
MQSeries® Integrator

Programming Guide
Version 2.0.2

SC34-5603-02

���

MQSeries® Integrator

Programming Guide
Version 2.0.2

SC34-5603-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 215.

Third edition (April 2001)

This edition applies to IBM® MQSeries Integrator Version 2, and to any subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
Terms used in this book xi

Summary of changes xiii
Changes for this edition (SC34-5601-02) xiii
Changes for the second edition (SC34-5601-01) . . xiii

Part 1. Application programming. . . 1

Chapter 1. Introduction 3
Overview of MQSeries Integrator 3

Message brokers 3
Message flows 4
Messages 4
The Control Center 5
Applications 5

Chapter 2. Writing application programs 7
Sending and receiving messages 7

Message headers 8
Using the Message Queue Interface. 8
Using the Application Messaging Interface . . . 9

Point-to-point messaging 9
Send and forget 9
Request/reply 10
The message descriptor 11
Error handling 11

Chapter 3. Writing publish/subscribe
applications 13
Publish/subscribe messaging 14
The publisher. 15

Topics 15
Retained publications 15
Local publications 16
Conference-type applications 17
Message ordering 17
Publishing messages without an MQRFH2
header 17

The subscriber 18
Subscriptions 18
Registration 20
Retained publications 21

Flow of publish/subscribe messages 22
The role of the broker 23

Broker response messages 23
Broker restarts 24

Persistence and units of work 24
Sample application 26
Using the AMI in publish/subscribe applications . . 28

AMI publish/subscribe functions 28

Chapter 4. The MQRFH2 rules and
formatting header 31
MQRFH2 Structure 31

Fields 32
Initial values 36
Definition for the C programming language . . 36

Message service folders 38
The mcd folder 38
The psc folder 39
The pscr folder 39
The usr folder 39
Multiple MQRFH2 headers 40

Chapter 5. Publish/subscribe command
messages 41
Delete Publication 42

Properties 42
Example 44

Deregister Subscriber 45
Properties 46
Example 47

Publish 48
Properties 48
Example 50

Register Subscriber 51
Properties 51
Example 53

Request Update 54
Properties 54
Example 55

Broker Response. 56
Properties 56
Examples 57

Message descriptor 58
MQMD for command messages 58
MQMD for publications forwarded by a broker 59
MQMD for broker response messages 60

Reason codes 61

Part 2. Programming a plug-in node
or parser 63

Chapter 6. Implementing a plug-in node
or parser 65
Introduction 66

Programming language 66
Interface to the broker 66

Implementing a message processing node 67
Determine the configuration attributes 67

© Copyright IBM Corp. 2000, 2001 iii

Develop a plug-in initialization function 67
Develop a context creation function 68
Develop the attribute functions 68
Guidelines for coding a plug-in node 69
Develop the node processing function 69
Build an output message (optional) 70
Further information 71

Implementing a message parser 71
Develop a plug-in initialization function 72
Develop a context creation function 72
Implement the parser functions. 72
Further information 73

General development considerations 74
Threading issues. 74
Storage management 74
String handling 75
Configuration 75
Using event logging from a plug-in 75

Accessing the message content 80
Syntax elements 80
Syntax element navigation 81
Syntax element type definition 85
Syntax element modification. 85
Parsing a message 85

Errors and exception handling 86
Types of exception and broker behavior 87
Return codes 89

Compiling a plug-in 90
Prerequisites 90
Header files 90
File names. 90
Sample code 91
Compilation 92

Chapter 7. Installing a plug-in node or
parser 95
Authorization 95
Installing a plug-in on a broker system 95
Integrating a plug-in node into the Control Center 96

Integrating the node in the Control Center . . . 96
Create optional resources 96
Defining optional node resources 97
PropertyEditor 99
Installing a new message processing node in the
Control Center 102

Chapter 8. Node implementation and
utility functions 105
Node implementation function overview 106

Mandatory functions 106
Node utility function overview 107

Initialization and resource creation 107
Message management 107
Message buffer access 107
Syntax element navigation 107
Syntax element access 107
SQL statement handling 108

Node implementation function interface 109
cniCreateNodeContext 109
cniDeleteNodeContext 109

cniEvaluate 110
cniGetAttribute 110
cniGetAttributeName 111
cniSetAttribute 111

Node utility function interface 113
cniAddAfter 113
cniAddAsFirstChild 113
cniAddAsLastChild 114
cniAddBefore 114
cniBufferByte 114
cniBufferPointer 115
cniBufferSize 115
cniCopyElementTree 115
cniCreateElementAfter 116
cniCreateElementAfterUsingParser 116
cniCreateElementAsFirstChild 117
cniCreateElementAsFirstChildUsingParser . . . 117
cniCreateElementAsLastChild 117
cniCreateElementAsLastChildUsingParser . . . 118
cniCreateElementBefore 118
cniCreateElementBeforeUsingParser 118
cniCreateInputTerminal 119
cniCreateMessage 119
cniCreateNodeFactory 120
cniCreateOutputTerminal 120
cniDefineNodeClass 120
cniDeleteMessage 121
cniDetach 121
cniElementName 121
cniElementType 122
cniElementValue group 122
cniElementValueState 123
cniElementValueType 123
cniElementValueValue 124
cniFinalize 124
cniFirstChild 125
cniGetBrokerInfo 125
cniGetMessageContext 125
cniGetParserClassName 126
cniIsTerminalAttached 126
cniLastChild. 126
cniNextSibling 127
cniParent 127
cniPreviousSibling 127
cniPropagate 128
cniRootElement. 128
cniSearchElement group 129
cniSetElementName 130
cniSetElementType 130
cniSetElementValue group 130
cniSetElementValueValue 131
cniSqlCreateStatement 132
cniSqlDeleteStatement 133
cniSqlExecute 133
cniSqlSelect 133
cniWriteBuffer 134

Chapter 9. Parser implementation and
utility functions 135
Parser implementation function overview 136

Mandatory functions 136

iv MQSeries Integrator Programming Guide

Optional functions. 136
Parser utility function overview 137

Initialization and resource creation 137
Message buffer access 137
Syntax element navigation 137
Syntax element access 137

Parser implementation function interface 139
cpiCreateContext 139
cpiDeleteContext 139
cpiElementValue 140
cpiNextParserClassName 140
cpiNextParserCodedCharSetId. 140
cpiNextParserEncoding 141
cpiParseBuffer 141
cpiParseFirstChild 142
cpiParseLastChild 142
cpiParseNextSibling 142
cpiParsePreviousSibling 143
cpiParserType 143
cpiSetElementValue 143
cpiSetNextParserClassName 144
cpiWriteBuffer 144

Parser utility function interface 145
cpiAddAfter 145
cpiAddAsFirstChild 145
cpiAddAsLastChild 145
cpiAddBefore 146
cpiAppendToBuffer 146
cpiBufferByte 146
cpiBufferPointer 147
cpiBufferSize 147
cpiCreateAndInitializeElement. 147
cpiCreateElement 148
cpiCreateParserFactory 148
cpiDefineParserClass 149
cpiElementCompleteNext 149
cpiElementCompletePrevious 149
cpiElementName 150
cpiElementType 150
cpiElementValue group 150
cpiElementValueValue 151
cpiFirstChild 152
cpiLastChild. 152
cpiNextSibling 152
cpiParent 153
cpiPreviousSibling. 153
cpiRootElement. 153
cpiSetCharacterValueFromBuffer 154
cpiSetElementCompleteNext 154
cpiSetElementCompletePrevious 154
cpiSetElementName 155
cpiSetElementType 155
cpiSetElementValue group 155
cpiSetElementValueValue 156
cpiSetNameFromBuffer 157

Chapter 10. Node and parser utilities 159
Utility function overview 160

Exception handling and logging 160
Character representation handling 160

Exception handling and logging functions 161

cciGetLastExceptionData 161
cciLog 161
cciRethrowLastException 162
cciThrowException 162

Character representation handling functions . . . 164
cciMbsToUcs 164
cciUcsToMbs 164

Part 3. Appendixes 167

Appendix A. Using filters in
content-based routing 169
Field references. 169

Specifying a filter 170
Some filter examples 173
Datatypes and type mappings 173
Implicit type casting 175
Error reporting and logging 175
Rounding errors and overflows 176

Appendix B. MQSeries Integrator
SCADA Device Protocol 177
Introduction 177

Quality of service 177
QoS protocol flows 179
Topic hierarchies and wildcards 179

Message format 180
Fixed header format 180
Variable header. 183
Payload 187

Command messages 188
CONNECT – Client requests a connection to a
Broker 188
CONNACK – Acknowledge Connection Request 191
DISCONNECT – Disconnect notification . . . 192
PUBLISH – Publish a message. 193
PUBACK – Publish Acknowledgement 196
PUBREC – Assured Publish Received (part 1) 197
PUBREL – Assured Publish Release (part 2) . . 197
PUBCOMP – Assured Publish Complete (part 3) 198
SUBSCRIBE – Subscribe to named Topics . . . 199
SUBACK – Subscription Acknowledgement . . 202
UNSUBSCRIBE – Unsubscribe from named
Topics 204
UNSUBACK – Unsubscribe Acknowledgement 206
PINGREQ – PING Request 207
PINGRESP – PING Response 207

UTF-8 208

Appendix C. MQSeries Everyplace
Nodes 209
Message classes supported by the MQSeries
Everyplace nodes 209

MQeMsgObject 209
MQeMbMsgObject 209

MQSeries Everyplace methods 210
Publish/Subscribe 212
Publish 212
Subscribe 213

Contents v

Unsubscribe 214

Appendix D. Notices 215
Trademarks 217

Glossary of terms and abbreviations 219

Bibliography. 225
MQSeries Integrator Version 2.0.2 cross-platform
publications 225

MQSeries Integrator Version 2.0.2 platform-specific
publications 225
MQSeries Everyplace publications 225
NEONRules and NEONFormatter Support for
MQSeries Integrator publications 225
Softcopy books 226

Portable Document Format (PDF) 226
MQSeries library references 227
MQSeries information available on the Internet . . 227

Index 229

vi MQSeries Integrator Programming Guide

Figures

1. Send and forget messaging 10
2. Request/reply with direct reply 11
3. Request/reply with reply processed by the

broker 11
4. Communication between publisher, subscriber,

and broker 14
5. Publish/subscribe without retained

publications 22
6. Using retained publications 22
7. Publish on request only 23

8. The results service application 26
9. Showing a syntax element with its connections

to other elements. 81
10. Syntax element tree 82
11. First generation of syntax elements in a typical

message. 82
12. Tree representation of an XML message 84
13. Sample plug-in node properties file 98
14. Customizer code created by the SmartGuide 99
15. PropertyEditor sample code. 101

© Copyright IBM Corp. 2000, 2001 vii

viii MQSeries Integrator Programming Guide

Tables

1. Fields in MQRFH2 31
2. Initial values of fields in MQRFH2 36
3. Building an NT message file 77
4. Building a message catalog for UNIX 78
5. Building a message catalog on all platforms 79
6. Utility function return codes and values 89
7. Sample code and related files 91
8. Quality of Service level 0 protocol flow 179
9. Quality of Service level 1 protocol flow 179

10. Quality of Service level 2 protocol flow 179
11. Fixed length header format 180
12. Fixed length header message type field 180
13. Fixed length header flags fields 181
14. Quality of Service levels 181
15. Remaining length field values 182
16. Protocol version field value 184
17. Connect flags — clean start 184
18. Connect flags — Will 184
19. Connect flags — Will QoS 185
20. Connect flags — Will RETAIN 185
21. Keep alive timer 186
22. CONNACK — connect return code values 186
23. Return code field 187
24. Message identifier field 187
25. CONNECT — fixed header 188
26. CONNECT — variable header example 189
27. CONNACK — fixed header 191
28. CONNACK — connect return code values 191
29. CONNACK — variable header 192
30. DISCONNECT — fixed header 192
31. PUBLISH — fixed header 193
32. PUBLISH — variable header example 194
33. PUBLISH — variable header example format 194

34. PUBLISH — expected responses 195
35. PUBACK — fixed header 196
36. PUBACK — variable header 196
37. PUBREC — fixed header. 197
38. PUBREC — variable header. 197
39. PUBREL — fixed header 198
40. PUBREL — variable header 198
41. PUBCOMP — fixed header 199
42. PUBCOMP — variable header 199
43. SUBSCRIBE — fixed header 200
44. SUBSCRIBE — variable header example 200
45. SUBSCRIBE — granted quality of service

field 201
46. SUBSCRIBE — payload example 201
47. SUBSCRIBE — payload example format 202
48. SUBACK — fixed header 202
49. SUBACK — variable header 203
50. SUBACK — granted quality of service field 203
51. SUBACK — payload example 203
52. SUBACK — payload example format 204
53. UNSUBSCRIBE — fixed header 204
54. UNSUBSCRIBE — variable header example 205
55. UNSUBSCRIBE — payload example 205
56. UNSUBSCRIBE — payload example format 205
57. UNSUBACK — fixed header 206
58. UNSUBACK — variable header 206
59. PINGREQ — fixed header 207
60. PINGRESP — fixed header 207
61. UTF string format 208
62. Format of encoded characters (ASCII

0x01-0x7F) 208
63. UTF encoding example 208
64. File names of MQSeries Integrator book PDFs 226

© Copyright IBM Corp. 2000, 2001 ix

x MQSeries Integrator Programming Guide

About this book

This book explains how to write application programs that communicate with
MQSeries Integrator Version 2, or to write plug-in nodes and parsers that can be
installed in this product.

“Part 1. Application programming” on page 1 starts with a brief overview of the
concepts and capabilities of MQSeries Integrator Version 2. It then describes how
to write application programs using both point-to-point and publish/subscribe
communication models. Full details of the publish/subscribe command messages,
and the MQRFH2 message header that is used to send them, are also provided.

“Part 2. Programming a plug-in node or parser” on page 63 describes how to write
plug-in message processing nodes and parsers to enhance the capabilities of
MQSeries Integrator. Full details of the functions you need to write, and the utility
functions provided to assist you, are given in this part of the book.

A glossary and bibliography are provided at the back of the book.

Who this book is for
This book is for programmers who need to write application programs that will
communicate with MQSeries Integrator Version 2, or to write plug-in nodes and
parsers that will be installed in this product.

What you need to know to understand this book
To understand this book, you need to have some understanding of MQSeries,
including the use of the Message Queue Interface (or the Application Messaging
Interface).

You are recommended to read the MQSeries Integrator Introduction and Planning
book before starting to write application programs. It contains information about
the design of applications that communicate with MQSeries Integrator.

Terms used in this book
All references to MQSeries Integrator are to MQSeries Integrator Version 2 unless
otherwise stated.

The book uses the following shortened names:
v MQSeries: a general term for IBM MQSeries Messaging products.
v MQSeries Publish/Subscribe: the MQSeries Publish/Subscribe SupportPac™

available on the Internet for several MQSeries server operating systems (the
Internet URL is given in “MQSeries information available on the Internet” on
page 227).

© Copyright IBM Corp. 2000, 2001 xi

About this book

xii MQSeries Integrator Programming Guide

Summary of changes

This section describes changes in this edition of MQSeries Integrator Programming
Guide . Changes since the previous edition of the book are marked by vertical lines
to the left of the changes.

Changes for this edition (SC34-5601-02)
The changes are summarized below:
v Changes to the content of “Chapter 7. Installing a plug-in node or parser” on

page 95, to reflect the inclusion of a Plug-in SmartGuide for the defining of new
nodes.

v Addition of a new appendix documenting the MQSeries Integrator SCADA
Device Protocol.

v Minor editorial and technical changes throughout the book.

Changes for the second edition (SC34-5601-01)
The changes are summarized below:
v Updates to reflect the inclusion of support for AIX and Sun Solaris.
v Description of two new utilities provided for conversion between MQSeries

Integrator’s internal processing code (in UCS-2) and file code such as ASCII. See
“Character representation handling functions” on page 164

v Editorial improvements to content and structure of the original Chapter 6, which
has now been divided into the following two chapters:
– “Chapter 6. Implementing a plug-in node or parser” on page 65
– “Chapter 7. Installing a plug-in node or parser” on page 95

© Copyright IBM Corp. 2000, 2001 xiii

Changes

xiv MQSeries Integrator Programming Guide

Part 1. Application programming

This part contains:
v “Chapter 1. Introduction” on page 3
v “Chapter 2. Writing application programs” on page 7
v “Chapter 3. Writing publish/subscribe applications” on page 13
v “Chapter 4. The MQRFH2 rules and formatting header” on page 31
v “Chapter 5. Publish/subscribe command messages” on page 41

© Copyright IBM Corp. 2000, 2001 1

2 MQSeries Integrator Programming Guide

Chapter 1. Introduction

To build a complete MQSeries Integrator Version 2.0.2 application, you need to
consider the following activities:
v Define the information space and model.
v Build the business message flows.
v Develop or modify applications that feed messages into the message flows, and

consume the messages they produce.

The first two activities are described in the MQSeries Integrator Introduction and
Planning book and MQSeries Integrator Using the Control Center respectively.

This book concentrates on the third activity, how to develop applications that work
with MQSeries Integrator Version 2.0.2. To help you understand what can be done
with the product, this chapter contains an overview of its functionality.

Overview of MQSeries Integrator
MQSeries Integrator Version 2.0.2 is IBM’s message broker product, addressing the
needs of business and application integration through management of information
flow. It provides services that allow you to:
v Route a message to several destinations, using rules that act on the contents of

one or more of the fields in the message or message header.
v Transform a message, so that applications using different formats can exchange

messages in their own formats.
v Store and retrieve a message, or part of a message, in a database.
v Modify the contents of a message (for example, by adding data extracted from a

database).
v Publish a message to make it available to other applications. Other applications

can choose to receive publications that relate to specific topics, or that have
specific content, or both.

v Extend the function of MQSeries Integrator Version 1.

These services are based on the messaging transport layer provided by the
MQSeries products.

Message brokers
A message broker, usually referred to simply as a broker, is a set of execution
environments hosting services you create to handle your message traffic.

You can install and configure any number of brokers. Together, these make up a
broker domain. The broker domain is the set of brokers you can administer as a
single entity, using the MQSeries Integrator Version 2.0.2 Control Center.

Brokers are connected together to provide communication throughout your broker
domain, as required. This is needed for publish/subscribe applications (see
“Applications” on page 5). Communications in the broker domain are provided by
MQSeries.

© Copyright IBM Corp. 2000, 2001 3

Message flows
When you design your broker domain, you decide what processing must be done
on the messages flowing through the brokers. You define this work as a set of
actions executed between receipt of the message by the broker, and delivery of the
message to the target applications.

Each action, or subset of actions, is implemented as a message processing node, and
these are grouped together in a sequence to form a message flow. You create
message flows using the MQSeries Integrator Control Center (see “The Control
Center” on page 5).

Message flows can range from the very simple, performing just one action on a
message, to the complex, providing a number of actions on the message to
transform its format and content. A message flow can process one message in
several ways to deliver a number of output messages, perhaps with different
format and content, to a number of target applications.

The message flows you create receive messages at Input nodes. An input node
represents an MQSeries queue, and every message flow must have at least one
input node. The SCADA Device Protocol does not use queues, instead messages
are sent to and received from port numbers.

Message flows usually complete their activity by sending one or more messages to
one or more recipients from output nodes that represent MQSeries queues, or from
Publication nodes that redistribute the message to interested subscribers using
MQSeries queues.

Other message flows might simply store the message in a database for later
processing, and not use an output node at all.

The other nodes between input and output provide the actions you want taken
against the messages. MQSeries Integrator supplies a number of predefined
message processing nodes. In addition to the input and output nodes already
mentioned, their functions include filter (on message data content) and compute
(for example, add data from a database).

You can create new nodes, using a system programming interface supplied by
MQSeries Integrator, to provide other options for message processing. This is
described in “Part 2. Programming a plug-in node or parser” on page 63.

Messages
Each message flowing through your system has a specific content and structure,
referred to as a message template.

Message template information identifies the structure of the data it contains.
Messages sent to MQSeries Integrator can be of the following types:
v MQSeries messages, with an MQSeries message descriptor (MQMD) and data;

this type of message does not have to be predefined but if the data is not one of
the defined types, MQSeries Integrator will not be able to distinguish individual
fields

v Message repository manager (MRM) messages (defined in the MQSeries
Integrator Control Center)

v NEON messages defined by and for the NEONRules and NEONFormatter
Support.

MQSeries Integrator overview

4 MQSeries Integrator Programming Guide

v XML (Extensible Markup Language) messages (which are self-defining)
v User-defined messages

Message template information for predefined messages is usually included in the
message header, so the message flows recognize the messages when they receive
them. Other messages might not use the expected header, but you can set up your
message flow input nodes to indicate how the messages will be processed.

The message bit-stream is decoded by message parsers. MQSeries Integrator supplies
several message parsers ready for use on known message templates and message
headers.

You can create new parsers, using a system programming interface supplied by
MQSeries Integrator, if you need to process other types of message. This is
described in “Part 2. Programming a plug-in node or parser” on page 63.

The Control Center
The functions and facilities of MQSeries Integrator are controlled using a graphical
interface known as the Control Center. The Control Center comes with
comprehensive on-line help, and is described in MQSeries Integrator Using the
Control Center.

You can use the Control Center to:
v Define your broker domain
v Work with message flows
v Organize your MRM messages
v Control your publish/subscribe network
v Manage your broker domain

The Control Center allows you to restrict access and authority to the functions it
provides, so you can control who can do what within the broker domain.

Applications
Applications using messages to send or receive data can communicate in several
ways. Applications written to the point-to-point model transfer information from
one sender to one receiver. Publish/subscribe applications, on the other hand,
transfer information from one or more sender to one or more receivers, with a
third party acting as the intermediary so that the information requirements of the
receiver are matched against the information that the sender provides.

Today, most MQSeries applications are using point-to-point communications. These
applications might be using a one-way send-and-forget (or datagram) model, or a
request/reply (client/server) model. Such messages can be sent to a message flow
you have established in the broker, to carry out the required processing on the
message before sending it on to the receiving application.

Brokers support a second type of communication model known as
publish/subscribe. In this model, some applications (publishers) provide
information, and others (subscribers) consume that information. You can also have
applications that are both publishers and subscribers.

Publishers create messages and send them to one or more message flows at a local
broker that support publish/subscribe. Each message has an associated topic that
categorizes the information in the message. Subscribers register subscriptions with
their local broker, specifying the types of publication they are interested in

MQSeries Integrator overview

Chapter 1. Introduction 5

(determined, for example, by the topic and the contents of the message). When a
broker receives a publication that matches a subscription that has been registered,
it sends that publication to the subscriber. Brokers exchange subscriptions and
publications with each other, so that subscribers can receive information published
at any broker in the domain.

New and existing applications can take advantage of the broker functions through
the MQSeries Message Queue Interface (MQI), or the MQSeries Application Messaging
Interface (AMI). Both interfaces support point-to-point and publish/subscribe
programming models. You can use the MQI to send messages that access broker
functions. The AMI provides higher levels of function that are designed to simplify
the messaging process, particularly for the publish/subscribe model.

If you have existing applications written to these interfaces, it should be possible,
in many cases, to configure your message broker environment in such a way that
the applications will run unchanged.

You can find information about the design of new applications, and the reuse of
existing applications in the MQSeries Integrator Introduction and Planning book.

The remaining chapters in Part 1 of this book tell you how to write application
programs that communicate with MQSeries Integrator Version 2.0.2.

MQSeries Integrator overview

6 MQSeries Integrator Programming Guide

Chapter 2. Writing application programs

Applications communicate with MQSeries Integrator by sending messages to the
broker, or receiving messages from the broker, using MQSeries message queues.
Before writing your application program, you need to decide on the following:
v The structure and format of the messages
v The message header (MQRFH2, MQRFH, or no header)
v The queues used for sending and receiving messages
v The communication model (point-to-point, publish/subscribe, or both)
v The programming interface (Message Queue Interface or Application Messaging

Interface)
v Other features (transactional processing, message ordering, message persistence)

All these aspects of the application design are covered in detail in the MQSeries
Integrator Introduction and Planning book.

Some of the information in that book is summarized in this chapter, together with
the information you need when writing programs to implement your design.

See “Sending and receiving messages” for information relevant to all applications.

See “Point-to-point messaging” on page 9 for specific information about
point-to-point applications.

Go to “Chapter 3. Writing publish/subscribe applications” on page 13 for more
information about publish/subscribe applications.

Sending and receiving messages
In both communication models (point-to-point and publish/subscribe) messages
are sent to, and received from, an MQSeries Integrator broker using normal
MQSeries message queues. Information needed by the broker is (optionally)
encoded in an MQRFH2 rules and formatting header. This header is usually placed
after the normal MQSeries message descriptor (MQMD), and before the body of
the message.

You need to construct a message according to your chosen message template,
including the header (if used), and send it to an input queue at the broker. This
queue has to be set up by a system administrator, as an attribute of the input node
of the message flow that will process your message (see MQSeries Integrator Using
the Control Center).

If you are writing an application to receive a message from the broker, the queue
that it arrives on is also set up by the system administrator (as an attribute of the
output node of the message flow). In the case of publish/subscribe applications,
you specify in the application which queue you want publications to be sent to.

You can use the MQSeries Message Queue Interface (MQI) or the MQSeries
Application Messaging Interface (AMI) to send and receive these messages.

© Copyright IBM Corp. 2000, 2001 7

Message headers
MQSeries Integrator messages can contain headers of the following types:
v MQRFH2
v MQRFH

or they can be sent without an MQRFH2 or MQRFH header.

MQRFH2
The MQRFH2 header is based on the MQRFH header, but it allows Unicode
strings to be transported without translation, and it can carry numeric datatypes.
New applications should use the MQRFH2 header so that they have access to all
the functionality in MQSeries Integrator.

Following the fixed portion of the MQRFH2 header is a number of
NameValueLength and NameValueData pairs. Each one of these contains one folder,
which holds a sequence of properties encoded as name/value elements in XML (see
MQSeries Integrator Introduction and Planning for more details). A <psc> folder
contains publish/subscribe commands. An <mcd> folder contains a description of
the message contents. This is used by MQSeries Integrator to decide which
message parser to invoke if content-based operations are carried out in the
message flow.

Full details of the MQRFH2 header and its contents are given in “Chapter 4. The
MQRFH2 rules and formatting header” on page 31.

MQRFH or no header
This is a topic for MQSeries only, MQSeries Everyplace and the SCADA Device
Protocol do not have the concept of an MQRFH header.

Existing MQSeries Integrator Version 1 and MQSeries Publish/Subscribe
applications using the MQRFH header are supported by MQSeries Integrator
Version 2.0.2. For full details refer to MQSeries Integrator Introduction and Planning.

MQSeries messages that have no MQRFH2 or MQRFH header are also supported.
The default message properties on a message flow can provide defaults for values
normally carried in a header. This allows messages without headers to be handled
by message flows that need to parse the contents of the message. Similarly, if a
message without a header is sent to a message flow that contains a Publication
node, the message will be published.

The output message is unchanged if this facility is used. See the information on
Input nodes in MQSeries Integrator Using the Control Center.

Using the Message Queue Interface
The MQSeries Message Queue Interface (MQI) that is used to put (MQPUT) and
get (MQGET) messages to and from queues is described in the MQSeries
Application Programming Guide and the MQSeries Application Programming Reference
book.

If you are using the MQI in your application programs, “Chapter 4. The MQRFH2
rules and formatting header” on page 31 describes the MQRFH2 header in detail,
and the structure of the folders that are contained within it. “Chapter 5.
Publish/subscribe command messages” on page 41 details the command messages
that are sent to the broker, using the MQRFH2 header, in publish/subscribe
applications.

Sending and receiving messages

8 MQSeries Integrator Programming Guide

Using the Application Messaging Interface
For many applications it is not necessary to understand the details of the MQRFH2
header or the MQI. The MQSeries Application Messaging Interface (AMI) has been
developed to hide their complexities from an application programmer by
containing them in policies and services that are set up by a systems administrator.
MQSeries and MQSeries Integrator functionality, including publish/subscribe, can
be accessed through the AMI from applications written in the C, COBOL, C++, or
Java programming languages.

Availability
The MQSeries Application Messaging Interface can be downloaded free of
charge from the Internet, complete with sample applications that demonstrate
how to use its functions. See
http://www.ibm.com/software/mqseries/txppacs/

If you are using the AMI, read the remainder of this chapter and then refer to the
MQSeries Application Messaging Interface book. You will need to check with your
system administrator to find out what policies and services have been defined for
your application. (For instance, the service point used to send or receive messages
must have its Service Type attribute set to ‘MQSeries Integrator V2’ if you want to
use the MQRFH2 header in your messages.)

If you are using the publish/subscribe capability of MQSeries Integrator, you
should also read “Chapter 3. Writing publish/subscribe applications” on page 13.

Point-to-point messaging
MQSeries Integrator point-to-point applications involve these components:

Sender An application that sends a message

Broker The message broker that processes the message

Receiver An application that receives the message

There can be more than one sender or receiver in any system.

Send and forget
With MQSeries no response is expected from the receiver with send and forget
(datagram) messages. The sender puts a message to a queue at the broker. This
should be the input queue defined for the required message flow as a property of
the input node. The queue manager is the one used by the broker. The sender
needs to have authority to put to this queue.

In MQSeries Everyplace, a message is put to the bridge queue defined within the
input node. In the SCADA Device Protocol the port number that the client
connects to defines the message flow that it will use.

If the sender and receiver applications already exist, you can use queue aliasing to
route the sender’s message to the broker, instead of sending it to the receiver. This
means that you do not have to change the sending application.

The broker processes the message according to the message flow. If content-based
filtering, routing, or message transformation is to be applied, the broker parses the

Sending and receiving messages

Chapter 2. Writing application programs 9

message according to the structure of the message as defined in an <mcd> folder in
the NameValueData field of the MQRFH2 header. If this header or the <mcd> folder
does not exist, the default message properties of the message flow are used.

Having processed the message, the broker puts the output message onto the
receiver’s input queue. This queue, and its queue manager, are defined as
attributes of the output node. Alternatively, the output node can specify that the
output message is sent to the ReplyToQ defined in the message descriptor (MQMD).

If the message flow contains more than one input or output, each is treated in the
same way as described above.

Send and forget messaging is illustrated in Figure 1.

Request/reply
With request/reply messaging, after the receiver receives a request message it
sends a reply back to the sender. The request message is handled as described for
send and forget messages. There are two possibilities for the reply:
1. The receiver sends the reply message directly back to the sender, without

involving the broker. The message is sent to the ReplyToQ in the message
descriptor (MQMD) of the request message, which is passed unchanged by the
broker.

2. The receiver sends the reply message to a reply message flow in the broker, so
that it can be processed before reaching the sender. In this case the broker must
replace the sender’s ReplyToQ in the MQMD of the request message with the
input queue name of the reply message flow.
The output of this reply message flow must go to the sender’s ReplyToQ. If the
name is fixed, there is no problem; otherwise, some means of associating this
queue with the reply message is needed.
This can be done by setting up a message flow that stores the message
descriptor of the original request message using a database node, and then
retrieving it from the database in order to send the reply message to the correct
destination.
Alternatively, the relevant details in the message descriptor can be copied into a
folder in the MQRFH2 header, and carried with the message.

Request/reply messaging is illustrated in Figure 2 on page 11 and Figure 3 on
page 11.

Sender
Input

queue 1

Receiver

Receiver
queue

Figure 1. Send and forget messaging. The sender puts a message on the input queue of a message flow at the broker
(1). The output from the message flow is put on the receiver’s queue (2), from where the receiver can get it (3).

Point-to-point messaging

10 MQSeries Integrator Programming Guide

The message descriptor
Fields in the MQSeries message descriptor (MQMD) of an input message are
usually passed unchanged to the output node.

However, if the message flow contains a transformation (such as a Compute node),
any of the MQMD fields might be changed according to how the message flow has
been set up by the administrator.

Error handling
The handling of errors by an application program depends on how the message
flow in the broker has been set up by the administrator.

Error events can be produced by any node in a message flow that has a failure
output terminal. The failure output might be connected to an output node, in
which case it can be directed to the sender of the message that caused the error.
Otherwise, the error is passed to the input node of the message flow. From here it
is returned to the backout requeue queue associated with the input queue.

Sender
Input

queue 1

Receiver

Receiver
queue

ReplyToQ

Figure 2. Request/reply with direct reply. The sender puts a message on the input queue of a message flow at the
broker (1). The output from the message flow is put on the receiver’s queue (2), from where the receiver gets it (3).
The receiver sends the reply directly to the ReplyToQ of the sender (4), from where the sender can get it (5).

Sender
Input

queue 1

Input
queue 2 Receiver

Receiver
queue

ReplyToQ

6

Figure 3. Request/reply with reply processed by the broker. The sender puts a message on the input queue of the first
message flow at the broker (1). The output from the message flow is put on the receiver’s queue (2), from where the
receiver gets it (3). The receiver sends the reply to the input queue of the second message flow at the broker (4). After
processing the reply, the broker sends it to the ReplyToQ of the sender (5), from where the sender can get it (6). (In
this case, the output node of the second message flow needs to know the ReplyToQ of the sender.)

Point-to-point messaging

Chapter 2. Writing application programs 11

If the broker is unable to put a message to the receiver’s queue, the input node
rolls back the transaction (if any) and puts the message to the backout requeue
queue.

Point-to-point messaging

12 MQSeries Integrator Programming Guide

Chapter 3. Writing publish/subscribe applications

This chapter describes how to write applications that use the publish/subscribe
model. If you are writing applications that use only the point-to-point model, you
don’t need to read this chapter.

Before writing your application program, you need to decide on the following:
v The topic trees used by publishers (including the use of wildcards by

subscribers)
v The options used by publishers (retained, local, other subscribers only)
v If message ordering techniques are needed (sequence number, publication

timestamp)
v The options used by subscribers (subscription point, filter, local, new

publications only, publish on request only)
v The subscriber queues used to receive publications (with optional correlation

identifiers)
v The persistence of published messages

All these aspects of the application design are covered in more detail the MQSeries
Integrator Introduction and Planning.

Some of the information in that book is summarized in this chapter, together with
the information you need when writing programs to implement your design.

The following information is presented in this chapter:
v “Publish/subscribe messaging” on page 14
v “The publisher” on page 15
v “The subscriber” on page 18
v “The role of the broker” on page 23
v “Sample application” on page 26
v “Using the AMI in publish/subscribe applications” on page 28

© Copyright IBM Corp. 2000, 2001 13

Publish/subscribe messaging
MQSeries Integrator publish/subscribe applications involve these components:

Publisher An application that generates publications

Broker The message broker that distributes the publications

Subscriber An application that subscribes to and receives publications

There are usually multiple publishers and subscribers in a publish/subscribe
system, and there can be multiple brokers as well. Publishers can also be
subscribers.

The following sections describe in detail the roles of the publisher, subscriber and
broker. They communicate with each other by sending messages as shown in
Figure 4.

If you are using the Message Queue Interface (MQI) to write applications, you
need to understand the MQRFH2 header (see “Chapter 4. The MQRFH2 rules and
formatting header” on page 31) that is used to send the command messages. These
messages are described in “Chapter 5. Publish/subscribe command messages” on
page 41, together with details of the message descriptor (MQMD) used when
sending the messages.

If you are using the Application Messaging Interface (AMI) to write applications,
you don’t need to understand the details of the MQMD and MQRFH2 header.
After you have read this chapter, you might find it useful to look at “Chapter 5.
Publish/subscribe command messages” on page 41 to see what options are
available for each command. Then turn to the MQSeries Application Messaging
Interface, SC34-5604 book.

Broker

Publisher

Publish
Delete Publication

Response
Subscriber

Publish

Register Subscriber
Deregister Subscriber

Request Update

Response

Figure 4. Communication between publisher, subscriber, and broker. The publisher can send Publish or Delete
Publication messages to the broker. The broker forwards the Publish message to subscribers that have a matching
subscription. The subscriber can send Register Subscriber, Deregister Subscriber, or Request Update messages to the
broker. Optional Response messages from the broker are sent to the publisher and subscriber.

Publish/subscribe messaging

14 MQSeries Integrator Programming Guide

The publisher
The publishing application sends a Publish command message (see page 48) to the
input queue of a message flow that contains a Publication node. The input queue
is defined as a property of the Input node of the message flow, the SCADA Device
Protocol uses port numbers instead of queues. The publisher must have authority
(set by MQSeries) to put a message to this queue. It must also have access
authority (set by the MQSeries Integrator system administrator) to publish on the
topic or topics that are specified for this publication.

The command is contained within a <psc> folder in the NameValueData field of the
MQRFH2 header. The publication data is in the body of the message, following the
MQRFH2 header. The contents of the publication data are (optionally) described in
an <mcd> folder in the NameValueData field of the header, so that content-based
filtering can be applied to this publication.

Topics
The topic that describes the publication is specified in the Publish message. Topics
can be defined statically by the system administrator (see MQSeries Integrator Using
the Control Center). In addition, if permitted by the system administrator, they can
be defined dynamically in a Publish message. Subscriber access to publications is
controlled by the system administrator on a topic basis.

Topic names are case sensitive. A topic name can contain any of the characters in
the Unicode character set, including the space character, but it is recommended
that topic names do not use the null character. Three characters have special
meanings: the separator (/), the multi-level wildcard (#) and the single-level
wildcard (+).

The separator (/) is used to denote levels within a topic name, for example
employee/hire/development. This enables a hierarchy of topics to be used.

Note that publishers must specify a complete topic name, without wildcards.

It is permissible to specify more than one topic for a publication.

The topic string is not limited in length. However, topic strings become less
efficient as they become longer or have more levels.

Retained publications
Publishers can specify that a publication is retained by the broker. Normally, a
publication is discarded as soon as the broker has sent it to all of its current
subscribers. If RetainPub is specified as a publication option in the Publish
message, the publication is retained by the broker. It will replace any previously
retained publication for that topic.

State and event information
Retained publications are useful for information about the current state of
something, such as the price of stock or the score in a soccer match. When the
stock price (or the score) changes, the previous state information is no longer
needed. In contrast, publications about individual events contain information such
as the sale of some stock, or the scoring of a particular goal. Each of these events is
independent of other events.

The publisher

Chapter 3. Writing publish/subscribe applications 15

When to use retained publications
Retained publications do not have to be used for state information. If all the
subscriptions for a topic are in place before any publications are made, it is not
necessary to retain the publication. Another reason is if state information is
published at frequent intervals (for example, every few seconds). On the other
hand, if publications are retained, a subscribing application that fails can request
the current retained publication using the Request Update command message (see
page 54) after a restart. (Otherwise, it might need to store a local copy of messages
received.) See “Sample application” on page 26.

Because a retained publication is stored by each broker that has a subscription for
its topic, there are performance and storage implications to be considered,
especially if the publications are large.

Mixed publications
Mixing retained and non-retained publications on the same topic is not
recommended but, if applications do this and publish a non-retained publication,
any existing retained publication for that topic is still retained.

It is not recommended for two or more applications to publish retained
publications to the same topic. If they do and the timing is close to simultaneous,
it is indeterminate which publication is retained. If these publishers use two
different brokers, it is possible that different retained publications for the same
topic could be held at each broker.

Expiry of retained publications
Use the Expiry field of the message descriptor (MQMD) to set an expiry interval
for a retained publication.

Deleting a retained publication
Retained publications can be deleted by sending a Delete Publication command
message (see page 42) to the broker. It must be sent to the same input queue as the
corresponding publication to be deleted. Authority to issue this command message
is the same as the authority needed to publish messages for the specified topics.

Note that if different publishers publish information on the same topics, the
information that is deleted might have originated from a different publisher. In fact
a retained publication can be deleted by any user, subject to appropriate authority.

Local publications
Publishers can publish locally (by specifying the Local option) or globally (the
default case). Local publications are not forwarded to other brokers, and are
received only by subscribers registered at the same broker (whether those
subscriptions specified Local or not). Local retained publications are retained only
at this broker. It is acceptable for applications to publish and subscribe locally and
globally (including retained publications) to the same topic at different brokers;
each broker will deal with them in isolation from the other brokers where
necessary.

Deleting a local publication
Note that a message published locally can be deleted by a global Delete
Publication command (that is, without the Local option). Similarly, a message
published globally can be deleted at the local broker by a local Delete Publication
command, in which case the message will be absent from that one broker.
Therefore, care should be taken if using local and global publications on the same
topic.

The publisher

16 MQSeries Integrator Programming Guide

Conference-type applications
The OtherSubsOnly (other subscribers only) option allows simpler processing of
conference-type applications, where a number of individual applications all publish
and subscribe to the same topic (such as ‘Conference’). Normally this means that
each application will receive its own publications, since it has a matching
subscription.

If this option is specified, it tells the broker not to send the publication to the
subscriber queue associated with that application, so that an application can
publish information into the conference without receiving that information itself.

Message ordering
Messages can be published by brokers in the same order as they are received from
publishers, depending on the setting of the “order mode” property of an Input
node (provided, of course, that the publisher sends all its publications on a given
topic to the same input queue). This normally means that each subscriber receives
messages from a particular broker, on a particular topic, from a particular
publisher, in the order that they are published by that publisher. MQSeries
Everyplace and SCADA input nodes do not have this property.

However, as with all MQSeries messages, it is possible for messages to be
delivered out of order. This could happen:
v If additional instances of the message flow are running.
v If a link in the network goes down and subsequent messages are rerouted along

another link.
v If a queue becomes temporarily full, or put-inhibited. In this case a message is

put to a dead-letter queue and therefore delayed, while subsequent messages
might pass straight through.

If you need to ensure that your messages are delivered in the correct order in all
circumstances, you can use one of the following strategies:
v A sequence number parameter (SeqNum). A publisher can include this with each

message in the <psc> folder, increasing the value by one for each successive
message that it publishes for the same topic. The broker does not check or set
this parameter; the responsibility for it lies with the publisher. The number can
be checked by the subscriber, which needs to remember the last sequence
number it received for that topic.

v A publish timestamp parameter (PubTime). A publisher can include this with each
message <psc> folder (with or without the sequence number parameter). This is
particularly useful if subscribers are only interested in the latest information;
they can check whether the timestamp is greater than that of the last Publish
message that they processed.

The publisher and subscriber might need to remember the sequence number or
publish timestamp atomically with issuing or receiving a publication. This can be
accomplished by saving the information on a queue, using the same unit-of-work
as the one in which the publication is put or retrieved (see “Persistence and units
of work” on page 24).

Publishing messages without an MQRFH2 header
Messages that have not been built by a publisher as described in “The publisher”
on page 15, and therefore do not contain an MQRFH2 header, can also be sent to

subscribers even though the messages do not have the usual information needed to

The publisher

Chapter 3. Writing publish/subscribe applications 17

make a routing decision. This is done by setting the Topic property on the input
node. If a message arrives at the input node’s queue and does not have an
MQRFH2 header that contains a <psc> folder, the message is treated as if it was a
Publish command with this default topic. The message will be sent to subscribers
who have registered for the default topic. If a subscriber has included a filter as
part of the registration, this will also be applied to a message of this type.

Notes:

1. The default topic will not be added to the message; the message is processed as
if it contained the topic. The subscriber will receive the original message with
no MQRFH2 <psc> folder.

2. This type of message is handled as if it were declared with the ‘local’ publish
option. The message will not be forwarded to neighboring brokers, even if they
have subscribers registered on matching topics.

3. Response messages will not be sent to publishing applications that produce
messages in this way, even if the MQMD is set to imply that responses should
be sent.

4. Existing MQSeries Publish/Subscribe applications that use MQRFH format
subscriptions will not receive these messages.

The subscriber
The subscribing application sends a Register Subscriber command message (see
“Register Subscriber” on page 51) to the broker, to specify what publications it
wants to receive (defined by topic, filter, and subscription point) and the queue for
receiving the publications (the subscriber queue). The command is contained
within a <psc> folder in the NameValueData field of the MQRFH2 header.

The command message is sent to the control queue at the broker. This is the
SYSTEM.BROKER.CONTROL.QUEUE (which is compatible with MQSeries
Publish/Subscribe applications). The subscriber must have authority (set by
MQSeries) to put a message to this queue and to the subscriber queue. It must also
have access authority (set by the MQSeries Integrator system administrator) for the
topic or topics that are registered in this subscription.

Subscriptions
A subscription consists of the following:
v One or more topics. Wildcards can be used.
v An optional subscription point.
v An optional filter on the contents of the publication message.
v A subscriber queue, queue manager, and optional CorrelId.

When the broker receives a publication that matches the topic, subscription point,
and filter, it forwards the publication to the subscriber queue (unless the subscriber
registered with the ‘publish on request only’ option, as explained in “Retained
publications” on page 21).

Topics and wildcards
Topics associated with publications are described in “Topics” on page 15. Multiple
topics can be specified in subscriptions, and wildcards can be used.

The multi-level wildcard (#) matches any number of levels (including zero). It can
be used only at the beginning or end of a topic name string.

The publisher

18 MQSeries Integrator Programming Guide

The single-level wildcard (+) matches exactly one level. It can be used anywhere in
a topic name string. However, MQSeries Integrator is optimized for wildcards at
the end of the topic name. It is therefore recommended that applications structure
their topics into subject trees, so that subscribers can subscribe to sub-trees by
placing the multi-level wildcard at the end.

An additional level of selection can be achieved using a filter on the topic name.
See “Filters”.

Note: It is recommended that subscriptions to ‘#’ are avoided where possible,
because, in a multi-broker environment, they will cause a greater proportion
of publications to be sent between brokers.

Subscription points
A subscription point is the name by which subscribers access publications at one or
more Publication nodes.

Each Publication node has one subscription point name, and different Publication
nodes can share the same name. A subscriber registering a subscription to a
particular subscription point will receive publications from all of the Publication
nodes that have the specified subscription point name. This applies to all message
flows running in the broker, and to all brokers connected in the network (except
for local publications).

By default, Publication nodes have a null subscription point name, and subscribers
that do not specify a subscription point when they register will receive
publications from all such nodes.

It is recommended that you use the default subscription point where possible. The
use of non-default subscription point names requires extra processing and might,
therefore, impact the performance of your broker network.

The subscription point name must not be more than 64 characters in length.

Filters
You can specify a content-based filter to select publications according to their
contents, in addition to specifying a topic and subscription point. MQSeries
Integrator needs to know the structure of the message in order to parse its contents
correctly. (The structure is defined by the domain, set, type and format, as
described in “Message service folders” on page 38). This can be achieved in a
number of ways:
v The message is a self-defining XML message.
v The message is defined by an <mcd> folder in the MQRFH2 header (see page 38).
v Otherwise, the message is assumed to be as defined in the properties of the

input node.

The filter itself is entered as an expression with ESQL syntax, for example:
Body.Name LIKE 'C%'

This means that the contents of a field called “Name” in the body of the input
message (that is, the publication data that follows the MQRFH2 header) will be
extracted and matched against the string given in the expression. % is a wildcard,
meaning zero or more characters. If the name in the message starts with ‘C’, the
expression evaluates to TRUE and so the publication will be sent to the subscriber.

The subscriber

Chapter 3. Writing publish/subscribe applications 19

For more details about filters, see “Appendix A. Using filters in content-based
routing” on page 169.

Subscriber queues
A publication is delivered to the queue and queue manager specified by the
subscriber either by specifying the <QName> and <QMgrName> properties in the
Register Subscriber command message, or by using values taken from the MQMD
(which is the default). This is the subscriber queue.

If required, the subscriber queue can be a temporary dynamic queue. In this case,
the broker will deregister the subscription automatically if the queue is deleted (for
example, when the subscriber disconnects from the queue manager). For optimal
broker performance, it is recommended that subscribing applications deregister
their subscriptions before terminating. If the application fails to deregister, the
broker will automatically remove the subscriptions when it sees that the queue has
been deleted. Note that automatic deregistration will not work if:
v The dynamic temporary queue is not local (that is, it is not on the same queue

manager on which the broker is running)
v The subscriber has named a queue that is an alias of a local temporary dynamic

queue

A correlation identifier can be included if required. This allows several applications
to share a queue, which might be desirable if there are many clients. It also allows
a single application to distinguish between publications arising from different
subscriptions.

In general, if a subscribing application has more than one subscription that
matches a publication, only one copy of the publication is sent to it. However, if it
registered with different subscriber identifiers (a combination of the MQSeries
queue, queue manager, and optional correlation identifier), more than one copy
might be sent to the application.

The subscriber queue should not in general be the same as any defined in a
message flow, because this would cause the published message to be republished.
However, such a restriction is not imposed by the broker, and it is possible to use
this behavior to chain message flows together dynamically.

Registration
A subscriber can register multiple times with the same or different brokers as
necessary. An application can be both a subscriber and a publisher.

An existing subscriber can re-register in order to increase the range of topics,
subscription points, or filters for which it wants to receive information. Similarly it
can change its registration options or expiry time for a given combination of topic,
subscription point and filter for which it is already registered. Only the application
that originally registered a subscription can update it.

Note: When registering again, unspecified options are assumed to take their
default values; they do not remain unchanged.

Local subscriptions
A subscriber can specify the Local option when registering a subscription. In this
case the broker does not forward the subscription to other brokers in the network.
The subscriber will not receive publications that are published to other brokers,
only those published to the broker at which it registers its subscription.

The subscriber

20 MQSeries Integrator Programming Guide

Subscription expiry
The Expiry interval in the message descriptor (MQMD) of the Register Subscriber
command message determines when the subscription expires. If this is set to
MQEI_UNLIMITED, the subscription does not expire. If a subscription is
re-registered, the subscription’s expiry time is updated to the value of Expiry in
the MQMD of the re-registration message.

Deregistration
One or more subscriptions for a particular subscriber can be deregistered using the
Deregister Subscriber command message (see page 45). This is sent to the broker
control queue, SYSTEM.BROKER.CONTROL.QUEUE. The message must be sent
by the subscriber that registered the subscription in the first place.

There are other ways in which a subscription can be deregistered:
v The subscription expires, as explained above.
v A system administrator deregisters the subscription (see MQSeries Integrator

Using the Control Center).
v If the subscriber queue is a temporary dynamic queue, and the queue is deleted

(for example, when the subscriber disconnects from the queue manager), the
broker will deregister the subscription automatically. However, see the
restrictions listed in “Subscriber queues” on page 20.

When a subscriber application sends a message to deregister a subscription, and
receives a response message to say that this was processed successfully, it is
possible that some publications will subsequently reach the subscriber queue if
they were being processed by the broker at the same time as the deregistration.
This might result in a buildup of unprocessed messages on the subscriber queue. If
the application does a loop that includes an MQGET call with the appropriate
CorrelId after sleeping for a while, any such messages will be cleared off the
queue.

Similarly, if the subscriber uses a permanent dynamic queue and, when
completing, it deregisters and closes the queue with the PurgeandDelete option, it
is possible that the queue will not be empty. This is because publications from the
broker might not yet be committed at the time that the queue was deleted. In this
case, a Q_NOT_EMPTY return code will be issued by the MQCLOSE call. The
application can avoid this problem by sleeping and reissuing the MQCLOSE call
from time to time.

Retained publications
Retained publications are normally sent directly to subscribers that have matching
subscriptions. A new subscriber will be sent the current retained publication
immediately after registering, unless it specified the NewPubsOnly option when it
registered the subscription (in which case only new publications are sent to it).

If a subscriber registers with the PubOnReqOnly option (publish on request only) the
subscriber will not receive the current retained publication until it sends a Request
Update command message to the broker control queue
SYSTEM.BROKER.CONTROL.QUEUE (see page 54). Note that with this option the
subscriber will not receive any non-retained publications.

A subscriber that did not register with PubOnReqOnly can also use Request Update
at any time. This might be necessary if the subscriber had already received the
publication in the normal way, but had failed without saving it, and on restart
wants to receive it again.

The subscriber

Chapter 3. Writing publish/subscribe applications 21

A subscriber can request to be informed if the subscriber is being told that the
publication was sent to it as a result of a subscriber request update operation.
Normal publications (even retained ones) will not have IsRetainedPub set. This is
done by specifying the InformIfRet option in the Register Subscriber message.
The broker will then set the IsRetainedPub publication option in the Publish
message when it forwards a retained publication to the subscriber.

Flow of publish/subscribe messages
Figure 5 shows the flow of messages in a simple publish/subscribe system with no
retained publications. It is assumed that a message flow consisting of at least one
input node and a Publication node has been set up in the broker. The input queue
in the diagram relates to this input node. It is also assumed that the subscriber
registers its subscription to the same topic that the publisher is using. Note that the
subscriber does not receive publications that were published before it registered its
subscription.

Broker

Publisher

Subscriber

1 - publish 4 - publish

3 - publish

2 - subscribe

Input
queue

Subscriber
queue

Control
queue

5

Figure 5. Publish/subscribe without retained publications. The publisher sends a publication to the input queue (1). The
subscriber does not receive this publication because it has not yet registered a subscription. After it subscribes (2), the
next publication (3) is sent to the subscriber queue (4), from where the subscriber can get it (5).

Broker

Publisher

Subscriber

1 - publish 3 - publish

2 - subscribe

Input
queue

Subscriber
queue

Control
queue

4

Figure 6. Using retained publications. The publisher sends a retained publication to the broker (1). When the
subscriber registers (2), the current retained publication is sent to the subscriber queue (3), from where the subscriber
can get it (4). Subsequent publications will be sent to the subscriber straightaway.

The subscriber

22 MQSeries Integrator Programming Guide

Figure 6 on page 22 shows the use of retained publications. In this case the
subscriber receives a retained publication that was published before the subscriber
registered its subscription.

In Figure 7, the subscriber registers its subscription with the PubOnReqOnly option,
so it does not receive the retained publication until it sends a Request Update
message to the broker (by which time the earlier retained publication has been
replaced by a later one).

Note: The figures assume that the publishers and subscribers have not requested
responses from the broker.

The role of the broker
The broker forwards Publish messages to subscribers, for publications that match
each subscription (defined by topic, filter, and subscription point). The publications
are sent to the subscriber queue as defined in the Register Subscriber command
message.

Unless the Local option is specified, a broker sends subscription registrations to
other brokers in the network. Matching publications will then be forwarded to that
broker for distribution to its subscribers.

Only one copy of a publication is sent to each subscriber, regardless of how many
matching subscriptions that subscriber has (unless it registered with different
subscriber queues or correlation identifiers).

Publications sent from brokers have their message descriptor changed. Refer to
“MQMD for publications forwarded by a broker” on page 59.

Broker response messages
The broker can send a message to a publisher or subscriber in response to a
command message. A response message has a similar format to a command
message, but it is contained in a <pscr> folder in the NameValueData field of the
MQRFH2 header.

Broker

Publisher

Subscriber

1 - publish 5 - publish

3 - publish

2 - subscribe

4 - request
update

Input
queue

Subscriber
queue

Control
queue

6

Figure 7. Publish on request only. The subscriber registers a subscription with ″publish on request only″ (2). Although
there is a current retained publication (1), it is not sent to the subscriber until it uses ″request update″ (4). By this time,
the retained publication has been replaced by a new publication (3) which is sent to the subscriber queue (5), from
where the subscriber can get it (6).

Flow of messages

Chapter 3. Writing publish/subscribe applications 23

The response message is sent to the queue identified by the ReplyToQ and
ReplyToQMgr fields in the message descriptor (MQMD) of the command message.
The persistence of the response message is set to the same value as for the
command message. If the ReplyToQ is a temporary dynamic queue, the command
message must be non-persistent. The MsgType and Report fields in the MQMD,
together with the success or failure of the command, determine whether the
response message is sent.

The broker can generate three types of response:

ok The command completed successfully

warning The command was only partially successful

error The command failed

For further details, see “Broker Response” on page 56.

Brokers do not request publishers or subscribers to generate responses to messages
from the broker.

Broker restarts
Subscription registrations and retained publications are maintained across broker
restarts. After a restart, any subsequent publications for the specified topics will be
forwarded to the application. In addition, if the broker has any retained
publications for these topics, the application can request to receive them after the
restart using Request Update.

Persistence and units of work
Subscriber registration messages should normally be sent as persistent messages.

Brokers maintain the persistence and priority of publications as set by the
publisher, unless changed by options in the Register Subscriber command (see
page 51), or by the Access Control List (see MQSeries Integrator Using the Control
Center). Publications will be delivered as non-persistent messages if the ‘Persistent’
flag in the Access Control List is set to False (the default is True), regardless of the
persistence set by the publisher or the subscriber.

If a publication matches more than one subscription for an application, the
persistence of the publication delivered to the subscriber queue is determined
according to the following rules:

Subscription persistence Resulting publication persistence

All subscriptions are non-persistent (regardless of the
publication persistence), or persistent as publisher
and the publication is non-persistent

Non-persistent

At least one subscription is set to persistence as
queue, all others are as above

Persistence as queue

At least one subscription is persistent (regardless of
the publication persistence), or persistent as
publisher and the publication is persistent

Persistent

Note that this table applies to the persistence options for a specific subscriber
having more than one subscription that matches the publication. The persistence

The broker

24 MQSeries Integrator Programming Guide

options for different subscribers are not merged, so it is possible for them to
receive the same publication with different persistence.

When reading messages from input queues, brokers always read persistent
messages within a unit-of-work, so that they are not lost if the broker or system
crashes. Non-persistent messages might or might not be read within a
unit-of-work, depending on the setting of the properties of the Input node.

Publication messages are treated so that publication to subscribers is once and once
only for persistent messages. For non-persistent messages, delivery to subscribers
is also once only unless SyncPointIfPersistent was specified in the queue
manager configuration file and the broker or queue manager stops abruptly. In this
case, the message might be lost for one or more subscribers. Regardless of its
persistence, however, a Publish message is never sent more than once to a
subscriber, for a given subscription (unless it is explicitly requested using the
Request Update command).

If the subscriber queue is a temporary dynamic queue, the subscription request
must specify non-persistent delivery of publications or else it will be rejected by
the broker.

Publishers and subscribers can choose whether to use a unit-of-work when
publishing or receiving messages. However, if the SequenceNumber technique
described previously is used for maintaining ordering, both publisher and
subscriber must retain sequencing information atomically with putting or getting a
message if the application is to be restartable.

The broker

Chapter 3. Writing publish/subscribe applications 25

Sample application
One of the sample applications provided with MQSeries Integrator uses
publish/subscribe to simulate a results gathering service that reports the latest
score in a sports event such as a soccer match. It receives information from one or
more instances of a soccer match simulator that scores goals at random for the two
teams. This is illustrated in Figure 8.

Refer to the MQSeries Integrator Installation Guide for your specific system for
details of where to find this sample application.

The match simulator does not keep track of the score. It merely indicates when a
match starts or finishes, and when a goal is scored. These events are published to
three different topics on the MQSI_SOCCER_PUBLICATION_QUEUE queue.
v When a match starts, the names of the teams are published on the

Sport/Soccer/Event/MatchStartedtopic.
v When a goal is scored, the name of the team scoring the goal is published on the

Sport/Soccer/Event/ScoreUpdate topic.
v When a match ends, the names of the teams are published on the

Sport/Soccer/Event/MatchEnded topic.

The publications on these topics are not retained, as they contain event information
and not state information.

The results service subscribes to the topic Sport/Soccer/Event/# to receive
publications from any matches that are in progress. It keeps track of the current
score in each match, and whenever there is a change it publishes the score as a
retained publication on the following topic:
Sport/Soccer/State/LatestScore/Team1 Team2,

where Team1 and Team2 are the names of the teams in the match.

Figure 8. The results service application. The results service subscribes to the topics ″match started″, ″score update″
and ″match ended″ (1). When the match simulators publish event information on these topics (2), the publications are
forwarded to the results service queue (3), from where the results service application gets them (4). The results
services then publishes the latest scores (which are state information) as retained publications (5).

Sample application

26 MQSeries Integrator Programming Guide

A subscriber wanting to receive all the latest scores could register a wildcard
subscription to the following topic:
Sport/Soccer/State/LatestScore/#

If it was interested in one particular team only, it could register different wildcard
subscriptions to the following topics:
Sport/Soccer/State/LatestScore/MyTeam/+
Sport/Soccer/State/LatestScore/+/MyTeam

Note that the results service must be started before the match simulators, otherwise
it might miss some events and hence not be able to ascertain the current state in
each match. This is usually the case with event publications, in which subscriptions
are static and need to be in place before publications arrive.

If it stops while matches are still in progress the results service can find out the
state of play when it restarts. This is done by subscribing to its own retained
publications using the the Sport/Soccer/State/LatestScore/# topic, with the
‘Publish on Request Only’ option. A Request Update command is then issued to
receive any retained publications which contain latest scores.

These publications enable the results service to reconstruct its state as it was when
it stopped. It can then process all events that occurred while it was stopped by
processing the subscription queue for the Sport/Soccer/Events/# topic. Because
the subscription will still be registered (no Deregister Subscriber message has
been sent) it will include any event publications that arrived while the results
service was inactive.

This sample program illustrates the following aspects of a publish/subscribe
application:
v Event information (not retained).
v State information (retained publication).
v Wildcard matching of topic strings.
v Multiple publishers on the same topics (non-retained publications only).
v The need to subscribe to a topic before it is published on (non-retained

publications).
v A subscriber continuing to be sent publications when that subscriber (not its

subscription) is interrupted.
v The use of retained publications to recover state after a subscriber failure.

Sample application

Chapter 3. Writing publish/subscribe applications 27

Using the AMI in publish/subscribe applications
The MQSeries Application Messaging Interface (AMI) has functions to generate a
number of publish/subscribe command messages, and to receive a publication
from the broker. The name of the function (or method) depends on the
programming language being used (C, COBOL, C++, or Java). In the case of C and
COBOL there are two interfaces: a high-level interface that is procedural in style
and a lower-level object-style interface. In C++ and Java, a single object interface is
provided.

The AMI can be downloaded free from the Internet, complete with sample
applications that demonstrate how to use its publish/subscribe function. See
support Pac number MQ0F.
http://www.ibm.com/software/mqseries/txppacs/

AMI publish/subscribe functions

Publish command
C high-level / object amPublish / amPubPublish

COBOL high-level / object AMHPB / AMPBPB

C++ AmPublisher->publish

Java AmPublisher.publish

Register Subscriber command
C high-level / object amSubscribe / amSubSubscribe

COBOL high-level / object AMHSB / AMSBSB

C++ AmSubscriber->subscribe

Java AmSubscriber.subscribe

Deregister Subscriber command
C high-level / object amUnsubscribe / amSubUnsubscribe

COBOL high-level / object AMHUN / AMSBUN

C++ AmSubscriber->unsubscribe

Java AmSubscriber.unsubscribe

Receive a publication
C high-level / object amReceivePublication / amSubReceive

COBOL high-level / object AMHRCPB / AMSBRC

C++ AmSubscriber->receive

Java AmSubscriber.receive

These functions have parameters that enable you to specify some of the properties
in the command message, such as the topic. Other properties in the command
message are specified by the AMI service and policy that you use to send the
message. Services and policies are set up by the system administrator. For example,
the subscriber service that you use in a publish/subscribe application specifies a
sender service point and a receiver service point. These in turn define the queues
that are used to send subscription requests to the broker, and to receive

Using the AMI

28 MQSeries Integrator Programming Guide

publications from the broker (the service points must have a Service Type of
‘MQSeries Integrator V2’). The publish and subscribe attributes of the policy you
use in a publish/subscribe application specify options such as the use of retained
publications, and which subscription point to use.

If required, you can modify the properties in the command message by changing
the appropriate name/value elements before sending the message. Helper
functions are provided for this purpose. Details of these name/value elements and
the options that are available for each command are given in “Chapter 5.
Publish/subscribe command messages” on page 41.

There are no AMI functions to generate Delete Publication or Request Update
command messages directly. You have to construct a message containing the
appropriate name/value elements using the helper functions provided, and then
send the message to the broker.

Refer to the MQSeries Application Messaging Interface book for details of how to use
the functions mentioned above (including the name/value element helper
functions).

Using the AMI

Chapter 3. Writing publish/subscribe applications 29

Using the AMI

30 MQSeries Integrator Programming Guide

Chapter 4. The MQRFH2 rules and formatting header

The MQRFH2 header is used to pass messages to and from the MQSeries
Integrator broker. The MQRFH2 header follows the MQSeries message descriptor
(MQMD) and precedes the message body (if present). Other headers, such as the
IMS/ESA® or CICS® bridge headers, are allowed before or after the MQRFH2
header.

If you are using the Message Queuing Interface (MQI) to write application
programs, you need to understand this header. In addition, if your application uses
the publish/subscribe model, you should read “Chapter 5. Publish/subscribe
command messages” on page 41.

For information about the MQSeries Integrator SCADA Device Protocol please
refer to “Appendix B. MQSeries Integrator SCADA Device Protocol” on page 177.
Information about MQSeries Everyplace can be found in “Appendix C. MQSeries
Everyplace Nodes” on page 209

MQRFH2 Structure
The following table summarizes the fields in the structure.

Table 1. Fields in MQRFH2

Field Description Page

StrucId Structure identifier 32

Version Structure version number 32

StrucLength Total length of MQRFH2 including NameValueData 32

Encoding Numeric encoding of data that follows
NameValueData

33

CodedCharSetId Character set identifier of data that follows
NameValueData

33

Format Format name of data that follows NameValueData 33

Flags Flags 33

NameValueCCSID Character set identifier of NameValueData 33

NameValueLength Length of NameValueData. Can be repeated as
many times as required.

34

NameValueData Name/value data. Can be repeated as many times
as required.

34

Purpose:

The MQRFH2 structure contains information about the structure and intended
consumers of a message that allows an MQSeries Integrator broker to process it
and to deliver or publish it to those consumers.

Format name:

© Copyright IBM Corp. 2000, 2001 31

This is the value that should be put in the Format field of the preceding header
(usually the MQMD). The value is MQRFH2 (two trailing blank characters are
included). MQFMT_RF_HEADER_2 is a constant defined to hold this value.

For the C programming language, the constant MQFMT_RF_HEADER_2_ARRAY
is also defined; this has the same value as MQFMT_RF_HEADER_2, but is an
array of characters instead of a string.

Character set and encoding:

The character set and encoding of the fields in the MQRFH2 are as follows:
v Fields other than NameValueData are in the character set and encoding given by

the CodedCharSetId and Encoding fields in the header structure that precedes the
MQRFH2, or by those fields in the MQMD structure if the MQRFH2 is at the
start of the application message data. The character set should be one that has
single-byte characters for the characters that are valid in queue names.

v NameValueData is in the character set given by the NameValueCCSID field. Only
certain Unicode character sets are valid for NameValueCCSID (see the description
of NameValueCCSID for details).
Some character sets have a representation that is dependent on the encoding. If
NameValueCCSID is one of these character sets, NameValueData must be in the
same encoding as the other fields in the MQRFH2.

v The user data (if any) that follows NameValueData can be in any supported
character set (single-byte, double-byte, or multi-byte), and any supported
encoding.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQRFH_STRUC_ID
Identifier for rules and formatting header structure.

For the C programming language, the constant
MQRFH_STRUC_ID_ARRAY is also defined; this has the same value as
MQRFH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQRFH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQRFH_VERSION_2
Version-2 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_2.

StrucLength (MQLONG)
Total length of MQRFH2 including NameValueData.

This is the length in bytes of the MQRFH2 structure, including the
NameValueLength and NameValueData fields at the end of the structure. It is
valid for there to be multiple pairs of NameValueLength and NameValueData
fields at the end of the structure, in the sequence: length1, data1, length2,

32 MQSeries Integrator Programming Guide

data2, StrucLength does not include any user data that may follow the last
NameValueData field at the end of the structure.

StrucLength must be set to a multiple of four; otherwise, problems with data
conversion of the user data might occur in some environments.

The following constant gives the length of the fixed part of the structure, that
is, the length excluding the NameValueLength and NameValueData fields:

MQRFH_STRUC_LENGTH_FIXED_2
Length of fixed part of MQRFH2 structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED_2.

Encoding (MQLONG)
Numeric encoding of data that follows NameValueData.

This specifies the representation used for numeric values in the data (if any)
that follows the last NameValueData field. This applies to binary integer data,
packed-decimal integer data, and floating-point data.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
Character set identifier of data that follows NameValueData.

This specifies the coded character set identifier of character strings in the data
(if any) that follows the last NameValueData field. The following special value
can be specified:

MQCCSI_INHERIT
Inherit character-set identifier of current structure.

Character data in the data that follows the current structure is in the
same character set as the current structure.

The initial value of this field is MQCCSI_INHERIT.

Format (MQCHAR8)
Format name of data that follows NameValueData.

This specifies the format name of the data (if any) that follows the last
NameValueData field.

The name should be padded with blanks to the length of the field. Do not use
a null character to terminate the name before the end of the field, because the
queue manager does not change the null and subsequent characters to blanks
in the MQRFH2 structure. Do not specify a name with leading or embedded
blanks.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
Flags.

The following value must be specified:

MQRFH_NONE
No flags.

The initial value of this field is MQRFH_NONE.

NameValueCCSID (MQLONG)
Character set identifier of NameValueData.

MQRFH2 — Fields

Chapter 4. The MQRFH2 rules and formatting header 33

This specifies the coded character set identifier of the data in the
NameValueData field. This is different from the character set of the other strings
in the MQRFH2 structure, and can be different from the character set of the
data (if any) that follows the last NameValueData field at the end of the
structure.

NameValueCCSID must have one of the following values:

CCSID Description
1200 UCS-2 open-ended
13488 UCS-2 2.0 subset
17584 UCS-2 2.1 subset (includes the euro symbol)
1208 UTF-8

For the UCS-2 character sets, the encoding (byte order) of the NameValueData
must be the same as the encoding of the other fields in the MQRFH2 structure.
Surrogate characters (X'D800' through X'DFFF') are not supported.

The initial value of this field is 1208.

The following two fields are optional, but if present they must occur as a pair.
They can be repeated as a pair as many times as required, that is, if they occur
multiple times they must occur in the sequence: length1, data1, length2, data2,

Note: Because these fields are optional, they are omitted from the declarations of
the structure that are provided for the various programming languages
supported.

NameValueLength (MQLONG)
Length of NameValueData.

This specifies the length in bytes of the data in the NameValueData field. To
avoid problems with data conversion of the data (if any) that follows the
NameValueData field, NameValueLength should be a multiple of four.

NameValueData (MQCHARn)
Name/value data.

This is a variable-length character string containing data encoded using an
XML-like syntax. The length in bytes of this string is given by the
NameValueLength field that precedes the NameValueData field. This length
should be a multiple of four.

Note: Because the length of NameValueData is not fixed, the field is omitted
from the declarations of the structure that are provided for the various
programming languages supported.

The string consists of a single “folder” that contains zero or more properties.
The folder is delimited by XML start and end tags whose name is the name of
the folder:
<folder> property1 property2 ... </folder>

Characters following the folder end tag, up to the length defined by
NameValueLength, must be blank. Within the folder, each property is composed
of a name and a value, and optionally a data type:
<name>value</name>

In these examples:

MQRFH2 — Fields

34 MQSeries Integrator Programming Guide

v The delimiter characters (<, =, ", /, and >) must be specified exactly as
shown.

v name is the user-specified name of the property; see below for more
information about names.

v value is the user-specified value of the property; see below for more
information about values.

v Blanks are significant between the > character which precedes a value, and
the < character which follows the value. Elsewhere, blanks can be coded
freely between tags, or preceding or following tags (for example, in order to
improve readability); these blanks are not significant.

v You must not use null as a pad character.

If properties are related to each other, they can be grouped together by
enclosing them within XML start and end tags whose name is the name of the
group:
<folder> <group> property1 property2 ... </group> </folder>

Groups can be nested within other groups, without limit, and a given group
can occur more than once within a folder. It is also valid for a folder to contain
some properties in groups and other properties not in groups.

Names of properties, groups, and folders: Names of properties, groups, and
folders must be valid XML tag names, with the exception of the colon
character, which is not permitted in a property, group, or folder name. In
particular:
v Names must start with a letter or an underscore. Valid letters are defined in

the W3C XML specification, and consist essentially of Unicode categories Ll,
Lu, Lo, Lt, and Nl.

v The remaining characters in a name can be letters, decimal digits,
underscores, hyphens, or dots. These correspond to Unicode categories Ll,
Lu, Lo, Lt, Nl, Mc, Mn, Lm, and Nd.

v The Unicode compatibility characters (X'F900' and above) are not permitted
in any part of a name.

v Names must not start with the string XML in any mixture of upper or lower
case.

In addition:
v Names are case-sensitive. For example, ABC, abc, and Abc are three different

names.
v Each folder has a separate name space. As a result, a group or property in

one folder does not conflict with a group or property of the same name in
another folder.

v Groups and properties occupy a single name space within a folder. As a
result, property cannot have the same name as a group within the folder
containing that property.

Generally, programs that analyze the NameValueData field should ignore
properties or groups that have names that the program does not recognize,
provided that those properties or groups are correctly formed.

Values of properties: The value of a property can consist of any characters,
except as detailed below:
v If the value contains any of the following characters, each occurrence of the

character must be replaced by the corresponding escape sequence:

MQRFH2 — Fields

Chapter 4. The MQRFH2 rules and formatting header 35

Character
Escape sequence

& &
< <

v The following escape sequences are also defined, but their use is optional:

Character
Escape sequence

> >
" "
' '

Note: The & character at the start of an escape sequence must not be replaced
by &. For example:
<Filter>"Body.Field1"<> '&apos;hello'</Filter>

which translates as:
<Filter>"Body.Field1"<> '&hello'</Filter>

Initial values
Table 2. Initial values of fields in MQRFH2

Field name Name of constant Value of constant

StrucId MQRFH_STRUC_ID 'RFH.' (See note 1)

Version MQRFH_VERSION_2 2

StrucLength MQRFH_STRUC_LENGTH_FIXED_2 36

Encoding MQENC_NATIVE See note 2

CodedCharSetId MQCCSI_INHERIT -2

Format MQFMT_NONE '........'

Flags MQRFH_NONE 0x00000000

NameValueCCSID None 1208

Notes:

1. The symbol ‘.’ represents a single blank character.

2. The value of this constant is environment-specific.

3. In the C programming language, the macro variable MQRFH2_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for the
fields in the structure:

MQRFH2 MyRFH2 = {MQRFH2_DEFAULT};

Definition for the C programming language
This structure is defined in the cmqc.h header file, supplied with MQSeries. The
constants that are used within the NameValueData field are defined in the BipRfc.h
header file, supplied with MQSeries Integrator.
typedef struct tagMQRFH2 {

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG StrucLength; /* Total length of MQRFH2 including

NameValueData */
MQLONG Encoding; /* Numeric encoding of data that follows

NameValueData */

MQRFH2 — Fields

36 MQSeries Integrator Programming Guide

MQLONG CodedCharSetId; /* Character set identifier of data that
follows NameValueData */

MQCHAR8 Format; /* Format name of data that follows
NameValueData */

MQLONG Flags; /* Flags */
MQLONG NameValueCCSID; /* Character set identifier of NameValueData */
} MQRFH2;

Note: Because NameValueData and NameValueLength are optional fields, they are
omitted from the above definition.

C language definition

Chapter 4. The MQRFH2 rules and formatting header 37

Message service folders
The following folder names are defined for use by MQSeries products:

<mcd> Message content descriptor

<psc> Publish/subscribe command

<pscr> Publish/subscribe command response

<usr> Application (user) defined properties

Each folder is contained in a separate NameValueData field, each with a preceding
NameValueLength field.

Other names are available for use by independent software vendors. To avoid
naming problems, we recommend that vendors prefix their chosen folder name
with their internet domain name. For example, a vendor with domain name
ourcompany.com should name its folders in this way:
com.ourcompany.xxx

or
com.ourcompany.ourData

The mcd folder
The <mcd> folder can contain the following elements that describe the structure of
the message data in an MQSeries message. They are all character strings, and are
case sensitive.

<Msd> Message service domain

<Set> Message set

<Type> Message type

<Fmt> Message format

The domain element identifies how to handle the message. The syntax of the other
elements (set, type, and format) depend on the value assigned to <Msd>.

The following values for <Msd> have been allocated:

mrm MQSeries Integrator MRM-managed messages. This domain supports the
following values for <Fmt>:

xml XML representation

pdf MTI bitstream representation

CWF identifier
The custom wire format identifier that you assigned to your
message set in the Control Center.

The Set element should contain the identifier of the MRM message set to
which the message belongs (this identifier is obtained from the Control
Center). The Type element value is the identifier of the MRM message
definition (within the specified message set) to which this message belongs.

neon The message is parsed by the deprecated MQSeries Integrator Version 1
message parser. This parser is supplied for backward compatability only.
The neonmsg parser reproduces all the functionality of the neon parser and
should be used in preference in all new message flows. The values for

Message service folders

38 MQSeries Integrator Programming Guide

message set, type, and format are mapped to MQSeries Integrator Version
1 equivalents. The Type element should contain the name of the MQSeries
Integrator Version 1 message format, as defined in the MQSeries Integrator
Version 1 user interface. The Set element normally contains the name of the
MQSeries Integrator Version 1 Application Group; however, for Publication
purposes, this is not relevant and can be omitted. The Fmt element is not
used and is ignored.

neonmsg
The message is parsed by the NEONRules and NEONFormatter Support
for MQSeries Integrator message parser. The values for message set and
type are mapped to NEONFormatter equivalents. The Type element should
contain the name of the NEON Format, as defined in the NEONFormatter
user interface. If the message is intended for processing in a
NEONRulesEvaluation node then the Set element should contain the name
of the Application Group as defined in the NEONRules user interface;
otherwise it may be omitted. The Fmt element is not used and is ignored.

none The message is treated as an opaque blob, and delivered to the recipient as
is. If this domain is chosen, the set and type must not be specified.

xml The message is treated as a self-defining XML message.

An alternative to having an <mcd> folder with <Msd> set to none or XML is to set
the Format field of the MQRFH2 header to MQFMT_NONE or “xml”, respectively,
omitting the <mcd> folder completely from the MQRFH2 header in both cases.

The psc folder
The <psc> folder is used to convey publish/subscribe command messages to the
broker. Only one psc folder is allowed in the NameValueData field.

See “Chapter 5. Publish/subscribe command messages” on page 41 for full details.

The pscr folder
The <pscr> folder is used to contain information from the broker, in response to
publish/subscribe command messages. There is only one pscr folder in a response
message.

See “Broker Response” on page 56 for full details.

The broker ignores this folder in messages that it receives from publishing or
subscribing applications.

The usr folder
The content model of the <usr> folder is as follows:
v Any valid XML name can be used as an element name, providing that it doesn’t

contain a colon
v Only simple elements are permitted (no grouping)
v All elements assume a default type of string, unless modified by a dt=″xxx″

attribute
v All elements are optional, but should occur at most once in a folder
v An MQRFH2 instance can contain at most one <usr> folder

Message service folders

Chapter 4. The MQRFH2 rules and formatting header 39

Multiple MQRFH2 headers
It is possible for a message to have more than one MQRFH2 header: for instance if
one application forwards a message, including its header, to another application. In
this case, the one added later precedes the original header.
v Attributes that describe the body of the message, such as the domain, set, type,

and format, or the CCSID and encoding, are taken from the last MQRFH2
header, which must immediately precede the body of the message.

v Anything else, such as the topic for a publish/subscribe message, is taken from
the first MQRFH2 header.

Message service folders

40 MQSeries Integrator Programming Guide

Chapter 5. Publish/subscribe command messages

This chapter describes the command messages that are sent to MQSeries Integrator
in a publish/subscribe application.

If you are using the Message Queue Interface (MQI) to write applications that use
the publish/subscribe model, you need to understand these messages, and the
header described in “Chapter 4. The MQRFH2 rules and formatting header” on
page 31.

The following information is provided:
v “Delete Publication” on page 42
v “Deregister Subscriber” on page 45
v “Publish” on page 48
v “Register Subscriber” on page 51
v “Request Update” on page 54
v “Broker Response” on page 56
v “Message descriptor” on page 58
v “Reason codes” on page 61

The commands are contained in a <psc> folder in the NameValueData field of the
MQRFH2 header.

The message that can be sent by a broker in response to a command message is
contained in a <pscr> folder.

The command descriptions list the properties that can be contained in a folder.
Unless otherwise specified, the properties are optional and can occur at most once.
v Names of properties are shown thus: <Command>
v Values must be in string format, for example: Publish
v String constants representing property values are shown in parentheses, for

example (MQPSC_PUBLISH)

The commands are listed in this chapter in alphabetic order.

String constants are defined in the header file BipRfc.h, supplied with MQSeries
Integrator.

© Copyright IBM Corp. 2000, 2001 41

Delete Publication
The Delete Publication command message is sent to a broker from a publisher, or
another broker, to tell it to delete any retained publications for the specified topics.

This message is sent to the input queue of a message flow containing a
Publication node. Authority to put a message to this queue, and to publish on the
specified topic or topics, is required.

The input queue should be the same one that the original publication was sent to.

If the user has authority on some (but not all) topics, those that can be deleted will
be and a warning response will indicate those that are not deleted.

See page 58 for details of the message descriptor (MQMD) parameters needed
when sending a command message to the broker.

If a Publish command contained more than one topic, a Delete Publication
command matching some but not all of those topics deletes only the publications
for the topics specified.

Properties
<Command> (MQPSC_COMMAND)

The value is DeletePub (MQPSC_DELETE_PUBLICATION). This
property is required, and must be present.

<Topic> (MQPSC_TOPIC)
The value is a string containing a topic for which retained
publications are to be deleted. This can include wildcards to cause
publications on several topics to be deleted.

This property is required, and can optionally be repeated for as
many topics as needed.

<DelOpt> (MQPSC_DELETE_OPTION)
The delete options property can take the following value:
Local (MQPSC_LOCAL)

All retained publications for the
specified topics are deleted at the
local broker (that is, the broker to
which this message is sent),
whether they were published with
the Local option or not.
Publications at the other brokers
are not affected.

None (MQPSC_NONE)

All options take their default
values. This has the same effect as
omitting the delete options
property. If other options are
specified at the same time, None is
ignored.

Delete Publication

42 MQSeries Integrator Programming Guide

The default if this property is omitted is that all retained
publications for the specified topics are deleted at all brokers in the
network, whether they were published with the Local option or
not.

Delete Publication

Chapter 5. Publish/subscribe command messages 43

Example
Here is an example of NameValueData for a Delete Publication command message.
This is used by the sample application to delete, at the local broker, the retained
publication that contains the latest score in the match between Team1 and Team2.
<psc>
<Command>DeletePub</Command>
<Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
<DelOpt>Local</DelOpt>
</psc>

Delete Publication

44 MQSeries Integrator Programming Guide

Deregister Subscriber
The Deregister Subscriber command message is sent to a broker from a subscriber,
or another application on a subscriber’s behalf, to indicate that it no longer wishes
to receive messages matching the given parameters.

This message is sent to SYSTEM.BROKER.CONTROL.QUEUE, the broker’s control
queue. Authority to put a message to this queue is required.

See page 58 for details of the message descriptor (MQMD) parameters needed
when sending a command message to the broker.

An individual subscription can be deregistered by specifying the corresponding
topic, subscription point and filter values to the original subscription. If any of the
values were not specified (that is, they took the default values) in the original
subscription, they should be omitted in the subscription deregistration.

Alternatively, all subscriptions for a subscriber, or a group of subscriptions, can be
deregistered using the DeregAll option. For example, if DeregAll is specified,
together with a subscription point (but no topic or filter), then all subscriptions for
the subscriber on the specified subscription point are deregistered, regardless of the
topic and filter. Any combination of topic, filter and subscription point is allowed
(if all three are specified only one subscription can match, so DeregAll is ignored).

The message must be sent by the subscriber that registered the subscription in the
first place (determined by the subscriber’s user ID).

Subscriptions can also be deregistered by a system administrator (see MQSeries
Integrator Using the Control Center). If the subscriber queue is a temporary dynamic
queue and the queue is deleted, or if the subscription expires, the broker will
deregister the subscription automatically.

When a subscriber application sends a message to deregister a subscription, and
receives a response message to say that this was processed successfully, it is
possible that some publications will subsequently reach the subscriber queue if
they were being processed by the broker at the same time as the deregistration. If
the messages are not removed from the queue, there could be a buildup of
unprocessed messages on the subscriber queue. If the application does a loop that
includes an MQGET call with the appropriate CorrelId after sleeping for a while,
any such messages will be cleared off the queue. In addition the SCADA Device
Protocol has the option of clean start and finish. This means that the messages are
cleared away for the client.

Similarly, if the subscriber uses a permanent dynamic queue and, when
completing, it deregisters and closes the queue with the MQCO_DELETE_PURGE
option on an MQCLOSE call, it is possible that the queue will not be empty. This is
because publications from the broker might not yet be committed at the time that
queue was deleted. In this case, an MQRC_Q_NOT_EMPTY return code will be
issued by the MQCLOSE call. The application can avoid this problem by sleeping
and reissuing the MQCLOSE call from time to time.

Deregister Subscriber

Chapter 5. Publish/subscribe command messages 45

Properties
<Command> (MQPSC_COMMAND)

The value is DeregSub (MQPSC_DEREGISTER_SUBSCRIBER). This property is
required, and must be present.

<Topic> (MQPSC_TOPIC)
The value is a string containing the topic to be deregistered.

This property can, optionally, be repeated if multiple topics are to be
deregistered. It can be omitted if DeregAll is specified in <RegOpt>.

The topics specified can be a subset of those registered if the subscriber wishes
to retain subscriptions for other topics. Wildcards are allowed, but a topic
string containing wildcards must exactly match the corresponding string that
was specified in the Register Subscriber command message.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)
The value is a string specifying the subscription point from which the
subscription is to be detached.

This property must not be repeated. It can be omitted if a <Topic> is specified,
or if DeregAll is specified in <RegOpt>. If you omit this property, the following
happens:
v If you do not specify DeregAll, subscriptions matching the <Topic> property

(and the <Filter> property if present) are deregistered from the default
subscription point.

v If you specify DeregAll, all subscriptions (matching the <Topic> and
<Filter> properties if present) are deregistered from all subscription points.

Note that you cannot specify the default subscription point explicitly, so there
is no way of deregistering all subscriptions from this subscription point only:
you must specify the topics.

<Filter> (MQPSC_FILTER)
The value is a string specifying the filter to be deregistered. It must match
exactly (including case and spaces) a subscription filter previously registered.

This property can, optionally, be repeated if multiple filters are to be
deregistered. It can be omitted if a <Topic> is specified, or if DeregAll is
specified in <RegOpt>.

The filters specified can be a subset of those registered if the subscriber wishes
to retain subscriptions for other filters.

<RegOpt> (MQPSC_REGISTRATION_OPTION)
The registration options property can take the following values:

DeregAll
(MQPSC_DEREGISTER_ALL)

All matching subscriptions registered for this subscriber are to be
deregistered.

If you specify DeregAll:
v <Topic>, <SubPoint>, and <Filter> can be omitted
v <Topic> and <Filter> can be repeated, if required
v <SubPoint> must not be repeated

Deregister Subscriber

46 MQSeries Integrator Programming Guide

If you do not specify DeregAll:
v <Topic> must be specified, and can be repeated if required
v <SubPoint> and <Filter> can be omitted
v <SubPoint> must not be repeated
v <Filter> can be repeated, if required

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor (MQMD), which must not be
zero, is used to identify the subscriber. It must match the CorrelId
used in the original subscription.

None (MQPSC_NONE)

All options take their default values. This has the same effect as
omitting the registration options property. If other options are specified
at the same time, None is ignored.

The default, if this property is omitted, is that no registration options are set.

<QMgrName> (MQPSC_Q_MGR_NAME)
The value is the queue manager name for the subscriber queue. It must match
the QMgrName used in the original subscription.

If this property is omitted, the default is the ReplyToQMgr name in the message
descriptor (MQMD). If the resulting name is blank, it defaults to the broker’s
queue manager name.

<QName> (MQPSC_Q_NAME)
The value is the queue name for the subscriber queue. It must match the QName
used in the original subscription.

If this property is omitted, the default is the ReplyToQ name in the message
descriptor (MQMD), which must not be blank in this case.

Example
Here is an example of NameValueData for a Deregister Subscriber command
message. In this case the sample application is deregistering its subscription to the
topics which contain the latest score for all matches. The subscriber’s identity,
including the CorrelId, is taken from the defaults in the MQMD.
<psc>
<Command>DeregSub</Command>
<RegOpt>CorrelAsId</RegOpt>
<Topic>Sport/Soccer/State/LatestScore/#</Topic>
</psc>

Deregister Subscriber

Chapter 5. Publish/subscribe command messages 47

Publish
The Publish command message is sent:
v From a publisher to a broker, or
v From a broker to a subscriber

to publish information on a specified topic or topics.

This message is sent by a publisher to the input queue of a message flow that
contains a Publication node. Authority to put a message to this queue, and to
publish on the specified topic or topics, is required.

If the user has authority on some (but not all) topics, those that can be published
will be and a warning response will indicate those that are not published.

If a subscriber has any matching subscriptions, the broker forwards the Publish
message to the subscriber queues defined in the corresponding Register
Subscriber command messages.

See page 58 for details of the message descriptor (MQMD) parameters needed
when sending a command message to the broker, and used when a broker
forwards a publication to a subscriber.

The broker forwards the Publish message to other brokers in the network that
have matching subscriptions (unless it is a local publication).

Publication data (if any) is included in the message body. The data may be
described in an <mcd> folder in the NameValueData field of the MQRFH2 header.

Properties
<Command> (MQPSC_COMMAND)

The value is Publish (MQPSC_PUBLISH). This property is required, and must
be present.

<Topic> (MQPSC_TOPIC)
The value is a string containing a topic that categorizes this publication. No
wildcards are allowed.

This property is required, and can optionally be repeated for as many topics as
needed.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)
The subscription point on which the publication is published.

This property should not be included in a publication message sent to the
broker but will be added automatically to publication messages by the broker
before those messages are sent to any appropriate subscribers. The value of the
<SubPoint> property will be the value of the Subscription Point attribute of the
Publication node that is handling the publishing.

Publish

48 MQSeries Integrator Programming Guide

<PubOpt> (MQPSC_PUBLICATION_OPTION)
The publication options property can take the following values:

RetainPub
(MQPSC_RETAIN_PUB)

The broker is to retain a copy of the publication. If this option is not
set, the publication is deleted as soon as the broker has sent the
publication to all of its current subscribers.

IsRetainedPub
(MQPSC_IS_RETAINED_PUB)

(Can only be set by a broker.) This publication has been retained by the
broker. The broker sets this option to notify a subscriber that this
publication was published earlier and has been retained, provided that
the subscription has been registered with the InformIfRetained option.
It is set only in response to a Register Subscriber or Request Update
command message. Retained publications that are sent directly to
subscribers do not have this option set.

Local
(MQPSC_LOCAL)

This option tells the broker that this publication should not be
propagated to other brokers. All subscribers that registered at this
broker will receive this publication if they have matching subscriptions.

OtherSubsOnly
(MQPSC_OTHER_SUBS_ONLY)

This option allows simpler processing of conference-type applications,
where a publisher is also a subscriber to the same topic. It tells the
broker not to send the publication to the publisher’s subscriber queue
even if it has a matching subscription. (The publisher’s subscriber
queue consists of its QMgrName, QName, and optional CorrelId, as
described below.)

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the MQMD (which must not be zero) is part of the
publisher’s subscriber queue, in applications where the publisher is
also a subscriber (see OtherSubsOnly).

None (MQPSC_NONE)

All options take their default values. This has the same effect as
omitting the publication options property. If other options are specified
at the same time, None is ignored.

The default, if this property is omitted, is that no publication options are set.

<PubTime> (MQPSC_PUBLISH_TIMESTAMP)
The value is an optional publication timestamp set by the publisher. It is of
length 16 characters in the format:

YYYYMMDDHHMMSSTH

using Universal Time. However, this is not checked by the broker, which
merely transmits this information to subscribers if it is present.

Publish

Chapter 5. Publish/subscribe command messages 49

<SeqNum> (MQPSC_SEQUENCE_NUMBER)
The value is an optional sequence number set by the publisher.

It should increase by 1 with each publication. However, this is not checked by
the broker, which merely transmits this information to subscribers if it is
present.

If publications on the same topic are published to different interconnected
brokers, it is the responsibility of the publishers to ensure that sequence
numbers, if used, are meaningful.

<QMgrName> (MQPSC_Q_MGR_NAME)
The value is a string containing the queue manager name for the publisher’s
subscriber queue, in applications where the publisher is also a subscriber (see
OtherSubsOnly).

If this property is omitted, the default is the ReplyToQMgr name in the message
descriptor (MQMD). If the resulting name is blank, it defaults to the broker’s
queue manager name.

<QName> (MQPSC_Q_NAME)
The value is a string containing the queue name for the publisher’s subscriber
queue, in applications where the publisher is also a subscriber (see
OtherSubsOnly).

If this property is omitted, the default is the ReplyToQ name in the message
descriptor (MQMD), which (if OtherSubsOnly is set) must not be blank.

Example
Here are some examples of NameValueData for a Publish command message. The
first example is for a publication sent by the match simulator in the sample
application to indicate that a match has started.
<psc>
<Command>Publish</Command>
<Topic>Sport/Soccer/Event/MatchStarted</Topic>
</psc>

The second example is for a retained publication. In this case the results service is
publishing the latest score in the match between Team1 and Team2.
<psc>
<Command>Publish</Command>
<PubOpt>RetainPub</PubOpt>
<Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
</psc>

Publish

50 MQSeries Integrator Programming Guide

Register Subscriber
The Register Subscriber command message is sent to a broker by a subscriber, or
another application on a subscriber’s behalf, to indicate that it wishes to subscribe
to one or more topics at a subscription point. A message content filter can also be
specified.

This message is sent to SYSTEM.BROKER.CONTROL.QUEUE, the broker’s control
queue. Authority to put a message to this queue is required, in addition to access
authority for the topic or topics in the subscription (set by the broker’s system
administrator).

If the user has authority on some (but not all) topics, those that can be registered
will be and a warning response will indicate those that are not registered.

See page 58 for details of the message descriptor (MQMD) parameters needed
when sending a command message to the broker.

If the queue is a temporary dynamic queue, the subscription will be deregistered
automatically by the broker when the queue is closed.

Properties
<Command> (MQPSC_COMMAND)

The value is RegSub (MQPSC_REGISTER_SUBSCRIBER). This property is
required, and must be present.

<Topic> (MQPSC_TOPIC)
The topic for which the subscriber wants to receive publications. Wildcards are
allowed (see “Topics and wildcards” on page 18).

This property is required, and can optionally be repeated for as many topics as
needed.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)
The value is the subscription point to which the subscription is attached.

If this property is omitted, the default subscription point is used.

<Filter> (MQPSC_FILTER)
The value is an SQL expression that is used as a filter on the contents of
publication messages (see “Filters” on page 19). If a publication on the
specified topic matches the filter, it is sent to the subscriber.

If this property is omitted, no content filtering takes place.

<RegOpt> (MQPSC_REGISTRATION_OPTION)
The registration options property can take the following values:

Local
(MQPSC_LOCAL)

The subscription is local and is not distributed to other brokers in the
network. Publications made at other brokers will not be delivered to
this subscriber, unless it also has a corresponding global subscription.

Register Subscriber

Chapter 5. Publish/subscribe command messages 51

NewPubsOnly
(MQPSC_NEW_PUBS_ONLY)

Retained publications that exist at the time the subscription is
registered are not sent to the subscriber, only new publications.

If a subscriber re-registers and changes this option so that it is no
longer set, it is possible that a publication that has already been sent to
it will be sent again.

PubOnReqOnly
(MQPSC_PUB_ON_REQUEST_ONLY)

The broker does not send publications to the subscriber, except in
response to a Request Update command message.

InformIfRet
(MQPSC_INFORM_IF_RETAINED)

The broker will inform the subscriber if a publication is retained when
it sends a Publish message in response to a Register Subscriber or
Request Update command message. The broker does this by including
the IsRetainedPub publication option in the message.

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor (MQMD), which must not be
zero, is used when sending matching publications to the subscriber
queue.

Pers (MQPSC_PERSISTENT)

Publications matching this subscription are delivered to the subscriber
as persistent messages.

NonPers
(MQPSC_NON_PERSISTENT)

Publications matching this subscription are delivered to the subscriber
as non-persistent messages.

PersAsPub
(MQPSC_PERSISTENT_AS_PUBLISH)

Publications matching this subscription are delivered to the subscriber
with the persistence specified by the publisher. This is the default
behavior.

PersAsQueue
(MQPSC_PERSISTENT_AS_Q)

Publications matching this subscription are delivered to the subscriber
with the persistence specified on the subscriber queue.

None (MQPSC_NONE)

All registration options take their default values.

If the subscriber is already registered, its options are reset to their
default values (this is not the same effect as omitting the registration
options property), and the subscription expiry is updated from the
MQMD of the Register Subscriber message.

If other registration options are specified at the same time, None is
ignored.

Register Subscriber

52 MQSeries Integrator Programming Guide

If the registration options property is omitted and the subscriber is already
registered, its registration options are unchanged and the subscription expiry is
updated from the MQMD of the Register Subscriber message.

If the subscriber is not already registered, a new subscription is created with all
registration options taking their default values.

The default values are PersAsPub and no other options set.

<QMgrName> (MQPSC_Q_MGR_NAME)
The value is the queue manager name for the subscriber queue, to which
matching publications are sent by the broker.

If this property is omitted, the default is the ReplyToQMgr name in the message
descriptor (MQMD). If the resulting name is blank, it defaults to the broker’s
QMgrName.

<QName> (MQPSC_Q_NAME)
The value is the queue name for the subscriber queue, to which matching
publications are sent by the broker.

If this property is omitted, the default is the ReplyToQ name in the message
descriptor (MQMD), which must not be blank in this case.

If the queue is a temporary dynamic queue, non-persistent delivery of
publications (NonPers) must be specified in the <RegOpt> property.

If the queue is a temporary dynamic queue, the subscription will be
deregistered automatically by the broker when the queue is closed.

Note: If you specify more than one of the registration option values NonPers,
PersAsPub, PersAsQueue and Pers, then only the last one is used. It is not
possible to combine these options in an individual subscription.

Example
Here is an example of NameValueData for a Register Subscriber command message.
In the sample application, the results service uses this message to register a
subscription to the topics containing the latest scores in all matches, with the
‘Publish on Request Only’ option set. The subscriber’s identity, including the
CorrelId, is taken from the defaults in the MQMD.
<psc>
<Command>RegSub</Command>
<RegOpt>PubOnReqOnly</RegOpt>
<RegOpt>CorrelAsId</RegOpt>
<Topic>Sport/Soccer/State/LatestScore/#</Topic>
</psc>

Register Subscriber

Chapter 5. Publish/subscribe command messages 53

Request Update
The Request Update command message is sent from a subscriber to a broker, to
request the current retained publications for the specified topic and subscription
point that match the given (optional) filter.

This message is sent to SYSTEM.BROKER.CONTROL.QUEUE, the broker’s control
queue. Authority to put a message to this queue is required, in addition to access
authority for the topic in the request update (set by the broker’s system
administrator).

See page 58 for details of the message descriptor (MQMD) parameters needed
when sending a command message to the broker.

This command is normally used if the subscriber specified the option PubOnReqOnly
(publish on request only) when it registered. If the broker has matching retained
publications, they are sent to the subscriber. If not, the request fails (with an
MQRCCF_NO_RETAINED_MSG). The requester must have previously registered a
subscription with the same Topic, SubPoint, and Filter values.

Properties
<Command> (MQPSC_COMMAND)

The value is ReqUpdate (MQPSC_REQUEST_UPDATE). This property is
required, and must be present.

<Topic> (MQPSC_TOPIC)
The value is the topic the subscriber is requesting. Wildcards are allowed (see
“Topics and wildcards” on page 18).

This property is required, but only one occurrence is allowed in this message.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)
The value is the subscription point to which the subscription is attached.

If this property is omitted, the default subscription point is used.

<Filter> (MQPSC_FILTER)
The value is an ESQL expression that is used as a filter on the contents of
publication messages (see “Filters” on page 19). If a publication on the
specified topic matches the filter, it is sent to the subscriber.

The <Filter> property should have the same value as that specified on the
original subscription for which you are now requesting an update.

If this property is omitted, no content filtering takes place.

Request Update

54 MQSeries Integrator Programming Guide

<RegOpt> (MQPSC_REGISTRATION_OPTION)
The registration options property can take the following value:

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor (MQMD), which must not be
zero, is used when sending matching publications to the subscriber
queue.

None (MQPSC_NONE)

All options take their default values. This has the same effect as
omitting the registration options property. If other options are specified
at the same time, None is ignored.

The default, if this property is omitted, is that no registration options are set.

<QMgrName> (MQPSC_Q_MGR_NAME)
The value is the queue manager name for the subscriber queue, to which the
matching retained publication is sent by the broker.

If this property is omitted, the default is the ReplyToQMgr name in the message
descriptor (MQMD). If the resulting name is blank, it defaults to the broker’s
QMgrName.

<QName> (MQPSC_Q_NAME)
The value is the queue name for the subscriber queue, to which the matching
retained publication is sent by the broker.

If this property is omitted, the default is the ReplyToQ name in the message
descriptor (MQMD), which must not be blank in this case.

Example
Here is an example of NameValueData for a Request Update command message. In
the sample application, the results service uses this message to request retained
publications containing the latest scores for all teams. The subscriber’s identity,
including the CorrelId, is taken from the defaults in the MQMD.
<psc>
<Command>ReqUpdate</Command>
<RegOpt>CorrelAsId</RegOpt>
<Topic>Sport/Soccer/State/LatestScore/#</Topic>
</psc>

Request Update

Chapter 5. Publish/subscribe command messages 55

Broker Response
A Broker Response message is sent from a broker to the ReplyToQ of a publisher
or a subscriber, to indicate the success or failure of a command message received
by the broker if the command message descriptor specified that a response is
required.

See “MQMD for broker response messages” on page 60 for details of the message
descriptor (MQMD) parameters used when a broker sends a response to a
publisher or a subscriber.

The broker response message is contained within the NameValueData field of the
MQRFH2 header, in a <pscr> folder.

In the case of a warning or error, the response message contains the <psc> folder
from the command message in addition to the <pscr> folder. The message data (if
any) is not contained in the broker response message. None of the message that
caused an error will be processed but a warning indicates that some of the
message may have been processed successfully.

If there is a failure sending a response:
v For publication messages, the broker tries to send the response to the MQSeries

dead-letter queue if the MQPUT fails. This allows the publication to be sent to
subscribers even if the response cannot be sent back to the publisher.

v For other messages, or if the publication response cannot be sent to the
dead-letter queue, an error is logged and the command message is normally
rolled back. This depends on how the MQInput node has been configured.

Properties
<Completion> (MQPSCR_COMPLETION)

The completion code, which can take one of three values:
ok Command completed successfully
warning

Command completed with warning
error Command failed

<Response> (MQPSCR_RESPONSE)
The response to a command message, if that command produced a completion
code of warning or error. It contains a <Reason> property, and might contain
other properties indicating the cause of the warning or error.

In the case of one or more errors, there will be a single response folder,
indicating the cause of the first error only. In the case of one or more warnings,
there will be a Response folder for each warning.

<Reason> (MQPSCR_REASON)
The reason code qualifying the completion code, if the completion code is
warning or error. It is set to one of the error codes listed on page 61. The
<Reason> property is contained within a <Response> folder. The reason code
may be followed by any valid property from the <psc> folder (for example, a
topic name), indicating the cause of the error or warning.

Broker Response

56 MQSeries Integrator Programming Guide

Examples
Here are some examples of NameValueData in a Broker Response message. A
successful response will be as follows:
<pscr>

<Completion>ok</Completion>
</pscr>

Here is an example of a failure response (due to a filter error). The first
NameValueData string contains the response; the second contains the original
command.
<pscr>

<Completion>error</Completion>
<Response>

<Reason>3150</Reason>
</Reponse>

</pscr>

<psc>
...
command message (to which
the broker is responding)
...
</psc>

Here is an example of a warning response (due to unauthorized topics). The first
NameValueData string contains the response; the second contains the original
command.
<pscr>

<Completion>warning</Completion>
<Response>

<Reason>3081</Reason>
<Topic>topic1</Topic>

</Reponse>
<Response>

<Reason>3081</Reason>
<Topic>topic2</Topic>

</Reponse>
</pscr>

<psc>
...
command message (to which
the broker is responding)
...
</psc>

Broker Response

Chapter 5. Publish/subscribe command messages 57

Message descriptor
The MQSeries message descriptor (MQMD) is fully documented in the MQSeries
Application Programming Reference, SC33-1673 book. This section summarizes the
fields used by MQRFH2 publish/subscribe command and response messages.

MQMD for command messages
This section describes the message descriptor as set by applications that send
command messages to the broker.

Fields that are left as the default value, or can be set to any valid value in the
usual way, are not listed here.

Report
See MsgType and CorrelId (below).

MsgType
Can be set to MQMT_REQUEST for a command message if a response is
always required. The MQRO_PAN and MQRO_NAN flags in the Report field
are not significant in this case.

Can be set to MQMT_DATAGRAM, in which case responses depend on the
setting of the MQRO_PAN and MQRO_NAN flags in the Report field:
v MQRO_PAN alone means that the broker is to send a response only if the

command succeeds.
v MQRO_NAN alone means that the broker is to send a response only if the

command fails.
v If a command completes with a warning, a response is sent if either

MQRO_PAN or MQRO_NAN is set.
v MQRO_PAN + MQRO_NAN means that the broker is to send a response

whether the command succeeds or fails. This has the same effect from the
broker’s perspective as setting MsgType to MQMT_REQUEST.

v If neither MQRO_PAN nor MQRO_NAN is set, no response will ever be
sent.

Format
Set to MQFMT_RF_HEADER_2

MsgId
Normally set to MQMI_NONE, so that the queue manager generates a unique
value.

CorrelId
Set to any value. If the sender’s identity includes a CorrelId, specify this
value, together with MQRO_PASS_CORREL_ID in the Report field, to ensure
that it will be set in all response messages sent by the broker to the sender.

ReplyToQ
This is the queue to which responses, if any, are to be sent. This can be the
sender’s queue which has the advantage that the QName parameter can be
omitted from the message. If, however, responses are to be sent to a different
queue, the QName parameter will be needed.

ReplyToQMgr
Queue manager for responses. If you leave this field blank (the default value),
the local queue manager puts its own name in this field.

Message descriptor

58 MQSeries Integrator Programming Guide

MQMD for publications forwarded by a broker
This section describes the message descriptor for messages sent by the broker to
subscribers.

The fields are set to their default values, except for the following:

Report
Will be set to MQRO_NONE.

MsgType
Will be set to MQMT_DATAGRAM.

Expiry
Will be set to the value in the Publish message received from the publisher. In
the case of a retained message, the time outstanding is reduced by the
approximate time the message has been at the broker.

Format
Will be set to MQFMT_RF_HEADER_2

MsgId
Will be set to a unique value.

CorrelId
If CorrelId is part of the subscriber’s identity, this is the value specified by the
subscriber when registering. Otherwise, it is a non-zero value chosen by the
broker.

Priority
As set by the publisher (or as resolved if the publisher specified
MQPRI_PRIORITY_AS_Q_DEF).

Persistence
As set by the publisher (or as resolved if the publisher specified
MQPER_PERSISTENCE_AS_Q_DEF), unless specified otherwise in the
Register Subscriber message for the subscriber to which this publication is
being sent.

ReplyToQ
Will be set to blanks.

ReplyToQMgr
Broker’s queue manager name.

UserIdentifier
Subscriber’s user identifier (as set when the subscriber registered).

AccountingToken
Subscriber’s accounting token (as set when the subscriber first registered).

ApplIdentityData
Subscriber’s application identity data (as set when the subscriber first
registered).

PutApplType
Will be set to MQAT_BROKER.

PutApplName
Will be set to the first 28 characters of the broker’s queue manager name.

PutDate
Timestamp when the broker puts the message.

Message descriptor

Chapter 5. Publish/subscribe command messages 59

PutTime
Timestamp when the broker puts the message.

ApplOriginData
Will be set to blanks.

MQMD for broker response messages
This section describes the message descriptor for response messages sent by the
broker.

The fields are set to their default values, except for the following:

Report
Will be set to all zeroes.

MsgType
Will be set to MQMT_REPLY.

Format
Will be set to MQFMT_RF_HEADER_2

MsgId
Will be set according to the Report options in the original command message.
By default, this means that it is set to MQMI_NONE, so that the queue
manager generates a unique value.

CorrelId
Will be set according to the Report options in the original command message.
By default, this means that the CorrelId is set to the same value as the MsgId
of the command message. This can be used to correlate commands with their
responses.

Priority
The same value as in the original command message.

Persistence
The same value as in the original command message.

Expiry
The same value as in the original command message received by the broker.

PutApplType
Will be set to MQAT_BROKER.

PutApplName
Will be set to the first 28 characters of the queue manager name.

Other context fields are set as if generated with
MQPMO_PASS_IDENTITY_CONTEXT.

Message descriptor

60 MQSeries Integrator Programming Guide

Reason codes

The following reason codes might be returned in the Reason field of a
publish/subscribe response <pscr> folder. Constants that can be used to represent
these codes in the C or C++ programming languages are also given. The MQRC_
constants require the MQSeries cmqc.h header file. The MQRCCF_ constants
require the MQSeries cmqcfc.h header file (apart from MQRCCF_FILTER_ERROR
and MQRCCF_WRONG_USER, which are specific to MQSeries Integrator Version 2
and require the MQSeries Integrator Version 2 BipRfc.h header file).

Reason code and text Explanation Issued by

2336

MQRC_RFH_COMMAND_ERROR

Valid values for the <Command> field of a
<psc> folder are: RegSub, DeregSub,
Publish, DeletePub, and ReqUpdate.
Any other values result in this error
code being issued.

Any command

2337

MQRC_RFH_PARM_ERROR

The <psc> and <mcd> folders both have
a set of valid parameters that can be
specified within them. Check the
descriptions of these folders and ensure
that you have not specified incorrect
parameters.

Any command

2338

MQRC_RFH_DUPLICATE_PARM

Some parameters (for example, Topic)
within a <psc> folder can be repeated,
while others (for example, Command)
can not. Check that you have not
duplicated a non-repeatable parameter.

Any command

2339

MQRC_RFH_PARM_MISSING

Some parameters within <psc> or <mcd>
folders are optional and can be omitted;
some are mandatory and must not be
omitted. Check that you have included
all mandatory parameters within your
<psc> and <mcd> folders.

Any command

3072

MQRCCF_TOPIC_ERROR

One or more of the values you supplied
for the Topic parameter are incorrect.
Check that your values for Topic
conform to the specified restrictions.

Any command

3073

MQRCCF_NOT_REGISTERED

The combination of SubPoint, Topic,
and Filter that you specified on your
DeregSub or ReqUpdate command was
either not a combination with which
you had previously registered or, for
the DeregSub command if the DeregAll
option was specified, one of the
SubPoint, Topic, or Filter properties was
not used to deregister any subscription.

Deregister Subscriber
and Request Update
commands

3074

MQRCCF_Q_MGR_NAME_ERROR

The specified queue manager was not
valid or the queue manager was not
available or did not exist.

Deregister Subscriber,
Publish, Register
Subscriber, and Request
Update commands

3076

MQRCCF_Q_NAME_ERROR

The specified queue name was not
valid or the queue did not exist on the
specified queue manager.

Deregister Subscriber,
Publish, Register
Subscriber, and Request
Update commands

Reason codes

Chapter 5. Publish/subscribe command messages 61

Reason code and text Explanation Issued by

3077

MQRCCF_NO_RETAINED_MSG

There were no retained messages for
the topic you specified. (This may or
may not be an error, depending on the
design of your application program.)

Request Update
command

3079

MQRCCF_INCORRECT_Q

RegSub, DeregSub, and ReqUpdate
commands are always sent to the
SYSTEM.BROKER.CONTROL.QUEUE
queue of the broker for which they are
intended. Publish and Delete
Publication commands are sent to the
input queue for the particular
publish/subscribe message flow for
which they are intended (determined
when the message flow is designed).
This error code will be returned if a
command is sent to the wrong queue.

Any command

3080

MQRCCF_CORREL_ID_ERROR

You have specified CorrelAsId as one of
your RegOpt parameters. However, the
CorrelId field of the MQMD does not
contain a valid correlation identifier
(that is, it is set to MQCI_NONE).

Deregister Subscriber
and Register Subscriber
commands

3081

MQRCCF_NOT_AUTHORIZED

You are not authorized to perform the
requested action. Authorization settings
for the broker are handled from the
Control Center. Contact your system
administrator.

Publish and Register
Subscriber commands

3083

MQRCCF_REG_OPTIONS_ERROR

You have specified an unrecognized
RegOpt parameter in the <psc> folder
that contains your DeregSub command.

Deregister Subscriber
and Register Subscriber
commands

3084

MQRCCF_PUB_OPTIONS_ERROR

You have specified an unrecognized
PubOpt parameter in the <psc> folder
that contains your Publish command.

Publish command

3087

MQRCCF_DEL_OPTIONS_ERROR

You have specified an unrecognized
DelOpt parameter in the <psc> folder
that contains your DeletePub command.

Delete Publication
command

3150

MQRCCF_FILTER_ERROR

The value specified for the Filter
parameter is not valid. Check the
section that describes valid syntax for
filter expressions and ensure that your
expression conforms.

Deregister Subscriber,
Register Subscriber, and
Request Update
commands

3151

MQRCCF_WRONG_USER

A subscription that matches the one
specified already exists; however, it was
registered by a different user. A
subscription can only be changed or
deregistered by the same user who
originally registered it.

Deregister Subscriber,
Register Subscriber, and
Request Update
commands

Reason codes

62 MQSeries Integrator Programming Guide

Part 2. Programming a plug-in node or parser

This part contains:
v “Chapter 6. Implementing a plug-in node or parser” on page 65
v “Chapter 7. Installing a plug-in node or parser” on page 95
v “Chapter 8. Node implementation and utility functions” on page 105
v “Chapter 9. Parser implementation and utility functions” on page 135
v “Chapter 10. Node and parser utilities” on page 159

© Copyright IBM Corp. 2000, 2001 63

64 MQSeries Integrator Programming Guide

Chapter 6. Implementing a plug-in node or parser

The function of the MQSeries Integrator broker can be enhanced by:
v Providing additional message processing nodes to perform a variety of tasks,

either superseding existing function or introducing new function. Plug-in nodes
can provide generic function that is of value in a wide range of environments, or
highly specialized function tailored and customized to a specific environment.

v Providing alternative and complementary message parsers that are accessible to
the broker and its message processing nodes through a standard set of parsing
and construction interfaces.

Examples of new nodes might include:
v A node that reads one or more records from a specified data file to provide a

mechanism for performing batch processing at predetermined intervals or times
of day.

v A node to raise events that get displayed in a system management console.
v A currency converter node to provide transformation outside the supplied

primitives.
v A combination of updating a database and updating a message from the

database in a single node.

Sample files are provided to help you create your own nodes and parsers. For
details of these files see “Sample code” on page 91.

This chapter contains:
v “Introduction” on page 66
v “Implementing a message processing node” on page 67
v “Implementing a message parser” on page 71
v “General development considerations” on page 74
v “Accessing the message content” on page 80
v “Errors and exception handling” on page 86
v “Compiling a plug-in” on page 90

© Copyright IBM Corp. 2000, 2001 65

Introduction
This section contains an overview of how to implement a message processing node
or parser to enhance the functionality of MQSeries Integrator.

A broker extension, or plug-in, is written in C and distributed as:
v A shared object on UNIX systems, named with a filetype of ‘.lil’ (loadable

implementation library).
v A dynamic link library (DLL) on Windows systems, again with a filetype of ‘.lil’

A plug-in implements a node or parser factory that can support multiple nodes or
parser types.

The plug-in is loaded when the broker is initialized. Registration functions in the
plug-in are invoked so that the broker understands what nodes or parsers are
supported by the plug-in.

Programming language
Message processing nodes and parsers must be coded in ANSI standard C, and
avoid use of operating system specific functions. This will enable them to work on
a variety of platforms with re-compilation only (without any source code changes).

Use of Java
Plug-ins must be written in C. Writing a plug-in in Java and wrappering it in JNI
is not recommended. This is because the broker internally initializes a JVM, which
is not available through the plug-in interface.

The JVM is initialized with various parameters that are specific to the broker’s
requirements. Because there is only one JVM in a process, whoever initializes it
first specifies these parameters. If a plug-in uses Java, and the broker is initialized
first, these parameters might not be suitable for the plug-in. On the other hand, if
the plug-in creates the JVM before the broker is started, the broker might not
function correctly.

Interface to the broker
The C interfaces consist of:
1. A set of implementation functions (or callback functions), which provide the

functionality of the plug-in. These implementation functions must be written by
the developer, and are invoked by the message broker.

2. A set of utility functions, the purpose of which is to create or manipulate
resources in the message broker or to request a service of the broker. These
utility functions are intended to be invoked by the plug-in.

A plug-in that implements a message processing node must also have a signature to
enable the Control Center to display a representation of the plug-in on its palette
of message processing nodes, and for these nodes to be wired correctly in the
design pane. For more information see “Integrating a plug-in node into the Control
Center” on page 96.

Introduction

66 MQSeries Integrator Programming Guide

Implementing a message processing node
There are a number of tasks that must be performed when implementing a
message processing node. They are described in the following sections:
1. “Determine the configuration attributes”
2. “Develop a plug-in initialization function”
3. “Develop a context creation function” on page 68
4. “Develop the attribute functions” on page 68
5. “Develop the node processing function” on page 69
6. “Build an output message (optional)” on page 70

The implementation functions that have to be written by the developer are listed in
“Node implementation function overview” on page 106.

The utility functions that are provided by MQSeries Integrator to aid this process
are listed in “Node utility function overview” on page 107.

Determine the configuration attributes
The first step is to decide what configuration attributes the node requires, and what
the allowable values are for each attribute.

Note: To a user of the MQSeries Integrator Control Center, these attributes are
known as properties.

There is no limit to the number of configuration attributes that a node can have.
However, a plug-in node must not implement an attribute that is already
implemented as a base configuration attribute. These base attributes are:
v label
v userTraceLevel
v traceLevel
v userTraceFilter
v traceFilter

Develop a plug-in initialization function

The initialization function is invoked when the plug-in is loaded during message
broker initialization. The plug-in is responsible for:
v Creating and naming the node factory that is implemented by the plug-in. The

node factory is simply a container for related node implementations. Node
factory names must be unique within a broker.

v Defining the name of each node, and supplying a pointer to a virtual function
table that contains pointers to the plug-in implementation functions. Node
names must be unique within a broker. If you attempt to define a node, and that
name has already been defined, then the attempt fails.

The plug-in initialization function defines the name of the factory that the plug-in
supports and the classes of objects supported by the factory. Each UNIX shared
object or Windows DLL (that is, each .lil) that implements a plug-in must export a
function called bipGetMessageflowNodeFactory as its initialization function.

The initialization function must create the factory object and define the names of
all nodes supported by the plug-in. A factory can support any number of object
classes (nodes). When a node is defined, a list of pointers to the implementation

Implementing a node

Chapter 6. Implementing a plug-in node or parser 67

functions for that node is passed to the broker. If a node of the same name already
exists, the request is rejected. The plug-in initialization function is invoked
automatically during broker initialization.

The initialization function must create a node factory by invoking
cniCreateNodeFactory. The node classes supported by the factory are defined by
calling cniDefineNodeClass. The address of the factory object (returned by
cniCreateNodeFactory) must be returned to the broker as the return value from
the initialization function.

Develop a context creation function
When an instance of a plug-in node object is created, the context creation
implementation function cniCreateNodeContext is invoked by the message broker.
This allows the plug-in node to allocate instance data associated with the node,
such as data areas for attributes. The implementation function
cniDeleteNodeContext must also be provided.

A message flow node has a number of input terminals and output terminals
associated with it. Simple nodes have one input terminal, and either zero or a fixed
number of output terminals. The utility functions cniCreateInputTerminal and
cniCreateOutputTerminal are used to add terminals to a node when the node is
instantiated. They must be invoked within the cniCreateNodeContext
implementation function. If a plug-in attempts to create a terminal at any other
time, the results will be unpredictable.

Note that, by convention within the broker, the supplied message processing nodes
that have a terminal named ‘failure’ behave in a particular way. If the failure
terminal is not attached to a connector to another node and a processing failure
occurs, an exception is thrown to terminate the message flow. It is recommended
that a plug-in node supports a failure terminal where appropriate that respects this
convention. To provide similar behavior, you can use cniIsTerminalAttached to
check if the named terminal is attached to another message processing node before
attempting to propagate a message to it.

Develop the attribute functions
The message flow node must respond to requests to get and set its configuration
attributes. This is done by providing the cniSetAttribute, cniGetAttribute, and
cniGetAttributeName implementation functions. Retrieved attributes come from
the properties specified for the node in the Control Center.

Functions that assign values should perform appropriate verification. Attribute
values are passed between the broker and the plug-in using UCS-2 Unicode
character strings. See “String handling” on page 75 for more information on
handling character strings.

A request to set a configuration attribute causes cniSetAttribute to be invoked.
This function receives the attribute name and attribute value as parameters. The
broker ensures that no messages are being processed while this function is called.
That is, there are no thread issues to deal with between the updating of a
configuration attribute and the referencing of the attribute by the evaluate function.
cniGetAttributeName allows the node to describe its configuration attributes.

Attributes are received in XML configuration messages as character strings,
regardless of datatype. If the true datatype of an attribute is not a string, the
cniSetAttribute function must perform the necessary verification and conversion

Implementing a node

68 MQSeries Integrator Programming Guide

before it stores the attribute value. Similarly, when an attribute value is retrieved
using cniGetAttribute, it must be converted to a wide character string before
returning the result.

Guidelines for coding a plug-in node
When the message flow containing an instance of the plug-in node is deployed to
a broker, the broker sets attributes for which a value is provided in the deployment
message:
v If you are using a Version 2.0.2 of the Configuration Manager, only non-default

values are sent to the broker, which sets these values in the plug-in instance
when it starts the message flow. An attribute for which the user has accepted the
default value is not included in the deployment message. You are therefore
strongly advised to program your plug-in node to initialize all properties to
default values when it starts up. You can request that the Configuration
Manager includes all attribute values (including default values) in the
deployment message when you create the plug-in node at the Control Center
You do this by checking the Use Defaults checkbox on the Attributes and
Attribute Groups page of the plug-in SmartGuide (see “Chapter 7. Installing a
plug-in node or parser” on page 95).

v If you are using a previous level of the Configuration Manager, all values are
included in the deployment message regardless of their setting, and the broker
notifies these to the plug-in program.

If you create a new version of your plug-in node which includes new attributes,
but you do not update all the brokers in your broker domain to use the new level
of program (for example, if you install the new code on one broker as a test
system), you must:
v Set the Use Defaults checkbox on the plug-in SmartGuide to true. This will

ensure that the Configuration Manager sends only updated attribute values
when the message flow is deployed.

v Accept the default values for all new attributes. This will ensure that if you
deploy the message flow to a broker that has the older version of the plug-in
installed, the deployment will not fail.

v Ensure the new plug-in executable, with the new attributes set to default values,
exhibits exactly the behavior of the previous plug-in executable.

When you select the Use Defaults option, the messages passing between the
broker and the Configuration Manager for message flow deployment are smaller,
and therefore more efficient. This choice is appropriate for Version 2.0.2 and earlier
brokers.

Develop the node processing function
The main processing of a message flow node is performed inside the cniEvaluate
implementation function.

Input and output nodes
You cannot create a plug-in input node: the supplied input nodes must be used as
the input for every message flow. It is not possible to develop a plug-in input node
because the broker’s thread management and allocation mechanisms are not
available to a plug-in.

The supplied MQOutput node must be used when writing to MQSeries queues,
because the broker internally maintains MQSeries connection and open queue
handles on a thread-by-thread basis, and these are cached to optimize performance.

Implementing a node

Chapter 6. Implementing a plug-in node or parser 69

In addition, the broker handles recovery scenarios when MQSeries events occur,
and this would be adversely affected if MQSeries MQI calls were used in a
plug-in.

The contents of the message
In many cases, the plug-in node will need to access the contents of the message
received on its input terminal. The message is represented as a tree of syntax
elements, as described in “Accessing the message content” on page 80. Groups of
utility functions are provided for message management, message buffer access,
syntax element navigation, and syntax element access (see “Node utility function
overview” on page 107).

Database access
The broker uses ODBC as an interface to its own internal database, and to
customer enterprise databases accessed in Filter, Compute, Database, and related
processing nodes. The ODBC environment cannot be accessed using the plug-in
node interface. Database access must be performed using the implementation
functions supplied for that purpose (see “SQL statement handling” on page 108), or
by using the supplied processing nodes.

Output terminals
A message can be passed to other connected nodes by invoking cniPropagate on
an output terminal of the node. It is essential that any calls to cniPropagate are
performed on the same thread that cniEvaluate was called on.

Threading considerations
The message broker runs on multiple threads, and it is possible that two threads
might be executing cniEvaluate on the same node object at the same time to
process different messages. Therefore the code contained within this
implementation function, and any that it calls, must be thread safe and fully
re-entrant.

For more information, see “Threading issues” on page 74.

Runtime node behavior
A plug-in node must perform its processing in its cniEvaluate implementation
function and return promptly. You must not design a plug-in node that suspends
processing in any way, because this might prevent a message flow that contains
such a node from being reconfigured or shutdown.

Other considerations
Restrictions governing applications using MQSeries or any other external software,
such as database management systems, also apply to plug-ins.

Build an output message (optional)
A plug-in message processing node might need to create an output message; for
example, to derive a new message based on the content of an input message.

The input message is read-only, so you must first take a copy of it using the
cniCreateMessage function. See “Accessing the message content” on page 80 for a
detailed description of the structure of a message. “Node utility function
overview” on page 107 lists the utility functions that are provided for message
management, message buffer access, and syntax element navigation and access.

Implementing a node

70 MQSeries Integrator Programming Guide

When an output message is created, a root element is created automatically as the
root of the (initially empty) syntax element tree. Syntax elements can then be
added as required to the element tree, using the root element as the initial
insertion point.

Note that the nodes supplied with MQSeries Integrator create a ‘Properties’ folder
(belonging to a property parser) as the first child of root. For details see MQSeries
Integrator Using the Control Center. It is not mandatory that this folder should be
present, but it is recommended, and some broker functionality will not be available
without it. The C plug-in interface does not produce this folder automatically; it
must be provided by the developer if it is required.

In addition, the second child of root (or the first child if the Properties folder is not
present) must be an ‘MQMD’ folder (belonging to an MQMD parser). This folder,
containing the MQSeries Message Descriptor, is mandatory for messages
propagated to MQOutput nodes. For MQSeries Everyplace non-publish/subscribe
applications you need to specify an MQMD, for MQSeries Everyplace
publish/subscribe applications one can be generated for you. In the SCADA
Device Protocol the MQMD is automatically generated for you.

When an element is created, an owning parser can be specified, determined by
whether the function that accepts a parser class name is used (for example,
cniCreateElementBeforeUsingParser instead of cniCreateElementBefore). When
the message is propagated to an MQOutput node, the broker instructs the parsers
owning the elements at the first generation (that is, immediate children of the root
element) to serialize their part of the element tree to the output message buffer. If
the parser is implemented as a plug-in, this causes the broker to invoke the
implementation function cniWriteBuffer. If an element at the first generation is
created so that it is not owned by a parser (using cniCreateElementBefore, for
example), it is owned by a notional root parser. This means that this branch of the
element tree will not be serialized to the output message buffer. This feature could
be used, for example, to store temporary elements that persist for the duration of
the flow of each message through the message flow.

Further information
Further information is given in:
v “General development considerations” on page 74
v “Accessing the message content” on page 80
v “Errors and exception handling” on page 86

Sample programs are provided to assist you in writing a plug-in node. See
“Sample code” on page 91.

When the development of the plug-in code is complete, it must be installed on
your broker systems. This is described in “Installing a plug-in on a broker system”
on page 95. The final step is to make it available to MQSeries Integrator. See

“Integrating a plug-in node into the Control Center” on page 96.

Implementing a message parser
There are a number of tasks that must be performed when implementing a
message parser. They are described in the following sections:
1. “Develop a plug-in initialization function” on page 72
2. “Develop a context creation function” on page 72

Implementing a node

Chapter 6. Implementing a plug-in node or parser 71

3. “Implement the parser functions”

The implementation functions that have to be written by the developer are listed in
“Parser implementation function overview” on page 136.

The utility functions that are provided by MQSeries Integrator to aid this process
are listed in “Parser utility function overview” on page 137.

In practice, the task of writing a parser will vary considerably according to the
complexity of the bit-stream to be parsed. Only the basic steps are described here.

Develop a plug-in initialization function
This is invoked when the plug-in is loaded during message broker initialization.
The plug-in is responsible for:
v Creating and naming the message parser factory that is implemented by the

plug-in. The parser factory is simply a container for related parser
implementations. Parser factory names must be unique within a broker.

v Defining the supported message parser class names, and supplying a pointer to
a virtual function table that contains pointers to the plug-in implementation
functions. Parser class names must be unique within a broker.

The plug-in initialization function defines the name of the factory that the plug-in
supports and the classes of objects or shared object supported by the factory. Each
UNIX shared object or Windows DLL (that is, each .lil) that implements a plug-in
must export a function called bipGetParserFactory as its initialization function.

The initialization function must create the factory object and define the names of
all parsers supported by the plug-in. A factory can support any number of object
classes (parsers). When a parser is defined, a list of pointers to the implementation
functions for that parser is passed to the broker. If a parser of the same name
already exists, the request is rejected. The plug-in initialization function is invoked
automatically during broker initialization.

The initialization function must create a parser factory by invoking
cpiCreateParserFactory. The parser classes supported by the factory are defined by
calling cpiDefineParserClass. The address of the factory object (returned by
cpiCreateParserFactory) must be returned to the broker as the return value from
the initialization function.

Develop a context creation function
Whenever an instance of a plug-in parser object is created, the context creation
implementation function cpiCreateContext is invoked by the message broker. This
allows the plug-in parser to allocate instance data associated with the parser. A
cpiDeleteContext function to delete the context of the parser object is also
required.

Implement the parser functions
The implementation functions:

cpiParseBuffer
cpiParseFirstChild
cpiParseLastChild
cpiParsePreviousSibling
cpiParseNextSibling
cpiWriteBuffer

Implementing a parser

72 MQSeries Integrator Programming Guide

provide the functionality of the plug-in parser. These implementation functions are
invoked by the broker when an operation within the broker (such as a filter
expression that specifies a message field name) requires a syntax element tree to be
built or extended.

See “Accessing the message content” on page 80 for a detailed description of the
structure of a message. “Parser utility function overview” on page 137 lists the
utility functions that are provided for message buffer access, and syntax element
navigation and access.

The implementations for these functions in the samples can be used as given,
provided that the bit stream is one that is parsed progressively from beginning to
end, producing corresponding syntax elements ordered from left to right. This
condition is true for most common bit streams.

It will be seen in the samples that these implementations assume that the real
parser code resides in a parseNextItem function. This function is expected to build
the syntax element tree one element at a time, setting names, values and the
complete flags appropriately. The implementation of this function is dependent on
the nature of the bit stream to be parsed. The sample is an example of a simple
pseudo-XML parser.

Messages with multiple message formats
Normally, the incoming message data is of a single message format, so one parser
is responsible for parsing the entire contents of the message. The class name of the
parser that is needed is defined in the Format field in the MQMD or the MQRFH2
header of the input message.

However, the message might be comprised of multiple formats, for example where
there is a header in one format followed by data in another format. In this case,
the first parser has to identify the class name of the parser that is responsible for
the next format in the chain, and so on. In a plug-in, the implementation function
cpiNextParserClassName will be invoked by the broker when it needs to navigate
down a chain of parser classes for a message comprising multiple message
formats.

If your plug-in parser supports parsing a message format that is part of a multiple
message format, then the plug-in must implement the cpiNextParserClassName
function.

Further information
Further information is given in:
v “General development considerations” on page 74
v “Accessing the message content” on page 80
v “Errors and exception handling” on page 86

A sample program is provided to assist you in writing a plug-in parser. See
“Sample code” on page 91.

When the plug-in code is complete, it must be installed on your brokers. This is
described in “Installing a plug-in on a broker system” on page 95.

Implementing a parser

Chapter 6. Implementing a plug-in node or parser 73

General development considerations
There are a number of general development considerations and guidelines which
should be addressed when implementing a plug-in node or parser.

Threading issues
Message processing nodes and parsers must work in a multi-instance,
multithreaded environment. There can be many node objects or parser objects each
with many syntax elements, and there can be many threads executing methods on
these objects. The message broker design ensures that a message object and any
objects it owns are used only by the thread that receives and processes the message
through the message flow.

An instance of a message flow processing node is shared and used by all the
threads that service the message flow in which the node is defined. For parsers, an
instance of a parser is used only by a single message flow thread.

A plug-in should adhere to this model, and should avoid the use of global data or
resources that require semaphores to serialize access across threads. Such
serialization can result in performance bottlenecks.

Plug-in implementation functions must be re-entrant, and any functions they
invoke must also be re-entrant. All plug-in utility functions are fully re-entrant.

Although a plug-in can spawn additional threads if required, it is essential that the
same thread returns control to the broker on completion of an implementation
function. Failure to do this will compromise the integrity of the broker and will
produce unpredictable results.

Storage management
All memory allocated by a plug-in must be released by the plug-in. The
construction of a node at run-time causes cniCreateNodeContext to be invoked,
which allows the plug-in to allocate node instance specific data areas to store a
context. The address of the context is returned to the message broker, and is
passed back from the broker when an internal method causes a plug-in function to
be invoked; thus, the C plug-in can locate and use the correct context for the
function processing.

The message broker will pass addresses of C++ objects to the plug-in. These are
simply intended to be used as a handle to be passed back on subsequent function
calls. The C plug-in should never attempt to manipulate or use this pointer in any
way, for example, attempting to release storage using the free function. Such
actions will cause unpredictable behavior in the message broker.

The cniCreateNodeContext implementation function is invoked whenever the
underlying node object has been constructed internally. This occurs when a broker
is defined with a message flow that utilizes a plug-in node. It is important to note
that this is not necessarily the same activity as creating (or reusing) a thread to
execute a message flow instance containing the node. In fact, the
cniCreateNodeContext function will be called only once, during the configuration
of the message flow, regardless of how many threads are executing the message
flow.

Similar considerations apply to plug-in parsers, and the corresponding
implementation function cpiCreateContext.

General development considerations

74 MQSeries Integrator Programming Guide

String handling

To enable an MQSeries Integrator broker to handle messages in all languages at the
same time, text processing within the broker is done in UCS-2 Unicode. UCS-2
Unicode character strings are also used across the plug-in interfaces to pass and
return character data. Attributes are received in XML configuration messages as
character strings, regardless of datatype. If the true datatype of an attribute is not a
string, the cniSetAttribute function must perform the necessary verification and
conversion prior to storing the attribute value. Similarly, when an attribute value is
retrieved using cniGetAttribute, conversion must be performed to a UCS-2
Unicode character string prior to returning the result.

CciChar defines a 16-bit character with UCS-2 Unicode representation. A CciChar*
is a string of such characters terminated with a CciChar of 0. By default, a CciChar
is represented by type wchar_t. However, some platforms do not have a convenient
way of representing UCS-2 constants in source code, typically because of 4-byte
wchar_t or EBCDIC representation. For example, a source-code constant such as
L“ABC” expands to 12 bytes on Sun Solaris.

For this reason, MQSeries Integrator provides the utility functions cciMbsToUcs
and cciUcsToMbs. Use these functions, where appropriate, to ensure portability of
your plug-in nodes (see “Character representation handling” on page 160).

For more information about Unicode, see:
http://www.unicode.org/

Configuration
Message processing nodes and parsers are required to work in a remotely
administered server environment. Plug-in nodes should make provision for any
configuration information they require to be passed to them using ‘set’ methods,
and should also provide corresponding methods for such attributes to be read
back. If they read any information from the file system, registry, environment
variables or any other such local system resource, this will inhibit the ease of
operation in a remote or distributed environment, because the message broker
provides no features to administer such resources.

Using event logging from a plug-in
Message processing nodes and parsers are unlikely to need to write directly to the
local error log, because it is recommended that a plug-in reports errors using
exceptions (see “Errors and exception handling” on page 86).

However, you can choose to write significant events, error or otherwise, for
problem determination and operational purposes in the same manner as MQSeries
Integrator. The plug-in utility function CciLog is used to do this. Two of the
arguments accepted by this function, messageSource and messageNumber, define the
event source and the actual integer representation of a message within that source,
respectively.

For Windows systems, the messages are written to the Windows event log, and
your message catalog must be delivered as a Windows DLL.

For Unix systems, these messages are written to the SYSLOG facility, and your
message catalog must be delivered as an XPG4 message catalog.

General development considerations

Chapter 6. Implementing a plug-in node or parser 75

The above covers exceptions raised during normal processing. You must also
provide for exceptions raised when deploying and configuring a message flow.
Messages resulting from these configuration exceptions are reported back to the
Control Center for display to the Control Center user. To facilitate this, you must
create an appropriately named java properties file and copy it to each Control
Center.

Building and installing a Windows event source
On Windows, the message catalog is delivered as a Windows NT DLL, which you
must create as described below. This contains definitions of your event messages to
enable the event viewer to display a readable format, based on the event message
written by your application. When you compile a message catalog, a header file is
created, which defines symbolic values for each event message number you have
created. This header file is included by your application.

To create an event source for the Windows NT Event Log Service:
1. Create a message compiler input (.mc) file with the source for your event

messages. Refer to the Windows NT documentation for details on the format of
this input file.

2. Compile this message file, to create a resource compiler input file, by issuing
the command:
MC -v -w -s -h <inputdir> -r <outputdir> <filename>

The message compiler produces an output header (.h) file which contains
symbolic #defines that map to each message number coded in the input.mc file.
This header file must be included when compiling a plug-in source file that
uses the CciLog utility function to write an event message you have defined.
The messageNumber argument to CciLog must use the appropriate value
hash-defined in the output header file.

3. Compile the output file (.rc) from the message compiler to create a resource
(.res) file by issuing the command:
RC /v <filename>.rc

4. Create a resource DLL using the .res file by issuing the command:
LINK /DLL /NOENTRY <filename>.res

To install the event source into the Windows NT Event Log Service:
1. Start the Windows NT Registry Editor by issuing the command:

regedit

2. Create a new registry subkey for your plug-in application under the existing
structure defined in:
HKEY_LOCAL_MACHINE

SYSTEM
CurrentControlSet

Services
EventLog

Application

Right-click on Application and select New->Key. The new key is created
immediately under the Application key (not under the MQSeries Integrator key
“MQSeriesIntegrator2”). You must give the key the name that you specify on
the messageSource parameter of the CciLog invocation.

You must then create the following values for this entry:

General development considerations

76 MQSeries Integrator Programming Guide

v The EventMessageFile String value must contain the fully qualified path for
the .dll you have created to contain your messages. This is the message
catalog used by CciLog.

v The TypesSupported DWORD value must contain the value “7”.

See “Adding a Source to the Registry” in the Windows NT documentation for
more details about this task.

National Language Support Considerations (Windows NT): When building a
message file for NT that contains multiple locales you should ensure that the
machines locale is set to a western European locale (for example English (United
Kingdom)) before building the message cataloges. Use ’chcp’ to ensure that the
codepage is 850.

Obtain all you message files (file type .mc), these should be written or converted to
the the following codepages. Each message file should be separately ’message
compiled’ with the following additional flag (please see previous mc command):

Table 3. Building an NT message file

Locale Codepage Additional Flags

English (United States) 437 −U

German (Standard) 850 −U

Spanish (Modern Sort) 850 −U

French (Standard) 850 −U

Italian (Standard) 850 −U

Portuguese (Brazilian) 850 −U

Japan 932

Simplified Chinese(China) 1381

Traditional Chinese(Taiwan) 950

Korean 949

DBCS message files do not need to be in Unicode (no -U flag). Use the RC
command as described above to ’resource compile’ all of the files and finally the
’link’ command to build a single message dll.

Building and installing an XPG4 message catalog
On AIX, the IBM-defined MQSeries Integrator Version 2 messages are installed into
file MQSIv202.cat in directory /usr/opt/mqsi/messages, and linked into directory
/usr/lib/nls/msg/en_US. We recommend you follow a similar convention when
producing your message catalog (but with a different name of course).

On Sun Solaris, it is usual to build a catalog of US English messages, install it in
directory /usr/lib/locale/C/LC_MESSAGES, and link it into directory
<mqsi_root>/messages/en_US.

By creating message catalogs in multiple languages, you can arrange for different
brokers on a POSIX system to report messages in different languages, which may
be appropriate for a worldwide operation.

To find further information about building a message catalog:

General development considerations

Chapter 6. Implementing a plug-in node or parser 77

v For AIX, see the information on message facility overview for programming in
AIX Version 4.3 General Programming Concepts: Writing and Debugging Programs,
SC23-4128.

v For Solaris, refer to the Solaris Internationalization Guide for Developers.

National Language Support considerations (UNIX): When building message
catalogs for UNIX, you should ensure that the catalogs are built in the following
codepages:

Table 4. Building a message catalog for UNIX

Locale Codepage

English 437

German 850

Spanish 850

French 850

Italian 850

Portugese (Brazilian) 850

Japan 932

Simplified Chinese(China) 1381

Traditional Chinese(Taiwan) 950

Korean 949

MQSeries Integrator assumes that the messages are in these codepages and will
convert any message loaded from the codepages listed above into the running
processes (brokers) local codepage prior to output to the syslog.

You must of course provide symbolic links to your primary message catalogs for
all locales that you intend to support. MQSeries Integrator uses the
LC_MESSAGES variable when opening message catalogs.

Building and installing a Control Center message properties file
The properties file required at the Control Center for displaying exception
messages arising during configuration of a message flow is a regular Windows NT
text file. The name of the file is of the form myname.properties, where myname must
not conflict with any other installed message catalog, and must be the same as the
string passed as messageSource in the cciLog and cciThrowException methods.
The message properties file is copied into the \mqsi_root\messages directory of
each Control Center.

Following are two example messages extracted from a configuration messages file:
1001: SEP1001I: \
The system management event service has started, processId {0}.
\n\nThe system management event service executable
has been started. \n\nThe system management event
service is available.

1002: SEP1002W: \
The system management event service has stopped.
\n\nThe system management event service has been stopped.
\n\nNo user action required.

In each message, the number prior to the first colon (1001 and 1002 in the example
above) corresponds to the messageNumber specified in the cciLog and

General development considerations

78 MQSeries Integrator Programming Guide

cciThrowException calls. The text after the colon is the actual message that will be
displayed on the error log. The following may be inserted into the message to
facilitate formatting.

\ = end of line continuation character
{N} = text insert, where N is 0 for the first insert,

1 for the second insert, etc.
\n = new line character
\t = tab character

If a single quote is required within the message, two consecutive single quotes
must be specified.

National Language Support Considerations (All platforms): It is particularily
important that all messages placed in a platforms native message catalog are
included in the properties file. It is possible that any message output to the NT
event log or UNIX syslog at broker runtime could also be sent to the Control
Centre. The catalog name, message number and inserts are transported).

The Command Assistant and some components of the utility functions
(mqsiformatlog in particular, but also those utilities sending XML messages to the
products runtime components) might also need to access these messages using a
properties file.

There is a naming convention that should be followed for these files. If your
catalog on UNIX and NT was called ’Product.cat’ and ’Product.dll’ then the
basename for the properties file would be ’Product’, you would need to provide
the following files:

Table 5. Building a message catalog on all platforms

Locale Codepage Encoding Properties File Name

Default (English) 437 437 Product.properties

English 437 850 Product_en.properties

German 850 850 Product_de.properties

Spanish 850 850 Product_es.properties

French 850 850 Product_fr.properties

Italian 850 850 Product_it.properties

Portugese (Brazilian) 850 850 Product_pt_BR.properties

Japan 932 SJIS Product_ja.properties

Simplified Chinese(China) 1381 CP1381 Product_zh_CN.properties

Traditional Chinese(Taiwan) 950 CP950 Product_zh_TW.properties

Korean 949 KSC5601 Product_ko.properties

These files must be converted into ’ASCII UTF-8’ before MQSeries Integrator can
make use of them. Use the Java JDK tool ’native2ascii’ for this conversion. For
example, the Portugese and Japanese properties files would be encoded in the
following way:
native2ascii -encoding 850 Product.PortugeseFile Product_pt_BR.properties

native2ascii -encoding SJIS Product.JapaneseFile Product_ja.properties

Because all properties files are converted to a platform neutral format it is not
essential that the base files are in the codepages listed above.

General development considerations

Chapter 6. Implementing a plug-in node or parser 79

You should also note that these files only need to be produced on one platform,
they may be copied to any other platform where they may be required.

It is extremely important that you include a version number in your catalog name.
The MQSeries Integrator uses its version number as part of the catalog name.
Failure to meet this requirement will mean that you cannot alter the text of a
message or its inserts after shipping the product, unless you can guarantee that
ALL previous properties files with the same name are deleted from where-ever
they may have been installed.

It is worth noting that MQSeries Integrator components could be in contact with
any other version of the MQSeries Integrator product. It is recommended that any
properties files that were created from prior versions are installed at the same time
as the latest properties files to ensure backwards compatibility.

Both of the above points can be disregarded if you are sure that you will always
uniquely number each message.

Please also refer to the MQSeries Integrator Administration Guide for details about
how to set your locale.

Accessing the message content
A message consists of a sequence of bytes. This is known as the wire format.
However, an application usually puts a special interpretation on that sequence of
bytes. For example, the sequence might be the memory holding a C structure. The
broker needs to deal with all messages in a general way, so it does not deal with
the sequence of bytes directly, but instead treats it as a logical message. It does this
by referencing syntax elements that can be navigated to deduce the structure of a
message. A parser is used to convert the wire format into a logical message, and to
generate an output message based on the data found within the logical message.

In some cases, parsers rely on external data representations stored in a metadata
repository. For example, the IBM-supplied MRM parser stores information about
the message formats it can recognize in a relational database. In other cases, the
message format itself is self-defining and no metadata is required to parse that
message.

Syntax elements
The model of a message presented to a message processing node is that of a parse
tree of syntax elements, each of which can be one of three types:

Name elements A name element has associated with it a string,
which is the name of the element.

Value elements A value element has a value associated with it.

Name-value element A name-value element is an optimization of the
case where a name element contains only a value
element and nothing else. The element contains
both a name and a value.

The root element is the unique element in the tree that has no parent. The root
element is always a name element. Elements with the same parent element are said
to be siblings. Sibling elements have a definite order, and iterating over the set of
children of an element will always present the elements in the same order.

General development considerations

80 MQSeries Integrator Programming Guide

The element types that are needed depend on the message structure. Here are
some examples of how a message can be modelled:
v If the message to be parsed consists of a series of name/scalar-value pairs, the

message can be modelled using a tree with a depth of 1, with all of the elements
(apart from the root) being name-value elements.

v Suppose the message has name/set-of-values pairs in addition to scalar values.
In this case, the name/set-of-values pair can be modelled with a name element
to represent the name, and one value element contained within the name
element for each value in the set.

v The message might be the series of bytes holding a C structure, which itself
contains nested structures. For example:
struct SubMessage {
int field1;
int field2;
};
struct Message {
int field1;
float field2;
SubMessage field3;
};

char *messageBytes; // points to the actual message byte stream
Message *message = (Message*)messageBytes;

This message can be modelled by name-value elements representing each scalar
field, and a name element representing each nested structure.

Syntax element navigation
The broker infrastructure provides functions that enable a message processing
node implementation to traverse the tree representation of the message, with
functions to allow navigation from the current element to its:
v Parent
v First child
v Last child
v Previous (or left) sibling
v Next (or right) sibling

as shown in Figure 9. Other functions support the manipulation of the elements
themselves, with functions to create elements, to set or query their values, to insert
new elements into the tree and to remove elements from the tree. See “Node utility
function overview” on page 107 and “Parser utility function overview” on
page 137.

Figure 9. Showing a syntax element with its connections to other elements

Accessing the message content

Chapter 6. Implementing a plug-in node or parser 81

Figure 10 describes a simple syntax element tree that shows a full range of
interconnections between the elements.

The element A is the root element of the tree. It has no parent because it is the root.
It has a first child of element B. Because A has no other children, element B is also
the last child of A.

Element B has three children: elements C, D, and E. Element C is the first child of
B; element E is the last child of B.

Element C has two siblings: elements D and E. The next sibling of element C is
element D. The next sibling of element D is element E. The previous sibling of
element E is element D. The previous sibling of element D is element C.

Figure 11 shows the first generation of syntax elements of a typical message
received by MQSeries Integrator. (Note that not all messages will have an
MQRFH2 header.)

These elements at the first generation are often referred to as “folders”, in which
syntax elements that represent message headers and message content data are

Figure 10. Syntax element tree

Figure 11. First generation of syntax elements in a typical message

Accessing the message content

82 MQSeries Integrator Programming Guide

stored. In this example, the first child of root is the Properties folder. (For more
information about standard properties, see MQSeries Integrator Using the Control
Center.) The next sibling of Properties is the folder for the MQMD of the incoming
MQSeries messages. The next sibling is the folder for the MQRFH2 header. Finally,
there is the folder that represents the message content, which (in this example) is
an XML message.

Example of an XML message
Suppose we have the following XML message:

<Business>
<Product type='messaging'></Product>
<Company>

<Title>IBM</Title>
<Location>Hursley</Location>
<Department>MQSeries</Department>

</Company>
</Business>

In this example, the elements are of the following types:

Name Business, Product, Company, Title, Location, Department

Value IBM, Hursley, MQSeries

Name-value
type=’messaging’

Figure 12 on page 84 shows the tree that represents the XML shown above.

Accessing the message content

Chapter 6. Implementing a plug-in node or parser 83

How can you use the node utility functions (or the similar parser utility functions)
to navigate through a message? Taking the XML message shown above, you need
to call cniRootElement first, with the message received by the node as input to
this function.

Figure 11 on page 82 shows that the last child of the root element is the folder
containing the XML parse tree. You can navigate to this folder by calling
cniLastChild (with the output of the previous call as input to this function).

There is one element only (<Business>) at the top level of the message, so calling
cniFirstChild moves to this point in the tree. You can use cniElementType to get
its type (which is name), followed by cniElementName to return the name itself
(Business).

Figure 12. Tree representation of an XML message

Accessing the message content

84 MQSeries Integrator Programming Guide

<Business> has two children, <Product> and <Company>, so you can use
cniFirstChild followed by cniNextSibling to navigate to them in turn.

<Product> has an attribute (type='messaging'), which is a child element. Use
cniFirstChild again to navigate to this element, and cniElementType to return its
type (which is name-value). Use cniElementName as before to get the name. To get
the value, call cniElementValueType to return the type, followed by the
appropriate function in the cniElementValue group. In this example it will be
cniElementCharacterValue.

<Company> has three children, each one having a child that is a value element (IBM,
Hursley, and MQSeries). You can use the functions already described to navigate to
them and access their values.

Other functions are available to copy the element tree (or part of it). The copy can
then be modified by adding or removing elements, and changing their names and
values, to create an output message.

Syntax element type definition
The element type is stored as a 32-bit integer. It is set using cniSetElementType
and cpiSetElementType functions, and retrieved using the cniElementType and
cpiElementType functions. As discussed previously, syntax elements are of three
basic types: Name, Value, and Name/Value. This basic type is known as the generic
type, and it is stored in the high-order byte of the element type. The low-order two
bytes can be used to save parser-specific type information about the element; this
is known as the specific type. For example, it can be used to denote an element of a
special type, which needs to be handled differently when serialized to an output
message by a parser. The remaining byte is reserved and must not be used.

An element’s type is set when it is created and it cannot be changed subsequently.

If a message flow causes part of an element tree to be copied to another location,
the specific type information is set to zeroes in the target elements of the copy, if
the elements are owned by different parsers. This is because the bit values of the
specific type are not meaningful to a different parser.

The cniSearchElement group allows a plug-in node to search from a given point in
the element tree for an element of a particular type or name. These functions
accept a search mode of type CciCompareMode; this mode allows the plug-in to
search on all combinations of generic type, specific type, and element name.

Syntax element modification
All messages received on an input terminal of a message processing node are, by
implication, read only. You must not attempt to modify the syntax element tree that
belongs to an input message by adding or deleting syntax elements or by changing
the attributes of any elements. To do so can cause unpredictable behavior in the
message broker, and is not supported.

A plug-in node can only modify the syntax element tree of a message that it has
created by using the cniCreateMessage utility function.

Parsing a message
The MQSeries Integrator broker supports what is called partial parsing. If an
individual message contains hundreds or even thousands of individual fields, the

Accessing the message content

Chapter 6. Implementing a plug-in node or parser 85

parsing operation will require considerable memory and processor resources to
complete. Because an individual message flow might reference only a few of these
fields, or none at all, it is inefficient to parse every input message completely. For
this reason, MQSeries Integrator allows parsing of messages on an as-needed basis.
(This does not prevent a parser from processing the entire message all at once, and
some parsers are written to do exactly this.)

Each syntax element in a logical message has two bits that indicate whether or not
all the elements on either side of an element are complete, and whether its children
are complete as well. Parsing is normally completed in a bottom to top, left to
right manner. When a parser has completed the siblings of a particular element
that precede the given element and the first child, it sets the first completion bit to
one. Similarly, when the pointer to the next sibling of an element is complete, as
well as its last child pointer, the other completion bit is set to a one.

In partial parsing, the broker waits until a part of the message is referenced, and
then invokes the parser to parse that part of the message. MQSeries Integrator
message processing nodes refer to fields within a message using hierarchical
names. The name begins at the root of the message and proceeds down the
message tree until the particular element is located. If an element is encountered
without its completion bits set, and further navigation from this element is
required, then the appropriate parser entry point is called to parse the necessary
part of the message. The relevant part of the message is parsed, appropriate
elements are added to the logical message tree, and the element in question is
marked as complete.

Errors and exception handling
The message broker generates C++ exceptions to handle error conditions. These
exceptions are caught in the relevant software layers in the broker and handled
accordingly. However, programs written in C cannot catch C++ exceptions, and
any exceptions thrown will, by default, bypass any C plug-in code and be caught
in a higher layer of the message broker.

Utility functions, by convention, normally use the return value to pass back
requested data, for example, the address or handle of a broker object. The return
value will sometimes indicate that a failure occurred. For example, if the address
or handle of a broker object could not be retrieved, then zero (CCI_NULL_ADDR)
is returned. Additionally, the reason for an error condition is stored in the return
code output parameter, which is, by convention, part of the function prototype of
all utility functions. If the utility function completed successfully and returnCode
was not null, returnCode will contain CCI_SUCCESS. Otherwise, it will contain one
of the return codes described below. The value of returnCode can always be tested
safely to determine whether a utility function was successful.

If the invocation of a utility function causes the broker to generate an exception,
this will be visible to the plug-in only if it specified a value for the returnCode
parameter to that utility function. If a null value was specified for returnCode, and
an exception occurs:
v The plug-in will not be aware of that exception
v The utility function will not return to the plug-in
v Execution control will pass to higher layers in the broker stack to process the

exception

This means that a plug-in would be unable to perform any of its own error
recovery. If, however, the returnCode parameter is specified, and an exception

Accessing the message content

86 MQSeries Integrator Programming Guide

occurs, a return code of CCI_EXCEPTION is returned. In this case,
cciGetLastExceptionData can be used to obtain diagnostic information on the type
of exception that occurred, returning this data in the CCI_EXCEPTION_ST
structure.

Message inserts can be returned in the CCI_STRING_ST members of the
CCI_EXCEPTION_ST structure. The CCI_STRING_ST allows the plug-in to provide
a buffer to receive any required inserts. The broker will copy the data into this
buffer and will return the number of bytes output and the actual length of the
data. If the buffer is not large enough, no data is copied and the “dataLength”
member can be used to increase the size of the buffer, if needed.

The plug-in can then perform any error recovery, if required. If CCI_EXCEPTION
is returned, all exceptions must be passed back to the message broker for
additional error recovery to be performed. This is done by invoking
cciRethrowLastException, which causes the C interface to re-throw the last
exception so that it can be handled by other layers in the message broker.

If an exception occurs and is caught by a plug-in, the plug-in must not call any
utility functions except cciGetLastExceptionData or cciRethrowLastException. An
attempt to call other utility functions will result in unpredictable behavior which
could comprise the integrity of the broker.

If a plug-in encounters a serious error, cciThrowException can be used to generate
an exception that will be processed by the message broker in the correct manner.
The generation of such an exception causes the supplied information to be written
into the broker event log.

Types of exception and broker behavior
The broker generates a set of exceptions that can be advised to a plug-in. These
exceptions can also be generated by a plug-in when an error condition is
encountered. The exception classes are:

Fatal Fatal exceptions are generated when a condition occurs that prevents the
broker process from continuing execution safely, or where it is broker
policy to terminate the process. Examples of fatal exceptions are a failure
to acquire a critical system resource, or an internally caught severe
software error. The broker process terminates following the throwing of a
fatal exception.

Recoverable
These are generated for errors which, although not terminal in nature,
mean that the processing of the current message flow has to be ended.
Examples of recoverable exceptions are invalid data in the content of a
message, or a failure to write a message to an output node. When a
recoverable exception is thrown, the processing of the current message is
aborted on that thread, but the thread recommences execution at its input
node.

Configuration
Configuration exceptions are generated when a configuration request fails.
This can be because of an error in the format of the configuration request,
or an error in the data. When a configuration exception is thrown, the
request is rejected and an error response message is returned.

Parser These are generated by message parsers for errors which prevent the

Error handling

Chapter 6. Implementing a plug-in node or parser 87

parsing of the message content or creating a bit-stream. A parser exception
is treated as a recoverable exception by the broker.

Conversion
These are generated by the broker character conversion functions if invalid
data is found when attempting to convert to another datatype. A
conversion exception is treated as a recoverable exception by the broker.

User These are generated when a Throw node throws a user-defined exception.

Database
These are generated when a database management system reports an error
during broker operation. A database exception is treated as a recoverable
exception by the broker.

Error handling

88 MQSeries Integrator Programming Guide

Return codes
By convention, the return code output parameter of all utility functions is set to
indicate successful completion, or otherwise. The following table lists all return
codes with their meanings. These return codes are defined in BipCci.h.

Table 6. Utility function return codes and values
Return code Explanation

CCI_BUFFER_TOO_SMALL The output buffer is not large enough to store the requested data.
CCI_EXCEPTION An exception occurred.
CCI_EXCEPTION_CONFIGURATION A configuration exception was detected when invoking the function. �1�
CCI_EXCEPTION_CONVERSION A conversion exception was detected when invoking the function. �1�
CCI_EXCEPTION_DATABASE A database exception was detected when invoking the function.
CCI_EXCEPTION_FATAL A fatal exception was detected when invoking the function. �1�
CCI_EXCEPTION_PARSER A parser exception was detected when invoking the function. �1�
CCI_EXCEPTION_RECOVERABLE A recoverable exception was detected when invoking the function. �1�
CCI_EXCEPTION_UNKNOWN An unknown exception was specified or encountered.
CCI_EXCEPTION_USER A user exception was detected when invoking the function. �1�
CCI_FAILURE A function was unsuccessful.
CCI_INV_DATA_BUFLEN A data buffer length of zero was specified.
CCI_INV_DATA_POINTER A null pointer was specified for the address of an output data area.
CCI_INV_DATASOURCE_NAME A datasource name was not specified.
CCI_INV_ELEMENT_OBJECT A null pointer was specified for the element object.
CCI_INV_FACTORY_NAME A factory name that is not valid (blank) was specified.
CCI_INV_FACTORY_OBJECT A null pointer was specified for the factory object.
CCI_INV_LENGTH A length of zero was specified.
CCI_INV_LOG_TYPE The specified log type is not valid.
CCI_INV_MESSAGE_CONTEXT A null pointer was specified for the message context.
CCI_INV_MESSAGE_OBJECT A null pointer was specified for the message object.
CCI_INV_NODE_NAME A node name that is not valid (blank) was specified.
CCI_INV_NODE_OBJECT A null pointer was specified for the node object.
CCI_INV_OBJECT_NAME Characters specified in the object name were not valid.
CCI_INV_PARSER_NAME A parser class name that is not valid (blank) was specified.
CCI_INV_PARSER_OBJECT A null pointer was specified for the parser object.
CCI_INV_SQL_EXPR_OBJECT A null pointer was specified for an SQL expression value.
CCI_INV_STATEMENT A statement was not specified.
CCI_INV_TERMINAL_NAME A terminal name that is not valid (blank) was specified.
CCI_INV_TERMINAL_OBJECT A null pointer was specified for the terminal object.
CCI_INV_TRANSACTION_TYPE An invalid value was specified for the transaction type.
CCI_INV_VFTP A null pointer was specified for the address of the plug-in virtual

function pointer table.
CCI_MISSING_IMPL_FUNCTION A mandatory implementation function was not defined in the function

pointer table.
CCI_NAME_EXISTS A parser with the same class name already exists.
CCI_NO_BUFFER_EXISTS No buffer exists for the specified parser object.
CCI_NO_EXCEPTION_EXISTS No previous exception was found for this thread.
CCI_NULL_ADDR A function that should return an address was unsuccessful; zero is

returned instead.
CCI_PARSER_NAME_TOO_LONG The name of the parser class is too long.
CCI_SUCCESS Successful completion.

Note:

�1�This return code is returned only by cniGetLastExceptionData to indicate the type of the last exception.

Error handling

Chapter 6. Implementing a plug-in node or parser 89

Compiling a plug-in

Prerequisites
v Appropriate C++ compiler:

– For Windows NT, Microsoft Visual Studio C++ Version 6.0
– For AIX, VisualAge C++ for AIX Version 5.0
– For Sun Solaris, SparcCompiler SC5.0

v Installed “Samples and SDK” optional component on at least one system. The
SDK provides the required header files and contains samples that you can
modify to your own requirements.

Header files
The C interfaces are defined by the following header files:

BipCni.h Message processing nodes

BipCpi.h Message parsers

BipCci.h Interfaces common to both nodes and parsers

BipCos.h Platform specific definitions

File names
References are made throughout this chapter to the MQSeries Integrator home
directory: that is, the directory into which MQSeries Integrator is installed. The
location of the home directory is as follows:

For AIX /usr/opt/mqsi

For Sun Solaris /opt/mqsi

For Windows C:\Program Files\IBM\MQSeries Integrator 2.0

For convenience, the label <mqsi_root> is used throughout the book to refer to this
home directory.

On Windows NT systems, “\” is used to separate levels in a hierarchical file name
and “/” is used to indicate that the next word is a command flag (rather than a
file name).

On Unix platforms, “/” is used to separate levels in a hierarchical file name and
“\” is used to give a special meaning to the next character (for example, \t would
mean “put a tab here”).

As a convenience, when a Windows NT application opens a file with a name that
includes a “/”, it is interpreted as a level separator. So, coding
include <plugin/BipSampPluginNode.h>

would have the expected effect on all platforms.

Compiling a plug-in

90 MQSeries Integrator Programming Guide

Sample code
Sample code is provided with the product, to help you understand how to write
nodes and parsers. The samples are located in the following directory:

<mqsi_root>\examples\plugin (Windows NT)

<mqsi_root>/sample/plugin (Unix)

Table 7. Sample code and related files

File Function

BipSampPluginNode.c C source file containing sample implementations of
(1) a message processing node that routes a
message to one of five output terminals, depending
on content (SampleSwitch), and (2) a simple fixed
transformation of an input message into an output
message (SampleTransform).

BipSampPluginNode.h Header file for above

BipSampPluginParser.c C source file containing sample implementations of
a simple pseudo-XML parser.

BipSampPluginParser.h Header file for above

BipSampPluginUtil.c C source file for example conversion code

BipSampPluginUtil.h Header file for above

PluginSample.add.xml Pseudo XML files which can be used as input to
sample nodes

PluginSample.change.xml Pseudo XML files which can be used as input to
sample nodes

PluginSample.delete.xml Pseudo XML files which can be used as input to
sample nodes

SampleSwitchCustomizer.java Sample customizer

SampleSwitchCustomizerBeanInfo.java Sample customizer

TraceSettingPropertyEditor.java Sample property editor

ComIbmSampleSwitch The XML interface definition file for the sample
plug-in node called SampleSwitch.

ComIbmSampleSwitch.wdp The WebDav properties file for the sample plug-in
node called SampleSwitch.

ComIbmSampleTransform The XML interface definition file for the sample
plug-in node called SampleTransform.

ComIbmSampleTransform.wdp The WebDav properties file for the sample plug-in
node called SampleTransform.

SampleSwitch.gif Gif used for the icon of the SampleSwitch plug-in
node in the Control Center tree view (the minimum
size)

SampleSwitch.properties Properties file for the SampleSwitch plug-in node

SampleSwitch30.gif Gif used for the icon of the SampleSwitch plug-in
node for the 25% zoom.

SampleSwitch42.gif Gif used for the icon of the SampleSwitch plug-in
node for the 50% zoom.

SampleSwitch58.gif Gif used for the icon of the SampleSwitch plug-in
node for the 75% zoom.

SampleSwitch84.gif Gif used for the icon of the SampleSwitch plug-in
node for the 100% zoom.

Compiling a plug-in

Chapter 6. Implementing a plug-in node or parser 91

Table 7. Sample code and related files (continued)

File Function

SampleTransform.gif Gif used for the icon of the SampleTransform
plug-in node in the Control Center tree view (the
minimum size).

SampleTransform30.gif Gif used for the icon of the SampleTransform
plug-in node for the 25% zoom.

SampleTransform42.gif Gif used for the icon of the SampleTransform
plug-in node for the 50% zoom.

SampleTransform58.gif Gif used for the icon of the SampleTransform
plug-in node for the 75% zoom.

SampleTransform84.gif Gif used for the icon of the SampleTransform
plug-in node for the 100% zoom.

SampleTransform.properties Properties file for the SampleTransform plug-in
node.

The following sample programs are also provided:
v A sample property editor, TraceSettingPropertyEditor.java
v A sample customizer file, SampleSwitchCustomizer.java, and associated bean file

SampleSwitchCustomizerBeanInfo.java.

Compilation
The first step is to create the plug-in factory. Move to the directory where the
plug-in code is located. For example, if you are creating a factory for the sample
plug-in node:

cd <mqsi_root>\examples\plugin (Windows NT)

cd <mqsi_root>/sample/plugin (Unix)

Compiling on Windows NT
Compile the plug-in node (assuming the Microsoft 32-bit C/C++ Compiler,
available in Microsoft Visual Studio C++ Version 6.0) as follows:

cl /VERBOSE /LD /MD /Zi /I..\plugin /I..\..\include
\plugin BipSampPluginNode.c -link /DLL ..\..\lib\imbdfplg.lib
/OUT:BipSampPluginNode.lil

This creates the ‘lil’ file directly.

Compiling on AIX
Compile and link the plug-in node as follows, using one of the supported C
compilers:
xlc_r -I <mqsi_root>/include

-I <mqsi_root>/include/plugin
-c BipSampPluginNode.c

-o <outputdir>/BipSampPluginNode.o

xlc_r -bM:SRE
-bexpall
-bnoentry
-o BipSampPluginNode.lil BipSampPluginNode.o
-L <mqsi_root>/lib
-l imbdfplg

chmod a+r BipSampPluginNode.lil

Compiling a plug-in

92 MQSeries Integrator Programming Guide

Compiling on Sun Solaris
Compile and link the plug-in node as follows, using one of the supported C
compilers:
cc -mt \
-I. \

-I<mqsi_root>/include \
-I<mqsi_root>/include/plugin \
-c BipSampPluginNode.c \
-o <output_dir>/BipSampPluginNode.o

cc -mt \
-I. \

-I<mqsi_root>/include \
-I<mqsi_root>/include/plugin \
-c BipSampPluginUtil.c \
-o <output_dir>/BipSampPluginUtil.o

cc -G \
-o <output_dir>/BipSampPluginNode.lil \
<output_dir>/BipSampPluginNode.o \
<output_dir>/BipSampPluginUtil.o \
-L <mqsi_root>/lib /
-l imbdfplg

chmod a+r <output_dir>/BipSampPluginNode.lil

Compiling a plug-in

Chapter 6. Implementing a plug-in node or parser 93

Compiling a plug-in

94 MQSeries Integrator Programming Guide

Chapter 7. Installing a plug-in node or parser

When you have written the C code for the plug-in, in accordance with the
guidelines given in “Chapter 6. Implementing a plug-in node or parser” on
page 65, the next step is to install the code on your MQSeries Integrator brokers. In
the case of a plug-in node, it is also necessary to integrate the new node into the
Control Center.

This chapter contains:
v “Authorization”
v “Installing a plug-in on a broker system”
v “Integrating a plug-in node into the Control Center” on page 96

Authorization
v Authorization to install the code for the plug-in on each system that will use it.
v Authorization to stop and restart the broker to make the plug-in available to the

broker.
v Authorization to define the node in the Control Center (a member of mqbrdevt

and, preferably, logging in as the superuser IBMMQSI2).

Installing a plug-in on a broker system
The plug-in ‘lil’ file can be installed by copying or moving it to the following
directory:

<mqsi_root>\bin (Windows NT)

<mqsi_root>/lil (Unix)

This directory (or its equivalent if you chose to override the default location) is
created during installation of MQSeries Integrator.

We recommend that, for Windows NT, you also create and install a ‘pdb’ file in the
bin directory as this will help IBM service to respond more quickly to any problem
determination queries that you may have.

You must install the ‘lil’ file on each system that requires the functionality of the
plug-in node or parser that you have created. If all your brokers are on the same
machine type, you can build the ‘lil’ once and copy it around your systems. If you
have a cluster that consists of one AIX, one Sun Solaris, and one Windows NT
broker, you will need to build the ‘lil’ separately on each machine type.

You must stop and restart each broker to enable it to detect the existence of the
new ‘lil’.

On all types of system, you can remove a ‘lil’ by stopping the broker and
removing or moving the file. You can update a ‘lil’ by stopping, removing or
moving, and creating a new ‘lil’. Some types of system allow a different order;
others allow you to use a ‘lil’ that is actually elsewhere on a network (for example,
an NFS mount or a Windows NT shared drive).

© Copyright IBM Corp. 2000, 2001 95

On Unix platforms, permissions are set so that only a superuser can create ‘lil’ files
in the <mqsi_root>/lil directory. One way to allow other users to maintain ‘lil’
files is for the superuser to create symbolic links in the <mqsi_root>/lil directory
so that the actual ‘lil’ files can be elsewhere and can be controlled according to the
system’s administration policy.

In the case of a plug-in node, you must also install the interface definition for the
node in the Control Center. This task is described in “Integrating a plug-in node
into the Control Center”.

Integrating a plug-in node into the Control Center
When you have created the code that provides the function of your new node, you
must define the node to MQSeries Integrator. You can then use it in the Control
Center, include it in a message flow, and deploy that message flow to one or more
brokers.

This section describes how the Plug-in SmartGuide helps you do this. You invoke
the SmartGuide from the Message Flows view of the Control Center.

Integrating the node in the Control Center
On the Attributes and Attribute Groups page of the plug-in SmartGuide dialog,
there is the Use Defaults checkbox. If you select this (the initial value is set), the
Configuration Manager includes only non-default attribute values in the message
flow deployment message that is sent to the broker. If your plug-in node requires
all attributes to be set when the message flow deployed, you must uncheck this
box. See “Guidelines for coding a plug-in node” on page 69 for more details.

Create optional resources
Open the Control Center and go to the Message Flows (Designer) view. Right-click
on Message Flows and select Create Plugin node. The plug-in node SmartGuide
provides an easy way to define the node the interface for a new plug-in node and
to specify other information related to the node (for example, location of resources
for the node, help, and descriptive information). The steps are outlined here; for
details of what values to set in each field, refer to the online help from the plug-in
SmartGuide.

In the Smart Guide you define the following:
v A label for the node. This is the name by which the node is known externally.

For example, the sample transform node might have the name (label)
SampleTransform. The names of files associated with the node, such as node icon
files, are assumed from this label.

v The internal identifier. This is the name by which the node is known internally
within the configuration repository.

v Labels for the node terminals. You must define an input terminal. Output
terminals are optional.

v The location for resources associated with the node, such as a property editor,
customizer and other control files.

v Attributes (properties) for the node and attribute groups. You define the name of
the attribute as it will appear on the Properties page of the node in the Control
Center, the type of attribute, whether it is mandatory or optional, whether the
value of the attribute must be encoded, and its initial (default) value. The name
of an attribute group appears as the heading of a tab on the Properties page of

Installing a plug-in

96 MQSeries Integrator Programming Guide

the node in the Control Center. Any attributes belonging to that group are
shown on that tab. For example, you might separate attributes into two groups
called ″Basic″ and ″Advanced″.

v Description of the node. You must put some text in here if you want a template
properties file created for you.

v Where templates for optional resources will be created. The SmartGuide creates
templates for each of these resources in the directory that you specify. The
resources, and the work you need to do to extend the templates are described in:
– Icon files, see “Defining an icon for the node”.
– Online help, see “Online help”.
– Properties file to enable translation of the node properties into other national

languages.
– Property editor. The SmartGuide does not create a template property editor

for you.
– Customizer.

Defining optional node resources
The SmartGuide displays a dialogue that allows you to select these optional
resource if you tick the corresponding check box. You do not have to select any:
you can create your own files, or you can choose not to include these files for your
node.

Defining an icon for the node
The SmartGuide creates five default icons, of different sizes, to be used in the
Control Center. These icons have the same root name as the node. For example, for
a node called CurrencyTransform node, the following files are created:
v CurrencyTransform.gif for the tree view in the Message Flows pane. This is the

minimum size.
v CurrencyTransform30.gif for the 25% zoom.
v CurrencyTransform42.gif for the 50% zoom.
v CurrencyTransform58.gif for the 75% zoom.
v CurrencyTransform84.gif for the 100% zoom.

You must provide all of these icons. You can use an icon editor to customize the
display. If you have already created an icon, it should follow the naming
convention above (<nodename>.gif).

“Storing the files in the MQSeries Integrator directory structure” on page 102
provides information about where your icon files must be stored.

Online help
The SmartGuide creates a template for online HTML help that uses the same style
sheet as (bipnt.css) used by the IBM primitive nodes.

You are recommended to complete the template with online help for the new
plug-in node for Control Center users. You can edit this file in any text editor.

The name must be of the form MessageProcessingNodeType_<nodename> and the
extension must be .htm. See “Storing the files in the MQSeries Integrator directory
structure” on page 102 for information about where your help file must be stored.

Integrating a plug-in node

Chapter 7. Installing a plug-in node or parser 97

Properties file
The SmartGuide creates a template properties file, but it is empty if you have not
filled in a description of the node. It looks like this:

You must have a properties file if you want to enable translation to other national
languages for the properties of your node that are displayed in the Control Center,
for example, descriptive text. The name must be of the form
<nodename>.properties

Customizer
If you need to control how the properties (attributes) of your node are displayed
and neither the default property editors nor a user-defined property editor support
these requirements, you might need to provide a customizer.

The SmartGuide creates a section of code for you to work from. See Figure 14 on
page 99 for an example of the Java code generated by the SmartGuide when you
check the ″stub for customizer″ box. A sample customizer is also included with
MQSeries Integrator as a sample program called SampleSwitchCustomizer.java.
The full source code of this sample uses a radio button group and a file dialog to
get values for attributes called nodeTraceSetting and nodeTraceOutFile. The code
is supplied in the plug-in samples directory. SampleSwitchCustomizerBeanInfo.java
is also provided to use this customizer class as a bean.

The customizer follows the conventions of the java.beans.Customizer. The class
must implement this interface. The name of the customizer must be of the form
<package>.<name>Customizer where:
v <package> is the value you specified for the package field in the SmartGuide.
v <name> is the value you specified for the name field in the SmartGuide.

A Customizer for the SampleTransform node would therefore be called
com.isv.SampleTransformCustomizer.

Note: This name is consistent with the content of the sample XML interface
definition file and sample java files supplied with the product. It is not
consistent with the recommended naming convention.

The setObject() method on the Customizer is called with the org.w3c.dom.Element
that represents the MessageProcessingNode that is of the appropriate type.

The customizer works with a full copy (a clone) of the message processing node
document. This allows it to support the full range of actions to apply, cancel, and
undo any changes made to the properties by the user of the customizer dialog. The
final action of the user to accept the changes made in the dialog (Apply or OK)
causes the original document to be updated.

The customizer has access to the entire XML document of which this node is a
part. It is therefore able to access any relevant information defined within that
document.

shortDescription = Sample fixed transformation of a message
longDescription = This is an example of a plug-in message processing node called SampleTransform

Figure 13. Sample plug-in node properties file

Integrating a plug-in node

98 MQSeries Integrator Programming Guide

When you have created your customizer, you must:
1. Add the jar files for any class that you use in the property editor to the

CLASSPATH system environment variable. For example, if you are using the
sample property editor, you must add mqsi_root\classes\xml4.jar and
mqsi_root\classes\swingall.jar.

2. Compile the customizer using (for example) javac to create the .class file or
files.

3. Store the compiled file or files in the appropriate directory (see “Storing the
files in the MQSeries Integrator directory structure” on page 102).

4. Add the directory where the compiled customizer is stored into the
CLASSPATH system environment variable.

PropertyEditor
When you create attributes of a node, you specify the type of attribute. MQSeries
Integrator supplies default property editors to handle the following basic types:
v String
v Integer
v Date
v Time
v Float
v Long
v Double
v Boolean
v Timestamp

If you want to define properties of other datatypes, you must create a property
editor. The SmartGuide does not create a template property editor for you.

The property editor must follow the java.beans.PropertyEditor convention. The
class must implement this interface. The three types of property editor (text-based,
graphics based, and component based) are supported.

package com.isv;

import java.beans.*;
import javax.swing.*;

public class SampleTransformCustomizer extends JPanel implements Customizer
{
public SampleTransformCustomizer() {

super();
}

public void addPropertyChangeListener(PropertyChangeListener listener) {
}

public void removePropertyChangeListener(PropertyChangeListener listener) {
}

public void setObject(Object bean) {
}
}

Figure 14. Customizer code created by the SmartGuide

Integrating a plug-in node

Chapter 7. Installing a plug-in node or parser 99

The name of the property editor must be of the form <type>PropertyEditor or
<type>Editor (see below) where <type> is the name you entered in the
User-defined field of the SmartGuide when you created the attribute for which the
property editor is used:
v A property editor named <type>Editor is wrapped with the

WrapperPropertyEditor class provided in the tool. This class supports the
text-based property editor mode, and handles writing the Attribute value to the
XML document as a string (encoded if necessary).

v If a property editor is to support the graphics or component-based property
editor modes, it must be named <type>PropertyEditor. The property editor then
must use the setAttribute() and getAttribute() methods in the
org.w3c.dom.Element package to write the Attribute value to the XML
document.

The setValue() method on the property editor must be supported by all three types
of property editors. It is called with the org.w3c.dom.Element that represents the
Attribute that is being edited.

The property editor works with a full copy (a clone) of the property. This allows it
to support the full range of actions to apply, cancel, and undo any changes made
to the properties by the user of the properties dialog. The final action of the user to
accept the changes made in the dialog (Apply or OK) causes the original
document to be updated.

The property editor has access to the entire XML document of which this node is a
part. It is therefore able to access any relevant information defined within that
document.

Integrating a plug-in node

100 MQSeries Integrator Programming Guide

Figure 15 illustrates an extract of Java code for a property editor that handles the
nodeTraceSetting attribute from the SampleTransform node with
type="TraceSetting". The full program is provided with the product as a sample
called TraceSettingPropertyEditor.java in the installation directory (see “Sample
code” on page 91).

The property editor is named <type>PropertyEditor, so it must call the
setAttribute() and getAttribute() methods to set and get the Attribute’s value. The
TraceSetting attribute is an enumerated type attribute, that is, it has a sequence of
possible values, so the propety editor uses the getTags() method to get the valid
values. These values are displayed in a dropdown list on the node interface. The
call to getTags() and the use of the dropdown list is handled by the Control Center
interface.

When you have created your property editor, you must:
1. Add the jar files for any class that you use in the property editor to the

CLASSPATH system environment variable. For example, if you are using the
sample property editor, you must add mqsi_root\classes\xml4.jar.

2. Compile the property editor using (for example) javac to create the .class file or
files.

3. Store the compiled file or files in the appropriate directory (see “Storing the
files in the MQSeries Integrator directory structure” on page 102).

public class TraceSettingPropertyEditor implements
java.beans.PropertyEditor {
Vector propertyChangeListeners = new Vector();
Element element = null;

public String getAsText() {
return element.getAttribute("value");

}

public java.lang.String[] getTags() {
String[] tags = {"0","1","2"};

return tags;
}

public void setAsText(String value) {
String oldValue = element.getAttribute("value");

element.setAttribute("value",value);
notifyListeners(oldValue);

}

public void setValue(Object value) {
String oldValue = null;

if(element != null) {
oldValue = element.getAttribute("value");

}
element = (Element)value;
notifyListeners(oldValue);

}

public Object getValue() {
return element;

}
}

Figure 15. PropertyEditor sample code

Integrating a plug-in node

Chapter 7. Installing a plug-in node or parser 101

4. Add the directory where the compiled property editor is stored into the
CLASSPATH system environment variable.

Installing a new message processing node in the Control
Center

To complete this task you must place the files you have created in the directories
from which they can be accessed. You can then check your new node into the
configuration repository. It can then be accessed by other users of the Control
Center.

Storing the files in the MQSeries Integrator directory structure
For details about storing the node code (the lil file), see “Installing a plug-in on a
broker system” on page 95. This section describes where to store any optional
resources used by the node interface.
v Stop the Control Centre.
v Under the mqsi_root\Tool directory, create a subdirectory structure for the

properties file, the property editor, and the customizer classes. This structure
must match the location specified in the Package field of the SmartGuide. For
example, if you specified com.isv in the SmartGuide, you must create
subdirectories \com\isv. Copy the properties file, the property editor and the
customizer into this subdirectory. Ensure that this directory is added to the
CLASSPATH system environment variable.

v Under the mqsi_root\Tool\help\<lang> directory, create a subdirectory structure
for the online help file. <lang> is the language identifier, for example, en_US for
US ENglish. The structure must match the location specified in the Package field
of the SmartGuide. For example, if you specified com.isv in the SmartGuide, you
must create subdirectories \com\isv. Copy the help file into this directory.

v You must copy all five icon files into the subdirectory mqsi_root\Tool\images.

You must store these files in these directories on the local system of every user of
the Control Center who needs to access the information about the new node. These
files are only accessed locally to each instance of the Control Center: this
information is not held centrally in the configuration repository for shared access.
Warning: if you uninstall MQSI with the option to include data, the \Tool directory
structure is removed.

Checking the node in to the configuration repository
When you create a new node using the SmartGuide, it is initially created as a new
resource. You must complete any optional files you asked for, and then install them
in the directories shown.

You can then check in the node by right clicking your new node and selecting
Check In.

Updating a plug-in node
If you need to update any of the files for a node you have created, you must
follow these steps:

Integrating a plug-in node

102 MQSeries Integrator Programming Guide

1. Start the Control Center. If you checked in the node using the MQSeries
Integrator superuser ID IBMMQSI2, you must be logged on with this user ID to
make any changes1. If not, you can use any user ID that is a member of the
MQSeries Integrator group mqbrdevt.

2. Select the Message Flows view.
3. Select the node that you want to update. Document any attributes set on the

node that you would like to retain. They will not be available later.
4. Check out and delete the selected node.
5. Use the SmartGuide to create the updated node. None of the properties that

you set in the SmartGuide when you created the node are retained; you have to
reset all the attributes and properties, although you can reuse any optional
resources, for example the properties file or icon files, from the original node.

6. Install the updated files for this node into the appropriate directories (described
in “Storing the files in the MQSeries Integrator directory structure” on
page 102). If you have updated any optional resource files, you must remember
to install the updated files on every system on which the Control Center is
used.

7. Add your node back into the workspace following the instructions given in
“Checking the node in to the configuration repository” on page 102.

1. You must take care if you change logon IDs to complete this task. Changing logon IDs can affect the operation of the
Configuration Manager’s queue manager if it is on this system, but is not running as a Windows NT service. See the MQSeries
Integrator Administration Guide for more information about queue manager operation (Chapter 2) and the superuser IBMMQSI2
(Chapter 4).

Integrating a plug-in node

Chapter 7. Installing a plug-in node or parser 103

Integrating a plug-in node

104 MQSeries Integrator Programming Guide

Chapter 8. Node implementation and utility functions

The plug-in interface for a message flow node consists of:
1. A set of implementation functions that provide the functionality of the plug-in

node. These functions are invoked by the message broker. The implementation
functions are mandatory, and if not supplied by the developer will cause an
exception at runtime.

2. A set of utility functions, the purpose of which is to create resources in the
message broker or to request a service of the broker. These utility functions can
be invoked by a plug-in node.

These functions are defined in the header file BipCni.h.

This chapter contains:
v “Node implementation function overview” on page 106.
v “Node utility function overview” on page 107.
v “Node implementation function interface” on page 109.
v “Node utility function interface” on page 113.

See also “Chapter 10. Node and parser utilities” on page 159 for additional utility
functions that can be used by a plug-in node.

© Copyright IBM Corp. 2000, 2001 105

Node implementation function overview
The plug-in needs to implement a function interface for the message broker to
invoke during runtime execution. This includes functions to create a local context
whenever a node instance is created, the setting and retrieval of attribute values,
the function to actually perform the processing of the node itself and functions to
examine messages.

The following functions are mandatory, and must be implemented by the
developer.

Follow the page references to see the detailed descriptions of each implementation
function.

Mandatory functions
cniCreateNodeContext page 109

cniDeleteNodeContext page 109

cniEvaluate page 110

cniGetAttribute page 110

cniGetAttributeName page 111

cniSetAttribute page 111

Node function overview

106 MQSeries Integrator Programming Guide

Node utility function overview
The following system-provided functions allow the C plug-in to create or define
message broker objects, such as node factories, nodes, and terminals. Functions are
also provided to send messages to an output terminal for propagation to connected
nodes and to examine message content.

Follow the page references to see the detailed descriptions of each utility function.

Initialization and resource creation
cniCreateNodeFactory page 120

cniDefineNodeClass page 120

cniCreateInputTerminal page 119

cniCreateOutputTerminal page 120

cniIsTerminalAttached page 126

cniGetBrokerInfo page 125

Message management
cniCreateMessage page 119

cniDeleteMessage page 121

cniFinalize page 124

cniGetMessageContext page 125

cniPropagate page 128

Message buffer access
cniBufferByte page 114

cniBufferPointer page 115

cniBufferSize page 115

cniWriteBuffer page 134

Syntax element navigation
cniRootElement page 128

cniParent page 127

cniNextSibling page 127

cniPreviousSibling page 127

cniFirstChild page 125

cniLastChild page 126

cniSearchElement group page 129

Syntax element access
cniAddAfter page 113

cniAddBefore page 114

Node function overview

Chapter 8. Node implementation and utility functions 107

cniAddAsFirstChild page 113

cniAddAsLastChild page 114

cniCopyElementTree page 115

cniCreateElementAfter page 116

cniCreateElementAfterUsingParser
page 116

cniCreateElementBefore page 118

cniCreateElementBeforeUsingParser
page 118

cniCreateElementAsFirstChild
page 117

cniCreateElementAsFirstChildUsingParser
page 117

cniCreateElementAsLastChild page 117

cniCreateElementAsLastChildUsingParser
page 118

cniDetach page 121

cniElementName page 121

cniElementType page 122

cniElementValue group page 122

cniElementValueState page 123

cniElementValueType page 123

cniElementValueValue page 124

cniGetParserClassName page 126

cniSetElementName page 130

cniSetElementType page 130

cniSetElementValue group page 130

cniSetElementValueValue page 131

SQL statement handling
cniSqlCreateStatement page 132

cniSqlExecute page 133

cniSqlSelect page 133

cniSqlDeleteStatement page 133

Node function overview

108 MQSeries Integrator Programming Guide

Node implementation function interface
The plug-in needs to implement a function interface for the message broker to
invoke during runtime execution. This includes functions to create a local context
whenever a node instance is created, the setting and retrieval of attribute values,
the function to actually perform the processing of the node itself and functions to
examine messages.

The following functions must be implemented, using the prototypes as described.

The node implementation functions are defined in the header file BipCni.h.

cniCreateNodeContext
Creates any plug-in context for an instance of a node object. It is invoked by the
message broker whenever an instance of a node object is constructed. Nodes are
constructed when a message flow is deployed by the broker.

The responsibilities of the plug-in are to:
1. (Optionally) verify that the name of the node specified in the nodeName

parameter is supported by the factory.
2. Allocate any node instance specific data areas (such as context) that might be

required (for attribute data and terminals, for example).
3. Perform any additional resource acquisition or initialization that might be

required for the processing of the node.
4. Return the address of the context to the calling function. Whenever a plug-in

implementation function for this node instance is invoked, the appropriate
context is passed as an argument to that function. This means that a plug-in
node developed in C need not maintain its own static pointers to per-instance
data areas.

CciContext* cniCreateNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject);

factoryObject
The address of the factory object that owns the node being created (input).

nodeName
The name of the node being created (input).

nodeObject
The address of the node object that has just been created (input).

Return values: If successful, the address of the plug-in context is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned.

cniDeleteNodeContext
Deletes any plug-in context for an instance of a node object. It is invoked by the
message broker whenever an instance of a node object is destroyed. A message
flow node may be deleted when reconfiguring or redeploying a broker.

The responsibilities of the plug-in are to:
1. Release any node instance specific data areas (such as context) that were

acquired at construction or during node processing.
2. Release any additional resources that might have been acquired for the

processing of the node.
void cniDeleteNodeContext(CciContext* context);

Node implementation functions

Chapter 8. Node implementation and utility functions 109

context
The address of the plug-in context for the instance of the node, as created
and returned by the cniCreateNodeContext function (input).

Return values: None.

cniEvaluate
Performs node processing. It is invoked by the message broker when a message is
received on one of the input terminals of an instance of a node object. This
function forms the main processing logic of the message flow node.

The responsibilities of the plug-in are to:
1. Process the message in accordance with the values of any attributes on the

node instance.
2. Process the message based on content, if desired.
3. Propagate the message to any appropriate output terminals.
4. Throw an exception if an error occurs.
void cniEvaluate(

CciContext *context,
CciMessage *destinationList,
CciMessage *exceptionList,
CciMessage *message);

context
The address of the plug-in context for the instance of the node, as created
by the plug-in and returned by the cniCreateNodeContext function (input).

destinationList
The address of the input destination list object (input).

exceptionList
The address of the exception list for the message (input).

message
The address of the input message object (input).

Return values: None.

cniGetAttribute
Gets the value of an attribute on a specific node instance. It is invoked by the
message broker when a report request is received that causes a retrieval of the
value of a node attribute. The broker will have verified that the attribute name is
valid for the node.

The responsibilities of the plug-in are to:
1. Return a character representation of the attribute value.
2. Return a null string if the data is sensitive and should not be displayed in

reports.
3. Throw an exception if an error occurs.
int cniGetAttribute(

CciContext* context,
CciChar* attrName,
CciChar* buffer,
int bufsize);

Node implementation functions

110 MQSeries Integrator Programming Guide

context
The address of the plug-in context for the instance of the node, as created
by the plug-in and returned by the cniCreateNodeContext function (input).

attrName
The name of the attribute for which the value is to be retrieved (input).

buffer The address of a buffer into which the attribute value is copied (output).

bufsize
The length, expressed in the number of CciChar characters, of the buffer
specified in the buffer parameter (input).

Return values: If successful, zero is returned, and the character representation of
the value of the attribute is returned in the specified buffer. If the name of the
attribute does not identify one supported by the plug-in, a non-zero value is
returned.

cniGetAttributeName
Returns the name of a node attribute by an index. It is invoked by the message
broker when it requires the names of attributes supported by a particular instance
of a node. The function must guarantee to return the attributes in a known,
defined order and to return the attribute name represented by the index parameter.
int cniGetAttributeName(

CciContext* context,
int index,
CciChar* buffer,
int bufsize);

context
The address of the plug-in context for the instance of the node, as created
by the plug-in and returned by the cniCreateNodeContext function (input).

index Specifies the index of the attribute name (input). The index of the attributes
starts from zero.

buffer The address of a buffer into which the attribute name will be copied
(output).

bufsize
The length, expressed as the number of CciChar characters, of the buffer
specified in the buffer parameter (input).

Return values: If successful, zero is returned, and the name of the attribute is
returned in the supplied buffer. If the end of the list of attributes is reached, a
non-zero value is returned.

cniSetAttribute
Sets the value of an attribute on a specific node instance. It is invoked by the
message broker when a configuration request is received that attempts to set the
value of a node attribute. A plug-in will receive requests to set attributes for the
base. If an unknown attribute value is received, this function must return a
non-zero value; this causes the broker to process the request correctly.

The responsibilities of the plug-in are to:
1. Verify that the value of the attribute is correctly specified. If not, a

configuration exception should be thrown using the cniThrowException
function.

Node implementation functions

Chapter 8. Node implementation and utility functions 111

2. Store the value of the attribute within the context, which should have been
allocated in the cniCreateNodeContext function.

3. Throw a configuration exception if an error occurs, using the
cniThrowException function.

int cniSetAttribute(
CciContext* context,
CciChar* attrName,
CciChar* attrValue);

context
The address of the plug-in context for the instance of the node, as created
by the plug-in and returned by the cniCreateNodeContext function (input).

attrName
The name of the attribute for which its value is to be set (input).

attrValue
The value of the attribute (input).

Return values: If successful, zero is returned. If the name of the attribute does not
identify one supported by the plug-in, a non-zero value is returned.

Node implementation functions

112 MQSeries Integrator Programming Guide

Node utility function interface
The following system-provided functions allow the C plug-in to create or define
message broker objects, such as node factories, nodes and terminals. Functions are
also provided to send messages to an output terminal for propagation to connected
nodes and to examine message content.

The node utility functions are defined in the header file BipCni.h.

cniAddAfter
Adds an unattached syntax element after a specified syntax element. The currently
unattached syntax element, and any child elements it might possess, is connected
to the syntax element tree after the specified target element. The newly added
element becomes the next sibling of the target element. The target element must
be attached to a tree (that is, it must have a parent element).
void cniAddAfter(
int* returnCode,
CciElement* targetElement,
CciElement* newElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniAddAsFirstChild
Adds an unattached syntax element as the first child of a specified syntax element.
The currently unattached syntax element, and any child elements it might possess,
is connected to the syntax element tree as the first child of the specified target
element. The target element need not be attached.
void cniAddAsFirstChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

Node utility functions

Chapter 8. Node implementation and utility functions 113

cniAddAsLastChild
Adds an unattached syntax element as the last child of a specified syntax element.
The currently unattached syntax element, and any child elements it might possess,
is connected to the syntax element tree as the last child of the specified target
element. The new element need not be attached.
void cniAddAsLastChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniAddBefore
Adds an unattached syntax element before a specified syntax element. The
currently unattached syntax element, and any child elements it might possess, is
connected to the syntax element tree before the specified target element. The newly
added element becomes the previous sibling of the target element. The target
element must be attached to a tree (that is, it must have a parent element).
void cniAddBefore(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniBufferByte
Gets a single byte from the data buffer associated with (and owned by) the
message object specified in the message argument. The value of the index
argument indicates which byte in the byte array is to be returned.
CciByte cniBufferByte(

int* returnCode,
CciMessage* message,
CciSize index);

Node utility functions

114 MQSeries Integrator Programming Guide

returnCode
This parameter receives the return code from the function (output).

message
Specifies the address of the message object for which the size of the data
buffer is to be returned (input).

index The offset to use as an index into the buffer (input).

Return values: The requested byte is returned. If an error occurred the returnCode
parameter indicates the reason for the error.

cniBufferPointer
Get a pointer to the data buffer associated with (and owned by) the message object
specified in the message argument.
const CciByte* cniBufferPointer(

int* returnCode,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

message
Specifies the address of the message object for which the address of the
data buffer is to be returned (input).

Return values: If successful, the address of the data buffer is returned. Otherwise,
zero (CCI_NULL_ADDR) is returned and the returnCode parameter indicates the
reason for the error.

cniBufferSize
Gets the size of the data buffer associated with (and owned by) the message object
specified in the message argument.
CciSize cniBufferSize(

int* returnCode,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

message
Specifies the address of the message object for which the size of the data
buffer is to be returned (input).

Return values: The size of the buffer in bytes. If an error occurred, zero
(CCI_FAILURE) is returned, and the returnCode parameter indicates the reason for
the error.

cniCopyElementTree
Copies a part of the element tree from the source element to the target element.
Only the child elements of the source element are copied. Before the copy is
performed, all existing child elements of the target element are deleted, to be
replaced by the child elements of the source element.
void cniCopyElementTree(

int* returnCode,
CciElement* sourceElement,
CciElement* targetElement);

Node utility functions

Chapter 8. Node implementation and utility functions 115

returnCode
This parameter receives the return code from the function (output).

sourceElement
Specifies the address of the source syntax element object (input).

targetElement
Specifies the address of the target syntax element object (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniCreateElementAfter
Creates a new syntax element and inserts it after the specified syntax element. The
new element becomes the next sibling of the specified element.
CciElement* cniCreateElementAfter(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
The address of the element object (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

cniCreateElementAfterUsingParser
Creates a new syntax element, inserts it after the specified syntax element, and
associates it with the specified parser class name. The new element becomes the
next sibling of the specified element.

In MQSeries Integrator Version 2, a portion of the syntax element tree that is
owned by a parser may only have its effective root at the first generation of
elements (that is, as immediate children of root). The plug-in interface does not
restrict the ability to create a subtree that appears to be owned by a different
parser. However, it is not possible to serialize these element trees into a bitstream
when outputting a message.
CciElement* cniCreateElementAfterUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

returnCode
This parameter receives the return code from the function (output).

TargetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

Node utility functions

116 MQSeries Integrator Programming Guide

cniCreateElementAsFirstChild
Creates a new syntax element as the first child of the specified syntax element.
CciElement* cniCreateElementAsFirstChild(
int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
The address of the element object (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

cniCreateElementAsFirstChildUsingParser
Creates a new syntax element as the first child of the specified syntax element, and
associates it with the specified parser class name.

In MQSeries Integrator Version 2, a portion of the syntax element tree that is
owned by a parser may only have its effective root at the first generation of
elements (that is, as immediate children of root). The plug-in interface does not
restrict the ability to create a subtree that appears to be owned by a different
parser. However, it is not possible to serialize these element trees into a bitstream
when outputting a message.
CciElement* cniCreateElementAsFirstChildUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

returnCode
This parameter receives the return code from the function (output).

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

cniCreateElementAsLastChild
Create a new syntax element as the last child of the specified syntax element.
CciElement* cniCreateElementAsLastChild(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
The address of the element object (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

Node utility functions

Chapter 8. Node implementation and utility functions 117

cniCreateElementAsLastChildUsingParser
Creates a new syntax element as the last child of the specified syntax element, and
associates it with the specified parser class name.

In MQSeries Integrator Version 2, a portion of the syntax element tree that is
owned by a parser may only have its effective root at the first generation of
elements (that is, as immediate children of root). The plug-in interface does not
restrict the ability to create a subtree that appears to be owned by a different
parser. However, it is not possible to serialize these element trees into a bitstream
when outputting a message.
CciElement* cniCreateElementAsLastChildUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

returnCode
This parameter receives the return code from the function (output).

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

cniCreateElementBefore
Creates a new syntax element and inserts it before the specified syntax element.
The new element becomes the previous sibling of the specified element and shares
the same parent element.
CciElement* cniCreateElementBefore(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
The address of the target element object (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

cniCreateElementBeforeUsingParser
Creates a new syntax element, inserts it before the specified syntax element, and
associates it with the specified parser class name. The new element becomes the
previous sibling of the specified element.

In MQSeries Integrator Version 2, a portion of the syntax element tree that is
owned by a parser may only have its effective root at the first generation of
elements (that is, as immediate children of root). The plug-in interface does not
restrict the ability to create a subtree that appears to be owned by a different
parser. However, it is not possible to serialize these element trees into a bitstream
when outputting a message.

Node utility functions

118 MQSeries Integrator Programming Guide

CciElement* cniCreateElementBeforeUsingParser(
int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

returnCode
This parameter receives the return code from the function (output).

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

cniCreateInputTerminal
Creates an input terminal on an instance of a node object, returning the address of
the terminal object that was created. The terminal object is destroyed by the
message broker when its owning node is destroyed. Note that this function must
be called only from within the implementation function cniCreateNodeContext.
CciTerminal* cniCreateInputTerminal(

int* returnCode,
CciNode* nodeObject,
CciChar* name);

returnCode
This parameter receives the return code from the function (output).

nodeObject
Specifies the address of the instance of the node object on which the input
terminal is to be created (input). The address is returned from
cniCreateNodeContext.

name Specifies a name for the terminal being created (input).

Return values: If successful, the address of the node terminal object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned.

cniCreateMessage
Creates a new output message object.
CciMessage* cniCreateMessage(

int* returnCode,
CciMessageContext* messageContext);

returnCode
This parameter receives the return code from the function (output).

messageContext
The address of the context for the message (input). Use
cniGetMessageContext to get the context from an incoming message (one
received in the cniEvaluate function, for instance).

Return values: If successful, the address of the message object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

Node utility functions

Chapter 8. Node implementation and utility functions 119

cniCreateNodeFactory
Creates a node factory in the message broker engine. A single instance of the
named message flow node factory is created.

This function must be invoked only in the initialization function
bipGetMessageFlowNodeFactory which is called when the ‘lil’ is loaded by the
message broker. If cniCreateNodeFactory is invoked at any other time, the results
are unpredictable.
CciFactory* cniCreateNodeFactory(

int* returnCode,
CciChar* name);

returnCode
This parameter receives the return code from the function (output).

name Specifies the name of the factory being created (input).

Return values: If successful, the address of the node factory object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned, and the returnCode
parameter indicates the reason for the error.

cniCreateOutputTerminal
Creates an output terminal on an instance of a node object, returning the address
of the terminal object that was created. The terminal object is destroyed when its
owning node is destroyed. Note that this function must be called from within the
implementation function cniCreateNodeContext.
CciTerminal* cniCreateOutputTerminal(

int* returnCode,
CciNode* nodeObject,
CciChar* name);

returnCode
This parameter receives the return code from the function (output).

nodeObject
Specifies the address of the instance of the node object on which the
output terminal is to be created (input). The address is returned from
cniCreateNodeContext.

name Specifies a name for the terminal being created (input).

Return values: If successful, the address of the node terminal object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned.

cniDefineNodeClass
Defines a node class, as specified by the name parameter, which is supported by the
node factory specified as the factoryObject parameter. The parameter functbl is a
pointer to a CNI_VFT structure that contains pointers to the C plug-in
implementation functions (those functions that provide the function of the node
itself).
void cniDefineNodeClass(

int* returnCode,
CciFactory* factoryObject,
CciChar* name,
CNI_VFT* functbl);

returnCode
This parameter receives the return code from the function (output).

Node utility functions

120 MQSeries Integrator Programming Guide

factoryObject
Specifies the address of the factory object which is to support the named
node (input). The address is returned from cniCreateNodeFactory.

name The name of the node to be defined (input). The name of the node must
end with the characters “Node”.

functbl
The address of the CNI_VFT structure that contains pointers to the plug-in
implementation functions (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniDeleteMessage
Deletes the specified message object.
void cniDeleteMessage(

int* returnCode,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

message
Specifies the address of the message object to be deleted (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniDetach
Detaches the specified syntax element from the syntax element tree. The element is
detached from its parent and siblings, but any child elements are left attached.
void cniDetach(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the syntax element object to be detached (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniElementName
Gets the value of the ‘name’ attribute for the specified syntax element. The syntax
element name will have been set previously using cniSetElementName or
cpiSetElementName.
CciSize cniElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
Ccisize length);

returnCode
This parameter receives the return code from the function (output).

Node utility functions

Chapter 8. Node implementation and utility functions 121

targetElement
Specifies the address of the target syntax element object (input).

value Specifies the address of a buffer into which the element name will be
copied (input).

length Specifies the length of the buffer, expressed as the number of CciChar
characters, specified by the value parameter (input).

Return values: If successful, the element name is copied into the supplied buffer
and the number of characters copied is returned. If the buffer is not large enough
to contain the element name, returnCode is set to CCI_BUFFER_TOO_SMALL and
the number of bytes required is returned. For any other failures, CCI_FAILURE is
returned and returnCode indicates the reason for the error.

cniElementType
Gets the value of the ‘type’ attribute for the specified syntax element. The syntax
element type will have been set previously using cniSetElementType or
cpiSetElementType.
CciElementType cniElementType(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The value of the target element type is returned. If an error occurs,
CCI_FAILURE is returned and the returnCode parameter indicates the reason for
the error.

cniElementValue group
These functions retrieve the value of the specified syntax element.
CciSize cniElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

CciBool cniElementBooleanValue(
int* returnCode,
CciElement* targetElement);

CciSize cniElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

CciSize cniElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciDate cniElementDateValue(
int* returnCode,
CciElement* targetElement);

CciSize cniElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Node utility functions

122 MQSeries Integrator Programming Guide

struct CciTimestamp cniElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cniElementGmtTimeValue(
int* returnCode,
CciElement* targetElement);

CciInt cniElementIntegerValue(
int* returnCode,
CciElement* targetElement);

CciReal cniElementRealValue(
int* returnCode,
CciElement* targetElement);

struct CciTimestamp cniElementTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cniElementTimeValue(
int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value The address of an output buffer into which the value of the syntax element
is stored (input). Used on relevant function calls only.

length The length of the output buffer, expressed as the number of CciChar
characters, specified by the value parameter(input). Used on relevant
function calls only.

Return values: The value of the target element is returned. If an error occurs, the
returnCode parameter indicates the reason for the error. In cases where the size of
an element’s data can vary, the correct data size is returned. Also, if the specified
length is too small, the error code is set to CCI_BUFFER_TOO_SMALL.

cniElementValueState
Gets the state of the value of the specified syntax element.
CciValueState cniElementValueState(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The state of the value of the target syntax element is returned. If an
error occurs, CCI_VALUE_STATE_UNDEFINED is returned and the returnCode
parameter indicates the reason for the error.

cniElementValueType
Gets the ‘type’ attribute for the value of the specified syntax element. The state of
an element after creation is undefined. When the value of the element is set, its
state becomes valid.
CciValueType cniElementValueType(

int* returnCode,
CciElement* targetElement);

Node utility functions

Chapter 8. Node implementation and utility functions 123

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The type of the value of the target syntax element is returned. If an
error occurs, CCI_ELEMENT_TYPE_UNKNOWN is returned and the returnCode
parameter indicates the reason for the error.

cniElementValueValue
Gets the address of the value object owned by the specified syntax element.
const CciElementValue* cniElementValueValue(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The address of the value object of the target syntax element is
returned. If an error occurs, zero (CCI_NULL_ADDR) is returned and the
returnCode parameter indicates the reason for the error.

cniFinalize
Causes the broker to request parsers that support the finalize feature to perform
their finalize processing on the specified message. The behavior of this processing
is specific to each parser.

If the options parameter is set to CCI_FINALIZE_VALIDATE, a parser should also
perform validation processing to ensure that the element tree owned by it is of the
correct structure. This helps prevent messages with incorrectly formed element
trees being propagated to other nodes in the message flow.

It is recommended that cniFinalize is called prior to propagating a message.
void cniFinalize(

int* returnCode,
CciMessage* message,
int options);

returnCode
This parameter receives the return code from the function (output).

message
Specifies the address of the message object for which the element tree is to
be finalized (input).

options
Specifies bit flags to identify the finalize or validate options to be used
(input). Can be omitted, or set to CCI_FINALIZE_VALIDATE.

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

Node utility functions

124 MQSeries Integrator Programming Guide

cniFirstChild
Returns the address of the syntax element object that is the first child of the
specified syntax element.
CciElement* cniFirstChild(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: If successful, the address of the requested syntax element object is
returned. If there is no first child, zero is returned and returnCode is set to
CCI_SUCCESS. If an error occurs, zero (CCI_NULL_ADDR) is returned and the
returnCode parameter indicates the reason for the error.

cniGetBrokerInfo
Queries the current broker environment (for example, for information about broker
name and message flow name). The information is returned in a structure of type
CNI_BROKER_INFO_ST.
void cniGetBrokerInfo(

int* returnCode,
CciNode* nodeObject,
CNI_BROKER_INFO_ST* broker_info_st);

returnCode
This parameter receives the return code from the function (output).

nodeObject
Specifies the message flow processing node for which broker environment
information is being requested.

broker_info_st
Specifies the address of a CNI_BROKER_INFO_ST structure that will be
used to return a message that represents the input destination (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniGetMessageContext
Gets the address of the message context associated with the specified message. The
context of an existing message is used to create an output message, for example
using the cniCreateMessage function.
CciMessageContext* cniGetMessageContext(

int* returnCode,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

message
Specifies the address of the message object (input).

Return values: If successful, the address of the message context is returned.
Otherwise, zero (CCI_NULL_ADDR) is returned and the returnCode parameter
indicates the reason for the error.

Node utility functions

Chapter 8. Node implementation and utility functions 125

cniGetParserClassName
Gets the parser class name associated with the specified syntax element.
CciSize cniGetParserClassName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the element for which the parser class name is to
be returned (input).

value Specifies the address of an output buffer into which the parser class name
will be stored (input).

length Specifies the length of the output buffer specified in the value parameter
(input).

Return values: If successful, the returnCode parameter indicates CCI_SUCCESS
and the number of characters written to the buffer is returned. If the buffer is not
large enough to retain the returned name, the returnCode parameter indicates
CCI_BUFFER_TOO_SMALL and the returned value indicates the number of
characters required to store the name. If any other error occurs, CCI_FAILURE is
returned and the returnCode parameter indicates the reason for the error.

cniIsTerminalAttached
Checks whether a terminal is attached to another node via a connector. It returns
an integer value that specifies whether the specified terminal object is attached to
one or more terminals on other message flow nodes. It can be used to test whether
a message can be propagated to a terminal. However, note that it is not necessary
to call this function prior to propagating a message with the cniPropagate utility
function. The intention of this function is to allow a node to modify its behavior
when a terminal is not connected.
int cniIsTerminalAttached(

int* returnCode,
CciTerminal* terminalObject);

returnCode
This parameter receives the return code from the function (output).

terminalObject
Specifies the address of the input or output terminal to be checked for an
attached connector (input). The address is returned from
cniCreateOutputTerminal.

Return values: If the terminal is attached to another node via a connector, a value
of 1 is returned. If the terminal is not attached, or a failure occurred, a value of 0 is
returned. If a failure occurred, the value of the returnCode parameter indicates the
reason for the error.

cniLastChild
Returns the address of the syntax element object that is the last child of the
specified syntax element.

Node utility functions

126 MQSeries Integrator Programming Guide

CciElement* cniLastChild(
int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: If successful, the address of the requested syntax element object is
returned. If there is no last child, zero is returned and returnCode is set to
CCI_SUCCESS. If an error occurs, zero (CCI_NULL_ADDR) is returned and the
returnCode parameter indicates the reason for the error.

cniNextSibling
Returns the address of the syntax element object that is the next sibling (right
sibling) of the specified syntax element.
CciElement* cniNextSibling(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: If successful, the address of the requested syntax element object is
returned. If there is no next sibling, zero is returned and returnCode is set to
CCI_SUCCESS. If an error occurs, zero (CCI_NULL_ADDR) is returned and the
returnCode parameter indicates the reason for the error.

cniParent
Returns the address of the syntax element object that is the parent of the specified
syntax element.
CciElement* cpiParent(

int* returnCode,
CciElement* targetElement);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: If successful, the address of the requested syntax element is
returned. If there is no parent element, zero is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned and the returnCode parameter indicates the reason
for the error.

cniPreviousSibling
Returns the address of the syntax element object that is the previous sibling (left
sibling) of the specified syntax element.
CciElement* cniPreviousSibling(

int* returnCode,
CciElement* targetElement);

Node utility functions

Chapter 8. Node implementation and utility functions 127

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: If successful, the address of the requested syntax element object is
returned. If there is no previous sibling, zero is returned and returnCode is set to
CCI_SUCCESS. If an error occurs, zero (CCI_NULL_ADDR) is returned and the
returnCode parameter indicates the reason for the error.

cniPropagate
Propagates a message to a specified terminal object. If the terminal is not attached
to another node by a connector, the message is simply not propagated, and the
function is regarded as a no-op. Therefore, it is not necessary to check whether the
terminal is attached prior to propagating, unless the action that the node takes
would be different (in which case cniIsTerminalAttached can be used to check if
the terminal is connected).
int cniPropagate(

int* returnCode,
CciTerminal* terminalObject,
CciMessage* destinationList,
CciMessage* exceptionList,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

terminalObject
Specifies the address of the output terminal to receive the message (input).
The address is returned by cniCreateOutputTerminal.

destinationList
Specifies the address of the destination list object to be sent with the
message (input). Note: this message object is used by the
publish/subscribe node supplied by the message broker.

exceptionList
The address of the exception list for the message (input).

message
Specifies the address of the message object to be sent (input). If the
message being sent is the same as the input message, then this address will
be the one passed on the evaluate implementation function.

Return values: If successful, CCI_SUCCESS is returned Otherwise, CCI_FAILURE
is returned and the returnCode parameter indicates the reason for the error.

cniRootElement
Get the root syntax element associated with a specified message. It returns the root
element that is associated with (and owned by) the message object identified by
the message parameter. When a message object is constructed by the broker, a root
element is automatically created.
CciElement* cniRootElement(

int* returnCode,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

Node utility functions

128 MQSeries Integrator Programming Guide

message
Specifies the address of the message object (input).

Return values: If successful, the address of the root element object is returned.
Otherwise, zero (CCI_NULL_ADDR) is returned, and the returnCode parameter
indicates the reason for the error.

cniSearchElement group
Searches previous siblings of the specified element for an element matching
specified criteria. The search is performed starting at the syntax element specified
in the element argument, and each of the four functions provides a search in a
different tree direction:
1. cniSearchFirstChild searches the immediate child elements of the starting

element from the first child until a match is found or the end of the child
element chain is reached.

2. cniSearchLastChild searches the immediate child elements of the starting
element from the last child until a match is found or the end of the child
element chain is reached.

3. cniSearchNextSibling searches from the starting element to the next siblings
until a match is found or the end of the sibling chain is reached.

4. cniSearchPreviousSibling searches from the starting element to the previous
siblings until a match is found or the start of the sibling chain is reached.

CciElement* cniSearchFirstChild(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
CciElementType type,
CciChar* name);

CciElement* cniSearchLastChild(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
CciElementType type,
CciChar* name);

CciElement* cniSearchNextSibling(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
CciElementType type,
CciChar* name);

CciElement* cniSearchPreviousSibling(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
CciElementType type,
CciChar* name);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the syntax element object from which the search is
started (input).

mode The search mode to use (input). This indicates what combination of
element type and element name is to be searched for.

type The element type to search for (input). This is used only if the search mode
involves a match on the type.

Node utility functions

Chapter 8. Node implementation and utility functions 129

name The element name to search for (input). This is used only if the search
mode involves a match on the name.

Return values: The address of the requested syntax element object is returned,
unless there is no matching element, in which case zero is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned and the returnCode parameter
indicates the reason for the error.

cniSetElementName
Sets the name of the specified syntax element.
void cniSetElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* name);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

name Specifies the name of the element (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniSetElementType
Sets the type of the specified syntax element.
void cniSetElementType(

int* returnCode,
CciElement* targetElement,
CciElementType type);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

type Specifies the type of the element (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniSetElementValue group
Functions to set a value into the specified syntax element.
void cniSetElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

void cniSetElementBooleanValue(
int* returnCode,
CciElement* targetElement,
CciBool value);

void cniSetElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

Node utility functions

130 MQSeries Integrator Programming Guide

void cniSetElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

void cniSetElementDateValue(
int* returnCode,
CciElement* targetElement,
const struct CciDate* value);

void cniSetElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value);

void cniSetElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cniSetElementGmtTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

void cniSetElementIntegerValue(
int* returnCode,
CciElement* targetElement,
CciInt value);

void cniSetElementRealValue(
int* returnCode,
CciElement* targetElement,
CciReal value);

void cniSetElementTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cniSetElementTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

returnCode
This parameter receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value The value to store in the syntax element (input).

length The length of the data value (input). Used on relevant function calls only.

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniSetElementValueValue
Sets the value object of the specified syntax element.
void cniSetElementValueValue(

int* returnCode,
CciElement* targetElement,
CciElementValue* value);

returnCode
This parameter receives the return code from the function (output).

Node utility functions

Chapter 8. Node implementation and utility functions 131

targetElement
Specifies the address of the target syntax element object (input).

value The address of a value object that is used to set the value of the syntax
element specified by the targetElement parameter (input). The address of
the value object is obtained using cniElementValueValue.

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniSqlCreateStatement
Creates an SQL expression object representing the statement specified by the
statement argument, using the syntax as defined for the Compute message flow
processing node. This function returns a pointer to the SQL expression object,
which is used as input to the functions that execute the statement, namely
cniSqlExecute and cniSqlSelect. Multiple SQL expression objects can be created in
a single message flow processing node. Although these objects can be created at
any time, they will typically be created when the message flow processing node is
instantiated, within the implementation function cniCreateNodeContext.
CciSqlExpression* cniSqlCreateStatement(

int* returnCode,
CciNode* nodeObject,
CciChar* dataSourceName,
CciSqlTransaction transaction,
CciChar* statement);

returnCode
This parameter receives the return code from the function (output).

nodeObject
Specifies the message flow processing node the SQL expression object will
be owned by (input). This pointer is passed to the cniCreateNodeContext
implementation function.

dataSourceName
The ODBC data source name to be used if the statement references data in
an external database (input).

transaction
Specifies whether a database commit will be performed after the statement
is executed (input). Valid values are CCI_SQL_TRANSACTION_AUTO (the
default) and CCI_SQL_TRANSACTION_COMMIT. The former value
specifies that a database commit will be performed at the completion of the
message flow (that is, as a fully globally coordinated or partially globally
coordinated transaction). The latter value specifies that a commit will be
performed after execution of the statement, and within the cniSqlExecute
or cniSqlSelect function (that is, the message flow is partially broker
coordinated).

statement
Specifies the SQL expression to be created, using the syntax as defined for
the compute message flow processing node (input).

Return values: If successful, the address of the SQL expression object is returned.
If an error occurs, zero (CCI_NULL_ADDR) is returned and the returnCode
parameter indicates the reason for the error.

Node utility functions

132 MQSeries Integrator Programming Guide

cniSqlDeleteStatement
Deletes the SQL statement previously created using the cniSqlCreateStatement
utility function, as defined by the sqlExpression argument.
void cniSqlDeleteStatement(

int* returnCode,
CciSqlExpression* sqlExpression);

returnCode
This parameter receives the return code from the function (output).

sqlExpression
Specifies the SQL expression object to be deleted, as returned by the
cniSqlCreateStatement utility function (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniSqlExecute
Executes an SQL statement previously created using the cniSqlCreateStatement
utility function, as defined by the sqlExpression argument. This function is to be
used when the statement does not return data, for example, when a PASSTHRU
function is used.
void cniSqlExecute(

int* returnCode,
CciSqlExpression* sqlExpression,
CciMessage* destinationList,
CciMessage* exceptionList,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

sqlExpression
Specifies the SQL expression object to be executed, as returned by the
cniSqlCreateStatement utility function (input).

destinationList
The message representing the input destination list (input).

exceptionList
The message representing the input exception list (input).

message
The message representing the input message (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniSqlSelect
Executes an SQL statement previously created using the cniSqlCreateStatement
utility function, as defined by the sqlExpression argument. If the statement returns
data, then it is written into the message specified by the outputMessage argument.
void cniSqlSelect(

int* returnCode,
CciSqlExpression* sqlExpression,
CciMessage* destinationList,
CciMessage* exceptionList,
CciMessage* message,
CciMessage* outputMessage);

Node utility functions

Chapter 8. Node implementation and utility functions 133

returnCode
This parameter receives the return code from the function (output).

sqlExpression
Specifies the SQL expression object to be executed, as returned by the
cniSqlCreateStatement utility function (input).

destinationList
The message representing the input destination list (input).

exceptionList
The message representing the input exception list (input).

message
The message representing the input message (input).

outputMessage
The message into which any data returned by the statement will be written
(output).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cniWriteBuffer
Causes the syntax element tree associated with the specified message to be written
to the data buffer owned by that message object. This operation serializes the
element tree into a bitstream, which can then be processed as a sequence of
contiguous bytes. This function should be used when writing the bitstream to a
target that is outside the broker (that is, when writing a plug-in output node).
void cniWriteBuffer(

int* returnCode,
CciMessage* message);

returnCode
This parameter receives the return code from the function (output).

message
Specifies the address of the message object for which the element tree is to
be serialized (input).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

Node utility functions

134 MQSeries Integrator Programming Guide

Chapter 9. Parser implementation and utility functions

The plug-in interface for a message parser consists of:
1. A set of implementation functions, which provide the functionality of the

plug-in parser. These functions are invoked by the message broker. Most
implementation functions are mandatory, and if not supplied by the developer
will cause an exception at runtime.

2. A set of utility functions, the purpose of which is to create resources in the
message broker or to request a service of the broker. These utility functions can
be invoked by a plug-in parser.

These functions are defined in the header file BipCpi.h.

This chapter contains:
v “Parser implementation function overview” on page 136.
v “Parser utility function overview” on page 137.
v “Parser implementation function interface” on page 139.
v “Parser utility function interface” on page 145.

See also “Chapter 10. Node and parser utilities” on page 159 for additional utility
functions that can be used by a plug-in parser.

© Copyright IBM Corp. 2000, 2001 135

Parser implementation function overview
A message parser plug-in implements its capability through a function interface
that is invoked by the message broker during runtime execution. This interface
includes functions to create and delete any local context storage associated with a
parser object and the parsing operations.

Some of the following functions are mandatory, and must be implemented by the
developer.

Follow the page references to see the detailed descriptions of each implementation
function.

Mandatory functions
cpiCreateContext page 139

cpiDeleteContext page 139

cpiParseBuffer page 141

cpiParseNextSibling page 142

cpiParsePreviousSibling page 143

cpiParseFirstChild page 142

cpiParseLastChild page 142

cpiWriteBuffer page 144

Optional functions
cpiElementValue page 140

cpiNextParserClassName page 140

cpiNextParserCodedCharSetId
page 140

cpiNextParserEncoding page 141

cpiParserType page 143

cpiSetElementValue page 143

cpiSetNextParserClassName page 144

Parser function overview

136 MQSeries Integrator Programming Guide

Parser utility function overview
The following functions allow the C plug-in to create or define message broker
objects, such as message parser factories.

Follow the page references to see the detailed descriptions of each utility function.

Initialization and resource creation
cpiCreateParserFactory page 148

cpiDefineParserClass page 149

Message buffer access
cpiAppendToBuffer page 146

cpiBufferByte page 146

cpiBufferPointer page 147

cpiBufferSize page 147

Syntax element navigation
cpiRootElement page 153

cpiParent page 153

cpiNextSibling page 152

cpiPreviousSibling page 153

cpiFirstChild page 152

cpiLastChild page 152

Syntax element access
cpiAddAfter page 145

cpiAddBefore page 146

cpiAddAsFirstChild page 145

cpiAddAsLastChild page 145

cpiCreateAndInitializeElement
page 147

cpiCreateElement page 148

cpiElementCompleteNext page 149

cpiElementCompletePrevious page 149

cpiElementName page 150

cpiElementType page 150

cpiElementValue group page 150

cpiElementValueValue page 151

cpiSetCharacterValueFromBuffer
page 154

cpiSetElementCompleteNext page 154

Parser function overview

Chapter 9. Parser implementation and utility functions 137

cpiSetElementCompletePrevious
page 154

cpiSetElementName page 155

cpiSetElementType page 155

cpiSetElementValue group page 155

cpiSetElementValueValue page 156

cpiSetNameFromBuffer page 157

Parser function overview

138 MQSeries Integrator Programming Guide

Parser implementation function interface
A message parser plug-in implements its capability through a function interface
that is invoked by the message broker during runtime execution. This interface
includes functions to create and delete any local context storage associated with a
parser object and the parsing operations.

The following functions must be implemented, using the prototypes as described,
except those functions that are specified as optional.

The parser implementation functions are defined in the header file BipCpi.h.

cpiCreateContext
Creates a plug-in context associated with a parser object. It is invoked by the
message broker when an instance of a parser object is constructed or allocated.
This occurs when a message flow causes the message data to be parsed; the broker
constructs or allocates a parser object to acquire the appropriate section of the
message data. Before this function is called, the broker will have created a name
element as the effective root element for the parser. However, this element is not
named. The parser should name this element in the cpiSetElementName function.

The responsibilities of the plug-in are to:
1. Allocate any parser instance specific data areas (such as context) that might be

required.
2. Perform any additional resource acquisition or initialization that might be

required.
3. Return the address of the context to the calling function. Whenever a plug-in

implementation function for this parser instance is invoked, the appropriate
context is passed as an argument to that function. This means that a plug-in
parser developed in C need not maintain its own static pointers to per-instance
data areas.

CciContext* cpiCreateContext(CciParser* parser);

parser The address of the parser object that has been constructed (input).

Return values: If successful, the address of the plug-in context is returned.
Otherwise, a value of zero is returned.

cpiDeleteContext
Deletes the plug-in context associated with a parser object. It is invoked by the
message broker when an instance of a parser object is destroyed.

The responsibilities of the plug-in are to:
1. Release any parser instance specific data areas (such as context) that were

acquired at construction or during parser processing.
2. Release any additional resources that might have been acquired for the

processing of the parser.
void cpiDeleteContext(

CciParser* parser,
CciContext* context);

Parser implementation functions

Chapter 9. Parser implementation and utility functions 139

parser The address of the parser object (input).

context
The address of the plug-in context (input).

Return values: None.

cpiElementValue
Optional function to get the value of a specified element. It is invoked by the
broker when the value of a syntax element is to be retrieved. It provides an
opportunity for a plug-in parser to override the behavior for retrieving element
values.
const CciElementValue* cpiElementValue(

CciParser* parser,
CciElement* currentElement);

parser The address of the parser object (input).

currentElement
The address of the current syntax element (input).

Return values: The value of the target syntax element object is returned. This will
have been returned by the cpiElementValueValue function.

cpiNextParserClassName
Optional function to return the name of the next parser class in the chain, if any. It
allows the parser to return to the broker the name of the parser class that handles
the next section, or remainder, of the message content. Normally, for messages
having a simple format type, there is only one message content parser; it is not
necessary to provide this function. For messages having a more complex format
type with multiple message parsers, each parser should identify the next one in the
chain by returning its name in the buffer parameter. The last parser in the chain
must return an empty string.
void cpiNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* buffer,
int size);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

buffer The address of a buffer into which the parser class name should be put
(input).

size The length of the buffer provided by the broker, expressed as the number
of CciChar characters(input).

Return values: None.

cpiNextParserCodedCharSetId
Optional function to return the coded character set ID (CCSID) of the data owned
by the next parser class in the chain, if any.
int cpiNextParserCodedCharSetId(

CciParser* parser,
CciContext* context);

Parser implementation functions

140 MQSeries Integrator Programming Guide

parser The address of the parser object (input).

context
The address of the plug-in context (input).

Return values: The CCSID of the data is returned. If it is not known, zero may be
returned and a default CCSID will apply.

cpiNextParserEncoding
Optional function to return the encoding of data owned by the next parser class in
the chain, if any.
int cpiNextParserEncoding(

CciParser* parser,
CciContext* context);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

Return values: The encoding of the data is returned. If it is not known, zero may
be returned and default encoding will apply.

cpiParseBuffer
Prepares a parser to parse a new message object. It is called the first time (for each
message) that the message flow causes the message content to be parsed. Each
plug-in parser that is used to parse a particular message format has this function
invoked to:
v Perform any initialization that is required
v Return the length of the message content that it takes ownership for

The offset parameter indicates the offset within the message buffer where parsing
is to commence. This is necessary because another parser might own a previous
portion of the message (for example, an MQMD header will have been parsed by
the message broker’s internal parser). The offset must be positive and be less than
the size of the buffer. It is recommended that the implementation function verifies
that the offset is valid, as this could improve problem determination if a previous
parser is in error.

The plug-in must return the size of the remaining buffer for which it takes
ownership. This must be less than or equal to the size of the buffer less the current
offset.

A parser must not attempt to cause parsing of other portions of the syntax element
tree, for example, by navigating to the root element and to another branch. This
can cause unpredictable results.
int cpiParseBuffer(

CciParser* parser,
CciContext* context,
int offset);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

offset The offset into the message buffer at which parsing is to commence (input).

Parser implementation functions

Chapter 9. Parser implementation and utility functions 141

Return values: The size (in bytes) of the remaining portion of the message buffer
for which the parser takes ownership.

cpiParseFirstChild
Parses the first child of a specified syntax element. It is invoked by the broker
when the first child element of the current syntax element is required.
void cpiParseFirstChild(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

currentElement
The address of the current syntax element (input).

Return values: None.

cpiParseLastChild
Parses the last child of a specified syntax element. It is invoked by the broker
when the last child element of the current syntax element is required.
void cpiParseLastChild(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

currentElement
The address of the current syntax element (input).

Return values: None.

cpiParseNextSibling
Parses the next (right) sibling of a specified syntax element. It is invoked by the
broker when the next (right) sibling element of the current syntax element is
required.
void cpiParseNextSibling(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

currentElement
The address of the current syntax element (input).

Return values: None.

Parser implementation functions

142 MQSeries Integrator Programming Guide

cpiParsePreviousSibling
Parse the previous (left) sibling of a specified syntax element. It is invoked by the
broker when the previous (left) sibling element of the current syntax element is
required.
void cpiParsePreviousSibling(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

currentElement
The address of the current syntax element (input).

Return values: None.

cpiParserType
Optional function to return whether the parser is an implementation of a standard
parser. Such a parser expects that the Format field of the preceding header will
contain the name of the parser class that follows. Non-standard parsers expect that
the Domain field will contain the parser class name. If the cpiParserType
implementation function is not provided, the message broker assumes that the
parser is of the standard type.
CciBool cpiParserType(

CciParser* parser,
CciContext* context);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

Return values: If the implementation is of a standard parser, zero is returned.
Otherwise, the implementation is assumed to be that of a non-standard parser and
a non-zero value is returned.

cpiSetElementValue
Optional function to set the value of a specified element. It is invoked by the
broker when the value of a syntax element is to be set. It provides an opportunity
for a plug-in parser to override the behavior for setting element values.
void cpiSetElementValue(

CciParser* parser,
CciElement* currentElement,
CciElementValue* value);

parser The address of the parser object (input).

currentElement
The address of the current syntax element (input).

value The value (input).

Return values: None.

Parser implementation functions

Chapter 9. Parser implementation and utility functions 143

cpiSetNextParserClassName
Optional function to advise a parser of the next parser in the chain. It is called
during finalize processing, and returns to the plug-in parser a string containing the
name of the next parser class in the chain. It allows a parser to take action during
the finalize phase to modify the syntax element tree prior to the phase that causes
serialization of the bit stream.
void cpiSetNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* name,
CciBool parserType);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

name A pointer to a string containing the parser class name (output).

parserType
Indicates whether the referenced parser is standard (parserType=0) or
non-standard (parserType=non-zero) (input). A standard parser expects that
the Format field of the preceding header in the chain will contain the name
of the parser class that follows. Non-standard parsers expect that the
Domain field will contain the parser class name.

Return values: None.

cpiWriteBuffer
Writes a syntax element tree to the message buffer associated with a parser. It
appends data to the bitstream in the message buffer associated with the parser
object, using the current syntax element tree as a source. The element tree should
not be modified during the execution of this implementation function. The
cpiAppendToBuffer utility function can be used to append the message buffer
(bitstream) with data from the element tree.
int cpiWriteBuffer(

CciParser* parser,
CciContext* context);

parser The address of the parser object (input).

context
The address of the plug-in context (input).

Return values: The size in bytes of the data appended to the bitstream in the
buffer.

Parser implementation functions

144 MQSeries Integrator Programming Guide

Parser utility function interface
The following functions allow the C plug-in to create or define message broker
objects, such as message parser factories.

The parser utility functions are defined in the header file BipCpi.h.

cpiAddAfter
Adds a new (and currently unattached) syntax element to the syntax element tree
after the specified target element. The newly added element becomes the next
sibling of the target element.
void cpiAddAfter(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiAddAsFirstChild
Adds a new (and currently unattached) syntax element to the syntax element tree
as the first child of the specified target element.
void cpiAddAsFirstChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiAddAsLastChild
Adds a new (and currently unattached) syntax element to the syntax element tree
as the last child of the specified target element.
void cpiAddAsLastChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parser utility functions

Chapter 9. Parser implementation and utility functions 145

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiAddBefore
Adds a new (and currently unattached) syntax element to the syntax element tree
before the specified target element. The newly added element becomes the
previous sibling of the target element.
void cpiAddBefore(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added
to the tree structure (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiAppendToBuffer
Appends data to the buffer containing the bit stream representation of a message,
for the specified parser object.
void cpiAppendToBuffer(

int* returnCode,
CciParser* parser,
CciByte* data,
CciSize length);

returnCode
Receives the return code from the function (output).

parser Specifies the address of the parser object (input).

data The address of the data to be appended to the buffer (input).

length The size in bytes of the data to be appended to the buffer (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiBufferByte
Gets a single byte from the buffer containing the bit stream representation of the
input message, for the specified parser object. The value of the index argument
indicates which byte in the byte array is to be returned.

Parser utility functions

146 MQSeries Integrator Programming Guide

CciByte cpiBufferByte(
int* returnCode,
CciParser* parser,
CciSize index);

returnCode
Receives the return code from the function (output).

parser Specifies the address of the parser object (input).

index Specifies the offset to use as an index into the buffer (input).

Return values: The requested byte is returned. If an error occurs, returnCode
indicates the reason for the error.

cpiBufferPointer
Gets a pointer to the buffer containing the bit stream representation of the input
message, for the specified parser object.
const CciByte* cpiBufferPointer(

int* returnCode,
CciParser* parser);

returnCode
Receives the return code from the function (output).

parser Specifies the address of the parser object (input).

Return values: If successful, the address of the buffer is returned. Otherwise, a
value of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason
for the error.

cpiBufferSize
Gets the size of the buffer containing the bit stream representation of the input
message, for the specified parser object.
CciSize cpiBufferSize(

int* returnCode,
CciParser* parser);

returnCode
Receives the return code from the function (output).

parser Specifies the address of the parser object (input).

Return values: If successful, the size of the buffer, in bytes, is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason
for the error.

cpiCreateAndInitializeElement
Creates a syntax element, owned by the specified parser, that is not attached to a
syntax tree. The element is partially initialized with the values of the type, name,
firstChildComplete, and lastChildComplete parameters.
CciElement* cpiCreateAndInitializeElement(

int* returnCode,
CciParser* parser,
CciElementType type,
const CciChar* name,
CciBool firstChildComplete,
CciBool lastChildComplete);

Parser utility functions

Chapter 9. Parser implementation and utility functions 147

returnCode
Receives the return code from the function (output).

parser Specifies the address of the parser object (input). This address is passed to
the plug-in as a parameter of the cpiCreateContext implementation
function.

type Specifies the type of the element being created (input).

name Specifies a descriptive name for the element (input).

fisrtChildComplete
Specifies a value for the firstChildComplete flag of the syntax element
(input).

lastChildComplete
Specifies a value for the lastChildComplete flag of the syntax element
(input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned, and returnCode
indicates the reason for the error.

cpiCreateElement
Creates a default syntax element that is not attached to a syntax tree. The element
is owned by the specified parser. The element is incomplete in that none of its
attributes (such as type or name) are set.
CciElement* cpiCreateElement(

int* returnCode,
CciParser* parser);

returnCode
Receives the return code from the function (output).

parser Specifies the address of the parser object (input).

Return values: If successful, the address of the new element object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned, and returnCode
indicates the reason for the error.

cpiCreateParserFactory
Creates a single instance of the named parser factory in the message broker. It
must be invoked only in the initialization function bipGetParserFactory which is
called when the ‘lil’ is loaded by the message broker. If cpiCreateParserFactory is
invoked at any other time, the results are unpredictable.
CciFactory* cpiCreateParserFactory(

int* returnCode,
CciChar* name);

returnCode
Receives the return code from the function (output).

name Specifies the name of the factory being created (input).

Return values: If successful, the address of the parser factory object is returned.
Otherwise, a value of zero (CCI_NULL_ADDR) is returned, and returnCode
indicates the reason for the error.

Parser utility functions

148 MQSeries Integrator Programming Guide

cpiDefineParserClass
Defines the name of a parser class that is supported by a parser factory. functbl is
a pointer to a virtual function table containing pointers to the C plug-in
implementation functions, that is, those functions that provide the function of the
parser itself.
void cpiDefineParserClass(

int* returnCode,
CciFactory* factoryObject,
CciChar* name,
CPI_VFT* functbl);

returnCode
Receives the return code from the function (output).

factoryObject
Specifies the address of the factory object that supports the named parser
(input). The address is returned from cpiCreateParserFactory.

name The name of the parser class to be defined (input). The maximum length of
a parser class name is 8 characters.

functbl
The address of the CPI_VFT structure that contains pointers to the plug-in
implementation functions (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiElementCompleteNext
Gets the value of the ‘next child complete’ flag from the target syntax element.
This attribute indicates whether the element tree is complete.
CciBool cpiElementCompleteNext(

int* returnCode,
CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The value of the attribute is returned. If an error occurs, returnCode
indicates the reason for the error.

cpiElementCompletePrevious
Gets the value of the ‘previous child complete’ flag from the target syntax element.
This attribute indicates whether the element tree is complete.
CciBool cpiElementCompletePrevious(

int* returnCode,
CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The value of the attribute is returned. If an error occurs, returnCode
indicates the reason for the error.

Parser utility functions

Chapter 9. Parser implementation and utility functions 149

cpiElementName
Gets the name of the target syntax element. The syntax element name will have
been set previously using cniSetElementName or cpiSetElementName.
Ccisize cpiElementName(

int* returnCode,
CciElement* targetElement),
const CciChar* value,
CciSize length);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value Specifies the address of a buffer into which the element name will be
copied (input).

length Specifies the length of the buffer, expressed as the number of CciChar
characters, specified by the buffer parameter (input).

Return values: If successful, the element name is copied into the supplied buffer
and the number of bytes copied is returned. If the buffer is not large enough to
contain the element name, returnCode is set to CCI_BUFFER_TOO_SMALL and the
number of bytes required is returned. For any other failures, CCI_FAILURE is
returned and returnCode indicates the reason for the error.

cpiElementType
Gets the type of the target syntax element. The syntax element type will have been
set previously using cniSetElementType or cpiSetElementType.
CciElementType cpiElementType(

int* returnCode,
CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The value of the element type is returned. If an error occurs,
returnCode indicates the reason for the error.

cpiElementValue group
Functions to get the value of the specified syntax element.
CciSize cpiElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

CciBool cpiElementBooleanValue(
int* returnCode,
CciElement* targetElement);

CciSize cpiElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

Parser utility functions

150 MQSeries Integrator Programming Guide

CciSize cpiElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciDate cpiElementDateValue(
int* returnCode,
CciElement* targetElement);

CciSize cpiElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciTimestamp cpiElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cpiElementGmtTimeValue(
int* returnCode,
CciElement* targetElement);

CciInt cpiElementIntegerValue(
int* returnCode,
CciElement* targetElement);

CciReal cpiElementRealValue(
int* returnCode,
CciElement* targetElement);

struct CciTimestamp cpiElementTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cpiElementTimeValue(
int* returnCode,
CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value The address of an output buffer into which the value of the syntax element
is stored (input). Used on relevant function calls only.

length The length of the output buffer, expressed in the number of CciChar
characters, specified by the value parameter (input). Used on relevant
function calls only.

Return values: The value of the element is returned.

In some cases, for example, cpiElementCharacterValue or
cpiElementDecimalValue, if the buffer is not large enough to receive the data the
data is not written into the buffer. The size of the required buffer is passed as the
return value, and returnCode is set to CCI_BUFFER_TOO_SMALL.

If an error occurs, returnCode indicates the reason for the error.

cpiElementValueValue
Gets the value object from the specified syntax element. This value object is
opaque in that it cannot be interrogated. It can be used to set or derive the value of
one element from another, without knowing its type, by using the

Parser utility functions

Chapter 9. Parser implementation and utility functions 151

cpiSetElementValueValue function. This can be used by parsers that override
behavior by invoking the implementation functions cpiElementValue and
cpiSetElementValue.
const CciElementValue* cpiElementValueValue(

int* returnCode,
CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The address of the CciElementValue object stored in the specified
target syntax element is returned. If an error occurs, zero (CCI_NULL_ADDR) is
returned and returnCode indicates the reason for the error.

cpiFirstChild
Returns the address of the syntax element object that is the first child of the
specified target element.
CciElement* cpiFirstChild(

int* returnCode,
const CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The address of the requested syntax element object is returned,
unless there is no child in which case zero is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned and returnCode indicates the reason for the error.

cpiLastChild
Returns the address of the syntax element object that is the last child of the
specified target element.
CciElement* cpiLastChild(

int* returnCode,
const CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The address of the requested syntax element object is returned,
unless there is no child in which case zero is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned and returnCode indicates the reason for the error.

cpiNextSibling
Returns the address of the syntax element object that is the next (right) sibling of
the specified target element.
CciElement* cpiNextSibling(

int* returnCode,
const CciElement* targetElement);

Parser utility functions

152 MQSeries Integrator Programming Guide

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The address of the requested syntax element object is returned,
unless there is no next sibling in which case zero is returned. If an error occurs,
zero (CCI_NULL_ADDR) is returned and returnCode indicates the reason for the
error.

cpiParent
Returns the address of the syntax element object that is the parent of the specified
target element.
CciElement* cpiParent(

int* returnCode,
const CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: If successful, the address of the requested syntax element is
returned. If there is no parent element, zero is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned and the returnCode parameter indicates the reason
for the error.

cpiPreviousSibling
Returns the address of the syntax element object that is the previous (left) sibling
of the specified target element.
CciElement* cpiPreviousSibling(

int* returnCode,
const CciElement* targetElement);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Return values: The address of the requested syntax element object is returned,
unless there is no previous sibling in which case zero is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned and returnCode indicates the reason
for the error.

cpiRootElement
Gets the address of the root syntax element of the specified parser object.
CciElement* cpiRootElement(

int* returnCode,
CciParser* parser);

returnCode
Receives the return code from the function (output).

parser Specifies the address of the parser object (input).

Parser utility functions

Chapter 9. Parser implementation and utility functions 153

Return values: The address of the root syntax element is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason
for the error.

cpiSetCharacterValueFromBuffer
Sets the value of the specified syntax element.
void cpiSetCharacterValueFromBuffer(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value The value to be set in the target element (input).

length The length of the character string, expressed as the number of CciChar
characters, specified by the value parameter (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiSetElementCompleteNext
Sets the ‘next child complete’ flag in the target syntax element to the specified
value.
void cpiSetElementCompleteNext(

int* returnCode,
CciElement* targetElement,
CciBool value);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value The value to be set in the flag (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiSetElementCompletePrevious
Sets the ‘previous child complete’ flag in the target syntax element to the specified
value.
void cpiSetElementCompletePrevious(

int* returnCode,
CciElement* targetElement,
CciBool value);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value The value to be set in the flag (input).

Parser utility functions

154 MQSeries Integrator Programming Guide

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiSetElementName
Sets the name of the specified syntax element.
void cpiSetElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* name);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

name The name to be set in the target element (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiSetElementType
Sets the type of the specified syntax element.
void cpiSetElementType(

int* returnCode,
CciElement* targetElement,
CciElementType type);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

type The type to be set in the target element (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiSetElementValue group
Functions to set a value in the specified syntax element.
void cpiSetElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

void cpiSetElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

void cpiSetElementBooleanValue(
int* returnCode,
CciElement* targetElement,
CciBool value);

void cpiSetElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parser utility functions

Chapter 9. Parser implementation and utility functions 155

void cpiSetElementDateValue(
int* returnCode,
CciElement* targetElement,
const struct CciDate* value);

void cpiSetElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value);

void cpiSetElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cpiSetElementGmtTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

void cpiSetElementIntegerValue(
int* returnCode,
CciElement* targetElement,
CciInt value);

void cpiSetElementRealValue(
int* returnCode,
CciElement* targetElement,
CciReal value);

void cpiSetElementTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cpiSetElementTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

returnCode
This argument receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

value The value to be set in the target element (input).

length The length of the data value, expressed as the number of CciChar
characters. Used on relevant function calls only.

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiSetElementValueValue
Sets the value of the specified syntax element. See cpiElementValueValue on page
151.
void cpiSetElementValueValue(

int* returnCode,
CciElement* targetElement,
CciElementValue* value);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

Parser utility functions

156 MQSeries Integrator Programming Guide

value Specifies the address of the CciElementValue object that contains the value
to be stored in the specified target element (input).

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

cpiSetNameFromBuffer
Sets the name attribute of the target syntax element using the data supplied in the
buffer pointed to by the name parameter. The size of the name is specified using the
length parameter.
void cpiSetNameFromBuffer(

int* returnCode,
CciElement* targetElement,
const CciChar* name,
CciSize length);

returnCode
Receives the return code from the function (output).

targetElement
Specifies the address of the target syntax element object (input).

name The address of a buffer containing the name (input).

length The length of the character string, expressed as the number of CciChar
characters, specified by the name parameter.

Return values: None. If an error occurs, returnCode indicates the reason for the
error.

Parser utility functions

Chapter 9. Parser implementation and utility functions 157

Parser utility functions

158 MQSeries Integrator Programming Guide

Chapter 10. Node and parser utilities

MQSeries Integrator provides some additional utilities that can be used by plug-in
nodes and plug-in parsers. These are:
v Exception handling and logging
v Character representation handling

These functions are defined in the header file BipCci.h.

This chapter contains:
v “Utility function overview” on page 160.
v “Exception handling and logging functions” on page 161.
v “Character representation handling functions” on page 164.

© Copyright IBM Corp. 2000, 2001 159

Utility function overview
The following utility functions are provided for use by plug-in nodes and parsers.

Follow the page references to see the detailed descriptions of each function.

Exception handling and logging
cciLog page 161

cciGetLastExceptionData page 161

cciThrowException page 162

cciRethrowLastException page 162

Character representation handling
cciMbsToUcs page 164

cciUcsToMbs page 164

Node and parser utilities

160 MQSeries Integrator Programming Guide

Exception handling and logging functions
The following exception handling and logging functions are provided for use by a
plug-in node or a plug-in parser.

These functions are defined in the header file BipCci.h.

cciGetLastExceptionData
Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. It can be used by the plug-in to determine
whether any recovery is required when a utility function returns an error code (see
“Return codes” on page 89 for all error codes).

This function may be called when a utility function has indicated that an exception
occurred by setting returnCode to CCI_EXCEPTION.
void* cciGetLastExceptionData(

int* returnCode,
CCI_EXCEPTION_ST* exception_st);

returnCode
This parameter receives the return code from the function (output).

exception_st
Specifies the address of a CCI_EXCEPTION_ST structure to receive data
about the last exception (output).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cciLog
Logs an error, warning or informational event. The event is logged by the message
broker interface using the specified arguments as log data.
void cciLog(

int* returnCode,
CCI_LOG_TYPE type,
char* file,
int line,
char* function,
CciChar* messageSource,
int messageNumber,
char* traceText,

...);

returnCode
This parameter receives the return code from the function (output).

type The type of event, as defined by CCI_LOG_TYPE (input). Valid values are:
CCI_LOG_ERROR
CCI_LOG_WARNING
CCI_LOG_INFORMATION

file The source file name where the function was invoked (input). The value is
optional, but it can be useful for debugging purposes.

line The line number in the source file where the function was invoked (input).
The value is optional, but it can be useful for debugging purposes.

Node and parser utilities

Chapter 10. Node and parser utilities 161

function
The function name that invoked the log function (input). The value is
optional, but it can be useful for debugging purposes.

messageSource
A string that identifies the Windows message source or Unix message
catalog.

messageNumber
The message number identifying the event (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list (see
below).

traceText
Trace information that is written into the broker service trace log (input).
The information is optional, but it can be useful for debugging purposes.

... A C variable argument list containing any message inserts that accompany
the message (input). These inserts are treated as character strings, and the
variable arguments are assumed to be of type pointer to char.

Note: The last argument in this list must be (char*)0.

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cciRethrowLastException
Rethrows the last exception generated on the current thread. It is used to pass the
exception back to the message broker for further handling.
void cciRethrowLastException(int* returnCode);

returnCode
This parameter receives the return code from the function (output).

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

cciThrowException
Throws an exception. The exception is thrown by the message broker interface
using the specified arguments as exception data.
void cciThrowException(

int* returnCode,
CCI_EXCEPTION_TYPE type,
char* file,
int line,
char* function,
CciChar* messageSource,
int messageNumber,
char* traceText,

...);

returnCode
This parameter receives the return code from the function (output).

Node and parser utilities

162 MQSeries Integrator Programming Guide

type The type of exception (input). Valid values are:
CCI_FATAL_EXCEPTION
CCI_RECOVERABLE_EXCEPTION
CCI_CONFIGURATION_EXCEPTION
CCI_PARSER_EXCEPTION
CCI_CONVERSION_EXCEPTION
CCI_DATABASE_EXCEPTION
CCI_USER_EXCEPTION

file The source file name where the exception was generated (input). The value
is optional, but it can be useful for debugging purposes.

line The line number in the source file where the exception was generated
(input). The value is optional, but it can be useful for debugging purposes.

function
The function name which generated the exception (input). The value is
optional, but it can be useful for debugging purposes.

messageSource
A string that identifies the Windows message source or Unix message
catalog (see “Using event logging from a plug-in” on page 75).

messageNumber
The message number identifying the exception (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list.

traceText
Trace information that will be written into the broker service trace log
(input). The information is optional, but it can be useful in debugging
problems.

... A C variable argument list that contains any message inserts that
accompany the message (input). These inserts are treated as character
strings and the variable arguments are assumed to be of pointer to char.

Note: The last argument in this list must be (char*)0.

Return values: None. If an error occurs, the returnCode parameter indicates the
reason for the error.

Node and parser utilities

Chapter 10. Node and parser utilities 163

Character representation handling functions
These utilities help you convert between MQSeries Integrator’s internal processing
code (in UCS-2) and file code (for example, ASCII).

These functions are defined in the header file BipCci.h.

cciMbsToUcs
Converts multi-byte string data to Universal Character Set (UCS).
int cciMbsToUcs(

int* returnCode,
const char* mbString,
CciChar* ucsString,
int ucsStringLength,
int codePage);

returnCode
This parameter receives the return code from the function (output).

mbString
The string to be converted, expressed as ’file code’ (input).

ucsString
The location of the resulting UCS-2 Unicode string (input). This will have a
trailing CciChar of 0, just as the mbString has a trailing byte of 0.

ucsStringLength
The length (in CciChars) of the buffer that you have provided (input). Each
byte in mbString will expand to not more than one CciChar and this
defines an upper limit for the buffer size required.

codePage
The code page of the source string (input). ’1208’ (meaning code page
ibm-1208, which is UTF-8 Unicode) is a good choice if you are using
cciMbsToUcs on an ASCII system to convert string constants for
processing by MQSeries Integrator.

Return values: The converted length in half-words (UCS-2 characters).

cciUcsToMbs
Converts Universal Character Set (UCS) data to multi-byte string data. This
function is, typically, used only for formatting diagnostic messages. Normal
processing is best done in UCS-2, which can represent all characters from all
languages.

The sample code (BipSampPluginUtil.c) shows more utilities for processing UCS-2
characters in a portable way.
int cciUcsToMbs(

int* returnCode,
const CciChar* ucsString,
char* mbString,
int mbStringLength,
int codePage);

returnCode
This parameter receives the return code from the function (output).

ucsString
The string to be converted, expressed as UCS-2 Unicode (input).

Node and parser utilities

164 MQSeries Integrator Programming Guide

mbString
The location of the resulting string (input). The string will have a trailing
byte of 0, just as the Unicode has a trailing CciChar of 0.

mbStringLength
The length (in bytes) of the buffer that you have provided (input). Each
CciChar in the source string will expand to one byte (for SBCS code pages)
or up to not more than the code page’s MB_CUR_MAX value (typically
less than five bytes) which defines an upper limit of the buffer size
required.

codePage
The code page that you require (input). On a Unix system,
nl_langinfo(CODEPAGE) gives you the code page that has been selected by
’setlocale’. ’1208’ gives you UTF-8 Unicode.

Return values: The converted length in bytes.

Node and parser utilities

Chapter 10. Node and parser utilities 165

Node and parser utilities

166 MQSeries Integrator Programming Guide

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2001 167

168 MQSeries Integrator Programming Guide

Appendix A. Using filters in content-based routing

The language used in the specification of filters for content-based routing (referred
to in this appendix as CBR) forms a proper subset of the Filter node’s language
(see MQSeries Integrator ESQL Reference). A subset of the language is provided
because the processing involved in the filtering of message content when a
publication is made differs from that used in the Filter node. This processing is
performed by a component of the Publish/Subscribe function in the broker, named
the Matching Engine. At publication time, many filters must be tested to see if they
match the publication and the Matching Engine has been optimized to perform
this task.

Field references

VV
Correlation Name

W

″.″

field name
[INDEX]

VX

The field references that may be used in CBR filters form a subset of those
supported by the Filter node. As with the Filter node, it is necessary to specify a
path in order to reference a field in a filter. Each element of the path comprises a
(possibly indexed) field name.

The syntax of a field reference is shown above, where field name and Correlation
Name are identifiers. MQSeries Integrator represents all messages as a hierarchical
syntax element tree. Each path identifies a route through that tree, which leads to a
particular syntax element, starting from one of the predefined correlation names
that refer to fixed points that every message has. The following correlation names
are supported for CBR:

Root Identifies the root of a published message.

Properties Identifies the portion of the message in which the standard
properties of a message lie.

Body Identifies the last child of the root of the message, which is
usually, but not always, the application data that follows
any headers.

None of Root, Properties or
Body

An implicit Body. prefix is added to the field reference.

© Copyright IBM Corp. 2000, 2001 169

Here are some examples of field references, together with their meanings:

Person.Salary Refers to the Salary field in the Person entity in the body of
the message.

Body.Person.Address[0] Refers to the first Address field in the Person entity in the
body of the message.

Properties.Topic Refers to the ″Topic″ field in the standard properties of a
message.

Root.MQMD.UserIdentifier Refers to the UserIdentifier field in the MQMD of the
message.

Note: Path elements of "*" and the array index "LAST" are not supported in CBR
filters.

Specifying a filter
A filter is specified through a combination of predicates as shown here:

Filter Specification

VV
NOT

Predicate

W AND Predicate
NOT

V

V

W OR Predicate
NOT

VX

Predicate

VV SetPredicate
ComparisonPredicate
BetweenPredicate
NullPredicate
LikePredicte
Expression

VX

Field references

170 MQSeries Integrator Programming Guide

ComparisonPredicate

VV Expression <>
<
>
<=
>=
=

Expression VX

NullPredicate

VV Expression IS
NOT

NULL VX

BetweenPredicate

VV Expression
NOT

BETWEEN Expression AND Expression VX

LikePredicate

VV Expression
NOT

LIKE String
/String

VX

SetPredicate

VV Expression
NOT

IN Expression

W

,

Expression

VX

Note: The Between predicate is Asymmetric only (that is, the lowest value must be
specified as the first operand).

Field references

Appendix A. Using filters in content-based routing 171

Predicates comprise expressions that can take the following form:

An Element can be one of:

A Field Reference As described above

A String Literal A character string. The length of the string is the number of characters in the sequence. If
the length is zero, the value is called the empty string. The latter is not a NULL value. The
String can include double quote characters. Single quotes or backslashes should be
preceded by a backslash, so that:

Field1='Howard\'s "Bubble" Car\\Stephanie\'s Cycle'

expresses a single valid string literal that will be matched against a message with Field1 set
to the string:

'Howard's "Bubble" Car\Stephanie's Cycle'

An Integer Literal Signed or unsigned, 64 bit, for example:

Field1 = -123

A Floating Point
Literal

Represented by two numbers separated by an “E”. The first number may include a sign
and a decimal point. The second can include a sign but not a decimal point. For example:

Field1=-1.79E+23

A Boolean Literal Can be TRUE or FALSE.

A Filter specification Allowing the nesting of filter expressions.

Expression

VV
″+″
″-″

Element

W ″*″ Element
″/″ ″+″

″-″

V

V

W

W

″*″ Element
″/″ ″+″

″-″
″*″ Element
″/″ ″+″

″-″

VX

Field references

172 MQSeries Integrator Programming Guide

Some filter examples

Person.Salary>10000 Filtering against an integer literal

"Person.Address"[1]NOT LIKE'Blen%'AND"Person.Salary">15000 A more complex filter. Note that field
identifiers may optionally be surrounded by
double quotes.

Body.Date1=’2000-02-14’ Filtering against a date. The date is matched
as a string and care must be taken with its
layout (see below).

Person.ApprovalFlag Filtering against a Boolean field.

Person.Salary+Person.Bonus>Person.Limit An arithmetic filter.

Properties.Topic=’employees/marketing’ Filtering on a message property.

Root.MQMD.UserIdentifier=’Blair’ Filtering on a message attribute.

Person.HourlyRate = 10.24 Filtering against a float literal

Planet.DistanceFromSun = 0.93E8 Filtering against a float literal in exponential
format

Datatypes and type mappings
CBR exploits a set of four internal datatypes. These are:
v String
v Integer
v Float
v Boolean

The set of supported MQSeries Integrator datatypes are mapped to these types in
the following way.

Character

A value of the CHARACTER datatype is mapped to a CBR String representation
comprising two-byte Unicode characters.

Boolean

A value of the BOOLEAN datatype is mapped to the CBR Boolean type, which
may be true or false. An implicit cast is supported between string literals ‘TRUE’
and ‘FALSE’ and the corresponding boolean values (for example, if message field
Body.Field1 is set to ’True’, it will match a boolean value of true).

Integer

A value of the INTEGER datatype is mapped to a CBR integer value, which is an
exact numeric number stored with 64-bit binary precision.

Float

A value of the FLOAT datatype is mapped to a CBR float value, which is a 64-bit
binary approximation of a real number, implemented as the platform’s ‘double
precision’.

The number can be zero or can range from approximately -1.79769E+308 to
-2.225E-307, or from 2.225E-307 to 1.79769E+308.

Field references

Appendix A. Using filters in content-based routing 173

Decimal

A value of the DECIMAL datatype is mapped to a CBR float value which is a 64
bit binary approximation of a real number (see above).

Date

A value of the DATE datatype is mapped to a string representation of the form
‘YYYY-MM-DD’, allowing filters such as Body.Date1=‘2000-02-14’ to be specified.

Time and GMTTime

A value of the TIME datatype is mapped to a string representation of the form
‘HH:MM:SS[.UUUUUU]’, allowing filters such as Body.Time1=‘10:36:11’ to be
specified. (UUUUUU indicates a number of microseconds.)

GMTTIMESTAMP

A value of the DATE datatype is mapped to a string representation of the form
‘YYYY-MM-DD HH:MM:SS[.UUUUUU]’. (UUUUUU indicates a number of
microseconds.)

Interval

A value of the Interval datatype is mapped to a string representation, allowing
filters such as Body.Date1=‘2002-01 YEAR TO MONTH’ to be specified.

Bit Array

A value of the Bit Array datatype is mapped to a String of 0’s and 1’s which may
be matched lexicographically against filters that include equivalent strings of 0’s
and 1’s. There is no restriction on the number of 0’s and 1’s in the sequence.

Byte Arrays

A value of the Byte Array datatype is mapped to a string representation, so that,
for example, a Byte Array with value 0x0102 is mapped into the ASCII string
‘0102’). This allows Byte Array values to be matched against filter expression string
literals (for example, a filter that specified Body.Field1=‘0102’ will match a Byte
Array field value of 0x0102 in the message).

Field references

174 MQSeries Integrator Programming Guide

Implicit type casting
No explicit CAST operation is provided for use in CBR filters but a limited implicit
casting scheme is provided. This is illustrated in the table below.

Filter Expression Publication Content Implicit Cast

Integer Literal, for example:

Field1=100

or

Field2>100

String, for example:

Field1 is ‘100’

The publication content will be cast
to an Integer, provided it is numeric
and contains no decimal points or
exponent.

Float Literal, for example:

Field1=1.78E+11

or

Field2>1.78E+11

String, for example:

Field1 is ‘1.78E+11’

The publication content may be cast
to a Float, provided it is numeric.

Float Literal, for example:

Field1=1.78E+2

or

Field2<1.78E+2

Integer, for example:

Field1 is 178

The publication content may be cast
to a Float.

Integer Literal, for example:

Field1=178

or

Field2>178

Float, for example:

Field1 is 1.78E+2

The publication content may be cast
to an Integer. An integer comparison
is always performed in this case.

A boolean literal or expression, for
example:

Field1=TRUE

or

Field2

String, for example:

Field1 is ‘True’

or

Field2 is ‘True’

The publication content can be cast to
an Boolean, provided it is a string
value of ‘True’ or ‘False’ (irrespective
of case).

A String literal Another type The publication content may be cast
to a string (a lexicographical
comparison is made).

Error reporting and logging
The CBR Matching Engine will report errors found in a publication by returning a
Response message with code MQRCCF_FILTER_ERROR to the publisher. For
example, a message format error that is found when parsing a message for specific
fields to match will be reported in this way.

Similarly, where the CBR Matching engine determines that a subscriber’s filter is in
error, a Response message with code MQRCCF_FILTER_ERROR will be returned
to the subscriber.

There are, however, a class of errors that will be found in subscriptions only at
publication time. Such errors will be reported in the operating system log. One
example of this kind of error would be where a filter sought to apply an arithmetic
operation to a field in a message of String type that could not be implicitly cast to
a numeric.

Field references

Appendix A. Using filters in content-based routing 175

Rounding errors and overflows
The CBR Matching Engine will disallow filter expressions that violate the
boundaries of the numeric datatypes returning a message with an
MQRCCF_FILTER_ERROR to the subscriber. It does not, however, check numeric
datatype overflows that result from arithmetic expressions (for example,
Field1+Field2*Field3>23E+200). In such cases, the results are unpredictable.

The CBR Float datatype can support 15 digits precision. Special care should be
taken when performing arithmetic on floats because individual rounding errors
rapidly become compounded.

Field references

176 MQSeries Integrator Programming Guide

Appendix B. MQSeries Integrator SCADA Device Protocol

This appendix defines the format and protocol of the MQSeries Integrator SCADA
(Supervisory Control and Data Acquisition) Device Protocol (MQIsdp). This
protocol must be used by applications sending messages to or receiving messages
from the MQIsdp Input nodes in a message flow.

Introduction
The MQSeries Integrator SCADA Device Protocol is a specialized protocol for
communication from remote, ″low end″, devices into a message broker. It supports
the delivery of data from embedded field equipment to the MQSeries Integrator
broker over TCP/IP. Typical client devices are sensors that measure status,
flowrate, temperature, level, kilowatts, and so on. They use a publish/subscribe
communications model and are found in many industrial environments, most
notably the oil and gas industries and in power and water utilities. The protocol
also supports the delivery of control data to remote devices, for applications such
as process control and valve control.

A typical system, involving a number of clients communicating with a single
broker, might comprise 500 to 1000 client devices, with an average aggregate
message rate of 50 messages per second, peaking at 200 messages per second. The
protocol is intended for applications where the message flow rate to or from a
remote client does not exceed a small number per second.

It should be noted that for different industry applications, message arrival rates,
message sizes, and peak traffic volumes differ widely.

Clients might range from a 16 MHz Z80 or HC11 8-bit processor with 32 K to
128 K RAM and 32 K Flash ROM to a 33 MHz 386EX 16-bit processor with 1 MB
RAM and 1 MB Flash ROM and beyond. Client applications are typically
programmed in embedded C.

Quality of service
The flag field values associated with the three supported Quality of Service levels
are defined in “Fixed header format” on page 180. This section gives more
information about the meaning of the QoS levels. “QoS protocol flows” on
page 179 defines the sequence of messages that are required for each level.

QoS 0 In ″At most once″ delivery, the message is delivered according to the best
efforts of the underlying TCP/IP network. No response is expected. No
retry semantics are defined in the protocol. Consequently, the message will
arrive at the destination broker either not at all or once.

Care should be taken to understand the context of reliable delivery. That is, with
QoS 1 and QoS 2, certain classes of failure can still cause the non-delivery of a
message. Each message with QoS 1 or QoS 2 is accompanied by a Message
Identifier in the Variable Header.

QoS 1 In ″At least once″ delivery, the arrival of the message at the broker,
including its successful placement onto an MQSeries queue, if applicable, is
acknowledged by a PUBACK message. In the event of identifiable failure
of the communications link, or of the sending device, or after some period

© Copyright IBM Corp. 2000, 2001 177

of time of non-receipt of the acknowledgement message, the sender will
resend the message with the DUP bit set. Consequently, the message is
″certain″ to arrive, but could arrive more than once.

QoS 2 In ″Exactly once″ delivery, additional protocol flows are employed above
QoS 1 to ensure that duplicate messages are not delivered to the receiving
application. This is the highest level of delivery service, and is used when
duplicate messages are unacceptable. Of course, there is a price to be paid
in terms of network traffic, but often this is acceptable because of the
importance of the message content.

Quality of Service assumptions
QoS 1 and QoS 2 rely on a number of assumptions. There are aspects of the area
of ″assured″ or ″reliable″ delivery that are fraught with problems. Specifically, the
areas for attention are ″in doubt″ windows, where a device could fail at just the
wrong moment, and a system could be left in a state where one end of the link
does not know exactly what happened at the other end. This means that true
assured delivery is extremely difficult to achieve under all circumstances, and so
we must make some assumptions about the nature of the devices and networks
that we are dealing with and conclude that we have a pretty good chance of
reliably delivering messages.

It is assumed that both client and broker are generally reliable, and that it is the
communications channel which is most likely to be unreliable. Moreover it is
usually the case that if the client device fails, then it is a catastrophic failure, rather
than a transient failure, so the chances of recovering data from the device are low.
Some devices may have non-volatile storage, such as flash ROM, which would
allow the most critical data to be stored more persistently on the client device to
allow it to survive some failure modes.

Beyond simple communications link failure, the failure mode matrix becomes
extremely complex, and there are just too many scenarios to cater for in a
specification such as this.

That is the level of assumption that is being made in this protocol specification,
and this should be borne in mind when writing applications using this protocol.

Message Identifiers
For ″At least once″ (QoS 1) and ″Exactly once″ (QoS 2) delivery, a Message
Identifier accompanies each message and its subsequent acknowledgement
message(s). This is used by the client and the broker to identify which message is
being referred to, and thus to track the progress of the protocol exchange
ultimately leading to successful delivery of the message to the receiving end of the
link (the client or the broker), and the deletion of the message from the sender.

The Message Identifier is a 16−bit unsigned integer, which will typically increase,
but is not required to increase by exactly one from one message to the next. This
assumes that there will never be more than 65,535 messages ″in flight″ between
one particular client-broker pair at any time. For more details, see “Variable
header” on page 183.

Note that Message ID 0 (that is, 0x0000) is reserved as an invalid Message ID. This
is to avoid erroneous actions if a Message ID is accidentally omitted.

Retries
The time delay before attempting to resend a message that has not been
acknowledged is application specific, and it not dictated by this specification.

178 MQSeries Integrator Programming Guide

QoS protocol flows
This section specifies the sequences of messages which will flow between client
and broker in order to implement the various Quality of Service levels. Refer to
“Quality of service” on page 177 for details of the supported Qualities of Service.

QoS 0 - ″at most once″
Table 8. Quality of Service level 0 protocol flow

Client Message and direction Broker

QoS = 0 PUBLISH
---------->

Action: publish message to
subscribers

QoS 1 - ″at least once″
Table 9. Quality of Service level 1 protocol flow

Client Message and direction Broker

QoS = 1
DUP = 0
Message ID = x

PUBLISH
---------->

Action: publish message to
subscribers

Action: discard
message

PUBACK
<----------

If the client does not receive the PUBACK within some application-specific
time-out period, or if a failure is detected and the communications session has to
be re-established, the client will resend the PUBLISH message with the DUP flag
set.

Upon receipt of a DUPlicate message from the client, the broker will publish the
message to the subscribers again, and send another PUBACK message.

QoS 2 - ″exactly once″
Table 10. Quality of Service level 2 protocol flow

Client Message and direction Broker

QoS = 2
DUP = 0
Message ID = x

PUBLISH
---------->

Action: log message to persistent
store

PUBREC
<----------

Message ID = x

Message ID = x PUBREL
---------->

Action: publish message to
subscribers

Action: discard
message

PUBCOMP
<----------

Message ID = x

Each part of the protocol flow will be retried with the DUP bit set in the event of a
detected failure, or a time-out. The additional protocol flows ensure that the
message is delivered to subscribers once and once only. SUBSCRIBE and
UNSUBSCRIBE messages use a QoS of 1.

Topic hierarchies and wildcards
See MQSeries Integrator Introduction and Planning for more information.

Appendix B. MQSeries Integrator SCADA Device Protocol 179

The topic of a message can contain any of the characters found in the UTF8 single
byte character set, see “UTF-8” on page 208 for more information. For example,
″SOFTWARE″ , ″ICE CREAM″ and ″The Top 50 Cities″ are all valid topics.
However, special meaning is applied to three characters:
v the slash (/), which denotes partitions within a topic name
v the hash (#), which can be used as a wildcard character matching any number of

partitions (also known as the multi-level wildcard)
v the plus (+), which is a wildcard matching a single partition (also known as the

single-level wildcard)

Message format

Fixed header format

Note: All data values are in big-endian order, that is, higher order bytes precede
lower order bytes. A 16−bit word presented on the wire as MSB (Most
Significant Byte), then LSB (Least Significant Byte).

A fixed length header will always be present for each message. The fixed length
header will consist of one byte containing the Message Type, Flags, and at least
one byte of the Remaining Length field.

The format of the fixed length header is as follows:

Table 11. Fixed length header format

bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP
flag

QoS level RETAIN

byte 2 Remaining Length

Message type field
Position: byte 1, bits 7-4.

The Message Type field is represented as a 4 bit unsigned value. The enumerations
of the Type field defined at this version of the protocol are as follows:

Table 12. Fixed length header message type field

Mnemonic Enumeration Description

reserved 0 Reserved

CONNECT 1 Client request to connect to Broker

CONNACK 2 Connect Acknowledgement

PUBLISH 3 Publish message

PUBACK 4 Publish Acknowledgement

PUBREC 5 Publish Received (assured delivery part 1)

PUBREL 6 Publish Release (assured delivery part 2)

PUBCOMP 7 Publish Complete (assured delivery part 3)

SUBSCRIBE 8 Client Subscribe request

SUBACK 9 Subscribe Acknowledgement

UNSUBSCRIBE 10 Client Unsubscribe request

180 MQSeries Integrator Programming Guide

Table 12. Fixed length header message type field (continued)

Mnemonic Enumeration Description

UNSUBACK 11 Unsubscribe Acknowledgement

PINGREQ 12 PING Request

PINGRESP 13 PING Response

DISCONNECT 14 Client is Disconnecting

reserved 15 Reserved

Flags fields
The remaining bits of byte 1 contain the Flags fields, with the bit positions encoded
to represent the following flags:

Table 13. Fixed length header flags fields

Bit position Name Description

3 DUP Duplicate delivery

2-1 QoS Quality of Service

0 RETAIN RETAIN flag

The interpretation of these flags is as follows:

DUP: Duplicate delivery: Position: byte 1, bit 3.

The DUP bit will be set any time the client or broker tries to deliver a PUBLISH
message that has already been sent. This only applies to messages of QoS > 0
which require acknowledgement (see below). By definition, when the DUP bit is
set, the Variable Header will include a Message Identifier.

QoS: Quality of Service: Position: byte 1, bits 2-1.

The QoS bits are used to indicate the level of assurance of delivery of a PUBLISH
message. There are four possible values which can be represented by the two QoS
bits. The QoS levels are defined as follows:

Table 14. Quality of Service levels

QoS value bit 2 bit 1 Descriptions

0 0 0 at most once ″Fire and Forget″ <=1

1 0 1 at least once ″Acknowledged
delivery″

>=1

2 1 0 exactly once ″Assured delivery″ ==1

3 1 1 Reserved

RETAIN: RETAIN flag: Position: byte 1, bit 0.

The RETAIN flag is an indication to the broker that this message should be held, if
possible, in the broker, and should be sent to any new subscriber to this Topic as
an initial message. This allows a complete ″current state″ of a number of Topics to
be quickly established by a new client upon connecting to the broker. This is
particularly useful if publishers are only sending messages on a ″Report By

Appendix B. MQSeries Integrator SCADA Device Protocol 181

Exception″ basis: it may be a very long time before a new subscriber receives any
data on a particular Topic. The data is known as the ″Retained″, or ″Last Known
Good″ (LKG) value.

After a SUBSCRIBE to one or more Topics, a subscriber will receive a SUBACK,
and then one message for each of the newly subscribed Topics for which there is
currently a Retained value. The Retained value is published from the broker to the
subscriber with the RETAIN flag set, and with the same QoS with which it was
originally published, and so will be subject to the usual QoS delivery assurances.
The RETAIN flag is set in the message to the subscribers to distinguish it from
″live″ data, so that it can be handled appropriately by the subscriber.

Note that there is no guarantee that a previous Retained PUBLISH to the broker
will still be held by the broker, and so the subscriber might not receive an initial
Retained PUBLISH on a Topic.

Remaining length field
Position: byte 2.

The Remaining Length field represents the number of bytes remaining within the
current message, including data in the Variable Header portion of the message,
and the user-defined Payload. The field is encoded using a variable-length scheme
which allows the use of just a single byte for message lengths up to 127 bytes, but
which also allows larger messages to be carried when required. The encoding
scheme is as follows:

Seven bits of each byte are used to encode the Remaining Length data, and the
eighth bit in each byte is used to indicate whether or not there are any following
bytes in the representation. Each byte thus encodes 128 values and a ″continuation
bit″.

For example, the number 64 decimal is encoded as a single byte, decimal value 64,
hex 0x40. The number 321 decimal (=128x2 + 65) is encoded as two bytes, least
significant first: First byte: 2+128 = 130 (note the top bit being set to indicate there
is at least one following byte), Second byte: 65.

This version of the protocol limits the number of bytes in the representation to a
maximum of four (4). This permits a single message of up to 268 435 455
(256 MB) to be sent. It is felt that this will be more than adequate for the
foreseeable future. The representation of this number on the wire would be 0xFF,
0xFF, 0xFF, 0x7F.

Using this encoding scheme, the Remaining Length values which can be
represented by increasing numbers of bytes is as follows:

Table 15. Remaining length field values

Digits From To

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16 383 (0xFF, 0x7F)

3 16 384 (0x80, 0x80, 0x01) 2 097 151 (0xFF, 0xFF, 0x7F)

4 2 097 152 (0x80, 0x80, 0x80, 0x01) 268 435 455 (0xFF, 0xFF, 0xFF, 0x7F)

182 MQSeries Integrator Programming Guide

The algorithm for encoding a decimal number into this format is quite
straightforward, and looks like this (X is the number to convert to variable length
encoding scheme):
do

digit = X MOD 128
x = X DIV 128
// if there are more digits to encode, set the top bit of this digit
if (X > 0)

digit = digit OR 0x80
endif
'output' digit

while (X > 0)

Note: MOD is the modulo operator (’%’ in C), DIV is integer division (’/’ in C),
and OR is bit-wise or (’|’ in C). The algorithm for decoding the Remaining
Length field as it comes off the wire is similarly straightforward:

multiplier = 1
value = 0
do

digit = 'next digit from stream'
value += (digit AND 127) * multiplier;
multiplier *= 128;

while ((digit AND 128) != 0);

Note: AND is the bit-wise and operator (’&’ in C).

When this algorithm terminates, ’value’ contains the Remaining Length in bytes.

Note that the Remaining Length encoding is not part of the Variable Header
portion of the message, and so the number of bytes taken to encode the Remaining
Length does not itself contribute to the value of the Remaining Length. The
″extension bytes″ of the variable length encoding should therefore be thought of as
part of the Fixed Header, rather than part of the Variable Header.

Variable header
Various message types require additional information as part of the header section
of the message, before the application-defined Payload. The fields that are present
in each type of message are defined in the specification for that message type. The
complete collection of fields and their data types is specified here.

In a message where several Variable Header fields appear, they must appear
strictly in the order specified in this section.

Note that the variable-length Remaining Length field is not part of the Variable
Header, and so its bytes do not contribute to the byte count of the Remaining
Length value, which only considers the Variable Header and Payload portions of
the message. See “Fixed header format” on page 180 for more information.

Protocol name
Present in: CONNECT

UTF-encoded string to identify the name of the protocol that is being used. This is
defined to be ″MQIsdp″, capitalized as shown. The letters stand for ″MQSeries
Integrator SCADA Device Protocol″.

See “UTF-8” on page 208 for more information.

Appendix B. MQSeries Integrator SCADA Device Protocol 183

Protocol version
Present in: CONNECT

The Version field indicates the current revision level of the protocol being used by
the client. The Version field is an 8−bit unsigned value representing the Protocol
Version. For this version of the protocol, the Version field will contain a value of 3
(0x03).

Table 16. Protocol version field value

bit 7 6 5 4 3 2 1 0

Protocol Version

0 0 0 0 0 0 1 1

Connect flags
Present in: CONNECT

The Connect Flags allow various options to be selected when a client connects to
the broker.

Clean start flag: Present in: CONNECT

The Clean Start flag is bit 1 of the Connect Flags byte.

The Clean Start flag provides a way for the client to go back to a known, ″clean″
state with the broker. If the flag is set, the broker will discard any outstanding
messages for that client, delete all subscriptions for that client, and reset the
Message ID to 1. The client will then be able to proceed without the risk of any
data from previous connections interfering with the current connection.

Table 17. Connect flags — clean start

bit 7 6 5 4 3 2 1 0

reserved reserved Will
RETAIN

Will QoS Will Flag Clean
Start

Reserved

x x x x x x x

Bits 7, 6 and 0 of this byte are unused in this version of the protocol. They are
reserved for future use.

″Will″ flag: Present in: CONNECT

The ″Will″ flag is bit 2 of the Connect Flags byte.

The ″Will″ message is a mechanism by which a client can define a message to be
published on its behalf by the broker, in the event that either an I/O error is
encountered by the broker during communication with the client, or the client fails
to communicate within the Keep Alive Timer schedule (see below). The receipt of a
DISCONNECT packet from the client does NOT trigger the sending of the Will
message.

If the Will flag is set, then the Will QoS and Will RETAIN fields in the Connect
Flags byte must be provided, as must the Will Topic and Will Message fields in the
Payload.

184 MQSeries Integrator Programming Guide

Table 18. Connect flags — Will

bit 7 6 5 4 3 2 1 0

reserved reserved Will
RETAIN

Will QoS Will Flag Clean
Start

Reserved

x x x x x x x

Bits 7, 6 and 0 of this byte are unused in this version of the protocol. They are
reserved for future use.

″Will″ QoS: Present in: CONNECT

The ″Will″ QoS field is bits 4 and 3 of the Connect Flags byte.

The Will QoS field is used by a connecting client to specify the Quality of Service
at which the Will Message (part of the Payload of the CONNECT message) will be
sent in the event of the involuntary disconnection of this client.

If the Will Flag is set, then this field is mandatory, otherwise its value is
disregarded.

Will QoS can take the value 0 (0x00), 1 (0x01), or 2 (0x02), just like an ordinary QoS
on a PUBLISH.

Table 19. Connect flags — Will QoS

bit 7 6 5 4 3 2 1 0

reserved reserved Will
RETAIN

Will QoS Will Flag Clean
Start

Reserved

x x x 1 x x

Bits 7, 6 and 0 of this byte are unused in this version of the protocol. They are
reserved for future use.

″Will″ RETAIN flag: Present in: CONNECT

The ″Will″ RETAIN flag is bit 5 of the Connect Flags byte.

The Will RETAIN flag is used to indicate if the Will Message, published by the
broker on behalf of the client if it becomes unexpectedly disconnected, is to be
RETAINed by the broker or not. See “RETAIN flag” on page 193 for more
information.

If the Will Flag is set, then this field is mandatory, otherwise its value is
disregarded.

Table 20. Connect flags — Will RETAIN

bit 7 6 5 4 3 2 1 0

reserved reserved Will
RETAIN

Will QoS Will Flag Clean
Start

Reserved

x x x x 1 x x

Appendix B. MQSeries Integrator SCADA Device Protocol 185

Bits 7, 6 and 0 of this byte are unused in this version of the protocol. They are
reserved for future use.

Keep Alive Timer
Present in: CONNECT

The Keep Alive timer is measured in seconds, and is the means by which a client
tells the broker the maximum time interval between receiving messages from this
client. This gives the broker a way of detecting that the network connection to a
client has dropped, without having to wait for the long TCP/IP time-out. It is the
responsibility of the client to ensure that it sends some kind of message within
each Keep Alive time period. If there is not going to be a data-related message
within the time period, then the client should send a PINGREQ message, which
will be acknowledged by the broker with a PINGRESP.

If the broker does not hear from this client within 1.5 times the Keep Alive time
period (that is, the client is allowed half a time period’s ″grace″), it performs the
disconnection processing that it would have done if the client had sent a
DISCONNECT message. Note that this does not impact any of the client’s
subscriptions. See “DISCONNECT – Disconnect notification” on page 192 for more
details.

The Keep Alive timer is a 16−bit value representing the number of seconds for the
time-out. This allows time-outs up to around 18 hours. The appropriate time-out
value is application specific, but it is anticipated that time-outs would be of the
order of a few minutes. A Keep Alive time of 0 indicates that there will be no Keep
Alive time-out processing, that is, the broker will not disconnect a client due to
elapsed time. The ordering of the 2 bytes of the Keep Alive Timer is MSB, then
LSB (big-endian).

Table 21. Keep alive timer

bit 7 6 5 4 3 2 1 0

Keep Alive MSB

Keep Alive LSB

Connect Return Code
Present in: CONNACK

This field defines a one byte unsigned return code. The meaning of the various
values are specific to the message type. A return code of 0 can usually be expected
to mean ″success″. The meaning of these values are:

Table 22. CONNACK — connect return code values

Enumeration HEX Meaning

0 0x00 Connection Accepted

1 0x01 Connection Refused: unacceptable protocol version

2 0x02 Connection Refused: identifier rejected

3 0x03 Connection Refused: broker unavailable

4-255 Reserved for future use

186 MQSeries Integrator Programming Guide

Table 23. Return code field

bit 7 6 5 4 3 2 1 0

Return Code

Topic Name
Present in: PUBLISH

For a PUBLISH message, the Topic Name is the key that indicates the information
channel to which the data in the Payload is being published. It is the key
subscribers use to identify the information channels on which they wish to receive
published information.

The Topic Name has an upper length limit of 32,767 characters. This should not
cause any problems in practice.

The Topic Name is a UTF-encoded string.

See “UTF-8” on page 208 for more information.

Message Identifier
Possibly present in: PUBLISH, PUBACK, PUBREC, PUBREL, PUBCOMP,
SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK

The Message Identifier field is only present in messages where the QoS bits in the
Fixed Header indicate QoS 1 or QoS 2. See “Quality of service” on page 177 for
more information.

The Message Identifier is a 16−bit unsigned integer, which will typically increase,
but is not required to increase by exactly one from one message to the next. This
assumes that there will never be more than 65,535 messages ″in flight″ between
one particular client-broker pair at any time.

The ordering of the 2 bytes of the Message Identifier is MSB, then LSB
(big-endian).

Message ID 0 is reserved as an invalid Message ID, and must not be used.

Table 24. Message identifier field

bit 7 6 5 4 3 2 1 0

Message Identifier MSB

Message Identifier LSB

Payload
The Payload portion of a PUBLISH message contains strictly application-specific
data. No assumptions are made about the nature or content of this data, and this
portion of the message should be treated as a BLOB.

As a specific point, if the application wishes to apply any compression to the
Payload data, then it is the responsibility of the application to define appropriate
flag fields in the Payload to convey the compression details. No provision is made
in the Fixed or Variable Header portions of the message for application-specific
flags.

Appendix B. MQSeries Integrator SCADA Device Protocol 187

Several message types make use of the Payload portion of the message for carrying
information relevant to that message. These messages are listed below. See the
appropriate section for more details.

CONNECT
The Payload section of the CONNECT message contains either one or three
UTF-encoded strings. The first uniquely identifies the client to the broker.
The second and third are only present if the Will Flag is set in the Connect
Flags byte. The second is the ″Will Topic″, and the third is the ″Will
Message″. See “CONNECT – Client requests a connection to a Broker” for
discussion of these terms.

SUBSCRIBE
The Payload of a SUBSCRIBE message contains a list of Topic Names
which the client wishes to subscribe to, and the Quality of Service at which
it wishes to subscribe to each of these Topics.

SUBACK
The Payload of a SUBACK message contains a list of ″granted″ Quality of
Service levels. Each of these is the QoS at which the broker’s
administrators have permitted the client to subscribe to a particular Topic
Name. The order of granted QoS levels in the list is the same as the Topic
Name list in the corresponding SUBSCRIBE message.

Command messages

CONNECT – Client requests a connection to a Broker
After a TCP/IP socket connection has been established between the client and the
broker, a protocol level session must be established. It is anticipated that the
direction of connection will be client to broker, and that the client would not
typically support broker listener functionality.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 25. CONNECT — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (1) DUP
flag

QoS level RETAIN

0 0 0 1 x x x x

byte 2 Remaining Length

The DUP, QoS and RETAIN flags are not used in the CONNECT message.

The Remaining Length is the length of the Variable Header (12 bytes), plus the
length of the Payload. This may be a multi-byte field. See “Fixed header format”
on page 180 for more details.

Variable header
The CONNECT message carries Variable Header data comprising:
v Protocol Name String ″MQIsdp″

v Protocol Version number (3)
v Connect Flags, comprising:

– Clean Start flag

188 MQSeries Integrator Programming Guide

– ″Will″ message flags
v Keep Alive timer (0 indicates no Keep Alive)

See “Variable header” on page 183 for more information.

Clean Start flag: The Clean Start flag provides a way for the client to go back to a
known, ″clean″ state with the broker. If the flag is set, the broker will discard any
outstanding messages for that client, delete all subscriptions for that client, and
reset the Message ID to 1. The client will then be able to proceed without the risk
of any data from previous connections interfering with the current connection.

″Will″ message flags: The ″Will″ message is a mechanism by which a client can
define a message to be published on its behalf by the broker, in the event that
either an I/O error is encountered by the broker during communication with the
client, or the client fails to communicate within the Keep Alive Timer schedule (see
below). The receipt of a DISCONNECT packet from the client does NOT trigger
the sending of the Will message.

The fields associated with the Will message are:
v Will Flag - whether or not the client is specifying a Will message.
v Will QoS - the Quality of Service at which the Will message is to be sent.
v Will RETAIN - whether or not the Will message is to be a ″retained″ publication.

See “PUBLISH – Publish a message” on page 193 for more details.

Keep Alive Timer: The Keep Alive timer is measured in seconds, and tells the
broker the maximum time interval between receiving messages from this client.
This gives the broker a way of detecting that the network connection to a client
has dropped, without having to wait for the long TCP/IP time-out. It is the
responsibility of the client to ensure that it sends some kind of message within
each Keep Alive time period. If there is not going to be a data-related message
within the time period, then the client should send a PINGREQ message, which
will be acknowledged by the broker with a PINGRESP.

If the broker does not hear from this client within 1.5 times the Keep Alive time
period (that is, the client is allowed half a time period’s ″grace″), it performs the
disconnection processing that it would have done if the client had sent a
DISCONNECT message. Note that this does not impact any of the client’s
subscriptions. See “DISCONNECT – Disconnect notification” on page 192 for more
details.

The Keep Alive timer is a 16−bit value representing the number of seconds for the
time-out. This allows time-outs up to around 18 hours. The appropriate time-out
value is application specific, but it is anticipated that time-outs would be of the
order of a few minutes. A Keep Alive time of 0 indicates that there will be no Keep
Alive time-out processing, that is, the broker will not disconnect a client due to
elapsed time. The ordering of the 2 bytes of the Keep Alive timer is MSB, then LSB
(big-endian).

Example: In this example, the Clean Start flag is set (1) and the Keep Alive timer
is set to 10 seconds (0x000A). A ″Will″ message is being defined (Will Flag is set
(1)), and the Will message is to be sent at QoS 1 (Will QoS is 1) , but not
RETAINed (Will RETAIN is clear (0)).

Appendix B. MQSeries Integrator SCADA Device Protocol 189

Table 26. CONNECT — variable header example

Description 7 6 5 4 3 2 1 0

Protocol Name

byte 1 Length MSB
(0)

0 0 0 0 0 0 0 0

byte 2 Length LSB (6) 0 0 0 0 0 1 1 0

byte 3 ’M’ 0 1 0 0 1 1 0 1

byte 4 ’Q’ 0 1 1 1 0 0 0 1

byte 5 ’I’ 0 1 1 0 1 0 0 1

byte 6 ’s’ 0 1 1 1 0 0 1 1

byte 7 ’d’ 0 1 1 0 0 1 0 0

byte 8 ’p’ 0 1 1 1 0 0 0 0

Protocol Version Number

byte 9 Version (3) 0 0 0 0 0 0 1 1

Connect Flags

byte 10 Will
RETAIN (0)
Will
QoS (01)
Will
flag (1)
Clean
Start (1)

x x 0 0 1 1 1 x

Keep Alive timer

byte 11 Keep Alive
MSB (0)

0 0 0 0 0 0 0 0

byte 12 Keep Alive
LSB (10)

0 0 0 0 1 0 1 0

Payload
The Payload section of the CONNECT message contains either one or three
UTF-encoded strings. The first is the Client Identifier, between 1 and 23 characters
long, which uniquely identifies the client to the broker. Care should be taken in the
selection of this identifier, as it must be unique across all clients connecting to a
single broker. The Client Identifier is used as a key in the handling of Message
Identifiers for messages with QoS 1 and QoS 2. See “Quality of service” on
page 177 for more details.

Note: The Client Identifier must not be more than 23 characters. The broker will
reject a CONNECT request with a client identifier that is not 1-23 characters
long, with a CONNACK return code of 2: Identifier Rejected.

The existence of the second and third UTF-encoded strings depends on the setting
of the ″Will″ flag in the Connect Flags byte of the Variable header. If the Will Flag
is set, then the payload must contain a total of three UTF-encoded strings.

The second string is called ″Will Topic″, and is the topic name to which the ″Will
Message″ (see below) will be published (at a QoS defined by the Will QoS field,
and RETAIN status defined by the Will RETAIN flag, both in the Variable Header.)

190 MQSeries Integrator Programming Guide

The third UTF-encoded string is called ″Will Message″, and defines the content of
the message which will be published (on the Will Topic topic) if the client is
unexpectedly disconnected. NOTE that although the Will Message is UTF-encoded
here in the CONNECT message, when it is published to the Will Topic, only the
actual bytes of the message are sent as the content, NOT the first two length bytes.
That is, the message which is sent out upon execution of the Will by the broker is
not UTF-encoded, but ″raw″ ASCII.

See “UTF-8” on page 208 for more information about UTF-encoding.

Response
The response from the broker to a client CONNECT message is a CONNACK
message.

Note: If a CONNACK is not received from the broker within a ″reasonable″
amount of time, the client should close the TCP/IP socket connection and
start the session again: open a socket to the broker and issue a CONNECT
message. What constitutes a reasonable amount of time will be governed by
the nature of the application, and the communications infrastructure being
used.

CONNACK – Acknowledge Connection Request
This message is the response from the broker to a client making a CONNECT
request.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 27. CONNACK — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (2) DUP
flag

QoS flags RETAIN

0 0 1 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

The DUP, QoS and RETAIN flags are not used in the CONNACK message.

Variable Header
The CONNACK message carries two fields in the Variable Header:
v Currently unused reserved values.
v Connect request return code

See “Variable header” on page 183 for more information.

Connect return code: The possible values of the one byte unsigned return code
are:

Table 28. CONNACK — connect return code values

Enumeration HEX Meaning

0 0x00 Connection Accepted

1 0x01 Connection Refused: unacceptable protocol version

Appendix B. MQSeries Integrator SCADA Device Protocol 191

Table 28. CONNACK — connect return code values (continued)

Enumeration HEX Meaning

2 0x02 Connection Refused: identifier rejected

3 0x03 Connection Refused: broker unavailable

4-255 Reserved for future use

One of the reasons for a return code of 2 (identifier rejected) is that it may be more
than 23 characters long. The unique client identifier must be 1-23 characters long.
See “CONNECT – Client requests a connection to a Broker” on page 188 for more
information.

The format of the Variable Header is thus:

Table 29. CONNACK — variable header

Description 7 6 5 4 3 2 1 0

Topic Name Compression Response

byte 1 Currently
unused
reserved
values

x x x x x x x x

Connect Return Code

byte 2 Return Code

Payload
NONE

DISCONNECT – Disconnect notification
The DISCONNECT message is sent from the client to the broker to indicate that it
is about to close its TCP/IP connection. This allows for a ″clean″ disconnection,
rather than just dropping the line.

Note that by sending the DISCONNECT message, the client is not implying
anything about existing subscriptions: the subscriptions are persistent until either
explicitly UNSUBSCRIBEd, or when there is a ″clean start″. QoS 1 and QoS 2
messages on topics to which the client is SUBSCRIBEd will be stored at the broker
until the client reCONNECTs. QoS 0 messages will not be retained, as they are
delivered on a ″best can do″ basis.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 30. DISCONNECT — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (14) DUP
flag

QoS level RETAIN

1 1 1 0 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS and RETAIN flags are not used in the DISCONNECT message.

192 MQSeries Integrator Programming Guide

Variable Header
NONE

Payload
NONE

PUBLISH – Publish a message
The PUBLISH message is the means by which a client sends a message to a broker
for distribution to interested subscribers. Each published message is associated
with a Topic Name (sometimes known elsewhere as Subject or Channel). This is a
hierarchical name space defining a taxonomy of information sources that
subscribers can register an interest in. Any message published to a given Topic
Name will be delivered to any connected subscribers who have subscribed to that
Topic.

Note that to maintain symmetry, if a client subscribes to one or more Topics, then
any messages published to those Topics will be delivered from the broker to the
client in the form of a PUBLISH message.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 31. PUBLISH — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (3) DUP
flag

QoS level RETAIN

0 0 1 1 0 0 1 0

byte 2 Remaining Length

The example shown above indicates QoS level 1, first transmission (DUP clear), do
not retain.

QoS level: The QoS bits define the Quality of Service requirements for this
publication. The defined values for the QoS field are specified in “Fixed header
format” on page 180, and their meanings are discussed in “Quality of service” on
page 177.

DUP flag: For messages of QoS 1 or QoS 2, the DUP bit should be set if this is a
message that is being retransmitted after the detection of some kind of failure. This
indicates to the broker that it may be a duplicate of a message already received.
The significance of this information to the broker depends upon the QoS level. If
this is the first sending of the message, the DUP bit should be clear. For QoS 0, the
DUP bit is not used.

RETAIN flag: The RETAIN flag is an indication to the broker that this message
should be held, if possible, in the broker, and should be sent to any new subscriber
to this Topic as an initial message. This allows a complete ″current state″ of a
number of Topics to be quickly established by a new client upon connecting to the
broker. This is particularly useful if publishers are only sending messages on a
″Report By Exception″ basis: it may be a very long time before a new subscriber
receives any data on a particular Topic. The data is known as the ″Retained″, or
″Last Known Good″ (LKG) value.

Appendix B. MQSeries Integrator SCADA Device Protocol 193

After a SUBSCRIBE to one or more Topics, a subscriber will receive a SUBACK,
and then one message for each of the newly subscribed Topics for which there is
currently a Retained value. The Retained value is published from the broker to the
subscriber with the RETAIN flag set, and with the same QoS with which it was
originally published, and so will be subject to the usual QoS delivery assurances.
The RETAIN flag is set in the message to the subscribers to distinguish it from
″live″ data, so that it can be handled appropriately by the subscriber.

Note that there is no guarantee that a previous Retained PUBLISH to the broker
will still be held by the broker, and so the subscriber might not receive an initial
Retained PUBLISH on a Topic.

Remaining Length: The Remaining Length is the length of the Variable Header
plus the length of the Payload. This may be a multi-byte field. See “Fixed header
format” on page 180 for more details.

Variable Header
The Variable Header portion of the PUBLISH message contains the Topic Name
and possibly a Message Identifier, if the QoS level is 1 or 2.

Topic Name: The Topic Name is a UTF-encoded string.

Message Identifier: This field is only present for messages of QoS 1 and QoS 2
(see “Quality of service” on page 177 for more details). It should be noted that
typically the protocol library would take responsibility for generating this
identifier, and passing it back to the publishing application, possibly as a return
handle. This approach avoids the risk of duplicate Message Identifiers being
generated by multiple applications, or multiple publishing threads, running on a
single client.

For QoS 0, Message Identifier is not used, and must not appear in the Variable
Header.

The Message Identifier is a 16−bit unsigned integer, which will typically increase,
but is not required to increase by exactly one from one message to the next. The
ordering of the 2 bytes of the Message Identifier is MSB, then LSB (big-endian).

Message ID 0 (that is, 0x0000) is reserved as an invalid Message ID, and must not
be used.

See “Variable header” on page 183 for more information.

Example:

Table 32. PUBLISH — variable header example

Topic Name: ″a/b″

QoS level 1

Message ID: 10

The format of the Variable Header in this case would be:

Table 33. PUBLISH — variable header example format

Description 7 6 5 4 3 2 1 0

Topic Name

194 MQSeries Integrator Programming Guide

Table 33. PUBLISH — variable header example format (continued)

Description 7 6 5 4 3 2 1 0

byte 1 Length MSB
(0)

0 0 0 0 0 0 0 0

byte 2 Length LSB
(3)

0 0 0 0 0 0 1 1

byte 3 ’a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ’b’ (0x62) 0 1 1 0 0 0 1 0

Message Identifier

byte 6 Message ID
MSB (0)

0 0 0 0 0 0 0 0

byte 7 Message ID
LSB (10)

0 0 0 0 1 0 1 0

Payload
The Payload portion of a PUBLISH message contains the data to be published. Its
content and format is completely application specific. Note that the Remaining
Length field in the Fixed Header includes both the Variable Header length and the
Payload length.

Response
The response from the recipient to a PUBLISH message depends on the Quality of
Service level specified. See “Quality of service” on page 177 for more details. The
expected responses are as follows:

Table 34. PUBLISH — expected responses

QoS 0 no response

QoS 1 PUBACK

QoS 2 PUBREC

Actions
Since PUBLISH messages can be sent either from a publisher to the broker, or from
the broker to a subscriber, it is worthwhile describing what is expected of the
recipient of a PUBLISH message. In the case of the broker receiving the message,
″interested parties″ means subscribers to the topic of the PUBLISH. In the case of a
subscriber receiving the message, ″interested parties″ means the application on the
client which has subscribed to one or more topics, and is waiting for a message
from the broker.

Upon receipt of a QoS 0 message, the recipient should make the message available
to any ″interested parties″.

Upon receipt of a QoS 1 message, the recipient should log the message to
persistent storage, make it available to any ″interested parties″, and return a
PUBACK response to the sender.

For a QoS 2 message, the recipient should log the message to persistent storage,
but not yet make it available to ″interested parties″. The recipient should then
return a PUBREC message to the sender.

Appendix B. MQSeries Integrator SCADA Device Protocol 195

Further discussion of the actions that the client and broker should perform upon
receipt of messages of QoS 1 and QoS 2 appears in “QoS protocol flows” on
page 179.

PUBACK – Publish Acknowledgement
This message is the response from the receiving end to a PUBLISH message of
QoS 1. See “QoS protocol flows” on page 179 for more details. In the case of a
PUBLISH being sent by a publishing client, this would be from the broker. It is
also the response from a subscriber upon receiving a PUBLISH message of QoS 1
from the broker.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 35. PUBACK — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (4) DUP
flag

QoS level RETAIN

0 1 0 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level: The QoS level is not used for the PUBACK message.

DUP flag: The DUP flag is not used for the PUBACK message.

RETAIN flag: The RETAIN flag is not used for the PUBACK message.

Remaining Length: The Remaining Length is the length of the Variable Header (2
bytes) This may be a multi-byte field. See “Fixed header format” on page 180 for
more details.

Variable Header
The Variable Header portion of the PUBACK message contains the Message
Identifier of the PUBLISH message that is being acknowledged.

See “Variable header” on page 183 for more information.

Table 36. PUBACK — variable header

bit 7 6 5 4 3 2 1 0

byte 1 Message Identifier MSB

byte 2 Message Identifier LSB

Payload
NONE

Actions
Upon receipt of a PUBACK message, the client can discard the original message, as
it has now been received and logged by the broker. For more discussion on actions
to be performed, see “QoS protocol flows” on page 179.

196 MQSeries Integrator Programming Guide

PUBREC – Assured Publish Received (part 1)
This message is the response from the receiving end to a PUBLISH message of
QoS 2. It is the second message of the QoS 2 protocol flow. See “QoS protocol
flows” on page 179 for more details. In the case of a PUBLISH being sent by a
publishing client, this would be from the broker. It is also the response from a
subscriber upon receiving a PUBLISH message of QoS 2 from the broker.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 37. PUBREC — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (5) DUP
flag

QoS level RETAIN

0 1 0 1 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level: The QoS level is not used for the PUBREC message.

DUP flag: The DUP flag is not used for the PUBREC message.

RETAIN flag: The RETAIN flag is not used for the PUBREC message.

Remaining Length: The Remaining Length is the length of the Variable Header (2
bytes). This may be a multi-byte field. See “Fixed header format” on page 180 for
more details.

Variable Header
The Variable Header portion of the PUBREC message contains the Message
Identifier of the PUBLISH message that is being acknowledged.

See “Variable header” on page 183 for more information.

Table 38. PUBREC — variable header

bit 7 6 5 4 3 2 1 0

byte 1 Message Identifier MSB

byte 2 Message Identifier LSB

Payload
NONE

Actions
Upon receipt of a PUBREC message, the recipient should send a PUBREL message
to the sender with the same Message Identifier. For more discussion on actions to
be performed, see “QoS protocol flows” on page 179.

PUBREL – Assured Publish Release (part 2)
This message is either the response from a publisher to a PUBREC message from
the broker, or the response from the broker to a PUBREC message from a
subscriber. It is the third message of the QoS 2 protocol flow. See “QoS protocol
flows” on page 179 for more details.

Appendix B. MQSeries Integrator SCADA Device Protocol 197

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 39. PUBREL — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (6) DUP
flag

QoS level RETAIN

0 1 1 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level: The QoS level is not used for the PUBREL message.

DUP flag: The DUP flag is not used for the PUBREL message.

RETAIN flag: The RETAIN flag is not used for the PUBREL message.

Remaining Length: The Remaining Length is the length of the Variable Header (2
bytes). This may be a multi-byte field. See “Fixed header format” on page 180 for
more details.

Variable Header
The Variable Header portion of the PUBREL message contains the same Message
Identifier as the PUBREC message that is being acknowledged.

See “Variable header” on page 183 for more information.

Table 40. PUBREL — variable header

bit 7 6 5 4 3 2 1 0

byte 1 Message Identifier MSB

byte 2 Message Identifier LSB

Payload
NONE

Actions
Upon receipt of a PUBREL message from a publisher, the broker should make the
original message available to interested subscribers, and send a PUBCOMP
message to the publisher with the same Message Identifier. In the case of a
subscriber receiving a PUBREL from the broker, it should make the message
available to the subscribing application and send a PUBCOMP back to the broker.
For more discussion on actions to be performed, see “QoS protocol flows” on
page 179.

PUBCOMP – Assured Publish Complete (part 3)
This message is either the response from the broker to a PUBREL message from a
publisher, or the response from a subscriber to a PUBREL message from the broker.
It is the fourth and final message of the QoS 2 protocol flow. See “QoS protocol
flows” on page 179 for more details.

198 MQSeries Integrator Programming Guide

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 41. PUBCOMP — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (7) DUP
flag

QoS level RETAIN

0 1 1 1 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level: The QoS level is not used for the PUBCOMP message.

DUP flag: The DUP flag is not used for the PUBCOMP message.

RETAIN flag: The RETAIN flag is not used for the PUBCOMP message.

Remaining Length: The Remaining Length is the length of the Variable Header (2
bytes). This may be a multi-byte field. See “Fixed header format” on page 180 for
more details.

Variable Header
The Variable Header portion of the PUBCOMP message contains the same Message
Identifier as the PUBREL message that is being acknowledged.

See “Variable header” on page 183 for more information.

Table 42. PUBCOMP — variable header

bit 7 6 5 4 3 2 1 0

byte 1 Message Identifier MSB

byte 2 Message Identifier LSB

Payload
NONE

Actions
Upon receipt of a PUBCOMP message, the client can discard the original message,
as it has been successfully delivered, exactly once, to the broker. For more
discussion on actions to be performed, see “QoS protocol flows” on page 179.

SUBSCRIBE – Subscribe to named Topics
The SUBSCRIBE message allows a client to register an interest, with the broker, in
one or more Topic Names. Messages which are published to these Topics will be
delivered from the broker to the client in the form of a PUBLISH message. The
SUBSCRIBE message also specifies the Quality of Service at which the subscriber
wishes to receive published messages.

Appendix B. MQSeries Integrator SCADA Device Protocol 199

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 43. SUBSCRIBE — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (8) DUP
flag

QoS level RETAIN

1 0 0 0 0 0 1 x

byte 2 Remaining Length

This example shows the first transmission (DUP flag clear).

QoS level: SUBSCRIBE messages use a QoS of 1, to allow the acknowledgement
of multiple subscription requests to be managed. The corresponding SUBACK can
be identified by matching the Message ID. This also allows the handling of retries
on SUBSCRIBE messages to be handled in exactly the same way as a PUBLISH
message.

DUP flag: The DUP bit should be set if this is a message that is being
retransmitted after the non-arrival of a SUBACK message after some specified
time-out. This indicates to the broker that it may be a duplicate of a message
already received. If this is the first sending of the message, the DUP bit should be
clear.

RETAIN flag: The RETAIN flag is not used in the SUBSCRIBE message.

Remaining Length: The Remaining Length is the length of the Payload. This may
be a multi-byte field. See “Fixed header format” on page 180 for more details.

Variable Header
The Variable Header portion of the SUBSCRIBE message contains the Message
Identifier.

Message Identifier: SUBSCRIBE is treated as a QoS 1 message, and so has a
Message ID. See “Quality of service” on page 177 for more details. It should be
noted that typically the protocol library would take responsibility for generating
this identifier, and passing it back to the publishing application, possibly as a
return handle. This approach avoids the risk of duplicate Message Identifiers being
generated by multiple applications, or multiple publishing threads, running on a
single client.

The Message Identifier is a 16−bit unsigned integer, which will typically increase,
but is not required to increase by exactly one from one message to the next. The
ordering of the 2 bytes of the Message Identifier is MSB, then LSB (big-endian).

Message ID 0 (that is, 0x0000) is reserved as an invalid Message ID, and must not
be used.

See “Variable header” on page 183 for more information.

As an example, if the Message ID is 10, the format of the Variable Header would
be:

200 MQSeries Integrator Programming Guide

Table 44. SUBSCRIBE — variable header example

Description 7 6 5 4 3 2 1 0

Message Identifier

byte 1 Message ID
MSB (0)

0 0 0 0 0 0 0 0

byte 2 Message ID
LSB (10)

0 0 0 0 1 0 1 0

Payload
The Payload of a SUBSCRIBE message contains a list of Topic Names which the
client wishes to subscribe to, and the Quality of Service level at which the client
wishes them to be delivered. The strings are UTF-encoded, and the requested QoS
occupies 2 bits of a single byte. These Topic/QoS pairs are packed contiguously as
shown in the example below.

The Topic Names in a SUBSCRIBE message will not be compressed in any way.

Assuming that the requested Quality of Service is granted (see “SUBACK –
Subscription Acknowledgement” on page 202 for more information), then the client
will receive PUBLISH messages at less than or equal to this quality of service,
depending on the QoS of the original message from the publisher. For example, if
a client has a QoS 1 subscription to a particular topic, then a QoS 0 publish to that
topic will be delivered to this client at QoS 0. A QoS 2 publish to the same topic
will be downgraded to QoS 1 for delivery to this client.

Note that a corollary to this is that subscribing to a Topic at QoS 2 is equivalent to
saying ″I would like to receive messages on this Topic at the QoS at which they are
published″.

The Requested Quality of Service field is encoded in the byte following each
UTF-encoded Topic Name as follows:

Table 45. SUBSCRIBE — granted quality of service field

bit 7 6 5 4 3 2 1 0

reserved reserved reserved reserved reserved reserved QoS level

x x x x x x

The upper 6 bits of this byte are currently unused in this version of the protocol.
They are reserved for future use.

Example:

Table 46. SUBSCRIBE — payload example

Topic Name ″a/b″

Requested QoS 1

Topic Name ″c/d″

Requested QoS 2

Appendix B. MQSeries Integrator SCADA Device Protocol 201

The format of the Payload in this case would be:

Table 47. SUBSCRIBE — payload example format

Description 7 6 5 4 3 2 1 0

Topic Name

byte 1 Length MSB
(0)

0 0 0 0 0 0 0 0

byte 2 Length LSB
(3)

0 0 0 0 0 0 1 1

byte 3 ’a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ’b’ (0x62) 0 1 1 0 0 0 1 0

Requested QoS

byte 6 Requested
QoS (1)

x x x x x x 0 1

Topic Name

byte 7 Length MSB
(0)

0 0 0 0 0 0 0 0

byte 8 Length LSB
(3)

0 0 0 0 0 0 1 1

byte 9 ’c’ (0x63) 0 1 1 0 0 0 1 1

byte 10 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 11 ’d’ (0x64) 0 1 1 0 0 1 0 0

Requested QoS

byte 12 Requested
QoS (2)

x x x x x x 1 0

Response
The response from the broker to a client SUBSCRIBE message is a SUBACK
message from the broker.

SUBACK – Subscription Acknowledgement
The SUBACK message is sent from the broker to the client to confirm receipt of a
SUBSCRIBE message. It contains a list of ″granted″ Quality of Service levels. Each
of these is the QoS at which the broker’s administrators have permitted the client
to subscribe to a particular Topic Name. Currently the broker always grants the
Qos level requested by the subscriber. The order of granted QoS levels in the list is
the same as the Topic Name list in the corresponding SUBSCRIBE message.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 48. SUBACK — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (9) DUP
flag

QoS level RETAIN

1 0 0 1 x x x x

byte 2 Remaining Length

202 MQSeries Integrator Programming Guide

QoS level: The QoS level is not used for the SUBACK message.

DUP flag: The DUP flag is not used for the SUBACK message.

RETAIN flag: The RETAIN flag is not used.

Remaining Length: The Remaining Length is the length of the Variable Header.
This may be a multi-byte field. See “Fixed header format” on page 180 for more
details.

Variable Header
The Variable Header portion of the SUBACK message contains the Message
Identifier of the SUBSCRIBE message that is being acknowledged.

See “Variable header” on page 183 for more information.

Table 49. SUBACK — variable header

bit 7 6 5 4 3 2 1 0

byte 1 Message Identifier MSB

byte 2 Message Identifier LSB

Payload
The Payload of the SUBACK message contains a vector of ″Granted″ Quality of
Service levels, each corresponding to a Topic Name in the SUBSCRIBE message to
which this is the reply. Each of these is the QoS at which the broker’s
administrators have permitted the client to subscribe to a particular Topic Name.

The order of QoS levels in the SUBACK is the same as the order of Topic Name
and Requested QoS pairs in the SUBSCRIBE message. The Message ID in the
Variable Header makes it easy to match SUBACKs with SUBSCRIBEs back at the
client.

The Granted Quality of Service field is encoded in a byte as follows:

Table 50. SUBACK — granted quality of service field

bit 7 6 5 4 3 2 1 0

reserved reserved reserved reserved reserved reserved QoS level

x x x x x x

The upper 6 bits of this byte are currently unused in this version of the protocol.
They are reserved for future use.

Example:

Table 51. SUBACK — payload example

Granted QoS 0

Granted QoS 2

Appendix B. MQSeries Integrator SCADA Device Protocol 203

The format of the Payload in this case would be:

Table 52. SUBACK — payload example format

Description 7 6 5 4 3 2 1 0

Requested QoS

byte 1 Granted QoS
(0)

x x x x x x 0 0

Granted QoS

byte 2 Granted QoS
(2)

x x x x x x 1 0

UNSUBSCRIBE – Unsubscribe from named Topics
The UNSUBSCRIBE message allows a client to tell the broker that it is no longer
interested in receiving messages on specified topics.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 53. UNSUBSCRIBE — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (10) DUP
flag

QoS level RETAIN

1 0 1 0 0 0 1 x

byte 2 Remaining Length

This example shows the first transmission (DUP flag clear).

QoS level: UNSUBSCRIBE messages use a QoS of 1, to allow the
acknowledgement of multiple unsubscribe requests to be managed. The
corresponding UNSUBACK can be identified by matching the Message ID. This
also allows the handling of retries on UNSUBSCRIBE messages to be handled in
exactly the same way as a PUBLISH message.

DUP flag: The DUP bit should be set if this is a message that is being
retransmitted after the non-arrival of a UNSUBACK message after some specified
time-out. This indicates to the broker that it may be a duplicate of a message
already received. If this is the first sending of the message, the DUP bit should be
clear.

RETAIN flag: The RETAIN flag is not used in the UNSUBSCRIBE message.

Remaining Length: The Remaining Length is the length of the Payload. This may
be a multi-byte field. See “Fixed header format” on page 180 for more details.

Variable Header
The Variable Header portion of the UNSUBSCRIBE message contains the Message
Identifier.

Message Identifier: UNSUBSCRIBE is treated as a QoS 1 message, and so has a
Message ID. See “Quality of service” on page 177 for more details. It should be
noted that typically the protocol library would take responsibility for generating
this identifier, and passing it back to the publishing application, possibly as a

204 MQSeries Integrator Programming Guide

return handle. This approach avoids the risk of duplicate Message Identifiers being
generated by multiple applications, or multiple publishing threads, running on a
single client.

Message ID 0 (that is, 0x0000) is reserved as an invalid Message ID, and must not
be used. The ordering of the 2 bytes of the Message Identifier is MSB, then LSB
(big-endian).

See “Variable header” on page 183 for more information.

As an example, if the Message ID is 10, the format of the Variable Header would
be:

Table 54. UNSUBSCRIBE — variable header example

Description 7 6 5 4 3 2 1 0

Message Identifier

byte 1 Message ID
MSB (0)

0 0 0 0 0 0 0 0

byte 2 Message ID
LSB (10)

0 0 0 0 1 0 1 0

Payload
The Payload of an UNSUBSCRIBE message contains a list of Topic Names from
which the client wishes to unsubscribe. The strings are UTF-encoded, and are
packed contiguously.

The Topic Names in a UNSUBSCRIBE message will not be compressed in any way.

Example:

Table 55. UNSUBSCRIBE — payload example

Topic Name ″a/b″

Topic Name ″c/d″

The format of the Payload in this case would be:

Table 56. UNSUBSCRIBE — payload example format

Description 7 6 5 4 3 2 1 0

Topic Name

byte 1 Length MSB
(0)

0 0 0 0 0 0 0 0

byte 2 Length LSB
(3)

0 0 0 0 0 0 1 1

byte 3 ’a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ’b’ (0x62) 0 1 1 0 0 0 1 0

Topic Name

byte 6 Length MSB
(0)

0 0 0 0 0 0 0 0

Appendix B. MQSeries Integrator SCADA Device Protocol 205

Table 56. UNSUBSCRIBE — payload example format (continued)

Description 7 6 5 4 3 2 1 0

byte 7 Length LSB
(3)

0 0 0 0 0 0 1 1

byte 8 ’c’ (0x63) 0 1 1 0 0 0 1 1

byte 9 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 10 ’d’ (0x64) 0 1 1 0 0 1 0 0

Response
The response from the broker to a client UNSUBSCRIBE message is an
UNSUBACK message from the broker.

UNSUBACK – Unsubscribe Acknowledgement
The UNSUBACK message is sent from the broker to the client to confirm receipt of
an UNSUBSCRIBE message.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 57. UNSUBACK — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (11) DUP
flag

QoS level RETAIN

1 0 1 1 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level: The QoS level is not used for the UNSUBACK message.

DUP flag: The DUP flag is not used for the UNSUBACK message.

RETAIN flag: The RETAIN flag is not used for the UNSUBACK message.

Remaining Length: The Remaining Length is the length of the Variable Header (2
bytes).

Variable Header
The Variable Header portion of the UNSUBACK message contains the Message
Identifier of the UNSUBSCRIBE message that is being acknowledged.

See “Variable header” on page 183 for more information.

Table 58. UNSUBACK — variable header

bit 7 6 5 4 3 2 1 0

byte 1 Message Identifier MSB

byte 2 Message Identifier LSB

Payload
NONE

206 MQSeries Integrator Programming Guide

PINGREQ – PING Request
The PINGREQ message is an ″are you alive″ message that can either be sent or
received by a connected client.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 59. PINGREQ — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (12) DUP
flag

QoS level RETAIN

1 1 0 0 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS and RETAIN flags are not used in the PINGREQ message.

Variable Header
NONE

Payload
NONE

Response
The response to a PINGREQ message is a PINGRESP message.

PINGRESP – PING Response
The PINGRESP message is the reply to a PINGREQ message, and means ″yes I am
alive″. Keep Alive messages can flow in either direction, initiated either by a
connected client, or by the broker.

Fixed Header
See “Fixed header format” on page 180 for more information.

Table 60. PINGRESP — fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (13) DUP
flag

QoS level RETAIN

1 1 0 1 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS and RETAIN flags are not used in the PINGRESP message.

Variable Header
NONE

Payload
NONE

Appendix B. MQSeries Integrator SCADA Device Protocol 207

UTF-8
UTF-8 is an efficient encoding of Unicode character-strings that recognizes the fact
that the majority of text-based communications are in ASCII, and it therefore
optimizes the encoding of these characters.

For a good introduction to UTF-8, see: RFC 2044.

Note: MQIsdp uses a sub set of UTF-8. Only single bytes (non-extended)
characters are supported.

UTF strings are formed as follows:

Table 61. UTF string format

bit 7 6 5 4 3 2 1 0

byte 1 Message Length MSB

byte 2 Message Length LSB

bytes 3
...

Encoded Character Data

Note that the Message Length is the number of bytes of encoded string characters,
rather than just the number of characters. For ASCII strings, however, these are the
same, since for ASCII codes 0x01 to 0x7F, the encoded characters have the
following format:

Table 62. Format of encoded characters (ASCII 0x01-0x7F)

bit 7 6 5 4 3 2 1 0

0 ASCII code of character

As an example the ASCII text string OTWP would be encoded in UTF-8 as:

Table 63. UTF encoding example

bit 7 6 5 4 3 2 1 0

byte 1 Message Length MSB (0x00)

0 0 0 0 0 0 0 0

byte 2 Message Length LSB (0x04)

0 0 0 0 0 1 0 0

byte 3 ’O’ (0x4F)

0 1 0 0 1 1 1 1

byte 4 ’T’ (0x54)

0 1 0 1 0 1 0 0

byte 5 ’W’ (0x57)

0 1 0 1 0 1 1 1

byte 6 ’P’ (0x50)

0 1 0 1 0 0 0 0

In Java™, the writeUTF() and readUTF() methods of data streams read and write
data in this format.

208 MQSeries Integrator Programming Guide

Appendix C. MQSeries Everyplace Nodes

Message classes supported by the MQSeries Everyplace nodes
MQSeries Everyplace typically uses the MQeMsgObject class to store the messages
that will be put and read from MQSeries Everyplace queues. The MQSeries
Everyplace server within MQSeries Integrator also supports this type of message. It
also supports an additional class that is specifically tailored for passing MQSeries
messages into MQSeries Integrator. This focuses on populating the various fields of
the MQMD (the MQSeries message descriptor). The functionality also differs from
using the standard MQeMsgObject class.

The MQeMsgObject class is free format; as opposed to having fixed attributes you
can create your own. This allows it to contain almost any type of object that may
be stored within Java. When passing this information to MQSeries Integrator, this
poses a problem, the MQMD within MQSeries Integrator is not free format and
therefore cannot be easily translated into a format within MQSeries Integrator. This
is done by using the two types of message object classes. The functionality of both
is described below:

MQeMsgObject
If this class is put to a bridge queue specified within the MQSeries Everyplace
input node for MQSeries Integrator, all the predefined fields within the message
are placed into the MQMD. All other non-supported fields within an MQMD are
placed in the payload part of the message. This allows the message to be
reconstructed if it is sent back to MQSeries Everyplace by one of the nodes within
the message flow (primarily the MQSeries Everyplace Output node). It does have
the disadvantage that the payload part of the message is less parsable within
MQSeries Integrator because a parser is currently not supported to read
MQeMsgObject.

MQeMbMsgObject
This MQSeries Everyplace class is specifically designed to pass MQMD type
messages into MQSeries Integrator. All undefined fields supplied within this
message will not be passed to MQSeries Integrator. Therefore, if this message is
routed back to an MQSeries Everyplace queue, these fields will not be present.

To be able to use these classes within an MQSeries Everyplace client, the mqimqe.jar
file located in the classes directory of the MQSeries Integrator installation directory
must be included in your classpath. This jar file is transferable to machines that do
not have MQSeries Integrator installed if an MQSeries Everyplace client is required
to use an installation of MQSeries Integrator that has not been installed locally on
that machine.

When placing a message on a bridge queue for the MQSeries Everyplace node, it is
essential that you specify the message type. The types supported by the MQSeries
Everyplace node are as follows:
v TYPE_MQE — Non publish/subscribe message
v TYPE_PUB — Publication message
v TYPE_SUB — Subscription message
v TYPE_UNSUB — Unsubscription message

© Copyright IBM Corp. 2000, 2001 209

You can set this as shown below:
myMsgObj.putInt(MQeMbMsgObject.TYPE_OF_MSG, MQeMbMsgObject.TYPE_MQE);

The myMsgObject instance may be of type MQeMsgObject or MQeMbMsgObject.
This choice is made when defining a new method as follows:

MQeMsgObject mqeMsg = new MQeMsgObject(); or,

MQeMbMsgObject mqeMsg = new MQeMbMsgObject();

MQSeries Everyplace methods
The set of MQSeries Everyplace methods that you can use for non
publish/subscribe messages using the MQeMbMessage class are as follows:

setAccountingToken(byte[]);
This sets the ’accounting token’ field within the MQMD.

setApplicationIdData(String);
This sets the ’application identity data’ field within the MQMD.

setApplicationOriginData(String);
This sets the ’application origin data’ field within the MQMD.

setApplicationType(int);
This sets the ’application type’ field within the MQMD.

setBackoutCount(int);
This sets the ’backout count’ field within the MQMD to be used within
MQSeries.

setCodedCharacterSetId(int);
This sets the ’coded character setId’ field within the MQMD.

setCorrelationId(byte[]);
This sets the ’Correl Id’ field within the MQMD.

setData(byte[]);
This sets the payload part of the MQSeries message.

setDestQueueMgr(String)
This sets the returning queue manager name for the message. This field is
mandatory.

setDestQueueName(String);
This sets the returning queue name for the message. This field is
mandatory.

setEncoding(int);
This sets the ’encoding’ field within the MQMD.

setExpiry(int);
This sets the ’expiry time’ field within the MQMD. The value -1 is never
expire.

setFeedback(int);
This sets the ’feed back’ field within the MQMD.

setFormat(String);
This sets the ’format’ field within the MQMD.

setGroupId(byte[]);
This sets the ’group id’ field within the MQMD.

210 MQSeries Integrator Programming Guide

setMessageFlags(int);
This sets the ’message flags’ field within the MQMD.

setMessageId(byte[]);
This sets the ’message ID’ field within the MQMD.

setMessageSequenceNumber(int);
This sets the ’sequence number’ field within the MQMD.

setMessageType(int);
This sets the ’message type’ field within the MQMD.

setOffset(int);
This sets the ’offset’ field within the MQMD.

setOriginalLength(int);
This sets the ’original length’ field within the MQMD.

setPersistence(int);
This sets the ’persistence’ field within the MQMD.

setPriority(int);
This sets the ’priority’ field within the MQMD.

setPutApplicationName(String);
This sets the ’application name’ field within the MQMD.

setPutDate(GregorianCalendar);
This sets the ’creation date’ field within the MQMD.

setPutTime(GregorianCalendar);
This sets the ’creation time’ field within the MQMD.

setReplyToQueueManagerName(String);
This sets the ’replyToQMgr’ field within the MQMD.

setReplyToQueueName(String);
This sets the ’replyToQ’ field within the MQMD.

setReport(int);
This sets the ’report’ field within the MQMD.

setStrucId(String);
This sets the ’Structure Id’ field within the MQMD.

setUserId(String);
This sets the ’user id’ field within the MQMD.

setVersion(int);
This sets the ’version number’ field within the MQMD.

These methods get the data from the object. For a description of their use, please
refer to their associated set method calls.
v byte[] getAccountingToken();
v string getApplicationIdData();
v string getApplicationOriginData();
v int getApplicationType();
v int getBackoutCount();
v int getCodedCharacterSetId();
v byte[] getCorrelationId();
v byte[] getData();
v string String getDestQueueMgr();

Appendix C. MQSeries Everyplace Nodes 211

v string String getDestQueueName();
v int getEncoding();
v int getExpiry();
v int getFeedback();
v string getFormat();
v byte[] getGroupId();
v int getMessageFlags();
v byte[] getMessageId();
v int getMessageSequenceNumber();
v int getMessageType();
v int getOffset();
v int getOriginalLength();
v int getPersistence();
v int getPriority();
v string getPutApplicationName();
v gregorianCalendar getPutDate();
v gregorianCalendar getPutTime();
v string getReplyToQueueManagerName();
v string getReplyToQueueName();
v int getReport();
v string getStrucId();
v string getUserId();
v int getVersion();

Publish/Subscribe
The MQSeries Everyplace node also supports a limited subset of the
Publish/Subscribe capability of MQSeries Integrator. The fields required to
construct these message are described later:

Publish
As with all messages destined for a bridge queue going to MQSeries Integrator, a
message type must be specified. For a publish message, this is
MQeMbMsgObject.TYPE_PUB.

The field names available are as follows:

MQeMbMsgObject.TOPIC
This contains a string of the single topic to publish to. This attribute is
mandatory.

MQeMbMsgObject.RETAINED
This contains a Boolean value. If this is set to true, the publication is
retained and therefore unsubscribed clients subscribing will receive the last
published value for the given topic. This attribute is optional. If this is not
specified, the default value is false (not retained).

MQeMbMsgObject. MQ_Persistence
This contains an integer value containing the persistence value of the
message. Value ’0’ represents a non persistent message. Value ’1’ represents
a persistent message.

212 MQSeries Integrator Programming Guide

MQeMbMsgObject.MESSAGE
This contains an array of bytes representing the payload of the message.
This field is mandatory.

This is an example of code:
try
{
System.out.println("Local QM Name: " + myQM.getName());

MQeMsgObject mqeMsg = new MQeMsgObject();
mqeMsg.putInt(MQeMbMsgObject.TYPE_OF_MSG, MQeMbMsgObject.TYPE_PUB);
mqeMsg.putAscii(MQeMbMsgObject.TOPIC, "Weather");
mqeMsg.putArrayOfByte(MQeMbMsgObject.MESSAGE, asciiToByte("Hello");
mqeMsg.putBoolean(MQeMbMsgObject.RETAINED, true);

System.out.println("..Put message to QM/queue: " + destQueueManager + "/" + destBridgeQueue);
myQM.putMessage(destQueueManager, destBridgeQueue, mqeMsg, null, 0);
System.out.println("Finished");
}
catch (Exception e)
{
e.printStackTrace();
System.out.println("Failed! " + e);
}

Subscribe
The message type that must be specified for a subscription message is
MQeMbMsgObject.TYPE_SUB. The fields names available are as follows:

MQeMbMsgObject.TOPIC
This contains an array of strings containing topics to subscribe to.

MQeMbMsgObject.MQ_DestQueueMgr
This is the returning MQSeries Everyplace queue manager name to send
any published messages to.

MQeMbMsgObject.MQ_DestQueueName
This is the returning MQSeries Everyplace queue name to send any
published messages to.

This is an example of code:
try {
System.out.println("Local QM Name: " + myQM.getName());

MQeMsgObject mqeMsg = new MQeMsgObject();
mqeMsg.putInt(MQeMbMsgObject.TYPE_OF_MSG, MQeArgoLaunch.TYPE_SUB);
mqeMsg.putAsciiArray(MQeMbMsgObject.TOPIC, new String[] {"Topic1", "Topic2", "Topic3"});
mqeMsg.putAscii(MQeMbMsgObject.MQ_DestQueueName, "Inbox");
mqeMsg.putAscii(MQeMbMsgObject.MQ_DestQueueMgr, "ServerQM1");

System.out.println("..Put message to QM/queue: "+destQueueManager+"/"+destBridgeQueue);
myQM.putMessage(destQueueManager, destBridgeQueue, mqeMsg, null, 0);
System.out.println("Finished");
}
catch (Exception e)
{
e.printStackTrace();
System.out.println("Failed! " + e);
}

Appendix C. MQSeries Everyplace Nodes 213

Unsubscribe
The message type that must be specified for an unsubscription message is
MQeMbMsgObject.TYPE_UNSUB. The fields names available are as follows:

MQeMbMsgObject.TOPIC
This contains an array of strings containing topics to unsubscribe from.

MQeMbMsgObject.MQ_DestQueueMgr
This is the returning MQSeries Everyplace queue manager name to send
any published messages to.

MQeMbMsgObject.MQ_DestQueueName
This is the returning MQSeries Everyplace queue name to send any
published messages to.

This is an example of some code:
try {
System.out.println("Local QM Name: " + myQM.getName());
MQeMsgObject mqeMsg = new MQeMsgObject();
mqeMsg.putInt(MQeMbMsgObject.TYPE_OF_MSG, MQeArgoLaunch.TYPE_UNSUB);
mqeMsg.putAsciiArray(MQeMbMsgObject.TOPIC, new String[] {"Topic1", "Topic2", "Topic3"});
mqeMsg.putAscii(MQeMbMsgObject.MQ_DestQueueName, "Inbox");
mqeMsg.putAscii(MQeMbMsgObject.MQ_DestQueueMgr, "ServerQM1");

System.out.println("..Put message to QM/queue: "+destQueueManager+"/"+destBridgeQueue);
myQM.putMessage(destQueueManager, destBridgeQueue, mqeMsg, null, 0);
System.out.println("Finished");
}
catch (Exception e)
{
e.printStackTrace();
System.out.println("Failed! " + e);
}

MQSeries Everyplace currently does not support any additional features not
described here. Messages supported in MQSeries such as request update, are not
supported.

214 MQSeries Integrator Programming Guide

Appendix D. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2001 215

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

216 MQSeries Integrator Programming Guide

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

CICS IBM IMS/ESA
MQSeries SupportPac

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Microsoft and Windows NT are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix D. Notices 217

218 MQSeries Integrator Programming Guide

Glossary of terms and abbreviations

This glossary defines MQSeries Integrator terms
and abbreviations used in this book. If you do not
find the term you are looking for, see the index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute. Copies
may be ordered from the American National
Standards Institute, 11 West 42 Street, New York,
New York 10036. Definitions are identified by the
symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that
have explicit permissions (to publish, to subscribe to,
and to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The
programming interface provided by MQSeries that
defines a high level interface to message queuing
services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid entity
that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a
common configuration, together with the single
Configuration Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are
related in some way. For example, messages that relate
to a particular application.

check in. The Control Center action that stores a new
or updated resource in the configuration or message
respository.

check out. The Control Center action that extracts and
locks a resource from the configuration or message
respository for local modification by a user. Resources
from the two repositories can only be worked on when
they are checked out by an authorized user, but can be
viewed (read only) without being checked out.

collective. A hyperconnected (totally connected) set of
brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers,
execution groups, message flows and message sets
assigned to them, topics and access control
specifications.

Configuration Manager. A component of MQSeries
Integrator that acts as the interface between the
configuration repository and an executing set of
brokers. It provides brokers with their initial
configuration, and updates them with any subsequent
changes. It maintains the broker domain configuration.

configuration repository. Persistent storage for broker
configuration and topology definition.

connector. See message processing node connector.

content-based filter. An expression that is applied to
the content of a message to determine how the message
is to be processed.

context tag. A tag that is applied to an element within
a message to enable that element to be treated
differently in different contexts. For example, an
element could be mandatory in one context and
optional in another.

Control Center. The graphical interface that provides
facilities for defining, configuring, deploying, and
monitoring resources of the MQSeries Integrator
network.

D
datagram. The simplest form of message that
MQSeries supports. Also known as send-and-forget. This
type of message does not require a reply. Compare with
request/reply.

debugger. A facility on the Message Flows view in the
Control Center that enables message flows to be
debugged.

© Copyright IBM Corp. 2000, 2001 219

deploy. Make operational the configuration and
topology of the broker domain.

destination list. A list of internal and external
destinations to which a message is sent. These can be
nodes within a message flow (for example, when using
the RouteToLabel and Label nodes) or MQSeries
queues (when the list is examined by an MQOutput
node to determine the final target for the message).

distribution list. A list of MQSeries queues to which a
message can be put using a single statement.

Document Type Definition (DTD). The rules that
specify the structure for a particular class of SGML or
XML documents. The DTD defines the structure with
elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and
notation can be used within the particular class of
documents. A DTD is analogous to a database schema
in that the DTD completely describes the structure for a
particular markup language.

DTD. Document Type Definition

E
e-business. A term describing the commercial use of
the Internet and World Wide Web to conduct business
(short for electronic-business).

element. A unit of data within a message that has
business meaning, for example, street name

element qualifier. See context tag.

ESQL. Extended SQL. A specialized set of SQL
statements based on regular SQL, but extended with
statements that provide specialized functions unique to
MQSeries Integrator.

exception list. A list of exceptions that have been
generated during the processing of a message, with
supporting information.

execution group. A named grouping of message flows
that have been assigned to a broker. The broker is
guaranteed to enforce some degree of isolation between
message flows in distinct execution groups by ensuring
that they execute in separate address spaces, or as
unique processes.

Extensible Markup Language (XML). A W3C
standard for the representation of data.

external reference. A reference within a message set to
a component that has been defined outside the current
message set. For example, an integer that defines the
length of a string element might be defined in one
message set but used in several message sets.

F
field reference. A sequence of period-separated values
that identify a specific field (which might be a
structure) within a message tree. An example of a field
reference might be something like
Body.Invoice.InvoiceNo.

filter. An expression that is applied to the content of a
message to determine how the message is to be
processed.

format. A format defines the internal structure of a
message, in terms of the fields and order of those
fields. A format can be self-defining, in which case the
message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a
software product that is graphical rather than textual. It
refers to window-based operational characteristics.

I
implementation function. Function written by a
third-party developer for a plug-in node or parser. Also
known as a callback function.

input node. A message flow node that represents a
source of messages for the message flow.

installation mode. The installation mode can be Full,
Custom, or Broker only. The mode defines the
components of the product installed by the installation
process on Windows NT® systems.

J
Java Database Connectivity (JDBC). An application
programming interface that has the same characteristics
as ODBC but is specifically designed for use by Java
database applications.

Java Development Kit (JDK). A software package that
can be used to write, compile, debug, and run Java
applets and applications.

Java Message Service (JMS). An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment (JRE). A subset of the
Java Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes and supporting files.

JDBC™. Java Database Connectivity.

JDK™. Java Development Kit.

Glossary

220 MQSeries Integrator Programming Guide

JMS. Java Message Service. See also AMI and MQI.

JRE. Java Runtime Environment.

L
local error log. A generic term that refers to the logs
to which MQSeries Integrator writes records on the
local system. On Windows NT, this is the Event log. On
UNIX® systems, this is the syslog. See also system log.
Note that MQSeries records many events in the log that
are not errors, but information about events that occur
during operation, for example, successful deployment
of a configuration.

M
message broker. A set of execution processes hosting
one or more message flows.

messages. Entities exchanged between a broker and its
clients.

message dictionary. A repository for (predefined)
message type specifications.

message domain. The value that determines how the
message is interpreted (parsed). The following domains
are recognized:
v MRM, which identifies messages defined using the

Control Center
v NEONMSG2, which identifies messages created using

the NEONFORMATTER user interfaces.
v XML, which identifies messages that are self-defining
v BLOB, which identifies messages that are undefined

You can also create your own message domains: if you
do so, you must supply your own message parser.

message flow. A directed graph that represents the set
of activities performed on a message or event as it
passes through a broker. A message flow consists of a
set of message processing nodes and message
processing node connectors.

message flow component. See message flow.

message parser. A program that interprets a message
bitstream.

message processing node. A node in the message
flow, representing a well defined processing stage. A
message processing node can be one of several
primitive types or can represent a subflow.

message processing node connector. An entity that
connects the output terminal of one message processing
node to the input terminal of another. A message

processing node connector represents the flow of
control and data between two message flow nodes.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. The
programming interface allows application programs to
access message queuing services. See also AMI and
JMS.

message repository. A database holding message
template definitions.

message repository manager (MRM). A component of
the Configuration Manager that handles message
definition and control. A message defined to the MRM
has a message domain set to MRM.

message set. A grouping of related messages.

message template. A named and managed entity that
represents the format of a particular message. Message
templates represent a business asset of an organization.

message type. The logical structure of the data within
a message. For example, the number and location of
character strings.

metadata. Data that describes the characteristic of
stored data.

MQe. MQSeries Everyplace.

MQI. Message queue interface.

MQIsdp. MQSeries Integrator SCADA device
protocol. A lightweight publish/subscribe protocol
flowing over TCP/IP.

MQRFH. An architected message header that is used
to provide metadata for the processing of a message.
This header is supported by MQSeries
Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing
enhanced function in message processing.

MQSeries Everyplace. A generally available MQSeries
product that provides proven MQSeries reliability and
security in a mobile environment.

MRM. Message Repository Manager.

multilevel wildcard. A wildcard that can be specified
in subscriptions to match any number of levels in a
topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

2. The message domain NEON is also recognized for
compatibility with previous releases.

Glossary

Glossary of terms and abbreviations 221

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and non-relational database management
systems. Using this API, database applications can
access data stored in database management systems on
a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the
X/Open SQL Access Group.

output node. A message processing node that
represents a point at which messages flow out of the
message flow.

P
plug-in. An extension to the broker, written by a
third-party developer, to provide a new message
processing node or message parser in addition to those
supplied with the product. See also implementation
function and utility function.

point-to-point. Style of messaging application in
which the sending application knows the destination of
the message. Compare with publish/subscribe.

POSIX. Portable Operating System Interface For
Computer Environments. An IEEE standard for
computer operating systems (for example, AIX® and
Sun Solaris).

predefined message. A message with a structure that
is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied
with the product.

principal. An individual user ID (for example, a log-in
ID) or a group. A group can contain individual user
IDs and other groups, to the level of nesting supported
by the underlying facility.

property. One of a set of characteristics that define the
values and behaviors of objects in the Control Center.
For example, message processing nodes and deployed
message flows have properties.

publication node. An end point of a specific path
through a message flow to which a client application
subscribes. A publication node has an attribute,
subscription point. If this is not specified, the
publication node represents the default subscription
point for the message flow.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. An application that makes information
about a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that
programs can access messages on the queues that the
queue manager owns.

R
retained publication. A published message that is
kept at the broker for propagation to clients that
subscribe at some point in the future.

request/reply. Type of messaging application in which
a request message is used to request a reply from
another application. Compare with datagram.

rule. A rule is a definition of a process, or set of
processes, applied to a message on receipt by the
broker. Rules are defined on a message format basis, so
any message of a particular format will be subjected to
the same set of rules.

S
SCADA. Supervisory, Control, And Data Acquisition.

self-defining message. A message that defines its
structure within its content. For example, a message
coded in XML is self-defining. Compare with pre-defined
message.

send and forget. See datagram.

setup type. The definition of the type of installation
requested on Windows NT systems. This can be one of
Full, Broker only, or Custom.

shared. All configuration data that is shared by users
of the Control Center. This data is not operational until
it has been deployed.

signature. The definition of the external characteristics
of a message processing node.

single-level wildcard. A wildcard that can be
specified in subscriptions to match a single level in a
topic.

Glossary

222 MQSeries Integrator Programming Guide

stream. A method of topic partitioning used by
MQSeries Publish/Subscribe applications.

subscriber. An application that requests information
about a specified topic from a publish/subscribe
broker.

subscription. Information held within a publication
node, that records the details of a subscriber
application, including the identity of the queue on
which that subscriber wants to receive relevant
publications.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

subscription point. An attribute of a publication node
that differentiates it from other publication nodes on
the same message flow and therefore represents a
specific path through the message flow. An unnamed
publication node (that is, one without a specific
subscription point) is known as the default publication
node.

Supervisory, Control, And Data Acquisition. A broad
term, used to describe any form of remote telemetry
system used for gathering data from remote sensor
devices (for example, flow rate meters on an oil
pipeline) and for the near real time control of remote
equipment (for example, pipeline valves).

system log. A generic term used in the MQSeries
Integrator messages (BIPxxx) that refers to the local
error logs to which records are written on the local
system. On Windows NT, this is the Event log. On
UNIX systems, this is the syslog. See also local error log.

T
terminal. The point at which one node in a message
flow is connected to another node. Terminals enable
you to control the route that a message takes,
depending whether the operation performed by a node
on that message is successful.

topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

topic based subscription. A subscription specified by
a subscribing application that includes a topic for
filtering of publications.

topic security. The use of ACLs applied to one or
more topics to control subscriber access to published
messages.

topology. In the broker domain, the brokers,
collectives, and connections between them.

transform. A defined way in which a message of one
format is converted into one or more messages of
another format.

U
Uniform Resource Identifier. The generic set of all
names and addresses that refer to World Wide Web
resources.

Uniform Resource Locator. A specific form of URI
that identifies the address of an item on the World
Wide Web. It includes the protocol followed by the
fully qualified domain name (sometimes called the host
name) and the request. The Web server typically maps
the request portion of the URL to a path and file name.
Also known as Universal Resource Locator.

URI. Uniform Resource Identifier

URL. Uniform Resource Locator

User Name Server. The MQSeries Integrator
component that interfaces with operating system
facilities to determine valid users and groups.

utility function. Function provided by MQSeries
Integrator for the benefit of third-party developers
writing plug-in nodes or parsers.

W
warehouse. A persistent, historical datastore for events
(or messages). The Warehouse node within a message
flow supports the recording of information in a
database for subsequent retrieval and processing by
other applications.

wildcard. A character that can be specified in
subscriptions to match a range of topics. See also
multilevel wildcard and single-level wildcard.

wire format. This describes the physical representation
of a message within the bit-stream.

W3C. World Wide Web Consortium. An international
industry consortium set up to develop common
protocols to promote evolution and interoperability of
the World Wide Web.

X
XML. Extensible Markup Language.

Glossary

Glossary of terms and abbreviations 223

Glossary

224 MQSeries Integrator Programming Guide

Bibliography

This section describes the documentation
available for all current MQSeries Integrator
products.

MQSeries Integrator Version 2.0.2
cross-platform publications
The MQSeries Integrator cross-platform
publications are:
v MQSeries Integrator Introduction and Planning,

GC34-5599
v MQSeries Integrator Using the Control Center,

GC34-5602
v MQSeries Integrator Messages, GC34-5601
v MQSeries Integrator Programming Guide,

SC34-5603
v MQSeries Integrator Administration Guide,

SC34-5792
v MQSeries Integrator ESQL Reference, SC34-5923

These books are all available in hardcopy.

You can order publications from the IBMLink™

Web site at:
http://www.ibm.com/ibmlink

In the United States, you can also order
publications by dialing 1-800-879-2755.

In Canada, you can order publications by dialing
1-800-IBM-4YOU (1-800-426-4968).

For further information about ordering
publications contact your IBM authorized dealer
or marketing representative.

MQSeries Integrator Version 2.0.2
platform-specific publications
Each MQSeries Integrator product provides one
platform-specific installation guide, which is
supplied in hardcopy.

MQSeries Integrator for AIX Version 2.0.2

MQSeries Integrator for AIX Installation
Guide, GC34-5841

MQSeries Integrator for HP-UX Version 2.0.2

MQSeries Integrator for HP-UX
Installation Guide, GC34-5907

MQSeries Integrator for Sun Solaris Version
2.0.2

MQSeries Integrator for Sun Solaris
Installation Guide, GC34-5842

MQSeries Integrator for Windows NT Version
2.0.2

MQSeries Integrator for Windows NT
Installation Guide, GC34-5600

MQSeries Everyplace
publications
If you intend to connect MQSeries Everyplace
applications to message flows that include the
MQSeries Everyplace message flow nodes, you
will find the following publications useful:
v MQSeries Everyplace for Multiplatforms Version

1.1 Introduction, GC34-5843
v MQSeries Everyplace for Multiplatforms Version

1.1 Programming Guide, SC34-5845
v MQSeries Everyplace for Multiplatforms Version

1.1 Programming Reference, SC34-5846
v MQSeries Everyplace for Multiplatforms Version

1.1 Native Client Information, SC34-5880

You can find these books on the MQSeries Web
site (see “MQSeries information available on the
Internet” on page 227). Translated versions of
these books are also available in some languages
from the same Web site.

NEONRules and NEONFormatter
Support for MQSeries Integrator
publications
The following publications are supplied on the
product CD in PDF format, and are installed with
the Documentation component.
v NEONRules and NEONFormatter Support for

MQSeries Integrator User’s Guide

v NEONRules and NEONFormatter Support for
MQSeries Integrator System Management Guide

© Copyright IBM Corp. 2000, 2001 225

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference for
NEONRules

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference for
NEONFormatter

v NEONRules and NEONFormatter Support for
MQSeries Integrator Application Development
Guide

These books are provided in US English only.

Softcopy books
All the MQSeries Integrator books are available in
softcopy formats.

Portable Document Format (PDF)
All books in the MQSeries Integrator library are
supplied in US English only in a searchable PDF
library on the product CD.

You can install the library as follows:
v On AIX, invoke install —d and select the

documentation fileset. After installation, run the
command mqsidocs. This launches Acrobat
Reader and opens the PDF package.

v On HP-UX, invoke swinstall —d and select
MQSI-DOCS from the menu. After installation,
run the command mqsidocs. This launches
Acrobat Reader and opens the PDF package.

v On Sun Solaris, invoke pkgadd —d and select
mqsi-docs from the menu. After installation,
run the command mqsidocs. This launches
Acrobat Reader and opens the PDF package.

v On Windows NT, select the Online
Documentation component on a custom
installation, or do a full installation. After
installation, select Start—>Programs—>IBM
MQSeries Integrator 2.0—>Documentation.

In addition, PDF files for books that have been
translated are installed into the location
mqsi_root/bin/book/pdf/<locale> (on UNIX) or
mqsi_root\bin\book\pdf\<locale> (on Windows
NT) where <locale> is one of the following:
v de_DE for German
v en_US for US English
v es_ES for Spanish
v fr_FR for French
v it_IT for Italian
v ja_JP for Japanese
v ko_KR for Korean
v pt_BR for Brazilian Portuguese

v zh_CN for Simplified Chinese
v zh_TW for Traditional Chinese

An index file (in HTML format) that provides a
link to each book is supplied for each language.
For example, the French index file is called
indexfr.htm. The files are stored in the following
directory:
v On UNIX, <mqsi_root>/docs/
v On Windows NT, <mqsi_root>\bin\book

Each index file has an entry for every book: if a
particular book has not been translated into the
appropriate language for that index file, a link to
the English PDF is included. You can use any
Web browser to view the index file. On Windows
NT, you can also access the index file through the
Start menu.

The PDF file names for the English books are
shown in Table 64.

Table 64. File names of MQSeries Integrator book
PDFs

Book title File name

MQSeries Integrator for AIX
Installation Guide

bipaac04.pdf

MQSeries Integrator for HP-UX
Installation Guide

bipcac00.pdf

MQSeries Integrator for Sun Solaris
Installation Guide

bip7ac03.pdf

MQSeries Integrator for Windows NT
Installation Guide

bipyac03.pdf

MQSeries Integrator Introduction and
Planning

bipyab02.pdf

MQSeries Integrator Administration
Guide

bipyag04.pdf

MQSeries Integrator Using the Control
Center

bipyar03.pdf

MQSeries Integrator ESQL Reference bipyae00.pdf

MQSeries Integrator Programming
Guide

bipyal02.pdf

MQSeries Integrator Messages bipyao02.pdf

The fifth character of the file name indicates the
language of the book (a indicates US English).
You can deduce the file names of translated books
by using the following substitutions for the fifth
character:
v g for German
v s for Spanish
v f for French

Bibliography

226 MQSeries Integrator Programming Guide

v i for Italian
v j for Japanese
v k for Korean
v b for Brazilian Portuguese
v z for Simplified Chinese
v t for Traditional Chinese

PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you cut and paste examples of commands from
PDF files to a command line for execution, you
must check that the content is correct before you
press Enter. Some characters might be corrupted
by local system and font settings.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of all current MQSeries Integrator
books are also available from the MQSeries
product family Web site at:

http://www.ibm.com/software/mqseries/

MQSeries library references
The following MQSeries product publications are
referenced in this book to point you to the
information you need to complete MQSeries
messaging product tasks as part of MQSeries
Integrator tasks.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Messaging Interface
The MQSeries Application Messaging

Interface, SC34-5604, describes the
MQSeries Application Messaging Interface
SupportPac. This is a simple interface that
application programmers can use without
needing to understand all the options
available in the MQI. The options that are
required in a particular installation are
defined by a system administrator, using
services and policies.

This book is available in PDF format only.

MQSeries Publish/Subscribe User’s Guide
The MQSeries Publish/Subscribe User’s
Guide, GC34-5269, provides
comprehensive information for users of
the MQSeries Publish/Subscribe
SupportPac. It includes: installation;
system design; writing applications; and
managing the publish/subscribe broker.

This book is available in PDF format only.

For a complete list of MQSeries messaging
product publications, refer to the information on
the MQSeries Web site (“MQSeries information
available on the Internet”).

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Obtain information about complementary

offerings by following these links:
– IBM Business Partners
– Partner Offerings (within Related links)

v Download an MQSeries SupportPac.

Bibliography

Bibliography 227

MQSeries on the Internet

228 MQSeries Integrator Programming Guide

Index

Special Characters
(multi-level wildcard) 15
+ (single-level wildcard) 15

A
access, message buffer

plug-in node 107
plug-in parser 137

access, syntax element
plug-in node 107
plug-in parser 137

AccountingToken parameter 59
AMI (Application Messaging

Interface) 9, 28
AMI publish/subscribe functions 28
Application Messaging Interface 9

using in publish/subscribe
applications 28

applications 5
point-to-point 9
publish/subscribe 13

ApplIdentityData parameter 59
ApplOriginData parameter 60

B
BipCci.h header file 90, 159
BipCni.h header file 90, 105, 109, 113
BipCos.h header file 90
BipCpi.h header file 90, 135, 139
bipGetMessageflowNodeFactory 67
bipGetParserFactory 72
BipRfc.h header file 36
BipRfh2.h 61
BipRfh2.h header file 61
broker

point-to-point applications 9
publish/subscribe applications 23
response message 23, 56

broker response message 23, 56
message descriptor 60

broker restarts 24

C
CciCompareMode 85
cciGetLastExceptionData 86, 161
cciLog 161
CciLog plug-in utility function 75
cciRethrowLastException 87, 162
cciThrowException 87, 162
character representation, Unicode 75
character representation handling

utilities 164
character set and encoding for

MQRFH2 32
cmqc.h header file 36, 61
cmqcfc.h header file 61

cniAddAfter 113
cniAddAsFirstChild 113
cniAddAsLastChild 114
cniAddBefore 114
cniBufferByte 114
cniBufferPointer 115
cniBufferSize 115
cniCopyElementTree 115
cniCreateElementAfter 116
cniCreateElementAfterUsingParser 116
cniCreateElementAsFirstChild 117
cniCreateElementAsFirstChildUsingParser 117
cniCreateElementAsLastChild 117
cniCreateElementAsLastChildUsingParser 118
cniCreateElementBefore 118
cniCreateElementBeforeUsingParser 71,

118
cniCreateInputTerminal 68, 119
cniCreateMessage 70, 85, 119
cniCreateNodeContext 68, 74, 109
cniCreateNodeFactory 68, 120
cniCreateOutputTerminal 68, 120
cniDefineNodeClass 68, 120
cniDeleteMessage 121
cniDeleteNodeContext 109
cniDetach 121
cniElementName 121
cniElementType 85, 122
cniElementValue group 122
cniElementValueState 123
cniElementValueType 123
cniElementValueValue 124
cniEvaluate 69, 70, 110
cniFinalize 124
cniFirstChild 125
cniGetAttribute 68, 75, 110
cniGetAttributeName 68, 111
cniGetBrokerInfo 125
cniGetMessageContext 125
cniGetParserClassName 126
cniIsTerminalAttached 68, 126
cniLastChild 126
cniNextSibling 127
cniParent 127
cniPreviousSibling 127
cniPropagate 69, 128
cniRootElement 84, 128
cniSearchElement 85
cniSearchElement group 129
cniSetAttribute 68, 75, 111
cniSetElementName 130
cniSetElementType 85, 130
cniSetElementValue group 130
cniSetElementValueValue 131
cniSqlCreateStatement 132
cniSqlDeleteStatement 133
cniSqlExecute 133
cniSqlSelect 133
cniWriteBuffer 134
CodedCharSetId field 33

command message
Delete Publication 16, 42
Deregister Subscriber 21, 45
message descriptor 58
Publish 15, 48
Register Subscriber 18, 51
Request Update 21, 54

Command messages
SCADA 188
SCADA device protocol 188

Command property
Delete Publication command 42
Deregister Subscriber command 46
Publish command 48
Register Subscriber command 51
Request Update command 54

compiling a plug-in 90
complementary offerings

IBM Business Partners 227
Partner Offerings 227

Completion property 56
conference-type applications 17
configuration

plug-in node 75
plug-in parser 75

configuration attributes for plug-in
node 67

Constants, publish/subscribe 41
content-based routing, using filters 169

datatypes and type mappings 173
error reporting and logging 175
examples 173
field references 169
implicit type casting 175
rounding errors and overflows 176
specifying a filter 170

context creation
plug-in node 68
plug-in parser 72

Control Center 5
control queue 18
CorrelId parameter

message sent to broker 58
publications forwarded by broker 59
response messages 60

cpiAddAfter 145
cpiAddAsFirstChild 145
cpiAddAsLastChild 145
cpiAddBefore 146
cpiAppendToBuffer 146
cpiBufferByte 146
cpiBufferPointer 147
cpiBufferSize 147
cpiCreateAndInitializeElement 147
cpiCreateContext 139
cpiCreateElement 148
cpiCreateParserFactory 72, 148
cpiDefineParserClass 72, 149
cpiDeleteContext 139
cpiElementCompleteNext 149
cpiElementCompletePrevious 149

© Copyright IBM Corp. 2000, 2001 229

cpiElementName 150
cpiElementType 85, 150
cpiElementValue 140
cpiElementValue group 150
cpiElementValueValue 151
cpiFirstChild 152
cpiLastChild 152
cpiNextParserClassName 73, 140
cpiNextParserCodedCharSetId 140
cpiNextParserEncoding 141
cpiNextSibling 152
cpiParent 153
cpiParseBuffer 72, 141
cpiParseFirstChild 72, 142
cpiParseLastChild 72, 142
cpiParseNextSibling 72, 142
cpiParsePreviousSibling 72, 143
cpiParserType 143
cpiPreviousSibling 153
cpiRootElement 153
cpiSetCharacterValueFromBuffer 154
cpiSetElementCompleteNext 154
cpiSetElementCompletePrevious 154
cpiSetElementName 155
cpiSetElementType 85, 155
cpiSetElementValue 143
cpiSetElementValue group 155
cpiSetElementValueValue 156
cpiSetNameFromBuffer 157
cpiSetNextParserClassName 144
cpiWriteBuffer 72, 144
create an event source 76
Customizer, creating 98

D
data types, detailed description of

MQRFH2 structure 31
database access

plug-in node 70
datagram message 9
datatypes and type mappings for CBR

filters 173
defining a node icon 97
defining a plug-in node to the Control

Center 102
Delete Options property 42
Delete Publication command 16, 42
deleting a local publication 16
deleting a retained publication 16
Deregister Subscriber command 21, 45
Deregister Subscriber command

(AMI) 28
deregistration, publish/subscribe 21

E
element 8
Encoding field 33
error codes

broker response message 61
publish/subscribe commands 61

error handling for point-to-point
messaging 11

error handling in plug-in 86

error reporting and logging for CBR
filters 175

errors
CciLog utility function 75
event log 75
plug-in node 86
plug-in parser 86

event information 15
event logging from a plug-in 75
event source, creating 76
Everyplace 209
example

Broker response message 57
Delete Publication command 44
Deregister Subscriber command 47
Publish command 50
Register Subscriber command 53
Request Update command 55

exception handling functions, node
interface 161

exception handling functions, parser
interface 161

exception handling in plug-in 86
exceptions

plug-in node 87
plug-in parser 87

expiry of retained publications 16
Expiry parameter 59

F
factory, plug-in

node 67
parser 72

field references in content-based routing
filters 169

file names 90
filter

content-based routing 169
publish/subscribe 19

Filter property
Deregister Subscriber command 46
Register Subscriber command 51, 54

Fixed header format
SCADA 180

Flags field 33
flow of messages, publish/subscribe 22
folder 8

mcd 38
message service 38
psc 39
pscr 39
usr 39

Format field 33
Format parameter

message sent to broker 58
publications forwarded by broker 59
response messages 60

functions, plug-in node 68

G
get current broker environment

information 125

H
header

MQRFH 8
MQRFH2 8

header files
BipCci.h 159
BipCni.h 105, 109, 113
BipCpi.h 135, 139
BipRfc.h 36, 41
cmqc.h 36, 61
cmqcfc.h 61
plug-in node 90
plug-in parser 90

help for a plug-in node 97

I
IBM Business Partners 227
icon definition 97
implementation

plug-in node 67
plug-in parser 71

implementation functions, node
interface 109
overview 106

implementation functions, parser
interface 139
overview 136

implicit type casting for CBR filters 175
information on the Internet

complementary offerings 227
MQSeries family libraries 227
MQSeries products 227
MQSeries SupportPacs 227

initial values of fields in MQRFH2 36
initialization

plug-in node 107
plug-in parser 137

initialization function
plug-in node 67
plug-in parser 72

installing a plug-in 95
installing a plug-in node in the Control

Center 102
integrating a new node 96

L
LINK /DLL /NOENTRY command 76
loadable implementation library for

plug-in 66
local publications 16
local subscription, publish/subscribe 20
logging

plug-in node 161
plug-in parser 161

M
mcd folder 38
message 4

broker response 23
datagram 9
ordering 17
receiving 7

230 MQSeries Integrator Programming Guide

message 4 (continued)
request/reply 10
send and forget 9
sending 7

message broker 3
message buffer access

plug-in node 107
plug-in parser 137

message catalog 76
message compiler input (.mc) file 76
message content, plug-in node 80
message descriptor

broker response message 60
command message 58
point-to-point message 11
publications 59

message flow 4
Message format

SCADA device protocol 180
message format, broker response 56
message headers 8
Message Identifiers

SCADA device protocol 178
message management

plug-in node 107
message properties file 78
Message Queue Interface 8
message service folders 38
messages, flow of publish/subscribe 22
modifying a syntax element 85
MQeMbMsgObject 209
MQeMsgObject 209
MQMD

broker response message 60
command message 58
point-to-point message 11
publications 59

MQRFH_* values 32, 33
MQRFH header 8
MQRFH2, multiple headers 40
MQRFH2_DEFAULT 36
MQRFH2 definition for C 36
MQRFH2 definitions

Delete Publication 42
Deregister Subscriber 45
Publish 48
Register Subscriber 51
Request Update 54

MQRFH2 header 8
MQRFH2 structure 31
MQSeries Everyplace 209

message classes 209
methods 210
MQeMbMsgObject 209
MQeMsgObject 209
Publish 212
Publish/Subscribe 212
Subscribe 213
Unsubscribe 214

MQSeries Everyplace publications 225
MQSeries Integrator

applications 5
Control Center 5
message 4
message broker 3
message flow 4
overview 3

MQSeries Integrator on the Internet 227
MQSeries Integrator publications 225

national language 226
platform–specific 225

MsgId parameter 60
MsgType parameter

message sent to broker 58
publications forwarded by broker 59
response messages 60

multi-byte string to UCS conversion 164
multi-level wildcard (#) 15
multiple message formats, plug-in

parser 73
multiple MQRFH2 headers 40
multithreading

plug-in node 74
plug-in parser 74

N
name element 80
name-value element 80
NameValueCCSID field 34
NameValueData 8
NameValueData field 34
NameValueLength field 34
National Language Support

all platforms 79
UNIX 78
Windows NT 77

navigation, syntax element
plug-in node 107
plug-in parser 137

NEONRules and NEONFormatter
Support publications 225

node, plug-in
attribute functions 68
configuration 75
configuration attributes 67
context creation 68
creating a Customizer 98
creating a PropertyEditor 99
Customizer 98
database access 70
defining the icon 97
defining to the Control Center 102
errors 86
exception handling interface 161
exceptions 87
file locations 102
header files 90
help 97
implementation 67
implementation function

interface 109
implementation function

overview 106
implementing 65
initialization and resource

creation 107
initialization function 67
input 69
installation in the Control Center 102
installing 95
integrating into the Control

Center 96
introduction 66

node, plug-in (continued)
message buffer access 107
message content 80
message management 107
output message 70
output queues 69
processing function 69
properties file 98
PropertyEditor 99
return codes 89
runtime node behavior 70
sample code 91
SQL statement handling 108
storage management 74
string handling 75
syntax element access 107
syntax element modification 85
syntax element navigation 81, 107
syntax element type 85
syntax elements 80
threading 74
updating 102
utility function interface 113
utility function overview 107

node and parser utilities 159
multi-byte to UCS conversion 164
UCS to multi-byte string

conversion 164
node exception handling functions

cciGetLastExceptionData 161
cciLog 161
cciRethrowLastException 162
cciThrowException 162

node icon definition 97
node implementation and utility

functions 105
node implementation functions

cniCreateNodeContext 109
cniDeleteNodeContext 109
cniEvaluate 110
cniGetAttribute 110
cniGetAttributeName 111
cniSetAttribute 111

node processing function 69
node utility functions

cniAddAfter 113
cniAddAsFirstChild 113
cniAddAsLastChild 114
cniAddBefore 114
cniBufferByte 114
cniBufferPointer 115
cniBufferSize 115
cniCopyElementTree 115
cniCreateElementAfter 116
cniCreateElementAfterUsingParser 116
cniCreateElementAsFirstChild 117
cniCreateElementAsFirstChildUsingParser 117
cniCreateElementAsLastChild 117
cniCreateElementAsLastChildUsingParser 118
cniCreateElementBefore 118
cniCreateElementBeforeUsingParser 118
cniCreateInputTerminal 119
cniCreateMessage 119
cniCreateNodeFactory 120
cniCreateOutputTerminal 120
cniDefineNodeClass 120
cniDeleteMessage 121

Index 231

node utility functions (continued)
cniDetach 121
cniElementName 121
cniElementType 122
cniElementValue group 122
cniElementValueState 123
cniElementValueType 123
cniElementValueValue 124
cniFinalize 124
cniFirstChild 125
cniGetBrokerInfo 125
cniGetMessageContext 125
cniGetParserClassName 126
cniIsTerminalAttached 126
cniLastChild 126
cniNextSibling 127
cniParent 127
cniPreviousSibling 127
cniPropagate 128
cniRootElement 128
cniSearchElement group 129
cniSetElementName 130
cniSetElementType 130
cniSetElementValue group 130
cniSetElementValueValue 131
cniSqlCreateStatement 132
cniSqlDeleteStatement 133
cniSqlExecute 133
cniSqlSelect 133
cniWriteBuffer 134

non-retained and retained
publications 16

non-standard parser 143

O
ordering of messages 17
other subscribers only 17
output message, plug-in node 70
overview of MQSeries Integrator 3

P
parser

restrictions 70
parser, plug-in

configuration 75
context creation 72
errors 86
exception handling interface 161
exceptions 87
header files 90
implementation 71
implementation function

interface 139
implementation function

overview 136
implementing 65
initialization and resource

creation 137
initialization function 72
installing 95
introduction 66
message buffer access 137
multiple message formats 73
parser functions 72

parser, plug-in (continued)
return codes 89
sample code 91
storage management 74
string handling 75
syntax element access 137
syntax element navigation 137
threading 74
utility function interface 145
utility function overview 137, 160

parser and node utilities 159
parser exception handling functions

cciGetLastExceptionData 161
cciLog 161
cciRethrowLastException 162
cciThrowException 162

parser implementation and utility
functions 135

parser implementation functions
cpiCreateContext 139
cpiDeleteContext 139
cpiElementValue 140
cpiNextParserClassName 140
cpiParseBuffer 141
cpiParseFirstChild 142
cpiParseLastChild 142
cpiParseNextSibling 142
cpiParsePreviousSibling 143
cpiParserType 143
cpiSetElementValue 143
cpiSetNextParserClassName 144
cpiWriteBuffer 144

parser utility functions
cpiAddAfter 145
cpiAddAsFirstChild 145
cpiAddAsLastChild 145
cpiAddBefore 146
cpiAppendToBuffer 146
cpiBufferByte 146
cpiBufferPointer 147
cpiBufferSize 147
cpiCreateAndInitializeElement 147
cpiCreateElement 148
cpiCreateParserFactory 148
cpiDefineParserClass 149
cpiElementCompleteNext 149
cpiElementCompletePrevious 149
cpiElementName 150
cpiElementType 150
cpiElementValue group 150
cpiElementValueValue 151
cpiFirstChild 152
cpiLastChild 152
cpiNextSibling 152
cpiParent 153
cpiPreviousSibling 153
cpiRootElement 153
cpiSetCharacterValueFromBuffer 154
cpiSetElementCompleteNext 154
cpiSetElementCompletePrevious 154
cpiSetElementName 155
cpiSetElementType 155
cpiSetElementValue group 155
cpiSetElementValueValue 156
cpiSetNameFromBuffer 157

Partner Offerings 227
PDF (Portable Document Format) 226

persistence 24
Persistence parameter

publications forwarded by broker 59
response messages 60

plug-in factory
node 67
parser 72

plug-in node
attribute functions 68
compiling 90
configuration 75
configuration attributes 67
context creation 68
creating a Customizer 98
creating a PropertyEditor 99
Customizer 98
database access 70
defining the icon 97
defining to the Control Center 102
errors 86
event logging 75
exceptions 87
factory 67
file locations 102
header files 90
help 97
icon 97
implementation 67
implementation function

interface 109
implementation function

overview 106
implementing 65
initialization and resource

creation 107
initialization function 67
input 69
installation in the Control Center 102
installing 95
integrating into the Control

Center 96
introduction 66
message buffer access 107
message content 80
message management 107
output message 70
output queues 69
processing function 69
properties file 98
PropertyEditor 99
restrictions 70
return codes 89
runtime node behavior 70
sample code 91
SQL statement handling 108
storage management 74
string handling 75
syntax element access 107
syntax element modification 85
syntax element navigation 81, 107
syntax element type 85
syntax elements 80
threading 74
updating 102
utility function interface 113
utility function overview 107

232 MQSeries Integrator Programming Guide

plug-in parser
compiling 90
configuration 75
context creation 72
errors 86
event logging 75
exceptions 87
factory 72
header files 90
implementation 71
implementation function

interface 139
implementation function

overview 136
implementing 65
initialization and resource

creation 137
initialization function 72
installing 95
introduction 66
message buffer access 137
multiple message formats 73
parser functions 72
return codes 89
sample code 91
storage management 74
string handling 75
syntax element access 137
syntax element navigation 137
threading 74
utility function interface 145
utility function overview 137, 160

point-to-point applications 9
Portable Document Format (PDF) 226
Priority parameter

publications forwarded by broker 59
response messages 60

problem determination
event logging from a plug-in 75

processing function, plug-in node 69
programming model 7
PropertyEditor, creating 99
psc folder 39
pscr folder 39
Publication Options property 49
publications

local 16
MQSeries Everyplace 225
MQSeries Integrator 225
on request only 21
retained 15, 21
without an MQRFH2 header 17

Publish command 15, 48
Publish command (AMI) 28
publish on request only 21
publish/subscribe

command messages 41
filters 19
flow of messages 22
local 18
messaging 14
retained publications 15
sample application 26
state and event information 15
subscriber queue 18
subscription 18
subscription deregistration 20

publish/subscribe (continued)
subscription expiry 20
subscription registration 20
topic 18
topics 15
using the Application Messaging

Interface 28
wildcards 18

publish/subscribe applications 13
Publish Timestamp property 49
publisher 15
PutApplName parameter

publications forwarded by broker 59
response messages 60

PutApplType parameter 59, 60
PutDate parameter 59
PutTime parameter 60

Q
QMgrName property

Deregister Subscriber command 47
Publish command 50
Register Subscriber command 53
Request Update command 55

QName property
Deregister Subscriber command 47
Publish command 50
Register Subscriber command 53
Request Update command 55

query current broker environment 125
queue

broker control 18
input (point-to-point) 9
input (publish/subscribe) 15
output 9
subscriber 18
temporary dynamic 20

R
RC /v command 76
reason codes, publish/subscribe

responses 61
Reason property 56
Receive a publication function (AMI) 28
receiver 9
receiving messages 7
Register Subscriber command 18, 51
Register Subscriber command (AMI) 28
registration, publish/subscribe 20
Registration Options property

Deregister Subscriber command 46
Register Subscriber command 51
Request Update command 55

Remaining length field
SCADA device protocol 182

reply message 10
ReplyToQ parameter

message sent to broker 58
publications forwarded by broker 59

ReplyToQMgr parameter
message sent to broker 58
publications forwarded by broker 59

Report parameter
message sent to broker 58

Report parameter (continued)
publications forwarded by broker 59
response messages 60

request message 10
request/reply messaging 10
Request Update command 21, 54
resource creation

plug-in node 107
plug-in parser 137

Response folder 56
response messages from broker 56
restarting a broker 24
restrictions, plug-ins 70
Results Service sample application 26
retained and non-retained

publications 16
retained publications 15, 21
return codes

plug-in node 89
plug-in parser 89

root element of a message 80
rounding errors and overflows in CBR

filters 176
rules and formatter header structure for

Version 2 31
runtime behavior, plug-in node 70

S
sample code

plug-in node 91
plug-in parser 91

sample publish/subscribe application 26
SCADA 177

command messages 188
fixed header format 180
variable header 183

SCADA device protocol
Command messages 188
CONNACK – Acknowledge

Connection Request 191
CONNECT – Client requests a

connection to a Broker 188
Connect flags 184
DISCONNECT – Disconnect

notification 192
Keep Alive Timer 186
Message format 180
Message Identifiers 178
PINGREQ – PING Request 207
PINGRESP – PING Response 207
PUBACK – Publish

Acknowledgement 196
PUBCOMP – Assured Publish

Complete (part 3) 198
PUBLISH – Publish a message 193
PUBREC – Assured Publish Received

(part 1) 197
PUBREL – Assured Publish Release

(part 2) 197
QoS protocol flows 179
Quality of service 177
Remaining length field 182
SUBACK – Subscription

Acknowledgement 202
SUBSCRIBE – Subscribe to named

Topics 199

Index 233

SCADA device protocol (continued)
UNSUBACK – Unsubscribe

Acknowledgement 206
UNSUBSCRIBE – Unsubscribe from

named Topics 204
UTF-8 208
wildcards 179

send and forget messaging 9
sender 9
sending messages 7
sequence number 17
Sequence Number property 50
single-level wildcard (+) 15
softcopy books 226
specifying a CBR filter 170
SQL statement handling for a plug-in

node 108
standard parser 143
state and event information,

publish/subscribe 15
state information 15
storage management

plug-in node 74
plug-in parser 74

string handling
plug-in node 75
plug-in parser 75

StrucId field 32
StrucLength field 32
subscriber 18
subscriber queue 20
subscription 18
subscription deregistration 21
subscription expiry 21
subscription point 19
Subscription point property

Publish command 48
Register Subscriber command 51, 54

Subscription Point property
Deregister Subscriber command 46

subscription registration 20
SupportPac 227
syntax element access

plug-in node 107
plug-in parser 137

syntax element modification 85
syntax element navigation

plug-in node 81, 107
plug-in parser 137

syntax element type, plug-in node 85
syntax elements, plug-in node 80

T
temporary dynamic queue 20
threading

plug-in node 74
plug-in parser 74

timestamp 17
Topic property

Delete Publication command 42
Deregister Subscriber command 46
Publish command 48
Register Subscriber command 51
Request Update command 54

topics
publish/subscribe 18

topics (continued)
wildcards 15

U
UCS to multi-byte string conversion 164
Unicode 8
Unicode character representation 75
unit of work 24
updating a plug-in node 102
UserId parameter 59
using retained publications 16
usr folder 39
utilities for parsers and nodes 159
utility functions, node

interface 113
overview 107

utility functions, node and parser
overview 160

utility functions, parser
interface 145
overview 137

V
value element 80
Variable header

SCADA 183
Version field 32

W
wildcards 15
wildcards, publish/subscribe 18
writing application programs 7

X
XML 8

234 MQSeries Integrator Programming Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5603-02

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book

	Summary of changes
	Changes for this edition (SC34-5601-02)
	Changes for the second edition (SC34-5601-01)

	Part 1. Application programming
	Chapter 1. Introduction
	Overview of MQSeries Integrator
	Message brokers
	Message flows
	Messages
	The Control Center
	Applications

	Chapter 2. Writing application programs
	Sending and receiving messages
	Message headers
	MQRFH2
	MQRFH or no header

	Using the Message Queue Interface
	Using the Application Messaging Interface

	Point-to-point messaging
	Send and forget
	Request/reply
	The message descriptor
	Error handling

	Chapter 3. Writing publish/subscribe applications
	Publish/subscribe messaging
	The publisher
	Topics
	Retained publications
	State and event information
	When to use retained publications
	Mixed publications
	Expiry of retained publications
	Deleting a retained publication

	Local publications
	Deleting a local publication

	Conference-type applications
	Message ordering
	Publishing messages without an MQRFH2 header

	The subscriber
	Subscriptions
	Topics and wildcards
	Subscription points
	Filters
	Subscriber queues

	Registration
	Local subscriptions
	Subscription expiry
	Deregistration

	Retained publications

	Flow of publish/subscribe messages
	The role of the broker
	Broker response messages
	Broker restarts
	Persistence and units of work

	Sample application
	Using the AMI in publish/subscribe applications
	AMI publish/subscribe functions
	Publish command
	Register Subscriber command
	Deregister Subscriber command
	Receive a publication

	Chapter 4. The MQRFH2 rules and formatting header
	MQRFH2 Structure
	Fields
	Initial values
	Definition for the C programming language

	Message service folders
	The mcd folder
	The psc folder
	The pscr folder
	The usr folder
	Multiple MQRFH2 headers

	Chapter 5. Publish/subscribe command messages
	Delete Publication
	Properties
	Example

	Deregister Subscriber
	Properties
	Example

	Publish
	Properties
	Example

	Register Subscriber
	Properties
	Example

	Request Update
	Properties
	Example

	Broker Response
	Properties
	Examples

	Message descriptor
	MQMD for command messages
	MQMD for publications forwarded by a broker
	MQMD for broker response messages

	Reason codes

	Part 2. Programming a plug-in node or parser
	Chapter 6. Implementing a plug-in node or parser
	Introduction
	Programming language
	Use of Java

	Interface to the broker

	Implementing a message processing node
	Determine the configuration attributes
	Develop a plug-in initialization function
	Develop a context creation function
	Develop the attribute functions
	Guidelines for coding a plug-in node
	Develop the node processing function
	Input and output nodes
	The contents of the message
	Database access
	Output terminals
	Threading considerations
	Runtime node behavior
	Other considerations

	Build an output message (optional)
	Further information

	Implementing a message parser
	Develop a plug-in initialization function
	Develop a context creation function
	Implement the parser functions
	Messages with multiple message formats

	Further information

	General development considerations
	Threading issues
	Storage management
	String handling
	Configuration
	Using event logging from a plug-in
	Building and installing a Windows event source
	Building and installing an XPG4 message catalog
	Building and installing a Control Center message properties file

	Accessing the message content
	Syntax elements
	Syntax element navigation
	Example of an XML message

	Syntax element type definition
	Syntax element modification
	Parsing a message

	Errors and exception handling
	Types of exception and broker behavior
	Return codes

	Compiling a plug-in
	Prerequisites
	Header files
	File names
	Sample code
	Compilation
	Compiling on Windows NT
	Compiling on AIX
	Compiling on Sun Solaris

	Chapter 7. Installing a plug-in node or parser
	Authorization
	Installing a plug-in on a broker system
	Integrating a plug-in node into the Control Center
	Integrating the node in the Control Center
	Create optional resources
	Defining optional node resources
	Defining an icon for the node
	Online help
	Properties file
	Customizer

	PropertyEditor
	Installing a new message processing node in the ControlCenter
	Storing the files in the MQSeries Integrator directory structure
	Checking the node in to the configuration repository
	Updating a plug-in node

	Chapter 8. Node implementation and utility functions
	Node implementation function overview
	Mandatory functions

	Node utility function overview
	Initialization and resource creation
	Message management
	Message buffer access
	Syntax element navigation
	Syntax element access
	SQL statement handling

	Node implementation function interface
	cniCreateNodeContext
	cniDeleteNodeContext
	cniEvaluate
	cniGetAttribute
	cniGetAttributeName
	cniSetAttribute

	Node utility function interface
	cniAddAfter
	cniAddAsFirstChild
	cniAddAsLastChild
	cniAddBefore
	cniBufferByte
	cniBufferPointer
	cniBufferSize
	cniCopyElementTree
	cniCreateElementAfter
	cniCreateElementAfterUsingParser
	cniCreateElementAsFirstChild
	cniCreateElementAsFirstChildUsingParser
	cniCreateElementAsLastChild
	cniCreateElementAsLastChildUsingParser
	cniCreateElementBefore
	cniCreateElementBeforeUsingParser
	cniCreateInputTerminal
	cniCreateMessage
	cniCreateNodeFactory
	cniCreateOutputTerminal
	cniDefineNodeClass
	cniDeleteMessage
	cniDetach
	cniElementName
	cniElementType
	cniElementValue group
	cniElementValueState
	cniElementValueType
	cniElementValueValue
	cniFinalize
	cniFirstChild
	cniGetBrokerInfo
	cniGetMessageContext
	cniGetParserClassName
	cniIsTerminalAttached
	cniLastChild
	cniNextSibling
	cniParent
	cniPreviousSibling
	cniPropagate
	cniRootElement
	cniSearchElement group
	cniSetElementName
	cniSetElementType
	cniSetElementValue group
	cniSetElementValueValue
	cniSqlCreateStatement
	cniSqlDeleteStatement
	cniSqlExecute
	cniSqlSelect
	cniWriteBuffer

	Chapter 9. Parser implementation and utility functions
	Parser implementation function overview
	Mandatory functions
	Optional functions

	Parser utility function overview
	Initialization and resource creation
	Message buffer access
	Syntax element navigation
	Syntax element access

	Parser implementation function interface
	cpiCreateContext
	cpiDeleteContext
	cpiElementValue
	cpiNextParserClassName
	cpiNextParserCodedCharSetId
	cpiNextParserEncoding
	cpiParseBuffer
	cpiParseFirstChild
	cpiParseLastChild
	cpiParseNextSibling
	cpiParsePreviousSibling
	cpiParserType
	cpiSetElementValue
	cpiSetNextParserClassName
	cpiWriteBuffer

	Parser utility function interface
	cpiAddAfter
	cpiAddAsFirstChild
	cpiAddAsLastChild
	cpiAddBefore
	cpiAppendToBuffer
	cpiBufferByte
	cpiBufferPointer
	cpiBufferSize
	cpiCreateAndInitializeElement
	cpiCreateElement
	cpiCreateParserFactory
	cpiDefineParserClass
	cpiElementCompleteNext
	cpiElementCompletePrevious
	cpiElementName
	cpiElementType
	cpiElementValue group
	cpiElementValueValue
	cpiFirstChild
	cpiLastChild
	cpiNextSibling
	cpiParent
	cpiPreviousSibling
	cpiRootElement
	cpiSetCharacterValueFromBuffer
	cpiSetElementCompleteNext
	cpiSetElementCompletePrevious
	cpiSetElementName
	cpiSetElementType
	cpiSetElementValue group
	cpiSetElementValueValue
	cpiSetNameFromBuffer

	Chapter 10. Node and parser utilities
	Utility function overview
	Exception handling and logging
	Character representation handling

	Exception handling and logging functions
	cciGetLastExceptionData
	cciLog
	cciRethrowLastException
	cciThrowException

	Character representation handling functions
	cciMbsToUcs
	cciUcsToMbs

	Part 3. Appendixes
	Appendix A. Using filters in content-based routing
	Field references
	Specifying a filter
	Some filter examples
	Datatypes and type mappings
	Implicit type casting
	Error reporting and logging
	Rounding errors and overflows

	Appendix B. MQSeries Integrator SCADA Device Protocol
	Introduction
	Quality of service
	Quality of Service assumptions
	Message Identifiers
	Retries

	QoS protocol flows
	QoS 0 - "at most once"
	QoS 1 - "at least once"
	QoS 2 - "exactly once"

	Topic hierarchies and wildcards

	Message format
	Fixed header format
	Message type field
	Flags fields
	Remaining length field

	Variable header
	Protocol name
	Protocol version
	Connect flags
	Keep Alive Timer
	Connect Return Code
	Topic Name
	Message Identifier

	Payload

	Command messages
	CONNECT – Client requests a connection to a Broker
	Fixed Header
	Variable header
	Payload
	Response

	CONNACK – Acknowledge Connection Request
	Fixed Header
	Variable Header
	Payload

	DISCONNECT – Disconnect notification
	Fixed Header
	Variable Header
	Payload

	PUBLISH – Publish a message
	Fixed Header
	Variable Header
	Payload
	Response
	Actions

	PUBACK – Publish Acknowledgement
	Fixed Header
	Variable Header
	Payload
	Actions

	PUBREC – Assured Publish Received (part 1)
	Fixed Header
	Variable Header
	Payload
	Actions

	PUBREL – Assured Publish Release (part 2)
	Fixed Header
	Variable Header
	Payload
	Actions

	PUBCOMP – Assured Publish Complete (part 3)
	Fixed Header
	Variable Header
	Payload
	Actions

	SUBSCRIBE – Subscribe to named Topics
	Fixed Header
	Variable Header
	Payload
	Response

	SUBACK – Subscription Acknowledgement
	Fixed Header
	Variable Header
	Payload

	UNSUBSCRIBE – Unsubscribe from named Topics
	Fixed Header
	Variable Header
	Payload
	Response

	UNSUBACK – Unsubscribe Acknowledgement
	Fixed Header
	Variable Header
	Payload

	PINGREQ – PING Request
	Fixed Header
	Variable Header
	Payload
	Response

	PINGRESP – PING Response
	Fixed Header
	Variable Header
	Payload

	UTF-8

	Appendix C. MQSeries Everyplace Nodes
	Message classes supported by the MQSeries Everyplace nodes
	MQeMsgObject
	MQeMbMsgObject

	MQSeries Everyplace methods
	Publish/Subscribe
	Publish
	Subscribe
	Unsubscribe

	Appendix D. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries Integrator Version 2.0.2cross-platform publications
	MQSeries Integrator Version 2.0.2platform-specific publications
	MQSeries Everyplacepublications
	NEONRules and NEONFormatterSupport for MQSeries Integratorpublications
	Softcopy books
	Portable Document Format (PDF)

	MQSeries library references
	MQSeries information availableon the Internet

	Index

