIX Installation Guide.
The MQSeries for AIX Version 5.2 product is supplied in the MQSeries
Integrator package. You do not have to install any additional CSDs if you install
MQSeries from this CD. CSD6 for Version 5.1 is also supplied independently in
this package: if you already have MQSeries Version 5.1 you can install this latest
CSD if you choose not to install MQSeries for AIX Version 5.2.

Note: Version 5.0 is not supported at any service level.
v A database for internal broker data

The MQSeries Integrator broker requires access to a database for internal caching
and for storing internal control information.
If your installation choices require a database to be present for internal broker
support, the MQSeries Integrator installation program checks for a suitable
database installed on this system.
If you already have a database product in the supported list below, you can use
it to support MQSeries Integrator.
If the installation program detects that you have a level of database prior to
those indicated here, it highlights the need to upgrade your existing license. You
must upgrade your database before you can use MQSeries Integrator.
Supported databases are:
– DB2 Universal Database for AIX Version 6.1 (Enterprise Edition, Connect

Enterprise Edition, or Extended Enterprise Edition)
– Oracle Version 8.1.6
– Sybase Version 12

Disk space

Chapter 8. System requirements 97

|

|
|

|
|
|
|
|

|

|

Each database requires an ODBC driver: the driver for DB2 is supplied by DB2,
the drivers for Oracle and Sybase are included with MQSeries Integrator.

If you do not have a suitable database installed, you can install DB2 Version 7.1,
which is included in the MQSeries Integrator package.

DB2 installation requires an additional 250MB of disk storage. You will also need
approximately 10MB for each set of tables you create (for the broker tables, for
the configuration repository, and for message repository).

DB2 has no additional prerequisites.

This DB2 product has restricted license terms and agreements. You must only
use this DB2 installation in association with your licensed use of MQSeries
Integrator for message management, and only the MQSeries Integrator
components can make calls to the DB2 database.

The use of a database by the MQSeries Integrator components is independent of
the use of databases by your applications. You are not restricted to the databases
listed here for application and data storage and retrieval. If you have a
requirement for XA coordination, your choice of database can be affected. See
the MQSeries Integrator Administration Guide for more details about how
MQSeries Integrator supports transactions.

For further details of database support for brokers, see Table 5 on page 105.

System requirements for HP-UX components
This section summarizes the system requirements for the following components
that can be installed on HP-UX:
v Runtime
v NEONRules and NEONFormatter Support
v SDK
v Online documentation
v NLS messages

Hardware requirements
The hardware requirements for the HP-UX components of MQSeries Integrator are:
v Any HP-UX desktop or server system
v Any communications hardware supporting NetBIOS, SNA LU6.2, SPX, or

TCP/IP
v A minimum of 512MB of RAM to support runtime operation

Disk space required
The installation requirements depend on which components you install. Full details
are in the MQSeries Integrator for HP-UX Installation Guide: requirements range from
a minimum of 280MB to approximately 400MB.

Temporary space of approximately 150MB is required in the /tmp directory. This
temporary space is freed up when installation is complete.

Software requirements
The following software products are prerequisites for operating MQSeries
Integrator. These prerequisites are checked at installation time but do not cause

Software requirements

98 MQSeries Integrator Introduction and Planning

|
|

|

|
|
|
|
|
|
|

|

|

|

|
|

|

|

|
|
|

|
|

|

|
|

installation to fail. However, you must ensure these prerequisite products are
available before you start to use MQSeries Integrator. For optional products that
you can use with MQSeries Integrator see the MQSeries Integrator for HP-UX
Installation Guide.

Minimum supported levels are shown. Later compatible levels, if any, are
supported unless otherwise stated. You must refer to the MQSeries Integrator for
HP-UX Installation Guide and the Readme.txt file to check latest Corrective Service
Diskette (CSD) and FixPack details for these products.
v HP-UX Version 11 with HP-UX patches XSWGR1100, XSWHWCR1100, and

PHSS_21906
v HP-UX Version 11 patch PHSS_22478 for Oracle support
v IBM MQSeries for HP-UX Version 5.2

The installation program checks that you have MQSeries for HP-UX Version 5.2
installed, and that it is at the correct service level. For full details of which
MQSeries Integrator component requires which MQSeries component, see the
MQSeries Integrator for HP-UX Installation Guide.
The MQSeries for HP-UX Version 5.2 product is supplied in the MQSeries
Integrator package. You do not have to install any additional CSDs if you install
MQSeries from this package.

Note: Version 5.0 and Version 5.1 are not supported at any service level.
v A database for internal broker data.

The MQSeries Integrator broker requires access to a database for internal caching
and for storing internal control information.
If your installation choices require a database to be present for internal broker
support, the MQSeries Integrator installation program checks for a suitable
database installed on this system.
If you already have a database product in the supported list below, you can use
it to support MQSeries Integrator.
If the installation program detects that you have a level of database prior to
those indicated here, it highlights the need to upgrade your existing license. You
must upgrade your database before you can use MQSeries Integrator.
Supported databases are:
– DB2 Universal Database for HP-UX Version 7.1 (Enterprise Edition, Connect

Enterprise Edition, or Extended Enterprise Edition)
– Oracle Version 8.1.6

Each database requires an ODBC driver: the driver for DB2 is supplied by DB2,
the drivers for Oracle and Sybase are included with MQSeries Integrator.

If you do not have a suitable database installed, you can install DB2 Version 7.1,
which is included in the MQSeries Integrator package.

DB2 installation requires an additional 250MB of disk storage. You will also need
approximately 10MB for each set of tables you create (for the broker tables, for
the configuration repository, and for message repository).

DB2 has no additional prerequisites.

This DB2 product has restricted license terms and agreements. You must only
use this DB2 installation in association with your licensed use of MQSeries

Software requirements

Chapter 8. System requirements 99

|
|
|
|

|
|
|
|

|
|

|

|

|
|
|
|

|
|
|

|

|

|
|

|
|
|

|
|

|
|
|

|

|
|

|

|
|

|
|

|
|
|

|

|
|

Integrator for message management, and only the MQSeries Integrator
components can make calls to the DB2 database.

The use of a database by the MQSeries Integrator components is independent of
the use of databases by your applications. You are not restricted to the databases
listed here for application and data storage and retrieval. If you have a
requirement for XA coordination, your choice of database can be affected. See
the MQSeries Integrator Administration Guide for more details about how
MQSeries Integrator supports transactions.

For further details of database support, see Table 5 on page 105.

System requirements for Sun Solaris components
This section summarizes the system requirements for the following components
that can be installed on Sun Solaris:
v Runtime
v NEONRules and NEONFormatter Support
v Tivoli Interface
v SDK
v Online documentation
v NLS messages

Hardware requirements
The hardware requirements for the Sun Solaris components of MQSeries Integrator
are:
v Any Sun SPARC or UltraSPARC desktop or server system
v Any communications hardware supporting NetBIOS, SNA LU6.2, SPX, and

TCP/IP
v A minimum of 512MB of RAM to support runtime operation

Disk space required
The installation requirements depend on which components you install. Full details
are in the MQSeries Integrator for Sun Solaris Installation Guide: requirements range
from a minimum of 280MB to approximately 400MB.

Temporary space of approximately 150MB is required in the /tmp directory. This
temporary space is freed up when installation is complete.

Software requirements
The following software products are prerequisites for operating MQSeries
Integrator. These prerequisites are checked at installation time but do not cause
installation to fail. However, you must ensure these prerequisite products are
available before you start to use MQSeries Integrator. For optional products that
you can use with MQSeries Integrator see the MQSeries Integrator for Sun Solaris
Installation Guide.

Minimum supported levels are shown. Later compatible levels, if any, are
supported unless otherwise stated. You must refer to the MQSeries Integrator for
Sun Solaris Installation Guide and the Readme.txt file to check latest Corrective
Service Diskette (CSD) and FixPack details for these products.
v Sun Solaris 7 with the latest Sun recommended patches
v IBM MQSeries for Sun Solaris Version 5.1

Software requirements

100 MQSeries Integrator Introduction and Planning

|
|

|
|
|
|
|
|

|

|

|

|

This must be at service level CSD4 or above.
The installation program checks that you have MQSeries for Sun Solaris Version
5.1 or later installed, and that it is at the correct service level. For full details of
which MQSeries Integrator component requires which MQSeries component, see
the MQSeries Integrator for Sun Solaris Installation Guide.
The MQSeries for Sun Solaris Version 5.2 product is supplied in the MQSeries
Integrator package. You do not have to install any additional CSDs if you install
MQSeries from this CD. CSD6 for Version 5.1 is also supplied independently in
this package: if you already have MQSeries Version 5.1 you can install this latest
CSD if you choose not to install MQSeries for Sun Solaris Version 5.2.

Note: Version 5.0 is not supported at any service level.
v A database for internal broker data.

The MQSeries Integrator broker requires access to a database for internal caching
and for storing internal control information.
If your installation choices require a database to be present for internal broker
support, the MQSeries Integrator installation program checks for a suitable
database installed on this system.
If you already have a database product in the supported list below, you can use
it to support MQSeries Integrator.
If the installation program detects that you have a level of database prior to
those indicated here, it highlights the need to upgrade your existing license. You
must upgrade your database before you can use MQSeries Integrator.
Supported databases are:
– DB2 Universal Database for Sun Solaris Version 6.1 (Enterprise Edition,

Connect Enterprise Edition, or Extended Enterprise Edition)
– Oracle Version 8.1.6
– Sybase Version 12

Each database requires an ODBC driver: the driver for DB2 is supplied by DB2,
the drivers for Oracle and Sybase are included with MQSeries Integrator.

If you do not have a suitable database installed, you can install DB2 Version 7.1,
which is included in the MQSeries Integrator package.

DB2 installation requires an additional 250MB of disk storage. You will also need
approximately 10MB for each set of tables you create (for the broker tables, for
the configuration repository, and for message repository).

DB2 has no additional prerequisites.

This DB2 product has restricted license terms and agreements. You must only
use this DB2 installation in association with your licensed use of MQSeries
Integrator for message management, and only the MQSeries Integrator
components can make calls to the DB2 database.

The use of a database by the MQSeries Integrator components is independent of
the use of databases by your applications. You are not restricted to the databases
listed here for application and data storage and retrieval. If you have a
requirement for XA coordination, your choice of database can be affected. See
the MQSeries Integrator Administration Guide for more details about how
MQSeries Integrator supports transactions.

Software requirements

Chapter 8. System requirements 101

|

|
|
|
|

|
|
|
|
|

|

|

|
|

For further details of database support, see Table 5 on page 105.

System requirements for Windows NT components
This section summarizes the system requirements for the following components
that can be installed on Windows NT:
v Configuration Manager
v Control Center
v Broker
v User Name Server
v SDK
v Online documentation

Hardware requirements
The hardware requirements for the Windows NT components are:
v Any Year 2000 compliant Intel Pentium® II (or above) processor-based IBM PC

machine or compatible, that is explicitly compatible and fully capable of running
the specified operating system, all the corresponding supporting software shown
below, and any associated applications unmodified. This machine could be an
Integrated IBM ~ xSeries Server installed in an IBM ~ iSeries 400
(AS/400).

v Any communications hardware supporting NetBIOS, SNA LU 6.2, SPX, and
TCP/IP.

v If all components are installed on a single system (MQSeries Integrator for
Windows NT only), a minimum of 512 megabytes (MB) of RAM are
recommended to support run-time operation.

v If only the Configuration Manager and Control Center components are installed
on a single system, a minimum of 300 megabytes (MB) of RAM are
recommended to support runtime operation.

v If the Configuration Manager, the Control Center, and the User Name Server are
installed on a single system, a minimum of 350 megabytes (MB) of RAM are
recommended to support runtime operation.

Disk space required
The installation requirements depend on which components you install and how
much working space you need. See the MQSeries Integrator Installation Guide for the
appropriate operating system for full details.

If DB2 is installed by the MQSeries Integrator installation program, an additional
250MB is required.

Temporary space of 150MB (for a full installation) to 300MB (for a custom
installation) is required on the operating system drive.

Software requirements
The following software products are prerequisites for operating MQSeries
Integrator. These prerequisites are checked at installation time but do not cause
installation to fail. However, you must ensure these prerequisite products are
available before you start to use MQSeries Integrator. For optional products that
you can use with MQSeries Integrator see the MQSeries Integrator for Windows NT
Installation Guide.

Software requirements

102 MQSeries Integrator Introduction and Planning

|
|
|

Minimum supported levels are shown. Later compatible levels, if any, are
supported unless otherwise stated. You must refer to the MQSeries Integrator for
Windows NT Installation Guide and the Readme.txt file to check latest Corrective
Service Diskette (CSD) and FixPack details for these products.
v Microsoft Windows NT Version 4.0, including TCP/IP, NetBIOS, and SPX, with

Service Pack 5 or Service Pack 6A, either of which provides relevant Year 2000
fixes and Euro support.

Note: Service Pack 6 is not supported.

Both Windows NT Workstation and Windows NT Server products are
supported. You can download Windows NT upgrades from the Microsoft Web
site at:
http://support.microsoft.com/directory/

If you intend to run the Tour feature of the Control Center, you must install
Microsoft Internet Explorer Version 5.

v IBM MQSeries for Windows NT Version 5.1.
This must be at service level CSD4 or above.
The installation program checks that you have MQSeries for Windows NT
Version 5.1 or later installed, and that it is at the correct service level. For full
details of which MQSeries Integrator component requires which MQSeries
component, see the MQSeries Integrator for Windows NT Installation Guide.
The MQSeries for Windows NT Version 5.2 product is supplied in the MQSeries
Integrator package. You do not have to install any additional CSDs if you install
MQSeries from this CD. CSD6 for Version 5.1 is also supplied independently in
this package: if you already have MQSeries Version 5.1 you can install this latest
CSD if you choose not to install MQSeries Version 5.2.

Note: Version 5.0 is not supported at any service level.

MQSeries for Windows NT requires a number of other software products to
install and operate a server successfully.

MQSeries for Windows NT server prerequisites are:
– Internet Explorer Version 5.

This is available from the Microsoft Web site at:
http://www.microsoft.com

– Active Directory Services Interface Version 2.0.
This is provided on the MQSeries CD.

– Microsoft Management Console Version 1.1.
This is provided on the MQSeries CD.

– Microsoft Data Access Component (MDAC) Version 2.5
MQSeries Integrator Version 2.0.2 uses ODBC drivers, and these require that
the level of the installed Microsoft Data Access Component (MDAC) on your
system is 2.5. The install program for MQSeries Integrator Version 2.0.2
checks this level and issues a warning if there is a need to update your
system, however the install will not automatically upgrade your system. In
order to update your system you can run the MDAC setup program from the
supplemental materials CD supplied with the product. You are recommended
to download the latest level of MDAC from http://www.microsoft.com/ —
note that different countries require different setup programs.

Software requirements

Chapter 8. System requirements 103

|

|
|
|
|

|
|
|
|
|

|

|

|

|
|
|

If you install only an MQSeries client with your MQSeries Integrator
components, check the client installation details in the MQSeries Release Notes
folder to determine the client’s prerequisites.

v A database product.
MQSeries Integrator broker and Configuration Manager components require
access to a database for internal caching and for storing internal control
information. The Control Center and User Name Server do not need access to a
database.
You can use any of the database products listed below:
– DB2 Universal Database for Windows NT Version 6.1 (Enterprise Edition,

Connect Enterprise Edition, or Extended Enterprise Edition).
You must use this database for the Configuration Manager requirements. This
database can also be used with the broker component.

– Microsoft SQL Server Version 6.5 with Service Pack 5a or Version 7 with
Service Pack 1, both of which are Year 2000 compatible.
This database can be used with the broker component.

– Oracle Version 8.1.6.
This database can be used with the broker component.

– Sybase Version 12.
This database can be used with the broker component.

The installation program checks for a current DB2 installation, and determines
the level installed. If DB2 is not present, or needs to be upgraded, installation
asks you if you want to install DB2 7.1 from the MQSeries Integrator Version
2.0.2 product package. You can cancel this if you are using another database, or
plan to install a suitable database product after you have installed MQSeries
Integrator.

Each database requires an ODBC driver: the drivers for DB2 and SQL Server are
supplied by the database product, the drivers for Oracle and Sybase are
included with MQSeries Integrator.

If you do not have a suitable database installed, the MQSeries Integrator
installation program launches the installation program for DB2 Version 7.1,
which is included in the MQSeries Integrator package.

DB2 installation requires an additional 420MB of disk storage. You will also need
approximately 10MB for each set of tables you create (for the broker tables, for
the configuration repository, and for message repository).

DB2 has no additional prerequisites.

This DB2 product has restricted license terms and agreements. You must only
use this DB2 installation in association with your licensed use of MQSeries
Integrator for message management, and only the MQSeries Integrator
components can make calls to the DB2 database.

The use of a database by the MQSeries Integrator components is independent of
the use of databases by your applications. You are not restricted to the databases
listed here for application and data storage and retrieval. If you have a
requirement for XA coordination, your choice of database can be affected. See
the MQSeries Integrator Administration Guide for more details about how
MQSeries Integrator supports transactions.

Software requirements

104 MQSeries Integrator Introduction and Planning

|
|

|
|

|

|

|

|

|
|

|

For further details of database support, see Table 5.

Database support
Table 5 summarizes the supported versions of databases that you can use for the
broker database and for user databases accessed in message flow nodes on each
operating system.

Table 5. Supported databases for brokers and user data

Database AIX HP-UX Sun Solaris Windows NT Windows 2000

DB2¹ ² 6.1³
7.1³

7.1³ 6.1³
7.1³

6.1³
7.1³

6.1³
7.1³

Microsoft SQL
Server

not applicable not applicable not applicable 6.5 plus SP5a
7.0 plus SP1

7.0 plus SP1
2000

Oracle¹ 8.1.6
8.1.7

8.1.6
8.1.7

8.1.6
8.1.7

8.1.6
8.1.7

8.1.6
8.1.7

Sybase 12 not supported 12 12 12

Notes:

1. DB2 6.1 and DB2 7.1 on all supported operating systems, and Oracle 8.1.6 and Oracle 8.1.7 on Sun Solaris only,
are the only DBMS supported by MQSeries Integrator that permit a database to participate as a Resource
Manager in a distributed XA transaction, and coordinated by MQSeries as the XA Transaction Manager. In
MQSeries Integrator, this is referred to as supporting a globally coordinated message flow.

2. You must use DB2 for the configuration and message repository databases maintained by the Configuration
Manager. No other database is supported for this purpose.

3. Please check the Readme.txt file for your product to check if a Fixpack is required.

Client requirements
You can run MQSeries Integrator applications on all platforms for which MQSeries
provides a client.

License information
Under the terms of the MQSeries Integrator Version 2.0.2 license agreement, you
can install one instance of each component at any one time on any one system,
with the exception of the Control Center. You can install the Control Center on
multiple systems provided that each Control Center is interacting with the same
single Configuration Manager. You can create multiple brokers on a single system.

For details of which component can be installed on which operating system, see
Table 4 on page 95.

National language support
MQSeries Integrator Version 2.0.2 is enabled for national language support. The
user interface and message catalogs are provided in the following languages:
v Brazilian Portuguese
v French
v German
v Italian
v Japanese
v Korean

Software requirements

Chapter 8. System requirements 105

||

||||||

||
|
||
|
|
|
|
|

|
|
||||
|
|
|

||
|
|
|
|
|
|
|
|
|

||||||

|

|
|
|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

v Simplified Chinese
v Spanish
v Traditional Chinese
v US English

MQSeries Integrator Version 2.0.2 can process and construct messages in any code
page for which MQSeries supports conversion to and from Unicode, on all
operating systems. Supported code pages are listed in the MQSeries Application
Programming Reference.

Note: The NEONRules and NEONFormatter Support nodes (NEONMap,
NEONRulesEvaluation, and NEONTransform, and the superseded
NEONFormatter and NEONRules) and graphical user interfaces are
supplied in US English only

MQSeries Integrator interacts with MQSeries installed in any supported language.
All languages for the MQSeries messaging products are included on the MQSeries
server CD supplied with MQSeries Integrator.

All messages generated for internal intercomponent message exchange are
generated in code page 1208.

DB2 Version 7.1 is fully NLS-enabled and is provided in all supported languages.

For further information about changing language settings, refer to the MQSeries
Integrator Administration Guide

National language support

106 MQSeries Integrator Introduction and Planning

|

|

|

|

|
|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

Chapter 9. Planning your MQSeries Integrator network

This chapter provides information about how you plan a network of MQSeries
Integrator resources that supports your business processes. It discusses:
v “Planning MQSeries Integrator resources”
v “Designing the MQSeries infrastructure” on page 114
v “Planning database resources” on page 118
v “Planning security” on page 120
v “Planning for data conversion” on page 131

Planning MQSeries Integrator resources
When you plan an MQSeries Integrator network, you must consider what
components you will install, and where, and how you will organize and use them
together. The information here helps you to do that, by explaining the initial
considerations and by identifying decisions you must make.

Note: You must configure your broker domain subject to your license agreement,
described in “License information” on page 105.

The following areas are discussed:
v “Naming conventions”
v “Broker domain basics” on page 109
v “Client applications” on page 113

Naming conventions
When you plan a new MQSeries Integrator network, one of your first tasks must
be to establish a convention for naming the resources that you will create within
this network. There are three aspects to this:
v “MQSeries Integrator resources”
v “MQSeries resources” on page 108
v “Database resources” on page 109

MQSeries Integrator resources
A naming convention for MQSeries Integrator resources throughout your network
ensures that names are unique, and that users creating new resources can be
confident of not introducing duplication or confusion.

The resources you must create and name within an MQSeries Integrator network
are:
v Brokers. When you create a broker, you give it a name that must be unique

within your broker domain. You must use the same name for the same broker
when you create it on the system in which it is installed (using the command
mqsicreatebroker) and when you create a reference to that broker in the broker
domain topology in the Control Center. The latter is a representation of the
physical broker (created by mqsicreatebroker) in the configuration repository,
and this single name links the two. Broker names are case-sensitive except on
Windows NT.

v Execution groups. Each execution group name must be unique within a broker.

© Copyright IBM Corp. 2000, 2001 107

v Message flows and message processing nodes. Each message processing node
must be unique within the message flow it is assigned to. For example, if you
include two MQOutput nodes to a single message flow, you must provide a
unique name for each.
Message flow names must be unique within the broker domain. Any reference to
that name within the broker domain is always to the same message flow. You
can therefore assign the same message flow to many brokers.

v Message sets and messages. Each message name must be unique within the
message set to which it belongs.
Message set names must be unique within the broker domain. Any reference to
that name within the broker domain is always to the same message set. You can
therefore assign the same message set to many brokers.

The Configuration Manager and User Name Server are not allocated names when
you create them. They are identified only by the name of the MQSeries queue
manager that hosts the services they provide.

There are a few restrictions for naming resources: see the MQSeries Integrator
Administration Guide for details.

MQSeries resources
All MQSeries Integrator resources have dependencies on MQSeries services and
objects. You must therefore also consider what conventions you will adopt for
MQSeries object names. If you already have an MQSeries naming convention, you
are recommended to use a compatible extension of this convention for MQSeries
Integrator resources.

When you create a broker or a Configuration Manager, you must specify a queue
manager name. This queue manager is created for you if it does not already exist.
Because the broker and Configuration Manager each use a unique set of MQSeries
queues, they can share one queue manager, if appropriate. However, every broker
must have a dedicated queue manager. Note that the MQSeries Everyplace queue
manager name specified must be unique across MQSeries Everyplace and
MQSeries, within MQSeries Integrator.

If you set up a User Name Server in your broker domain, this also uses a unique
set of MQSeries queues. The User Name Server can therefore also share a queue
manager with a broker, or the Configuration Manager, or both.

You must ensure that every queue manager name is unique within your network
of interconnected queue managers, whether or not every queue manager is in your
MQSeries Integrator network. This ensures that each queue manager can
unambiguously identify the target queue manager to which any given message
must be sent, and that MQSeries Integrator applications can also interact with basic
MQSeries applications.

MQSeries supports a number of objects defined to queue managers. These objects
(queues, channels, and processes) also have naming conventions and restrictions,
that are defined in the MQSeries Command Reference. In summary, the restrictions
are:
v All names must be a maximum of 48 characters in length (channels have a

maximum of 20 characters).
v The name of each object must be unique within its type (for example, queue or

channel).

MQSeries Integrator network

108 MQSeries Integrator Introduction and Planning

|
|
|

v Names for all objects starting with the characters “SYSTEM.” are reserved for
use by IBM.

For full details of all restrictions and recommendations, you must refer to the
MQSeries Planning Guide and to MQSeries System Administration.

Database resources
You must consider the naming conventions you use for databases, both for
databases you create for MQSeries Integrator product use (for broker tables, the
configuration repository, and the message repository), and for databases you create
for application use.

Your configuration and message repositories are owned and managed by the
Configuration Manager: because there is only one Configuration Manager you
should not find any conflict with names. Database tables used for brokers can be
unique and local to the broker, or can be shared because the rows of the tables
specific to each individual broker incorporate the name of the broker. You might
need to align the naming of all of these databases with other databases in use in
your broker domain.

For details of the database tables created for MQSeries Integrator use, see the
MQSeries Integrator Installation Guide for your product.

You must also ensure that the databases used for application data (accessed
through message flows) are uniquely named throughout your network, so there is
no opportunity for confusion or error.

Broker domain basics
This section covers the following topics:
v “General guidelines”
v “Supporting publish/subscribe services” on page 110

General guidelines
Before you start planning a full deployment of MQSeries Integrator, you must
understand a few basic rules and recommendations:
v You must install and initialize a single Configuration Manager within your

broker domain. This component controls and maintains all configuration and
administration information for all the components, and the resources defined to
those components in the configuration repository. It also manages the message
repository that contains all definitions created through the Control Center. The
Configuration Manager therefore defines the scope of the broker domain. It is in
constant contact with all other components created and deployed in the broker
domain.
When you create the Configuration Manager, you specify the security domain
that is used to check users’ authority to complete tasks in the broker domain.
For a discussion of security in the broker domain, see “Planning security” on
page 120.

v You must install at least one Control Center. This provides your only means of
viewing and managing the configuration and message repositories maintained
by the Configuration Manager. The Control Center is a central point of control
for the business processes of your broker domain, enabling you to create and
modify messages and message flows, and assign and deploy these resources to
the brokers.

MQSeries Integrator network

Chapter 9. Planning your MQSeries Integrator network 109

The Control Center does not control system administration aspects of the broker
domain. System administration (for example, creation and activation of a broker)
is supported by a set of commands.

v You must install and initialize at least one broker. The broker supports the
services (defined as message flows acting on messages) that are required by your
applications. You must also use the Control Center to define this broker to the
Configuration Manager (using the same name in both places), and deploy the
broker domain topology, to register and activate this broker in the broker
domain. Deployment initiates the communications between the Configuration
Manager and the broker.

The MQSeries Integrator Installation Guide illustrates a step-by-step approach to
setting up a very simple broker domain configuration using the components listed
above. It also illustrates how you can expand that simple broker domain by
creating a User Name Server to employ topic-based security (this is discussed in
“Supporting publish/subscribe services”).

The configuration tasks for establishing a broker domain are supported by a set of
commands you can enter at the command prompt. A subset of these commands (to
create, modify, and delete) are also available through a graphical administrative
interface, the MQSeries Integrator Command Assistant.

For example, you can create a broker using the command mqsicreatebroker, delete
it using the command mqsideletebroker, and modify its properties using the
command mqsichangebroker. For full details of all these commands, and the
Command Assistant, see the MQSeries Integrator Administration Guide.

Supporting publish/subscribe services
If your applications exploit publish/subscribe services, there are two additional
considerations for planning your broker domain:
v “Setting up collectives”.
v “Employing topic-based security” on page 112.

These are both optional: you can support publish/subscribe services without
implementing either of these options.

Setting up collectives: A collective is a set of one or more brokers that are
directly connected to each other. A single broker can belong to only one collective.
Brokers within one collective can exist on the same physical system, or on separate
systems.

A collective provides these benefits:
v Messages destined for a specific broker in the same collective are transported

directly to that broker and do not need to pass through any intermediate broker.
This improves broker performance and optimizes inter-broker publish/subscribe
traffic, relative to a hierarchical tree configuration.

v If your clients are geographically dispersed, you can set up a collective in each
location, and connect the collectives (by joining a single broker in each
collective) to optimize the flow of publications and subscription registrations
through the network.

v You can group clients according to the shared topics they publish and subscribe
to.

MQSeries Integrator network

110 MQSeries Integrator Introduction and Planning

|

Clients that share common topics can connect to brokers within a collective. The
common publications will be transported efficiently within the collective,
because they will not pass through any brokers that do not have clients with an
interest in those common topics.

v A client can connect to its nearest broker, to improve its own performance. The
broker receives all messages that match the subscription registration of the client
from all brokers within the collective.
Client application performance is also enhanced for any other service requested
from this broker, or the broker’s queue manager. A single client application can
use both publish/subscribe and point-to-point messaging.

v The number of clients per broker can be reduced by adding more brokers to the
collective to share workload within that collective.

Figure 19 illustrates one way of connecting your publish/subscribe brokers in
collectives.

When you create a collective, the Control Center ensures that the connections you
make to other collectives and brokers are valid. You are prevented from making
connections that would cause messages to cycle forever within the network. You
are also prevented from deploying a collective of brokers that does not have the
required MQSeries connections already defined.

Each broker in the collective maintains a list of its neighbors. A neighbor is a
broker in the same collective, or a broker outside its own collective to which it has
an explicit connection (that is, for which it is acting as a gateway). The complete
list of neighboring brokers forms a broker’s neighborhood.

Any broker with at least one deployed execution group can receive publications
and subscription registrations, and receive and pass on publications from or to its
neighbors, even if you have not assigned and deployed any message flow
containing a publication node to that broker.

Collective

Collective

Collective

Collective

Collective
Operating system

image

Collective

Figure 19. Collectives with a broker domain

MQSeries Integrator network

Chapter 9. Planning your MQSeries Integrator network 111

Employing topic-based security: You can choose to limit application access to
particular messages. For example, if a client application publishes messages
containing sensitive company finance information, or personnel details, you might
want to restrict who has access to those messages.

If you want to restrict message access in this way, you must:
v Install and configure a User Name Server to provide information on the

principals valid in your broker domain.
When you create the User Name Server, you specify the security domain that is
used to check users’ authority to publish on and subscribe to specific topics, and
their authority to request persistent delivery. For a discussion of security in the
broker domain, see “Planning security” on page 120.

v Ensure that a topic is associated with every message that is to be restricted
(either specified explicitly in the message by the publisher, or associated with the
message by the input node when it gets the message from the input queue).

v Create Access Control Lists (ACLs), through the Control Center to associate
principals with topics.

You are strongly recommended to configure a single User Name Server in your
broker domain. However, there are circumstances in which it is appropriate to
consider creating more than one (subject to your license agreement):
v Performance

If you have a large number of brokers in your broker domain, the requests they
send to the User Name Server can be handled more quickly. You could also
benefit if your broker domain configuration is complex, and brokers can interact
more efficiently (in terms of network traffic) if more than one User Name Server
is installed.

v Resilience
Although no standby mechanism is provided by MQSeries Integrator, you might
want to be able to redirect requests to a second User Name Server if a system
error occurs on the system of your first User Name Server.

If you do have more than one User Name Server, and more than one is active at
once, you must ensure that all of them are able to reference a single source of
principal definitions.

You must also ensure that each User Name Server is associated with a unique
MQSeries queue manager, to ensure that the User Name Server associated with the
Configuration Manager and each broker can be identified, and that there is no
conflict in the User Name Server’s use of MQSeries fixed name queues.

For more details of administering User Name Servers in your broker domain, see
the MQSeries Integrator Administration Guide.

How publications and subscriptions flow through the network: When a client
registers a subscription, the broker registers a matching subscription with its
neighbors. This is called a “proxy subscription”. If an identical subscription has
already been registered, the broker does not register again: only one proxy
subscription will be in effect at any one time. Likewise, when a client de-registers a
subscription from a broker, the broker de-registers the proxy subscription from its
neighbors, if the client is the last (or only) client for which the broker is holding
the proxy.

MQSeries Integrator network

112 MQSeries Integrator Introduction and Planning

Content-based filters are not included in proxy subscriptions. Therefore a superset
of messages might be received by the broker to which a subscriber that specified a
content filter is registered, but will not be passed on to that subscriber by its local
broker unless there is a content match.

All proxy subscriptions are made with the PersistenceAsPublisher option. This
results in messages being delivered to neighboring brokers with the persistence
specified by the publisher. Client subscription persistence options only take effect
at the local broker (that is, the broker with which the clients have registered).

Therefore a subscriber that requests persistent delivery always receives a persistent
message for matching publications. However, the message could be delivered
through the broker network as a non-persistent message if this was specified by
the publisher. If a problem occurs during the transmission of a message between
publisher and subscriber, it is therefore possible that the subscriber will never get
the message despite specifying persistent delivery as an option on subscription
registration.

Client applications
MQSeries Integrator client applications are applications that use the services
provided by the message flows deployed within one or more brokers in the broker
domain.

These applications can use one of two techniques for gaining access to the broker’s
services:
v An application can use an MQSeries client connection. You can use all of the

MQSeries clients supported by MQSeries Version 5.1 or later, giving you the
freedom to connect applications running in a wide variety of environments into
your broker domain. An application running on the same system as the queue
manager to which it connects can also use a client connection.

v An application running on the same system as a broker can use a local
connection to the queue manager that hosts that broker.

For more details about applications, putting and getting messages, and the use of
MQSeries clients, see MQSeries Clients and the MQSeries Application Programming
Guide. MQSeries Integrator does not impose any particular conditions or
restrictions on applications.

The Control Center application
The Control Center is a special MQSeries Integrator client application. It uses an
MQSeries client for Java connection over TCP/IP to the broker that hosts the
Configuration Manager, regardless of whether the Configuration Manager is on the
same system as the Control Center or a different system.

When the Configuration Manager is created, the required server connection
channel is defined. This allows any number of Control Center clients to connect to
the Configuration Manager’s queue manager. When you invoke the Control Center,
it dynamically creates the client connection channel to complete the connection
with the Configuration Manager.

MQSeries Integrator network

Chapter 9. Planning your MQSeries Integrator network 113

|

Designing the MQSeries infrastructure
MQSeries Integrator depends on the MQSeries transport services to support
internally generated communications between components. Some of these
resources are created for you, when you create MQSeries Integrator components
that depend on them. Others depend on the exact setup of your broker domain,
and you must therefore create these resources yourself.

Communications between MQSeries Integrator components are
protocol-independent, with the exception of the connection between every instance
of the Control Center and the Configuration Manager. This must be a TCP/IP
connection, as must connections to the MQSeries Everyplace and SCADA nodes.
Other connections can use any of the protocols supported by the MQSeries
messaging product for the operating system for your MQSeries Integrator product.

Except for MQSeries Everyplace and SCADA applications, applications that use
broker services must also use MQSeries to send and receive all messages. The
resources required by your applications (queues and client connection and server
connection channels) are application specific, and you must therefore create these
resources yourself.

The information here concentrates on the specific requirements that MQSeries
Integrator imposes on an MQSeries network. For a full description of designing
and connecting an MQSeries network, see MQSeries Intercommunication, which
covers the basics, such as setting up transmission queues and channels, in detail.

For more specific details of how to implement the MQSeries infrastructure for your
MQSeries Integrator broker domain, see the MQSeries Integrator Administration
Guide.

This section includes the following information:
v “MQSeries resources for brokers”
v “MQSeries resources for the Configuration Manager” on page 115
v “MQSeries resources for the User Name Server” on page 116
v “MQSeries resources for the Control Center” on page 116
v “MQSeries resources for client applications” on page 116
v “MQSeries clusters” on page 117

MQSeries resources for brokers
Each broker depends on a number of MQSeries resources, some of which are
always required, others are dependent on the broker domain setup:
1. Each broker must be associated with a queue manager to host its services. You

must specify a queue manager name when you create the broker. If this queue
manager does not exist, it is created for you.
The broker cannot share a queue manager with any other broker. However, it
can share a queue manager with the Configuration Manager, or the User Name
Server, or both, subject to the installation options in effect for your MQSeries
Integrator product. See Table 4 on page 95 for a summary of the options
available.
The broker and its queue manager can share the same name, subject to naming
restrictions for both products.

2. Each broker must have a number of fixed-name queues on its queue manager.
These allow it to exchange information with other components in the broker

MQSeries

114 MQSeries Integrator Introduction and Planning

|

|

domain. These queues are defined for you when the broker is created. The use
of these fixed-name queues dictates that each broker to be hosted by a unique
queue manager.

3. Each broker must communicate with the Configuration Manager. If the broker
and the Configuration Manager do not share a queue manager, you must
define the channels and transmission queues that support communications
between the two queue managers.

4. If you have included a User Name Server in your broker domain, each broker
must communicate with it. If the broker and the User Name Server do not
share a queue manager, you must define transmission queues and channels that
support two-way communications between the two queue managers.

5. The broker’s queue manager must have a listener to receive messages from
other components that do not share its queue manager, and from clients on
other physical systems. You must create a listener for every protocol used for
connections to the broker. If any connection uses the TCP/IP protocol, you
must decide which port the listener must listen on.

6. If the broker is connected to other brokers, either in a collective, or to
communicate with another collective, the queue manager needs transmission
queues and channel definitions to support two-way communications with each
of the other brokers’ queue managers.

MQSeries resources for the Configuration Manager
The Configuration Manager depends on a number of MQSeries resources, some of
which must be available, others are dependent on the broker domain setup:
1. The Configuration Manager must be associated with a queue manager to host

its services. You must specify a queue manager name when you create the
Configuration Manager. If this queue manager does not exist, it is created for
you. The Configuration Manager can share a queue manager with a broker, or
the User Name Server, or both, subject to the installation options in effect for
your MQSeries Integrator product. See Table 4 on page 95 for a summary of the
options available.

2. The Configuration Manager must have a number of fixed-name queues on its
queue manager. These allow it to exchange information with other components
in the broker domain. These queues are defined for you when the
Configuration Manager is created.

3. The Configuration Manager must communicate with every broker in the broker
domain. You must define transmission queues and channels to support
two-way communications between the Configuration Manager and every
broker except the one (if defined) that shares its queue manager.

4. If you have included a User Name Server in your broker domain, the
Configuration Manager must communicate with it. If the Configuration
Manager and the User Name Server do not share a queue manager, you must
define transmission queues and channels to support two-way communications
between the two queue managers.

5. The Configuration Manager’s queue manager must have a listener to receive
messages from the Control Center, and from other components and clients that
do not share its queue manager. You must create a listener for every protocol
used for the inter component connections. If the connection is TCP/IP you
must also decide which port the listener must listen on: no other listener must
be active on this port.

6. The Configuration Manager’s queue manager must have a server connection
This is defined for you when the Configuration Manager is created. Every
Control Center client can use this single definition.

MQSeries

Chapter 9. Planning your MQSeries Integrator network 115

MQSeries resources for the User Name Server
The User Name Server depends on a number of MQSeries resources, some of
which must be available, others are dependent on the broker domain setup:
1. The User Name Server must be associated with a queue manager to host its

services. You must specify a queue manager name when you create the User
Name Server. If this queue manager does not exist, it is created for you.
The User Name Server can share a queue manager with a broker, or the
Configuration Manager, or both, subject to the installation options in effect for
your MQSeries Integrator product. See Table 4 on page 95 for a summary of the
options available.

2. The User Name Server must have a number of fixed-name queues on its queue
manager. These allow it to exchange information with other components in the
broker domain. These queues are defined for you when the User Name Server
is created.

3. The User Name Server must communicate with the Configuration Manager. If
the two do not share a queue manager, you must define the transmission
queues and channels to support two-way communications between the two
queue managers.

4. The User Name Server must communicate with every broker in the broker
domain. You must define transmission queues and channels to support
two-way communications between the User Name Server and every broker
except the one (if defined) that shares its queue manager.

5. The User Name Server’s queue manager must have a listener to receive
messages from other components that do not share its queue manager. You
must create a listener for every protocol used for connections to the User Name
Server. If you create a TCP/IP listener, you must also decide which port it must
listen on.

MQSeries resources for the Control Center
The Control Center depends on a number of required MQSeries resources:
1. The fixed-name queues defined by the Configuration Manager (described

above).
2. The Configuration Managers’s listener (described above).
3. The server connection defined to the Configuration Manager’s queue manager

(described above). This is always defined as a TCP/IP connection and cannot
be changed.

4. The client connection. This is dynamically created when you initialize the
Control Center.

All necessary resources are defined and created for you, and you do not have to
take any additional action to enable the Control Center.

MQSeries resources for client applications
SCADA applications do not require any local MQSeries resources. MQSeries
Everyplace applications require an MQSeries Everyplace client on the local system.

A client application can run on a system anywhere in the MQSeries network. The
application can access MQSeries Integrator services in two ways.
1. The application can make a local connection to either:

v The broker’s queue manager

MQSeries

116 MQSeries Integrator Introduction and Planning

|
|

You do not have to define any MQSeries or MQSeries Everyplace resources
to support this client configuration.

v Another queue manager in the network
You must ensure that definitions are in place to support communications
between the queue manager to which the client has connected and the queue
manager that hosts the broker that provides the required service.

2. The application can make an MQSeries or MQSeries Everyplace client
connection to either:
v The broker’s queue manager

You must set up the appropriate client connection and server connection
definitions to support this option.

v Another queue manager in the network
You must ensure that definitions are in place to support communications
between the queue manager to which the client has connected and the queue
manager that hosts the broker that provides the required service.

MQSeries applications can only get messages from queues owned by the queue
manager to which it is connected, although MQSeries Everyplace supports a
″remote get″ function. Therefore, if an application expects to receive messages from
a queue populated by a service within a particular broker and owned by that
broker’s queue manager, it must connect to that broker’s queue manager (either
local, or using an MQSeries or MQSeries Everyplace client connection).

An application that puts messages, however, can be connected to any queue
manager in the network, as long as the queue manager can resolve the target
destination in some way. In all cases, the queue manager to which the client
application is connected must know the whereabouts of the queue or queues to
which the application puts messages (for example using remote queue definitions).

MQSeries clusters
When you design the MQSeries network underlying your MQSeries Integrator
broker domain, you must consider whether it is desirable to use clustering. Queue
manager clusters bring two significant benefits:
v Reduced system administration. Clusters need fewer definitions to establish a

network, and allow you to set up and change your network more quickly and
easily.

v Increased availability and workload balancing. In addition to simpler
administration, you can benefit by defining instances of the same queue on more
than one queue manager, thus distributing workload through the cluster.

You can use clusters with MQSeries Integrator, but must consider the following
points:
v For broker, Configuration Manager, and User Name Server administration:

If you define the queue managers that support your brokers, the Configuration
Manager, and the User Name Server to a cluster, you can benefit from the
simplified administration provided by MQSeries clusters. You might find this
particularly relevant for the brokers in a collective, which must all have
MQSeries interconnections.

v For SYSTEM.BROKER queues:
The SYSTEM.BROKER queues are defined for you when you create MQSeries
Integrator components, and are not defined as cluster queues. You must not
change this attribute.

MQSeries

Chapter 9. Planning your MQSeries Integrator network 117

|

|

|
|
|

|

v For message flow input queues:
– If you define an input queue as a cluster queue, you must consider the

implications for the order of messages or the segments of a segmented
message. The implications are the same as they are for any MQSeries cluster
queue. In particular, the application must ensure that if it is sending
segmented messages then all segments will be processed by the same target
queue, and therefore by the same instance of the message flow at the same
broker.

v For message flow output queues:
– MQSeries Integrator always specifies MQOO_BIND_AS_Q_DEF when it

opens a queue for output. If you expect segmented messages to be put to an
output queue, or want a series of messages to be handled by the same
process, you must specify DEFBIND(OPEN) when you define that queue.
This ensures that all segments of a single message, or all messages within a
sequence, are put to the same target queue and are processed by the same
instance of the receiving application.

– If you create your own output nodes, you are recommended to specify
MQOO_BIND_AS_Q_DEF when you open the output queue, and
DEFBIND(OPEN) when you define the queue, if you need to guarantee
message order, or ensure a single target for segmented messages.

v For publish/subscribe:
– If the target queue for a publication is a cluster queue, you must deploy the

publish/subscribe message flow to all the brokers on queue managers in the
cluster. However, the cluster does not provide any of the failover function to
the broker domain topology and function. If a broker to which a message is
published, or a subscriber registers, is unavailable, the distribution of the
publication or registration will not be taken over by another broker.

– When a client registers a subscription with a broker running on a queue
manager that is a member of a cluster, the broker forwards a proxy
registration to its neighbors within the broker domain: the registration details
are not advertised to other members of the cluster.

For a fuller understanding and discussion of clusters, and the implications of using
cluster queues, see the MQSeries Queue Manager Clusters book.

Planning database resources
MQSeries Integrator requires a number of databases to contain control and
configuration information. You must create these immediately after installation,
because they are populated when you create your MQSeries Integrator components
and resources.

Under normal circumstances, you do not need to be aware of the nature of these
databases, or how the various components make use of, or update, the information
they contain. However, it is useful to understand these basics:
v “Database requirements”
v “Databases and code pages” on page 119
v “Database locations” on page 120
v “Database backup and recovery” on page 120

Database requirements
MQSeries Integrator uses three sets of tables within databases. You can choose to
create these in a single database if appropriate (subject to the installation options in
Table 4 on page 95), or you can create a different database for each set.

MQSeries

118 MQSeries Integrator Introduction and Planning

|
|

The three sets of tables required by MQSeries Integrator are:
1. The configuration repository. This set of tables is managed by the Configuration

Manager. It contains all configuration information for you broker domain.
When you create and modify the resources in your broker domain using the
Control Center (for example, if you create message flows), the changes you
make are initially stored in your local system. You must deploy these changes
for those updates to be processed by the Configuration Manager and reflected
in the configuration repository.
The Configuration Manager is the only component that accesses this database.
You can view and manage the data in this repository using the Control Center,
which interacts with the Configuration Manager on your behalf.
You must create this database using DB2.

2. The broker database (also known as the broker’s local persistent storage). This
contains control information used by the brokers in maintaining their state and
other internal information. The database contains one set of tables: the rows
within each table include the broker name to ensure the integrity of the data.
When you make changes to the broker’s environment, and deploy those
changes, the Configuration Manager sends messages to the broker to update its
local persistent store. For example, if you assign and deploy a new message
flow to the broker, the data is updated.
You can create the broker database to hold this information using the following
database products:
v IBM DB2 Universal Database
v Microsoft SQL Server (on Windows NT only)
v Oracle
v Sybase (not on HP-UX)

You can use a separate database for each broker if you choose. For more
information about supported databases, see Table 5 on page 105.

3. The message repository. This set of tables is managed by the Configuration
Manager. It contains all the message and message set definitions you have
created using the Control Center and deployed in your broker domain. If you
import externally defined message definitions using the Control Center, these
are also stored in this repository.
You must create this database using DB2.
This repository does not contain definitions for messages created using the
NEONFormatter user interface. For information on the database requirements
for NEON message formats, see “Appendix A. Planning for migration and
integration” on page 143.

MQSeries Integrator uses ODBC to connect to the message repository and the
broker databases: ODBC drivers for DB2 and SQL Server are provided with the
database products, ODBC drivers for Oracle and Sybase are provided by MQSeries
Integrator. The Configuration Manager uses JDBC to connect to the configuration
repository, see Figure 1 on page 10.

Databases and code pages
Subscription data retrieved from client applications (for example, topics from
publishers and subscribers, and content filters from subscribers) and the character
data entered using the Control Center (for example, message flow names) are
stored in the configuration and message repositories. This data is translated from
its originating code page to the code page of the process in which the broker or

Databases

Chapter 9. Planning your MQSeries Integrator network 119

|
|

|
|

Configuration Manager is running, and then by the database manager to the code
page in which the database or databases were created.

To preserve data consistency and integrity, you must ensure that all this
subscription data and Control Center character data is originated in a compatible
code page to the two code pages to which it is translated. If you do not do so,
unpredictable results and loss of data might result.

Data stored in the broker’s local persistent store is not affected in this way.

The restrictions described above are not applicable to user data in messages. It is
your responsibility to ensure that any data in messages generated by your
applications is compatible with the code page of any database you access from
your message flows.

ESQL statements generated as a result of explicit reference to databases within
message processing nodes can contain character data that has a variety of sources.
For example, it might have been entered through the Control Center, derived from
message content, or read from another database. All this data is translated from its
originating code page to the code page in which the broker is running, and then
by the database manager to the code page in which the database was created. You
must ensure that these three code pages are compatible to avoid data conversion
problems.

Database locations
The databases used by the product components can be located on any system that
is accessible by the component that creates and maintains the tables within them.

You can set up a local database for each component if you choose, or you can set
up a central database on a shared server, and set up remote access to that server
for each and every system hosting a component that requires that access.

There are advantages and disadvantages to local and remote database usage. You
must refer to the documentation supporting the database you are using for
MQSeries Integrator to determine the best options for your specific environment.

Note: The User Name Server has no requirement for access to any of these
databases.

Database backup and recovery
You must include the databases used by MQSeries Integrator in your regular
database backup routines to ensure that the data critical to the operation of your
broker domain is secure and recoverable in the event of system or disk storage
failure.

For more details of the databases and tables, see the MQSeries Integrator Installation
Guide for your product. For more information about recovery procedures, see the
MQSeries Integrator Administration Guide.

Planning security
An important part of planning your broker domain is considering the security
controls that are available, and the levels of security you want to implement for
those controls.

Databases

120 MQSeries Integrator Introduction and Planning

MQSeries Integrator exploits MQSeries and the operating system facilities to
control security of components and tasks:
v Topic-based security.

The MQSeries Integrator User Name Server interacts with the operating system
security system to control user and group access to publications and
subscriptions.

v Operational control of components.
MQSeries Integrator uses the operating system access control.

v Operational roles used in the Control Center.
MQSeries Integrator uses Windows NT access control. (The Control Center runs
on Windows NT only.)

You must review the following information to understand the implications for your
configuration. The following sections describe the controls that are available, and
how they affect the operation of your broker domain:
v “Security and principals”
v “Operational security” on page 127
v “Control Center security” on page 128
v “Application security” on page 129
v “Message flow security” on page 129

You should also review the Setting up security section in the MQSeries Integrator
Administration Guide for further information on implementing a security setup.

Security and principals
Security control of MQSeries Integrator components, resources, and tasks depends
on the definition of users and groups of users (principals) to the security
subsystem of the operating system (the Windows NT User Manager or the UNIX
user/group database).

The MQSeries Integrator local groups are:
v mqbrkrs
v mqbrasgn
v mqbrdevt
v mqbrops
v mqbrtpic

The requirement for and creation of these groups differs on each operating system:
v On Windows NT, MQSeries Integrator creates all these groups on the system on

which it is installed.
v On AIX systems, MQSeries Integrator creates the local group mqbrkrs on the

system on which a component is installed.
v On HP-UX systems, you must create the local group mqbrkrs yourself, before

you install MQSeries Integrator components.
v On Sun Solaris systems, you must create the local group mqbrkrs yourself,

before you install MQSeries Integrator components.
v The groups other than mqbrkrs are used to control Control Center tasks and

configuration repository access, and therefore are not required on UNIX
systems.

You must assign users (or other groups) to the local groups to allow them to
perform specific tasks. These assignments are summarized in Table 7 on page 125
and Table 6 on page 125.

Security

Chapter 9. Planning your MQSeries Integrator network 121

|
|

|
|

The local groups provide the following authorities:
v mqbrkrs

Users in this group are authorized as service user IDs for the brokers, the
Configuration Manager, and the User Name Server. (Service user IDs have other
authority requirements, detailed in Table 7 on page 125.)

v mqbrdevt

Users in this group are permitted to perform the following tasks in the Control
Center:
– Design messages, message sets, and message flows.

v mqbrasgn

Users in this group are permitted to perform the following tasks in the Control
Center:
– Manage execution groups within brokers.
– View messages and message flows.
– Assign message flows to execution groups.
– Assign message sets to brokers.

v mqbrops

Users in this group are permitted to perform the following tasks in the Control
Center:
– Create brokers. (This creates a reference within the Control Center and the

configuration repository to a broker you have created on the system on which
it is to execute. This reference must have the same name as the physical
broker).

– Deploy, start, and stop message flows.
– Start and stop trace activity on message flows.
– Manage and deploy the broker domain topology, including collectives.
– View the whole deployed system, including messages, message flows, and

subscriptions.
– Deploy topics.
– View logs that report on the deployment activity.

v mqbrtpic

Users in this group are permitted to perform the following tasks in the Control
Center:
– Manage topics, and the access controls lists for the topic tree.
– Deploy topics.
– View the logs that report on that deployment activity.

MQSeries Integrator security architecture is designed to be platform independent.
If you are running MQSeries Integrator in an environment that includes clients on
heterogeneous platforms, you are recommended to ensure that all the principals
you define for MQSeries Integrator task authorizations are limited to eight
characters or less. If you have a Windows NT homogeneous environment, you can
create principals of up to twelve bytes (the limit set by the user identifier field in
the MQSeries MQMD, which is used by MQSeries Integrator), but you must only
use these longer names if you are sure you will not later include a UNIX system in
your MQSeries Integrator network.

Security

122 MQSeries Integrator Introduction and Planning

|

|

|

|

MQSeries Integrator has three primary sets of principals:
v Operational user IDs. These are defined as:

– The user IDs that configure and manage MQSeries Integrator components.
– The service user IDs under which the major components (broker,

Configuration Manager, and User Name Server) operate. You must specify a
service user ID when you create each component.

For more details about operational user IDs, see “Operational security” on
page 127.

v Control Center user IDs. You must assign these to the MQSeries Integrator
groups according to the set of tasks they will undertake. These groups are
checked by the Configuration Manager, and must be defined to the security
domain that you specify when you create the Configuration Manager. The user
IDs you assign to these groups must be defined to the same security domain.
For more details about Control Center user IDs, see “Control Center security” on
page 128.

v Application user IDs. Users that participate in publish/subscribe must be
assigned to groups that you create to control topic-based security. These groups
and users must be defined to the security domain that you specify when you
create the User Name Server. If you create the User Name Server on Windows
NT, you are recommended to specify the same security domain as the one you
specify when you create the Configuration Manager, but you are not forced to
do this.
For more details about application user IDs, see “Application security” on
page 129.

Using Windows NT security domains
MQSeries Integrator draws principals from either a Windows NT local account
security domain, or a Windows NT primary domain, or a Windows NT trusted
domain. For more information about Windows NT security domains, refer to the
Microsoft Web site at
http://www.microsoft.com/ntserver/security/deployment/default.asp

In particular, you are advised to review the contents of the Security Deployment
Resources Roadmap on this Web page.

Principals must be defined to a specific Windows NT security domain. You must
decide which domain you want to use for MQSeries Integrator, and define your
principals to that domain (using the Windows NT User Manager on the security
domain server). If you already have a security domain set up to control access to
MQSeries resources, you are advised to use this same domain for MQSeries
Integrator: this will not cause any conflict and will ease your security
administration.

If you plan to use MQSeries Integrator within a primary or trusted security
domain, global groups are created in your primary or trusted security domain
controller during installation. The global groups, that mirror the local groups, are:
v Domain mqbrkrs
v Domain mqbrasgn
v Domain mqbrdevt
v Domain mqbrops
v Domain mqbrtpic

Security

Chapter 9. Planning your MQSeries Integrator network 123

(These groups are not used by MQSeries for any purpose, therefore the 12
character restriction does not apply.)

These groups must be made members of the local security domain’s equivalent
MQSeries Integrator groups (Domain mqbrkrs must be a member of mqbrkrs,
and so on).
v If you install MQSeries Integrator on the domain controller of a primary or a

trusted security domain, the MQSeries Integrator installation program creates the
local and global groups, and adds the global groups to the local groups.
If you do not intend to install MQSeries Integrator on the domain controller, you
can create these groups yourself using the Windows NT User Manager. These
groups should be defined exactly as they appear in the list above. So, for
example, from the Windows NT User Manager for domains select User–>New
User and enter Domain mqbrasgn in the username field, and so on for the
other groups.

v If you install MQSeries Integrator on a workstation member of a primary
security domain, the MQSeries Integrator installation program creates the local
groups. If the global groups already exist in the primary security domain, it also
adds each global group to the appropriate local group in the local domain. If
you intend to install on a primary domain controller, it is recommended that
you install on the domain controller first so that the domain groups are created
for you, and they will then be automatically added to the local groups created
during install on a workstation.

v If you install MQSeries Integrator on a workstation member of a trusted domain,
MQSeries Integrator cannot recognize the trusted domain, and does not add the
global groups to the local groups. You must do this step yourself.

v If you install MQSeries Integrator on a workstation that is a member of both a
trusted security domain and a primary security domain, the installation program
creates the local groups. If the global groups already exist in the primary
security domain, it also adds each global group to the appropriate local group in
the local domain. It cannot detect the trusted domain and therefore does not add
the global groups of the trusted security domain to the local groups. If you want
these trusted security domain global groups in the local groups instead of, or in
addition to, the primary security global groups, you must make these updates
yourself.

When you define a new user ID to your security domain, you must assign this ID
to the domain group that is authorized for the tasks this user ID is to perform, so
that it is authorized globally.

For further details of how to implement security in the Windows NT environment,
see the MQSeries Integrator Administration Guide.

Using UNIX security domains
On UNIX platforms, MQSeries Integrator draws principals from the operating
system’s user and group tables.

Summary of authorizations
The authorizations required for the major tasks in both Windows NT and UNIX
environments are summarized here. For further details, refer to the MQSeries
Integrator Administration Guide.

Table 6 on page 125 summarizes the authorization and security requirements for
some of the major tasks in the UNIX environments.

Security

124 MQSeries Integrator Introduction and Planning

|
|
|
|
|

|
|
|
|
|

Table 7 summarizes the authorization and security requirements for some of the
major tasks in the Windows NT environment.

Table 6. Summary of authorization in the UNIX environments

User is... UNIX domain

Creating broker, User Name Server v Member of mqbrkrs
v The broker or User Name Server will run under the service

user ID specified on the create command in most situations.
This service user ID must be used to issue the create command
itself. However when ‘root’ is used to issue the create
command it can nominate any user to run the broker or User
Name Server.

Installing User must be a superuser

Uninstalling User must be a superuser

Changing broker, User Name Server User that the broker or User Name Server runs as (the service
user ID), or ‘root’

Deleting broker, User Name Server User that the broker or User Name Server runs as (the service
user ID), or ‘root’

Starting and stopping broker, User Name Server Member of mqbrkrs

Listing broker, User Name Server Member of mqbrkrs

Changing, displaying, retrieving trace
information

Member of mqbrkrs

Running User Name Server (service user ID) v Member of mqbrkrs

v The broker or User Name Server will run under the service
user ID specified in the create command

Running Configuration Manager (service user
ID)

Not applicable on UNIX systems

Running broker (not MQSeries trusted appl)
(service user ID)

v Member of mqbrkrs

v The broker or User Name Server will run under the service
user ID specified in the create command

Running broker (MQSeries trusted appl) (service
user ID)

v Service user ID must be mqm
v mqm must be a member of mqbrkrs

Clearing, joining, listing MQSeries
publish/subscribe brokers

Member of mqbrkrs

Running Control Center Not applicable on UNIX systems

Running publish/subscribe applications Any user, subject to MQSeries Integrator topic and MQSeries
queue access control

Table 7 summarizes the security requirements for the major tasks. It illustrates
what group memberships are required if you are using a local security domain
defined on your local system SALONE, or a primary domain named PRIMARY,
or a trusted domain named TRUSTED. The contents of this table assume that you
have created both the Configuration Manager and the User Name Server with the
same security domain.

Table 7. Summary of authorizations in the Windows NT environment

User is... Local domain (SALONE) Primary Domain (PRIMARY) Trusted domain (TRUSTED)

Installing v Member of Administrators Not applicable. Not applicable.

Uninstalling v Member of Administrators Not applicable. Not applicable.

Security

Chapter 9. Planning your MQSeries Integrator network 125

|
|
|
|

|
|

|
|

Table 7. Summary of authorizations in the Windows NT environment (continued)

User is... Local domain (SALONE) Primary Domain (PRIMARY) Trusted domain (TRUSTED)

Creating broker,
Configuration
Manager, User
Name Server

v Must be a user ID defined in
SALONE

v Member of Administrators

v Must be a user ID defined in
PRIMARY

v Member of
SALONE\Administrators

v Must be a user ID defined in
TRUSTED

v Member of
SALONE\Administrators

Starting broker,
Configuration
Manager, User
Name Server

v Member of Administrators Not applicable. Not applicable.

Running User
Name Server
(service user ID)

v Must be a user ID defined in
SALONE

v Member of mqbrkrs

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

Running
Configuration
Manager (service
user ID)

v Must be a user ID defined in
SALONE

v Member of mqbrkrs
v Member of mqm

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Member of SALONE\mqm (see
note 1)

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

v Member of
SALONE\Domain mqm (see note
2)

Running broker
(service user ID)
(see note 5)

v Must be a user ID defined in
SALONE

v Member of mqbrkrs

v Must be a user ID defined in
PRIMARY

v Member of
PRIMARY\Domain mqbrkrs

v Must be a user ID defined in
TRUSTED

v Member of
TRUSTED\Domain mqbrkrs

Running Control
Center (see note 3)

v Must be a user ID defined in
SALONE (see note 4) For
example, SALONE\User1 is
valid, PRIMARY\User2 and
TRUSTED\User3 are not

v Member of one or more of
mqbrasgn, mqbrdevt,
mqbrops, mqbrtpic

v Must be a user ID defined in
PRIMARY (see note 4) For
example, PRIMARY\User2 is valid,
SALONE\User1 and
TRUSTED\User3 are not.

v Member of one or more of
PRIMARY\Domain mqbrasgn,
PRIMARY\Domain mqbrdevt,
and so on.

v Must be a user ID defined in
TRUSTED (see note 4) For
example, TRUSTED\User3 is valid,
SALONE\User1 and
PRIMARY\User2 are not.

v Member of one or more of
TRUSTED\Domain mqbrasgn,
TRUSTED\Domain mqbrdevt,
and so on.

Running
publish/subscribe
applications

v Must be a user ID defined in
SALONE For example,
SALONE\User1 is valid,
PRIMARY\User2 and
TRUSTED\User3 are not.

v Must be a user ID defined in
PRIMARY For example,
PRIMARY\User2 is valid,
SALONE\User1 and
TRUSTED\User3 are not.

v Must be a user ID defined in
TRUSTED For example,
TRUSTED\User3 is valid,
SALONE\User1 and
PRIMARY\User2 are not.

Notes:

1. If you are running in a primary domain, you can also:

v Define the user ID in the domain PRIMARY.

v Add this ID to the group PRIMARY\Domain mqm.

v Add the PRIMARY\Domain mqm group to the group SALONE\mqm.

2. If you are running in a trusted domain, you can also:

v Define the user ID in the domain TRUSTED.

v Add this ID to the group TRUSTED\Domain mqm.

v Add the TRUSTED\Domain mqm group to the group SALONE\mqm.

3. All Control Center users need read access to the MQSeries java\lib subdirectory of the MQSeries home directory (the default
is X:\Program Files\MQSeries, where X: is the operating system disk). This access is restricted to users in the local group mqm
by MQSeries. MQSeries Integrator installation overrides this restriction and gives read access for this subdirectory to all users.

4. If a valid user ID is defined in the domain used by the Configuration Manager (for example, PRIMARY\User4) an identical
user ID defined in a different domain (for example, DOMAIN2\User4) will be able to access the Control Center with the
authorities of PRIMARY\User4.

5. The broker can be run as an MQSeries trusted application. If it is, security requirements are changed. See the MQSeries
Integrator Administration Guide for full details.

Security

126 MQSeries Integrator Introduction and Planning

Operational security
When you create and activate your broker domain, there are two aspects of
security that control the authorizations of users to perform these tasks:
v Configurational security, that controls the right of users to configure and manage

MQSeries Integrator resources using the supplied commands.
v Run-time security, that controls the right of users to execute processes as service

user IDs.

For a full definition of the commands that support these tasks and the authority
required to invoke each one, see the MQSeries Integrator Administration Guide.

For a better understanding of MQSeries and database resource security for
MQSeries Integrator components, see the MQSeries Integrator Administration Guide.
For further information on securing MQSeries resources used by MQSeries
Integrator components, refer to the section Securing MQSeries resources in the
MQSeries Integrator Administration Guide. For further details of MQSeries security,
refer to MQSeries Planning and MQSeries System Administration. For further details
of database security, refer to the documentation for the database you are using.

Configurational security
MQSeries Integrator provides a set of configuration and operation commands that
support system administration tasks that are not available through the Control
Center.

The authorizations required by the user invoking these commands varies,
depending on the task the command performs. These tasks are:
v Creating, changing, and deleting broker, the Configuration Manager, and the

User Name Server
v Starting, stopping, listing, and tracing brokers, the Configuration Manager, and

the User Name Server

The authorizations required for a subset of these commands is illustrated in Table 7
on page 125 and Table 6 on page 125. You can find a more complete summary of

authorizations in the MQSeries Integrator Administration Guide.

Run-time security
When you start the broker, Configuration Manager, and User Name Server
components on Windows NT, they are started up as Windows NT services running
under the user ID that you specify as the service user ID when you create that
component. When you start the broker or the User Name Server components on
UNIX, they are started as normal processes running under the service user ID.

The authorizations required by these user IDs are illustrated in Table 7 on page 125
and Table 6 on page 125. You can find a more complete summary of authorizations
in the MQSeries Integrator Administration Guide.

You must also use the MQSeries facilities to authorize the broker service user IDs
to access the message flow input and output queues. Typically, this needs to be set
for get and inq for input queues, and put and setall for output queues. See
MQSeries System Administration for more information about setting queue access
authorities.

Security

Chapter 9. Planning your MQSeries Integrator network 127

|
|
|

Database security
The service user IDs for the brokers and the User Name Server must also be
authorized to access databases:
v The Configuration Manager service user ID must be authorized for create and

update tasks on the database in which both configuration and message
repositories are defined. (This might be one or two databases: both must be
DB2.)

v Each broker service user ID must be authorized for create and update tasks on
the database that contains the broker internal tables.

v Each broker service user ID must also be authorized for the appropriate access
for every database referenced and accessed by a message processing node in any
deployed message flow.

Control Center security
All users can invoke the Control Center: there is no initial check when the program
is invoked. However, in order to perform Control Center tasks, a user must choose
the role they want to assume during this session. The role maps to a Windows NT
group, and you must therefore define and configure the user and groups to meet
your requirements, using the guidelines that are summarized in Table 7 on
page 125. The domain that users are drawn from is set on the create command for
the Configuration Manager – see the MQSeries Integrator Administration Guide for
details of the command syntax. This configuration is independent of the
implementation of topic-based security and the installation of a User Name Server.

To select a specific role, the user must choose one of the following from the
File->Preferences dialog (User’s role pane):
1. Message flow and message set developer

This role equates to the permissions of the mqbrdevt group members.
2. Message flow and message set assigner

This role equates to the permissions of the mqbrasgn group members.
3. Operational domain controller

This role equates to the permissions of the mqbrops group members.
4. Topic security administrator

This role equates to the permissions of the mqbrtpic group members.
5. All roles

This role combines all four roles, authorizing the user to perform all tasks.

The role determines what the user can view within the Control Center, and
therefore limits the tasks that are available to that user. However, the authorization
of that user to perform a given task is not checked until the request is processed
by the Configuration Manager. To be able to perform any action, therefore, a user
must be defined to the security domain specified when you created the
Configuration Manager.

The Control Center passes the request in a message to the queue
SYSTEM.BROKER.CONFIG.QUEUE: the Configuration Manager sends responses
to the queue SYSTEM.BROKER.CONFIG.REPLY (both queues are defined to the
Configuration Manager’s queue manager).

All groups in the Configuration Manager’s security domain have get and put
authority to both queues. On receipt of the message, the Configuration Manager
checks that the user ID is in the group that is authorized to complete the specific

Security

128 MQSeries Integrator Introduction and Planning

|
|
|

task. Therefore you are recommended to encourage Control Center users to assume
the role that corresponds to their authorization.

Additional authorizations required by users of the Control Center are summarized
in Table 7 on page 125. For more details of the roles defined, and the facilities of
the Control Center, see MQSeries Integrator Using the Control Center.

The IBMMQSI2 superuser
A superuser user ID is recognized by the Control Center and the Configuration
Manager. This user ID, IBMMQSI2, is a privileged user ID that provides these
essential functions:
v It has the authority to unlock any resources locked to another user ID. If a user

ID is removed for any reason (for example, if an employee leaves the company)
and resources are left locked to that user ID, you can start the Control Center
with the privileged user ID and unlock the locked resources.

v The IBM primitive message processing nodes (described in “Primitive node
types” on page 50) are locked under this user ID. If maintenance that includes
updates to these nodes is supplied by IBM, you must use this user ID to check
out the existing primitive nodes, import the replacement nodes, and check them
in to the configuration repository.

You must define the user ID IBMMQSI2 yourself (using the Windows NT User
Manager) to the security domain specified when you create the Configuration
Manager using the mqsicreateconfigmgr command. You must also add this user
ID to the MQSeries Integrator groups necessary for it to be authorized to complete
the task required on the system on which you are running the Control Center:
v If you are using a primary or trusted security domain, you must add this user

ID to the appropriate Domain mqbrxxxx groups.
v If you are using a local security domain, you must add this user ID to the

appropriate local mqbrxxx groups.

MQSeries authorizations
The Control Center connects to the Configuration Manager using an MQSeries
client/server connection. For details of the security available for this connection,
see the MQSeries Clients book (the chapter entitled “Setting up MQSeries client
security”).

Application security
You need to consider application security in two areas:
v “Message flow security”.
v “Topic-based security” on page 130.

Message flow security
When you deploy a message flow on one or more brokers, applications can start to
feed messages into the message flow by putting messages to the queue that is
identified as the input queue. You set up the association between the input node
and the queue by setting the queue name as a property of the node.

Similarly, applications access queues to receive messages placed on those queues
by output or Publication nodes, when the message flow has completed processing
for those messages.

The user IDs under which applications are executing must therefore be authorized
to write to, or read from, the queues used by the message flow the applications are
interacting with.

Security

Chapter 9. Planning your MQSeries Integrator network 129

|
|

|

You must also authorize every subscriber (that is, every application making a
subscription registration) to put messages to the queue
SYSTEM.BROKER.CONTROL.QUEUE. (This does not apply to MQSeries
Everyplace applications.)

You must use the facilities provided by MQSeries to restrict which users are
permitted to have “put” or “get” access to the queues. (This does not apply to
MQSeries Everyplace applications.) For more details of applying security to
MQSeries resources, see MQSeries System Administration.

Note that SCADA applications do not support message flow security. The
SCADAInput node accepts all messages that the listener detects at the connected
port.

Topic-based security
If you have applications that use the publish/subscribe services of a broker, you
have the option of applying an additional level of security to the topics on which
messages are published and subscribed. This additional security, known as
topic-based security, is managed by the User Name Server. The User Name Server
and the benefits of topic-based security are discussed in “Employing topic-based
security” on page 112.

If you want to take advantage of topic-based security in your MQSeries Integrator
broker domain, you must create, or update, your brokers and the Configuration
Manager to recognize the User Name Server. You can identify the User Name
Server to the brokers and the Configuration Manager by specifying the User Name
Server’s queue manager name as the -s parameter on the commands
mqsicreatebroker, mqsicreateconfigmgr, mqsichangebroker, and
mqsichangeconfigmgr.

If you have already created the Configuration Manager and one or more brokers,
you must stop them (using mqsistop) before you make these changes. You can
then restart the Configuration Manager and the brokers. and start the User Name
Server, using mqsistart. These steps are illustrated in the MQSeries Integrator
Installation Guide.

When you have configured your broker domain components to incorporate the
User Name Server, you can implement topic-based security by setting up Access
Control Lists (ACLs) from the Topics view of the Control Center. ACLs are lists of
principals, and are assigned to topics to control which principals can publish,
subscribe, and request persistent delivery on those topics.

The principals you can include in an ACL are notified to the Control Center by the
Configuration Manager, which requests the information from the User Name
Server.
v If you created the User Name Server on Windows NT, it extracts principal

information from the domain server of the security domain that you specified
when you created the User Name Server. You must therefore define all users and
groups required by your implementation of topic security to the security domain
specified when you created the User Name Server.

v If you created the User Name Server on UNIX, it extracts principal information
from the user/group database. You must therefore define all users and groups
required by your implementation to the database accessed by the User Name
Server.

Security

130 MQSeries Integrator Introduction and Planning

|
|

|
|

|
|
|

When a publisher publishes a message to a broker, or a match for a published
message for a particular subscriber is found, the broker checks its local copy of
principal and ACL information to determine if the user request is authorized by an
ACL for the specified topic.

After the broker has determined that a client has the authority to receive a
particular publication, it makes a further check as to whether the client is
authorized to request persistent delivery on this topic. If the client has requested
persistent delivery, but is not authorized to do so, the broker does make the
message available to the client, but non-persistently.

For more details on how to implement topic security, see MQSeries Integrator Using
the Control Center, and for more detailed information on aspects of topic security,
see “Topic-based security” on page 86.

Planning for data conversion
If you are using a network of systems that use different methods for storing
numeric values, or you need to communicate between users who view data in
different code pages, you need to consider how to implement data conversion.
v Numeric order

For numeric and encoding aspects, you must consider:
– Big Endian versus Little Endian
– Encoding values in MQSeries (field Encoding in the MQMD)

Encoding values are system specific. For example, Windows NT usually has
an encoding of 546, hexadecimal value X’00000222’. The three final
hexadecimal digits identify:
1. The float number format

This value can be 1 (IEEE format byte order normal), 2 (IEEE format byte
order reversed) or 3 (System/390® format byte order normal).

2. The packed decimal number format
This value can be 1 (byte order normal) or 2 (byte order reversed).

3. The hexadecimal number format
This value can be 1 (byte order normal) or 2 (byte order reversed).

The bit order within a byte is never reversed. Byte order normal means that
the least significant digit occupies the highest address.

Systems that process numbers in normal byte order are Big Endian
(System/390, AS/400, and UNIX). Systems that process numbers in reversed
byte order are Little Endian (mainly PCs).

For further details about numeric order, see Appendix D, Machine Encodings,
in the MQSeries Application Programming Reference.

v Code page conversions
Code page conversion might be required for any of the following reasons:
– ASCII versus EBCDIC
– National languages
– Operating system specific code pages

For more information about code page support in MQSeries, see the MQSeries
Application Programming Reference book.

Security

Chapter 9. Planning your MQSeries Integrator network 131

|
|

When you use MQSeries Integrator, you can use the data conversion facilities of
MQSeries, or MQSeries Integrator, or both.
v If you use MQSeries facilities, you must ensure that the input nodes within your

message flows are set up for conversion. That is, you must set the Convert
property to yes, and enter the required encoding and CCSIDs (coded character
set identifiers).
Headers and message body are converted according to the MQMD values, and
other header format names. You might have to set up data conversion exits to
convert the body of your messages.
When you use MQSeries facilities, the whole message is converted to the
specified encoding and CCSID.
For more detail about data conversion using MQSeries facilities, see Appendix F,
Data Conversion, in the MQSeries Application Programming Reference.

v If you use MQSeries Integrator facilities, you must define your messages in the
message repository (using the Control Center), or use self-defining messages.
You can then use the Compute node to define encoding and CCSIDs. The
predefined elements of the messages are converted according to their type and
Custom Wire Format characteristics. You do not need MQSeries data conversion
exits.
– String data is converted according to the CCSID setting.
– Integer and Float Extended Decimal types are converted according to the

CCSID setting.
– Integer and Float (other physical data types) are converted according to the

Encoding setting.
– Binary and Boolean data is not converted.

MQSeries Integrator can also convert those MQSeries headers for which parsers
are provided (listed in “Default message parsers” on page 59).

When you use MQSeries Integrator facilities, the whole message is not converted
to the specified encoding and CCSID: you can specify a different encoding, or
CCSID, or both, in each header to perform a different conversion for the
following part of the message. The encoding and CCSID in the last header
therefore defines the values for the message body.

For an example of data conversion using MQSeries Integrator facilities, see the
MQSeries Integrator ESQL Reference book.

Data conversion

132 MQSeries Integrator Introduction and Planning

|

|

Chapter 10. Managing your MQSeries Integrator network

This chapter provides the information you need to understand how to manage
your MQSeries Integrator network, when you have planned and created it.

It covers the following topics:
v “Managing broker domain components”
v “Monitoring and analysis” on page 134

Managing broker domain components
When your configuration work is complete, you need to manage the components
on a day-to-day basis. MQSeries Integrator provides a set of commands that enable
you to control the broker domain in two ways:
1. Starting and stopping components

a. Start a component. You can use the command mqsistart to start up the
instances of broker, Configuration Manager and User Name Server created
by command. You must identify which component is to be started as the
first parameter on the command. If appropriate, the associated queue
manager is also started.

b. Stop a component. The command mqsistop terminates the component
specified by the first parameter on this command. You can also request that
the associated queue manager is stopped by this command.

2. Viewing and modifying components
a. List components or subcomponents available on a system. You can use the

command mqsilist to return a list of the components created on this system,
with the name of the queue manager that supports them
If you specify a broker name as a parameter on the command, it returns a
list of the broker’s execution groups. If you specify a broker name and
identify an execution group, it returns the message flows within that
execution group.

b. Change parameters of a component. If you need to update the parameters
currently set for a component, use the mqsichangebroker,
mqsichangeconfigmgr, or mqsichangeusernameserver command. These set
the newly specified value for each operand included on the command, and
leave all others unchanged.

The change commands listed, like the create and delete commands discussed in
“Planning MQSeries Integrator resources” on page 107, can be invoked using the
Command Assistant.

For full details of all these commands, and the use of the Command Assistant, see
the MQSeries Integrator Administration Guide.

For more information about managing the MQSeries resources associated with
these MQSeries Integrator components, see MQSeries System Administration,
MQSeries Clients, and MQSeries Intercommunication.

© Copyright IBM Corp. 2000, 2001 133

Managing application and business processes
The Control Center provides all the facilities for managing application and
business processes. You can use the Control Center to:
v Define your broker domain, using the Topology view:

– Add new brokers and collectives.
– Remove a broker or collective.
– Change the connectivity between brokers and collectives.

v Work with message flows, using the Message Flow and Assignments views:
– Create new message flows using existing node types.
– Assign message flows to execution groups in brokers.
– Remove message flows from execution groups.
– Solve message flow problems using the Debugger, an alternative screen under

Message Flow.
v Organize your messages, from the Messages and Assignments views:

– Define new message templates and message sets.
– Update message templates.
– Assign message sets to brokers.
– Delete messages or message sets.

v Control your publish/subscribe network, in the Topics and Subscriptions views:
– Define your topics.
– Ensure authorizations are valid and complete.
– Examine the subscriptions currently active.

v Manage your broker domain, using the Topology and Operations views:
– Deploy assigned resources to brokers.
– Check on the status of the latest resources deployed.
– Check on broker status.
– Switch on problem diagnosis tools.

v Monitor the success of deployments by viewing responses in the Log view.
v Access the NEON GUIs (rules, formatter, and tester) in the Messages view.

For further information, and details of how to complete the tasks outlined here, see
MQSeries Integrator Using the Control Center.

Monitoring and analysis
When you have completed initial configuration and activation of your MQSeries
Integrator network, you need to be sure that it is running as efficiently as possible,
and that it is behaving as you want and expect.

The following topics describe how you can monitor your broker domain, and
analyze its activities to achieve these goals:
v “Problem determination”
v “Managing workload and performance” on page 137
v “System management” on page 138

Problem determination
When your broker domain is configured and activated, you might want to view
further information about how its operation is progressing, or you might need to
detect why it is not behaving as you expect.

Managing the network

134 MQSeries Integrator Introduction and Planning

|
|

|

MQSeries Integrator provides commands and facilities that help you understand
what is happening in your broker domain, and allow you to generate and review
more information when you need to. It provides two major sources of information:
v Traces generated by components
v Messages generated by commands

These facilities are fully described in the MQSeries Integrator Administration Guide.

You can also use information generated by other products used by MQSeries
Integrator (MQSeries, the databases, and ODBC) to help resolve problems.

To solve problems at the message flow level, see “Solving message flow problems
with the Debugger” on page 54 where the Debugger facility of the Control Center
is described.

Traces
MQSeries Integrator always records a minimum level of activity in the broker
domain. You can activate further traces of the major components (broker,
Configuration Manager, and User Name Server), of the execution groups and
message flows you create within brokers, and for command utility programs.

Every level of additional tracing will affect the performance of your system.

Local error log messages: MQSeries Integrator writes some events to local logs
supported by the operating system in which the errors are generated.

The logs used are:
v The UNIX syslog. You can extract readable syslog content to a file to view the

entries recorded. For further information on how to use the syslog, see the
MQSeries Integrator Administration Guide.

v The Windows NT event log (Application View).
You can access the records in this log using the Windows NT Event Viewer
service.
Although you cannot select whether MQSeries Integrator takes the action to
write these events to the Application event log, you can control the activity of
the event log itself, at the operating system level.

Records in the local log are written by all product components to record significant
events. For example, a record is written when you stop and start brokers, the
Configuration Manager, or the User Name Server. If an interaction with a database
fails, this is also recorded. In some situations (for example, when you start the
Configuration Manager), you are advised to view this information to ensure that
the action you have taken completes successfully. You can also use the contents of
this log for reference and error information when you are developing and running
message flows.

The local logs are of interest to your local operations department because they
provide initial information about failures and unexpected behaviors. The
information in these logs might also be requested to support the service trace
information generated at the request of your IBM Support Center.

Optional traces: Optional traces are provided by MQSeries Integrator:
v User tracing. You can trace brokers, execution groups, and message flows. You

can use this facility when you are looking at problems or unexpected behavior
exhibited by your message flows.

Monitoring the network

Chapter 10. Managing your MQSeries Integrator network 135

|
|
|

v Service tracing. You can activate a more comprehensive broker trace, and start
tracing for the Configuration Manager, User Name Server, and Control Center,
and for the command utility programs (for example, mqsicreatebroker). You are
recommended to use these traces only when directed to do so by your IBM
Support Center. If you encounter a problem that you have to report to IBM for
resolution, you are likely to be given instructions to create and access the service
logs to provide supporting information.

Controlling user trace: Four commands are provided to activate optional traces,
and to access and review the contents of the logs generated. These commands are:
v mqsichangetrace: to activate and deactivate trace, or to change trace settings (for

example, trace logfile size).
v mqsireporttrace: to report the current trace settings.
v mqsireadlog: to access and retrieve log file contents in XML format.
v mqsiformatlog: to format an XML log file (generated by mqsireadlog) for easier

interpretation.

For details of these commands, their usage, and other problem determination
techniques, see the MQSeries Integrator Administration Guide.

The Control Center also has an interface to start and stop tracing for execution
groups and message flows on specific brokers. You can use this method as an
alternative to the commands provided.

For example, if you do not have command line access on the system on which the
broker is running, the Control Center communicates with the remote broker to
achieve the same actions. The options available through this interface are a subset
of the support provided by the commands invoked on the command line on the
broker’s local system. However, you must have local access to be able to extract
the trace output from the system on which it is generated.

For details of trace options in the Control Center see MQSeries Integrator Using the
Control Center.

Tracing message flows: When you create a message flow, you can include a Trace
node. You can use the trace node to record additional information about the
message being processed. The information generated is written to the standard
trace logs or to a separate file.

Monitoring Control Center deployment: The Control Center displays additional
activity records in its Log view. These records provide information about the
success or failure of the actions taken by the user of the Control Center. For
example, if you deploy a message flow to a broker, a series of records are
displayed for you to check the progress of that deployment.

For more details about these options, see MQSeries Integrator Using the Control
Center.

Messages
When you invoke any of the commands that MQSeries Integrator supplies (for
example, mqsicreatebroker or mqsistart), responses are returned in the form of
messages. These messages have the prefix BIP and a numeric value. Some
messages are also generated by the installation and un-installation programs, and
by the Control Center. You can check the full meaning of these messages, and the
actions you can take, in the MQSeries Integrator Messages book.

Monitoring the network

136 MQSeries Integrator Introduction and Planning

|

For more information about MQSeries Integrator messages, see the MQSeries
Integrator Administration Guide.

Information available from other sources
In addition to MQSeries Integrator trace, you can refer to:
v The database messages and logs

You can determine additional information about MQSeries Integrator’s use of
databases from the messages issued by the database products, and from log
information generated by database trace activity.

v MQSeries messages and logs
You can access trace information generated by MQSeries in its log files. You can
also gain further information from MQSeries messages when these are returned
by MQSeries Integrator activities.

v MQSeries events
You can control the generation of event messages by MQSeries queue managers
in response to specific conditions. For example, you can request an event is
generated when a queue becomes full.

v ODBC traces
You can initiate trace for ODBC activity. On Windows NT, you must select the
Trace tab of the ODBC function available in the Control Panel. On UNIX, you
must modify the .odbc.ini file to activate the trace.

You can find more information about these additional sources in the MQSeries
Integrator Administration Guide.

Managing workload and performance
When you have configured and activated your broker domain, its performance will
depend very heavily on the level of activity it is supporting.

There are several areas you can consider in making best use of the resources you
have defined. These are:
v “Using MQSeries trusted applications”
v “Tuning message flow performance” on page 138

Using MQSeries trusted applications
When you create the broker using the mqsicreatebroker command, you can
configure it to run as an “MQSeries trusted application”. This causes the broker
and the MQSeries queue manager agent to run in the same process, thus
improving overall system performance. By default the broker does not run as a
trusted application.

This does not affect the operation of any MQSeries channel agents or listeners. If
you want to run these as trusted applications, you must follow the guidance in
MQSeries Intercommunication, in the section entitled “Running channels and
listeners as trusted applications”.

You must be aware that MQSeries places a number of restrictions on the operation
of a trusted MQSeries application. If you want to enable a broker as a trusted
application, you must first review these restrictions for applicability to your own
environment. They are documented in the MQSeries Application Programming Guide,
in the section entitled “Connecting to a queue manager using the MQCONNX
call”.

Monitoring the network

Chapter 10. Managing your MQSeries Integrator network 137

You must also consider:
v MQSeries trusted applications must run with an effective user ID and group ID

of mqm. You must therefore have created the broker to run under this user ID.
v You must be careful if you are deploying plug-in nodes, or parsers, or both.

Because the trusted application (the broker) is running in the same operating
system process as the queue manager, an ill-behaved plug-in could compromise
the integrity of the queue manager.
You are therefore recommended to develop all plug-in components with full
consideration of the restrictions. You are also advised to test plug-in components
in a non-trusted environment before deploying them in a trusted broker.

Tuning message flow performance
When you have assigned a message flow to a broker, you can modify the default
values of some of its properties to improve its throughput.

For more details of these properties, see MQSeries Integrator Using the Control Center
and the Control Center online help.

System management
MQSeries Integrator uses architected messages to publish events related to the
status, and change in status, of the brokers. These messages are published using
the reserved topic root $SYS in code page 1208.

The format of these messages, constructed in XML, is detailed in the MQSeries
Integrator Administration Guide. The messages cover configuration changes, state
changes, error notifications, and detailed subscription and topic information (for
example, a subscription registration).

You can develop or buy in system management adapters or customized
administrative applications. These subscribe to the system management topics
generated by MQSeries Integrator to receive information on the broker domain
activity.

Monitoring the network

138 MQSeries Integrator Introduction and Planning

Chapter 11. Enhancing your broker domain

This chapter discusses advanced options that extend the basic functions of the
broker and other components, and hence allow you to enhance your broker
domain.

Details of implementing the advanced functions discussed here are provided in the
MQSeries Integrator Programming Guide.

The topics covered are:
v “General guidance for writing plug-ins”
v “Writing your own message processing node types”
v “Writing your own parsers” on page 140

General guidance for writing plug-ins
MQSeries Integrator provides support for you to extend your system by writing
components which plug in to the framework provided by the product. The
“plug-ins” supported are message processing node types and message parsers. The
guidelines you need to understand and follow are mostly the same for both
plug-in types. The common considerations are discussed here, followed by sections
which indicate the special considerations for each plug-in type in turn.

A plug-in, or broker extension, must be written in the C programming language. It
must be distributed as a shared library. The file type of the shared library must be
set to the value required by the operating system on which it will run (these values
are given in the MQSeries Integrator Programming Guide).

If you plan to program using either of the supplied plug-in interfaces, you must
install the “Samples and SDK” optional component on at least one system. The
SDK provides the required header files and contains samples that you can modify
to your own requirements.

You can use your new node types or parsers on more than one operating system, if
you make them platform independent. You can achieve this by using the ANSI
standard C programming language, and avoiding any use of operating system
dependent functions.

Refer to the MQSeries Integrator Programming Guide for further information on:
v The programming interface for both plug-in types, including all the calls and

parameters
v How to create the icon, signature, and help files for the message processing node

type using the Plug-in SmartGuide in the Control Center
v How to build the required components for each interface
v The content of the supplied sample files

Writing your own message processing node types
You can create your own message processing node types to complement the
primitive node types provided by MQSeries Integrator.

© Copyright IBM Corp. 2000, 2001 139

|
|

You might want to do this, for example:
v If your messages need additional transformation not provided by the primitive

nodes. For example, you might need a currency converter node.
v If you want to write messages into a flat file on the local system for later

processing by another application or utility program.

You can use your new node types with existing primitive node types to create
message flows to achieve the processing your messages require.

MQSeries Integrator does not support plug-in input nodes. The MQInput node
must be used as the input node (or nodes) for most message flows, the MQeInput
node for MQSeries Everyplace message flows, and the SCADAInput node for
SCADA message flows. You can augment the function provided by every other
node.

Writing your own parsers
Message parsers are invoked by the processes within a broker to interpret the
bit-stream forming a message and its header (or headers). MQSeries Integrator
provides a number of message parsers that handle a wide range of messages and
headers, and cover the majority of formats that are expected to be processed within
a broker domain. These default parsers are described in “Message parsers” on
page 59.

However, you might need to use messages that are not covered by these default
parsers. To allow for this possibility, MQSeries Integrator provides an external
interface that enables you to supply your own parsers. These can be invoked by
the broker processes whenever a message of this new type is received, and can
work in the broker alongside the default parsers.

When you define a message, one of its attributes is the message domain. This is
the value that tells the broker which parser must be invoked to interpret the
bit-stream.

Writing message processing nodes

140 MQSeries Integrator Introduction and Planning

|
|
|
|
|

Part 5. Appendixes

© Copyright IBM Corp. 2000, 2001 141

142 MQSeries Integrator Introduction and Planning

Appendix A. Planning for migration and integration

This chapter helps you plan for migration to MQSeries Integrator Version 2.0.2
from compatible IBM offerings. It gives you an overview of the tasks involved, and
provides references to the detailed information you need to complete these tasks.

Refer to the section giving details for your existing product:
v “MQSeries Integrator Version 1”
v “MQSeries Publish/Subscribe” on page 147

If you are migrating from MQSeries Integrator Version 2.0 or Version 2.0.1 to
Version 2.0.2, see “Release to release migration” on page 31.

MQSeries Integrator Version 1
Migration to MQSeries Integrator Version 2.0.2 is supported from the following
products:
v MQSeries Integrator Version 1.02

v MQSeries Integrator Version 1.1

Migration information can be found in the MQSeries Integrator Administration Guide.

The tasks you must plan for fall into two broad categories:
v “Installation”:

This identifies tasks you must complete before and immediately after installation
of MQSeries Integrator Version 2.0.2.
These tasks are fully described in the MQSeries Integrator Installation Guide for
your product.

v “Run-time” on page 144:
This identifies tasks you must complete during normal operation to enable the
continued use of your Version 1 resources.
These tasks are fully described in either the MQSeries Integrator Administration
Guide, or in MQSeries Integrator Using the Control Center.

Installation
You should consider these areas when you plan the installation of MQSeries
Integrator Version 2.0.2:
v “Backing up configuration files”
v “Preserving your MQSeries Integrator Version 1 rules and formats” on page 144
v “Uninstallation of MQSeries Integrator Version 1” on page 144

Backing up configuration files
MQSeries Integrator Version 1 uses a number of configuration files to control
various aspects of its operation. Some of these files are reused by MQSeries
Integrator Version 2.0.2, and can be updated in some circumstances.

2. It is also possible to upgrade from NEON’s MQIntegrator product. The tasks required are identical to those specified for
migrating from MQSeries Integrator Version 1.0. However, the presence of this product is not detected by the MQSeries Integrator
Version 2.0.2 installation program.

© Copyright IBM Corp. 2000, 2001 143

|
|

|

You are therefore advised, but not forced, to backup your MQSeries Integrator
Version 1 configuration files.

For details of configuration files, see the MQSeries Integrator Installation Guide for
your product.

Preserving your MQSeries Integrator Version 1 rules and formats
All the rules and formats you have defined in MQSeries Integrator Version 1 can
be reused by MQSeries Integrator Version 2.0.2. The message processing nodes
NEONRulesEvaluation, NEONTransform, and NEONMap (that supersede the
NEONRules and NEONFormatter nodes) provide the NEONRules and
NEONFormatter function in MQSeries Integrator Version 2.0.2 and can reproduce
the MQSeries Integrator Version 1.1 behavior.

If you have rules and formats defined by any previous version of MQSeries
Integrator (including Version 1.1 and Version 2.0.1) that you want to reuse, you
must export this data from your previous version (using the tools supplied with
that version) then import it into MQSeries Integrator Version 2.0.2 (using the tools
supplied with V2.0.2). This will convert the data into a format suitable for use with
MQSeries Integrator V2.0.2.

Uninstallation of MQSeries Integrator Version 1
You must remove all previous versions of MQSeries Integrator (versions 1.0, 1.1,
2.0 and 2.0.1) before you install Version 2.0.2.

Run-time
You must consider these operational aspects when planning your migration from
MQSeries Integrator Version 1 to MQSeries Integrator Version 2.0.2. These are:
v “NEON rules and formats”
v “Setting up a message flow which emulates the functionality of the Version 1

Rules engine” on page 145

NEON rules and formats
MQSeries Integrator Version 2.0.2 provides message parsers that interpret the
NEON message formats, and these are used by any message processing node that
detects a NEON message has been received. Therefore interpretation of messages
in NEON formats can be provided to any message processing node, not just the
NEONRulesEvaluation, NEONTransform, and NEONMap nodes (which supersede
the NEONRules and NEONFormatter nodes).

Update of message content is provided by the NEONTransform and NEONMap
nodes (which supersede the NEONFormatter node) and the Compute node.

Access to the database containing existing definitions is defined by the neonreg.dat
configuration file (it was MQSIruleng.mpf in MQSeries Integrator Version 1). The
MQSeries Integrator Version 2.0.2 code accesses the configuration file by
interrogating the environment variable NN_CONFIG_FILE_PATH. You must set
this variable to point to the default file supplied by MQSeries Integrator Version
2.0.2.

Note that:
v You can modify the version given in the examples directory
v You can modify the version created by the NEONRules and NEONFormatter

Support component when the setup program inst_db is run
v On Windows NT you must restart your system to enable these changes

MQSeries Integrator Version 1

144 MQSeries Integrator Introduction and Planning

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|

|

|
|

|

You can encrypt the neonreg.dat file to protect the password. See the NEONRules
and NEONFormatter Support for MQSeries Integrator System Management Guide for
more details.

You must be aware that the NEONRules and NEONFormats defined by the
NEONRules and NEONFormatter GUI tools are not distributed automatically to all
brokers that need them, as those defined by the MQSeries Integrator Version 2.0.2
Control Center are. You must configure your system so that every broker running a
message flow that accesses your NEONRules and NEONFormats has access to the
database that contains these definitions. It should also be noted that onle one rules
and formatter database can be accesssed per machine. This means that if two
brokers are installed in the same machine they must both access the same rules
and formatter database — there can only be one neonreg.dat on a particular
machine.

MQSeries Integrator Version 2.0.2 provides full support for MQRFH headers, as
well as MQRFH2 headers. If you are developing new applications, you are
recommended to use the new MQRFH2, which offers superior function.

For further details of these tasks, see the MQSeries Integrator Administration Guide.

Enhancing existing rules and formats: MQSeries Integrator Version 2.0.2 provides
support for you to continue to develop new and modify existing rules and formats.
It does this by installing the NEONRules and NEONFormats graphical utility
programs.

You can therefore continue to maintain existing data, and can add new definitions
to your existing set. Refer to the NEONRules and NEONFormatter Support for
MQSeries Integrator User’s Guide for information on using these user interfaces.

The NEON Formats are represented in the Control Center under the Message Sets
tab. This is so that NEON Formats can be used as Inputs or Outputs for the
purpose of defining field mappings in the Compute or Database properties panels.
Although the NEON Formats may be viewed from the Message Sets tab, they may
not be edited, and you are recommended to use the NEONFormatter GUI (which
may be launched from the Control Center) for viewing as well as editing existing
NEON Formats or creating new ones.

Setting up a message flow which emulates the functionality of
the Version 1 Rules engine
To provide continued support for your existing MQSeries Integrator Version 1
applications, you must deploy an MQSeries Integrator Version 2.0.2 message flow
that emulates the function of the MQSeries Integrator Version 1 product daemon.

Default MQSeries Integrator Version 1 message flows are provided for your use.
The message flow for Version 2.0.2 includes the NEONRulesEvaluation message
processing node (which supersedes the NEONRules node)3. The default message
flow for Version 2.0.1 and earlier includes the NEONRules message processing
node. In addition, they include:
v An MQInput node, that reads input messages from an input queue and delivers

them to the NEONRulesEvaluation or the NEONRules node.

3. The message flows only emulate the function of an unmodified MQSeries Integrator Version 1.1 daemon. If you have modified
the daemon in your MQSeries Integrator Version 1.1 product, these message flows will not provide identical function. You must
also modify these message flows to recreate the modifications you have made to the daemon.

MQSeries Integrator Version 1

Appendix A. Planning for migration and integration 145

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

v Three MQOutput nodes, that handle messages for Output, Failure, and NoHit
processing.

Before you deploy either default message flow, you must edit the node properties
of the MQInput and MQOutput nodes to align with your MQSeries Integrator
Version 1 use of queues.

You must also ensure that any broker to which you assign this message flow is
able to access the database in which your formats and rules are defined.

You can also use NEON format messages with other message processing nodes
within a message flow. You must define a message flow with the message
processing nodes providing the function your message processing requires. The
nodes detect the presence of a NEON header and invoke the NEON parser to
interpret the message.

If you want to change the content of the message, you must use the
NEONTransform node (which supersedes the NEONFormatter node) or the
NEONMap node. You can also use the Compute node to write NEON format
messages.

You can also modify the default message flow supplied to include additional
function. For example, you can cause all messages to be stored in a warehouse by
adding a Warehouse node into the message flow prior to the
NEONRulesEvaluation node.

If you include the NEONRulesEvaluation message processing node in your
message flow, you can continue to use existing subscriptions with that message
flow. You can also continue to use the NEONRules user interface to modify
existing and create new subscriptions. Or you could replace the node handling
messages destined for the NoHit queue with one that updates the message and
returns it to the originator.

MQSeries Integrator Using the Control Center provides details on how to define,
modify, assign, and deploy message flows.

You can increase the throughput of NEON messages by assigning the same
message flow to multiple execution groups on a single broker, or to multiple
brokers, or both. MQSeries Integrator Version 2.0.2 implements synchronization
controls around the NEON message processing nodes to ensure the integrity of the
multiple flows.

User exits: You can continue to use your existing MQSeries Integrator Version 1.1
user exits with MQSeries Integrator Version 2.0.2 message processing nodes. The
source of your exit programs can be used unchanged. However, you must rebuild
them to use the new dynamic link interface that is required by the MQSeries
Integrator Version 2.0.2 modules that provide the MQSeries Integrator Version 2.0.2
function. For further information see the NEONRules and NEONFormatter Support
for MQSeries Integrator User’s Guide and the MQSeries Integrator Administration
Guide.

If you are migrating from MQSeries Integrator Version 1.0, your user exits must be
modified to be compatible with MQSeries Integrator Version 1.1 before they can be
used with MQSeries Integrator Version 2.0.2.

MQSeries Integrator Version 1

146 MQSeries Integrator Introduction and Planning

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

MQSeries Publish/Subscribe
MQSeries Publish/Subscribe is supported software that provides publish/subscribe
application support for MQSeries applications. It is available from the IBM Web
site, and can be installed on several MQSeries Messaging products servers,
including:
v AIX
v HP-UX
v Sun Solaris
v Windows NT

You can find latest details of this product, including how to download the product
code, on the following web site:
http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html

If you plan to create a heterogeneous network including MQSeries Integrator
brokers and MQSeries Publish/Subscribe brokers, you must ensure your systems
have the appropriate level of MQSeries to run your brokers.
v MQSeries Version 5.0. For MQSeries Publish/Subscribe brokers, you must install

CSD7.

Note: You cannot run MQSeries Integrator brokers on MQSeries Version 5.0 at
any service level. This option is only valid for MQSeries
Publish/Subscribe brokers.

v MQSeries Version 5.1. For MQSeries Publish/Subscribe brokers, you must install
CSD3 on Windows NT, or CSD1 on AIX and Sun Solaris platforms.

Note: CSD6 is supplied with the MQSeries Integrator Version 2.0.2 package: you
can apply this service to provide the MQSeries upgrade required for the
MQSeries Publish/Subscribe brokers.

v MQSeries Version 5.2. This is the minimum level for the HP-UX platform.

If you do not upgrade MQSeries to these specified service levels, it is possible that
some publications sent by MQSeries Integrator brokers will be wrongly put to the
dead-letter queue (DLQ) by an MQSeries Publish/Subscribe neighbor.

Scenarios for migration and integration
If you are already using MQSeries Publish/Subscribe, you can take advantage of
the improved message processing function provided by MQSeries Integrator by
integrating your two networks of brokers and creating a heterogeneous network.

You can also migrate individual MQSeries Publish/Subscribe brokers to create
replacement MQSeries Integrator brokers, with support for their client applications
intact.

These two possibilities offer you a number of advantages:
v Publications from within the MQSeries Publish/Subscribe network can be

targeted by MQSeries Integrator subscribers. This includes messages originating
in environments not yet supported by MQSeries Integrator.

v Message flows can be created and deployed on MQSeries Integrator brokers to:
– Analyze the information that is flowing around your enterprise.
– Invoke additional business logic dependent upon the content of the

publications.

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 147

|

|

– Consolidate the information within your enterprise in the form of new
publications, that can then be republished as a series of additional topics
available to both MQSeries Integrator and MQSeries Publish/Subscribe
clients.

There are three possible scenarios for exploiting the two networks:
1. You can choose to have two independent broker networks, and therefore have

two separate broker domains for publish/subscribe applications. This scenario
is described in “Scenario 1: running two independent broker networks” on
page 160.

2. You can connect the two networks to allow publications and subscriptions to
flow throughout the integrated network. Further details are provided in
“Scenario 2: creating and operating a heterogeneous network” on page 161.

3. You can selectively and gradually migrate individual brokers from MQSeries
Publish/Subscribe to MQSeries Integrator Version 2.0.2. For more guidance on
this option, see “Scenario 3: migrating MQSeries Publish/Subscribe brokers” on
page 162.

Before you can make this choice, and create your migration plan, you must be
aware of the differences in the two products, described in “Product differences”.

Product differences
There are differences in the support provided by the two products that you must
consider when you plan how you will integrate your two networks. These are
discussed in the following sections:
v “Message formats”
v “Streams” on page 151
v “Stream authority” on page 154
v “Topics” on page 156
v “Wildcards” on page 156
v “Default topic routing” on page 157
v “Retained publications” on page 157
v “Metatopics” on page 157
v “Subscription points” on page 158
v “Content-based filtering” on page 159
v “Throughput” on page 159

Message formats
You are recommended to use the MQRFH2 header for new client applications
developed for the MQSeries Integrator broker. These applications can then access
all of the function provided by MQSeries Integrator.

Existing MQSeries Publish/Subscribe applications using the MQRFH header are
also supported by MQSeries Integrator, but function is limited to that provided by
MQSeries Publish/Subscribe. MQSeries Publish/Subscribe does not support the
MQRFH2 format. Clients connected to MQSeries Publish/Subscribe brokers must
use the MQRFH format.

However, client applications that need to communicate with one another using
publish/subscribe can do so regardless of the format of the messages they are
using: MQSeries Integrator provides automatic conversion to ensure the subscriber
receives the message in the desired format.

MQSeries Publish/Subscribe

148 MQSeries Integrator Introduction and Planning

Table 8 shows the mapping between equivalent fields in the MQRFH and
MQRFH2 headers.

Table 8. MQRFH and MQRFH2 mapping

MQRFH field name MQRFH2 field name

MQPSCommand Command

MQPSDelOpts DelOpt

MQPSPubOpts PubOpt

MQPSPubTime PubTime

MQPSQMgrName QMgrName

MQPSQName QName

MQPSRegOpts RegOpt

MQPSSeqNum SeqNum

MQPSTopic Topic

All the MQRFH2 fields shown are contained in a <psc> folder.

Field names that are not included in Table 8 do not have a common meaning, or
are only valid in one header or the other. Field names which are not recognized, or
not appropriate to the other format, are not copied. For example, the following
name-value area of an MQRFH:
MQPSCommand Publish
MQPSPubOpts RetainPub
MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM
MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

is converted to this MQRFH2 folder:
<psc>
<Command>Publish</Command>
<PubOpt>RetainPub</PubOpt>
<Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
</psc>

Using these mapping rules, MQSeries Integrator ensures that MQRFH2
publications can still be received by MQRFH subscribers, and MQRFH publications
can be received by MQRFH2 subscribers.

Content-filters can also be specified by MQRFH2 subscribers even if the topic that
they are subscribing to is one published in MQRFH format by an MQSeries
Publish/Subscribe client, although there is some limit to compatibility. For more
information, see “Content-based filtering” on page 159.

Table 9 on page 150 summarizes the valid options for clients using the different
message formats.

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 149

Table 9. Summary of message option support

Message Option Name Option Value Support

All requests
(client to broker)

MQPSCommand DeletePub
DeregPub
DeregSub
Publish
RegPub
RegSub
ReqUpdate

yes
yes1

yes
yes
yes1

yes
yes

MQMD.Format MQFMT_PCF
MQFMT_RF_HEADER

no
yes

MQMD.Report MQRO_PAN
MQRO_NAN

yes
yes

MQMD.MsgType MQMT_REQUEST
MQMT_DATAGRAM

yes
yes

MQMD.MsgId yes

MQMD.CorrelId yes4

MQMD.ReplyToQ yes

MQMD.ReplyToQMgr yes

MQPSStreamName prefixed on topic3

MQPSTopic yes

All requests except
Delete Publication

MQPSQMgrName yes

MQPSQName yes

MQPSRegOpts CorrelAsId yes

Delete Publication MQPSDelOpts Local yes5

Deregister Publisher1 MQPSRegOpts DeregAll yes

Deregister Subscriber MQPSRegOpts DeregAll yes

Publish MQMD fields As specified by MQPS2 yes

MQPSRegOpts Anon yes7

Local yes5

DirectReq yes1

MQPSPubOpts NoReg yes1

RetainPub yes (set by publisher)

IsRetainedPub yes (set by broker)

OtherSubsOnly yes

MQPSPubTime yes

MQPSSeqNum yes

MQPSStringData1 yes

MQPSIntData1 yes

Register Publisher1 MQPSRegOpts Anon yes7

Local yes5

DirectReq yes1

Register Subscriber MQPSRegOpts Anon yes7

Local yes5

NewPubsOnly yes

PubOnReqOnly yes

InclStreamName no3

InformIfRet yes

MQSeries Publish/Subscribe

150 MQSeries Integrator Introduction and Planning

Table 9. Summary of message option support (continued)

Message Option Name Option Value Support

All responses
(broker to client)

MQPSCompCode new values added6

MQPSReason new values added6

MQPSReasonText values may added6

MQPSCommand command to which this is
a response

Notes:
1. This option is supported for migration purposes.
2. MQPS is MQSeries Publish/Subscribe.
3. The stream name parameter is effectively prefixed on the topic. The stream name can be deduced from the queue name if the

property implicitStreamNaming of the Publication node is set (see “Streams”).
4. The client identity is determined as the concatenation of the queue manager name, the queue name, and optionally the

correlation id (when the correlation ID as identity option is set). The application identifier is thus
“MQPSQMgrName:MQPSQName[:correlId]”. The default values specified by MQSeries Publish/Subscribe are used if these
values are not present in a message.

5. The behavior of this option differs. See the MQSeries Integrator Programming Guide for an explanation of this option.
6. New values have been added. See the MQSeries Integrator Programming Guide for details.
7. Ignored by MQSeries Integrator Version 2.0.2.

Special rules also apply for MQRFH2 subscribers if the information is being
published on an MQSeries Publish/Subscribe stream other than the default,
SYSTEM.BROKER.DEFAULT.STREAM. These rules are summarized in Table 10 on
page 152.

Streams
MQSeries Publish/Subscribe primarily use streams as a means to partition the
topic name space. Sets of related topics could be grouped together into separate
streams allowing different security controls to be applied, and the publishing
workload of the broker to be better balanced.

MQSeries Integrator provides more flexible controls to achieve both of these
behaviors. The concept of a stream is only supported for MQRFH application
compatibility.

Stream names now only have the partitioning effect on the topic name space.
MQSeries Integrator provides more flexible security controls that allow
authorization to be applied to an individual topic level. Also, the publishing
workload of the broker can be more easily controlled by creating additional
instances of publication message flows either serving the same or different input
queues.

MQSeries Integrator still allows MQRFH client applications to specify an
MQPSStreamName command parameter in their subscriptions and publications.
However, the stream name is only used to modify the topic in order to preserve
the partitioning characteristic of MQSeries Publish/Subscribe.

When the stream-name associated with a message is set to something other than
SYSTEM.BROKER.DEFAULT.STREAM, the message is processed as if the topic (or
topics) mentioned within the message had been prefixed with the string
“$SYS/STREAM/<streamname>/”. That is, a subscription to Topic1 that specifies
a stream name of StreamX is processed as if the subscription had been made to
topic “$SYS/STREAM/StreamX/Topic1”.

MQRFH2 publishing and subscribing applications can still target stream-related
topics, even though they themselves are not allowed to specify a stream name in

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 151

the messages they send to the MQSeries Integrator broker. To do this, they must
prefix the topics with the appropriate stream prefix.

For example, an MQRFH2 subscriber must specify topic
“$SYS/STREAM/STOCK.STREAM/IBM/Latest” in order to subscribe to topic
“IBM/Latest” that is published on stream STOCK.STREAM within the MQSeries
Publish/Subscribe network.

MQSeries Publish/Subscribe only allows a stream-related publication to be sent to
a queue with the same name as the stream. However, MQSeries Integrator allows
publishing clients to send their publications to any input queue in a message flow.
MQRFH applications choosing explicitly to specify a stream name parameter
within a publication can send it to any publication queue being serviced by the
MQSeries Integrator broker. The queue no longer needs to have the same name as
the stream. However, this behavior could affect the order in which publications are
received, and you must consider the importance of ordering for your applications.
For more details about ordering, see “Throughput” on page 159.

Each Publication node has an Implicit Stream Naming property that defaults to true.
This default option results in behavior identical to that in MQSeries
Publish/Subscribe when an MQRFH publication does not contain an explicit
stream name. If this property is false, and the publication contains no explicit
stream name, SYSTEM.BROKER.DEFAULT.STREAM is assumed.

Table 10 summarizes the options available to both MQRFH and MQRFH2 client
applications publishing messages to either the default stream, or a specific
MQSeries Publish/Subscribe stream. An example stream name of StreamX is used
to illustrate the options.

Table 10. MQRFH and MQRFH2 client application options
MQRFH
publisher

MQRFH2
publisher

default stream StreamX default stream StreamX
MQRFH subscriber S1,P1 S2,P2 S1,P3 S2,P4
MQRFH2 subscriber S3,P1 S4,P2 S3,P3 S4,P4

Subscriber notes:
S1 Subscriber subscribes either without a stream name or with stream name
“SYSTEM.BROKER.DEFAULT.STREAM”.
S2 Subscriber subscribes with stream name “StreamX”.
S3 Subscriber subscribes on topic without adding “$SYS/STREAM/<streamname>/”.
S4 Subscriber subscribes prefixes topic with “$SYS/STREAM/StreamX/”.

Publisher notes:
P1 Publisher publishes on any queue specifying stream name
“SYSTEM.BROKER.DEFAULT.STREAM”. or publishes without specifying a stream name
on any queue with the Implicit Stream Naming property set to false.
P2 Publisher publishes on any queue specifying stream name “StreamX”, or publishes
without specifying a stream name on queue “StreamX” with the Implicit Stream Naming
property set to true.
P3 Publisher publishes on any queue without adding the prefix
“$SYS/STREAM/<Stream>/” to the topic.
P4 Publisher publishes on any queue and adds the prefix “$SYS/STREAM/StreamX/” to
the topic.

MQSeries Publish/Subscribe

152 MQSeries Integrator Introduction and Planning

Note: The “$SYS/STREAM/<streamname>/” prefix is removed from all topics in
an MQRFH2 publication when it is delivered to an MQRFH subscriber.

Streams and neighbor brokers: In an MQSeries Publish/Subscribe network it is
not mandatory for all brokers to support the same set of streams as its neighbors.
If a broker does not support a stream that is supported by one of its neighboring
brokers, publications associated with the uncommon stream are simply not
available to clients at that broker.

When an MQSeries Integrator broker joins the network, it acts as if it supports all
the streams of its neighboring MQSeries Publish/Subscribe broker. This means that
clients of the MQSeries Integrator broker are able to target publications for any
stream supported by any of its MQSeries Publish/Subscribe neighbors.

However, to make these publications available, you must define the stream queues,
and define and deploy the message flows that will support them, to the MQSeries
Integrator broker.

The effects of adding an MQSeries Integrator broker into a multi-stream MQSeries
Publish/Subscribe environment are illustrated by the example in Figure 20. The
MQSeries Integrator broker, NEWBROKER, has been used to join MQSeries
Publish/Subscribe brokers, BROKERA, and BROKERB.

The default stream queue SYSTEM.BROKER.DEFAULT.STREAM is always
supported by every broker in an MQSeries Publish/Subscribe network, and must
be defined at every MQSeries Integrator broker in a heterogeneous network. You
must also define and deploy a message flow at each broker to service this queue.

When an MQSeries Integrator broker is integrated into an MQSeries
Publish/Subscribe network, and links two or more MQSeries Publish/Subscribe
brokers that share common streams, you must define the common stream queues,
and define and deploy the message flows that service them, to the MQSeries
Integrator broker.

For example, the MQSeries Integrator broker NEWBROKER shown in Figure 20
must have a stream queue defined for BULLETIN.STREAM. It must also have a
message flow defined and deployed to provide a publication service for that
queue.

You only need to define stream queues and associated message flows to the
MQSeries Integrator broker for the other streams shown in Figure 20 if it is
possible that one of its MQSeries Publish/Subscribe neighbors will send a message
to one of these queues. A message will be sent if one of the following occurs:
1. A subscription to a publication on one of these streams is registered by a client

of the MQSeries Integrator broker.

BROKERBBROKERA

Streams:
BULLETIN.STREAM
RESULTS.STREAM
STOCK.STREAM
SYSTEM.BROKER.DEFAULT.STREAM

Streams:
BULLETIN.STREAM
SYSTEM.BROKER.DEFAULT.STREAM
WEATHER.STREAM

NEWBROKER

Figure 20. A heterogeneous network

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 153

2. A DeletePublication command for the stream is issued by a client anywhere
within the broker network.

If you are unsure if the above cases might occur, you are recommended to create
stream queues and message flows in the MQSeries Integrator broker for every
stream that is supported by an MQSeries Publish/Subscribe neighbor. If you do
not do this, you might see the following results:
v Messages sent from MQSeries Publish/Subscribe brokers will be put to the

dead-letter queue (DLQ) of the MQSeries Integrator broker if the stream queue
does not exist on that broker.

v Messages will build up on stream queues on the MQSeries Integrator broker if
the stream queue exists but there is no message flow deployed to service it.

Streams and migration: When an MQSeries Publish/Subscribe broker is migrated
to an MQSeries Integrator broker (using the migmqbrk command), the streams
supported at the time of the migration are replicated exactly in the MQSeries
Integrator broker: no subsequent changes can be made (that is, no streams can be
added or removed from this replicated set). The migration is not complete until
you have created and deployed message flows that process all of these streams.

Stream authority
In MQSeries Publish/Subscribe, all publish and subscribe authority checks are
performed against the stream queue. Publishing applications need authority to put
messages to the stream queue. The MQSeries Publish/Subscribe broker also checks
the authority of subscribing applications which require browse authority on the
stream queue. A subscribing application also needs to have put authority for the
queue that it nominated to receive its publications.

The same check is made by MQSeries Integrator brokers, but the subscribe
authority (browse) is no longer checked. Instead, MQSeries Integrator provides a
more granular security model in which both publish and subscribe access can be
defined in a hierarchical manner right down to an individual topic level. You can
implement this model by creating Access Control Lists (ACLs) using the Control
Center. For more information about ACLs, refer to MQSeries Integrator Using the
Control Center.

Before you migrate an MQSeries Publish/Subscribe broker to a replacement
MQSeries Integrator broker, or migrate your MQSeries Publish/Subscribe
applications to run on MQSeries Integrator, you must consider the security
implications:
v Publishing applications are subject to the same checks even if your broker is not

running with topic security enabled, because the authority to put a message to
the stream or publication queue continues to be checked by MQSeries.
However, stream publications can be processed by MQSeries Integrator on any
input queue, because publishers no longer need to put to a queue with the same
name as the stream. You are therefore recommended to set up equivalent ACLs
for all streams using their corresponding topic level qualifiers

v The MQSeries Integrator broker does not check that subscribing applications
have browse authority on the stream queue. Instead, MQSeries Integrator
models streams by prefixing all topics that aren’t part of the default stream with
a unique prefix, $SYS/STREAM/<streamname>/. This maintains the
partitioning characteristics of streams and allows stream-specific ACLs to be set
up. Topics in the default stream are not altered by the broker, therefore the root
topic can be used to specify authorities for default stream topics.

MQSeries Publish/Subscribe

154 MQSeries Integrator Introduction and Planning

Figure 21 illustrates the stream authorities that are required. This example assumes
that you have updated the default ACL on the topic root for principal PublicGroup
with authority for publish, subscribe, and persistent delivery all set to deny.

Using this example, assume that the following groups are defined:
v PDefault: the group of users authorized to publish on the default stream
v SDefault: the group of users authorized to subscribe to the default stream
v PStreamX: the group of users authorized to publish on StreamX
v SStreamX: the group of users authorized to subscribe to StreamX
v PStreamY: the group of users authorized to publish on StreamY
v SStreamY: the group of users authorized to subscribe to StreamY

You must grant and deny authorities by setting up ACLs as follows:
1. PDefault must be granted publish authority on the root, SDefault must be

granted subscribe authority on the root.
2. PDefault must be denied publish authority on $SYS/STREAM/, SDefault must

be denied subscribe authority on $SYS/STREAM/.
These settings ensure that publishers and subscribers on the default stream are
unable to publish on or subscribe to other streams automatically (that is,
without an explicit ACL that overrides that setting).

3. PStreamX must be granted publish authority on $SYS/STREAM/StreamX/,
SStreamX must be granted subscribe authority on $SYS/STREAM/StreamX/.
These settings override any setting on parent topics and limit publish and
subscribe activity to users within these specific groups.

4. PStreamY must be granted publish authority on $SYS/STREAM/StreamY/,
SStreamY must be granted subscribe authority on $SYS/STREAM/StreamY/.
These settings override any setting on parent topics and limit publish and
subscribe activity to users within these specific groups.

If you wanted to set up exceptions to this situation, you can do so by introducing
an ACL at the appropriate point. For example, if you wanted to grant authority to
publishers to the default stream (PDefault) to publish on StreamX, you must create
an explicit ACL at point (3) to grant that authority, thus overriding the denial at
point (2). In this scenario, users in PDefault could still not publish on StreamY.

(2) “$SYS/STREAM/”

(3) “$SYS/STREAM/StreamX/” (4) “$SYS/STREAM/StreamY/”

(1) “ ” (root topic)

Figure 21. Stream authorities

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 155

Topics
In MQSeries Publish/Subscribe, all publications must be tagged with an arbitrary
character string called a topic. This defines the subject matter of the publication.
MQSeries Publish/Subscribe recommends, though does not enforce, that topic
strings are structured into a number of fields or levels using the forward slash,
“/”, as a delimiter.

MQSeries Integrator publications also have an associated topic, and the topic
structure is delimited by the forward slash character. Therefore, if your existing
applications follow the MQSeries Publish/Subscribe recommendation, they are
better positioned to exploit the function provided by MQSeries Integrator, which
allows the structure of the topic to be externalized.

MQSeries Integrator allows you to control users’ authority to publish on, and
subscribe to, any topic at any level within the topic structure.

Wildcards
Wildcards can be used by subscribing applications to broaden the scope of
publications they register an interest in. By specifying a wildcard, the subscriber is
specifying a general pattern of the topics they are interested in, rather than an
explicit topic.

This function is provided by both MQSeries Publish/Subscribe and MQSeries
Integrator. However, MQSeries Integrator provides a different set of wildcards that
allow a more extensive and flexible use of wildcards by subscribers.
v MQSeries Publish/Subscribe wildcards:

– An asterisk (*) matches zero or more characters.
– A question mark (?) matches exactly one character.
– The percent sign (%) can be used as an escape character to use an “*”, a “?”,

or a “%” character within a topic.
v MQSeries Integrator wildcards:

The wildcard characters are used to match specific levels within the structured
topic. The characters used are:
– The multi-level wildcard (the character #), that matches any number of levels

at the start or end of the topic.
– The single-level wildcard (the character +), that matches a single level within

the topic.

The full range of function of the MQSeries Integrator wildcards are only available
to MQRFH2 clients. Subscriptions made by MQRFH clients to MQSeries Integrator
brokers for topics that contain either of the MQSeries Integrator wildcards are
rejected with the MQRCCF_TOPIC_ERROR reason code.

Applications using MQRFH and connecting to MQSeries Publish/Subscribe
brokers in a heterogeneous network are therefore recommended not to publish on,
or subscribe to, topics containing either the multi-level wildcard (#) or single-level
wildcard (+) characters. MQSeries Publish/Subscribe brokers do not police this: if
your applications specify the MQSeries Integrator wildcards in topics when they
publish or register a subscription in a heterogeneous broker network, these
publications and subscriptions are ignored by MQSeries Integrator brokers within
the network. You are therefore strongly advised to review and if necessary change
the topics being used within an MQSeries Publish/Subscribe implementation
before adding an MQSeries Integrator broker to the network.

MQSeries Publish/Subscribe

156 MQSeries Integrator Introduction and Planning

When applications that use MQRFH2 use the MQSeries Integrator wildcards to
target multiple publications from within the MQSeries Publish/Subscribe network,
wildcard mapping is performed. In most cases, the broker replaces both the
multi-level wildcard and single-level wildcard characters with an asterisk. This
does not provide an exact match for either of the MQSeries Integrator wildcards,
but ensures a superset of the required publications are sent to the MQSeries
Integrator broker. The MQSeries Integrator broker evaluates the “#” and “+”
wildcards to match the correct publications.

For example, the topic “employee/+/development” is propagated as
“employee/*/development” to an MQSeries Publish/Subscribe neighbor. This
might cause redundant publications to be sent to the MQSeries Integrator broker
from its MQSeries Publish/Subscribe neighbor. However, none of these would be
sent to the original client when the MQSeries Integrator evaluates the original
subscription. The exception to this is a subscription to the topic “+” which is never
propagated: it cannot be represented as an “*” because this is the topic that is
propagated if a subscription to topic “#” is made at the MQSeries Integrator
broker.

You are recommended not to specify the MQSeries Publish/Subscribe wildcard
characters in MQRFH2 client subscriptions. If you do specify one or more, they are
assumed by MQSeries Integrator to be part of the topic, and are therefore prefixed
by the escape character (%) before the subscription is sent on to an MQSeries
Publish/Subscribe neighbor.

For example, if your MQRFH2 client subscribes with a topic of
“USA/Alaska*/Juneau?”, this is modified and passed to an MQSeries
Publish/Subscribe broker neighbor as “USA/Alaska%*/Juneau%?”.

If an application using MQRFH connects to an MQSeries Integrator broker,
MQSeries Integrator emulates the behavior of the MQSeries Publish/Subscribe
wildcard characters * and ? using a mixture of its own wildcard characters and
filter expressions. Existing MQRFH applications that subscribe to an MQSeries
Integrator broker therefore receive the same publications as they would receive if
they subscribe to an MQSeries Publish/Subscribe broker.

Default topic routing
In MQSeries Integrator, the Topic property of the MQInput node can be used to
route messages that do not contain publish/subscribe parameters. This feature
does not apply to MQRFH subscribers.

MQRFH subscribers expect to receive publications, with a well-formed MQRFH
header, from both MQSeries Publish/Subscribe and MQSeries Integrator clients. In
the latter case, the original MQRFH2 header is converted as described in Table 8 on
page 149. However, if the message does not contain publish/subscribe information
in either an MQRFH or an MQRFH2 header, the default topic will not be used to
send publications to an MQRFH subscriber.

Retained publications
In MQSeries Publish/Subscribe, retained publications are published as
non-persistent messages and are therefore automatically deleted when the broker’s
queue manager is restarted. In MQSeries Integrator, retained publications are
persistent and are preserved across queue manager restarts.

Metatopics
MQSeries Publish/Subscribe brokers provide information about publishers and
subscribers via a special set of topics called metatopics. These topics start with the

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 157

“MQ/S/” or “MQ/SA/” prefix, and are subscribed to by two categories of
applications, administration programs and clients.

MQSeries Integrator does not provide equivalent metatopics, and therefore any
existing program (administration or client) that subscribes to MQSeries
Publish/Subscribe metatopics cannot work with an MQSeries Integrator broker.
However, MQSeries Integrator does publish information about subscription events
using its own set of system topics. These are described in the MQSeries Integrator
Administration Guide.

The following considerations apply for the two categories of application in the
MQSeries Integrator environment:
v Administration programs such as the amqspsd sample use the MQSeries

Publish/Subscribe metatopics to display subscription information. This
information is provided by MQSeries Integrator in the Control Center, which
provides an interface to view and delete subscriptions throughout the broker
network.

v Applications use messages published on MQSeries Publish/Subscribe
metatopics, for example, to request information about their own current
subscriptions.
A client program can subscribe to MQSeries Integrator system topics and process
the event publications. MQSeries Integrator does not provide a topic that reports
all of the current subscriptions for a particular topic or client, but does publish
whenever subscriptions are added or removed. This information is published as
event information not state information (MQSeries Publish/Subscribe metatopics
are published as state information). For more information about event and state
publications, see “State and event information” on page 76.

Subscription points
Subscriptions points are a feature provided by MQSeries Integrator that can be
used to make information associated with a particular topic available in a number
of different formats.

For example, stock prices might be published with a default currency of dollars,
but might be required by subscribers in a number of other currencies.

This can be achieved by defining additional paths through the message flow that
take each publication and convert the dollar stock price into another currency, for
example sterling, before it is passed to its Publication node.

Each additional currency must be associated with a different subscription point
and therefore a Publication node. The original publication in dollars is associated
with the default subscription point.

Subscribers can then subscribe to stock prices using a combination of topic and the
subscription point that provides the data in the correct currency.

Subscription points are not supported by MQSeries Publish/Subscribe. You must
therefore consider their use in a heterogeneous network carefully. In particular,
publications can only pass between MQSeries Integrator and MQSeries
Publish/Subscribe brokers on the default subscription point.

Also, all topics published in an MQSeries Publish/Subscribe broker domain are on
the default subscription point. These topics are only available to MQRFH2

MQSeries Publish/Subscribe

158 MQSeries Integrator Introduction and Planning

subscribers that subscribe to the topics without specifying a subscription point
(that is, they are using the default subscription point).

Similarly, clients at MQSeries Publish/Subscribe brokers can only subscribe to
topics that are published on the default subscription point at MQSeries Integrator
brokers (at Publication nodes that do not have a subscription point set).

Content-based filtering
MQSeries Integrator supports content-based filtering of publications. This is a
powerful and flexible option for publish/subscribe application suites. This option
significantly enhances the ability of the MQRFH2 subscriber to restrict the
messages they wish to receive.

When an MQRFH2 client registers a subscription with the local broker, it can
specify a filter to be applied to the content of fields within each publication
message.

An MQRFH2 subscriber can subscribe to MQRFH publications within the
MQSeries Publish/Subscribe part of a mixed broker network based upon the
restrictions mentioned in this chapter. All MQRFH publications are converted to
MQRFH2 format by the broker before delivery to the MQRFH2 client (see Table 8
on page 149 for conversion details).

An MQRFH2 subscriber can also request some very restricted content-based
filtering to be performed on the MQRFH publications they are subscribing to. This
can only be done if the body of the publication is in a format that can be parsed by
the broker: that is, it can be interpreted by one of the broker’s default parsers
(described in “Message parsers” on page 59). For example, messages in XML or
MQPCF format can be processed in this way.

If you want to make full use of content-based filtering, you must convert
publications into MQRFH2 format. This enables all messages defined in the
message repository to be interpreted by the brokers parsers. MQRFH clients are
not able to specify a content filter.

For more details about message formats, their construction, and the message
repository, see MQSeries Integrator Using the Control Center.

Throughput
In MQSeries Publish/Subscribe a single thread processes publications on each of
the stream queues. This guaranteed the order in which publications were processed
from the queue. When you consider throughput for publications in an MQSeries
Integrator broker domain, you must also consider the importance of the order in
which messages are published. The techniques to increase throughput do not
necessarily guarantee order.

MQSeries Integrator supports two options that increase throughput:
1. You can configure the message flow with additional threads by setting the

Additional Instances property of the MQInput node. This property instructs the
broker to schedule additional threads to read messages from the input queue,
thus allowing publications from that queue to be processed concurrently by the
broker. You must also ensure that the stream (input) queue has the share
attribute set (MQSeries Publish/Subscribe required stream queues to have
noshare set).
If multiple threads process messages from a single queue, publications are not
guaranteed to be delivered to subscribers in the order in which they are placed

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 159

on the input queue. Therefore MQSeries Integrator provides a simple ordering
facility that can be used to allow concurrent processing of publications whilst
still maintaining some sequence:
You can set the Order Mode property of the MQInput node to the value By User
ID. This will ensure the order of delivery of publications sent to the broker by a
given user. When this property is set, the processing of messages that carry a
given UserIdentifier field in the MQMD will be held up if any other thread
servicing that message flow is currently processing a message that carries the
same UserIdentifier.
The benefits of running additional instances of the message flow will be
negated if all publishing applications are running under the same user ID. This
might be the case for publishing applications connected to a queue manager
remote to the broker’s queue manager. Messages from these remote publishers
arrive at the broker via a channel that might have been set up to insert the
channel program’s user ID in place of the originating client’s user ID. Refer to
the MQSeries Intercommunications book for more information on how to set the
PUTAUT channel attribute to change the default channel behavior.

2. You can configure one or more additional message flows (not instances) that
read publications from different queues. You must also update some of your
publishing applications to publish to the new queue (or queues). This has the
effect of splitting the stream, and therefore spreading the workload.
If you choose to increase throughput using this method, you must consider the
impact this has on the order in which publications are delivered. In particular
you must ensure that the publisher applications are split with respect to the
topics they are publishing on to ensure that order can be maintained per topic,
if this is important. If your applications publish to different queues (message
flows) on the same topic order cannot be guaranteed.
If you update the publisher applications to send publications to a new queue
which has a different name to the stream on which they are publishing, you
must also update these applications to explicitly include the stream name
within their publications using the MQPSStreamName parameter.
Publishing applications that specify a stream parameter do not need to be
modified, as this parameter takes precedence. However, if publishing
applications do not specify the stream parameter, the behavior is determined by
the setting of the Implicit Stream Naming property of the publication node in the
message flow:
v If the property is set to false, the default stream is assumed.
v If the property is set to true, the stream name is assumed to be the same as

the name of the stream input queue.

Scenario 1: running two independent broker networks
If you already have an MQSeries Publish/Subscribe broker network, you can
continue to use this network unchanged. The introduction of MQSeries Integrator
Version 2.0.2 to your environment, and the creation of brokers in that broker
domain, does not affect your MQSeries Publish/Subscribe broker domain until you
take specific action to connect the two networks.

If you want to run in this mode with two separate, independent networks, you do
not have to take any specific actions. You can retain your existing MQSeries
Publish/Subscribe network, and install and configure an MQSeries Integrator
Version 2.0.2 network, without any interaction.

MQSeries Publish/Subscribe

160 MQSeries Integrator Introduction and Planning

Your existing applications can continue to work unchanged. However, there can be
no interchange of publications in this scenario.

You must be aware that a single queue manager cannot support both an MQSeries
Publish/Subscribe broker and an MQSeries Integrator Version 2.0.2 broker. If you
have brokers of both types on the same system, each broker must have its own
dedicated queue manager.

You can implement this scenario while you assess the new product and the extra
functions contained within the publish/subscribe support. It also lets you plan for
the extent of integration or migration, or both, that you require, without affecting
your current environment.

Scenario 2: creating and operating a heterogeneous network
When you have operated two separate networks for a while, and understand the
benefits that MQSeries Integrator Version 2.0.2 provides, you can take the next step
of setting up an integrated network with a mix of MQSeries Publish/Subscribe and
MQSeries Integrator brokers.

A heterogeneous network enables publications and subscriptions to be propagated
through one logical network, made up of two physical networks.

Applications registered with all brokers (MQSeries Integrator Version 2.0.2 and
MQSeries Publish/Subscribe) are not aware that there is a heterogeneous network,
and, subject to authorizations being in place and the product differences addressed,
can publish and subscribe freely.

One of the advantages of creating and operating a heterogeneous network is that it
allows you to integrate MQSeries Publish/Subscribe brokers running on operating
systems where you currently do not have MQSeries Integrator Version 2.0.2
installed. You can integrate them with new MQSeries Integrator Version 2.0.2
brokers, or with those migrated from MQSeries Publish/Subscribe brokers on the
same operating system, or both.

You also create and operate a heterogeneous network while you implement
migration, because you are not required to migrate your whole MQSeries
Publish/Subscribe broker network in one step. See “Scenario 3: migrating
MQSeries Publish/Subscribe brokers” on page 162 for details about migrating
individual brokers.

To achieve a heterogeneous network, you must:
v Select the brokers that are to join the two networks together.

The hierarchical structure of the MQSeries Publish/Subscribe network, with a
single root broker (node) and a number of leaf nodes, allows you to integrate the
two networks in two ways:
– You can add a single MQSeries Integrator Version 2.0.2 broker to the

MQSeries Publish/Subscribe network as a root node. The MQSeries
Publish/Subscribe hierarchy results in the heaviest workload at the root node.
If you add an MQSeries Integrator Version 2.0.2 broker as a new root, all
MQSeries Publish/Subscribe message traffic will be processed by this node.

– You can add one or more MQSeries Integrator Version 2.0.2 brokers to the
MQSeries Publish/Subscribe network as leaf nodes. This option minimizes
the additional workload placed on the MQSeries Integrator Version 2.0.2
broker.

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 161

|
|
|
|
|
|

v Establish message flows that provide the publish/subscribe services required in
the MQSeries Integrator broker.
The choices you have for implementing these message flows have already been
discussed in “Throughput” on page 159.

Details of how you implement these actions are described in the MQSeries
Integrator Administration Guide.

Scenario 3: migrating MQSeries Publish/Subscribe brokers
This third scenario describes the planning you must do when you decide to
migrate your MQSeries Publish/Subscribe brokers. This is likely to be the final
stage of your adoption of MQSeries Integrator into your current MQSeries
Publish/Subscribe environment.

The action of migrating an MQSeries Publish/Subscribe broker to an MQSeries
Integrator broker replaces the broker. This is a final step, from which it is difficult to
return.

You must therefore ensure you have considered the move carefully, and have taken
any actions or decisions necessary to ensure a smooth transition.

You are advised to consider the following:
v The order in which you migrate the brokers

You do not have to migrate all the brokers in the network at once. You can
migrate brokers one at a time, thus creating an intermediate state in which the
network consists of a mixture of MQSeries Publish/Subscribe and MQSeries
Integrator brokers.
In fact, a mixed network of this nature might be the final state of the network,
because you cannot migrate brokers that have been created on an operating
system not supported by MQSeries Integrator.
If you have a choice of which brokers to migrate first, you are advised to
migrate leaf nodes first. These brokers have a single relation in the network (a
parent) and their migration is therefore easier to plan and implement.

v The place of each broker in the network
Each broker you migrate has at least one neighbor, its parent. You are advised to
quiesce client applications on all related brokers, and stop the brokers, in
addition to the one you are migrating.

v The use of collectives in the MQSeries Integrator network
A collective removes a single point of failure, and therefore increases the
resilience of every individual node in the publish/subscribe network. For more
information about using collectives, see “Supporting publish/subscribe services”
on page 110.

Table 11 on page 164 identifies the areas of potential incompatibility due to the
upgraded behavior of MQSeries Integrator. It provides some hints as to when, and
how, you might need to make changes to your client applications, or the topics
they use.

If you do make changes, you must test your changes for correctness by running
the changed items in your MQSeries Publish/Subscribe network for a reasonable
period of time before migrating to MQSeries Integrator.

MQSeries Publish/Subscribe

162 MQSeries Integrator Introduction and Planning

Migration checklist
When you have identified the MQSeries Publish/Subscribe broker or brokers that
you want to migrate to MQSeries Integrator, you must work through the items
presented in Table 11 on page 164 to ensure your migration is transparent to your
client applications.

You need an in-depth knowledge of both the broker, and the client applications
that are using it, to determine exactly which items affect your environment.

You will find the MQSeries Publish/Subscribe sample administration program,
amqspsd, which reports on the state of an MQSeries Publish/Subscribe broker,
helps you to identify some of the problem areas listed here. Refer to the MQSeries
Publish/Subscribe User’s Guide for full details of the operation of this program.

MQSeries Publish/Subscribe

Appendix A. Planning for migration and integration 163

Table 11. Migration inhibitors checklist

Item Suggested discovery Suggested resolution Chkd

Topics

No topics contain the # or the +
character

Check full output from amqspsd. Redesign topics1

No applications are subscribing to
metatopics

Check full output from amqspsd for
subscription to topics starting with
either “MQ/S/” or “MQ/SA/”

No equivalent MQSeries Integrator
functions2

Streams

No user-defined topics have been
added to the administration stream

Check topics returned in the output
from amqspsd filtered by
administration stream

Move subscriptions and publications
to existing or new stream3

Common streams shared between
broker and its relations do not need
to change4

No new common streams are needed
in the future

After migration, remove the
MQSeries Integrator broker from the
MQSeries Publish/Subscribe network
and add it (rejoin it) again

Capacity

Is the broker running near to full
capacity

Any reported instances of messages
building up on the control queue or
any of the stream queues

After migration, create additional
message flow instances to spread the
workload5

Message formats

No publishing applications are using
MQPCF messages6

Check publishing applications Change applications to use MQRFH
format

User exit

No routing exit is being used Check for the presence of the
routingexit configuration parameter

No equivalent MQSeries Integrator
functions7

Notes:

1. If the topics being used by your publisher and subscriber applications need to be redesigned, this might involve more than
simply changing the affected client applications. Subscriptions and retained publications that reference the invalid topics need
to be removed. Also brokers need to be stopped so that all processing on the affected topics is suitably quiesced in the entire
broker network, prior to deploying the modified publisher and subscriber applications.

2. This issue is discussed in “Metatopics” on page 157. MQSeries Publish/Subscribe and MQSeries Integrator do not provide fully
compatible function for metatopics.

3. If the administration stream (stream queue SYSTEM.BROKER.ADMIN.STREAM) has been used for convenience by client
applications, these topics need to be moved to another stream supported by all brokers in the network. No subscriptions or
retained publications are migrated on this stream.

4. If the broker is part of multibroker network, MQSeries Integrator brokers will not respond to stream support changes at
neighboring MQSeries Publish/Subscribe brokers. If you require the replacement broker to support other streams, the
MQSeries Integrator broker must be removed from the MQSeries Publish/Subscribe network, and added again.

5. MQSeries Publish/Subscribe and MQSeries Integrator have different operational characteristics that make it difficult to
compare their performance directly. In particular, MQSeries Integrator stores its persistent data within a database. You are
advised to model your broker’s current workload with an MQSeries Integrator broker prior to migration. MQSeries Integrator
throughput can be increased in two ways: see “Throughput” on page 159 for details.

6. MQSeries Integrator brokers only accept publications made in MQRFH or MQRFH2 format. The migmqbrk command does not
export MQPCF retained publications to the replacement MQSeries Integrator broker.

7. If only a small majority of publications need to be processed by the user exit, an additional MQSeries Publish/Subscribe broker
could be created to host affected subscribers prior to migration. The subscribing applications themselves do not need to be
moved to the new broker, but their subscriptions do need to be rerouted. The user exit code can then run at the new broker
which would not be migrated.

MQSeries Publish/Subscribe

164 MQSeries Integrator Introduction and Planning

Appendix B. The product packages

The following sections provide a summary of the contents of the packages for
MQSeries Integrator for AIX, MQSeries Integrator for HP-UX, MQSeries Integrator
for Sun Solaris, and MQSeries Integrator for Windows NT. For exact details, you
must refer to the product Readme.txt file, and to the MQSeries Integrator Installation
Guide for you product.

The MQSeries Integrator for AIX package
The MQSeries Integrator for AIX package includes the following CD-ROMs:
1. MQSeries Integrator for AIX V2.0.2

This primary-product CD-ROM provides the product in all available national
languages. It also includes the installable documentation package, the
NEONRules and NEONFormatter Support, and the Tivoli interface support
files and documentation. For more information, see the Readme.txt.

2. MQSeries Integrator for Windows NT V2.0.2
3. MQSeries Integrator for AIX V2.0.2 ’Supplement’, which includes:

v MQSeries for AIX Version 5.1 CSD6
This CSD is provided to enable you to upgrade an existing installation of
MQSeries for AIX Version 5.1 that does not have at least CSD4, should you
choose not to upgrade to Version 5.2.

v The MQSeries Integrator Version 2.0.2 documentation PDF package that can
be viewed without installation. You are recommended to install the PDF
package from the primary product CD, but you might choose to refer to the
product library before installation.

v MQSeries for Windows NT Version 5.1 CSD6
This CSD is provided to enable you to upgrade an existing installation of
MQSeries for Window NT Version 5.1 that does not have at least CSD4,
should you choose not to upgrade to Version 5.2.

v Any additional product service updates required for any product supplied in
this package are included on this CD. Up-to-date details of the service levels
required are included in the MQSeries Integrator Version 2.0.2 Readme.txt file
on the primary product CD.

4. MQSeries Integrator for AIX V2.0.2 ’DB2 for AIX 7.1’
This is supplied for specific use with MQSeries Integrator. If you do not already
have a suitable database to use, you must install this product before you install
MQSeries Integrator.

5. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and EMEA Languages)
This is supplied for specific use with MQSeries Integrator

6. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and AP Languages)
This is supplied for specific use with MQSeries Integrator

7. MQSeries for AIX V5.2 (Server)
The MQSeries Integrator installation program checks that you have the
appropriate components of MQSeries installed on your system. The Runtime

© Copyright IBM Corp. 2000, 2001 165

|

|
|
|
|

|
|
|

|

|
|
|

|

|
|

|

|
|

|

|

|
|

component requires the MQSeries for AIX server at V5.1 or later. Other
components have no MQSeries dependency.
If any MQSeries component is required for MQSeries Integrator installation,
and you do not have the correct level already installed, you must install this
CD. If you already have Version 5.0 or Version 5.1, you can use these CDs to
migrate to Version 5.2.

8. MQSeries for Windows NT V5.2 (Server)
The installation program checks that you have the appropriate components of
MQSeries installed on your system. Some MQSeries Integrator components
require MQSeries for Windows NT server at V5.1 or later, the Control Center
and the Configuration Manager require MQSeries classes for Java support. A
few components have no MQSeries dependency.
If any MQSeries component is required for MQSeries Integrator installation,
and you do not have the correct level already installed, you must install this
CD. If you already have Version 5.0 or Version 5.1, you can use these CDs to
migrate to Version 5.2.

9. MQSeries V5.2 Clients
MQSeries Clients for all platforms in all available national languages are
included on this CD.

The following hardcopy installation books are supplied:
v MQSeries Integrator for AIX Installation Guide
v MQSeries for AIX Quick Beginnings
v MQSeries for Windows NT and Windows 2000 Quick Beginnings

The MQSeries Integrator for HP-UX package
The MQSeries Integrator for HP-UX package includes the following CD-ROMs:
1. MQSeries Integrator for HP-UX V2.0.2

This primary-product CD-ROM provides the product in all available national
languages. It also includes the installable documentation package and the
NEONRules and NEONFormatter Support. For more information, see the
Readme.txt.

2. MQSeries Integrator for Windows NT V2.0.2
3. MQSeries Integrator for HP-UX V2.0.2 ’Supplement’, which includes:

v The MQSeries Integrator Version 2.0.2 documentation PDF package that can
be viewed without installation. You are recommended to install the PDF
package from the primary product CD, but you might choose to refer to the
product library before installation.

v MQSeries for Windows NT Version 5.1 CSD6
This CSD is provided to enable you to upgrade an existing installation of
MQSeries for Window NT Version 5.1, should you choose not to upgrade to
Version 5.2.

v Any additional product service updates required for any product supplied in
this package are included on this CD. Up-to-date details of the service levels
required are included in the MQSeries Integrator Version 2.0.2 Readme.txt file
on the primary product CD.

4. MQSeries Integrator for HP-UX V2.0.2 ’DB2 for HP-UX 7.1’
This is supplied for specific use with MQSeries Integrator. If you do not already
have a suitable database to use, you must install DB2 from this CD (before or
after MQSeries Integrator installation).

Product package for AIX

166 MQSeries Integrator Introduction and Planning

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

5. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and EMEA Languages)
This is supplied for specific use with MQSeries Integrator

6. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and AP Languages)
This is supplied for specific use with MQSeries Integrator

7. MQSeries for HP-UX V5.2 (HP 11 Server)
The MQSeries Integrator installation program checks that you have the
appropriate components of MQSeries installed on your system. The runtime
component requires the MQSeries for HP-UX V5.2 server. Other components
have no MQSeries dependency.
If any MQSeries component is required for MQSeries Integrator installation,
and you do not have the correct level already installed, you must install this
CD.

8. MQSeries for Windows NT V5.2 (Server)
The installation program checks that you have the appropriate components of
MQSeries installed on your system. Some MQSeries Integrator components
require MQSeries for Windows NT server at V5.1 or later, the Control Center
and the Configuration Manager require MQSeries classes for Java support. A
few components have no MQSeries dependency.
If any MQSeries component is required for MQSeries Integrator installation,
and you do not have the correct level already installed, you must install this
CD. If you already have Version 5.0 or Version 5.1, you can use these CDs to
migrate to Version 5.2.

9. MQSeries V5.2 Clients
MQSeries Clients for all platforms in all available national languages are
included on this CD.

The following hardcopy installation books are supplied:
v MQSeries Integrator for HP-UX Installation Guide
v MQSeries for HP-UX Quick Beginnings
v MQSeries for Windows NT and Windows 2000 Quick Beginnings

The MQSeries Integrator for Sun Solaris package
The MQSeries Integrator for Sun Solaris package includes the following CD-ROMs:
1. MQSeries Integrator for Sun Solaris V2.0.2

This primary product CD-ROM provides the product in all available national
languages. It also includes the installable documentation package, the
NEONRules and NEONFormatter Support, and the Tivoli interface support
files and documentation. For more information, see the Readme.txt.

2. MQSeries Integrator for Windows NT V2.0.2
3. MQSeries Integrator for Sun Solaris V2.0.2 ’Supplement’, which includes:

v MQSeries for Sun Solaris Version 5.1 CSD6
This CSD is provided to enable you to upgrade an existing installation of
MQSeries for Sun Solaris Version 5.1 that does not have at least CSD4,
should you choose not to upgrade to Version 5.2.

v The MQSeries Integrator Version 2.0.2 documentation PDF package that can
be viewed without installation. You are recommended to install the PDF
package from the primary product CD, but you might choose to refer to the
product library before installation.

Product package for HP-UX

Appendix B. The product packages 167

|
|

|

|
|

|

|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|

|
|
|
|

|
|
|

v MQSeries for Windows NT Version 5.1 CSD6
This CSD is provided to enable you to upgrade an existing installation of
MQSeries for Window NT Version 5.1, should you choose not to upgrade to
Version 5.2.

v Any additional product service updates required for any product supplied in
this package are included on this CD. Up-to-date details of the service levels
required are included in the MQSeries Integrator Version 2.0.2 Readme.txt file
on the primary product CD.

4. MQSeries Integrator for Sun Solaris V2.0.2 ’DB2 for Sun Solaris 7.1’
This is supplied for specific use with MQSeries Integrator. If you do not already
have a suitable database to use, you must install DB2 from this CD (before or
after MQSeries Integrator installation).

5. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and EMEA Languages)
This is supplied for specific use with MQSeries Integrator

6. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and AP Languages)
This is supplied for specific use with MQSeries Integrator

7. MQSeries for Sun Solaris V5.2 (Server)
The MQSeries Integrator installation program checks that you have the
appropriate components of MQSeries installed on your system. The runtime
component requires the MQSeries for Sun Solaris server at V5.1 or later. Other
components have no MQSeries dependency.
If any MQSeries component is required for MQSeries Integrator installation,
and you do not have the correct level already installed, you must install this
CD. If you already have Version 5.0 or Version 5.1, you can use these CDs to
upgrade to Version 5.2.

8. MQSeries for Windows NT V5.2 (Server)
The installation program checks that you have the appropriate components of
MQSeries installed on your system. Some MQSeries Integrator components
require MQSeries for Windows NT server at V5.1 or later, the Control Center
and the Configuration Manager require the MQSeries Client for Java. A few
components have no MQSeries dependency.
If any MQSeries component is required for MQSeries Integrator installation,
and you do not have the correct level already installed, you must install this
CD. If you already have Version 5.0 or Version 5.1, you can use these CDs to
upgrade to Version 5.2.

9. MQSeries V5.2 Clients
MQSeries Clients for all platforms in all available national languages are
included on this CD.

The following hardcopy installation books are supplied:
v MQSeries Integrator for Sun Solaris Installation Guide
v MQSeries for Sun Solaris Quick Beginnings
v MQSeries for Windows NT and Windows 2000 Quick Beginnings

The MQSeries Integrator for Windows NT package
The MQSeries Integrator for Windows NT package includes the following
CD-ROMs:
1. MQSeries Integrator for Windows NT V2.0.2

Product package for Sun Solaris

168 MQSeries Integrator Introduction and Planning

|

|
|
|

|
|

|

|
|

|

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|

This primary-product CD-ROM provides the product in all available national
languages. It also includes the installable documentation package and the
NEONRules and NEONFormatter Support, and the Tivoli interface support
files and documentation. For more information, see the Readme.txt.

2. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and EMEA Languages)
This is supplied for specific use with MQSeries Integrator. If you do not have a
suitable version of DB2 installed, the MQSeries Integrator Version 2.0.2 install
process will offer to install DB2 for you.

3. MQSeries Integrator for Windows NT V2.0.2 ’DB2 for Windows 7.1’ (English
and AP Languages)
This is supplied for specific use with MQSeries Integrator. If you do not have a
suitable version of DB2 installed, the MQSeries Integrator Version 2.0.2 install
process will offer to install DB2 for you.

4. MQSeries Integrator for Windows NT V2.0.2 ’Supplement’, which includes:
v MQSeries for Windows NT, V5.1 CSD6

This CSD is provided to enable you to upgrade an existing installation of
MQSeries for Window NT Version 5.1 that does not have at least CSD4,
should you choose not to upgrade to Version 5.2.

v The MQSeries Integrator Version 2.0.2 documentation PDF package that can
be viewed without installation. You are recommended to install the PDF
package from the primary product CD, but you might choose to refer to the
product library before installation.

v Any additional product service updates required for any product supplied in
this package are included on this CD. Up-to-date details of the service levels
required are included in the MQSeries Integrator Version 2.0.2 Readme.txt file
on the primary product CD.

5. MQSeries for Windows NT V5.2 (Server)
The MQSeries Integrator installation program checks that you have the
appropriate components of MQSeries installed on your system. Some MQSeries
Integrator components require MQSeries for Windows NT server at V5.1 or
later. Version 5.2 is supplied primarily for those customers who do not have an
existing MQSeries installation. However, you can also use this CD to upgrade
an existing MQSeries Version 5.1 installation to Version 5.2. If you do this
upgrade, refer to the migration instructions supplied with MQSeries Version
5.2.

6. MQSeries V5.2 Clients
MQSeries Clients for all platforms in all available national languages are
included on this CD.

The following hardcopy installation books are supplied:
v MQSeries Integrator for Windows NT Installation Guide
v MQSeries for Windows NT and Windows 2000 Quick Beginnings

Product package for Windows NT

Appendix B. The product packages 169

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

Product package for Windows NT

170 MQSeries Integrator Introduction and Planning

Appendix C. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2001 171

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

172 MQSeries Integrator Introduction and Planning

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX AS/400 CICS
DB2 DB2 Universal Database IBM
IBMLink IMS/ESA iSeries
MQSeries POWERparallel POWERserver
pSeries RS/6000 SupportPac
System/390 TXSeries WebSphere
xSeries 400 ~

Lotus, Notes, and Domino are trademarks of Lotus Development Corporation in
the United States, other countries, or both.

Tivoli is a trademark of Tivoli Systems Inc. in the United States, other countries, or
both.

Pentium is a trademark of Intel Corporation in the United States, other countries,
or both.

Java, JDBC, and JDK are registered trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix C. Notices 173

|
|

174 MQSeries Integrator Introduction and Planning

Glossary of terms and abbreviations

This glossary defines MQSeries Integrator terms
and abbreviations used in this book. If you do not
find the term you are looking for, see the index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute. Copies
may be ordered from the American National
Standards Institute, 11 West 42 Street, New York,
New York 10036. Definitions are identified by the
symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that
have explicit permissions (to publish, to subscribe to,
and to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The
programming interface provided by MQSeries that
defines a high level interface to message queuing
services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid entity
that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a
common configuration, together with the single
Configuration Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are
related in some way. For example, messages that relate
to a particular application.

check in. The Control Center action that stores a new
or updated resource in the configuration or message
respository.

check out. The Control Center action that extracts and
locks a resource from the configuration or message
respository for local modification by a user. Resources
from the two repositories can only be worked on when
they are checked out by an authorized user, but can be
viewed (read only) without being checked out.

collective. A hyperconnected (totally connected) set of
brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers,
execution groups, message flows and message sets
assigned to them, topics and access control
specifications.

Configuration Manager. A component of MQSeries
Integrator that acts as the interface between the
configuration repository and an executing set of
brokers. It provides brokers with their initial
configuration, and updates them with any subsequent
changes. It maintains the broker domain configuration.

configuration repository. Persistent storage for broker
configuration and topology definition.

connector. See message processing node connector.

content-based filter. An expression that is applied to
the content of a message to determine how the message
is to be processed.

context tag. A tag that is applied to an element within
a message to enable that element to be treated
differently in different contexts. For example, an
element could be mandatory in one context and
optional in another.

Control Center. The graphical interface that provides
facilities for defining, configuring, deploying, and
monitoring resources of the MQSeries Integrator
network.

D
datagram. The simplest form of message that
MQSeries supports. Also known as send-and-forget. This
type of message does not require a reply. Compare with
request/reply.

debugger. A facility on the Message Flows view in the
Control Center that enables message flows to be
debugged.

© Copyright IBM Corp. 2000, 2001 175

|
|
|

deploy. Make operational the configuration and
topology of the broker domain.

destination list. A list of internal and external
destinations to which a message is sent. These can be
nodes within a message flow (for example, when using
the RouteToLabel and Label nodes) or MQSeries
queues (when the list is examined by an MQOutput
node to determine the final target for the message).

distribution list. A list of MQSeries queues to which a
message can be put using a single statement.

Document Type Definition (DTD). The rules that
specify the structure for a particular class of SGML or
XML documents. The DTD defines the structure with
elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and
notation can be used within the particular class of
documents. A DTD is analogous to a database schema
in that the DTD completely describes the structure for a
particular markup language.

DTD. Document Type Definition

E
e-business. A term describing the commercial use of
the Internet and World Wide Web to conduct business
(short for electronic-business).

element. A unit of data within a message that has
business meaning, for example, street name

element qualifier. See context tag.

ESQL. Extended SQL. A specialized set of SQL
statements based on regular SQL, but extended with
statements that provide specialized functions unique to
MQSeries Integrator.

exception list. A list of exceptions that have been
generated during the processing of a message, with
supporting information.

execution group. A named grouping of message flows
that have been assigned to a broker. The broker is
guaranteed to enforce some degree of isolation between
message flows in distinct execution groups by ensuring
that they execute in separate address spaces, or as
unique processes.

Extensible Markup Language (XML). A W3C
standard for the representation of data.

external reference. A reference within a message set to
a component that has been defined outside the current
message set. For example, an integer that defines the
length of a string element might be defined in one
message set but used in several message sets.

F
field reference. A sequence of period-separated values
that identify a specific field (which might be a
structure) within a message tree. An example of a field
reference might be something like
Body.Invoice.InvoiceNo.

filter. An expression that is applied to the content of a
message to determine how the message is to be
processed.

format. A format defines the internal structure of a
message, in terms of the fields and order of those
fields. A format can be self-defining, in which case the
message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a
software product that is graphical rather than textual. It
refers to window-based operational characteristics.

I
implementation function. Function written by a
third-party developer for a plug-in node or parser. Also
known as a callback function.

input node. A message flow node that represents a
source of messages for the message flow.

installation mode. The installation mode can be Full,
Custom, or Broker only. The mode defines the
components of the product installed by the installation
process on Windows NT systems.

J
Java Database Connectivity (JDBC). An application
programming interface that has the same characteristics
as ODBC but is specifically designed for use by Java
database applications.

Java Development Kit (JDK). A software package that
can be used to write, compile, debug, and run Java
applets and applications.

Java Message Service (JMS). An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment (JRE). A subset of the
Java Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes and supporting files.

JDBC. Java Database Connectivity.

JDK. Java Development Kit.

Glossary

176 MQSeries Integrator Introduction and Planning

|
|
|
|
|

|
|
|
|
|

JMS. Java Message Service. See also AMI and MQI.

JRE. Java Runtime Environment.

L
local error log. A generic term that refers to the logs
to which MQSeries Integrator writes records on the
local system. On Windows NT, this is the Event log. On
UNIX systems, this is the syslog. See also system log.
Note that MQSeries records many events in the log that
are not errors, but information about events that occur
during operation, for example, successful deployment
of a configuration.

M
message broker. A set of execution processes hosting
one or more message flows.

messages. Entities exchanged between a broker and its
clients.

message dictionary. A repository for (predefined)
message type specifications.

message domain. The value that determines how the
message is interpreted (parsed). The following domains
are recognized:
v MRM, which identifies messages defined using the

Control Center
v NEONMSG4, which identifies messages created using

the NEONFORMATTER user interfaces.
v XML, which identifies messages that are self-defining
v BLOB, which identifies messages that are undefined

You can also create your own message domains: if you
do so, you must supply your own message parser.

message flow. A directed graph that represents the set
of activities performed on a message or event as it
passes through a broker. A message flow consists of a
set of message processing nodes and message
processing node connectors.

message flow component. See message flow.

message parser. A program that interprets a message
bitstream.

message processing node. A node in the message
flow, representing a well defined processing stage. A
message processing node can be one of several
primitive types or can represent a subflow.

message processing node connector. An entity that
connects the output terminal of one message processing
node to the input terminal of another. A message

processing node connector represents the flow of
control and data between two message flow nodes.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. The
programming interface allows application programs to
access message queuing services. See also AMI and
JMS.

message repository. A database holding message
template definitions.

message repository manager (MRM). A component of
the Configuration Manager that handles message
definition and control. A message defined to the MRM
has a message domain set to MRM.

message set. A grouping of related messages.

message template. A named and managed entity that
represents the format of a particular message. Message
templates represent a business asset of an organization.

message type. The logical structure of the data within
a message. For example, the number and location of
character strings.

metadata. Data that describes the characteristic of
stored data.

MQI. Message queue interface.

MQIsdp. MQSeries Integrator SCADA device
protocol. A lightweight publish/subscribe protocol
flowing over TCP/IP.

MQRFH. An architected message header that is used
to provide metadata for the processing of a message.
This header is supported by MQSeries
Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing
enhanced function in message processing.

MQSeries Everyplace. A generally available MQSeries
product that provides proven MQSeries reliability and
security in a mobile environment.

MRM. Message Repository Manager.

multilevel wildcard. A wildcard that can be specified
in subscriptions to match any number of levels in a
topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

4. The message domain NEON is also recognized for
compatibility with previous releases.

Glossary

Glossary of terms and abbreviations 177

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and non-relational database management
systems. Using this API, database applications can
access data stored in database management systems on
a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the
X/Open SQL Access Group.

output node. A message processing node that
represents a point at which messages flow out of the
message flow.

P
plug-in. An extension to the broker, written by a
third-party developer, to provide a new message
processing node or message parser in addition to those
supplied with the product. See also implementation
function and utility function.

point-to-point. Style of messaging application in
which the sending application knows the destination of
the message. Compare with publish/subscribe.

POSIX. Portable Operating System Interface For
Computer Environments. An IEEE standard for
computer operating systems (for example, AIX and Sun
Solaris).

predefined message. A message with a structure that
is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied
with the product.

principal. An individual user ID (for example, a log-in
ID) or a group. A group can contain individual user
IDs and other groups, to the level of nesting supported
by the underlying facility.

property. One of a set of characteristics that define the
values and behaviors of objects in the Control Center.
For example, message processing nodes and deployed
message flows have properties.

publication node. An end point of a specific path
through a message flow to which a client application
subscribes. A publication node has an attribute,
subscription point. If this is not specified, the
publication node represents the default subscription
point for the message flow.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. An application that makes information
about a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that
programs can access messages on the queues that the
queue manager owns.

R
retained publication. A published message that is
kept at the broker for propagation to clients that
subscribe at some point in the future.

request/reply. Type of messaging application in which
a request message is used to request a reply from
another application. Compare with datagram.

rule. A rule is a definition of a process, or set of
processes, applied to a message on receipt by the
broker. Rules are defined on a message format basis, so
any message of a particular format will be subjected to
the same set of rules.

S
SCADA. Supervisory, Control, And Data Acquisition.

self-defining message. A message that defines its
structure within its content. For example, a message
coded in XML is self-defining. Compare with pre-defined
message.

send and forget. See datagram.

setup type. The definition of the type of installation
requested on Windows NT systems. This can be one of
Full, Broker only, or Custom.

shared. All configuration data that is shared by users
of the Control Center. This data is not operational until
it has been deployed.

signature. The definition of the external characteristics
of a message processing node.

single-level wildcard. A wildcard that can be
specified in subscriptions to match a single level in a
topic.

Glossary

178 MQSeries Integrator Introduction and Planning

|

stream. A method of topic partitioning used by
MQSeries Publish/Subscribe applications.

subscriber. An application that requests information
about a specified topic from a publish/subscribe
broker.

subscription. Information held within a publication
node, that records the details of a subscriber
application, including the identity of the queue on
which that subscriber wants to receive relevant
publications.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

subscription point. An attribute of a publication node
that differentiates it from other publication nodes on
the same message flow and therefore represents a
specific path through the message flow. An unnamed
publication node (that is, one without a specific
subscription point) is known as the default publication
node.

Supervisory, Control, And Data Acquisition. A broad
term, used to describe any form of remote telemetry
system used for gathering data from remote sensor
devices (for example, flow rate meters on an oil
pipeline) and for the near real time control of remote
equipment (for example, pipeline valves).

system log. A generic term used in the MQSeries
Integrator messages (BIPxxx) that refers to the local
error logs to which records are written on the local
system. On Windows NT, this is the Event log. On
UNIX systems, this is the syslog. See also local error log.

T
terminal. The point at which one node in a message
flow is connected to another node. Terminals enable
you to control the route that a message takes,
depending whether the operation performed by a node
on that message is successful.

topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

topic based subscription. A subscription specified by
a subscribing application that includes a topic for
filtering of publications.

topic security. The use of ACLs applied to one or
more topics to control subscriber access to published
messages.

topology. In the broker domain, the brokers,
collectives, and connections between them.

transform. A defined way in which a message of one
format is converted into one or more messages of
another format.

U
Uniform Resource Identifier. The generic set of all
names and addresses that refer to World Wide Web
resources.

Uniform Resource Locator. A specific form of URI
that identifies the address of an item on the World
Wide Web. It includes the protocol followed by the
fully qualified domain name (sometimes called the host
name) and the request. The Web server typically maps
the request portion of the URL to a path and file name.
Also known as Universal Resource Locator.

URI. Uniform Resource Identifier

URL. Uniform Resource Locator

User Name Server. The MQSeries Integrator
component that interfaces with operating system
facilities to determine valid users and groups.

utility function. Function provided by MQSeries
Integrator for the benefit of third-party developers
writing plug-in nodes or parsers.

W
warehouse. A persistent, historical datastore for events
(or messages). The Warehouse node within a message
flow supports the recording of information in a
database for subsequent retrieval and processing by
other applications.

wildcard. A character that can be specified in
subscriptions to match a range of topics. See also
multilevel wildcard and single-level wildcard.

wire format. This describes the physical representation
of a message within the bit-stream.

W3C. World Wide Web Consortium. An international
industry consortium set up to develop common
protocols to promote evolution and interoperability of
the World Wide Web.

X
XML. Extensible Markup Language.

Glossary

Glossary of terms and abbreviations 179

|
|

|
|
|
|
|
|

Glossary

180 MQSeries Integrator Introduction and Planning

Bibliography

This section describes the documentation
available for all current MQSeries Integrator
products.

MQSeries Integrator Version 2.0.2
cross-platform publications
The MQSeries Integrator cross-platform
publications are:
v MQSeries Integrator Introduction and Planning,

GC34-5599
v MQSeries Integrator Using the Control Center,

GC34-5602
v MQSeries Integrator Messages, GC34-5601
v MQSeries Integrator Programming Guide,

SC34-5603
v MQSeries Integrator Administration Guide,

SC34-5792
v MQSeries Integrator ESQL Reference, SC34-5923

These books are all available in hardcopy.

You can order publications from the IBMLink™

Web site at:
http://www.ibm.com/ibmlink

In the United States, you can also order
publications by dialing 1-800-879-2755.

In Canada, you can order publications by dialing
1-800-IBM-4YOU (1-800-426-4968).

For further information about ordering
publications contact your IBM authorized dealer
or marketing representative.

MQSeries Integrator Version 2.0.2
platform-specific publications
Each MQSeries Integrator product provides one
platform-specific installation guide, which is
supplied in hardcopy.

MQSeries Integrator for AIX Version 2.0.2

MQSeries Integrator for AIX Installation
Guide, GC34-5841

MQSeries Integrator for HP-UX Version 2.0.2

MQSeries Integrator for HP-UX
Installation Guide, GC34-5907

MQSeries Integrator for Sun Solaris Version
2.0.2

MQSeries Integrator for Sun Solaris
Installation Guide, GC34-5842

MQSeries Integrator for Windows NT Version
2.0.2

MQSeries Integrator for Windows NT
Installation Guide, GC34-5600

MQSeries Everyplace
publications
If you intend to connect MQSeries Everyplace
applications to message flows that include the
MQSeries Everyplace message flow nodes, you
will find the following publications useful:
v MQSeries Everyplace for Multiplatforms Version

1.1 Introduction, GC34-5843
v MQSeries Everyplace for Multiplatforms Version

1.1 Programming Guide, SC34-5845
v MQSeries Everyplace for Multiplatforms Version

1.1 Programming Reference, SC34-5846
v MQSeries Everyplace for Multiplatforms Version

1.1 Native Client Information, SC34-5880

You can find these books on the MQSeries Web
site (see “MQSeries information available on the
Internet” on page 184). Translated versions of
these books are also available in some languages
from the same Web site.

NEONRules and NEONFormatter
Support for MQSeries Integrator
publications
The following publications are supplied on the
product CD in PDF format, and are installed with
the Documentation component.
v NEONRules and NEONFormatter Support for

MQSeries Integrator User’s Guide

v NEONRules and NEONFormatter Support for
MQSeries Integrator System Management Guide

© Copyright IBM Corp. 2000, 2001 181

|
|
|

|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference for
NEONRules

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference for
NEONFormatter

v NEONRules and NEONFormatter Support for
MQSeries Integrator Application Development
Guide

These books are provided in US English only.

Softcopy books
All the MQSeries Integrator books are available in
softcopy formats.

Portable Document Format (PDF)
All books in the MQSeries Integrator library are
supplied in US English only in a searchable PDF
library on the product CD.

You can install the library as follows:
v On AIX, invoke install —d and select the

documentation fileset. After installation, run the
command mqsidocs. This launches Acrobat
Reader and opens the PDF package.

v On HP-UX, invoke swinstall —d and select
MQSI-DOCS from the menu. After installation,
run the command mqsidocs. This launches
Acrobat Reader and opens the PDF package.

v On Sun Solaris, invoke pkgadd —d and select
mqsi-docs from the menu. After installation,
run the command mqsidocs. This launches
Acrobat Reader and opens the PDF package.

v On Windows NT, select the Online
Documentation component on a custom
installation, or do a full installation. After
installation, select Start—>Programs—>IBM
MQSeries Integrator 2.0—>Documentation.

In addition, PDF files for books that have been
translated are installed into the location
mqsi_root/bin/book/pdf/<locale> (on UNIX) or
mqsi_root\bin\book\pdf\<locale> (on Windows
NT) where <locale> is one of the following:
v de_DE for German
v en_US for US English
v es_ES for Spanish
v fr_FR for French
v it_IT for Italian
v ja_JP for Japanese
v ko_KR for Korean
v pt_BR for Brazilian Portuguese

v zh_CN for Simplified Chinese
v zh_TW for Traditional Chinese

An index file (in HTML format) that provides a
link to each book is supplied for each language.
For example, the French index file is called
indexfr.htm. The files are stored in the following
directory:
v On UNIX, <mqsi_root>/docs/
v On Windows NT, <mqsi_root>\bin\book

Each index file has an entry for every book: if a
particular book has not been translated into the
appropriate language for that index file, a link to
the English PDF is included. You can use any
Web browser to view the index file. On Windows
NT, you can also access the index file through the
Start menu.

The PDF file names for the English books are
shown in Table 12.

Table 12. File names of MQSeries Integrator book
PDFs

Book title File name

MQSeries Integrator for AIX
Installation Guide

bipaac04.pdf

MQSeries Integrator for HP-UX
Installation Guide

bipcac00.pdf

MQSeries Integrator for Sun Solaris
Installation Guide

bip7ac03.pdf

MQSeries Integrator for Windows NT
Installation Guide

bipyac03.pdf

MQSeries Integrator Introduction and
Planning

bipyab02.pdf

MQSeries Integrator Administration
Guide

bipyag04.pdf

MQSeries Integrator Using the Control
Center

bipyar03.pdf

MQSeries Integrator ESQL Reference bipyae00.pdf

MQSeries Integrator Programming
Guide

bipyal02.pdf

MQSeries Integrator Messages bipyao02.pdf

The fifth character of the file name indicates the
language of the book (a indicates US English).
You can deduce the file names of translated books
by using the following substitutions for the fifth
character:
v g for German
v s for Spanish
v f for French

Bibliography

182 MQSeries Integrator Introduction and Planning

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|

||
|

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

||

|
|
|

||
|

|
|
|
|
|
|
|
|

v i for Italian
v j for Japanese
v k for Korean
v b for Brazilian Portuguese
v z for Simplified Chinese
v t for Traditional Chinese

PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you cut and paste examples of commands from
PDF files to a command line for execution, you
must check that the content is correct before you
press Enter. Some characters might be corrupted
by local system and font settings.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of all current MQSeries Integrator
books are also available from the MQSeries
product family Web site at:

http://www.ibm.com/software/mqseries/

MQSeries library references
The following MQSeries product publications are
referenced in this book to point you to the
information you need to complete MQSeries
messaging product tasks as part of MQSeries
Integrator tasks.

For AIX installation tasks you might need:
v MQSeries for AIX Quick Beginnings, GC33-1867

For HP-UX installation tasks you might need:
v MQSeries for HP-UX Quick Beginnings,

GC33-1869

For Sun Solaris tasks you might need:
v MQSeries for Sun Solaris Quick Beginnings,

GC33-1870

For Windows NT installation tasks you might
need:
v MQSeries for Windows NT and Windows 2000

Quick Beginnings, GC33-1871

For planning and configuration tasks you might
need:

v MQSeries Intercommunication, SC33-1872
v MQSeries System Administration, SC33-1873
v MQSeries Queue Manager Clusters, SC34–5349
v MQSeries MQSC Command Reference, SC33-1369
v MQSeries for AIX Quick Beginnings, GC33-1632
v MQSeries Messages, GC33-1876

For application programming tasks you might
need:
v MQSeries Application Programming Reference,

SC33-1673
v MQSeries Application Programming Guide,

SC33-0807
v MQSeries Application Messaging Interface,

SC34–5604
v MQSeries Using Java, SC34-5456

For migrating from MQSeries Integrator Version 1
you might need:
v MQSeries Integrator Version 1.1 Installation and

Configuration Guide, GC34-5503

MQSeries Publish/Subscribe
publications
If you have installed MQSeries Publish/Subscribe
and plan to migrate brokers to MQSeries
Integrator Version 2, or to establish a mixed
network, refer to the following publication:
v IBM MQSeries Publish/Subscribe User’s Guide,

GC34-5269

You can download this book and the MQSeries
Publish/Subscribe Product Extension package
from the MQSeries Web site.

MQSeries Workflow publications
The MQSeries Workflow product has a
comprehensive library. Refer to the following
book for introductory information, and for details
about other product publications:
v IBM MQSeries Workflow Concepts and

Architecture, GH12-6285

For a complete list of MQSeries Workflow
publications, refer to the information on the
MQSeries Web site.

Bibliography

Bibliography 183

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|
|

|
|

|
|

|

|
|

|
|

DB2 publications
If you want more information about DB2, you can
download the product publications from the DB2
Web site at:
http://www.ibm.com/software/data/db2

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Obtain information about complementary

offerings by following these links:
– IBM Business Partners
– Partner Offerings (within Related links)

v Download an MQSeries SupportPac.

MQSeries library

184 MQSeries Integrator Introduction and Planning

|
|

|

|

Index

A
access control list 28

activating 91
checking 91
deployment 91
dynamic topics 90
explicit 87
inheritance 87, 89
permissions 89
persistent delivery 89
PublicGroup 87
resolution of conflicts 88
setting 89
settings 87
subscription resolution 91
system topics 88
wildcards 90

AIX installation
delivery media 165
disk space requirements 97
hardware requirements 96
software requirements 97
system requirements 96

Application Messaging Interface 23, 66
applications

communication models 65
design 65
existing 68
MQSeries resources 116
point-to-point 65, 66
programming interfaces 66
publish/subscribe 65, 66, 69
request/reply 68
security 73
send and forget 68
transaction support 71
writing new 69

Assignment view 16

B
broker 11

associating message flows 16
associating message sets 19
broker tables 11
client connections 24
collective 12
connections for publish/subscribe 12
creating a reference 11
execution group 48
message flows 12
message sets 12
MQSeries resources 114
publish/subscribe interactions 75
system management interface 13

broker domain
advanced options 139
basics 109
business processes 134
changing components 133

broker domain (continued)
client applications 113
Control Center 113
listing components 133
managing components 133
monitoring 134
MQSeries infrastructure 114
performance 137
planning 107
plug-ins 139
starting components 133
stopping components 133
supporting publish/subscribe 110
system management 138
workload 137

business integration 4
MQSeries family 4

business process rules 3, 13
business scenario 33, 37

business data 35
business needs 36
finance flow 37
implementation 38
MQSeries Integrator solution 36
partner flow 37
retail 33
stock flow 37

C
change management

SupportPac IC04 21
CICS 3
clusters, MQSeries 117
code page, database 119
code page support 105
collective 12, 110
commit 14
communication models

point-to-point 3, 23
publish/subscribe 3, 23

complementary offerings
IBM Business Partners 184
Partner Offerings 184

Configuration Manager 9
configuration repository 9, 10
message repository 10
Message Repository Manager

(MRM) 55
MQSeries resources 115

configuration repository 9
Control Center 20

assigning 21
Assignment view 16
change management 21
check in 21
check out 20
connection to Configuration

Manager 20
Debugger 54
deploying 21

Control Center 20 (continued)
export 21
import 21
MQSeries authority 129
MQSeries resources 116
roles 128
security 128
superuser 129
updating 20

D
data conversion 131

code pages 131
numeric order 131

database 30, 118
backup and recovery 120
code page support 119
DB2 dependency 30
location 120
ODBC drivers 105, 119
ODBC drivers (AIX) 98
ODBC drivers (HP-UX) 99
ODBC drivers (Sun Solaris) 101
ODBC drivers (Windows NT) 104
requirements 118
support 105

DB2 106
Debugger

solving problems using 54
domain 17
dynamic routing 44

message flow 44
dynamic topics

ACLs 90

E
error handling 134

use of local logs 135
error handling in message flows 47
events 13
execution group 48
export message set 59
exporting resource definitions 21

F
finance flow

business scenario 37

H
header

message 58
Help 22
HP–UX installation

disk space requirements 98
software requirements 98

© Copyright IBM Corp. 2000, 2001 185

HP-UX installation
delivery media 166
hardware requirements 98
system requirements 98

I
IBM Business Partners 184
IBMMQSI2 129
IBMPrimitive nodes

check 52
compute 51
database 52
extract 51
filter 52
FlowOrder 50
Label 50
MQeInput 50
MQeOutput 50
MQInput 50
MQOutput 50
MQReply 50
NEONFormatter 51
NEONMap 52
NEONRules 51
NEONRulesEvaluation 51
NEONTransform 51
publication 51
reset content descriptor 52
RouteToLabel 51
SCADAInput 51
SCADAOutput 51
throw 53
trace 53
trycatch 52
warehouse 52

import message set 59
importing resource definitions 21
IMS/ESA 3
information on the Internet

complementary offerings 184
MQSeries family libraries 184
MQSeries products 184
MQSeries SupportPacs 184

input terminal 14
inter-enterprise message sets 59
internally defined messages 58

L
legacy message formats 58
license agreement

DB2 on AIX 98
DB2 on HP-UX 99
DB2 on Sun Solaris 101
DB2 on Windows NT 104
MQSeries Integrator 105

Lotus Domino 3

M
message 55

client access 61
Control Center definition 18, 55
creating with SmartGuide 18
dictionaries 61

message 55 (continued)
domain 17
headers 67
importing 18
message flows 41
message set 18
MQRFH and MQRFH2 mapping 149
NEON definition 56
NEON definitions 18
order 70
parsing 19, 59, 140
persistence 72, 82
predefined 18, 55
processing in message flow 58
self-defining 19, 57
set 17
template 17, 56
using messages 61
using templates 61
wire format 57
within transactions 71
XML 57

message dictionary
using with clients 61

message flow 41
assigning to brokers 48
business process rules 13
common node characteristics 45
contents 41
creating 14
default 53
definition 41
dynamic routing 44
enriching message content 45
error handling 47
examples 16
exception list 47
execution group 48
for IVP 53
input 15
interaction 43
message order 42
message processing node 13, 45
output 15
parallel processing 42
processing messages 46
publish/subscribe 15, 49
routing 44
solving problems using the

Debugger 54
subflow 41
supplied 53
supplied defaults 53
supplied verification 53
throughput 42
tracing 136
transformation 43
tuning for performance 138
unit of work 42
using the DLQ 48

message header 58
MQRFH 58
MQRFH2 58

message header parser
MQCFH 60
MQCIH 60
MQDLH 60

message header parser (continued)
MQIIH 60
MQMD 60
MQMDE 60
MQRFH 60
MQRFH2 60
MQRMH 60
MQSAPH 60
MQWIH 60
SMQ_BMH 60

message headers
MQRFH 67
MQRFH2 67, 69

message parser 19, 59, 140
adding 62

message parsers
default 59

message processing node
adding 54
common node characteristics 45
creating new 139
enhancing 54
IBMPrimitives 50
input 46
input node 15
MQeInput 15
MQInput 15
MQOutput 15
output 46
output node 15
primitives 14
publication node 15
SCADAInput 15
SCADAOutput 15

Message Queue Interface 23, 66
message set

assigning to brokers 48
assignment 18
deployment 18
export 59
for IVP 53
import 59

message sets
inter-enterprise 59

message template 14, 56
messages

internally defined 58
legacy formats 58

Microsoft Exchange 3
migration 31

MQIntegrator 143
MQSeries Integrator Version 1 143
MQSeries Publish/Subscribe 147

mqbrasgn 122
mqbrdevt 122
mqbrkrs 122
mqbrops 122
mqbrtpic 122
MQeInput node

in example message flows 17
MQeMbMsgObject 58
MQeMsgObject 58
MQeOutput node

in example message flows 17
MQRFH 67

mapping to MQRFH2 149
message header 58

186 MQSeries Integrator Introduction and Planning

MQRFH2 67
mapping to MQRFH 149
message header 58

MQSeries
AMI 3
business integration 3
clusters 117
MQI 3
trusted applications 137

MQSeries Everyplace
special considerations 25

MQSeries Everyplace applications 25
MQSeries Everyplace publications 181
MQSeries family

business integration 4
MQSeries Integrator Version 2.0.2 3
MQSeries messaging 3
MQSeries Workflow 4

MQSeries Integrator on the Internet 184
MQSeries Integrator publications 181

national language 182
platform–specific 181

MQSeries Integrator Version 1 migration
backing up files 143
considerations for installation 143
enhancing rules and formats 145
existing rules and formats 144
MQSeries Integrator Version 2.0.2

message flow 145
preserving data 144
run-time tasks 144
uninstalling 144
user exits 146

MQSeries Integrator Version 2
enhancements 5
upgrading from previous products 5

MQSeries Integrator Version 2.0.2
applications 22
broker 11
business integration 5
components 9
Configuration Manager 9
Control Center 20
dependencies 29

database 30
MQSeries 29

getting started 6
package contents 165
Tour 22
User Name Server 27

MQSeries Publish/Subscribe
migration 147

checklist 163
heterogeneous networks 161
independent networks 160
migrating a network 162
MQSeries support 147
product differences 148

content-based filtering 159
default topic routing 157
message formats 148
metatopics 157
stream authority 154
streams 151
streams and migration 154
streams and neighbor brokers 153
subscription points 158

MQSeries Publish/Subscribe
migration 147 (continued)

product differences 148 (continued)
throughput 159
topics 156
wildcards 156

scenarios 147
MQSeries resources

application use of queues 70
MQSeries Workflow 4
multilevel wildcard 83

N
National Language Support 105
NEON

accessing rules and formats 146
existing rules and formats 144
message definitions 18
rules and formats 144

NEONRules and NEONFormatter
Support

code page support restrictions 106
NEONRules and NEONFormatter

Support publications 181
nodes 46

O
ODBC

drivers 119
drivers on AIX 98
drivers on HP-UX 99
drivers on Sun Solaris 101
drivers on Windows NT 104

online Help 22
online Tour 22
Order Mode

By Queue Order 70
By User ID 70

Order Mode property 70
output terminal 14

P
parsers 59
partner flow 37
Partner Offerings 184
PDF (Portable Document Format) 182
planning

database resources 109
MQSeries Integrator resources 107
MQSeries resources 108
naming conventions 107

plug-ins
guidelines 139
message parser 140
message processing node 139

Portable Document Format (PDF) 182
predefined messages 17
primary security domain 123
principals 27, 121

IBMMQSI2 129
mqbrasgn 122
mqbrdevt 122
mqbrkrs 88, 122

principals 27, 121 (continued)
mqbrops 122
mqbrtpic 122

problem determination 134
commands 136
database logs 137
database messages 137
messages 136
MQSeries events 137
MQSeries logs 137
MQSeries messages 137
ODBC traces 137
optional traces 135
service trace 135
UNIX syslog 135
user trace 135
user traces 135
Windows NT event log 135

problems
solving using the Debugger 54

publication access 91
publications

MQSeries Everyplace 181
MQSeries Integrator 181
publish/subscribe

event information 76
global 78
local 78
retained 76, 81
state information 76

retained 77
publish/subscribe 75

ACLs 28
collectives 86, 110
default ACL 29
default subscription point 16
filters 80
interactions with broker 75, 85
messages 112
multiple topics 85
publication node 15
reserved characters 83
security 86
special characters 83
subscription point 16
throughput 49
topic 23
topic-based security 27, 112
topic root 28
topics 82
unnamed publication node 16
wildcards 83

Q
quality of service 72

R
resource definition

import and export 21
retained publications 76, 77, 81

performance implications 78
roll back 14
routing

message flow 44

Index 187

rules 3

S
SAP/R3 3
SCADA

quality of service 72
security 73
special considerations 25

SCADA applications 26
SCADAInput node

in example message flows 17
scenario

business 33
retail 33

security
ACLs 89, 130
applications 73, 129
configuration 127
Control Center roles 128
database 128
domain 121
message flows 129
operational 127
primary security domain 123
principals 121
public access 87
run-time 127
SCADA 73
topic-based 130
trusted security domain 123

security domains
UNIX 124
Windows NT 123

security subsystem
principals 27

self-defining messages 17
single-level wildcard 84
SmartGuide for message creation 18
softcopy books 182
solving problems

using the Debugger 54
special characters

topic level separator 83
stock flow 37
subscription options

new publications only 81
publish on request only 81

subscription point
default 16

subscription points 79
default 80
using 80

subscriptions
content filter 79
local 81
registration 78
subscriber queue 79
subscription point 79

Sun Solaris installation
delivery media 167
disk space requirements 100
hardware requirements 100
software requirements 100
system requirements 100

superuser, IBMMQSI2 129
Supply Chain Management 4

SupportPac 184
SYSTEM.BROKER.CONTROL.QUEUE 69,

70
system management 13, 138
system requirements 95

AIX installation 96
HP-UX installation 98
summary 95
Sun Solaris installation 100
Windows NT installation 102

T
template 14, 17
throughput

message flow 42
publish/subscribe message flow 49

Tivoli 13
topic access 91
topic-based security 86, 112
topic root 24
topic tree 24
topics

publish/subscribe 82
semantics 84
wildcards 85

Tour 22
trace commands 136
transactionality 46
transactions 71

database interactions 71
transformation

message flow 43
trusted security domain 123

U
User Name Server 27, 112

MQSeries resources 116
multiple 112
principals 86

V
version control

SupportPac IC04 21

W
wildcard

multilevel 83
single-level 84

wildcards
multi-level 85
single-level 85

Windows 2000 xii
Windows NT installation

database 104
delivery media 168
disk space requirements 102
hardware requirements 102
MQSeries 103
operating system software 103
software requirements 102
system requirements 102

wire format 17

X
XA

commit 14
roll back 14

XA technology 14
XML messages 57

188 MQSeries Integrator Introduction and Planning

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–816151
– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2001 189

190 MQSeries Integrator Introduction and Planning

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5599-02

Spine information:

��� MQSeries® Integrator MQSeries Integrator Introduction and Planning Version 2.0.2

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book

	Summary of changes
	Changes for this edition (GC34-5599-02)
	Changes for the second edition (GC34-5599-01)

	Part 1. Introduction
	Chapter 1. MQSeries and business integration
	The MQSeries family
	MQSeries
	MQSeries Integrator
	MQSeries Workflow

	Using MQSeries for business integration
	Using MQSeries Integrator in your business
	MQSeries Integrator Version 2 and previous IBM offerings

	Getting started with MQSeries Integrator

	Chapter 2. MQSeries Integrator overview and concepts
	The Configuration Manager
	Brokers
	Connecting brokers for publish/subscribe
	System management interfaces

	Business processing rules (message flows)
	Creating message flows
	Message flow input and output
	Publish/subscribe services
	Associating message flows with brokers
	Simple message flow examples

	Messages and message sets
	Messages predefined in the Control Center
	Importing legacy message definitions
	Importing messages predefined by the Control Center

	Messages predefined by the NEONFormatter
	Self-defining messages
	Parsing messages
	Associating message sets with brokers

	The Control Center
	Updates, assignment, and deployment
	Exporting and importing resource definitions
	Help and online Tour

	Applications and clients
	Point-to-point applications
	Publish/subscribe applications
	Client connections to brokers and message flows
	Special considerations for MQSeries Everyplace and SCADA
	MQSeries Everyplace applications
	SCADA applications

	The User Name Server
	Access Control Lists

	Dependencies
	MQSeries dependencies
	Database dependencies

	Release to release migration

	Chapter 3. MQSeries Integrator: a business scenario
	The retail scenario
	Business data
	Business needs
	Business solution using MQSeries Integrator Version 2
	Implementing the business solution

	Part 2. Business process planning
	Chapter 4. Message flows
	What is a message flow?
	What does a message flow consist of?
	Message flows and units of work
	Parallel processing of message flow instances
	Interaction of message flows
	Transformation
	Intelligent routing
	Enriching message content
	What is a message processing node?
	Common node characteristics
	Input and output nodes
	Processing messages
	Error handling

	Execution groups
	Message flows and message sets
	Message flows for publish/subscribe services
	Supplied message flows and nodes
	Primitive node types
	Supplied message flows

	Adding or enhancing message processing nodes
	Solving message flow problems with the Debugger

	Chapter 5. Messages
	Predefined and self-defining messages
	Predefined messages
	Message templates

	Self-defining messages
	XML support

	How messages are processed in a message flow
	Exporting and importing MRM message sets

	Message parsers
	Default message parsers

	Using message templates and messages
	Client access to messages

	Creating additional parsers

	Part 3. Application planning
	Chapter 6. Application design
	Communication models
	Point-to-point communications
	Publish/subscribe communications

	Application programming
	Message headers

	Reusing existing applications
	Send and forget
	Request/reply
	Publish/subscribe

	Writing new applications
	MQSeries queues
	Message order
	Publish/subscribe

	Transaction support
	Message persistence

	Security
	Summary

	Chapter 7. Designing publish/subscribe applications
	How publish/subscribe applications interact with a broker
	Publications
	Retained publications
	State and event information
	Using retained publications

	Local and global publications
	Global publication
	Local publication

	Conference-type applications

	Subscriptions
	Subscription points
	The default subscription point
	Using subscription points
	Example

	Filters
	Local subscriptions
	Retained publications
	Publish on request only
	New publications only

	Message persistence

	Topics
	Special characters in topics
	The topic level separator
	The multi-level wildcard
	The single-level wildcard

	Topic semantics and usage
	Using wildcards with topics
	Multiple topics

	Broker networks
	Collectives

	Topic-based security
	Principals and the User Name Server
	Access control lists
	PublicGroup authorizations
	mqbrkrs authorizations
	Resolving ACL conflicts
	ACLs and system topics
	Setting access control on topics
	Inheritance of security policies
	Dynamically created topics
	ACLs and wildcard topics
	ACLs and subscription resolution
	Activating topic ACL updates

	Checking publications and subscriptions
	The publisher
	The subscriber

	Summary

	Part 4. Systems planning
	Chapter 8. System requirements
	Summary of system requirements
	System requirements for AIX components
	Hardware requirements
	Disk space required
	Software requirements

	System requirements for HP-UX components
	Hardware requirements
	Disk space required
	Software requirements

	System requirements for Sun Solaris components
	Hardware requirements
	Disk space required
	Software requirements

	System requirements for Windows NT components
	Hardware requirements
	Disk space required
	Software requirements

	Database support
	Client requirements
	License information
	National language support

	Chapter 9. Planning your MQSeries Integrator network
	Planning MQSeries Integrator resources
	Naming conventions
	MQSeries Integrator resources
	MQSeries resources
	Database resources

	Broker domain basics
	General guidelines
	Supporting publish/subscribe services

	Client applications
	The Control Center application

	Designing the MQSeries infrastructure
	MQSeries resources for brokers
	MQSeries resources for the Configuration Manager
	MQSeries resources for the User Name Server
	MQSeries resources for the Control Center
	MQSeries resources for client applications
	MQSeries clusters

	Planning database resources
	Database requirements
	Databases and code pages
	Database locations
	Database backup and recovery

	Planning security
	Security and principals
	Using Windows NT security domains
	Using UNIX security domains
	Summary of authorizations

	Operational security
	Configurational security
	Run-time security
	Database security

	Control Center security
	The IBMMQSI2 superuser
	MQSeries authorizations

	Application security
	Message flow security
	Topic-based security

	Planning for data conversion

	Chapter 10. Managing your MQSeries Integrator network
	Managing broker domain components
	Managing application and business processes

	Monitoring and analysis
	Problem determination
	Traces
	Messages
	Information available from other sources

	Managing workload and performance
	Using MQSeries trusted applications
	Tuning message flow performance

	System management

	Chapter 11. Enhancing your broker domain
	General guidance for writing plug-ins
	Writing your own message processing node types
	Writing your own parsers

	Part 5. Appendixes
	Appendix A. Planning for migration and integration
	MQSeries Integrator Version 1
	Installation
	Backing up configuration files
	Preserving your MQSeries Integrator Version 1 rules and formats
	Uninstallation of MQSeries Integrator Version 1

	Run-time
	NEON rules and formats
	Setting up a message flow which emulates the functionality ofthe Version 1 Rules engine

	MQSeries Publish/Subscribe
	Scenarios for migration and integration
	Product differences
	Message formats
	Streams
	Stream authority
	Topics
	Wildcards
	Default topic routing
	Retained publications
	Metatopics
	Subscription points
	Content-based filtering
	Throughput

	Scenario 1: running two independent broker networks
	Scenario 2: creating and operating a heterogeneous network
	Scenario 3: migrating MQSeries Publish/Subscribe brokers
	Migration checklist

	Appendix B. The product packages
	The MQSeries Integrator for AIX package
	The MQSeries Integrator for HP-UX package
	The MQSeries Integrator for Sun Solaris package
	The MQSeries Integrator for Windows NT package

	Appendix C. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries Integrator Version 2.0.2cross-platform publications
	MQSeries Integrator Version 2.0.2platform-specific publications
	MQSeries Everyplacepublications
	NEONRules and NEONFormatterSupport for MQSeries Integratorpublications
	Softcopy books
	Portable Document Format (PDF)

	MQSeries library references
	MQSeries Publish/Subscribepublications
	MQSeries Workflow publications
	DB2 publications
	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

