
MQSeries® Integrator

ESQL Reference
Version 2.0.2

SC34-5923-00

���

MQSeries® Integrator

ESQL Reference
Version 2.0.2

SC34-5923-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 133.

First Edition (April 2001)

This edition applies to IBM® MQSeries Integrator Version 2.0.2 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this book ix
Who this book is for ix
What you need to know to understand this book . . ix
Terms used in this book ix

Chapter 1. Basic message structure . . 1
Message structure 1

Tree format 1
Correlation names 2
Referring to simple fields in a message 3
Using MQSeries constants in message headers . . 3
Parsers 4
Exception and destination list tree structure . . . 8

Supported message types. 12
How a message is interpreted 13

Self-defining messages in the XML domain . . . 13
The NEON domain. 14
The MRM domain 14
The BLOB domain 28

Chapter 2. ESQL Overview 31
What is ESQL? 31

Main data manipulation statements in Database
SQL 31
Comparison of main IBM primitive nodes and
Database SQL statements 31

Case sensitivity of ESQL syntax 33
Order of processing in ESQL 33
Nulls in Filter and Compute expressions 33
Nulls in Boolean expressions 34

Chapter 3. ESQL Concepts 35
Data types. 35

Numbers 35
Strings 36
Datetime types 36
INTERVAL 38
BOOLEAN 39

CASTs 39
CAST specifications 39
Supported CASTs 40
CAST expressions 43
Implicit CASTs for comparisons 45
Implicit CASTs for arithmetic operations. . . . 48
Implicit CASTs for assignment 50
Data types of values from external sources . . . 52

Predicates 53
BETWEEN predicate 53
LIKE predicate 53
IN predicate 54

EXISTS predicate 54
Comments. 54

Chapter 4. Field references 55
Initial correlation names 55
Repeating fields 57

Array indices 58
The quantified predicate 58
SELECT expression 60

Anonymous field names 61
Field types for the XML parser 61
Field types for MQRFH2 headers 62

Chapter 5. ESQL statements,
expressions and functions 63
Statements and expressions 63

AND and OR. 63
AS 63
CASE 63
CAST 65
DECLARE 66
DELETE 66
EVAL 67
IF. 69
INSERT. 69
NULL with AND and OR 70
PASSTHRU 70
SELECT 72
SET 72
UPDATE 76
WHILE 77

Functions 78
String manipulation functions 78
Numeric functions 82
Datetime functions 86
Miscellaneous functions 88

Chapter 6. Complex SELECTs: ROWs
and LISTs 91
ROW and LIST constructors 91
Examples of complex SELECTs 95

Implications of the item order within the SELECT
clause 95
Use of the ITEM keyword 96
Effects of the THE keyword 97
Projection 98
Multiple items in the FROM clause 98
Joining items in the FROM clause 99
Using SELECT to return a scalar value 99
Selecting from a list of scalars 100

Chapter 7. Querying external
databases 101
Examples of external database queries 102

© Copyright IBM Corp. 2000, 2001 iii

||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

||

Create a database table 102
Create a table in a case sensitive database
system 103
Use of the ITEM keyword 103
Use of the WHERE clause 104

Appendix A. ESQL Components . . . 105
Special Characters in ESQL 105
Data types used in ESQL 106
Arithmetic operations supported in ESQL 107
ESQL comparison operators 108
Initial correlation names 109
Reserved words used in ESQL. 110

Appendix B. Examples 113
Message referenced in examples 113
Using a trace to view a message structure 115
Example exception list 117

Appendix C. MQSeries message
header parsers 119
The MQCFH parser 120
The MQCIH parser 121
The MQDLH parser 122
The MQIIH parser. 123
The MQMD parser 124
The MQMDE parser 125
The MQRFH parser 126

The MQRFH2 parser 127
The MQRMH parser 128
The MQSAPH parser 129
The MQWIH parser 130
The SMQ_BMH parser 131
The BLOB parser 132

Appendix D. Notices 133
Trademarks 134

Glossary of terms and abbreviations 135

Bibliography. 141
MQSeries Integrator Version 2.0.2 cross-platform
publications 141
MQSeries Integrator Version 2.0.2 platform-specific
publications 141
MQSeries Everyplace publications 141
NEONRules and NEONFormatter Support for
MQSeries Integrator publications 141
Softcopy books 142

Portable Document Format (PDF) 142
MQSeries information available on the Internet . . 143

Index 145

Sending your comments to IBM . . . 149

iv MQSeries Integrator ESQL Reference

||
||
||
||

||

||

Figures

1. A message tree structure 2
2. Message and destination list for an exception 10
3. The components of a message 19

4. Repeating fields in a message 57
5. Exception list structure 117
6. Retrieving the exception error code 118

© Copyright IBM Corp. 2000, 2001 v

||
||
||

||
||

vi MQSeries Integrator ESQL Reference

Tables

1. MQSeries constants references. 4
2. Exception list name-value elements 12
3. 34
4. Format of interval strings and qualifiers 38
5. Supported CASTs 40
6. Implicit CASTs for comparison 45
7. Implicit CASTs for arithmetic operations 48
8. Conversions from MQSeries Integrator to SQL

data types 50
9. Implicit CASTS for database data types to

MQSeries Integrator types 52
10. Initial correlation names 109
11. MQCFH parser element names, types, and

attributes 120
12. MQCIH parser element names, types, and

attributes 121
13. MQDLH parser element names, types, and

attributes 122
14. MQIIH parser element names, types, and

attributes 123
15. MQMD parser orphan element names, types,

and attributes 124

16. MQMD parser native element names, types,
and attributes 124

17. MQMDE parser element names, types, and
attributes 125

18. MQRFH parser element names, types, and
attributes 126

19. MQRFH2 parser element names, types, and
attributes 127

20. MQRMH parser element names, types, and
attributes 128

21. MQSAPH parser element names, types, and
attributes 129

22. MQWIH parser element names, types, and
attributes 130

23. SMQ_BMH parser element names, types, and
attributes 131

24. BLOB parser element names, types, and
attributes 132

25. File names of MQSeries Integrator book PDFs 142

© Copyright IBM Corp. 2000, 2001 vii

||
||

||

|
||

||

viii MQSeries Integrator ESQL Reference

About this book

Much of the information in this book was previously contained in MQSeries
Integrator Using the Control Center.

This book describes how to use the ESQL expressions that are necessary for
configuring message nodes in MQSeries Integrator.

MQSeries messages can be manipulated, constructed, and reformatted by nodes in
the message flow, using a specialized form of standard database Structured Query
Language (SQL). This specialized form is known as Extended SQL, or ESQL, and
supports MQSeries Integrator processing of the message structure. This means that
although you do not have to define the message structure to the Control Center,
you do have to understand the definition to be able to construct valid ESQL for
message manipulation.

If you have not used ESQL before, or do not have a good understanding of
message structure, you are recommended to read “Chapter 1. Basic message
structure” on page 1.

For more information about message nodes see MQSeries Integrator Using the
Control Center.

Many of the examples provided in this book are based on the example XML
message in “Message referenced in examples” on page 113.

A glossary and bibliography are provided at the end of this book.

Who this book is for
This book is intended for anyone who wants to create or modify MQSeries
Integrator message flows using message nodes.

What you need to know to understand this book
You need to have read and understood the general introduction to all aspects of
MQSeries Integrator in MQSeries Integrator Introduction and Planning and MQSeries
Integrator Using the Control Center.

Terms used in this book
All references in this book to MQSeries Integrator are to MQSeries Integrator
Version 2 unless otherwise stated.

All references in this book to Windows NT® are also applicable to Windows® 2000
unless otherwise stated. MQSeries Integrator components that are installed and
operated on Windows NT can also be installed and operated on Windows 2000.

© Copyright IBM Corp. 2000, 2001 ix

|
|

|

|
|

x MQSeries Integrator ESQL Reference

Chapter 1. Basic message structure

MQSeries Integrator provides a message brokering function that can transform
messages from one format to another. The brokers that manage these
transformations need to interpret the structure and content of the messages they
receive to perform the full range of transformation functions available with
MQSeries Integrator.

This chapter describes
v The structure of a message within MQSeries Integrator. See “Message structure”

for more information.
v The message types supported by MQSeries Integrator. See “Supported message

types” on page 12 for more information.
v How those messages are handled. See “How a message is interpreted” on

page 13 for more information

Message structure
The following terms are used in message definition:

Message

v Information you want to send from one place to another
v One or more elements of data, also known as fields
v A structured collection of bits and bytes

Message Set

v A collection of messages
v A central repository or dictionary of message definitions
v The message data associated with a business project

Element of data

v A piece of business information
v A data type
v Part of a C or COBOL structure

When a broker retrieves a message from an MQSeries queue, its first task is to pass
the data to a message parser (described in “Parsers” on page 4). This reads the
string of bits and converts them to a tree format (described in“Tree format”). The
tree format is easier to understand and manipulate, but contains identical content
to the bits from which it is formed. When a broker delivers a message to a
recipient, the message is converted back into a bitstream.

Tree format
A message tree is made up of a number of elements. At the top of the tree is the
root: this has no parent and no siblings. The root is parent to a number of child
elements. Each child must have a parent, it can have zero or more siblings (with
which it shares its parent), and it can have zero or more children.

The tree structure of a message is shown in Figure 1 on page 2. The message root
has two children, ElementA1 and ElementA2 (which are therefore siblings sharing

© Copyright IBM Corp. 2000, 2001 1

|

|

|
|
|
|
|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|

|
|

a single parent). The child ElementA1 has three children (ElementB1, ElementB2,
and ElementB3) and ElementB2 has a further child ElementC1.

When a message from an MQSeries message queue is parsed, three hierarchical
trees are created:
v Message tree
v Destination List tree
v Exception List tree

The tree structure is independent of any message format. Provided you understand
the structure of the message trees, you will be able to manipulate data or change
the format of your message using MQSeries message nodes and ESQL.

This tree structure is explored further in the MQSeries Integrator Programming Guide.

Correlation names
Within ESQL, each of these trees is referred to by a correlation name.

The correlation name for the message tree is Root.

The correlation name for the Destination List tree is DestinationList.

The correlation name for the Exception List tree is ExceptionList.

These correlation names are used within the Database and Filter nodes.

Within the Compute node, there are two sets of trees: input and output, which are
referenced using the following correlation identifiers:
v InputRoot
v InputDestinationList
v InputExceptionList
v OutputRoot
v OutputDestinationList
v OutputExceptionList

″Root″, ″DestinationList″ and ″ExceptionList″ are not valid correlation identifiers in
a Compute node.

Figure 1. A message tree structure

Tree format

2 MQSeries Integrator ESQL Reference

|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|

|
|

Each of these correlation names is described in “Initial correlation names” on
page 55 .

Note: If you find that the tree structure is not clear when you look at one of your
own messages, then you can use the Trace node as described in “Using a
trace to view a message structure” on page 115 to make it easier to read.

Referring to simple fields in a message
You refer to fields in a message using a field reference. A field reference has a very
similar format and meaning to a path in a file system. In its simplest form, a field
reference consists of a period-separated sequence of identifiers. These identify the
path in the message tree to get to the field you want. The simplest form of
identifier is a sequence of alphanumeric characters, the first of which must be an
alphabetic character.

You can also refer to specific elements that share a type and name by using the
bracketed index value after the name. You can use an integer value or the defined
constant LAST, for example
Body.Invoice.InvoiceNo

is equivalent to
Root.*[LAST].Invoice.InvoiceNo 1

The index numbering starts at value 1, and numbering is assigned from left to
right. Using the example “Message referenced in examples” on page 113 this can be
demonstrated as follows:
Body.Invoice.Purchases.Item[2].Author = 'Don Chamberlin'

Using quotes in the field reference
If you need to refer to fields with periods or spaces in their names, you must use
double quotes around the reference:

Body.Message."Companies on Wall Street"."mycompany.com"

If you need to refer to fields that contain double quotes, you must use two sets of
double quotes around the reference:

Body.Message.""hello""

If you need to refer to fields that have the same name as an ESQL keyword, shown
in “Reserved words used in ESQL” on page 110, you must use double quotes
around the reference:

Body.Message."Set"

Using MQSeries constants in message headers
You can reference and update the fields within the MQSeries headers that are
associated with each message. Every message has at least an MQMD, and most
messages have one or more additional headers, for example the MQIIH (IMS/ESA
bridge header).

You can use the defined MQSeries constants to test and assign values to the
message header fields, both in their symbolic form, and as defined values. For
example, to set the message type field, you can specify:

1. For an explanation of the use of * in this example, see “Anonymous field names” on page 61.

Correlation names

Chapter 1. Basic message structure 3

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|

|

|

|
|
|

|

|
|
|

|

|
|

|

|
|
|

|

|

|
|
|
|

|
|
|

SET OutputRoot.MQMD.MsgType = MQMT_DATAGRAM;

You can achieve the same effect using the numeric value of MQMT_DATAGRAM:
SET OutputRoot.MQMD.MsgType = 8;

When these constants are used in ESQL within the nodes, the syntax checker
accepts their use. However, if you use the Check message flow facility, the use of
MQSeries constants might generate errors at this stage, with a message to indicate
that the constants are not defined. You can ignore these messages; the constants
will be processed correctly at run-time.

Table 1 tells you where you can find the definitions of the MQSeries constants for
the MQSeries headers supported by MQSeries Integrator.

Table 1. MQSeries constants references

Header Description Reference

MQPCF PCF header comprising:
v MQCFH Command format

header
v MQCFIN PCF integer

parameter
v MQCFST PCF string

parameter
v MQCFIL PCF integer list

parameter
v MQCFSL PCF string list

parameter

MQSeries Programmable System Management

MQCIH CICS® bridge MQSeries Application Programming Reference

MQDLH Dead letter MQSeries Application Programming Reference

MQIIH IMS bridge MQSeries Application Programming Reference

MQMD Message descriptor MQSeries Application Programming Reference

MQMDE MQMD extension MQSeries Application Programming Reference

MQRFH Rules and formats MQSeries Publish/Subscribe User’s Guide

MQRFH2 Rules and formats version 2 MQSeries Integrator Programming Guide

MQRMH Reference message MQSeries Application Programming Reference

MQSAPH
SMQ_BMH

SAP R/3 Link headers MQSeries link for R/3 User’s Guide

MQWIH Workload information MQSeries Application Programming Reference

CodedCharSetId, Encoding, and data conversion
The broker supports the MQSeries constants for CodedCharSetId and Encoding
fields, and follows the MQSeries architecture rules for supporting
MQCCSI_INHERIT and MQCCSI_DEFAULT as necessary when generating a
MQSeries message.

Parsers
Parsers are used by brokers to validate incoming messages, and to build outgoing
messages.

When you build an output message, you must specify the format of each element
in the message either implicitly, by copying the entire input message, or by

Symbolic constants

4 MQSeries Integrator ESQL Reference

|

|

|

|
|
|
|
|

|
|

||

|||

||
|
|
|
|
|
|
|
|
|
|

|

|||

|||

|||

|||

|||

|||

|||

|||

|
|
||

|||
|

|
|
|
|
|

|

|
|

|
|

specifying the parser names in the ESQL. The parser name is specified in a SET
statement, also known as an assignment, for example the parser in the following
statement is generic XML:
SET OutputRoot.XML = InputBody;

The parsers used in MQSeries Integrator Version 2.0, are
v Properties
v MQMD and MQMDE
v Other header parsers as shown in “Appendix C. MQSeries message header

parsers” on page 119
v Message body parsers

– XML
– NEONMSG
– BLOB
– MRM, including several wire formats:

- CWF
- XML
- PDF

– JMSMap
– JMSStream

When a message is retrieved by a message flow, its constituent parts are passed to
the correct parser for interpretation (unless interpretation is not required: for
example if a whole message is copied).

With the exception of the MQMD, which must be the first header, the order of the
headers preceding the message body is not important: the parser for each header
processes that header independently. However, the fields are parsed in a particular
order that is governed by the parser: you cannot predict or rely on the order
chosen.

Message tree fields in ESQL have data types based on their MQSeries structure
description as described in the mapping below. There are some exceptions to this,
and these are noted.
v MQLONG types are represented as INTEGER.
v MQCHAR and MQCHARn are represented as CHARACTER.
v MQBYTE and MQBYTEn are represented as BLOB.
v Date and time fields are represented as:

– TIMESTAMP if the field can be converted to a valid TIMESTAMP
– CHARACTER if the field cannot be converted to a valid TIMESTAMP

v The Expiry field in the MQMD is a special case:
– If it is set to -1 (unlimited) it is converted to an integer
– If it is not set to -1, it is converted to a TIMESTAMP

Fields in MQSeries structures, excluding MQRFH2 folders, are represented by
name and value elements. MQRFH2 folder names are represented by name only
elements. Structure length fields and structure identifier fields are not visible, and
are filled in with appropriate values by the broker.

Other fields that are updated by the broker include all format fields and domain
fields in those parsers that support them.

Parsers

Chapter 1. Basic message structure 5

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|
|
|

|
|
|

|
|
|
|

|
|

Maintaining header integrity
The broker ensures that the integrity of the headers that precede a message body is
maintained. The format of each part of the message is defined by the Format field
in the immediately preceding header:
v The format of the first header is known, because this must be MQMD.
v The format of the next (second) part of the message, which might be another

header, or the message body, is set in the Format field in the MQMD.
v If a third part of the message exists, its format is defined in the format field of

the second part of the message.

This process is repeated as many times as is required by the number of headers
that precede the message body. You do not have to populate these fields yourself:
the broker handles this sequence for you.

If the body parser is not understood by MQSeries, the current Format field is
checked. If it currently contains a registered parser name, it is set to
MQFMT_NONE. The domain field is always updated. These actions might result
in information explicitly stored by an SQL expression being replaced by the broker.

The properties parser
Every message has a set of standard properties that you can manipulate in the
message flow nodes in the same way as any other property. The majority of these
fields map to fields in the supported MQSeries headers and are passed to the
appropriate parser when a message is delivered from one node to another.

If no parser is capable of receiving the property, the property is kept in the
Properties parser until such time as a suitable parser can be found. If the message
is converted to a bitstream, for example in an output node, any properties
remaining solely in the property parser are discarded.

All messages generated by IBM supplied nodes provide a properties folder for the
message as the first child of the root. It is not a requirement for a message to have
a properties folder, although it is recommended. If you are using your own
(plug-in) nodes, the interface provided does not automatically generate the
properties folder for a message: if you want one in a message, you must create the
folder yourself.

Having transmitted properties to each appropriate parser, the properties parser
requests the values back from the owning parser. This ensures that the cached
values of the properties are consistent with the message on entry and exit from
each node. The state within any given node is dependant on the behavior of the
node.

Header integrity

6 MQSeries Integrator ESQL Reference

|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

The parser name is ″Properties″. The standard properties are:
v MessageDomain
v MessageSet
v MessageType
v MessageFormat
v Encoding
v CodedCharSetId
v Transactional
v Persistence
v CreationTime
v ExpirationTime
v Priority
v Topic (this field contains a list)

Note: InputRoot.Properties can be coded as InputProperties.

Properties parser

Chapter 1. Basic message structure 7

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Exception and destination list tree structure
A tree representation is used in a broker to represent the MQSeries message.
Within the broker this tree representation is supplemented by two additional trees:
v The destination list tree

This represents the destinations to which a message is sent.
v The exception list tree

This represents the exception conditions that have occurred while processing
that message.

A message being processed within the broker consists of three separate syntax
element trees:
v The destination list tree
v The exception list tree
v The message tree

You can query and manipulate each of these trees in much the same way in Filter,
Database, and Compute nodes. Elements can be created, examined, or even copied
from one tree to another. The destination and exception list trees only exist within
the broker and are not in the MQSeries message.

The following sections describe the structure of the destination and exception list
trees.

Destination lists
A destination list tree describes a list of internal and external destinations to which
a message will be sent. Output nodes can be configured to examine this list and
send the message to the given destinations. Alternatively, they can be configured to
send messages to a fixed destination. In this case, the destination list has no effect
on broker operations and can be empty (that is, consist of a Destination List
element only).

Exception and destination list tree structure

8 MQSeries Integrator ESQL Reference

|

|
|

|

|

|

|
|

|
|

|

|

|

|
|
|
|

|
|

|
|
|
|
|
|
|

The destination list tree has the following structure:

The root of the tree is called “DestinationList”. The tree has a single name element
called “Destination”: this is the first and only child of DestinationList. The
Destination element consists of a number of children that indicate the transport
types to which the message will be directed (the Transport identifiers). Each
element is a single name element, for example, ″MQDestinationList″ or RouterList.

Note: In the Compute node there are two Destination List trees.
v An input tree: use InputDestinationList to refer to the root of this tree.
v An output tree: use OutputDestinationList to refer to the root of this tree.

The Transport identifier element might contain an element called “Defaults”. If it
does, this must be in the first child and contains a set of name-value elements that
give default values for the message destination and its put options.

The element that identifies the transport might also contain a number of elements
called “DestinationData”. Each of these contains a set of name-value elements that
defines a message destination and its put options.
v For MQDestinationList, the set of elements that define a destination comprises:

queueManagerName
queueName
transactionMode
persistenceMode
newMsgId
newCorrelId
segmentationAllowed
alternateUserAuthority

All of these elements have a data type of CHARACTER. See the description of
the MQOutput node in the online help for their descriptions and valid values.

Exception and destination list tree structure

Chapter 1. Basic message structure 9

|

|

|
|

|
|

|
|
|
|
|

|

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

You can access the online help from the Help menu in the Control Center
taskbar or by highlighting an MQOutput node, right clicking, and selecting
Help.

v For RouterList, the set of elements that define destination have a single entry,
labelName.

Exception lists
If no exception conditions occur while you are processing a message, the exception
list associated with that message consists of a root element only. This is, in effect,
an empty list of exceptions.

If an exception condition occurs, message processing is suspended and an
exception is thrown. Control is passed back to a higher level, that is, an enclosing
catch block. An exception list is built to describe the failure condition, and then the
whole message, together with the destination list and the newly-populated
exception list, is propagated through an exception handling message flow path.

Exception handling paths start at a failure terminal (most message processing
nodes have these), the catch terminal of an MQInput node, or the catch terminal of
a TryCatch node, but are no different in principle from a normal message flow
path. Such a flow consists of a set of interconnected message flow nodes defined
by the designer of message flow. The exception handling paths differ in detail. For
example, they might examine the exception list to determine the nature of the
error, and so be able to make an appropriate response.

The message and destination list that are propagated to the exception handling
message flow path are those in effect at the start of the exception path, not
necessarily those in effect when the exception is thrown. Figure 2 illustrates this
point:
v A message (M1) and destination list (D1) are being processed by a message flow.

They are passed through the TryCatch node to Compute1.
v Compute1 updates the message and destination list and propagates a new

message (M2) and destination list (D2) to the next node, Compute2.
v An exception is thrown in Compute2. The exception is propagated back to the

TryCatch node, but the message and destination list are not. Therefore the
exception handling path starting at point A has access to the first message and
destination list, M1 and D1.

v If there had been no TryCatch node in the message flow, and the failure terminal
of Compute2 had been connected (point B), the message and destination list M2
and D2 would have been propagated to the node connected to that failure
terminal.

Figure 2. Message and destination list for an exception

Exception and destination list tree structure

10 MQSeries Integrator ESQL Reference

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|

The root of the Exception List tree is called “ExceptionList”, and the tree itself
consists of a set of one or more exception descriptions. Each exception description
consists of a name element whose name is one of the following:
v RecoverableException
v ParserException
v ConversionException
v UserException
v DatabaseException

Note: In the Compute node there are two Exception List trees.
v An input tree: use InputExceptionList to refer to the root of this tree.
v An output tree: use OutputExceptionList to refer to the root of this tree.

These name elements contain children that take the form of a number of
name-value elements that give details of the exception and zero or more name
elements whose name is “Insert”. The NLS (National Language Support) message
number identified in a name-value element in turn identifies an MQSeries
Integrator error message. All error messages are defined in detail in MQSeries
Integrator Messages. The Insert values are used to replace the variables within this
message, and provide further detail of the precise cause of the exception.

The name-value elements within the exception list are shown in Table 2 on page 12.

Exception and destination list tree structure

Chapter 1. Basic message structure 11

|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

Table 2. Exception list name-value elements

Name Type Description

File1 String C++ source file name

Line1 Integer C++ source file line number

Function1 String C++ source function name

Type2 String Source object type

Name2 String Source object name

Label2 String Source object label

Text1 String Additional text

Catalog3 String NLS message catalog name4

Severity3 Integer 1=information 2=warning 3=error

Number3 Integer NLS message number4

Insert3 Type Integer The data type of the value: 0=Unknown 1=Boolean
2=Integer 3=FLOAT 4=Decimal 5=Character
6=Time 7=GMT Time 8=Date 9=Timestamp
10=GMT Timestamp 11=Interval 12=BLOB 13=Bit
Array 14=Pointer

Text String The data value

Notes:

1. The File, Line, Function, and Text elements should not be used for exception handling
decision making. These elements ensure that information can be written to a log for use
by IBM service personnel.

2. The Type, Name, and Label elements define the object (usually a Message Flow node)
that was processing the message when the exception condition occurred.

3. The Catalog, Severity, and Number elements define an NLS message: the Insert
elements that contain the two name-value elements shown define the inserts into that
NLS message.

4. NLS message catalog name and NLS message number refer to a translatable message
catalog and message number.

The exception description structure can be both repeated and nested to produce an
exception list tree. In this tree:
v The depth (that is, the number of parent-child steps from the root) represents

increasingly detailed information for the same exception.
v The width of the tree represents the number of separate exception conditions

that occurred before processing was abandoned. You will find that this number
is usually one, and results in an exception tree that consists of a number of
exception descriptions connected as children of each other.

Supported message types
The messages supported by MQSeries Integrator are of three broad types,
identified by a property of the message called the message domain:
1. A message can be unstructured: its message domain must be set to BLOB.
2. A message can be self-defining: its message domain must be set to XML.

Two additional domains are included in this category to support JMS messages:
the domain JMSMap can be used for jms_map messages and the domain
JMSStream can be used for jms_stream messages.

3. A message can be predefined as in an MRM message.

Exception and destination list tree structure

12 MQSeries Integrator ESQL Reference

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||||
|
|
|
|

|||

|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|

|

|
|
|

|

How a message is interpreted
When the message arrives in a broker, it is removed from the input queue by the
MQInput node defined in the message flow that processes messages from this
queue. It must be processed by an appropriate parser to decode the physical
structure and create the logical structure.

The MQInput node determines what to do with each message:
v If the message has an MQRFH or MQRFH2 header following the MQMD

header, the domain identified in the MQRFH2 header is used to decide which
root message parser is invoked.

v If the message does not have an MQRFH or MQRFH2 header, but the properties
of the MQInput node indicate the domain of the message, the parser specified
by the node property is invoked.

v If the message has a valid MQMD, but the message body cannot be recognized,
the message cannot be interpreted or parsed, and it is handled as a binary object
(BLOB). See “Working with unstructured messages in the BLOB domain” on
page 28 for more information about these messages.

Each message received must have an MQMD header, and can have zero or more
additional headers. MQSeries Integrator provides a parser for each of the following
MQSeries headers:
v MQCFH
v MQCIH
v MQDLH
v MQIIH
v MQMD
v MQMDE
v MQRFH
v MQRFH2
v MQRMH
v MQSAPH
v MQWIH
v SMQ_BMH

Further details about the support for these parsers is given in “Appendix C.
MQSeries message header parsers” on page 119.

MQSeries Integrator also supports the use of additional parsers. You can create a
message parser using a defined programming interface. This interface and the
techniques you must employ to create your own “plug-in” parsers are described in
the MQSeries Integrator Programming Guide. If you use your own parser, you must
set up your MQInput node properties to identify your parser.

Self-defining messages in the XML domain
The message carries the information about its content and structure within the
message. Its definition is not held anywhere else.

When a self-defining message is received by the broker, it is handled by the XML
parser, and a tree is created according to the XML definitions contained within that
message.

A self-defining message is also known as a generic XML message. It does not have a
recorded format.

Interpreting a message

Chapter 1. Basic message structure 13

|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

A self-defining message can be handled by every IBM-supplied message processing
node. The whole message can be stored in a database, and headers can be added
to or removed from the message as it passes through the message flow.

The NEON domain
The NEON message domain supports predefined messages, but the domain of the
message must be set to either
v NEON: The deprecated parser available in earlier versions of MQSeries Integrator.

This parser can be processed in the NEONFormatter and NEONRules nodes.
or

v NEONMSG: A plugin NEONMSG parser with enhanced functionality introduced
with MQSeries Integrator Version 2.0.2. This parser can be processed in the
NEONMap, NEONRulesEvaluation and NEONTransform nodes.

Both parsers can be used with MQSeries Integrator Version 2.0.2 (the NEON parser
has been retained to provide backwards compatibility) but parsers can only be
used with the nodes described above. That is, the new parser will only work with
the new nodes, and the old parser will only work with the old nodes.

The message must be defined using the NEONRules and NEONFormatter Support
for MQSeries Integrator graphical utilities that are supplied with MQSeries
Integrator Version 2.0.2. You can create new messages and use existing messages
defined to the NEONMSG domain.

A NEONMSG message can be handled by every IBM-supplied message processing
node. The whole message can be stored in a database, and headers can be added
to or removed from the message as it passes through the message flow. The
NEONFormatterMap node can be used to transform a NEONMSG message. No
other node can manipulate the message contents.

For further information about working with these messages, refer to the
NEONRules and NEONFormatter Support for MQSeries Integrator User’s
Guideand MQSeries Integrator Using the Control Center.

The NEON parser domain becomes NEONMSG in MQSeries Integrator Version
2.0.2. NEON still exists, but only for compatibility with previous releases.

The MRM domain
This section describes messages in the MRM domain and how to work with them.

Predefined messages in the MRM domain
The MRM domain supports predefined messages that must have the message
domain set to MRM. It must be defined to the Message Repository Manager, a
component of the Configuration Manager. You can define messages to the MRM
domain using the Control Center (Message Sets view). The MRM maintains these
messages in the message repository.

You can also predefine a message to the MRM in the XML message domain (the
domain is defined as a message set property, as described in “Message set
properties” on page 23). If you define a message to the XML domain, you can use
all the facilities available to MRM domain messages to manipulate and reference
the message in the nodes within your message flows in the Control Center.
However, you are not expected to assign these message sets to a broker, nor to

Self-defining messages in the XML domain

14 MQSeries Integrator ESQL Reference

|
|
|

|

|
|

|
|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

deploy them. Because the domain is set to XML, the XML parser is invoked by the
broker and does not reference any external message definition.

An MRM message can be handled by all the IBM-supplied message processing
nodes except the NEON nodes.

The whole message, or parts of the message, can be stored in a database, and
headers can be added to or removed from the message as it passes through the
message flow. The message can be manipulated using ESQL defined within all
message processing nodes that support manipulation (for example, compute and
filter).

You can also transform any message in the MRM domain into any other format
defined to the MRM using ESQL. This includes code page and encoding
conversion: this capability provides a significant benefit as the message structure
has already been provided in MQSeries Integrator and no MQSeries data
conversion exits are required.

MRM Padding characters: In MQSeries Integrator, all MRM padding characters
are subject to character conversion, regardless of whether they are defined as
SPACE, specified character, hexadecimal value or numeric. If you are converting a
message to a different code page, you need to ensure that the converted value of
the padding character is valid for this code page. For example, when converting
from ASCII to code page ’500’, if you have specified the numeric ’8’ as your
padding character, this will be converted from 0x08 to 0x16. The ASCII and
EBCDIC representations of ’back space’.

There is currently a restriction that the value of your padding character should not
be greater than 0x7F. Also you should note that if you enter a hexadecimal or
numeric value, it is considered to be the character represented by that number in
UTF-8.

For a fuller discussion of data conversion considerations, see Chapter 9, Planning
your MQSeries Integrator network, in MQSeries Integrator Introduction and Planning.

Messages with a message domain of MRM have three other characteristics for
further classification:
1. Message format

Three message formats are supported by the MRM:
a. A message can have a message format of CWF (Custom Wire Format).

These messages are MRM representations of legacy data structures created
in the C or COBOL programming language, and imported into the MRM
using the Control Center facilities. See “Importing legacy formats” on
page 27 for details of how to complete this task.
You can also create new messages using this format.

b. A message can have a message format of PDF (predefined format).
This is a specialized format used predominantly in the finance industry. It
does not have any connection with the Portable Document Format defined
by Adobe (also known as PDF).
If you already use messages of this format, you can continue to use them
and process them by specifying this format in the definitions.

c. A message can have a message format of XML.

Predefined messages in the MRM domain

Chapter 1. Basic message structure 15

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|
|
|

|

|

|
|
|

|
|

|

These messages are represented as XML documents. They conform to an
XML DTD (Document Type Definition) that can be generated by the Control
Center for documentation purposes.

2. Message set
This identifies the message set to which each message belongs. This is specified
as the message set identifier, not the message set name. When you define a
message in the MRM message domain, you must define a message set that
contains it. A message set can contain one or more related messages.

3. Message type
The message type identifies the message definition within the set. It is the
unique identifier for each message of this particular content and format.

An overview of the message definition process
The message definition process is managed by the MRM.

When you create or modify message definitions using the Control Center, the
MRM stores them in the message repository, a set of tables in a database created and
maintained by the Configuration Manager. 2

Each message definition is created within, and belongs to, a message set, which is
simply an organizational grouping of related messages. A message set includes the
definitions of one or more related messages, typically those used by a single
application. You construct each message using a set of building blocks, known as
message components, some of which are supplied with MQSeries Integrator (the
simple types) and some of which you define using the Control Center (the
compound types).

So, for example, for a banking application you could define simple elements, such
as Account Number and Account Balance, then include those simple elements in a
compound element, such as Customer Record. The Account Number, Account
Balance, and Customer Record elements would all be reusable by other message
definitions within the same message set. The components of a message are
described in detail in “The components of a message definition” on page 17.

You must assign message sets to those brokers that need to understand them.
When you deploy message set assignments in the broker domain, the MRM
constructs a message dictionary from each message set (one dictionary plus one CWF
descriptor file for each set) and sends it to each broker that needs access to the
message definitions.

The message model
The MQSeries Integrator message model provides a platform and language
independent way of defining logical messages that represent structured business
information.

In this message model, a message definition comprises separate, reusable message
components. The relationship between components is defined as being either a
member relationship or a reference relationship.

Reference relationship: A reference relationship is a defining relationship
between two components. For example, an element component of type STRING
has a reference relationship to an element length component that defines the length
of the element.

2. The configuration repository and message repository are implemented using an IBM DB2 Universal Database® for Windows NT.

Predefined messages in the MRM domain

16 MQSeries Integrator ESQL Reference

|
|
|

|

|
|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

Reference relationships are always mandatory.

Member relationship: A member relationship is a parent-child relationship
between two components. For example, a (parent) compound type has a member
relationship with one or more (child) elements. The member relationship is always
expressed as an attribute of the parent, not of the child.

Member relationships are always optional.

The components of a message definition: The components of a message
definition are described in the remainder of this section. For each component, the
reference and member relationships are identified.

Message component: The message component defines both the business meaning
and the format of a single unit of information to be exchanged between
applications.
v A message component has a reference relationship to a single type component (a

compound type) that defines the content of the message. It can also have a
reference relationship to an element qualifier.

v A message component has no member relationships.

Once a message component has been created, the reference of the type component
cannot be changed.

Element component: The element component defines both the business meaning
and the format of a single unit of information within a message.
v An element component has a reference relationship to a single type component

(a simple type or a compound type) that defines the content of the element.
An element component also has a reference relationship to an element length
component, if the element is of simple type STRING.

v An element component can have a member relationship to one or more (child)
element valid value components, which must have the same type as the element.

Once an element has been created, the identifiers of the type and element length
components to which it refers cannot be changed.

Type component: The type component defines the format or content of a message
or an element. A type can be a simple type or a compound type.

Simple type
Is a basic data type supported by the run-time message parsers. The simple
types are STRING, INTEGER, FLOAT, BOOLEAN, and BINARY. The
simple types are created automatically when you create a message set.

Compound type
Is a structure made up of one or more element components.

v A type component has no reference relationships.
v A compound type component has member relationships to one or more (child)

elements.

Element length component: The element length component defines a maximum
length value that completes the definition of any element of the simple type
STRING.
v An element length component has no reference relationships.
v An element length component has no member relationships.

The message model

Chapter 1. Basic message structure 17

|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|

|
|

|
|
|

|

|

Category component: The category component groups messages within a message
set, typically by business function. The extraction and generation functions of the
MRM can produce their output by category.
v A category component has no reference relationships.
v A category component can have member relationships to one or more (child)

messages.

Element valid value component: The element valid value component defines either a
single value, or a range of values. One or more element valid value components
can be associated with an element, or with an element qualifier, or both. One
element valid value can define the default value of an element.
v An element valid value component has a reference relationship to a type

component that defines the content of any element component to which the
value may apply. (In other words, a valid value of type STRING can only be
applied to an element of type STRING, or to its element qualifier.)

v An element valid value component has no member relationships.

Element qualifier component: An element qualifier component provides additional
information that qualifies the definition of an element component. An element
qualifier component can be associated with a specific element component within a
specific message component to qualify its use in that message component only. For
example, an element qualifier can specify that a specific element is mandatory in a
specific message, even though it is optional elsewhere.
v An element qualifier component has a required reference relationship to an

element component. The element qualifier component can be used to qualify the
use of its related element in a specific instance.

v An element qualifier component can have member relationships to zero or more
element valid value components, that must have the same type as the referenced
element. If valid values are present for an element qualifier in a message, they
apply to the related element within the specific message only (overriding those
defined for the element). One such element valid value can denote a default
value.

Figure 3 on page 19 shows all possible components of a message definition and
summarizes the relationships between them.

The message model

18 MQSeries Integrator ESQL Reference

|
|
|

|

|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

Component identifiers and names: Each component of a message definition has
an identifier and a name.

Component identifier Identifies a component uniquely within a message
set. No two components in a message set can have
the same identifier, and no two components of the
same class (for example, two elements or two
categories) can have identifiers that differ only by
case. For example, you cannot define an element
with the identifier “ADDRESS” and an element
with the identifier “address” in the same message
set.

In the case of element components, the element
identifier is used in application programs to access
data values assigned to the element.

An identifier must begin within an alphabetic
character (A-Z, a-z). The remainder of the value,
up to a maximum of 254 characters, can contain
alphanumeric (A-Z, a-z and 0–9), underscore (_),

Figure 3. The components of a message

The message model

Chapter 1. Basic message structure 19

|

|
|
|
|
|

||
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

and period (.) characters. Other characters,
including space characters, are not valid.

You cannot change the identifier of a component.

Component name Is a descriptive name for a component. It is
typically the full name of a component (for
example, “Street Name” or “Account Number
Length”), in contrast to the component identifier,
which is often an abbreviated name and subject to
environmental conventions.

You can change the name of a component (using
the Rename action).

An example message definition: To illustrate the concepts introduced in this
section, consider this example of a simple message:

Some items to note about this message:
v The top-level elements HomeAddress and WorkAddress have the same

substructure, which you can define by creating a compound type component
called Address that contains the common elements Line, Country, and ZipCode.
The compound type Address is referenced by the top-level elements
HomeAddress and WorkAddress.

v The elements Line, Country, and ZipCode all reference the simple type STRING,
which is created by default when a message set is created. These elements must
also reference an element length component.

If you create a message definition from the bottom up (that is, starting with the
lowest-level components and working up to the top of the hierarchy), you are
guaranteed to create a referenced component before you create the component that
contains the reference.

The components of our example AddressesMessage would be created in the
following order:
1. Simple type STRING (created by default when the message set is created)
2. Element length components, in any order:

a. Maximum Length 50
b. Maximum Length 20

The message model

20 MQSeries Integrator ESQL Reference

|
|

|

||
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|
|

|

3. Element components, in any order:
a. Element Line, referencing simple type STRING and element length

Maximum Length 50.
b. Element Country, referencing simple type STRING and element length

Maximum Length 50.
c. Element Zip Code, referencing simple type STRING and element length

Maximum Length 20.
4. Compound type component Address, with member relationships to the

following child elements:
v Element component Line
v Element component Country
v Element component Zip Code

5. Element components, in any order:
a. Element Home Address, referencing compound type Address
b. Element Work Address, referencing compound type Address

6. Compound type component HomeAndWork, with member relationships to the
following child elements:
v Element Home Address
v Element Work Address

7. Message component AddressesMessage, referencing compound type
HomeAndWork.

Clearly, before you use the Control Center to define your messages, you need to
have done the data analysis that will enable you to create complete and accurate
definitions in an efficient manner.

Message sets: A message set contains the definitions of one or more messages,
plus the definitions of the components that make up those messages. A typical
message set contains the definitions of all messages required by a single
application. The run-time message dictionary provided by the MRM to the
run-time message parsers contains definitions for all messages in a single message
set.

In common with the components of a message, message sets must have a name.
They must also have a level number that identifies this version of the message set.
Message set properties, related to the data model layers, are described in “Message
set properties” on page 23.

The data model layers
So far, we have discussed the concepts underlying the MRM’s message model.
However, the message set contains additional “layers” of information that support
related MRM functions. These are:
v The documentation layer
v The C language layer
v The COBOL language layer
v The run-time layer
v The Custom Wire Format layer

These layers of information are visible to you in the Properties pane of the
Message Sets view, as described in MQSeries Integrator Using the Control Center.
They are described in more detail in the following sections.

The documentation layer: When you define each message component and each
message set, you have the opportunity to provide a short description or a long
description, or both, of that component or message set. You are recommended to

The message model

Chapter 1. Basic message structure 21

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

use these description fields to describe the business meaning of the object, and to
record any business rules that govern their use.

The documentation extractors of the MRM include this information in generated
documentation. For more information about generating documentation from the
MRM, see MQSeries Integrator Using the Control Center.

The C language layer: The MRM can generate C header files from the message
definitions you create that can be used in messaging applications developed in C
language. You specify values for properties of the components to support this
function. These properties are mandatory. Although you might never wish to
generate language bindings, the message set is incomplete if these properties are
missing.

For the category component, you specify:

Category Header File Name
Provides the name of the header file into which structure definitions for all
messages in this category are generated.

Include in Main Header
Specifies whether this header file is included from the main header file for
the message set.

For the element component, you specify:

C Language Name
Provides the name used for this element as a field within C structure
definitions. By default, the element identifier is used.

For the type component, you specify:

C Language Name
Provides the name for the C structure definition that is generated for the
type. By default, the type identifier is used.

File Name
Provides a name for a header file to be generated containing a structure
definition for the type. This value is optional, and is not usually specified:
the structure definitions for type components appear only in the category
header files.

The COBOL language layer: The MRM can generate COBOL copy books from
the message definitions you create that can be used in messaging applications
developed in COBOL language. You specify values for properties of the
components to support this function. These properties are mandatory. Although
you might never wish to generate language bindings, the message set is
incomplete if these properties are missing.

For the category component, you specify:

Category Copy Book Name
Provides the name of the copy book file into which structure definitions
for all messages in this category are generated.

For the message component, you specify:

COBOL Language Name
Provides the name used for the COBOL structure definition that is
generated for the message. By default, the message identifier is used.

The data model layers

22 MQSeries Integrator ESQL Reference

|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|

|
|
|

Message Copy Book Name
Provides the name of the copy book file into which the structure definition
for the message is generated.

For the element component, you specify:

COBOL Language Name
Provides the name used for this element as a field within COBOL structure
definitions. By default, the element identifier is used.

For the type component, you specify:

COBOL Language Name
Provides the name for the COBOL structure definition that is generated for
the type. By default, the type identifier is used.

Structure Copy Book Name
Provides a copy book file name into which the structure definition for the
type is generated.

The Custom Wire Format layer: The CWF layer defines additional information
that is used to define the mapping between logical messages and legacy message
formats defined by applications that use data structure features of languages such
as C and COBOL to populate the message structure. This information is used to
produce a wire format descriptor that can be used by a run-time message parser.

You specify some of the following properties for each element that is a child in a
type. For example, if the logical type is string, the physical type packed decimal is
not applicable. Similarly, if the logical type is float, and the physical type is
extended decimal, and the signed field is set to True, then the sign orientation field
is applicable. The properties that might be applicable are:
v Physical type
v Length (Count or Value Of)
v Signed and Sign Orientation
v Skip count
v Byte alignment
v String justification
v Padding character
v Virtual decimal point
v Repeat (Count or Value Of)

Message set properties
The properties of a message set are displayed on several tabs in the Properties
pane of the Message Sets view. The tabs are:

Basic tab (identified by message set name)
This tab defines basic properties for the message set. These are:

Level Is a numeric value that identifies the version of the message set. If
you are creating a second (or subsequent) version, you must set
this property to a value higher than the highest existing level
number.

See “Message set versioning” on page 26 for more information.

Finalized
Indicates if the message set has been finalized (true) or not (false).

The data model layers

Chapter 1. Basic message structure 23

|
|
|

|

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

||
|
|
|

|

|
|

Freeze Time Stamp
Indicates the date and time when the message set was frozen. If
this is not set, the message set has never been frozen.

Identifier
Is the identifier by which the message is known (used in addition
to its name). It is a unique value, and is automatically allocated
when the message set is created.

Base Message Set
Is the base message set from which this message set’s definition is
derived. All components defined in the base message set are also
defined in this message set.

C Language tab
The MRM can generate C header files from the message definitions you
create that can be used in messaging applications developed in C language.

This tab defines properties that identify names for header files generated
from this message set using the Message Sets —> Generate command
from the Control Center. These properties are mandatory.

Main Header File Name
Is the name of the generated header file that contains C structure
definitions of the messages in this message set.

Orphan Header File Name
Is the name of the generated header file that contains definitions of
C structures (types) that are not used by any message in this
message set.

COBOL Language tab
The MRM can generate COBOL copy books from the message definitions
you create that can be used in messaging applications developed in
COBOL language.

This tab defines the property Main Copy Book Name that identifies the
name of the main copy book generated from this message set by using the
Message Sets —> Generate command from the Control Center. These
properties are mandatory.

Custom Wire Format tab
The CWF defines additional information that is used to define the
mapping between logical messages and legacy message formats defined by
applications that use data structure features of languages such as C and
COBOL to populate the message structure. This information is used to
produce a wire format descriptor that can be used by a run-time message
parser.

The properties on this tab are:

Custom Wire Format Identifier
You are recommended to use the default
value of CWF. You can extend this
identifier to eight characters if you choose,
but the first three characters must always
be CWF. You cannot specify embedded
blanks or special characters.

Byte Alignment Pad This defines the default padding character
used for this message set. The default is 0.

Message set properties

24 MQSeries Integrator ESQL Reference

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

||
|

Boolean True and False Values
Boolean True and False Values define the
True and False values to be used by every
element of type Boolean in this message
set. The defaults are 00000001 and
00000000.

Boolean True and False Values must be the
same length, and can be between 1 and 4
bytes long. They must be defined in
half-byte values and you must specify an
even number (to define a number of whole
bytes). For example, if you want your
Boolean values to be ASCII characters Y
and N, you would enter the two characters
54 in the True field and the two characters
46 in the False field.

Run Time tab
Defines the property parser that identifies the message domain for this
message set, and therefore the parser that the broker invokes to interpret
the messages. Five options are available:
v MRM. This is the default and usual case.
v XML. You can set the domain and parser to XML if you want to define

the message set for easier manipulation and reference in the message
flows in which it is used (as described in MQSeries Integrator Using the
Control Center).

v NEONMSG
v JMSMAP
v JMSSTREAM

Description tab
Includes a short description and a long description of the message set.
Both are optional properties.

When you define each message component and each message set, you
have the opportunity to provide a short description or a long description,
or both, of that component or message set. You are recommended to use
these description fields to describe the business meaning of the object, and
to record any business rules that govern their use.

The documentation extractors of the MRM include this information in
generated documentation. For more information about generating
documentation from the MRM, see MQSeries Integrator Using the Control
Center.

Message set states: The state of a message set varies in line with development,
testing, and production cycles.

The states of a message set are:

Normal If a message set is not locked (checked out), frozen,
or finalized, it is considered to be in normal
working state (but this state is not specified in the
view). It can be checked out, updated, and checked
in. This state is not explicitly stated in the Control
Center: it is inferred by the message not being
locked, frozen, or finalized.

Message set properties

Chapter 1. Basic message structure 25

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

||
|
|
|
|
|
|

Note: When you create a new message set, it is
automatically checked in, then checked out,
and you will see the key icon appear against
the new message set. A message set is never
shown in new state (with the new icon
against it). However, components of the
message set (for example, an element) do
appear as new when they are first created.

Locked The state of a message set while it is checked out
(locked) by a Control Center user. A message set
must be in this state before you can change any of
its properties. A message set must also be locked
before you can freeze it.

Frozen The state of a message set that is not expected to
change (for example, on entry to a test phase).
Neither the message set itself nor its contents can
be changed while it is in this state, nor can they be
checked out. A message set can be unfrozen by
selecting Unfreeze if subsequent change is
required. Frozen state is indicated by the existence
of a Freeze date in the message properties.

An attempt to freeze a message set fails if any
component of the message set is checked out or if
any of the message definitions it contains is
incomplete.

A message set must move to the frozen state from
the locked state, and both state changes must be
requested by the same user.

Finalized A message set and its components in this state
cannot be changed or checked out. Finalized state
is indicated by the message property Finalized set
to true.

An attempt to finalize a message set fails if any
component of the message set is checked out or if
any of the message definitions it contains is
incomplete.

A message set can move to the finalized state from
any other state. However, if it moves from the
locked state to the finalized state, both state
changes must be requested by the same user.

Once a message set is finalized, no further changes can be made to its contents.
However, you can create a new message set based on the finalized message set,
within which you can define new messages. You can also make limited changes to
the existing messages in the new message set. For more information, see “Message
set versioning”.

Message set versioning: A message set can be based on another message set,
provided that the message set on which it is based has been finalized. You might
want to use this facility to maintain separate versions of a message set, reflecting
the evolution of a message set through maintenance and other fixes.

Message set properties

26 MQSeries Integrator ESQL Reference

|
|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|
|
|

|
|
|
|

|
|
|

||
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

When a message set is based on another message set, it contains a copy of the
complete contents of the base message set. Within the new message set, new
messages can be defined, and limited modifications can be performed on existing
messages. A separate run-time dictionary is produced for the new message set.

A message set can have the same name as another message set in the same
message repository if:
v The new message set is based on the message set of the same name.
v The message set on which it is based has a higher level number than any other

message set with the same name in the same repository.
v The level number of the new message set is one higher than that of the message

set on which it is based.

Creating a message set with the same name as an existing message set: You can create a
message set with the same name as the existing message set.

To create a new version:
v Finalize the existing message set
v Remove the existing message set from you workspace
v Create the new message set by:

– Specifying the same name
– Specifying the next highest number for the level (increment the old level by 1)
– Selecting the existing message (used as the base message set) from the

drop-down list

When the new message set has been created successfully, you can add the existing
message set back into your workspace.

Importing legacy formats
The MRM provides C and COBOL language importers, which you can use to help
you create a message set containing message definitions that originate from legacy
applications. Such applications are typically those that use C or COBOL data
structures to populate messages. The source code of those applications must be
available to the import function of the MRM.

The import function parses the source code files, isolates the data structure
definitions, and creates logical definitions that correspond to those data structures.
It also sets the appropriate CWF properties to define the mapping between the
logical definitions and the physical message format, as defined by the C or COBOL
data structures.

A compound type is created for each data structure, and elements and element
lengths are created for each field within the data structure. For more detailed
information about the way in which C and COBOL data structures are interpreted
by the MRM language importers, see MQSeries Integrator Using the Control Center.

A report is generated by the import function that describes all the definitions that
have been created. It includes information about errors or conflicts within the
definitions. You can elect to produce this report without committing any changes
to the message set. You are recommended to do this and check the report before
running the complete import process.

When the import process is complete, you need only to create a message
component for each compound type that defines a complete message; all other

Message set properties

Chapter 1. Basic message structure 27

|
|
|
|

|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

components are created automatically. However, you are recommended to review
your message definition, and edit it if necessary, to ensure that it meets your
needs.

See MQSeries Integrator Using the Control Center for details of how to import these
structures.

Note: You cannot import message sets created by another Control Center user into
your Control Center session. This function is only supported by the message
set import and export command (mqsiimpexpmsgset), which exports (and
imports) directly from the Configuration Manager. This is described in the
MQSeries Integrator Administration Guide.

Generating MRM message set Document Type Definitions (DTDs)
A broker accesses a message set definition in a message dictionary (each message
set is deployed in a separate dictionary). Client applications cannot access message
dictionaries. They must use one of following two options for accessing the
definitions used by the broker.
v You can generate an XML Document Type Definition (DTD) from the message

set within the message repository.
v If you have created the MRM definitions by importing C or COBOL data

structures, your applications can continue to use those data structures.

For information about either of these tasks, see MQSeries Integrator Using the
Control Center.

Authorization to work with Messages
To perform any of the tasks described in this chapter, you must:
v Have the correct Control Center user role, which can be one of:

– Message flow and message set developer

– All roles

For information about setting your user role, see MQSeries Integrator Using the
Control Center.

v Be a member of the MQSeries Integrator group mqbrdevt

The BLOB domain
This section describes messages in the BLOB domain and how to work with them.

Unstructured messages in the BLOB domain
An unstructured message must have a message domain of BLOB. It has no known
(or defined) structure. These messages can be processed and routed by MQSeries
Integrator, but the manipulation that you can perform is very limited.

You can perform some simple manipulation at the message level, and take other
actions on the whole message.

Working with unstructured messages in the BLOB domain
The structure and format of an unstructured message are not recognized or
understood. Therefore the broker cannot perform any validation on messages in
this domain, and a message in the BLOB domain cannot be manipulated within a
message flow, except at the message level. For example, you can work with a
substring of the message (for example, the 10th to 20th characters) but you cannot
work at the field or element level, as these structures are not known.

Importing legacy formats

28 MQSeries Integrator ESQL Reference

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|

|

|
|
|
|

|
|

|
|
|
|
|
|
|

You can, however, store the full message in a database, you can route the message
according to topic (derived from the header), and you can add or remove headers
from the message.

BLOB domain

Chapter 1. Basic message structure 29

|
|
|

30 MQSeries Integrator ESQL Reference

Chapter 2. ESQL Overview

This chapter introduces the following:
v What is ESQL
v Four main Database SQL statements
v The three main IBM message nodes, and how they map to Database SQL
v “Case sensitivity of ESQL syntax” on page 33
v “Order of processing in ESQL” on page 33
v “Nulls in Filter and Compute expressions” on page 33
v “Nulls in Boolean expressions” on page 34
v Basic MQSeries Integrator message structure (generic XML)

What is ESQL?
ESQL is similar to Database SQL, is based upon the SQL3 standard, and has been
created to process MQSeries Integrator Version 2.0 messages.

MQSeries Integrator Version 2.0 provides message nodes, also known as IBM
primitive nodes, to manipulate the content and flow of messages and databases.
The functions and parameters of each of these nodes are described in MQSeries
Integrator Using the Control Center, and in the online help.

Some of the more complex message nodes need to be adapted, by the user, to meet
specific needs. This ″tailoring″ of the messages nodes, is done through ESQL
programming language.

Main data manipulation statements in Database SQL
There are four main data manipulation statements in Database SQL:
v SELECT columnnames FROM tablename WHERE columnname=value

v INSERT INTO tablename (columnnames) VALUES (column values)

v UPDATE tablename SET columnname=value WHERE columnname=value

v DELETE FROM tablename WHERE columnname=value.

Comparison of main IBM primitive nodes and Database SQL
statements

Each of the Database SQL statements can be related to the three principal
MQSeries Integrator message nodes:
v Filter
v Compute
v Database

The MQSeries Integrator Version 2.0 Filter node is like an IF statement in C or
COBOL, and is equivalent to the WHERE clause of the ESQL SELECT statement. It
does not update input or output. The result of a Filter expression can be:
v True: If an expression evaluates to TRUE then the message will be propagated to

the true terminal.
v False: If an expression evaluates to FALSE then the message will be propagated

to the false terminal.

© Copyright IBM Corp. 2000, 2001 31

|
|
|
|

|
|
|
|
|

v Failure: If a failure is detected in computation, for example attempting to CAST
an invalid value to a DATE, then the message will be propagated to the failure
terminal.

v Unknown: If a path reference is made to an element that does not exist, the
computation attempts to resolve an equation with an unknown state and the
message will be propagated to the unknown terminal.

An output terminal for each of these results is on the Filter node.

For example a Filter expression looks like:
Body.Invoice.Customer.FirstName ='Andrew'

evaluates to true in the sample message described in “Message referenced in
examples” on page 113.

Notes:

1. Body is known as a correlation name
2. Body is the MQSeries message (last child of root) and could be specified as

either Root.<parser name> or Root.*[LAST]

3. When using the Filter node, a single expression without a semicolon is used
4. Single quotes are used when comparing string values
5. Periods delimit the levels of the message
6. Nested tags must be fully qualified in outer tags

The MQSeries Integrator Version 2.0 Compute node is like the SET part of
Database SQL UPDATE. This node manipulates messages, which it processes one
at a time. Compute nodes read input messages, and build output messages. A
graphical user interface is provided for you to copy all or part of a message from
input to output.

Notes:

1. Compute node copies all or part of an input message to an output message, for
example:
SET OutputRoot = InputRoot;

2. SET assigns a value to a variable, or copies part of a message tree
3. Semicolon statement terminator is mandatory
4. OutputRoot and InputRoot are correlation names
5. OutputRoot is the entire output message
6. InputRoot is the entire input message

The MQSeries Integrator Version 2.0 Database node allows you to modify a
database. Data from an input message is substituted into an ESQL expression
which in turn modifies the rows in a database.

Notes:

1. The Database node inserts, updates, or deletes row(s) in a database table
2. Semicolon is mandatory
3. The node cannot change the message being propagated to the output terminal
4. Database is a correlation name
5. The Database node allows all ESQL computations and functionality except

manipulating the message body

What is ESQL?

32 MQSeries Integrator ESQL Reference

|
|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|
|

Case sensitivity of ESQL syntax
The following text describes when the case in which ESQL statements are specified
is significant.
v Correlation names are case sensitive

See “Correlation names” on page 2 for a description of correlation names.
v Parser names are case sensitive
v ESQL language words are not case sensitive
v References to elements in a path are frequently case sensitive. This depends on

the parser. All parsers supplied by MQSeries Integrator Version 2.0 are case
sensitive. For example, here are some case sensitive path names:
InputRoot.Properties.MessageSet
InputRoot.Properties.MessageType
InputRoot.Properties.MessageFormat
InputRoot.Properties.Encoding
InputRoot.Properties.CodedCharSetId
InputRoot.Properties.Transactional
InputRoot.Properties.Persistence
InputRoot.Properties.CreationTime
InputRoot.Properties.ExpirationTime
InputRoot.Properties.Priority
InputRoot.Properties.Topic

Order of processing in ESQL
Standard ESQL precedence is:
v Expressions in brackets
v Prefix operators (e.g. minus)
v Multiplication and division
v Concatenation
v Addition and subtraction
v Operations at the same precedence level are applied from left to right

Nulls in Filter and Compute expressions
To explain how nulls operate in ESQL, let us consider the Filter node expression:
Body.Wrong.Field >123

The field, Body.Wrong.Field, does not exist in the message so it evaluates to NULL.
The comparison of NULL with 123 results in NULL. The Filter expression evaluates
this to unknown and is propagated to the Unknown terminal. This result might not be
desirable. A better approach would be to test whether the field exists first:
Body.Wrong.Field IS NOT NULL

An example of how the same approach can be used for the Compute node
expression follows:
If InputBody.Wrong.Field IS NOT NULL THEN
SET OutputRoot.XML.Wrong.Field = InputBody.Wrong.Field;
ELSE
SET OutputRoot.XML.Wrong.Field = ' ';
END IF;

ESQL syntax

Chapter 2. ESQL Overview 33

Nulls in Boolean expressions
The table below illustrates the results of AND and OR operations on components
″P″ and ″Q″ in ESQL:

Table 3.

Value of P Value of Q P AND Q P OR Q

T T T T

F T F T

F F F F

U T U T

U F F U

U U U U

Note: In the table, ″T″ indicates the expression is true, ″F″ is false, and ″U″ is
unknown.

ESQL syntax

34 MQSeries Integrator ESQL Reference

|
|

Chapter 3. ESQL Concepts

This chapter introduces the following:
v “Data types”
v “CASTs” on page 39
v “Predicates” on page 53

Data types
Within a broker, all elements of a message map to a data type. Within the Compute
and Database nodes of the broker, it is possible to use intermediate variables to
help process a message. Each of the intermediate variables must be declared with a
data type before use.

It is not always possible to predict the data type that will result from evaluating an
expression. This is because expressions are "compiled" without reference to any
kind of message schema, and so some type errors will be not be caught until
run-time.

This chapter describes all the data types supported by ESQL. If you would like to
see a full list of the different supported data types, please go to “Data types used
in ESQL” on page 106.

Numbers
DECIMAL

Decimal numbers have a precision and scale. You cannot define precision
and scale when declaring a DECIMAL, as they are assigned automatically.
It is only possible to specify precision and scale when casting to a
DECIMAL. When casting to DECIMAL, if the precision and scale:
v are not specified, the output defaults to the precision and scale of the

input
v are specified, but precision is too small for input, then a run-time error is

generated
v are specified, but scale is smaller than input, then truncation occurs

Precision is the total number of digits of a number, and scale is the number
of digits to the right of the decimal point.
v The minimum precision is 1
v The maximum precision is 31
v The minimum scale is 0
v The maximum scale is 30

To declare a decimal variable D:
DECLARE D DECIMAL;

INTEGER, INT
The INTEGER data type stores numbers using 64-bit binary precision; This
gives a range of values between -9223372036854775808 and
9223372036854775807. In addition to the normal integer literal format,
integer literals can be written in hexadecimal notation, for example
0x1234abcd.

© Copyright IBM Corp. 2000, 2001 35

|
|
|
|

|
|
|
|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

The hexadecimal letters A to F can be written in uppercase or lowercase, as
can the 'x' after the initial zero.

Note: If a literal of this form is too large to be represented as an integer, it
is represented as a decimal.

FLOAT
A value of the FLOAT data type is a 64 bit approximation of a real
number. A float literal can be defined using the scientific notation, as in
6.6260755e-34, or as a simple number as in 1.2.

The case of the "e" is not significant so "E" can be used instead if necessary.
"E" identifies the exponent of the number (10 to the power of).

For more information about numeric functions, please see “Numeric functions” on
page 82.

Strings
Strings can be character strings, byte strings, or bit strings.
v A string literal of any type must be enclosed in single quotes.
v If you want to include a single quote within a character string literal, you must

use another single quote as an escape character.
For example, the assignment SET X=’he’’was’’’ puts the value he'was' into X.

CHARACTER, CHAR
Character string.

BLOB BLOB is a byte string. A byte string is a series of 8-bit bytes that is used to
represent arbitrary binary data. A byte string literal is defined using a
string of hexadecimal digits, as in the following example:
SET X = X'0123456789ABCDEF'

There must be an even number of digits in the string, because two digits
are required to define each byte. Each digit can be one of the hexadecimal
digits. The hexadecimal letters can be specified in uppercase or lowercase.

BIT A bit string is a series of bits used to represent arbitrary binary data that
does not contain an exact number of bytes. Bit string literals are defined in
a similar way to byte string literals, for example:
B'0100101001'

Any number of digits, which must be either 0 or 1, can be specified.

For more information about string functions, please see “String manipulation
functions” on page 78.

Datetime types
The DATE, GMTTIME, GMTTIMESTAMP, TIME, and TIMESTAMP, data types are collectively
known as Datetime data types.

DATE The format of DATE data type is the word DATE followed by a space,
followed by a date in single quotes in the form ’yyyy-mm-dd’. For
example:
DECLARE MyDate DATE;
SET MyDate = DATE '2000-02-29';

Leading zeroes in the year, month, and day must not be omitted.

Data types

36 MQSeries Integrator ESQL Reference

||
|
|

|
|

|

GMTTIME
The GMTTIME data type is very similar to TIME, except that the time values
are interpreted as values in Greenwich Mean Time. GMTTIME values are
defined in much the same way as Time values. For example:
DECLARE GetGmttime GMTTIME;
SET GetGmttime = GMTTIME '12:00:00';

GMTTIMESTAMP
As with the GMTTIME, the GMTTIMESTAMP data type is very similar to the
TIMESTAMP data type, except that the values are interpreted as values in
Greenwich Mean Time. GMTTIMESTAMP values are defined in much the same
way as TIMESTAMP values, that is as
DECLARE GetGMTTimeStamp GMTTIMESTAMP;
SET GetGMTTimeStamp = GMTTIMESTAMP '1999-12-31 23:59:59.999999';

TIME The format of TIME data type is the word TIME followed by a space,
followed by a time in single quotes in the form ’hh:mm:ss’. For example:
DECLARE MyTime;
SET MyTime = TIME '11:49:23.656';

Each of the hour, minute and second fields in a TIME literal must always be
two digits. The exception is the optional fractional seconds field which, if
present, can be up to 6 digits in length.

TIMESTAMP
The format of TIMESTAMP data type is the word TIMESTAMP followed by a
space, followed by a timestamp in single quotes in the form ’yyyy-mm-dd
hh:mm:ss’. For example:
DECLARE MyTimeStamp;
SET MyTimeStamp = TIMESTAMP '1999-12-31 23:59:59';

Each of the hour, minute and second fields in a TIMESTAMP literal must
always be two digits. The exception is the optional fractional seconds field
which, if present, can be up to 6 digits in length.

For more information about datetime functions, please see“Datetime functions” on
page 86.

Data types

Chapter 3. ESQL Concepts 37

||
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

INTERVAL
Data type INTERVAL. An INTERVAL value represents an interval of time. There are
two kinds of INTERVAL values:
v One that is specified in years and months.
v One that is specified in days, hours, minutes and seconds (including fractions of

a second).

The split between months and days arises because the number of days in each
month varies. An interval of one month and a day is not really meaningful, and
certainly cannot be sensibly converted into an equivalent interval in numbers of
days only.

An interval literal is defined by the following syntax:
INTERVAL <interval string> <interval qualifier>

The format of interval string and interval qualifier are defined by the following
table:

Table 4. Format of interval strings and qualifiers

Interval qualifier Interval string format Example

YEAR '<year>' or '<sign> <year>' '10'

YEAR TO MONTH '<year>-<month>' or '<sign>
<year>-<month>'

'- 2-06'

MONTH '<month>' or '<sign> <month>' '18'

DAY '<day>' or '<sign> <day>' '-30'

DAY TO HOUR '<day> <hour>' or <sign> <day>
<hour>'

'1 02'

DAY TO MINUTE '<day> <hour>:<minute>' or '<sign>
<day> <hour>:<minute>'

'1 02:30'

DAY TO SECOND '<day> <hour>:<minute>:<second>'
or '<sign> <day>
<hour>:<minute>:<second>'

'1 02:30:15' or '-1 02:30:15.333'

HOUR '<hour>' or '<sign> <hour>' '24'

HOUR TO MINUTE '<hour>:<minute>' or '<sign>
<hour>:<minute>'

'1:30'

HOUR TO SECOND '<hour>:<minute>:<second>' or
'<sign> <hour>:<minute>:<second>'

'1:29:59' or '1:29:59.333'

MINUTE '<minute>' or '<sign> <minute>' '90'

MINUTE TO SECOND '<minute>:<second>' or '<sign>
<minute>:<second>'

'89:59'

SECOND '<second>' or '<sign> <second>' '15' or '15.7'

Where an interval contains both a year and a month value, a hyphen is used
between the two values. In this instance, the month value must be within the
range [0, 11].

If an interval contains a month value, and no year value, the month value is
unconstrained.

A space is used to separate days from the rest of the interval.

Data types

38 MQSeries Integrator ESQL Reference

If an interval contains more than one of HOUR, MINUTE, and SECOND, then a
colon is needed between the values. The values of these fields are constrained as
follows:

Field Valid Values

HOUR 0-23

MINUTE 0-59

SECOND 0-59.999...

Some examples of valid interval values are:
v 72 hours
v 3 days and 23 hours
v 3600 seconds
v 90 minutes and 5 seconds

Some examples of invalid interval values are:
v 3 days and 36 hours

A day field is specified, so the hours field is constrained to [0,23].
v 1 hour and 90 minutes

An hour field is specified, so minutes are constrained to [0,59].

Here are some simple examples of interval literals:
INTERVAL '1' HOUR
INTERVAL '90' MINUTE
INTERVAL '1-06' YEAR TO MONTH

BOOLEAN
A BOOLEAN data type can have the values:
v True
v False
v Unknown

A valid filter expression must always return a Boolean value.

CASTs

CAST specifications
A CAST transforms the value of one data type into another data type. Please see
“Data types used in ESQL” on page 106 which gives the full list of data types used
in ESQL.

Data types

Chapter 3. ESQL Concepts 39

|
|
|
|

Note: For interval qualifier formats, see Table 4 on page 38.

A CAST specification returns its first operand (source expression) in the type
specified by the data type. More complicated conversions can be performed using
user defined functions. In all cases if the source expression is NULL, the result will
be NULL. If the evaluated source expression is not compatible with the target data
type, or if the source expression is of the wrong format, a run-time error is
generated.

Supported CASTs
A CAST is not supported between every combination of data types. Those that are
supported are listed below, along with the effect of the CAST.

Table 5. Supported CASTs

Source data type Target data type Effect

CHARACTER BOOLEAN The character string is interpreted in the same way that a
boolean literal is interpreted. That is, the character string
must be one of the strings TRUE, FALSE, UNKNOWN (in
any case combination).

CHARACTER FLOAT The character string is interpreted in the same way as a
floating point literal is interpreted.

CHARACTER DATE The character string must conform to the rules for a date
literal or for the date string. That is, the character string can
be either DATE '1998-11-09' or 1998-11-09.

CHARACTER DECIMAL The character string is interpreted in the same way as an
exact numeric literal is interpreted to form a temporary
decimal result with a scale and precision defined by the
format of the string. This is then converted into a decimal of
the specified precision and scale, with a run-time error being
generated if the conversion would result in loss of significant
digits.

CHARACTER INTEGER The character string is interpreted in the same way as an
integer literal is interpreted.

CAST statement

MM CAST (expression AS BIT
BLOB
BOOLEAN
CHAR
CHARACTER
DATE
DECIMAL(precision, scale)
FLOAT
GMTTIME
GMTTIMESTAMP
INT
INTEGER
INTERVAL interval qualifier
TIME
TIMESTAMP

) MN

Casting

40 MQSeries Integrator ESQL Reference

Table 5. Supported CASTs (continued)

Source data type Target data type Effect

CHARACTER INTERVAL The character string must conform to the rules for an
interval literal with the same interval qualifier as specified in
the CAST specification, or it must conform to the rules for
an interval string that apply for the specified interval
qualifier.

CHARACTER TIME The character string must conform to the rules for a time
literal or for the time string. That is, the character string can
be either TIME '09:24:15' or 09:24:15.

CHARACTER TIMESTAMP The character string must conform to the rules for a
timestamp literal or for the timestamp string. That is, the
character string can be either TIMESTAMP '1998-11-09
09:24:15' or 1998-11-09 09:24:15.

CHARACTER GMTTIME The character string must conform to the rules for a GMT
time literal or for the time string. That is, the character string
can be either GMTTIME '09:24:15' or 09:24:15.

CHARACTER GMTTIMESTAMP The character string must conform to the rules for a GMT
timestamp literal or for the timestamp string. That is, the
character string can be either GMTTIMESTAMP '1998-11-09
09:24:15' or 1998-11-09 09:24:15.

CHARACTER BIT The character string must conform to the rules for a bit
string literal or to the rules for the contents of the bit string
literal. That is, the character string can be of the form
B'bbbbbbb' or bbbbbb (where 'b' can be either '0' or '1').

CHARACTER BLOB The character string must conform to the rules for a binary
string literal or to the rules for the contents of the binary
string literal. That is, the character string can be of the form
X'hhhhhh' or hhhhhh (where 'h' can be any hexadecimal
digit characters).

BOOLEAN CHARACTER If the source value is TRUE, the result is the character string
'TRUE'. If the source value is FALSE, the result is the
character string 'FALSE'. Because the UNKNOWN boolean
value is the same as the NULL value for booleans, the result
will be the NULL character string value if the source value is
UNKNOWN.

FLOAT CHARACTER The result is the shortest character string that conforms to
the definition of an approximate numeric literal and whose
mantissa consists of a single digit that is not '0', followed by
a period and an unsigned integer, and whose interpreted
value is the value of the float.

DATE CHARACTER The result is a string conforming to the definition of a date
literal, whose interpreted value is the same as the source
date value.

For example:

CAST(DATE '1998-11-09' AS CHAR)

would return

DATE '1998-11-09'

DECIMAL CHARACTER The result is the shortest character string that conforms to
the definition of an exact numeric literal and whose
interpreted value is the value of the decimal.

Casting

Chapter 3. ESQL Concepts 41

Table 5. Supported CASTs (continued)

Source data type Target data type Effect

INTEGER CHARACTER The result is the shortest character string that conforms to
the definition of an exact numeric literal and whose
interpreted value is the value of the integer.

INTERVAL CHARACTER The result is a string conforming to the definition of an
interval literal, whose interpreted value is the same as the
source interval value.

For example:

CAST(INTERVAL '4' YEARS AS CHAR)

would return

INTERVAL '4' YEARS

TIME CHARACTER The result is a string conforming to the definition of a time
literal, whose interpreted value is the same as the source
time value.

For example:

CAST(TIME '09:24:15' AS CHAR)

would return

TIME '09:24:15'

TIMESTAMP CHARACTER The result is a string conforming to the definition of a
timestamp literal, whose interpreted value is the same as the
source timestamp value.

For example:

CAST(TIMESTAMP '1998-11-09 09:24:15' AS CHAR)

would return

TIMESTAMP '1998-11-09 09:24:15'

GMTTIME CHARACTER The result is a string conforming to the definition of a
gmttime literal whose interpreted value is the same as the
source value. The result string will have the form GMTTIME
'hh:mm:ss'.

GMTTIMESTAMP CHARACTER The result is a string conforming to the definition of a
gmttimestamp literal whose interpreted value is the same as
the source value. The result string will have the form
GMTTIMESTAMP 'yyyy-mm-dd hh:mm:ss'.

BIT CHARACTER The result is a string conforming to the definition of a bit
string literal whose interpreted value is the same as the
source value. The result string will have the form B'bbbbbb'
(where b is either '0' or '1').

BLOB CHARACTER The result is a string conforming to the definition of a binary
string literal whose interpreted value is the same as the
source value. The result string will have the form X'hhhh'
(where h is any hexadecimal digit character).

TIME GMTTIME The result value is the source value minus the local time
zone displacement (as returned by LOCAL_TIMEZONE).
The hours field is calculated modulo 24.

GMTTIME TIME The result value is source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE). The
hours field is calculated modulo 24.

Casting

42 MQSeries Integrator ESQL Reference

Table 5. Supported CASTs (continued)

Source data type Target data type Effect

GMTTIMESTAMP TIMESTAMP The result value is source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE).

TIMESTAMP GMTTIMESTAMP The result value is the source value minus the local time
zone displacement (as returned by LOCAL_TIMEZONE).

INTEGER or DECIMAL FLOAT The number is converted, with rounding if necessary.

FLOAT INTEGER or DECIMAL If the conversion would not lead to loss of leading
significant digits, the conversion will happen with the
number being rounded as necessary. If the conversion would
lead to loss of leading significant digits, a run-time error is
generated. Loss of significant digits can occur when
converting an approximate numeric value to an integer, or to
a decimal whose precision is not sufficient.

INTEGER or DECIMAL INTEGER or DECIMAL If the conversion would not lead to loss of leading
significant digits, the conversion will happen with the
number being rounded as necessary. If the conversion would
lead to loss of leading significant digits, a run-time error is
generated. Loss of significant digits can occur when
converting (say) a decimal to another decimal with
insufficient precision, or an integer to a decimal with
insufficient precision.

INTERVAL INTERVAL Year-month intervals are only convertible to year-month
intervals, and day-second intervals are only convertible to
day-second intervals. The conversion is done by converting
the source interval into a scalar in units of the least
significant field of the target interval qualifier. This value is
then normalized into an interval with the target interval
qualifier. For example, to convert an interval which has the
qualifier MINUTE TO SECOND into an interval with the
qualifier DAY TO HOUR, the source value is converted into
a scalar in units of hours, and this value is then normalized
into an interval with qualifier DAY TO HOUR.

INTERVAL INTEGER or DECIMAL If the interval value has a qualifier that has only one field,
the result is an exact numeric with that value. If the interval
has a qualifier with more than one field, such as YEAR TO
MONTH, a run-time error is generated.

INTEGER or DECIMAL INTERVAL If the interval qualifier specified has only one field, the
result will be an interval with that qualifier with the field
equal to the value of the exact numeric. Otherwise a
run-time error is generated.

TIME TIMESTAMP The result is a value whose date fields are taken from the
current date, and whose time fields are taken from the
source time value.

TIMESTAMP TIME The result is a value whose fields consist of the time fields of
the source timestamp value.

TIMESTAMP DATE The result is a value whose fields consist of the date fields of
the source timestamp value.

CAST expressions
CAST expressions are used often when dealing with generic XML messages: all
fields in a generic XML message have string values, therefore to perform arithmetic

Casting

Chapter 3. ESQL Concepts 43

calculations or datetime comparisons (for example), the string value of the field
must first be cast into a value of the appropriate type.

For example, if you wanted to filter on trade messages where the date of the trade
was today, you could write the following expression:
CAST(Body.Trade.Date AS DATE) = CURRENT_DATE

In this example, the string value of the Date field in the message is converted into
a date value, and then compared with the current date.

Note: It is not always necessary to cast values between types. Some casts are done
implicitly. For example, numbers are implicitly cast between the three
numeric types for the purposes of comparison and arithmetic. Character
strings are also implicitly cast to other data types for the purposes of
comparison.

There are three situations in which a data value of one type is implicitly (that is,
without an explicit CAST instruction) cast to another type. The behavior and
restrictions of the implicit cast are the same as described above for explicit CAST,
except where noted in the following sections.

Casting

44 MQSeries Integrator ESQL Reference

Implicit CASTs for comparisons
The standard SQL comparison operators >, <, >=, <=, =, <> are supported for
comparing two values in ESQL.

When the data types of the two values are not the same, one of them can be
implicitly cast to the type of the other to allow the comparison to proceed. In the
table below, the vertical axis represents the left hand operand, the horizontal axis
represents the right hand operand.

An ″L″ means that the right hand operand is cast to the type of the left hand
operand before comparison, an ″R″ means the opposite, an ″X″ means no implicit
casting takes place, and a blank means that comparison between the values of the
two data types is not supported.

Table 6. Implicit CASTs for comparison

ukn bln int float dec char time gtm date ts gts ivl blob bit

ukn

bln X L

int X R R L

float L X L L

dec L R X L

chr R R R R X R R R R R R1 R R

tm L X L

gtm L R X

dt L X R2 R2

ts L L2 X L

gts L L2 R X

ivl L1 X

blb L X

bit L X

Notes:

1. When casting from a character string to an interval, the character string must be of the format ″INTERVAL
’<values>’ <qualifier>″. The format ″<values>″, which is allowable for an explicit CAST, is not allowable here
because no qualifier external to the string is supplied.

2. When casting from a DATE to a TIMESTAMP or GMTTIMESTAMP, the time portion of the TIMESTAMP is set
to all zero values - ’00:00:00’. This is different to the behavior of the explicit CAST, which sets the time portion to
the current time.

Casting

Chapter 3. ESQL Concepts 45

||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|||||||||||||||

|

|
|
|

|
|
|
|

Numeric types
The comparison operators operate on all three numeric types.

Character strings
You cannot define an alternative collation order that, for example, collates upper
and lowercase characters equally.

Note: When comparing character strings, trailing blanks are not significant so the
comparison 'hello' = 'hello ' returns true.

Datetime values
Datetime values are compared in accordance with the natural rules of the
Gregorian calendar and clock.

You can compare the time zone you are working in with the GMT time zone. The
GMT time zone is converted into a local time zone based on the time zone
difference between your local time zone and the GMT time specified.

When you compare your local time with the GMT time, the comparison is based
on the difference at a given time on a given date.

Conversion is always based on the value of LOCAL_TIMEZONE. This is because
GMTTimestamps are converted to local Timestamps only if it can be done
unambiguously. Converting a local Timestamp to a GMTTimestamp has difficulties
around the daylight saving cut-over time, and converting between times and GMT
times (without date information) has to be done based on the LOCALTIMEZONE
value, because you cannot specify which time zone difference to use otherwise.

Booleans
Boolean values can be compared using all or the normal comparison operators.
The TRUE value is defined to be greater than the FALSE value. Comparing either
value to the UNKNOWN boolean value (which is equivalent to NULL) returns an
UNKNOWN result.

Intervals
Intervals are compared by converting the two interval values into intermediate
representations, so that both intervals have the same interval qualifier. Year-month
intervals can be compared only with other year-month intervals, and day-second
intervals can be compared only with other day-second intervals.

For example, if an interval in minutes, such as INTERVAL '120' MINUTE is compared
with an interval in days to seconds, such as INTERVAL '0 02:01:00', the two
intervals are first converted into values that have consistent interval qualifiers,
which can then be compared. So, in this example, the first value could be
converted into an interval in days to seconds, which will give INTERVAL '0
02:00:00' which can then be compared with the second value.

Comparing character strings with other types
If a character string is compared to a value of another type, MQSeries Integrator
attempts to cast the character string into a value of the same data type as the other
value.

For example, you could write an expression such as:
'1234' > 4567

The character string on the left would be converted into an integer before the
comparison takes place. This behavior reduces some of the need for explicit CAST

Casting

46 MQSeries Integrator ESQL Reference

operators when comparing values derived from a generic XML message with
literal values. (For details of explicit casts that are supported, see Table 5 on
page 40.) It is this facility that allows you to write an expression such as:
Body.Trade.Quantity > 5000

In this example, the field reference on the left evaluates to the character string
'1000' and, because this is being compared to an integer, that character string is
converted into an integer before the comparison takes place.

Note that you must still check whether the price field that you want interpreted as
a decimal is greater than a given threshold. You must make sure that the literal
you compare it to is a decimal value and not an integer.

For example:
Body.Trade.Price > 100

would not have the desired effect, because the Price field would be converted into
an integer, and that conversion would fail because the character string contains a
decimal point. However, the following expression will succeed:
Body.Trade.Price > 100.00

Casting

Chapter 3. ESQL Concepts 47

Implicit CASTs for arithmetic operations
Normally the arithmetic operators (+, -, *, and /) operate on operands of the same
data type, and return a value of the same data type as the operands. Cases where
it is acceptable for the operands to be of different data types, or where the data
type of the resulting value is different from the type of the operands, are in
Table 7.

Table 7. Implicit CASTs for arithmetic operations

Left operand data type Right operand data type Supported
operators

Result data type

INTEGER FLOAT +, -, *, / FLOAT1

INTEGER DECIMAL +, -, *, / DECIMAL1

INTEGER INTERVAL * INTERVAL4

FLOAT INTEGER +, -, *, / FLOAT1

FLOAT DECIMAL +, -, *, / FLOAT1

FLOAT INTERVAL * INTERVAL4

DECIMAL INTEGER +, -, *, / DECIMAL1

DECIMAL FLOAT +, -, *, / FLOAT1

DECIMAL INTERVAL * INTERVAL4

TIME TIME - INTERVAL2

TIME GMTTIME - INTERVAL2

TIME INTERVAL +, - TIME3

GMTTIME TIME - INTERVAL2

GMTTIME GMTTIME - INTERVAL2

GMTTIME INTERVAL +, - GMTTIME3

DATE DATE - INTERVAL2

DATE INTERVAL +, - DATE3

TIMESTAMP TIMESTAMP - INTERVAL2

TIMESTAMP GMTTIMESTAMP - INTERVAL2

TIMESTAMP INTERVAL +, - TIMESTAMP3

GMTTIMESTAMP TIMESTAMP - INTERVAL2

GMTTIMESTAMP GMTTIMESTAMP - INTERVAL2

GMTTIMESTAMP INTERVAL +, - GMTTIMESTAMP3

INTERVAL INTEGER *, / INTERVAL4

INTERVAL FLOAT *, / INTERVAL4

INTERVAL DECIMAL *, / INTERVAL4

INTERVAL TIME + TIME3

INTERVAL GMTTIME + GMTTIME3

INTERVAL DATE + DATE3

INTERVAL TIMESTAMP + TIMESTAMP3

INTERVAL GMTTIMESTAMP + GMTTIMESTAMP3

Casting

48 MQSeries Integrator ESQL Reference

Table 7. Implicit CASTs for arithmetic operations (continued)

Left operand data type Right operand data type Supported
operators

Result data type

Notes:

1. The operand which does not match the data type of the result is cast to the data type of the result before the
operation proceeds. For example, if the left operand to an addition operator is an INTEGER, and the right
operand is a FLOAT, the left operand is cast to a FLOAT before the addition operation is performed.

2. Subtracting a (GMT)TIME value from a (GMT)TIME value, a DATE value from a DATE value, or a
(GMT)TIMESTAMP value from a (GMT)TIMESTAMP value results in an INTERVAL value representing the time
interval between the two operands.

3. Adding or subtracting an INTERVAL from a (GMT)TIME, DATE or (GMT)TIMESTAMP value results in a new
value of the data type of the non-INTERVAL operand, representing the point in time represented by the original
non-INTERVAL plus or minus the length of time represented by the INTERVAL.

4. Multiplying or dividing an INTERVAL by an INTEGER, FLOAT or DECIMAL value results in a new INTERVAL
representing the length of time represented by the original multiplied or divided by the factor represented by
the non-INTERVAL operand. For example, an INTERVAL value 2 hours 16 minutes multiplied by an FLOAT
value of 2.5 results in a new INTERVAL value of 5 hours 40 minutes. The intermediate calculations involved in
multiplying or dividing the original INTERVAL are carried out in the data type of the non-INTERVAL, but the
individual fields of the INTERVAL (such as HOUR, YEAR, etc.) are always integral, so some rounding errors
may occur.

Casting

Chapter 3. ESQL Concepts 49

Implicit CASTs for assignment
Values can be assigned to one of three entities:
v A message field (or equivalent in an exception or destination list)

Support for implicit conversion between the MQSeries Integrator data types and
the message (in its bitstream form) is dependent on the appropriate parser. For
example, the XML parser casts everything as character strings before inserting
them into the MQSeries message.

v A field in a database table
MQSeries Integrator converts each of its data types into a suitable standard SQL
C data type, as detailed in Table 8. Conversion between this standard SQL C
data type, and the data types supported by each DBMS, is dependent on the
DBMS. Consult your DBMS documentation for more details.

Table 8. Conversions from MQSeries Integrator to SQL data types

MQSeries Integrator data type SQL data type

NULL, or unknown or invalid value SQL_NULL_DATA

BOOLEAN SQL_C_BIT

INTEGER SQL_C_LONG

FLOAT SQL_C_DOUBLE

DECIMAL SQL_C_CHAR1

CHARACTER SQL_C_CHAR

TIME SQL_C_TIME

GMTTIME SQL_C_TIME

DATE SQL_C_DATE

TIMESTAMP SQL_C_TIMESTAMP

GMTTIMESTAMP SQL_C_DATE

INTERVAL not supported2

BLOB SQL_C_BINARY

BIT not supported2

Notes:

1. For convenience, DECIMAL values are passed to the DBMS in character form.

2. There is no suitable standard SQL C data type for INTERVAL or BIT. These must be
cast to another data type, such as CHARACTER, if it is necessary to assign them to a
database field.

v A scalar variable.
When assigning to a scalar variable: If the data type of the value being assigned
and that of the target variable data type are different, then an implicit cast is
attempted with exactly the same restrictions and behavior as specified for the
explicit CAST function. The only exception, is when the data type of the variable
is INTERVAL or DECIMAL.
In both these cases, the value being assigned is first cast to a CHARACTER
value, then an attempt is made to cast the CHARACTER value to an INTERVAL
or DECIMAL. The reason for this is that INTERVAL requires a qualifier and
DECIMAL requires a precision and scale: these must be specified in the explicit
CAST, but must be obtained from the character string when implicitly casting.
Therefore a further restriction is that when implicitly casting to an INTERVAL

Casting

50 MQSeries Integrator ESQL Reference

variable, the character string must be of the form ″INTERVAL ’<values>’
<qualifier>″ - the shortened ″<values>″ form that is acceptable for the explicit
CAST is not acceptable here.

Casting

Chapter 3. ESQL Concepts 51

Data types of values from external sources
There are two external sources from which data can be extracted by ESQL:
v Message fields
v Database columns

The ESQL data type of message fields depends on the type of the message (XML,
Neon, and so on), and the parser used to parse it. The ESQL data type of the value
returned by a database column reference depends on the data type of the column
in the database.

Table 9 shows which ESQL data types the various built-in DBMS data types (for
DB2® (version shipped with the product), SQL Server Version 7.0, Sybase Version
12.0, and Oracle Version 8.1.5) are cast to when they are accessed by MQSeries
Integrator.

Table 9. Implicit CASTS for database data types to MQSeries Integrator types

MQSeries Integrator DB2 SQL Server and Sybase Oracle

BOOLEAN BIT

INTEGER SMALLINT INTEGER
BIGINT

INT SMALLINT TINYINT

FLOAT REAL DOUBLE FLOAT REAL NUMBER()1

DECIMAL DECIMAL DECIMAL NUMERIC MONEY
SMALLMONEY

NUMBER(P)1

NUMBER(P,S)1

CHARACTER CHAR VARCHAR CLOB CHAR VARCHAR TEXT CHAR NCHAR
VARCHAR2 NVARCHAR2
ROWID UROWID LONG
CLOB

TIME TIME

GMTTIME

DATE DATE

TIMESTAMP TIMESTAMP DATETIME SMALLDATETIME DATE

GMTTIMESTAMP

INTERVAL

BLOB BLOB BINARY VARBINARY
TIMESTAMP IMAGE
UNIQUEIDENTIFIER

RAW LONG RAW BLOB

BIT

not supported DATALINK GRAPHIC
VARGRAPHIC DBCLOB

NTEXT NCHAR NVARCHAR NCLOB BFILE

Notes:

1. If an Oracle database column with NUMBER data type is defined with an explicit precision (P) and scale (S),
then it is cast to an ESQL DECIMAL value; otherwise it is cast to a FLOAT.

For example, an ESQL statement like this:

SET OutputRoot.xxx[]
= (SELECT T.department FROM Database.personnel AS T);

where ″Database.personnel″ resolves to a TINYINT column in a SQL Server database table, results in a list of
ESQL INTEGER values being assigned to OutputRoot.xxx.

By contrast, an identical query where ″Database.personnel″ resolved to a NUMBER() column in an Oracle
database results in a list of ESQL FLOAT values being assigned to OutputRoot.xxx.

Casting

52 MQSeries Integrator ESQL Reference

Predicates
The expression used to configure a Filter node must produce a boolean result. That
means that in general it will consist of one kind of predicate. Many of the standard
predicates are supported, for example =, <>, <, >.

Predicates can be combined using the AND, OR and NOT operators.

BETWEEN predicate
The standard default asymmetric form of the BETWEEN predicate is supported.
This requires you to specify the smallest end-point value first, followed by the
largest. You can use the ASYMMETRIC keyword, but in its absence the asymmetric
form is implied.

If you prefer you can make the BETWEEN predicate symmetric by specifying the
optional keyword SYMMETRIC after BETWEEN. In the symmetric form of the
predicate, the order in which you specify the two end-point values is not
significant. For example, the following two expressions are identical:
2 BETWEEN SYMMETRIC 1 AND 3
2 BETWEEN SYMMETRIC 3 AND 1

Both expressions return the value "TRUE".

LIKE predicate
The LIKE predicate searches for strings that have a certain pattern. The standard
LIKE predicate for performing simple string-pattern matching is supported.

The pattern is specified by a string in which the percent (%) and underscore (_)
characters can be used to have special meaning:
v The underscore character _ represents any single character.

For example, the following predicate finds matches for ‘IBM’ and for ‘IGI’, but
not for ‘International Business Machines’ or ‘IBM Corp’:
Body.Trade.Company LIKE ‘I__’

v The percent character % represents a string of zero or more characters.
For example, the following predicate finds matches for ‘IBM’, ‘IGI’, ‘International
Business Machines’, and ‘IBM Corp’:
Body.Trade.Company LIKE ‘I%’

If you want to use the percent and underscore characters within the expressions
that are to be matched, you must precede these with an ESCAPE character, which
defaults to the backslash (\) character.

For example, the following predicate finds a match for ‘IBM_Corp’.
Body.Trade.Company LIKE ‘IBM_Corp’

You can specify a different escape character by using the ESCAPE clause on the
LIKE predicate. For example, you could also specify the previous example like this:
Body.Trade.Company LIKE ‘IBM$_Corp’ ESCAPE ‘$’

Casting

Chapter 3. ESQL Concepts 53

IN predicate
An IN predicate of the following form is supported:
expression IN (expressiona, expressionb, ..., expressionk)

The IN predicate:
v Evaluates to TRUE if the comparison between the first expression and one of the

expressions inside the parentheses evaluates to TRUE.
v Evaluates to FALSE if the comparison between the left-hand expression and all

of the expressions inside the parentheses evaluate to FALSE.
v Evaluates to UNKNOWN if at least one comparison evaluates to UNKNOWN,

and none evaluate to TRUE.

EXISTS predicate
You can use the EXISTS predicate to test whether a WHERE clause successfully
matches any items of a repeating structure in the same way as you can use
standard database SQL. The form of the EXISTS predicate is:
EXISTS(SELECT * FROM something WHERE predicate)

Comments
To make a single line comment in your ESQL, place -- at the beginning of a line.
Alternatively, you can start a multiple line comment with /* anywhere in ESQL. To
terminate a multiple line comment use */.

In arithmetic expressions you must take care not to initiate a line comment
accidentally. For example, consider the expression:
1 - -2

Removing all white space from the expression results in:
1--2

which is interpreted as the number 1, followed by a line comment.

Predicates

54 MQSeries Integrator ESQL Reference

Chapter 4. Field references

The full syntax for field references is defined:

So far, we have explained only those path elements consisting of a field_name.
Here we will introduce the concept of a field_type, which could for example be:
XML.Tag or XML.Attr.

The meaning of the first part of the path element is to define search parameters to
find the correct syntax element. If only a field name is supplied, that is an
instruction to search for elements that have a field name, regardless of the field
type that they might have. Similarly, if a path element specifies only a field type,
that is an instruction to search for elements that have the given element type,
regardless of the name that they might have.

An asterisk in a path element indicates that all syntax elements should be
searched, regardless of the field names or field types. These two options are
discussed more in the following sections.

Initial correlation names
For an expression in a Filter node, or for a statement in a Database node, the
following correlation names are defined by default:

Root Identifies the root of the message passing though the Filter node.

Body Identifies the last child of the root of the message, that is the "body" of the
message. This is just an alias for Root.*[LAST].

See “Anonymous field names” on page 61 for a description of how to use
*.

Properties
Identifies the standard properties of the input message.

DestinationList
Identifies the structure which contains the destination list for the message
passing through the node.

Path element

MM V

.

*

(field_type)field_name
[expression]

(field_type)
[LAST]

field_name
[]

MN

© Copyright IBM Corp. 2000, 2001 55

||
|

|
|

ExceptionList
Identifies the structure which contains the current exception list that the
node has access to.

For a Compute node, the initial correlation names are different because there are
two messages involved, the input message and the output message. The initial
correlation names for a compute name are as follows:

InputRoot
Identifies the root of the input message

InputBody
Identifies the "body" of the input message. Like "Body" in a Filter node this
is just an alias for "InputRoot.*[LAST]"

InputProperties
Identifies the standard properties of the input message.

InputDestinationList
Identifies the structure which contains the destination list for the input
message.

InputExceptionList
Identifies the structure which contains the exception list for the message
passing through the node.

OutputRoot
Identifies the root of the output message.

OutputDestinationList
Identifies the structure which contains the destination list for the output
message. For a description of the format of a destination list, see
“Exception and destination list tree structure” on page 8.

Note that whilst this correlation name is always valid, it only has meaning
when the "Compute Mode" property of the Compute node indicates that
the Compute node is calculating the destination list.

OutputExceptionList
Identifies the structure which contains the exception list which the
Compute node is generating.

Note that whilst this correlation name is always valid, it only has meaning
when the "Compute Mode" property of the Compute node indicates that
the Compute node is calculating the exception list.

Note that in a Compute node there is no correlation name "OutputBody".
New correlation names may be introduced by SELECT expressions (see
“SELECT expression” on page 60), quantified predicates, and FOR
statements.

Field references

56 MQSeries Integrator ESQL Reference

Repeating fields
Messages are very likely to contain repeating fields, and these are supported by
MQSeries Integrator Version 2.0.

Figure 4 defines a message with some repeating fields that illustrate some of these
facilities (for example, Item). This message contains product order information,
such as might appear in an invoice message, or an online bookshop purchase.

<Invoice>
<Customer>
<Name>Albert Einstein</Name>
<InvoiceAddress>
<Address>Patent Office</Address>
<Address>Bern</Address>
<Address>Switzerland</Address>
</InvoiceAddress>
</Customer>
<Item>
<Book>
<Title>Principia Mathmatica</Title>
<Author>Isaac Newton</Author>
<ISBN>0-520-0881606</ISBN>
</Book>
<Price>60</Price>
<Quantity>1</Quantity>
</Item>
<Item>
<Book>
<Title>A Brief History of Time</Title>
<Author>Stephen Hawking</Author>
<ISBN>0-553-175211</ISBN>
</Book>
<Price>7.99</Price>
<Quantity>1</Quantity>
</Item>
<Item>
<Stationary>pencil</Stationary>
<Price>0.20</Price>
<Quantity>200</Quantity>
</Item>
<Item>
<Stationary>paper</Stationary>
<Price>1.99</Price>
<Quantity>100</Quantity>
</Item>
</Invoice>

Figure 4. Repeating fields in a message

Repeating fields

Chapter 4. Field references 57

Array indices
If you know how many instances there are of a repeating field, and you want to
access a specific instance of such a field, you can use an array index as part of a
field reference. For example, if you wanted to filter on the first line of an address,
to expedite the delivery of an order, you could write an expression such as:
Body.Invoice.Customer.InvoiceAddress.Address[1] = 'Patent Office'

The array index [1] indicates that it is the first instance of the repeating field that
you are interested in (array indices start at 1). An array index such as this can be
used at any point in a field reference, so you could, for example, filter on:
Body.Invoice."Item"[1].Quantity > 2

If you do not know exactly how many instances of a repeating field there are, you
can look at the last instance, or a relative field (for example, the third field from
the end). You can refer to the last instance of a repeat by using the special LAST
array index, as in:
Body.Invoice."Item"[LAST].Quantity > 2

Alternatively, you can use the CARDINALITY function to determine how many
instances of a repeating field there are, and use the result to refer to the second to
last, for example. The following example shows how to do this:
Body.Invoice."Item"[CARDINALITY

(Body.Invoice."Item"[]) - 2].Quantity > 2

In this case, the CARDINALITY function is passed a field reference that ends in [].
The meaning of this is "count all instances of the Item field". The [] at the end
appears superfluous, because the context indicates that this is the meaning, but its
presence is required. This makes the syntax consistent with other instances where
it is necessary to refer to "all instances" of something. Remember that array indices
start at 1, so the array index in the above example refers to the third-from-last
instance of the Item field.

Note: If you are using a while loop to process elements of a message, then to
improve performance, we recommend that you set a variable to the value of
the CARDINALITY prior to entering the loop.

The quantified predicate
It is more likely that you do not know how many instances of a repeating field
there are in a message. This is the situation that arises with the Item field in the
example message in “Message referenced in examples” on page 113. In order to
write a filter that takes into account all instances of the Item field, you need to use
a construct that can iterate over all instances of a repeating field. The quantified
predicate allows you to execute a predicate against all instances of a repeating
field, and collate the results.

For example, you might want to verify that none of the items that were being
ordered had quantity greater than 50. To do this you could write:
FOR ALL Body.Invoice.Purchases."Item"[] AS I (I.Quantity <= 50)

There are several things to note about this example. Firstly, you have to put double
quotation marks around the Item in the field reference Body.Invoice.Item[]. This
is because Item is a reserved word, and the double quotation marks are necessary
to prevent it from being interpreted as a keyword and so giving a syntax error.

Repeating fields

58 MQSeries Integrator ESQL Reference

|

With the quantified predicate itself, the first thing to note is the "[]" on the end of
the field reference after the "FOR ALL". The square brackets tell you that you are
iterating over all instances of the Item field.

In some cases, this syntax appears unnecessary because you can get that
information from the context, but it is done for consistency with other pieces of
syntax.

The "AS" clause associates the name I with the current instance of the repeating
field. This is similar to the concept of iterator classes used in some object oriented
languages such as C++. The expression in parentheses is a predicate that is
evaluated for each instance of the Item field.

A description of this example is:
1. Iterate over all instances of the field Item inside Body.Invoice.
2. For each iteration:

a. Bind the name I to the current instance of Item.
b. Evaluate the predicate I.Quantity <= 50. If the predicate:

v Evaluates to TRUE for all of the instances of Item, return TRUE.
v Is FALSE for any instance of Item, return FALSE.
v For a mixture of TRUE and UNKNOWN, it returns UNKNOWN.

The above is a description of how the predicate is evaluated if the "ALL" keyword
is used. An alternative is to specify "SOME", or "ANY", which are equivalent. In
this case the quantified predicate returns TRUE if the sub-predicate returns TRUE
for any instance of the repeating field. Only if the sub-predicate returns FALSE for
all instances of the repeating field does the quantified predicate return FALSE. If a
mixture of FALSE and UNKNOWN values are returned from the sub-predicate, an
overall value of UNKNOWN is returned.

To illustrate this, the following examples are based on the message described in
“Message referenced in examples” on page 113. In the following filter expression
FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = 'The XML Companion')

the sub-predicate evaluates to TRUE, however this next expression returns FALSE:
FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = 'C Primer')

because the ″C Primer″ is not included on this invoice. If in this instance some of
the items in the invoice had not included a book title field, then the sub-predicate
would have returned UNKNOWN, and the quantified predicate would have
returned the value UNKNOWN.

Great care must be taken to deal with the possibility of null values appearing. You
are therefore recommended to write this filter with an explicit check on the
existence of the field, as follows:
FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Book IS NOT NULL AND
I.Book.Title = 'C Primer')

The "IS NOT NULL" predicate ensures that if an Item field does not contain a Book,
a FALSE value is returned from the sub-predicate.

Repeating fields

Chapter 4. Field references 59

|
|

|

|

|

|
|
|
|

SELECT expression
Another way of dealing with arbitrary repeats of fields within a message is to use
a SELECT expression. ESQL SELECT differs from database SQL SELECT:
v ESQL has THE and ITEM; SQL does not
v ESQL has no SELECT ALL
v ESQL has no SELECT DISTINCT
v ESQL has no GROUP BY or HAVING
v ESQL has no AVG column function

ESQL SELECT can be used to
v Access databases
v Make an output array which is a subset of an input array
v Make an output array which contains just the values of an input array
v Count the number of entries in an array
v Select the minimum or maximum value from a number of entries in an array

Suppose that you want to perform a special action on invoices that have a total
order value greater that a certain amount. In order to calculate the total order
value of an Invoice field, you need to multiply the Price fields by the Quantity
fields in all of the Items in the message, and total the result. You can do this using
a SELECT expression as follows:
(
SELECT SUM(CAST(I.Price AS DECIMAL) * CAST(I.Quantity AS INTEGER))
FROM Body.Invoice."Item"[] AS I

) > 100

It is necessary to use CAST expressions to cast the string values of the fields Price
and Quantity into the correct data types. The cast of the Price field into a decimal
produces a decimal value with the "natural" scale and precision, that is, whatever
scale and precision is necessary to represent the number.

The SELECT expression works in a similar way to the quantified predicate, and
works in much the same way in which a SELECT works in standard database SQL.
The FROM clause specifies what we are iterating over, in this case, all Item fields
in Invoice, and establishes that the current instance of Item can be referred to
using "I". This form of SELECT involves a column function, in this case the SUM
function, so the SELECT is evaluated by adding together the results of evaluating
the expression inside the SUM function for each Item field in the Invoice. As with
standard SQL, NULL values are ignored by column functions, with the exception
of the COUNT column function explained below, and a NULL value is returned by
the column function only if there are no non-NULL values to combine.

The other column functions that are provided are MAX, MIN, and COUNT. The
COUNT function has two forms which work in different ways with regard to
NULLs. In the first form you use it much like the SUM function above, so, for
example:
SELECT COUNT(I.Quantity)
FROM Body.Invoice."Item"[] AS I

This expression returns the number of Item fields for which the Quantity field is
non-NULL. That is, the COUNT function counts non-NULL values, in the same
way that the SUM function adds non-NULL values. The alternative way of using
the COUNT function is as follows:

Repeating fields

60 MQSeries Integrator ESQL Reference

|

|

|

|

|

|

SELECT COUNT(*)
FROM Body.Invoice."Item"[] AS I

Using COUNT(*) counts the total number of Item fields, regardless of whether any
of the fields is NULL. The above example is in fact equivalent to using the
CARDINALITY function, as in:
CARDINALITY(Body.Invoice."Item"[])

In all of the examples of SELECT given here, just as in standard SQL, a WHERE
clause could have been specified to provide filtering on the fields. Note that the
SELECT, FROM and WHERE clauses are the only clauses supported. You cannot
specify GROUP BY, HAVING, or ORDER BY, nor can you use the ALL or
DISTINCT qualifiers in the SELECT clause.

Anonymous field names
It is possible to refer to the array of all children of a particular entity by using a
path element of "*". So, for example:
InputRoot.*[]

is a path that identifies the array of all children of InputRoot. This is often used in
conjunction with an array subscript to refer to a particular child of an entity by
position, rather than by name. So, for example:

InputRoot.*[LAST]
Refers to the last child of the root of the input message, that is, the "body"
of the message.

InputRoot.*[1]
Refers to the first child of the root of the input message.

This is the message properties.

It is useful to be able to find out the name of an entity that has been identified
with a path of this kind. To do this, you can use the FIELDNAME function. This
function takes a path as its only parameter and returns as a string the field name
of the entity to which the path refers. Here are some examples of its usage:

FIELDNAME(InputRoot.XML)
Returns 'XML'.

FIELDNAME(InputBody)
Returns the name of the last child of InputRoot, which could be 'XML'.

FIELDNAME(InputRoot.*[LAST])
Returns the name of the last child of InputRoot, which could be 'XML'.

Field types for the XML parser
There are some instances when it is not enough to identify a field just by name
and array subscript. Some message parsers have more complicated models to
expose; it is to cope with these cases that an optional type can be associated with
element. The message model exposed by the generic XML parser makes heavy use
of this facility to deal with the more complicated XML features.

When a type is not present in a path element, it specifies that the type of the
syntax element is not important. That is, a path element of "name" matches any
syntax element that has a name of "name", regardless of the element type.

Repeating fields

Chapter 4. Field references 61

In the same way that a path element can specify a name and not a type, a path
element can specify a type and not a name. Such a path element matches any
syntax element that has the specified type, regardless of name. An example of this
is shown below:
FIELDNAME(InputBody.(XML.tag)[1])

This example returns the name of the first tag in the body of the message
(assuming that it is an XML message). For an example of when it is necessary to
use types in paths, consider the following generic XML:
<tag1 attr1='abc'>

<attr1>123</attr1>
</tag1>

The path "InputBody.tag1.attr1" refers to the attribute called "attr1", because
attributes appear before nested tags in a syntax tree generated by an XML parser.
In order to refer to the tag called "attr1" it would be necessary to use a path
"InputBody.tag1.(XML.tag)attr1". However, it would be advisable always to include
types in these situations to be explicit about which entity is being referred to.

Field types for MQRFH2 headers
When you construct MQRFH2 headers in a compute node, there are two types of
fields:
1. Fields in the MQRFH2 header structure (for example, Format and

NameValueCCSID
2. Fields in the MQRFH2 NameValue buffer (for example mcd and psc)

To differentiate between these two possible field types, you must insert a value in
front of the referenced field in the MQRFH2 field to identify its type (a value for
the NameValue buffer is not required because this is the default). The value you
must specify for the header structure is (MQRFH2.Field).

For example:
v To create or change an MQRFH2 Format field, specify the following ESQL:

SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = 'MQSTR ';

v To create or change the psc folder with a topic:
SET OutputRoot.MQRFH2.psc.Topic = 'department';

v To add an MQRFH2 header to an outgoing message that is to be used to make a
subscription request:
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;
END WHILE;
SET OutputRoot.MQRFH2.(MQRFH2.Field)Version = 2;
SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = 'MQSTR';
SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208;
SET OutputRoot.MQRFH2.psc.Command = 'RegSub';
SET OutputRoot.MQRFH2.psc.Topic = "InputRoot"."MRM"."topel";
SET OutputRoot.MQRFH2.psc.QMgrName = 'DebugQM';
SET OutputRoot.MQRFH2.psc.QName = 'PUBOUT';
SET OutputRoot.MQRFH2.psc.RegOpt = 'PersAsPub';

For more information about the MQRFH2 header please see “The MQRFH2
parser” on page 127

Repeating fields

62 MQSeries Integrator ESQL Reference

Chapter 5. ESQL statements, expressions and functions

This chapter describes the syntax of ESQL statements, expressions and functions.

Statements and expressions
This first section describes how to use ESQL statements and expressions:

AND and OR
AND and OR are used as part of an expression.

Filter, Compute and Database expressions can involve more than one field
comparison. For example:
v Using AND

Body.Outertag.Innertag1 = 'ade' AND Body.Outertag.Innertag2 > 100

v Using OR
Body.Outertag.Innertag1 = 'ade' OR Body.Outertag.Innertag2 > 100

v Using AND and OR
Body.Outertag.Innertag1 = 'ade' OR (Body.Outertag.Innertag2 > 100
AND Body.Outertag.Innertag3[1] = 'abc')

AS
AS is used as part of an expression.

For more complicated SELECT expressions, an AS clause can be used to give a
name to the computed field as in:
SELECT T.Price, T.Quantity, T.Price * T.Quantity AS TotalValue
FROM Body.Invoice."Item"[] AS T

CASE
For multi-choice settings, you can use the CASE expression.

Both the simple and searched forms of the ESQL CASE expression are supported.
You can only use CASE as an expression, not as a statement.

© Copyright IBM Corp. 2000, 2001 63

|

|
|

|
|

|

If you use the simple form, the value of the expression prior to the first WHEN
keyword is tested for equality with the value of the expression following the
WHEN keyword. The data type of the expression prior to the first WHEN
keyword must therefore be comparable to the data type of each expression
following a WHEN keyword.

The CASE expression must have at least one WHEN.

The ELSE is optional. A default ELSE expression is NULL.

A CASE expression is delimited by an END.

MM CASE
ELSE NULL

searched-when-clause END
simple-when-clause ELSE result-expression

MN

searched-when-clause:

WHEN search-condition THEN result-expression
NULL

simple-when-clause:

expression WHEN expression THEN result-expression
NULL

CASE

64 MQSeries Integrator ESQL Reference

|

|

|

The following examples show CASE expressions used as part of a Filter
expression:
Body.TestCase.Result = CASE SUBSTRING(Body.TestCase.Val1 FROM 1 FOR 1)
WHEN 'A' THEN 'Administration'
WHEN 'B' THEN 'Human Resources'
WHEN 'C' THEN 'Accounting'
WHEN 'D' THEN 'Design'
WHEN 'E' THEN 'Operations'
ELSE 'Manufacturing'
END

Body.TestCase.Result = CASE
WHEN CAST(Body.TestCase.Val1 AS INT) < 15 THEN 'SECONDARY'
WHEN CAST(Body.TestCase.Val1 AS INT) < 19 THEN 'COLLEGE'
END

The following two examples show CASE expressions as part of a Filter expression
where the CASE is being used within a SELECT against an external database.
Body.TestCase.Val1 =

THE (SELECT ITEM CASE SUBSTRING(B.broker_firstname FROM 1 FOR 1)
WHEN 'D' THEN 'Dave' ELSE 'noname' END
FROM Database.broker_details AS B
WHERE B.broker_id = CAST(Body.TestCase.Val2 AS INT))

CAST(Body.TestCase.Val1 AS INT) =
THE (SELECT ITEM C.cust_id FROM Database.customer_details AS C WHERE

C.cust_id = CAST(Body.TestCase.Val2 AS INT) AND
C.cust_status = CASE WHEN

CAST(Body.TestCase.Val3 AS INT) = 1 THEN 'A'
ELSE 'I' END)

Example of a searched when clause:
SET OutputRoot.XML.Invoice.StoreRecords.BuyTrends.MonthOfYear =

CASE
WHEN SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2) = '01' THEN 'January'
WHEN SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2) = '02' THEN 'February'
WHEN SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2) = '03' THEN 'March'
WHEN SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2) = '04' THEN 'April'
WHEN SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2) = '05' THEN 'May'
WHEN SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2) = '06' THEN 'June'
ELSE 'Second half of year'

END;

Example of a simple when clause:
SET OutputRoot.XML.Invoice.StoreRecords.BuyTrends.MonthOfYear =

CASE SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2)
WHEN '01' THEN 'January'
WHEN '02' THEN 'February'
WHEN '03' THEN 'March'
WHEN '04' THEN 'April'
WHEN '05' THEN 'May'
WHEN '06' THEN 'June'
ELSE 'Second half of year'

END;

CAST
Please see “CASTs” on page 39 for more information.

CASE

Chapter 5. ESQL statements, expressions and functions 65

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

DECLARE
The DECLARE statement declares a simple scalar variable that can be used to store
some temporary value. The variable name cannot be a reserved word. The syntax
of the declare statement is:
DECLARE variable_name data type;

where data type is one of the following:

Declared variables have a NULL value until they are initialized. For an example of
the DECLARE statement see the example in the description of the WHILE
statement.

DELETE
A DELETE statement deletes rows from a table in an external database based on a
search condition.

A correlation name is created that can be used inside the search condition to refer
to the values of columns in the table. This correlation name is either the name of
the table (without the data source qualifier) or the explicit qualifier specified.

Example
Suppose that you have Database node that has been configured with a connection
to a table SHAREHOLDINGS. The following statement could be written to
configure the Database node:

DECLARE statement

MM DECLARE (variable name BIT
BLOB
BOOLEAN
CHAR
CHARACTER
DATE
DECIMAL(precision, scale)
FLOAT
GMTTIME
GMTTIMESTAMP
INT
INTEGER
INTERVAL
TIME
TIMESTAMP

) MN

DELETE statement

MM DELETE FROM database.
schema_name.

table_name M

M
AS correlation_name WHERE search_condition

MN

DECLARE

66 MQSeries Integrator ESQL Reference

|

|||

|
|
|

|
|
|

|

|

DELETE FROM Database.SHAREHOLDINGS AS H
WHERE H.ACCOUNTNO = Body.AccountNumber;

This will remove all rows from the SHAREHOLDINGS table where the
ACCOUNTNO field in the table is equal to the AccountNumber in the message.

EVAL

You can use EVAL in two ways:
1. As a complete ESQL statement.
2. As an expression that forms part of an ESQL statement.

EVAL takes one parameter in the form of an expression, and it evaluates this
expression and casts the resulting value to a character string if it is not one already.
The expression that is passed to EVAL must therefore be able to be represented as
a character string.

After this first stage evaluation is complete, the behavior of EVAL depends on
whether it is being used as a complete ESQL statement, or in place of an
expression that forms part of an ESQL statement:
1. If it is a complete ESQL statement, the character string derived from the first

stage evaluation is executed as if it were an ESQL statement.
2. If it is an expression that forms part of an ESQL statement, the character string

is evaluated as if it were an expression and EVAL returns the result.

In the following examples A and B are integer scalar variables, and scalarVar1,
operatorAsString are character string scalar variables.

The following statements are valid uses of EVAL:
v SET OutputRoot.XML.Data.Result = EVAL(A+B);

The expression A+B is acceptable because, although it returns an integer value,
integer values are representable as character strings, and the necessary cast is
therefore performed before EVAL continues with its second stage of evaluation.

v SET OutputRoot.XML.Data.Result = EVAL('A' || operatorAsString || 'B');

v EVAL('SET ' || scalarVar1 || ' = 2;');

The semicolon included at the end of the final string literal is necessary because
if EVAL is being used in place of an ESQL statement, then its first stage
evaluation must return a string that represents a valid ESQL statement,
including the terminating semicolon.

The real power of EVAL is that it allows you to dynamically construct ESQL
statements or expressions. In the second and third valid examples shown, for
example, the value of scalarVar1 or operatorAsString can be set according to the
value of an incoming message field, or other dynamic value, thus allowing you to
effectively control what ESQL is executed without requiring a potentially lengthy
IF...THEN ladder.

EVAL expression

MM EVAL (expression) MN

DELETE

Chapter 5. ESQL statements, expressions and functions 67

However, you must consider the performance implications in using EVAL -
dynamic construction and execution of statements or expressions is necessarily
more time-consuming than simply executing pre-constructed ones. If performance
is vital, you might find it preferable to write more specific, but faster, ESQL.

The following are not valid uses of EVAL:
v SET EVAL(scalarVar1) = 2;

In this example, EVAL is being used to replace a field reference, not an
expression.

v SET OutputRoot.XML.Data.Result[] = EVAL((SELECT T.x FROM Database.y AS
T));

In this example, the (SELECT T.x FROM Database.y) passed to EVAL returns a
list, which is not representable as a character string.

The following example is acceptable because '(SELECT T.x FROM Database.y AS
T)' is a character string literal, not an expression in itself, and therefore is
representable as a character string.
SET OutputRoot.XML.Data.Result[]
= EVAL('(SELECT T.x FROM Database.y AS T)');

The following example shows how to use EVAL to translate XML attributes to tags:
DECLARE thePath CHARACTER;
DECLARE newPath CHARACTER;
DECLARE theData CHARACTER;
DECLARE theChildName CHARACTER;
DECLARE theChildType INTEGER;
DECLARE J INTEGER;
DECLARE C INTEGER;
SET thePath = FIELDNAME(InputRoot.XML.*[1]);
EVAL('SET OutputRoot.XML.' || thePath || ' = CAST(InputRoot.XML.*[1] AS CHAR);');
WHILE (thePath IS NOT NULL) DO
EVAL('SET I = CARDINALITY(InputRoot.XML.' || thePath || '.*[]);');
SET J = 1;
WHILE (J <= I) DO
EVAL('SET theChildType = FIELDTYPE(InputRoot.XML.' || thePath || '.*[J]);');
EVAL('SET theChildName = FIELDNAME(InputRoot.XML.' || thePath || '.*[J]);');

/* check for MQSIv2 reserved words (eg ITEM) */
IF UPPER(theChildName) IN ('ITEM') THEN

SET theChildName = '"' || theChildName || '"';
END IF;

END IF
IF (theChildType = 0x01000000) THEN

VAL('SET C = CARDINALITY(OutputRoot.XML.' || thePath || '.' || theChildName || '[]) + 1;');
SET newPath = thePath || '.' || theChildName || '[' || CAST(C AS CHAR) || ']';
EVAL('SET theData = InputRoot.XML.' || newPath || ';');
EVAL('SET OutputRoot.XML.' || newPath || ' = theData;');
SET OutputRoot.XML.theStack.entry[CARDINALITY(OutputRoot.XML.theStack.*[])+1] = thePath || '.' || the

END IF;
IF (theChildType = 0x03000000) THEN
EVAL('SET theData = InputRoot.XML.' || thePath || '.*[' || CAST(J AS CHAR) || '];');
EVAL('SET OutputRoot.XML.' || thePath || '.' || theChildName || '[LAST] = ''' || theData || ''';');
END IF;
SET J = J + 1;
END WHILE;
SET thePath = OutputRoot.XML.theStack.entry[1];
SET OutputRoot.XML.theStack.entry[1] = NULL;
END WHILE;
SET OutputRoot.XML.theStack = NULL;

EVAL

68 MQSeries Integrator ESQL Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IF
An IF statement controls execution of one set of statements or another based on
the result of evaluating a predicate.

Note that if the control expression evaluates to UNKNOWN, the "else" statements
are executed; UNKNOWN is treated the same as FALSE.

The IF statement takes one of the following forms:
IF condition THEN

controlled statements
END IF;

or:
IF condition THEN

controlled statements 1
ELSE

controlled statements 2
END IF;

INSERT
An INSERT statement can be used to add new rows to an external database.

The optional column name list identifies a list of columns in the target table into
which values are to be inserted. Any columns not mentioned in the column name
list will have their default values inserted.

A run-time error can be generated if problems occur during the insert operation.
For example the database table may have constraints defined which the insert
operation may violate. In these cases, an attempt will be made to propagate the
original message that was received by the node to the failure terminal on the node.

Example
The following example assumes that the dataSource property on the Database node
has been configured and that the database identified by that datasource has a table
called "TABLE1" with columns A, B, and C. Given a message that has the following
generic XML body:

INSERT statement

MM INSERT INTO database.
schema_name.

table_name M

M

V

,

(column_name)

V

,

VALUES(scalar_expression) MN

IF

Chapter 5. ESQL statements, expressions and functions 69

|

||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||

|

|

|
|
|

|

<A>
1
<C>2</C>
<D>3</D>

the following INSERT statement will insert a new row into the table with the
values (1, 2, 3).
INSERT INTO Database.TABLE1(A, B, C) VALUES (Body.A.B, Body.A.C, Body.A.D);

NULL with AND and OR
Below you will find examples of how NULL operates with AND and OR:
v Implied NULL comparison involving AND

Body.Invoice.Customer.LastName = 'ade' AND Body.Wrong.Field > 100

Evaluates to FALSE.
v Implied NULL comparison involving OR

Body.Invoice.Customer.LastName = 'ade' OR Body.Wrong.Field > 100

Evaluates to UNKNOWN.
v Explicit NULL comparison involving AND

Body.Invoice.Customer.LastName = 'Smith' AND Body.Wrong.Field IS NULL

Evaluates to TRUE.
v Explicit NULL comparison involving OR

Body.Invoice.Customer.LastName = 'ade' OR Body.Wrong.Field IS NULL

Evaluates to TRUE.

PASSTHRU
The PASSTHRU function allows the coding of ESQL statements which:
v By-pass the MQSeries Integrator 2.0 Broker Parser
v Go straight to the configured back-end database
v Execute a coded statement

The first parameter of PASSTHRU must be a valid ESQL expression containing
your database syntax. PASSTHRU allows you to use database syntax not normally
supported by ESQL.

The behavior of the PASSTHRU function depends on whether it is passed one,
two, or more parameters. The first parameter of the PASSTHRU function must
always be an ESQL expression that either is, or evaluates to, a string. You must use
question marks in the string to denote where any parameter substitution is
required.

If only one other parameter is passed, that parameter evaluates to one of the
following:
v A single scalar value. If this is the case, it is inserted into the first parameter

marker.
v A list of values. If this is the case, the list items are inserted in order into each of

the parameter markers within the string.

INSERT

70 MQSeries Integrator ESQL Reference

|

|

|

|

|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

If two or more other parameters are passed, each parameter is bound to the
corresponding question mark in the statement string: that is, the first parameter is
bound to the first question mark, the second parameter is bound to the second
question mark, and so on.

Here are some examples that illustrate different ways of using the PASSTHRU
statement:
SET OutputRoot.XML.Result.Data[] =

PASSTHRU('SELECT * FROM user1.stocktable');

PASSTHRU('DELETE FROM user2.AccountData WHERE AccountId =
?', InputBody.Data.Account.Id);

SET OutputRoot.XML.Result.Data
= PASSTHRU('SELECT AccountNum FROM user2.AccountData

WHERE AccountId = ?', InputBody.Data.Account.Id);

SET OutputRoot.XML.Result.Data[]
= PASSTHRU('SELECT AccountNum FROM user2.AccountData

WHERE AccountId IN (? , ? , ?)',
InputBody.Data.Account.Id[]);

PASSTHRU('INSERT INTO user1.stocktable (stock_id, quantity)
values (?, ?)', InputBody.Transaction.Id,

InputBody.Transaction.Quantity);

You must take the following points into consideration when you construct string
literals that you will use as the first parameter of the PASSTHRU function:
v If the ESQL statement that you want to execute against the database contains a

single quote, you must escape the single quote when you define the string
literal.
For example, if you want to execute the following ESQL statement:
INSERT INTO TABLE1 VALUES('abc', 'def')

you can use the following PASSTHRU statement:
PASSTHRU('INSERT INTO TABLE1 VALUES(''abc'', ''def'')');

The use of double single quotation marks is required for a definition of a string
literal containing a single quote.

v You must include trailing spaces in the individual string literals to avoid
defining a string containing the text:
'SELECT a, b, c FROM table1 WHERE d = 123'

Considerations when calling stored procedures
If you decide to use the PASSTHRU statement to call stored procedures, the
following considerations must be noted:
v MQSeries Integrator 2.0 uses Open Database Connectivity (ODBC) to connect to

databases. ODBC Version 1 provides support for Stored Procedure calls using
the following ODBC escape sequence:
call procedure name [([parameter][,[parameter]]...)]}.
Only the escape sequence described above is supported for the input parameters
of the PASSTHRU function in MQSeries Integrator 2.0.

v Using the SQL CALL facility, a database Stored Procedure can be called. This
procedure behaves as if a sequence of in-line SQL statements are being executed

v Stored procedures can exist either
– Individually (supported by both DB2 and Oracle). This would coded as

follows:
PASSTHRU('{call proc_insert_comp(?,?)}',InputBody.Test.Company,InputBody.Test.Price);

PASSTHRU

Chapter 5. ESQL statements, expressions and functions 71

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|

|

|

|

|
|

|
|

|

|
|
|

|
|
|

|

|
|

|
|

|

|
|

|

or
– As part of a collective which is accessed using a Package mechanism

(supported by Oracle). This would be coded as follows:
PASSTHRU('{call share_management.add_share(?,?)}',

InputBody.Test.Company,InputBody.Test.Price);

v When writing Stored Procedures they can be either
– commital (supported by Oracle): the procedure logic takes explicit commit

and rollback actions.
If a message flow rollback occurs, the database operations are committed.
This is consistent with the behavior of the Database and Warehouse nodes
which have a transaction attribute setting of commit.
or

– non-commital (supported by both DB2 and Oracle): the procedure logic does
not take explicit commit and rollback action.
If a message flow rollback occurs, the database operations are rolled back.
This is consistent with the behavior of the Database and Warehouse nodes
which have a transaction attribute setting of automatic.

Note: Stored Procedure calls, whether commital or non-commital, will affect
any database operations (and subsequent outcome) if a message flow
rollback occurs.

Limitations
There are some limitations when using PASSTHRU to call stored procedures. To
illustrate the limitations, please consider the following example:
PASSTHRU('{call proc_delete_comp(?)}',InputBody.Test.Company);

1. MQSeries Integrator Version 2.0 only supports input parameters.
2. SqlMoreResults cannot be used by MQSeries Integrator Version 2.0 to retrieve

result sets.

SELECT
Select statements are discussed in “SELECT expression” on page 60 and “Chapter 6.
Complex SELECTs: ROWs and LISTs” on page 91.

SET
Used in the Compute and Database nodes, the general form of an assignment
statement is either:
SET field_reference = expression;

or
SET variable = expression;

Set statements are all semicolon (";") terminated. The semicolon is a terminator, and
not a separator, so it must appear at the end of every statement, even the last one.

The field reference or variable on the left of the assignment identifies either the
field in the output message which is to be set, or an ESQL variable. It must start
with "OutputRoot", or "OutputDestinationList", or "OutputExceptionList". The field
referenced will be created if it doesn't already exist in the output message; if the
field already exists in the output message, its value will be overwritten. Note that

PASSTHRU

72 MQSeries Integrator ESQL Reference

|

|
|

|
|

|

|
|

|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

|

|
|

|

|

|

|
|

when array indices are used in the field reference, only one instance of a particular
field will ever get created, so for example if you write as assignment statement
starting:
SET OutputRoot.XML.Message.Structure[2].Field = ...

at least one instance of "Structure" must already exist in the message. That is, the
only elements in the tree that are created are ones on a direct path from the root to
the element identified by the field reference. A common example of Compute node
will consist of a node which makes a modification to a message, either changing a
field, or maybe adding a new field to the original message. Such a Compute node
would be programmed by statements like the following:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Order.Name = UPPER(InputRoot.XML.Order.Name);

This example simply puts one field in the message into uppercase. The first
statement constructs an output message which is a complete copy of the input
message (as per the very first simple example). The second statement sets the
value of the "Order.Name" field (which it is assumed the message flow writer
knows will exist in the input message) to a new value, as defined by the
expression on the right.

It is interesting to note what the effect is if the Order.Name field hadn't existed in
the original input message. Because it didn't exist in the input message, it won't
exist in the output message as generated by the first statement. The expression on
the right of the second statement will return NULL, because the field referenced
inside the UPPER function call does not exist). Assigning the NULL value to a field
has the effect of deleting it if it already exists, and so the effect is that the second
statement has no effect.

All the following result in a tree copy:
SET OutputRoot = InputRoot;
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.InputMessage = InputRoot;

Compute node
The Compute node and the Filter node share a common expression syntax. In its
simplest form, a Compute node provides a way of building up a new message
using a set of assignment statements. The expressions that appear on the right
hand side of the assignment, that is, the source expressions, are expressions of
exactly the same form as can appear in a Filter node. But, they are not restricted to
returning single boolean values in the same way that a filter expression is.

A Compute node works by constructing a tree representation of a new message
based on a list of assignment statements. A new message is always (at least
conceptually) constructed, because the message passed to the node must be
preserved in its original form (it is not permissible in a message flow to modify the
information passed back "upstream"). The simplest possible Compute node simply
constructs a new message as an exact copy of the input message. Such a Compute
node would consist of the following statement
SET OutputRoot = InputRoot;

Because there are two messages involved in a Compute node, it is not sufficient to
refer to "Root" as can be done in a Filter node where there is only one message.
Instead you have to refer to "InputRoot" and "OutputRoot" in a Compute node.
You can also refer to "InputBody" in a Compute node in the same way that you
can refer to "Body" in a Filter node, though you cannot refer to "OutputBody",

SET

Chapter 5. ESQL statements, expressions and functions 73

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

because there is no fixed concept of what the "body" of the output message is until
the output message has been fully constructed.

The above example causes a complete copy of the input message to be propagated
to the output terminal of the Compute node because when the right hand side of
an assignment statement consists of a field reference, a complete recursive tree
copy is performed to duplicate the tree representation of the input message. For
more information about how you might use a Compute node see MQSeries
Integrator Using the Control Center.

Copying messages between parsers: Compute node expressions can copy part of
an input message to an output message. The results of such a copy depend upon
the type of input and output parsers involved.

Like parsers: Where both the source and target messages have the same folder
structure at root level, a like-parser-copy is performed. For example:
SET OutputRoot.MQMD = InputRoot.MQMD;

will result in all the children in the MQMD folder of the input message being
copied to the MQMD folder of the output message.

Another example of a tree structure which will support a like-parser-copy is:
SET OutputRoot.XML.Data.Account = InputRoot.XML.Customer.Bank.Data;

Unlike parsers: Where the source and target messages have different folder
structures at root level, it is not possible to make an exact copy of the message
source. Instead, the unlike-parser-copy views the source message as a set of nested
folders terminated by a leaf name-value pair. For example, copying the following
message from XML to MRM:
<Name3><Name31>Value31</Name31>Value32</Name3>

will produce a name element ″Name3″, and a name-value element called
″Name31″ with the value ″Value31″.

Note: The second XML pcdata (Value32) cannot be represented and will be
discarded.

The unlike-parser-copy scans the source tree, and copies folders, also known as
name elements, and leaf name-value pairs. Everything else, including elements
flagged as ″special″ by the source parser, will not be copied.

An example of a tree structure resulting in an unlike-parser-copy is:
SET OutputRoot.MRM.Data.Account = InputRoot.XML.Data.Account;

Note: If the algorithum used to make an unlike-parser-copy does not suit your tree
structure, it might be necessary to further qualify the source field to restrict
the amount of tree copied.

Using the compute node for data conversion: You can use the ESQL within a
compute node to provide data conversion for code page and encoding of messages.
You must set MQMD CCSID and Encoding fields of the output message, plus the
CCSID and Encoding of any headers, to the required target value.

The following example illustrates what is required for a CWF message to pass
from MQSeries Integrator to IMS on OS/390®.

Compute node

74 MQSeries Integrator ESQL Reference

|
|

|
|
|
|
|
|

|
|
|

|
|

|

|
|

|

|

|
|
|
|
|

|

|
|

|
|

|
|
|

|

|

|
|
|

|
|
|
|

|
|

1. You have defined the input message in XML and are using an MQRFH2
header. The header must be removed before the message is passed to IMS.

2. The message passed to IMS must have MQIIH header, and must be in the
OS/390 codepage. This message is defined in the MRM and has identifier
m_IMS1. The PIC X fields in this message must be defined as logical type
string for EBCDIC <-> ASCII conversion to take place. If they are logical type
binary, no data conversion occurs.

3. The message received from IMS is also defined in the MRM and has identifier
m_IMS2. The PIC X fields in this message must be defined as logical type
string for EBCDIC <-> ASCII conversion to take place. If they are logical type
binary, no data conversion occurs.

4. The reply message must be converted to the Windows NT codepage. The
MQIIH header is retained on this message.

5. You have created a message flow that contains:
a. The outbound flow, MQInput1 —> Compute1 —> MQOutput1.
b. The inbound flow, MQInput2 —> Compute2 —> MQOutput2.

6. You must set up the ESQL in Compute1 (outbound) node as follows (specifying
the MessageSet id. that is created for you):
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) - 1 DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
SET OutputRoot.MQMD.CodedCharSetId = 500;
SET OutputRoot.MQMD.Encoding = 785;
SET OutputRoot.MQMD.Format = 'MQIMS ';
SET OutputRoot.MQIIH.StrucId = 'IIH ';
SET OutputRoot.MQIIH.Version = 1;
SET OutputRoot.MQIIH.StrucLength = 84;
SET OutputRoot.MQIIH.Encoding = 785;
SET OutputRoot.MQIIH.CodedCharSetId = 500;
SET OutputRoot.MQIIH.Format = 'MQIMSVS ';
SET OutputRoot.MQIIH.Flags = 0;
SET OutputRoot.MQIIH.LTermOverride = ' ';
SET OutputRoot.MQIIH.MFSMapName = ' ';
SET OutputRoot.MQIIH.ReplyToFormat = 'MQIMSVS ';
SET OutputRoot.MQIIH.Authenticator = ' ';
SET OutputRoot.MQIIH.TranInstanceId = X'00000000000000000000000000000000';
SET OutputRoot.MQIIH.TranState = ' ';
SET OutputRoot.MQIIH.CommitMode = '0';
SET OutputRoot.MQIIH.SecurityScope = 'C';
SET OutputRoot.MQIIH.Reserved = ' ';
SET OutputRoot.MRM.e_elen08 = 30;
SET OutputRoot.MRM.e_elen09 = 0;
SET OutputRoot.MRM.e_string08 = InputBody.e_string01;
SET OutputRoot.MRM.e_binary02 = X'31323334353637383940';
SET OutputRoot.Properties.MessageDomain = 'MRM';
SET OutputRoot.Properties.MessageSet = 'DHCJOEG072001';
SET OutputRoot.Properties.MessageType = 'm_IMS1';
SET OutputRoot.Properties.MessageFormat = 'CWF';

7. You must set up the ESQL in Compute2 (inbound) node as follows (specifying
the MessageSet id. that is created for you):
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
SET OutputRoot.MQMD.CodedCharSetId = 437;

Copying messages between parsers

Chapter 5. ESQL statements, expressions and functions 75

|
|

|
|
|
|
|

|
|
|
|

|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

SET OutputRoot.MQMD.Encoding = 546;
SET OutputRoot.MQMD.Format = 'MQIMS ';
SET OutputRoot.MQIIH.CodedCharSetId = 437;
SET OutputRoot.MQIIH.Encoding = 546;
SET OutputRoot.MQIIH.Format = ' ';
SET OutputRoot.MRM = InputBody;
SET OutputRoot.Properties.MessageDomain = 'MRM';
SET OutputRoot.Properties.MessageSet = 'DHCJOEG072001';
SET OutputRoot.Properties.MessageType = 'm_IMS2';
SET OutputRoot.Properties.MessageFormat = 'CWF';

You do not have to set any specific values for the MQInput1 node properties
because the message and message set are identified in the MQRFH2 header, and
no conversion is required.

You must set values for Domain, set, type and format in the MQInput node for the
inbound message flow (MQInput2). You do not need to set conversion parameters.

Using the compute node for message transformation: You can use the ESQL
within a compute node to transform a message from one format to another.

For example, if you want to transform a generic XML message into an MRM
message, you can:
1. Add the MRM message to Output Messages on the basic tab of the compute

node properties dialog.
2. If you want to retain the headers of the message, select Copy message headers.
3. Select the Use as message body check box. This generates ESQL similar to:

SET OutputRoot.Properties.MessageSet = 'DHOP5F709S001';
SET OutputRoot.Properties.MessageType = 'test_message';

Note that it is the message identifier that is required in the MessageType field.
4. Specify the output format of the message (this must be one of CWF, PDF, or

XML). For example:
SET OutputRoot.Properties.MessageFormat = 'CWF';

5. Specify the new message domain (in this transformation, this step is not
necessary because MRM is the default, but you are recommended to include
this for completeness):
SET OutputRoot.Properties.MessageDomain = 'MRM';

6. Create ESQL statements to populate your output message, either manually or
by using drag and drop to generate automatic mappings.

The same principles apply for other message transformations.

UPDATE
An UPDATE statement will update the values of specified columns in a table in an
external database.

Copying messages between parsers

76 MQSeries Integrator ESQL Reference

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

|

|
|
|

|

|
|

|

Example 1
This example updates the PRICE column of the row in the STOCKPRICES table
whose COMPANY column matched the value given in the Company field in the
message that the Database node is processing.
UPDATE Database.StockPrices AS SP
SET PRICE = Body.Message.StockPrice
WHERE SP.COMPANY =Body.Message.Company

Example 2
In this example, the "INV.QUANTITY" in the right hand side of the assignment
refers to the previous value of the column before any updates have taken place.
UPDATE Database.INVENTORY AS INV
SET QUANTITY = INV.QUANTITY - Body.Message.QuantitySold
WHERE INV.ITEMNUMBER = Body.Message.ItemNumber

Example 3
This example shows multiple column updates.
UPDATE Database.table AS T
SET column1 = T.column1+1,

column2 = T.column2+1;

Compare the syntax to the way you assign to multiple fields in a Compute node:
SET field = expression;

Note also the form of the assignment: the column on the left of the assignment
must be a single identifier. It must not be qualified with a table name or
correlation name. In contrast, any column references to the right of the assignment
must be qualified with a table name or correlation name.

WHILE
A WHILE statement executes a sequence of statements repeatedly while the
controlling predicate evaluates to TRUE. The same caveats apply to using the
WHILE statement as apply in any language, that is, it is up to you to ensure that
the loop will terminate. Note that if the control predicate evaluates to UNKNOWN
the loop terminates: UNKNOWN and FALSE are treated in the same way in this
respect. The WHILE statement takes the following form:
WHILE predicate DO

controlled statements
END WHILE;

For example:

UPDATE statement

MM UPDATE database.
schema_name.

table_name M

M
AS correlation_name

V

,

SET column_name=expression M

M
WHERE search_condition

MN

UPDATE

Chapter 5. ESQL statements, expressions and functions 77

DECLARE I INTEGER;
SET I = 1;
WHILE I <= 10 DO

SET I = I + 1;
END WHILE;

Note: Please note the position of the semicolons.

Functions
Most of the function descriptions here impose restrictions on the data types of the
arguments that can be passed to the function. If the values passed to the functions
do not match the required data types, errors are generated at node configuration
time if is possible to detect the errors at that point, otherwise run-time errors are
generated when the function is evaluated.

String manipulation functions
The following functions perform manipulations on all strings (bit, byte, and
character) with the exception of UPPER and LOWER, which operate only on
character strings.

In these descriptions, the term ’singleton’ is used to refer to a single part (bit, byte,
or character) within a string of that type.

Concatenation
Two vertical bars, ||, can be used to concatenate variables in ESQL.

LENGTH
LENGTH(source_string)

The LENGTH function returns an integer value which gives the number of
singletons in source_string. If the value of the source_string is a NULL value, the
result of the LENGTH function is the NULL value.

Examples:

DECLARE K INTEGER;

SET K = LENGTH('Hello World!'); returns 12.

SET K = LENGTH(''); returns 0.

Using the “Message referenced in examples” on page 113:
SET K = LENGTH(InputBody.Invoice.Customer.Billing.Address[2]);

returns 15.

LOWER, LCASE
LOWER(source_string)
LCASE(source_string)

An example of how to use LOWER:
SET OutputRoot.XML.Invoice.Customer.Title =

LOWER(InputBody.Invoice.Customer.Title);

The content of title in the input message will be ’mr’ when using “Message
referenced in examples” on page 113.

WHILE

78 MQSeries Integrator ESQL Reference

|

|

|

|

|

|
|

|
|

The LOWER and LCASE functions both return a new character string which is the
same length as the source string and which is identical to the input string, except
that it has all uppercase letters replaced with the corresponding lowercase letters.
If the source string is NULL, the return value is NULL.

LTRIM
LTRIM(source_string)

This function is equivalent to TRIM(LEADING ' ' FROM source_string). See
“TRIM” on page 81 for more information.

OVERLAY
OVERLAY(source_string PLACING source_string2 FROM start_position)
OVERLAY(source_string PLACING source_string2 FROM start_position FOR string_length)

Some examples of how to use OVERLAY:
SET OutputRoot.XML.Invoice.Customer.LastName =

OVERLAY (InputBody.Invoice.Customer.FirstName PLACING
InputBody.Invoice.Customer.LastName FROM 3);

Results in LastName having the value ’AnSmith’
SET OutputRoot.XML.Invoice.Customer.LastName =

OVERLAY (InputBody.Invoice.Customer.FirstName PLACING
InputBody.Invoice.Customer.LastName FROM 1);

Results in LastName having the value ’Smithw’
SET OutputRoot.XML.Invoice.Customer.LastName =

OVERLAY (InputBody.Invoice.Customer.FirstName PLACING
InputBody.Invoice.Customer.LastName FROM 3 FOR 2);

Results in LastName having the value ’AnSmithew’

If any of the parameters are NULL, the result is a NULL value of the same data
type as source_string. If string_length is not specified, string_length is equal to
LENGTH(source_string2).

The result of the OVERLAY function is equivalent to:
SUBSTRING(source_string FROM 1 FOR start_position -1) || source_string2 ||

SUBSTRING(source_string FROM start_position + LENGTH(source_string2))

(where || is the concatenation operator).

POSITION
The POSITION function returns an integer that gives the position of the first
occurrence of one string (the search_string) in a second string (the
source_string).
POSITION(search_string IN source_string)

If the value of either the search_string or the source_string is NULL, the result of
the POSITION function is NULL. If the value of search_string has a length of zero,
the result is one. If the search_string cannot be found, it returns 0.

For example:
POSITION('TQ_' IN Body.Trade.Company)

Using “Message referenced in examples” on page 113 the following example
returns the value 9:

Functions

Chapter 5. ESQL statements, expressions and functions 79

|

|
|
|

|

|
|
|

|

|
|
|

|

DECLARE K INTEGER;
SET K = POSITION('Village' IN InputBody.Invoice.Customer.Billing.Address[2]);

RTRIM
RTRIM(source_string)

This function is equivalent to TRIM(TRAILING ' ' FROM source_string). See
“TRIM” on page 81 for more information.

SUBSTRING
You can use the SUBSTRING function to extract a string of bits, bytes, or
characters from within another string of that type. You can use the result of
SUBSTRING, for example, to compare to a known value.

The format of the function is as follows:
SUBSTRING(source_string FROM start_position)
SUBSTRING(source_string FROM start_position FOR string_length)

If any of the parameters to the SUBSTRING function are NULL, the result is the
NULL string (which is different from the empty string).

The following example:
SUBSTRING(Body.Trade.Company FROM 1 FOR 3) = 'TQ_'

compares the first three singletons of a string to a given value. The positions in the
string start at 1, so the FROM 1 clause indicates that the substring should start at the
first singleton. The FOR 3 clause indicates that three singletons are included in the
substring. This has a similar result to using the LIKE predicate.

This second example returns the string 'World!':
SUBSTRING('Hello World!' FROM 7)

The SUBSTRING function is implemented using the following algorithm:
v Let C be the value of source_string. Let LC be the length of C and let S be the

value of start_position.
v If string_length is specified, let L be the value of string_length and let E be S+L.

Otherwise let E be LC+1.
v If E is less than S, the function returns a NULL value.
v If S is greater than LC, or if E is less than 1, the result of the SUBSTRING

function is a zero length string.
v Otherwise Let S1 be the larger of S and 1. Let E1 be the smaller of E and LC+1.

Let L1 be E1-S1.
v The result of the SUBSTRING function is a string containing the L1 singletons of

C starting at number S1 in the same order that the singletons appear in C.

One more example:
SET OutputRoot.XML.Invoice.StoreRecords.BuyTrends.MonthOfYear =

CASE SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2)
WHEN '01' THEN 'JANUARY'
WHEN '02' THEN 'FEBRUARY'
WHEN '03' THEN 'MARCH'

ELSE 'Spring onwards'
END;

Functions

80 MQSeries Integrator ESQL Reference

|
|

|

|
|
|
|
|
|
|

TRIM
The TRIM function is used to remove leading and trailing singletons from a string.

You can specify the TRIM function in any of the following formats:
TRIM(trim_specification trim_singleton FROM source_string)
TRIM(trim_specification FROM source_string)
TRIM(trim_singleton FROM source_string)
TRIM(source_string)

where trim_specification is one of LEADING, TRAILING, or BOTH. If
trim_specification is not specified, BOTH is assumed. If trim_singleton is not
specified, a default singleton is assumed. This default depends on the data type of
source_string:

character ’ ’ (space)
byte X’00’
bit B’0’

TRIM returns a string value of the same data type and content as source_string
but with any leading or trailing singletons that are equal to trim_singleton
removed (depending on the value of trim_specification). If any of the parameters
are the NULL value, the TRIM function returns a NULL value of the same data
type as source_string.

The FROM keyword is not required, and is in fact prohibited if neither a trim
specification, for example LEADING or TRAILING, nor a trim singleton, is
specified.

If you have a field in a message that is padded at the end with an unknown
number of 'x' characters, and you want to compare the body of the character string
to a literal value, you could use the following example:
TRIM(TRAILING 'x' FROM Body.Trade.Company) = 'Uncertain'

If you want to strip 'x' characters from the beginning and end of the string, you
could write:
TRIM('x' FROM Body.Trade.Company) = 'Uncertain'

By default, blanks are stripped from a character string, and you can therefore leave
out the character altogether, as follows:
TRIM(LEADING FROM Body.Market.Sector) = 'Target'

To strip blanks from the beginning and end of a character string, you could write:
TRIM(Body.Market.Sector) = 'Target'

It is often unnecessary to strip trailing blanks from character strings before
comparison because the rules of character string comparison mean that trailing
blanks are not significant.

The following examples illustrate additional function:
TRIM(TRAILING 'b' FROM 'aaabBb') returns 'aaabB'
TRIM(' a ') returns 'a'
TRIM(LEADING FROM ' a ') returns 'a '
TRIM('b' FROM 'bbbaaabbb') returns 'aaa'

Functions

Chapter 5. ESQL statements, expressions and functions 81

|

UPPER, UCASE
UPPER(source_string)
UCASE(source_string)

An example of how to use UPPER:
SET OutputRoot.XML.Invoice.Customer.LastName =

UPPER(InputBody.Invoice.Customer.LastName);

The content of LastName in the output message is ’SMITH’.

The UPPER and UCASE functions both return a new character string which is the
same length as the source character string and which is identical to the input
string, except is has all lowercase letters replaced with the corresponding
uppercase letters. If the source string is NULL, the return value is NULL.

Numeric functions
Numeric functions in ESQL work in the same way as standard SQL operators.

ABS
ABS(expression)
ABSVAL(expression)

The argument must be a numeric value. The function returns the absolute value of
the argument, that is, a number without a sign. The argument can be NULL. If the
argument is NULL, the function returns a NULL value.

This example shows how ABS could give someone’s approximate age:
SET OutputRoot.XML.Invoice.Customer.Age
= ABS(1900 + CAST(SUBSTRING(InputBody.Invoice.Customer.DOB FROM 7 FOR 2)

AS INTEGER) - (EXTRACT (YEAR FROM CURRENT_DATE)));

which results in Age being set to 30.

BITAND
BITAND(expression1, expression2, ...)

The BITAND function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise AND of the binary
representation of the numbers.

For example:
DECLARE I1 INTEGER;
DECLARE I2 INTEGER;
SET I1 = 12;
SET I2 = 7;
SET OutputRoot.XML.Invoice.XMLAND = BITAND(I1, I2);

Results in XMLAND being set to 4.

BITNOT
BITNOT(expression)

The BITNOT function takes one parameter which must result in an integer value
and returns the result of performing the bitwise complement of the binary
representation of the number.

For example:

Functions

82 MQSeries Integrator ESQL Reference

|

|
|

|

|
|
|

|

|
|
|

|

|

|
|
|
|
|

|

|

DECLARE I1 INTEGER;
DECLARE I2 INTEGER;
SET I1 = 12;
SET I2 = 7;
SET OutputRoot.XML.Invoice.XMLNOT = BITNOT(I2);

Results in XMLNOT being set to -8.

BITOR
BITOR(expression1, expression2, ...)

The BITOR function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise OR of the binary
representation of the numbers.

For example:
DECLARE I1 INTEGER;
DECLARE I2 INTEGER;
SET I1 = 12;
SET I2 = 7;
SET OutputRoot.XML.Invoice.XMLOR = BITOR(I1, I2);

Results in XMLOR being set to 15.

BITXOR
BITXOR(expression1, expression2, ...)

The BITXOR function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise XOR of the binary
representation of the numbers.

For example:
DECLARE I1 INTEGER;
DECLARE I2 INTEGER;
SET I1 = 12;
SET I2 = 7;
SET OutputRoot.XML.Invoice.XMLXOR = BITXOR(I1, I2);

Results in XMLXOR being set to 11.

CEIL
CEIL(expression)
CEILING(expression)

Returns the smallest integer value greater than or equal to the expression. The
argument can be any numeric data type. If the argument is NULL, the result is the
NULL value.

For example, using the sample message in“Message referenced in examples” on
page 113:
SET OutputRoot.XML.Invoice.Total =

CAST(CEILING((SELECT SUM(CAST (T.UnitPrice AS DECIMAL) * CAST(T.Quantity AS INTEGER))
FROM InputBody.Invoice.Purchases."Item"[] AS T)) AS DECIMAL);

Results in Total being set to 159.

FLOOR
FLOOR(expression)

Functions

Chapter 5. ESQL statements, expressions and functions 83

|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|
|
|
|

|

|
|

|
|
|

|

Returns the largest integer value less than or equal to the expression. The
argument can be any numeric data type. If the argument is NULL, the result is the
NULL value.

For example, using the sample message in“Message referenced in examples” on
page 113:
SET OutputRoot.XML.Invoice.LowestPrice =

CAST(FLOOR((SELECT MIN(CAST(T.UnitPrice AS DECIMAL))
FROM InputBody.Invoice.Purchases."Item"[] AS T))

AS DECIMAL);

Results in LowestPrice being set to 27.

Notes:

1. There is a restriction that FLOAT data type results from a DECIMAL argument
unless the outer CAST in the above example is present.

2. All brackets are needed

MOD
MOD(expression1, expression2)

Returns the remainder of the first argument divided by the second argument. The
result is negative only if first argument is negative. The arguments must have
integer data types. The function returns an integer. If any argument is NULL, the
result is the NULL value.

For example:
SET OutputRoot.XML.Invoice.Moddedl=

MOD(CAST(InputBody.Invoice.InvoiceNo AS INTEGER),
CAST(InputBody.Invoice.Payment.Valid AS INTEGER));

In the case of the example in “Message referenced in examples” on page 113 the
above gives:

300524 divided by 1200 = 250 and remainder 524,
so the result of this example is 524.

ROUND
ROUND(expression1, expression2)

If expression2 is a positive number, ROUND returns the expression1 rounded to
expression2 placed right of the decimal point. If expression2 is negative,
expression1 is rounded to the absolute value of expression2 placed to the left of the
decimal point. Expression1 can be any built-in numeric data type. Expression2 is
an integer. A decimal argument is converted to a FLOAT for processing by the
function. The result of the function is INTEGER if the first argument is INTEGER,
FLOAT if the first argument is FLOAT, and DECIMAL if the first argument is
DECIMAL. If any argument is NULL, the result is the NULL value.

To illustrate the use of ROUND, see the following examples:
v When considering the UnitPrice (27.95) of the first book in “Message referenced

in examples” on page 113:
SET OutputRoot.XML.Invoice.Rounded1 =

ROUND(CAST (InputBody.Invoice.Purchases."Item"[1].UnitPrice AS DECIMAL), 3);

Gives a result of 27.95

Functions

84 MQSeries Integrator ESQL Reference

|
|

|
|
|
|

|

|

|
|

|

|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

SET OutputRoot.XML.Invoice.Rounded2 =
ROUND(CAST (InputBody.Invoice.Purchases."Item"[1].UnitPrice AS DECIMAL), -1);

Gives a result of 30.00
SET OutputRoot.XML.Invoice.Rounded3 =

ROUND(CAST (InputBody.Invoice.Purchases."Item"[1].UnitPrice AS DECIMAL), +0);

Gives a result of 28.00
v This example can be used to compare the ROUND and TRUNCATE functions.

For more information about TRUNCATE see “TRUNCATE”.
ROUND(893,-2)

Gives a result of 900.

SQRT
SQRT(expression)

Returns the square root of the expression. The argument can be any built-in
numeric data type. It has to be converted to a FLOAT number for processing by
the function. The result of the function is a FLOAT. If the argument is NULL, the
result is the NULL value.

For example:
SET OutputRoot.XML.Invoice.Root2 =
SQRT(CAST (InputBody.Invoice.Purchases."Item"[1].Quantity AS DECIMAL));

Results in Root2 being set to 1.414213562373095E+0

TRUNCATE
TRUNCATE(expression1, expression2)

If expression2 is positive, TRUNCATE returns expression1 truncated to expression2
places right of the decimal point.

If expression2 is negative, TRUNCATE returns expression1 truncated to the
absolute value of expression2 places to the left of the decimal point.

Expression2 must evaluate to an INTEGER

Expression1 can be any built-in numeric data type. Decimal values are converted
to double-precision floating-point numbers for processing by the function.

If expression1 is an INTEGER, the result is an INTEGER.

If expression1 is a FLOAT or a DECIMAL, the result is a FLOAT.

If either expression evaluates to NULL, TRUNCATE returns NULL.

Here is are some examples of how to use TRUNCATE:
v This example uses the message in “Message referenced in examples” on

page 113:
SET OutputRoot.XML.Invoice.Trunc =
TRUNCATE(CAST (InputBody.Invoice.Purchases."Item"[1].UnitPrice AS DECIMAL), 1);

Expression1 evaluates 27.95, expression2 equals 1, so TRUNCATE returns 27.9.

Functions

Chapter 5. ESQL statements, expressions and functions 85

|

|
|

|

|

|
|

|
|

|

v This example can be used to compare the ROUND and TRUNCATE functions.
For more information about ROUND see “ROUND” on page 84.
ROUND(893,-2)

Gives a result of 800.

Datetime functions
You can use arithmetic operators to perform various natural calculations on
Datetime values. For example, you can calculate the difference between two dates
as an interval, or you can add an interval to a timestamp.

Adding an interval to a Datetime value
The simplest operation you can perform is to add an interval to, or subtract an
interval from, a Datetime value. For example, you could write the following
expressions:
DATE '2000-01-29' + INTERVAL '1' MONTH
TIMESTAMP '1999-12-31 23:59:59' + INTERVAL '1' SECOND

Adding or subtracting two intervals
Two interval values can be combined using addition or subtraction. The two
interval values must be of compatible types. For example, it is not valid to add a
year-month interval to a day-second interval. So the following example is not
valid:
INTERVAL '1-06' YEAR TO MONTH + INTERVAL '20' DAY

The interval qualifier of the resultant interval is sufficient to encompass all of the
fields present in the two operand intervals. For example:
INTERVAL '2 01' DAY TO HOUR + INTERVAL '123:59' MINUTE TO SECOND

would result in an interval with qualifier DAY TO SECOND, because both day and
second fields are present in at least one of the operand values.

Subtracting two Datetime values
Two Datetime values can be subtracted to return an interval. In order to do this an
interval qualifier must be given in the expression to indicate what precision the
result should be returned in. For example:
(CURRENT_DATE - DATE '1776-07-04') DAY

would return the number of days since the 4th July 1776, whereas:
(CURRENT_TIME - TIME '00:00:00') MINUTE TO SECOND

would return the age of the day in minutes and seconds.

Scaling intervals
An interval value can be multiplied by or divided by an integer factor:
INTERVAL '2:30' MINUTE TO SECOND / 4

Extracting fields from Datetimes and intervals
You can extract individual fields from datetime values and intervals using the
EXTRACT function. For example, you could extract the number of seconds from
the current time with the expression:
EXTRACT(SECOND FROM CURRENT_TIME)

You can use any of the keywords YEAR, MONTH, DAY, HOUR, MINUTE, and
SECOND in the EXTRACT function, but you can only extract a field that is present

Functions

86 MQSeries Integrator ESQL Reference

|
|

|

|

in the source value. Either a parse-time or a run-time error is generated if the
requested field does not exist but this depends on how early the error can be
detected. Other examples include:
EXTRACT(YEAR FROM CURRENT_DATE)
EXTRACT(HOUR FROM LOCAL_TIMEZONE)

The following Datetime functions allow you to manipulate fields according to date
and time values:

CURRENT_DATE
CURRENT_DATE returns a date value representing the current date in local time.
That is, it is equivalent to CAST(CURRENT_TIMESTAMP AS DATE).
CURRENT_DATE

The CURRENT_DATE function is not a true function in that no parentheses are
necessary. All calls to CURRENT_DATE within the processing of one node are
guaranteed to return the same value.

CURRENT_TIME
The CURRENT_TIME function returns a non-GMT time value representing the
current local time. That is, it is equivalent to CAST(CURRENT_TIMESTAMP AS
TIME).
CURRENT_TIME

The CURRENT_TIME function is not a true function in that no parentheses are
necessary. All calls to CURRENT_TIME within the processing of one node are
guaranteed to return the same value.

CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP function returns a non-GMT timestamp value
representing the current local time.
CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP function is not a true function in that no parentheses
are necessary. All calls to CURRENT_TIMESTAMP within the processing of one
node are guaranteed to return the same value.

CURRENT_GMTDATE
The CURRENT_GMTDATE function returns a date value representing the current
date in the GMT time zone. It is equivalent to CAST(CURRENT_GMTTIMESTAMP
AS DATE).
CURRENT_GMTDATE

The CURRENT_GMTDATE function is not a true function in that no parentheses
are necessary. All calls to CURRENT_GMTDATE within the processing of one node
are guaranteed to return the same value.

CURRENT_GMTTIME
The CURRENT_GMTTIME function returns a GMT time value representing the
current time in the GMT time zone. It is equivalent to
CAST(CURRENT_GMTTIMESTAMP AS TIME).
CURRENT_GMTTIME

The CURRENT_GMTTIME function is not a true function in that no parentheses
are necessary. All calls to CURRENT_GMTTIME within the processing of one node
are guaranteed to return the same value.

Datetime functions

Chapter 5. ESQL statements, expressions and functions 87

CURRENT_GMTTIMESTAMP
The CURRENT_GMTTIMESTAMP function returns a GMT timestamp value
representing the current time in the GMT time zone.
CURRENT_GMTTIMESTAMP

The CURRENT_GMTTIMESTAMP function is not a true function in that no
parentheses are necessary. All calls to CURRENT_GMTTIMESTAMP within the
processing of one node are guaranteed to return the same value.

LOCAL_TIMEZONE
The LOCAL_TIMEZONE function returns an interval value which represents the
local time zone displacement from GMT.
LOCAL_TIMEZONE

The LOCAL_TIMEZONE function is not a true function in that no parentheses are
necessary. The value returned is an interval in hours and minutes representing the
displacement of the current time zone from Greenwich Mean Time. The sign of the
interval is such that a local time could be converted to a time in GMT by
subtracting the result of the LOCAL_TIMEZONE function.

Miscellaneous functions
You can also use the CARDINALITY, FIELDNAME, FIELDTYPE, BITSREAM,
COALESCE, and NULLIF functions, as described below.

BITSTREAM
The BITSTREAM function returns a BLOB representing the actual bit stream of the
portion of the message specified.
BITSTREAM(path)

This function is typically used in message warehouse scenarios, where the bit
stream of a message needs to be stored in a database. The function returns the bit
stream of the physical portion of the message, identified by the path parameter. It
does not return the bit stream representing the actual syntax element identified. So
for example the following two calls would return the same value:
BITSTREAM(Root.MQMD);
BITSTREAM(Root.MQMD.UserIdentifier);

CARDINALITY
CARDINALITY(array)

Returns the number of elements in the argument array, or the number of children
of a parent in the message tree.

For more information about the cardinality function, please see 58.

COALESCE
COALESCE returns the first argument that is not NULL. The arguments are
evaluated in the order in which they are specified, and the result of the function is
the first argument that is not NULL. The result is NULL only if all the arguments
are NULL. The arguments must be compatible. The COALESCE function can be
used to provide a default value for the value of a field which might not exist in a
message. For example, the expression:
COALESCE(Body.Salary, 0)

would return the value of the Salary field in the message if it existed, or 0 (zero) if
that field did not exist.

Datetime functions

88 MQSeries Integrator ESQL Reference

FIELDNAME
FIELDNAME(path)

Returns the name of the field that the argument path identifies as a string. If the
path identifies a nonexistent entity, NULL is returned.

FIELDTYPE
FIELDTYPE(path)

Returns the type of the field that the argument path identifies as an integer. If the
path identifies a nonexistent entity, NULL is returned. The result of this function
will typically be compared with a symbolic constant defined by a parser which
represents a type value. Note that this is not the data type of the field that the path
identifies.

NULLIF
The NULLIF function returns a NULL value if the arguments are equal; otherwise,
it returns the value of the first argument. The arguments must be comparable. The
result of using NULLIF(e1,e2) is the same as using the expression
CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is
NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first argument.

Miscellaneous functions

Chapter 5. ESQL statements, expressions and functions 89

Miscellaneous functions

90 MQSeries Integrator ESQL Reference

Chapter 6. Complex SELECTs: ROWs and LISTs

The previous examples of the SELECT expression, in “SELECT expression” on
page 60, have all involved column functions, because these are a common form in
filter expressions. However, more general subselects can also be used. These
operate in a similar way to standard SQL selects, but the "result sets" that are
generated from the different forms need some discussion. As a way of illustrating
the various forms that a SELECT clause can take, consider the following examples
of assigning the results of database queries to fields in a message using a Compute
node.

ROW and LIST constructors
The ROW and LIST constructor functions can be used to explicitly generate rows
or lists of values which can be assigned to fields in an output message. A ROW
consists of a sequence of named values. When assigned to a field reference it
results in the creation of that sequence of named values as child fields of the
referenced field. A LIST consists of a sequence of unnamed values. When assigned
to an array field reference (indicated by [] suffixed to the last element of the
reference), each value is assigned in sequence to an element of the array. A ROW
cannot be assigned to an array field reference; a LIST cannot be assigned to a
non-array field reference. Consider the following examples.

ROW constructor:

Example 1:
SET OutputRoot.XML.Data = ROW('granary' AS bread,

'riesling' AS wine,
'stilton' AS cheese);

produces:
<Data>

<bread>granary</bread>
<wine>riesling</wine>
<cheese>stilton</cheese>

</Data>

Example 2:

Given the XML input message body:
<Proof>

<beer>5</beer>
<wine>12</wine>
<gin>40</gin>

</Proof>

the ESQL:
SET OutputRoot.XML.Data = ROW(InputBody.Proof.beer,

InputBody.Proof.wine AS vin,
(InputBody.Proof.gin * 2) AS special);

produces:

© Copyright IBM Corp. 2000, 2001 91

|

|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|

|

|

|
|
|
|
|

|

|
|
|

|

<Data>
<beer>5</beer>
<vin>12</vin>
<special>80</special>

</Data>

Note: Note that because the values in this case are derived from field references,
which already have names, it is not necessary to explicitly provide a name
for each element of the row, although you may if you wish.

A List constructor:

Example 1:

Given the XML message input body:
<Car>

<size>big</size>
<colour>red</colour>

</Car>

The ESQL:
SET OutputRoot.XML.Data.Result[] = LIST{InputBody.Car.colour,

'green',
'blue'};

produces:
<Data>

<result>red</result>
<result>green</result>
<result>blue</result>

</Data>

Note: In the case of a LIST there is no explicit name associated with each value -
rather, the values are assigned in sequence to elements of the message field
array specified as the target of the assignment. Also note that curly braces
rather than parentheses are used to surround the LIST items

.

Example 2:

Given the XML input message body:
<Data>

<Field>Keats</Field>
<Field>Shelley</Field>
<Field>Wordsworth</Field>
<Field>Tennyson</Field>
<Field>Byron</Field>

</Data>

The ESQL:
--Copy the entire input message to the output message,
--including the XML message field array as above
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Data.Field[] = LIST{'Henri','McGough','Patten'};

produces:

ROW and LIST constructors

92 MQSeries Integrator ESQL Reference

|
|
|
|
|

|
|
|

|

|

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

|
|
|
|

|

<Data>
<Field>Henri</Field>
<Field>McGough</Field>
<Field>Patten</Field>

</Data>

Note: The previous members of the Data.Field[] array have been discarded.
Assigning a new list of values to an already existing message field array
causes all the elements in the existing array to be removed before the new
ones are assigned.

ROW and LIST combined

A ROW may validly be an element in a LIST. For example:
SET OutputRoot.XML.Data.Country[] =

LIST{ROW('UK' AS name,'pound' AS currency),
ROW('US' AS name, 'dollar' AS currency),

default'};

produces:
<Data;>

<Country>
<name>UK</name>
<currency>pound</currency>

</Country>
<Country>

<name>US</name>
<currency>dollar</currency>

</Country>
<Country>default</Country>

</Data>

Notes:

1. ROW and non-ROW values can be freely mixed within a LIST.
2. A LIST cannot validly be a member of a ROW. Only named scalar values can

be members of a ROW.

ROW and LIST comparisons

ROWs and LISTs can validly be compared against other ROWs and LISTs.

Example 1:
IF ROW(InputBody.Data.*[1],InputBody.Data.*[2]) =

ROW('Raf' AS Name,'25' AS Age) THEN ...
IF LIST{InputBody.Data.Name, InputBody.Data.Age} = LIST{'Raf','25'} THEN ...

The following XML input message body would cause both the IF expressions in
both of the above statements to evaluate to TRUE:
<Data>

<Name>Raf</Name>
<Age>25</Age>

</Data>

Note that in the comparison between ROWs both the name and the value of each
element are compared, whereas in the comparison between LISTs only the value of
each element is compared. In both cases the cardinality and sequential order of the
LIST or ROW operands being compared must be equal in order for the two
operands to be equal. In other words, all the following are false because either the
sequential order or the cardinality of the operands being compared do not match:

ROW and LIST constructors

Chapter 6. Complex SELECTs: ROWs and LISTs 93

|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

ROW('alpha' AS A, 'beta' AS B) =
ROW('alpha' AS A, 'beta' AS B, 'delta' AS D)

ROW('alpha' AS A, 'beta' AS B) =
ROW('beta' AS B,'alpha' AS A)

LIST{1,2,3} = LIST{1,2,3,4}
LIST{3,2,1} = LIST{1,2,3}

Example 2:

Consider this ESQL:
IF InputBody.Places =

ROW('Ken' AS first, 'Bob' AS second, 'Kate' AS third) THEN ...

The following XML input message body would cause the above IF expression to
evaluate to TRUE:
<Places>

<first>Ken</first>
<second>Bob</second>
<third>Kate</third>

</Places>

Note: The presence of an explicitly constructed ROW as one of the operands to the
comparison operator results in the other operand also being treated as a
ROW.

This should be contrasted with a comparison such as:
IF InputBody.Lottery.FirstDraw = InputBody.Lottery.SecondDraw THEN ...

which compares the value of the FirstDraw and SecondDraw fields, not the names
and values of each of FirstDraw and SecondDraw’s child fields constructed as a
ROW. Thus an XML input message body such as:
<Lottery>

<FirstDraw>wednesday
<ball1>32</ball1>
<ball2>12</ball2>

</FirstDraw>
<SecondDraw>saturday

<ball1>32</ball1>
<ball2>12</ball2>

</SecondDraw>
</Lottery>

would not result in the above IF expression being evaluated as TRUE, because the
values ’wednesday’ and ’saturday’ are being compared, not the names and values
of the ball fields.

Example 3:

Consider this ESQL:
IF InputBody.Cities.City[] = LIST{'Athens','Sparta','Thebes'} THEN ...

The following XML input message body would cause the IF expression to evaluate
to TRUE:
<Cities>
<City>Athens</City>
<City>Sparta</City>
<City>Thebes</City>
</Cities>

ROW and LIST constructors

94 MQSeries Integrator ESQL Reference

|
|
|
|
|
|

|

|

|
|

|
|

|
|
|
|
|

|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|
|
|
|
|

Two message field arrays may be compared together in this way, for example:
IF InputBody.Cities.Mediaeval.City[] =

InputBody.Cities.Modern.City[] THEN ...

IF InputBody.Cities.Mediaeval.*[] = InputBody.Cities.Modern.*[] THEN ...

IF InputBody.Cities.Mediaeval.(XML.tag)[] =
InputBody.Cities.Modern.(XML.tag)[] THEN ...

The following XML input message body would cause the IF expression of the first
and third of the statements above to evaluate to TRUE:
<Cities>

<Mediaeval>1350
<City>London</City>
<City>Paris</City>

</Mediaeval>
<Modern>1990

<City>London</City>
<City>Paris</City>

</Modern>
</Cities>

However the IF expression of the second statement would evaluate to FALSE,
because the *[] indicates that all the children of Mediaeval and Modern are to be
compared, not just the (XML.tag)s - so in this case the values 1350 and 1990, which
form nameless children of Mediaeval and Modern, are compared as well as the
values of the City tags.

Note that the IF expression of the third statement above would evaluate to TRUE
with an XML input message body such as:
<Cities>

<Mediaeval>1350
<Location>London</Location>
<Location>Paris</Location>

</Mediaeval>
<Modern>1990

<City>London</City>
<City>Paris</City>

</Modern>
</Cities>

LISTs are composed of unnamed values - so it is the values of the child fields of
Mediaeval and Modern that are compared, not their names.

Examples of complex SELECTs

Implications of the item order within the SELECT clause
Using the Control Center, create a message flow consisting of an MQInput node
wired to a Compute node, wired to an MQOutput node. Configure the queue
names on the MQInput node and MQOutput node to point to suitable queues, and
set the Message Domain attribute on the Defaults tab of the MQInput node
property editor to be "XML". Configure the Compute node using the following
ESQL statements:
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result[] =
(SELECT T.Field4, T.Structure1 FROM InputBody.Test.Input[] AS T);

ROW and LIST constructors

Chapter 6. Complex SELECTs: ROWs and LISTs 95

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

Deploy the message flow to a suitable broker, and then send a simple trigger
message like the following to the input queue:

You should receive the following message on the output queue:

The order in which the tags appear inside the Result tag reflects the order in which
the items appeared in the select clause, not the order in which the fields appeared
in the original message. Also, the Structure1 fields are copied in their entirety from
the input message: that is, a tree copy has been performed. You can, of course,
rename the fields by using an AS clause after some or all of the items in the
SELECT clause.

Use of the ITEM keyword
The following example shows the use of the ITEM keyword, which selects one
item and creates a single value. (Example 1 shows a structure that creates a single
field.)
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result[] =
(SELECT ITEM T.Field1 FROM InputBody.Test.Input[] AS T);

<Test>
<Input>
<Field1>value1</Field1>
<Structure1>
<Field2>value2</Field2>
<Field3>value3</Field3>
</Structure1>
<Field4>value4</Field4>
</Input>
<Input>
<Field1>value5</Field1>
<Structure1>
<Field2>value6</Field2>
<Field3>value7</Field3>
</Structure1>
<Field4>value8</Field4>
</Input>
</Test>

<Test>
<Result>
<Field4>value4</Field4>
<Structure1>
<Field2>value2</Field2>
<Field3>value3</Field3>
</Structure1>
</Result>
<Result>
<Field4>value8</Field4>
<Structure1>
<Field2>value6</Field2>
<Field3>value7</Field3>
</Structure1>
</Result>
</Test>

Examples of complex SELECTs

96 MQSeries Integrator ESQL Reference

Sending the same trigger message will result in a message on the output queue
which looks like this:
<Test>
<Result>value1</Result>
<Result>value5</Result>
</Test>

Comparing this message to the one which is produced if the ITEM keyword is
omitted:

illustrates the effect of the ITEM keyword. The evaluation of the ESQL expressions
happens independently of any information about the schema of the target message.
In the case of generating a generic XML message there is no message schema for
the message being generated, so the structure of the message that is generated
must be defined entirely by the ESQL.

Effects of the THE keyword
The two examples above have both specified a list as the source of the SELECT in
the FROM clause (so the field reference had a [] at the end), and so in general the
SELECT will generate a list of results. Because of this it was necessary to specify a
list as the target of the assignment (thus the "Result[]" as the target of the
assignment). However, often you will know that the WHERE clause that you
specify as part of the SELECT will only return TRUE for one item in the list. In
this case the "THE" keyword can be used to indicate this. The following shows the
effect of using the THE keyword
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result =
THE (SELECT T.Field4, T.Structure1 FROM InputBody.Test.Input[]
AS T WHERE T.Field1 = 'value1');

The "THE" keyword means that the target of the assignment becomes
"OutputRoot.XML.Test.Result" (the "[]" is no longer necessary, or even allowed).
This results in the following message:

<Test>
<Result>
<Field1>value1</Field1>
</Result>
<Result>
<Field1>value5</Field1>
</Result>
</Test>

<Test>
<Result>
<Field4>value4</Field4>
<Structure1>
<Field2>value2</Field2>
<Field3>value3</Field3>
</Structure1>
</Result>
</Test>

Examples of complex SELECTs

Chapter 6. Complex SELECTs: ROWs and LISTs 97

Projection
Using selects for projection:
SET OutputRoot.XML.Projection =
(SELECT M.field1,

M.field2,
CAST(M.field3 AS INTEGER) *CAST(M.field4 AS INTEGER) AS field5

FROM InputBody.Message AS M);

equivalent to:
SET OutputRoot.XML.Projection.field1 = InputBody.Message.field1;
SET OutputRoot.XML.Projection.field2 = InputBody.Message.field2;
SET OutputRoot.XML.Projection.field5 =

CAST(InputBody.Message.field3 AS INTEGER)
* CAST(InputBody.Message.field4 AS INTEGER);

Multiple items in the FROM clause
The FROM clause is not restricted to having one item. Specifying multiple items in
the FROM clause has the usual "joining" effect that it does in standard SQL. For
example:
SELECT A.a, B.b
FROM InputBody.Test.A[], A.B[]

In this case, the following message:

<Test>
<A>
<a>1

2

3

<A>
<a>4

5

6

</Test>

Examples of complex SELECTs

98 MQSeries Integrator ESQL Reference

produces the following output:

Joining items in the FROM clause
You can join between a list and a non-list, two non-lists, and so on.
OutputRoot.XML.Test.Result1[] =

(SELECT ... FROM InputBody.Test.A[], InputBody.Test.b);
OutputRoot.XML.Test.Result1 =

(SELECT ... FROM InputBody.Test.A, InputBody.Test.b);

Note carefully the location of the "[]" in each case. Of course, any number of items
can be specified in the FROM list, not just one or two, and in each case if any of
the items specify "[]" to indicate a list of items, the SELECT will generate a list of
results (the list may contain only one item, but the SELECT can potentially return a
list of items), and so the target of the assignment must specify a list (so must end
in "[]" or else the THE keyword must be used if is known that the WHERE clause
will guarantee that only one combination is matched.

Using SELECT to return a scalar value
A SELECT with a column function is not the only form of SELECT that can be
used in a scalar expression. You can make a SELECT return a scalar value by
issuing both the THE and ITEM keywords as in:
1 + THE(SELECT ITEM T.a FROM Body.Test.A[] AS T WHERE T.b = '123')

<Test>
<Result>
<a>1
2
</Result>
<Result>
<a>1
3
</Result>
<Result>
<a>4
5
</Result>
<Result>
<a>4
6
</Result>
</Test>

Examples of complex SELECTs

Chapter 6. Complex SELECTs: ROWs and LISTs 99

Selecting from a list of scalars
Selecting from a list of scalars, consider the sample message:
<Test>
<A>1
<A>2
<A>3
<A>4
<A>5
</Test>

and the ESQL statements
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.A[] = (SELECT A FROM InputBody.Test.A[]
WHERE CAST(A AS INTEGER) BETWEEN 2 AND 4);

Examples of complex SELECTs

100 MQSeries Integrator ESQL Reference

Chapter 7. Querying external databases

Queries against external databases can be done in much the same way as can be
done in, for example, embedded SQL.

In order to include a query against an external database in a Filter or Compute
node, the node must be configured with the connection information for the
database. This consists of an ODBC datasource name. It is up to the MQSeries
Integrator or database administrator to ensure that a suitable ODBC datasource has
been created on the systems on which the brokers, to which the message flows are
deployed, are running.

The connection to the database is performed using the database user ID and
password supplied on the mqsicreatebroker command that created the individual
broker. The MQSeries Integrator or database administrator must therefore ensure
that user has sufficient database privileges to query the required database tables. If
not, a run-time error is generated by the broker when it attempts to process a
message and attempts to connect to the database for the first time.

Whilst the standard SQL SELECT syntax is supported for queries to an external
database, there are a number of points to be borne in mind. It is necessary to prefix
the name of the table with the keyword "Database" in order to indicate that the
SELECT is to be targeted at the external database, rather than at a repeating
structure in the message.

Therefore the basic form of database SELECT is:
SELECT ...
FROM Database.TABLE1
WHERE ...

If necessary a schema name can be given:
SELECT ...
FROM Database.SCHEMA.TABLE1
WHERE ...

where SCHEMA is the name of the schema in which the table TABLE1 is defined.

References to column names must be qualified with either the table name or the
correlation name defined for the table by the FROM clause. So, where you could
normally execute a query such as:
SELECT column1, column2 FROM table1

it is necessary to write one of the following two forms:
SELECT T.column1, T.column2 FROM Database.table1 AS T

SELECT table1.column1, table1.column2 FROM Database.table1

This is necessary in order to distinguish references to database columns from any
references to fields in a message which may also appear in the SELECT:
SELECT T.column1, T.column2 FROM Database.table1

AS T WHERE T.column3 = Body.Field2

© Copyright IBM Corp. 2000, 2001 101

The standard ‘select all’ SQL option is supported in the SELECT clause. If you use
this option, you must qualify the column names with either the table name or the
correlation name defined for the table. For example:
SELECT T.* FROM Database.Table1 AS T

The following examples illustrate how the results sets of external database queries
are represented in MQSeries Integrator. The results of database queries are
assigned to fields in a message using a Compute node.

For more information on how to use the Database node please see MQSeries
Integrator Using the Control Center.

Examples of external database queries

Create a database table
Create a message flow consisting of an MQInput node wired to a Compute node,
wired to an MQOutput node. Configure the queue names on the MQInput node
and MQOutput node to point to suitable queues, and set the Message Domain
attribute on the Defaults tab of the MQInput node property editor to be "XML".

Create a database table called USERTABLE with two char(6) data type columns (or
equivalent), called Column1 and Column2. Insert two rows into the table so that it
looks like this:

Column1 Column2

Row 1 value1 value3

Row 2 value2 value4

Add a database table input to the Compute node by clicking the Add input button
on the properties pane of the node and entering the ODBC Data Source Name and
table name. The user id and password specified when you created the broker is
used for accessing the database, therefore you must ensure that this id and
password pair have appropriate permissions within the DBMS.

You are also recommended to ensure that you include the schema name when you
create a table, and as the second component of the database table reference (for
example, Database.user1.USERTABLE) in the Compute node ESQL you specify. This
avoids potential confusion that some databases might encounter.

For example, if you create your database table as user id user1, but specified user
id user2 when you created the broker, you might find that the broker attempts to
access table user2.USERTABLE, which does not exist, rather than user1.USERTABLE,
which does.

You can vary the names of the fields produced by explicitly listing the columns
that you want to extract. How you do this depends partly on your database
system. Most database systems are not case sensitive with regard to database
names. In other words, even though a column might be called "COLUMN1", you
can refer to it in a SELECT as "column1".

Configure the Compute node using the following ESQL statements:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =

(SELECT T.Column1, T.Column2 FROM Database.USERTABLE AS T);

Querying external databases

102 MQSeries Integrator ESQL Reference

|
|

To trigger the SELECT, you must send in a trigger message with an XML body that
is of the following form:

The exact structure of the XML is not important, but the enclosing tag must be
<Test>. If it is not, the ESQL statements will result in top-level enclosing tags being
formed, which is not valid XML.

Create a table in a case sensitive database system
If the database system is case sensitive, you must use an alternative approach. This
approach is also necessary if you want to change the name of the generated field
to something different:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =

(SELECT T.COLUMN1 AS Column1, T.COLUMN2 AS Column2
FROM Database.USERTABLE AS T);

This example produces the same message as Example 1 above.

Use of the ITEM keyword
Suppose that the Compute node were configured using the following ESQL
statements:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =
(SELECT ITEM T.Column1 FROM Database.USERTABLE AS T);

The same trigger message will produce the following message:
<Test>
<Result>value1</Result>
<Result>value3</Result>
</Test>

The following message is produced if the ITEM keyword is omitted:

Comparing this to the previous generated message illustrates the effect of the
ITEM keyword. The evaluation of the ESQL expressions happens independently of

<Test>
<Result>
<Column1>value1</Column1>
<Column2>value2</Column2>
</Result>
<Result>
<Column1>value3</Column1>
<Column2>value4</Column2>
</Result>
</Test>

<Test>
<Result>

<Column1>value1</Column1>
</Result>
<Result>
<Column1>value3</Column1>
</Result>
</Test>

Examples of external database queries

Chapter 7. Querying external databases 103

any information about the schema of the target message. In the case of generating
a generic XML message, there is no message schema for the message being
generated, so the structure of the message that is generated must be defined
entirely by the ESQL.

Use of the WHERE clause
This example illustrates the use of the WHERE clause:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result =
THE (SELECT ITEM T.Column1 FROM Database.USERTABLE AS T
WHERE T.Column2 = ‘value2’);

<Test>
<Result>value1 </Result>
</Test>

Examples of external database queries

104 MQSeries Integrator ESQL Reference

Appendix A. ESQL Components

Special Characters in ESQL

; semicolon End of ESQL statement

. period Message hierarchy separator / decimal point

= equals Variable comparison

> greater than Variable comparison

< less than Variable comparison

[] square brackets Array subscript

’ single quote Delimit string constant

|| double vertical bar Concatenation

() round brackets Expression delimiter

″ double quote Delimit field or message hierarchy name

* asterisk All subscripts / multiply

+ plus Arithmetic add

- minus Arithmetic subtract / date separator

/ forward slash Arithmetic divide

_ underscore LIKE single wild card

% percent LIKE multiple wild card

\ backslash LIKE escape character

: colon Time separator

, comma List separator

<> less than greater than Not equals

– double minus ESQL comment

/* */ slash & asterisk ESQL comment

? questionmark Substitution variable in PASSTHRU

© Copyright IBM Corp. 2000, 2001 105

Data types used in ESQL

BIT GMTTIME

BLOB GMTTIMESTAMP

BOOLEAN INT or INTEGER

CHAR or CHARACTER INTERVAL

DATE TIME

DECIMAL TIMESTAMP

FLOAT

Data types used in ESQL

106 MQSeries Integrator ESQL Reference

Arithmetic operations supported in ESQL

+ plus * multiplied by

- minus / divided by

Here are some examples of how they can be used:
DECLARE X1 = INTEGER;
DECLARE X2 = INTEGER;
DECLARE X3 = INTEGER;
DECLARE X4 = INTEGER;
DECLARE X5 = INTEGER;
SET X1 = 8;
SET X2 = X1 + 2;
SET X3 = X2 - X1;
SET X4 = X3 * X2;
SET X5 = X1 / X3;

Arithmetic operations supported in ESQL

Appendix A. ESQL Components 107

ESQL comparison operators

= equals < less than

<> not equals >= greater than or equals to

> greater than <= less than or equals to

These operators are used in
v WHILE and IF statements when using the Compute node
v The Filter nodes
v The Database node

ESQL comparison operators

108 MQSeries Integrator ESQL Reference

Initial correlation names
Table 10. Initial correlation names

Body InputRoot

DestinationList OutputDestinationList

ExceptionList OutputExceptionList

InputBody OutputRoot

InputDestinationList Properties

InputExceptionList Root

InputProperties

Initial correlation names

Appendix A. ESQL Components 109

Reserved words used in ESQL

Note: * denotes words which are not used in MQSeries Integrator Version 2.0.2,
but are words reserved for future releases.

ABS ELSEIF* MONTH

ABSVAL END NOT

ALL ESCAPE NULL

AND EVAL NULLIF

ANY EXISTS OR

AS EXTRACT OVERLAY

ASYMMETRIC FALSE PASSTHRU

BETWEEN FIELDNAME PLACING

BIT FIELDTYPE POSITION

BITAND FLOAT REPEAT*

BITNOT FOR ROUND

BITOR FROM ROW

BITSTREAM GMTTIME RTRIM

BITXOR GMTTIMESTAMP SECOND

BLOB HOUR SELECT

BOOLEAN IF SET

BOTH IN SOME

BY* INSERT SQRT

CARDINALITY INT SUBSTRING

CASE INTEGER SUM

CAST INTERVAL SYMMETRIC

CEIL INTO THE

CEILING IS THEN

CHAR ITEM TIME

CHARACTER ITERATE TIMESTAMP

COALESCE LAST TO

COUNT LCASE TRAILING

CURRENT_DATE LEADING TRIM

CURRENT_GMTDATE LEAVE TRUE

CURRENT_GMTTIME LENGTH TRUNCATE

CURRENT_GMTTIMESTAMP LIKE UCASE

CURRENT_TIME LIST UNKNOWN

CURRENT_TIMESTAMP LOCAL_TIMEZONE UNTIL*

DATE LOOP* UPDATE

DAY LOWER UPPER

DECIMAL LTRIM VALUES

DECLARE MAX WHEN

DELETE MIN WHERE

Reserved words used in ESQL

110 MQSeries Integrator ESQL Reference

DO MINUTE WHILE

ELSE MOD YEAR

Reserved words used in ESQL

Appendix A. ESQL Components 111

Reserved words used in ESQL

112 MQSeries Integrator ESQL Reference

Appendix B. Examples

Message referenced in examples
The following message is used in many of the examples throughout this book:
<Invoice>
<InvoiceNo>300524</InvoiceNo>
<InvoiceDate>2000-12-07</InvoiceDate>
<InvoiceTime>12:40:00</InvoiceTime>
<TillNumber>3</Till>
<Cashier StaffNo="089">Mary</Cashier>
<Customer>

<FirstName>Andrew</FirstName>
<LastName>Smith</LastName>
<Title>Mr</Title>
<DOB>20-01-70</DOB>
<PhoneHome>01962818000</PhoneHome>
<PhoneWork/>
<Billing>

<Address>14 High Street</Address>
<Address>Hursley Village</Address>
<Address>Hampshire</Address>
<PostCode>SO213JR</PostCode>

</Billing>
</Customer>
<Payment>

<CardType>Visa</CardType>
<CardNo>4921682832258418</CardNo>
<CardName>Mr Andrew J. Smith</CardName>
<Valid>1200</Valid>
<Expires>1101</Expires>

</Payment>
<Purchases>

<Item>
<Title Category="Computer" Form="Paperback" Edition="2">The XML Companion

</Title>
<ISBN>0201674866</ISBN>
<Author>Neil Bradley</Author>
<Publisher>Addison-Wesley</publisher>
<PublishDate>October 1999</PublishDate>
<UnitPrice>27.95</UnitPrice>
<Quantity>2</Quantity>

</Item>
<Item>

<Title Category="Computer" Form="Paperback" Edition="2">A Complete Guide
to DB2 Universal Database</Title>

<ISBN>1558604820</ISBN>
<Author>Don Chamberlin</Author>
<Publisher>Morgan Kaufmann Publishers</Publisher>
<PublishDate>April 1998</PublishDate>
<UnitPrice>42.95</UnitPrice>
<Quantity>1</Quantity>

</Item>
<Item>

<Title Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers
Handbook</Title>

<ISBN>0782121799</ISBN>
<Author>Philip Heller, Simon Roberts </Author>
<Publisher>Sybex, Inc.</Publisher>
<PublishDate>September 1998</PublishDate>
<UnitPrice>59.99</UnitPrice>
<Quantity>1</Quantity>

© Copyright IBM Corp. 2000, 2001 113

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</Item>
</Purchases>
<StoreRecords/>
<DirectMail/>
<Error/>
</Invoice>

Message used for examples

114 MQSeries Integrator ESQL Reference

|
|
|
|
|
|

|

Using a trace to view a message structure
When looking at messages, if the tree structure is not clear, you can generate a
trace record, using the MQSeries Integrator Trace node to show it. To do this
create, assign, and deploy a simple message flow containing a:
1. Message from MQSeries
2. MQInput node
3. Trace node with a Destination property of file, a File Path property set to a

fully-qualified file and path name where the trace record will be written, and a
Pattern property of ${Root}

4. MQOutput node

See MQSeries Integrator Using the Control Center for more information on how to do
this.

For example, if you were to receive a simple XML message on an MQSeries queue,
whose message originated in the message flow from an MQInput node, and which
had an MQRFH2 header (see Table 19 on page 127 for more information) like the
message below:
<Trade type='buy'
Company='IBM'
Price='200.20'
Date='2000-01-01'
Quantity='1000'/>

You could use the Trace node to produce the following tree representation:

Using a trace to view a message structure

Appendix B. Examples 115

|
|

|
|
|

|

|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

Root
Properties

CreationTime=GMTTIMESTAMP '1999-11-24 13:10:00'
(a GMT timestamp field)

... and other fields ...

MQMD
PutDate=DATE '19991124'
(a date field)

PutTime=GMTTIME '131000'
(a GMTTIME field)

... and other fields ...

MQRFH
mcd
msd='xml'

(a character string field)

.. and other fields ...

XML
Trade
type='buy'
(a character string field)

Company='IBM'
(a character string field)

Price='200'
(a character string field)

Date='2000-01-01'
(a character string field)

Quantity='1000'
(a character string field)

Using a trace to view a message structure

116 MQSeries Integrator ESQL Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Example exception list
Figure 5 illustrates one way in which an exception list can be constructed.

Notes:

1. The first exception description �1� is a child of the root. This identifies error
number 2230, indicating an exception has been thrown. The node that has
thrown the exception is also identified (mf1.Compute1).

ExceptionList {
RecoverableException = { �1�

File = 'f:/build/argo/src/DataFlowEngine/ImbDataFlowNode.cpp'
Line = 538
Function = 'ImbDataFlowNode::createExceptionList'
Type = 'ComIbmComputeNode'
Name = '0e416632-de00-0000-0080-bdb4d59524d5'
Label = 'mf1.Compute1'
Text = 'Node throwing exception'
Catalog = 'MQSeries Integrator2'
Severity = 3
Number = 2230
RecoverableException = { �2�

File = 'f:/build/argo/src/DataFlowEngine/ImbRdlBinaryExpression.cpp'
Line = 231
Function = 'ImbRdlBinaryExpression::scalarEvaluate'
Type = 'ComIbmComputeNode'
Name = '0e416632-de00-0000-0080-bdb4d59524d5'
Label = 'mf1.Compute1'
Text = 'error evaluating expression'
Catalog = 'MQSeries Integrator2'
Severity = 2
Number = 2439
Insert = {

Type = 2
Text = '2'

}
Insert = {

Type = 2
Text = '30'

}
RecoverableException = { �3�

File = 'f:/build/argo/src/DataFlowEngine/ImbRdlValueOperations.cpp'
Line = 257
Function = 'intDivideInt'
Type = 'ComIbmComputeNode'
Name = '0e416632-de00-0000-0080-bdb4d59524d5'
Label = 'mf1.Compute1'
Text = 'Divide by zero calculating '%1 / %2''
Catalog = 'MQSeries Integrator2'
Severity = 2
Number = 2450
Insert = }

Type = 5
Text = '100 / 0'

}
}

}
}

}

Figure 5. Exception list structure

Example exception list

Appendix B. Examples 117

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|

2. Exception description �2� is a child of the first exception description �1�. This
identifies error number 2439.

3. Exception description �3� is a child of the second exception description �2�.
This identifies error number 2450, which indicates that the node has attempted
to divide by zero.

Exception handling paths will base their decisions on the number of exception
conditions on:
v The message number, which identifies the type of exception that has occurred.
v The label, which is the known name of the object in which the exception

occurred.

Figure 6 illustrates an extract of ESQL to show how you can set up a Compute
node to use the exception list. The ESQL loops through the exception list to the last
(nested) exception description, and extracts the error number. This error relates to
the original cause of the problem and normally provides the most precise
information. Subsequent action taken by the message flow can be decided by the
error number retrieved in this way.

/* Error number extracted from exception list */
DECLARE Error INTEGER;
/* Current path within the exception list */
DECLARE Path CHARACTER;

/* Start at first child of exception list */
SET Path = 'InputExceptionList.*[1]';

/* Loop until no more children */
WHILE EVAL('FIELDNAME(' || Path || ') IS NOT NULL') DO

/* Check if error number is available */
IF EVAL('FIELDNAME(' || Path || '.Number) IS NOT NULL') THEN

/* Remember only the deepest error number */
SET Error = EVAL(Path || '.Number');

END IF;

/* Step to last child of current element (usually a nested exception list */
SET Path = Path || '.*[LAST]';

END WHILE; /* End loop */

Figure 6. Retrieving the exception error code

Example exception list

118 MQSeries Integrator ESQL Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|
|
|

Appendix C. MQSeries message header parsers

The following sections define the element names, types, and attributes for each of
the supported MQSeries headers.

The following parsers are described:
v “The MQCFH parser” on page 120
v “The MQCIH parser” on page 121
v “The MQDLH parser” on page 122
v “The MQIIH parser” on page 123
v “The MQMD parser” on page 124
v “The MQMDE parser” on page 125
v “The MQRFH parser” on page 126
v “The MQRFH2 parser” on page 127
v “The MQRMH parser” on page 128
v “The MQSAPH parser” on page 129
v “The MQWIH parser” on page 130
v “The SMQ_BMH parser” on page 131

© Copyright IBM Corp. 2000, 2001 119

|

The MQCFH parser
The Root name for this parser is ″MQPCF″. Table 11 lists the elements native to the
MQCFH header.

Table 11. MQCFH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Type INTEGER Name Value

StrucLength INTEGER Name Value

Version INTEGER Name Value

Command INTEGER Name Value

MsgSeqNumber INTEGER Name Value

Control INTEGER Name Value

CompCode INTEGER Name Value

Reason INTEGER Name Value

ParameterCount INTEGER Name Value

For further information about this header and its contents, see the MQSeries
Programmable System Management book.

MQCFH parser

120 MQSeries Integrator ESQL Reference

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

The MQCIH parser
The Root name for this parser is ″MQCIH″. Table 12 lists the elements native to the
MQCIH header.

Table 12. MQCIH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ReturnCode INTEGER Name Value

CompCode INTEGER Name Value

Reason INTEGER Name Value

UOWControl INTEGER Name Value

GetWaitInterval INTEGER Name Value

LinkType INTEGER Name Value

OutputDataLength INTEGER Name Value

FacilityKeepTime INTEGER Name Value

ADSDescriptor INTEGER Name Value

ConversationalTask INTEGER Name Value

TaskEndStatus INTEGER Name Value

Facility BLOB Name Value

Function CHARACTER Name Value

AbendCode CHARACTER Name Value

Authenticator CHARACTER Name Value

Reserved1 CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

RemoteSysId CHARACTER Name Value

RemoteTransId CHARACTER Name Value

TransactionId CHARACTER Name Value

FacilityLike CHARACTER Name Value

AttentionId CHARACTER Name Value

StartCode CHARACTER Name Value

CancelCode CHARACTER Name Value

NextTransactionId CHARACTER Name Value

Reserved2 CHARACTER Name Value

Reserved3 CHARACTER Name Value

CursorPosition INTEGER Name Value

ErrorOffset INTEGER Name Value

InputItem INTEGER Name Value

Reserved4 INTEGER Name Value

MQCIH parser

Appendix C. MQSeries message header parsers 121

|

The MQDLH parser
The Root name for this parser is ″MQDLH″. Table 13 lists the elements native to
the MQDLH header.

Table 13. MQDLH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Reason INTEGER Name Value

DestQName CHARACTER Name Value

DestQMgrName CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

MQDLH parser

122 MQSeries Integrator ESQL Reference

The MQIIH parser
The Root name for this parser is ″MQIIH″. Table 14 lists the elements native to the
MQIIH header.

Table 14. MQIIH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

LTermOverride CHARACTER Name Value

MFSMapName CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

Authenticator CHARACTER Name Value

TranInstanceId BLOB Name Value

TranState CHARACTER Name Value

CommitMode CHARACTER Name Value

SecurityScope CHARACTER Name Value

Reserved CHARACTER Name Value

MQIIH parser

Appendix C. MQSeries message header parsers 123

The MQMD parser
The Root name for this parser is ″MQMD″. Table 15 lists the orphan elements
adopted by the MQMD header.

Table 15. MQMD parser orphan element names, types, and attributes

Element Name Element Data Type Element Attributes

SourceQueue CHARACTER Name Value

Transactional CHARACTER Name Value

Table 16 lists the elements native to the MQMD header.

Table 16. MQMD parser native element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Report INTEGER Name Value

MsgType INTEGER Name Value

Expiry INTEGER/TIMESTAMP Name Value

Feedback INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Priority INTEGER Name Value

Persistence INTEGER Name Value

MsgId BLOB Name Value

CorrelId BLOB Name Value

BackoutCount INTEGER Name Value

ReplyToQ CHARACTER Name Value

ReplyToQMgr CHARACTER Name Value

UserIdentifier CHARACTER Name Value

AccountingToken BLOB Name Value

ApplIdentityData CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

ApplOriginData CHARACTER Name Value

GroupId BLOB Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

MQMD parser

124 MQSeries Integrator ESQL Reference

The MQMDE parser
The Root name for this parser is ″MQMDE″. Table 17 lists the elements native to
the MQMDE header.

Table 17. MQMDE parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

GroupId BLOB Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

MQMDE parser

Appendix C. MQSeries message header parsers 125

The MQRFH parser
The Root name for this parser is ″MQRFH″. Table 18 lists the elements native to
the MQRFH header.

Table 18. MQRFH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Other name value elements might be present that contain information as parsed
from or destined for the option buffer. See the Rules and Format header
documentation for specific names and values.

MQRFH parser

126 MQSeries Integrator ESQL Reference

The MQRFH2 parser
The Root name for this parser is ″MQRFH2″. Table 19 lists the elements native to
the MQRFH2 header.

Table 19. MQRFH2 parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

NameValueCCSID INTEGER Name Value

Other name and child name value elements might be present that contain
information as parsed from or destined for the option buffer. See the Rules and
Format header section in the MQSeries Integrator documentation for further
details.

MQRFH2 parser

Appendix C. MQSeries message header parsers 127

The MQRMH parser
The Root name for this parser is ″MQRMH″. Table 20 lists the elements native to
the MQRMH header.

Table 20. MQRMH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ObjectType CHARACTER Name Value

ObjectInstanceId BLOB Name Value

SrcEnv CHARACTER1 Name Value

SrcName CHARACTER2 Name Value

DestEnv CHARACTER3 Name Value

DestName CHARACTER4 Name Value

DataLogicalLength INTEGER Name Value

DataLogicalOffset INTEGER Name Value

DataLogicalOffset2 INTEGER Name Value

Notes:

1. This field represents both SrcEnvLength and Offset

2. This field represents both SrcNameLength and Offset

3. This field represents both DestEnvLength and Offset

4. This field represents both DestNameLength and Offset

MQRMH parser

128 MQSeries Integrator ESQL Reference

The MQSAPH parser
The Root name for this parser is ″MQSAPH″. Table 21 lists the elements native to
the MQSAPH header.

Table 21. MQSAPH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Client CHARACTER Name Value

Language CHARACTER Name Value

HostName CHARACTER Name Value

UserId CHARACTER Name Value

Password CHARACTER Name Value

SystemNumber CHARACTER Name Value

Reserved BLOB Name Value

MQSAPH parser

Appendix C. MQSeries message header parsers 129

The MQWIH parser
The Root name for this parser is ″MQWIH″. Table 22 lists the elements native to
the MQWIH header.

Table 22. MQWIH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ServiceName CHARACTER Name Value

ServiceStep CHARACTER Name Value

MsgToken BLOB Name Value

Reserved CHARACTER Name Value

MQWIH parser

130 MQSeries Integrator ESQL Reference

The SMQ_BMH parser
The Root name for this parser is ″SMQ_BMH″. Table 23 lists the elements native to
the SMQ_BMH header.

Table 23. SMQ_BMH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

ErrorType INTEGER Name Value

Reason INTEGER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

SMQ_BMH parser

Appendix C. MQSeries message header parsers 131

The BLOB parser
The Root name for this parser is ″BLOB″. Table 24 lists the elements native to the
BLOB header.

Table 24. BLOB parser element names, types, and attributes

Element Name Element Data Type Element Attributes

BLOB BLOB1 Name Value

UnkownParserName CHARACTER2 Name Value

Notes:

1. This field contains the remaining unparsed bitstream from the message. It is
represented as a BLOB and may be manipulated as such.

2. This field (if present) contains the class name of the parser that would have been
chosen in preference to the BLOB parser. This information is used by the header
integrity routine (described in “Maintaining header integrity” on page 6) to ensure that
the semantic meaning of the message is preserved.

BLOB parser

132 MQSeries Integrator ESQL Reference

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2001 133

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX AS/400 CICS
DB2 DB2 Universal Database IBM
IBMLink MQSeries OS/390
SupportPac VSE/ESA

Lotus is a trademark of Lotus Development Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, or service names, may be the trademarks or service
marks of others.

Notices

134 MQSeries Integrator ESQL Reference

Glossary of terms and abbreviations

This glossary defines MQSeries Integrator terms
and abbreviations used in this book. If you do not
find the term you are looking for, see the index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute. Copies
may be ordered from the American National
Standards Institute, 11 West 42 Street, New York,
New York 10036. Definitions are identified by the
symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that
have explicit permissions (to publish, to subscribe to,
and to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The
programming interface provided by MQSeries that
defines a high level interface to message queuing
services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid entity
that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a
common configuration, together with the single
Configuration Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are
related in some way. For example, messages that relate
to a particular application.

check in. The Control Center action that stores a new
or updated resource in the configuration or message
respository.

check out. The Control Center action that extracts and
locks a resource from the configuration or message
respository for local modification by a user. Resources
from the two repositories can only be worked on when
they are checked out by an authorized user, but can be
viewed (read only) without being checked out.

collective. A hyperconnected (totally connected) set of
brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers,
execution groups, message flows and message sets
assigned to them, topics and access control
specifications.

Configuration Manager. A component of MQSeries
Integrator that acts as the interface between the
configuration repository and an executing set of
brokers. It provides brokers with their initial
configuration, and updates them with any subsequent
changes. It maintains the broker domain configuration.

configuration repository. Persistent storage for broker
configuration and topology definition.

connector. See message processing node connector.

content-based filter. An expression that is applied to
the content of a message to determine how the message
is to be processed.

context tag. A tag that is applied to an element within
a message to enable that element to be treated
differently in different contexts. For example, an
element could be mandatory in one context and
optional in another.

Control Center. The graphical interface that provides
facilities for defining, configuring, deploying, and
monitoring resources of the MQSeries Integrator
network.

D
datagram. The simplest form of message that
MQSeries supports. Also known as send-and-forget. This
type of message does not require a reply. Compare with
request/reply.

debugger. A facility on the Message Flows view in the
Control Center that enables message flows to be
debugged.

© Copyright IBM Corp. 2000, 2001 135

|
|
|

deploy. Make operational the configuration and
topology of the broker domain.

destination list. A list of internal and external
destinations to which a message is sent. These can be
nodes within a message flow (for example, when using
the RouteToLabel and Label nodes) or MQSeries
queues (when the list is examined by an MQOutput
node to determine the final target for the message).

distribution list. A list of MQSeries queues to which a
message can be put using a single statement.

Document Type Definition (DTD). The rules that
specify the structure for a particular class of SGML or
XML documents. The DTD defines the structure with
elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and
notation can be used within the particular class of
documents. A DTD is analogous to a database schema
in that the DTD completely describes the structure for a
particular markup language.

DTD. Document Type Definition

E
e-business. A term describing the commercial use of
the Internet and World Wide Web to conduct business
(short for electronic-business).

element. A unit of data within a message that has
business meaning, for example, street name

element qualifier. See context tag.

ESQL. Extended SQL. A specialized set of SQL
statements based on regular SQL, but extended with
statements that provide specialized functions unique to
MQSeries Integrator.

exception list. A list of exceptions that have been
generated during the processing of a message, with
supporting information.

execution group. A named grouping of message flows
that have been assigned to a broker. The broker is
guaranteed to enforce some degree of isolation between
message flows in distinct execution groups by ensuring
that they execute in separate address spaces, or as
unique processes.

Extensible Markup Language (XML). A W3C
standard for the representation of data.

external reference. A reference within a message set to
a component that has been defined outside the current
message set. For example, an integer that defines the
length of a string element might be defined in one
message set but used in several message sets.

F
field reference. A sequence of period-separated values
that identify a specific field (which might be a
structure) within a message tree. An example of a field
reference might be something like
Body.Invoice.InvoiceNo.

filter. An expression that is applied to the content of a
message to determine how the message is to be
processed.

format. A format defines the internal structure of a
message, in terms of the fields and order of those
fields. A format can be self-defining, in which case the
message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a
software product that is graphical rather than textual. It
refers to window-based operational characteristics.

I
implementation function. Function written by a
third-party developer for a plug-in node or parser. Also
known as a callback function.

input node. A message flow node that represents a
source of messages for the message flow.

installation mode. The installation mode can be Full,
Custom, or Broker only. The mode defines the
components of the product installed by the installation
process on Windows NT systems.

J
Java™ Database Connectivity (JDBC). An application
programming interface that has the same characteristics
as ODBC but is specifically designed for use by Java
database applications.

Java Development Kit (JDK). A software package that
can be used to write, compile, debug, and run Java
applets and applications.

Java Message Service (JMS). An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment (JRE). A subset of the
Java Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes and supporting files.

JDBC™. Java Database Connectivity.

JDK™. Java Development Kit.

Glossary

136 MQSeries Integrator ESQL Reference

|
|
|
|
|

|
|
|
|
|

JMS. Java Message Service. See also AMI and MQI.

JRE. Java Runtime Environment.

L
local error log. A generic term that refers to the logs
to which MQSeries Integrator writes records on the
local system. On Windows NT, this is the Event log. On
UNIX® systems, this is the syslog. See also system log.
Note that MQSeries records many events in the log that
are not errors, but information about events that occur
during operation, for example, successful deployment
of a configuration.

M
message broker. A set of execution processes hosting
one or more message flows.

messages. Entities exchanged between a broker and its
clients.

message dictionary. A repository for (predefined)
message type specifications.

message domain. The value that determines how the
message is interpreted (parsed). The following domains
are recognized:
v MRM, which identifies messages defined using the

Control Center
v NEONMSG3, which identifies messages created using

the NEONFORMATTER user interfaces.
v XML, which identifies messages that are self-defining
v BLOB, which identifies messages that are undefined

You can also create your own message domains: if you
do so, you must supply your own message parser.

message flow. A directed graph that represents the set
of activities performed on a message or event as it
passes through a broker. A message flow consists of a
set of message processing nodes and message
processing node connectors.

message flow component. See message flow.

message parser. A program that interprets a message
bitstream.

message processing node. A node in the message
flow, representing a well defined processing stage. A
message processing node can be one of several
primitive types or can represent a subflow.

message processing node connector. An entity that
connects the output terminal of one message processing
node to the input terminal of another. A message

processing node connector represents the flow of
control and data between two message flow nodes.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. The
programming interface allows application programs to
access message queuing services. See also AMI and
JMS.

message repository. A database holding message
template definitions.

message repository manager (MRM). A component of
the Configuration Manager that handles message
definition and control. A message defined to the MRM
has a message domain set to MRM.

message set. A grouping of related messages.

message template. A named and managed entity that
represents the format of a particular message. Message
templates represent a business asset of an organization.

message type. The logical structure of the data within
a message. For example, the number and location of
character strings.

metadata. Data that describes the characteristic of
stored data.

MQI. Message queue interface.

MQIsdp. MQSeries Integrator SCADA device
protocol. A lightweight publish/subscribe protocol
flowing over TCP/IP.

MQRFH. An architected message header that is used
to provide metadata for the processing of a message.
This header is supported by MQSeries
Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing
enhanced function in message processing.

MQSeries Everyplace. A generally available MQSeries
product that provides proven MQSeries reliability and
security in a mobile environment.

MRM. Message Repository Manager.

multilevel wildcard. A wildcard that can be specified
in subscriptions to match any number of levels in a
topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

3. The message domain NEON is also recognized for
compatibility with previous releases.

Glossary

Glossary of terms and abbreviations 137

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and non-relational database management
systems. Using this API, database applications can
access data stored in database management systems on
a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the
X/Open SQL Access Group.

output node. A message processing node that
represents a point at which messages flow out of the
message flow.

P
plug-in. An extension to the broker, written by a
third-party developer, to provide a new message
processing node or message parser in addition to those
supplied with the product. See also implementation
function and utility function.

point-to-point. Style of messaging application in
which the sending application knows the destination of
the message. Compare with publish/subscribe.

POSIX. Portable Operating System Interface For
Computer Environments. An IEEE standard for
computer operating systems (for example, AIX® and
Sun Solaris).

predefined message. A message with a structure that
is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied
with the product.

principal. An individual user ID (for example, a log-in
ID) or a group. A group can contain individual user
IDs and other groups, to the level of nesting supported
by the underlying facility.

property. One of a set of characteristics that define the
values and behaviors of objects in the Control Center.
For example, message processing nodes and deployed
message flows have properties.

publication node. An end point of a specific path
through a message flow to which a client application
subscribes. A publication node has an attribute,
subscription point. If this is not specified, the
publication node represents the default subscription
point for the message flow.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. An application that makes information
about a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that
programs can access messages on the queues that the
queue manager owns.

R
retained publication. A published message that is
kept at the broker for propagation to clients that
subscribe at some point in the future.

request/reply. Type of messaging application in which
a request message is used to request a reply from
another application. Compare with datagram.

rule. A rule is a definition of a process, or set of
processes, applied to a message on receipt by the
broker. Rules are defined on a message format basis, so
any message of a particular format will be subjected to
the same set of rules.

S
SCADA. Supervisory, Control, And Data Acquisition.

self-defining message. A message that defines its
structure within its content. For example, a message
coded in XML is self-defining. Compare with pre-defined
message.

send and forget. See datagram.

setup type. The definition of the type of installation
requested on Windows NT systems. This can be one of
Full, Broker only, or Custom.

shared. All configuration data that is shared by users
of the Control Center. This data is not operational until
it has been deployed.

signature. The definition of the external characteristics
of a message processing node.

single-level wildcard. A wildcard that can be
specified in subscriptions to match a single level in a
topic.

Glossary

138 MQSeries Integrator ESQL Reference

|

stream. A method of topic partitioning used by
MQSeries Publish/Subscribe applications.

subscriber. An application that requests information
about a specified topic from a publish/subscribe
broker.

subscription. Information held within a publication
node, that records the details of a subscriber
application, including the identity of the queue on
which that subscriber wants to receive relevant
publications.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

subscription point. An attribute of a publication node
that differentiates it from other publication nodes on
the same message flow and therefore represents a
specific path through the message flow. An unnamed
publication node (that is, one without a specific
subscription point) is known as the default publication
node.

Supervisory, Control, And Data Acquisition. A broad
term, used to describe any form of remote telemetry
system used for gathering data from remote sensor
devices (for example, flow rate meters on an oil
pipeline) and for the near real time control of remote
equipment (for example, pipeline valves).

system log. A generic term used in the MQSeries
Integrator messages (BIPxxx) that refers to the local
error logs to which records are written on the local
system. On Windows NT, this is the Event log. On
UNIX systems, this is the syslog. See also local error log.

T
terminal. The point at which one node in a message
flow is connected to another node. Terminals enable
you to control the route that a message takes,
depending whether the operation performed by a node
on that message is successful.

topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

topic based subscription. A subscription specified by
a subscribing application that includes a topic for
filtering of publications.

topic security. The use of ACLs applied to one or
more topics to control subscriber access to published
messages.

topology. In the broker domain, the brokers,
collectives, and connections between them.

transform. A defined way in which a message of one
format is converted into one or more messages of
another format.

U
Uniform Resource Identifier. The generic set of all
names and addresses that refer to World Wide Web
resources.

Uniform Resource Locator. A specific form of URI
that identifies the address of an item on the World
Wide Web. It includes the protocol followed by the
fully qualified domain name (sometimes called the host
name) and the request. The Web server typically maps
the request portion of the URL to a path and file name.
Also known as Universal Resource Locator.

URI. Uniform Resource Identifier

URL. Uniform Resource Locator

User Name Server. The MQSeries Integrator
component that interfaces with operating system
facilities to determine valid users and groups.

utility function. Function provided by MQSeries
Integrator for the benefit of third-party developers
writing plug-in nodes or parsers.

W
warehouse. A persistent, historical datastore for events
(or messages). The Warehouse node within a message
flow supports the recording of information in a
database for subsequent retrieval and processing by
other applications.

wildcard. A character that can be specified in
subscriptions to match a range of topics. See also
multilevel wildcard and single-level wildcard.

wire format. This describes the physical representation
of a message within the bit-stream.

W3C. World Wide Web Consortium. An international
industry consortium set up to develop common
protocols to promote evolution and interoperability of
the World Wide Web.

X
XML. Extensible Markup Language.

Glossary

Glossary of terms and abbreviations 139

|
|

|
|
|
|
|
|

Glossary

140 MQSeries Integrator ESQL Reference

Bibliography

This section describes the documentation
available for all current MQSeries Integrator
products.

MQSeries Integrator Version 2.0.2
cross-platform publications
The MQSeries Integrator cross-platform
publications are:
v MQSeries Integrator Introduction and Planning,

GC34-5599
v MQSeries Integrator Using the Control Center,

GC34-5602
v MQSeries Integrator Messages, GC34-5601
v MQSeries Integrator Programming Guide,

SC34-5603
v MQSeries Integrator Administration Guide,

SC34-5792
v MQSeries Integrator ESQL Reference, SC34-5923

These books are all available in hardcopy.

You can order publications from the IBMLink™

Web site at:
http://www.ibm.com/ibmlink

In the United States, you can also order
publications by dialing 1-800-879-2755.

In Canada, you can order publications by dialing
1-800-IBM-4YOU (1-800-426-4968).

For further information about ordering
publications contact your IBM authorized dealer
or marketing representative.

MQSeries Integrator Version 2.0.2
platform-specific publications
Each MQSeries Integrator product provides one
platform-specific installation guide, which is
supplied in hardcopy.

MQSeries Integrator for AIX Version 2.0.2

MQSeries Integrator for AIX Installation
Guide, GC34-5841

MQSeries Integrator for HP-UX Version 2.0.2

MQSeries Integrator for HP-UX
Installation Guide, GC34-5907

MQSeries Integrator for Sun Solaris Version
2.0.2

MQSeries Integrator for Sun Solaris
Installation Guide, GC34-5842

MQSeries Integrator for Windows NT Version
2.0.2

MQSeries Integrator for Windows NT
Installation Guide, GC34-5600

MQSeries Everyplace
publications
If you intend to connect MQSeries Everyplace
applications to message flows that include the
MQSeries Everyplace message flow nodes, you
will find the following publications useful:
v MQSeries Everyplace for Multiplatforms Version

1.1 Introduction, GC34-5843
v MQSeries Everyplace for Multiplatforms Version

1.1 Programming Guide, SC34-5845
v MQSeries Everyplace for Multiplatforms Version

1.1 Programming Reference, SC34-5846
v MQSeries Everyplace for Multiplatforms Version

1.1 Native Client Information, SC34-5880

You can find these books on the MQSeries Web
site (see “MQSeries information available on the
Internet” on page 143). Translated versions of
these books are also available in some languages
from the same Web site.

NEONRules and NEONFormatter
Support for MQSeries Integrator
publications
The following publications are supplied on the
product CD in PDF format, and are installed with
the Documentation component.
v NEONRules and NEONFormatter Support for

MQSeries Integrator User’s Guide

v NEONRules and NEONFormatter Support for
MQSeries Integrator System Management Guide

© Copyright IBM Corp. 2000, 2001 141

|
|
|

|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference for
NEONRules

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference for
NEONFormatter

v NEONRules and NEONFormatter Support for
MQSeries Integrator Application Development
Guide

These books are provided in US English only.

Softcopy books
All the MQSeries Integrator books are available in
softcopy formats.

Portable Document Format (PDF)
All books in the MQSeries Integrator library are
supplied in US English only in a searchable PDF
library on the product CD.

You can install the library as follows:
v On AIX, invoke install —d and select the

documentation fileset. After installation, run the
command mqsidocs. This launches Acrobat
Reader and opens the PDF package.

v On HP-UX, invoke swinstall —d and select
MQSI-DOCS from the menu. After installation,
run the command mqsidocs. This launches
Acrobat Reader and opens the PDF package.

v On Sun Solaris, invoke pkgadd —d and select
mqsi-docs from the menu. After installation,
run the command mqsidocs. This launches
Acrobat Reader and opens the PDF package.

v On Windows NT, select the Online
Documentation component on a custom
installation, or do a full installation. After
installation, select Start—>Programs—>IBM
MQSeries Integrator 2.0—>Documentation.

In addition, PDF files for books that have been
translated are installed into the location
mqsi_root/bin/book/pdf/<locale> (on UNIX) or
mqsi_root\bin\book\pdf\<locale> (on Windows
NT) where <locale> is one of the following:
v de_DE for German
v en_US for US English
v es_ES for Spanish
v fr_FR for French
v it_IT for Italian
v ja_JP for Japanese
v ko_KR for Korean
v pt_BR for Brazilian Portuguese

v zh_CN for Simplified Chinese
v zh_TW for Traditional Chinese

An index file (in HTML format) that provides a
link to each book is supplied for each language.
For example, the French index file is called
indexfr.htm. The files are stored in the following
directory:
v On UNIX, <mqsi_root>/docs/
v On Windows NT, <mqsi_root>\bin\book

Each index file has an entry for every book: if a
particular book has not been translated into the
appropriate language for that index file, a link to
the English PDF is included. You can use any
Web browser to view the index file. On Windows
NT, you can also access the index file through the
Start menu.

The PDF file names for the English books are
shown in Table 25.

Table 25. File names of MQSeries Integrator book
PDFs

Book title File name

MQSeries Integrator for AIX
Installation Guide

bipaac04.pdf

MQSeries Integrator for HP-UX
Installation Guide

bipcac00.pdf

MQSeries Integrator for Sun Solaris
Installation Guide

bip7ac03.pdf

MQSeries Integrator for Windows NT
Installation Guide

bipyac03.pdf

MQSeries Integrator Introduction and
Planning

bipyab02.pdf

MQSeries Integrator Administration
Guide

bipyag04.pdf

MQSeries Integrator Using the Control
Center

bipyar03.pdf

MQSeries Integrator ESQL Reference bipyae00.pdf

MQSeries Integrator Programming
Guide

bipyal02.pdf

MQSeries Integrator Messages bipyao02.pdf

The fifth character of the file name indicates the
language of the book (a indicates US English).
You can deduce the file names of translated books
by using the following substitutions for the fifth
character:
v g for German
v s for Spanish
v f for French

Bibliography

142 MQSeries Integrator ESQL Reference

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|

||
|

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

||

|
|
|

||
|

|
|
|
|
|
|
|
|

v i for Italian
v j for Japanese
v k for Korean
v b for Brazilian Portuguese
v z for Simplified Chinese
v t for Traditional Chinese

PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you cut and paste examples of commands from
PDF files to a command line for execution, you
must check that the content is correct before you
press Enter. Some characters might be corrupted
by local system and font settings.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of all current MQSeries Integrator
books are also available from the MQSeries
product family Web site at:

http://www.ibm.com/software/mqseries/

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Obtain information about complementary

offerings by following these links:
– IBM Business Partners
– Partner Offerings (within Related links)

v Download an MQSeries SupportPac™.

Bibliography

Bibliography 143

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|

MQSeries on the Internet

144 MQSeries Integrator ESQL Reference

Index

A
ABS, numeric function 82
adding an interval to a datetime

value 86
adding or subtracting two intervals 86
ALL

use of keyword 58
AND 63
AND and OR

AND 63
anonymous field names 61
ANY

using keyword 59
arithmetic operations supported in

ESQL 107
array indices 58
array processing 57
AS 63
assignments 72
authorization required for

creating messages and message
sets 28

B
basic message structure 1
bit, string data type 36
BITAND, numeric function 82
BITNOT, numeric function 82
BITOR, numeric function 83
BITSTREAM 88
BITXOR, numeric function 83
BLOB

message type 12
BLOB, string data type 36
BLOB domain 28
BOOLEAN, data type 39
byte, string data type 36

C
C language layer 22
CARDINALITY 88
cardinality in arrays 58
CASE expression 63
case sensitivity of ESQL syntax 33
CAST 65
casting

booleans 46
cast expressions 43
cast specifications 39
character strings 46
data types of values from external

sources 52
datetime values 46
implicit CASTs for assignment 50
implicit CASTs for comparisons 45
intervals 46
numeric types 46
supported casts 40

CEIL, numeric function 83
CHARACTER, string data type 36
COALESCE 88
COBOL language layer 22
codedCharSetId, Encoding, and data

conversion 4
commenting your ESQL 54
comments 54
comparing

character strings with other types 46
comparison of ESQL statements and IBM

nodes 31
comparison operators 108
complementary offerings

IBM Business Partners 143
Partner Offerings 143

complexd SELECTs 91
Compute node

for data conversion 74
message transformation 76

Compute Node
copying between parsers 74

Concatenation, string manipulation
function 78

considerations when calling stored
procedures 71

constants in message headers 3
copying between like parsers

Compute node 74
copying between parsers

Compute node 74
copying between unlike parsers

Compute node 74
correlation names

message structure 2
correlation names, initial 55
CURRENT_DATE, datetime function 87
CURRENT_GMTDATE, datetime

function 87
CURRENT_GMTTIME, datetime

function 87, 88
CURRENT_TIMESTAMP, datetime

function 87
Custom Wire Format layer 23

D
data conversion 4

using the Compute node 74
data model layers 21
data type

DECIMAL 35
FLOAT 36
INTEGER 35
numeric 35
strings 36

data types
datetime

DATE 36
GMTTIME 37
GMTTIMESTAMP 37

data types (continued)
datetime (continued)

TIME 37
TIMESTAMP 37

datetime types 36
in ESQL 35
numeric

DECIMAL 35
FLOAT 36
INTEGER 35

strings
BIT 36
BLOB 36
CHARACTER 36

Data types
BOOLEAN 39
INTERVAL 38

DATE, datetime data type 36
datetime functions 86

adding an interval to a datetime
value 86

adding or subtracting two
intervals 86

CURRENT_DATE 87
CURRENT_GMTDATE 87
CURRENT_GMTTIME 87
CURRENT_GMTTIMESTAMP 88
CURRENT_TIME 87
CURRENT_TIMESTAMP 87
EXTRACT 86
extracting fields from datetimes and

interval 86
LOCAL_TIMEZONE 88
scaling intervals 86
subtracting two datetime values 86

DECIMAL, numeric data type 35
DECLARE 66
DELETE 66
destination lists 8
documentation layer 21
DTDs, generating 28

E
element component of message

definition 17
element of data, a definition 1
element valid value component of

message definition 18
ESQL concepts 35

casting 39
Booleans 46
cast expressions 43
cast specifications 39
character strings 46
data types of values from external

sources 52
datetime values 46
implicit CASTs for arithmetic

operations 48
implicit CASTs for assignment 50

© Copyright IBM Corp. 2000, 2001 145

ESQL concepts 35 (continued)
implicit CASTs for

comparisons 45
intervals 46
numeric types 46
supported casts 40

comments 54
comparing

character strings with other
types 46

data types
Boolean 39
datetime types 36
in ESQL 35
INTERVAL 38
numeric 35
strings 36

predicates 53
BETWEEN predicate 53
EXISTS 54
IN predicate 54
LIKE predicate 53

ESQL overview 31
case sensitivity of ESQL syntax 33
comparison of ESQL statements and

IBM nodes 31
expression type checking 35
nulls in Boolean expressions 34
nulls in Filter and Compute

expressions 33
order of processing 33
SQL, main data manipulation

statements 31
what is ESQL? 31

EVAL 67
example

create a database table 102
create a table in a case sensitive

database system 103
use of the ITEM keyword 103
use of the WHERE clause 104

Examples of complex SELECTs
effects of the THE keyword 97
item order within the SELECT

clause 95
joining items in the FROM clause 99
multiple items in the FROM

clause 98
projection 98
selecting from a list of scalars 100
use of the item keyword 96
using SELECT to return a scalar

value 99
exception and destination list tree

structure 8
exception list

using, with Compute node 118
exception list, example of 117
exception lists 10
EXISTS 54
expression type checking 35
expressions

SELECT 60
external databases, querying them using

ESQL 101
example

create a database table 102

external databases, querying them using
ESQL 101 (continued)

example (continued)
create a table in a case sensitive

database system 103
use of the ITEM keyword 103
use of the WHERE clause 104

EXTRACT, datetime function 86
extracting fields from datetimes and

intervals 86

F
field references 55

anonymous field names 61
array indices 58
field types for the XML parser 61
initial correlation names 55
MQRFH2 field types 62
repeating fields 57
repeats

array indices 58
quantified predicate 58
SELECT expression 60

Field types for MQRFH2 headers 62
field types for the XML parser 61
FIELDNAME 89
FIELDTYPE 89
FLOAT, numeric data type 36
FLOOR, numeric function 83
functions

datetime functions 86
adding an interval to a datetime

value 86
adding or subtracting two

intervals 86
CURRENT_DATE 87
CURRENT_GMTDATE 87
CURRENT_GMTTIME 87
CURRENT_GMTTIMESTAMP 88
CURRENT_TIME 87
CURRENT_TIMESTAMP 87
EXTRACT 86
extracting fields from datetimes

and intervals 86
LOCAL_TIMEZONE 88
scaling intervals 86
subtracting two datetime

values 86
miscellaneous functions 88

BITSTREAM 88
CARDINALITY 88
COALESCE 88
FIELDNAME 89
FIELDTYPE 89
NULLIF 89

numeric functions 82
ABS 82
BITAND 82
BITNOT 82
BITOR 83
BITXOR 83
CEIL 83
FLOOR 83
MOD 84
ROUND 84
SQRT 85

functions (continued)
numeric functions 82 (continued)

TRUNCATE 85
string manipulation 78

Concatenation 78
LCASE 78
LENGTH 78
LOWER 78
LTRIM 79
OVERLAY 79
POSITION 79
RTRIM 80
SUBSTRING 80
TRIM 81
UCASE 82
UPPER 82

G
generating

message set DTDs 28
GMTTIME, datetime data type 37
GMTTIMESTAMP, datetime data

type 37

I
IBM Business Partners 143
IF 69
implicit CASTs for assignment 50
implicit CASTs for comparisons 45
importing legacy formats 27
information on the Internet

complementary offerings 143
MQSeries family libraries 143
MQSeries products 143
MQSeries SupportPacs 143

initial correlation names 55, 109
INSERT 69
INT, numeric data type 35
INTEGER, numeric data type 35
INTERVAL, data type 38

J
JMSMap

message type 12
JMSStream

message type 12

K
keywords

AS 63

L
LCASE, string manipulation function 78
legacy formats, importing 27
legacy formats, messages 15
LENGTH, string manipulation

function 78
LIST constructor 92
list structure 8

146 MQSeries Integrator ESQL Reference

LOCAL_TIMEZONE, datetime
function 88

LOWER, string manipulation
function 78

LTRIM, string manipulation function 79

M
member relationship between message

components in the MRM domain 17
message, a definition 1
message, example 113
message definition

category component in an MRM
domain 18

components of message definition in
an MRM domain 17

element component 17
element length component in an MRM

domain 17
element qualifier component in an

MRM domain 18
element valid value component 18
identifiers of components in an MRM

domain 19
message component in an MRM

domain 17
MRM domain

member relationship between
components 17

names of components 19
reference relationship between

components 16
type component in an MRM

domain 17
message domain 12

additional 13
BLOB 28
MRM 14
NEON 14
XML 13

message flow nodes
Compute node

to copy between parsers 74
message header parsers

maintaining header integrity 6
message model 16
message parser

BLOB 132
MQCFH 120
MQCIH 121
MQDLH 122
MQIIH 123
MQMD 124
MQMDE 125
MQRFH 126
MQRFH2 127
MQRMH 128
MQSAPH 129
MQWIH 130
SMQ_BMH 131
standard properties 6

message parsers
used 5

message set
level

using an existing name 27

message set (continued)
versions

using an existing name 27
message set, a definition 1
message sets 21

Base Message Set 24
C Language tab 24
COBOL Language tab 24
Custom Wire Format tab 24
Description tab 25
Finalized 23
Freeze Time Stamp 23
Identifier 24
Level 23, 26
properties 23
Run Time tab 25
states 25

Finalized 26
Frozen 26
Locked 26
Normal 25

versions 26
message structure

correlation names 2
tree format 1
trees 1

message structure, how to view 115
message transformation

Compute node 76
message type

self-defining
JMSMap 12
JMSStream 12
XML 12

unstructured
BLOB 12

message types supported by MQSeries
Integrator 12

message used for examples 113
messages

basic structure 1
codedCharSetId, Encoding, and data

conversion 4
CWF format 15
destination lists 8
elements that define destination 9
exception lists 10
how to view a message structure 115
interpretation 12
legacy formats 15
list structure 8
PDF format 15
predefined MRM 14
predefined NEON 14
referring to simple fields 3
self-defining 13
unstructured 28
using MQSeriesconstants in message

headers 3
using quotes in the field reference 3
XML format 15

miscellaneous functions 88
BITSTREAM 88
CARDINALITY 88
COALESCE 88
FIELDNAME 89
FIELDTYPE 89

miscellaneous functions 88 (continued)
NULLIF 89

MOD, numeric function 84
MQRFH2 field types 62
MQSeries Everyplace publications 141
MQSeries Integrator on the Internet 143
MQSeries Integrator publications 141

national language 142
platform–specific 141

MRM
message definition process 16

MRM domain 14
category component 18
components of message definition 17
element length component 17
element qualifier component 18
identifiers of components in message

definition 19
member relationship between

components 17
message component 17
names of components in message

definition 19
reference relationship between

components 16
type component 17

MRM Padding characters 15

N
NEON domain 14
NEONRules and NEONFormatter

Support publications 141
NULL, with AND and OR 70
NULLIF 89
nulls in Boolean expressions 34
nulls in Filter and Compute

expressions 33
numeric

data types 35
numeric functions 82

ABS 82
BITAND 82
BITNOT 82
BITOR 83
BITXOR 83
CEIL 83
FLOOR 83
MOD 84
ROUND 84
SQRT 85
TRUNCATE 85

O
OR 63
order of processing 33
OVERLAY, string manipulation

function 79

P
parser

plug-in 13
properties 6

Index 147

parsers
maintaining header integrity 6
overview 4
used in MQSeries Integrator Version

2.0 5
Partner Offerings 143
PASSTHRU 70

considerations when calling stored
procedures 71

limitations when calling stored
procedures 72

PDF (Portable Document Format) 142
Portable Document Format (PDF) 142
POSITION, string manipulation

function 79
predefined MRM messages 14
predefined NEON messages 14
predicate

quantified 58
predicates 53

BETWEEN predicate 53
EXISTS 54
IN predicate 54
LIKE predicate 53

primitives
Compute node

to copy between parsers 74
properties

parser 6
properties of message sets 23
publications

MQSeries Everyplace 141
MQSeries Integrator 141

Q
querying external databases using

ESQL 101

R
reference relationship between message

components in the MRM domain 16
referring to fields in a message 3
repeating fields 57
repeats

array indices 58
quantified predicate 58

repeats: the SELECT expression 60
ROUND, numeric function 84
ROW and LIST constructors 91
ROW constructor 91
rows and lists in the SELECT

statement 91
RTRIM, string manipulation function 80

S
samples 113
scaling intervals 86
SELECT 60, 72

effects of the THE keyword 97
implications of the item order within

the SELECT clause 95
joining items in the FROM clause 99

SELECT 60, 72 (continued)
multiple items in the FROM

clause 98
projection 98
selecting from a list of scalars 100
use of the item keyword 96
using SELECT to return a scalar

value 99
SELECTs, more complicated 91
self-defining messages 13
SET 72

used in a Compute node 73
softcopy books 142
SOME

using keyword 59
SQL, main data manipulation

statements 31
SQRT, numeric function 85
statements

SELECT 91
ROW and LIST constructors 91

statements and expressions
assignments 72
CASE 63
CAST 65
DECLARE 66
DELETE 66
EVAL 67
IF 69
INSERT 69
NULL, with AND and OR 70
OR 63
PASSTHRU 70

limitations when calling stored
procedures 72

SELECT 72
SET 72
UPDATE 76
WHILE 77

states of message sets 25
string manipulation 78

Concatenation 78
LCASE 78
LENGTH 78
LOWER 78
LTRIM 79
OVERLAY 79
POSITION 79
RTRIM 80
SUBSTRING 80
TRIM 81
UCASE 82
UPPER 82

strings
data type 36

SUBSTRING, string manipulation
function 80

subtracting two datetime values 86
supported casts 40
supported CASTS 40
SupportPac 143
syntax

case sensitivity of ESQL 33
expression type checking 35
for field references 55

T
TIME, datetime data type 37
TIME_DATE, datetime function 87
TIMESTAMP, datetime data type 37
trace

using, to view a message
structure 115

tree format 1
tree structure

destination list 8
exception list 8

trees
in a message 1

TRIM, string manipulation function 81
TRUNCATE, numeric function 85

U
UCASE, string manipulation function 82
unstructured messages 28
UPDATE 76
UPPER, string manipulation function 82
use of keyword ALL 58
Using MQSeries constants in message

headers 3

V
versions of message sets 26

W
what is ESQL? 31
WHILE 77
Windows 2000 ix

X
XML

message type 12
XML domain 13
XML parser field types 61

148 MQSeries Integrator ESQL Reference

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–816151
– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2001 149

150 MQSeries Integrator ESQL Reference

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5923-00

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book

	Chapter 1. Basic message structure
	Message structure
	Tree format
	Correlation names
	Referring to simple fields in a message
	Using quotes in the field reference

	Using MQSeries constants in message headers
	CodedCharSetId, Encoding, and data conversion

	Parsers
	Maintaining header integrity
	The properties parser

	Exception and destination list tree structure
	Destination lists
	Exception lists

	Supported message types
	How a message is interpreted
	Self-defining messages in the XML domain
	The NEON domain
	The MRM domain
	Predefined messages in the MRM domain
	An overview of the message definition process
	The message model
	The data model layers
	Message set properties
	Importing legacy formats
	Generating MRM message set Document Type Definitions (DTDs)
	Authorization to work with Messages

	The BLOB domain
	Unstructured messages in the BLOB domain
	Working with unstructured messages in the BLOB domain

	Chapter 2. ESQL Overview
	What is ESQL?
	Main data manipulation statements in Database SQL
	Comparison of main IBM primitive nodes and Database SQLstatements

	Case sensitivity of ESQL syntax
	Order of processing in ESQL
	Nulls in Filter and Compute expressions
	Nulls in Boolean expressions

	Chapter 3. ESQL Concepts
	Data types
	Numbers
	Strings
	Datetime types
	INTERVAL
	BOOLEAN

	CASTs
	CAST specifications
	Supported CASTs
	CAST expressions
	Implicit CASTs for comparisons
	Numeric types
	Character strings
	Datetime values
	Booleans
	Intervals
	Comparing character strings with other types

	Implicit CASTs for arithmetic operations
	Implicit CASTs for assignment
	Data types of values from external sources

	Predicates
	BETWEEN predicate
	LIKE predicate
	IN predicate
	EXISTS predicate

	Comments

	Chapter 4. Field references
	Initial correlation names
	Repeating fields
	Array indices
	The quantified predicate
	SELECT expression

	Anonymous field names
	Field types for the XML parser
	Field types for MQRFH2 headers

	Chapter 5. ESQL statements, expressions and functions
	Statements and expressions
	AND and OR
	AS
	CASE
	CAST
	DECLARE
	DELETE
	Example

	EVAL
	IF
	INSERT
	Example

	NULL with AND and OR
	PASSTHRU
	Considerations when calling stored procedures
	Limitations

	SELECT
	SET
	Compute node

	UPDATE
	Example 1
	Example 2
	Example 3

	WHILE

	Functions
	String manipulation functions
	Concatenation
	LENGTH
	LOWER, LCASE
	LTRIM
	OVERLAY
	POSITION
	RTRIM
	SUBSTRING
	TRIM
	UPPER, UCASE

	Numeric functions
	ABS
	BITAND
	BITNOT
	BITOR
	BITXOR
	CEIL
	FLOOR
	MOD
	ROUND
	SQRT
	TRUNCATE

	Datetime functions
	Adding an interval to a Datetime value
	Adding or subtracting two intervals
	Subtracting two Datetime values
	Scaling intervals
	Extracting fields from Datetimes and intervals
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_GMTDATE
	CURRENT_GMTTIME
	CURRENT_GMTTIMESTAMP
	LOCAL_TIMEZONE

	Miscellaneous functions
	BITSTREAM
	CARDINALITY
	COALESCE
	FIELDNAME
	FIELDTYPE
	NULLIF

	Chapter 6. Complex SELECTs: ROWs and LISTs
	ROW and LIST constructors
	Examples of complex SELECTs
	Implications of the item order within the SELECT clause
	Use of the ITEM keyword
	Effects of the THE keyword
	Projection
	Multiple items in the FROM clause
	Joining items in the FROM clause
	Using SELECT to return a scalar value
	Selecting from a list of scalars

	Chapter 7. Querying external databases
	Examples of external database queries
	Create a database table
	Create a table in a case sensitive database system
	Use of the ITEM keyword
	Use of the WHERE clause

	Appendix A. ESQL Components
	Special Characters in ESQL
	Data types used in ESQL
	Arithmetic operations supported in ESQL
	ESQL comparison operators
	Initial correlation names
	Reserved words used in ESQL

	Appendix B. Examples
	Message referenced in examples
	Using a trace to view a message structure
	Example exception list

	Appendix C. MQSeries message header parsers
	The MQCFH parser
	The MQCIH parser
	The MQDLH parser
	The MQIIH parser
	The MQMD parser
	The MQMDE parser
	The MQRFH parser
	The MQRFH2 parser
	The MQRMH parser
	The MQSAPH parser
	The MQWIH parser
	The SMQ_BMH parser
	The BLOB parser

	Appendix D. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries Integrator Version 2.0.2cross-platform publications
	MQSeries Integrator Version 2.0.2platform-specific publications
	MQSeries Everyplacepublications
	NEONRules and NEONFormatterSupport for MQSeries Integratorpublications
	Softcopy books
	Portable Document Format (PDF)

	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

