
MQSeries® Integrator

Using the Control Center
Version 2.0.1

SC34-5602-02

���

MQSeries® Integrator

Using the Control Center
Version 2.0.1

SC34-5602-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix F.
Notices” on page 383.

Third Edition (November 2000)

This edition applies to IBM® MQSeries Integrator Version 2 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

About this book xiii
Who this book is for xiii
What you need to know to understand this book xiii
Terms used in this book xiii
Where to find more information xiv

MQSeries Integrator publications xiv
MQSeries information available on the Internet xiv

Summary of changes xv
Changes for this edition (SC34-5602-02) xv

Changes for the first edition: xv

Part 1. Introducing the Control
Center 1

Chapter 1. Control Center concepts . . . 3
Working with configuration data 3

Configuration and message repositories 3
Shared and deployed configurations 3

The workspace 4
Managing the contents of the workspace 4
Saving the workspace 5

Monitoring the broker domain 5

Chapter 2. Getting started with the
Control Center 7
Before you start 7
Release to release migration 7
Starting the Control Center 8

Exiting the Control Center 10
The Control Center Tour 10
Managing permissions to Control Center tasks . . 12

Adding users and groups to the MQSeries
Integrator groups 13
Setting user roles 13

Performing workspace tasks 14
Creating a new workspace 14
Opening an existing workspace. 14
Saving the workspace 15
Updating the workspace 15
Importing resources 18
Exporting the workspace 20

Naming Control Center resources 20
Problem determination 21

Controlling service traces 21

Part 2. Using the Control Center . . 23

Chapter 3. Defining messages. 27
Basic message concepts 27

A message tree 27
Message domains 28

Working with unstructured messages in the BLOB
domain 31
Working with messages in the XML domain . . . 32

XML Declaration 32
Document Type Declaration 33
The XML message body 36

Working with messages in the MRM domain . . . 39
An overview of the message definition process 39
The message model. 40
The data model layers 45
Message set properties. 47
Importing legacy formats 51
Generating MRM message set Document Type
Descriptors (DTDs) 51
Authorization to work with Messages 52
The Message Sets view 53
Creating message sets 54
Creating messages 56
Using the SmartGuide to create messages . . . 65
Working with message sets 67
Adding message sets and message components
to the workspace 69
Importing message definitions 70
Generating MRM message set definitions in XML
DTDs 71
Generating language bindings 72
Generating documentation 73
Editing message sets and components 75
Changing the state of a message set 78
Checking in and checking out message sets. . . 79

Chapter 4. Defining message flows . . 81
Authorization to work with message flows 81
The Message Flows view 81

Controlling the appearance of the Message Flow
Definition pane 82

Creating a message flow 83
Creating a message flow category 87
Adding a message flow to your workspace 88
Checking a message flow 89
Including one message flow in another 91
Promoting message flow node properties 92

Promoting properties through a hierarchy of
message flows 93
Converging multiple properties. 93
Renaming promoted properties 94
Deleting a promoted property from a message
flow 94
Promoting mandatory properties 94
Example: promoting message flow node
properties 94

© Copyright IBM Corp. 2000 iii

Checking in message flows 96
Creating your own message nodes 97
The IBM Primitives 98
Check node 100

Description 100
Check node terminals 100
Check node properties 100
Configuring the check node 100

Compute node 102
Description 102
Compute node terminals 102
Compute node properties 102
Configuring the Compute node 103

Database node 106
Description 106
Database node terminals 106
Database node properties 106
Configuring the Database node 107

DataDelete node 109
Description 109
DataDelete node terminals 109
DataDelete node properties. 109
Configuring a DataDelete node 110

DataInsert node 112
Description 112
DataInsert terminals 112
DataInsert node properties 112
Configuring a DataInsert node. 113

DataUpdate node 115
Description 115
DataUpdate node terminals. 115
DataUpdate node properties 115
Configuring a DataUpdate node 116

Extract node 118
Description 118
Extract node terminals 118
Extract node properties 118
Configuring an Extract node 118

Filter node 120
Description 120
Filter node terminals 120
Filter node properties. 120
Configuring a filter node 121

FlowOrder node 123
Description 123
FlowOrder node terminals 123
FlowOrder node properties 123
Configuring a FlowOrder node 123

Input Terminal 125
Description 125
Input Terminal node terminals 125
Input Terminal properties 125
Configuring the Input Terminal 125

Label node 127
Description 127
Label node terminals 127
Label node properties 127
Configuring a Label node 128

MQInput node 129
Description 129
MQInput node terminals 129

MQInput node properties 129
Configuring an MQInput node 132

MQOutput node 134
Description 134
MQOutput node terminals 134
MQOutput node properties. 134
Configuring an MQOutput node 136

MQReply node 137
Description 137
MQReply node terminals 137
MQReply node properties 137
Configuring an MQReply node 138

NEONFormatter node 139
Description 139
NEONFormatter node terminals 139
NEONFormatter node properties 139
Configuring a NEONFormatter node 140

NEONRules node 141
Description 141
NEONRules node terminals 141
NEONRules node properties 141
Configuring a NEONRules node 141

Output Terminal 143
Description 143
Output Terminal node terminals 143
Output Terminal properties. 143
Configuring the Output Terminal. 143

Publication node 145
Description 145
Publication node terminals 145
Publication node properties 145
Configuring the Publication node. 145

ResetContentDescriptor node 147
Description 147
ResetContentDescriptor node terminals. . . . 147
ResetContentDescriptor node properties . . . 147
Configuring the ResetContentDescriptor node 148

RouteToLabel node 150
Description 150
RouteToLabel node terminals 150
RouteToLabel node properties 150
Configuring a RouteToLabel node 150
Using a RouteToLabel node 151

Throw node 154
Description 154
Throw node terminals 154
Throw node properties 154
Configuring a Throw node 154

Trace node 156
Description 156
Trace node terminals 156
Trace node properties. 156
Configuring the Trace node. 157
Using a Trace node 157

TryCatch node 159
Description 159
TryCatch node terminals 159
TryCatch node properties 159
Configuring the TryCatch node 159

Warehouse node 161
Description 161

iv MQSeries Integrator Using the Control Center

Warehouse node terminals 161
Storing the entire message 161
Storing parts of the message 162
Warehouse node properties 162
Configuring the Warehouse node to store the
entire message 162
Configuring the Warehouse node to store parts
of a message 164

Using the IBM-supplied message flows. 165
Preparing to use the supplied message flows 166
Version 1 Migration Compatibility message flow 166
The default publish/subscribe message flow 168
Copying the default message flows 169

Chapter 5. Defining the broker
topology 171
Authorization to work with Topology 171
The Topology view 171

Controlling the appearance of the Topology
pane 171

Checking out the Topology 173
Creating a broker 174
Creating a collective 176
Adding an existing broker to a collective 178
Creating a broker to add to a collective. 180
Removing a broker from a collective 181
Connecting brokers 182
Deleting the connection between brokers 183
Deleting a broker from the topology. 184
Renaming a broker 185
Checking in the Topology 186

Checking in Topology changes 186
Checking in multiple changes 186

Making changes operational 187

Chapter 6. Assigning resources to a
broker 189
Authorization to assign resources to a broker. . . 189
The Assignments view 189
Creating an execution group 190
Assigning message flows to execution groups . . 192

Setting the properties of an assigned message
flow 193

Assigning message sets to brokers 195
Removing resources from a broker 197

Deleting an execution group from a broker . . 197
Removing a message set from a broker 197
Removing a message flow from an execution
group 197

Checking in the Assignments 199
Checking in assignments 199
Checking in multiple changes 199

Refreshing the Assignments view. 200
Making changes operational 201

Chapter 7. Deploying configuration
data 203
Three types of deployment 203

Complete deployment 203
Delta deployment 203

Forced deployment 204
A summary of deployment actions 204

The stages of the deployment process 204
Stage one of deployment 204
Stage two of deployment 204

Which data is deployed? 205
If some data has not been checked in 205

Finding out whether deployment has worked . . 205
If deployment times out 206
If the broker is not running. 206

Deleting a broker from the broker domain. . . . 207
Authorization to deploy configuration data . . . 209
Deploying delta data of all types 210
Deploying complete data of all types 211
Forcing deployment of all data 212
Deploying delta assignments 213
Deploying complete assignments 214
Deploying delta topics 215
Deploying complete topics 216
Deploying delta topology 217
Deploying complete topology 218

Chapter 8. Setting up
publish/subscribe access control. . . 219
Authorization to set up publish/subscribe access
control 219
The Topics view 219
Creating topics 221

Renaming, duplicating, and deleting topics . . 222
Adding a principal to an ACL 223

Resolving permissions 223
Checking in topics data 224

Checking in multiple changes 224
Making changes operational 225

Chapter 9. Running the broker domain 227
Authorization to run the broker domain 227
The Operations view 227
Monitoring the operational state of the broker
domain 228
Starting message flows 229

Starting all message flows for a broker 229
Starting all message flows within an execution
group 229
Starting a single message flow. 229

Stopping message flows 231
Stopping all message flows for a broker . . . 231
Stopping all message flows within an execution
group 231
Stopping a single message flow 231

Starting user tracing 233
Starting user tracing for an execution group . . 233
Starting user tracing for a single message flow 233

Stopping user tracing. 234
Stopping user tracing for an execution group 234
Stopping user tracing for a single message flow 234

The Subscriptions view 235
Filtering the information in the Subscriptions
view 235
Refreshing the Subscriptions view 236

Contents v

Deleting subscriptions 236
The Log view 237

Part 3. Appendixes 239

Appendix A. An example scenario . . 241
The receipt message as an XML message 241
Defining the message in the message repository 243

Associating the receipt message with a message
repository definition 247

Assigning the message set to the broker 249
Message flows 250

How to create a message flow 250
Getting the message 251
Audit flow 252
Finance flow 254
Stock flow 257
Partner Flow 259

Including one message flow in another 268
Assigning message flows to the execution group 270
Deploying the configuration 270

Appendix B. C and COBOL default
mappings 271
Mapping C datatypes to MRM datatypes 271
Mapping COBOL datatypes to MRM datatypes . . 273

Appendix C. ESQL reference 277
Basic message structure 277

Understanding the message structure 278
Referring to simple fields in a message 284

Data types 285
Numbers 285
Strings 286
Datetime types 286
Interval 287
Boolean 288

Predicates 289
BETWEEN predicate 289
LIKE predicate 289
IN predicate 289

Other sorts of expression 290
CASE expressions 290
EVAL expressions 291
Comments 292

Using MQSeries constants in message headers . . 293
CodedCharSetId, Encoding, and data conversion 294

Optional fields and NULLs 295
NULLs and expressions 295
The NULL predicate 295
Logical operators 296

Repeating fields 296
Array indices 298
Arbitrary repeats: the quantified predicate. . . 298
Arbitrary repeats: the SELECT expression . . . 300

Field references. 302
Anonymous field names. 302
Field types for the XML parser 303
Field types for MQRFH2 headers 303

Compute node ESQL 304

Copying messages between parsers 305
Assignment statement 305
DECLARE statement 306
WHILE statement 307
IF statement 308
Using the compute node for data conversion 308
Using the compute node for message
transformation 309

More complicated SELECTs: ROWs and LISTs . . 310
Example 1 310
Example 2 311
Example 3 312
Example 4 312
Example 5 313
Example 6 315
Example 7 315
Example 8 316
Other expressions 316
EXISTS predicate 316

Querying external databases 316
Example 1 317
Example 2 318
Example 3 318
Example 4 319

Database node statements 319
INSERT statement 320
DELETE statement 320
UPDATE statement 321
PASSTHRU statement 322

Function reference 324
CASTs 324
Numeric expressions 335
Datetime expressions 335

Functions. 336
String manipulation functions 336
Numeric functions. 339
Datetime functions 341
Miscellaneous functions 342
Reserved keywords 344
Initial correlation names 344
Case sensitivity of ESQL syntax 345
Expression parsing and evaluation 346
Expression type checking 346

Examples for generic XML messages 347
XML declaration 347
Document Type Declaration 347
The XML message body 352

Exception and destination list structure. 356
Destination lists 356
Exception lists 358

Appendix D. MQSeries message
header parsers. 363
Parser overview 363
The properties pseudo parser 363
Maintaining header integrity 364
The MQSeries headers parsers. 365

The MQCIH parser 366
The MQDLH parser 367
The MQIIH parser. 368
The MQMD parser 369

vi MQSeries Integrator Using the Control Center

||

The MQMDE parser 370
The MQRFH parser 371
The MQRFH2 parser 372
The MQRMH parser 373
The MQSAPH parser 374
The MQWIH parser 375
The SMQ_BMH parser 376
The BLOB parser 377

Appendix E. NEON Rules and
Formatter 379
NEONFormatter and NEONRules nodes 379
NEON formatter and rules engine 379

Combining NEON rules with MQSeries Integrator 379
NEON rules engine 381

Appendix F. Notices 383
Trademarks 384

Glossary of terms and abbreviations 385

Index 391

Sending your comments to IBM . . . 395

Contents vii

viii MQSeries Integrator Using the Control Center

Figures

1. The role of the Control Center in the broker
domain 6

2. The Control Center 10
3. Setting the user role. 14
4. The Key icon and the New icon. 16
5. The Check In list dialog 17
6. The Check In All in Current Workspace dialog 18
7. The Import dialog 18
8. A message tree structure 28
9. The components of a message 43

10. The Message Sets view. 53
11. The Create a new Message Set dialog 54
12. Creating a message - sample message 56
13. A message defined in the Message Sets view 57
14. The Create a new Element dialog 58
15. The Custom Wire Format tab 61
16. Setting up repeating fields 63
17. Create a new Compound Type using the

SmartGuide 65
18. The Message Flows view 82
19. Dragging message flow nodes into the

Message Flow Definition pane 84
20. A message flow showing connections between

terminals 85
21. Add an existing Message Flow dialog. . . . 88
22. Check message flow dialog 89
23. Check message flow results 90
24. The Promote Property dialog. 93
25. The Check dialog 101
26. The Compute dialog 103
27. The Database dialog 107
28. The DataDelete dialog 110
29. The DataInsert dialog 113
30. The DataUpdate dialog 116
31. The Extract dialog 119
32. The Filter dialog 121
33. The FlowOrder dialog 124
34. The Input Terminal dialog 126
35. The Label dialog 128
36. The MQInput dialog 132
37. The MQOutput dialog 136
38. The MQReply dialog 138
39. The NEONFormatter dialog. 140
40. The NEONRules dialog 142
41. The Output Terminal dialog 144
42. The Publication dialog 146
43. The ResetContentDescriptor dialog 148

44. The RouteToLabel dialog. 151
45. A message flow with RouteToLabel and Label

nodes 152
46. The Throw dialog 155
47. The Trace dialog 157
48. The TryCatch dialog 160
49. The Warehouse dialog 163
50. MQSeries Integrator V1 Migration

Compatibility message flow. 167
51. MQSeries Integrator V1 Migration

Compatibility message flow. 169
52. Create a new Broker dialog 174
53. Create a new Collective dialog 176
54. Add an existing Broker dialog 178
55. The Assignments view 190
56. The Add an existing Message Flow dialog 192
57. The Add an existing Message Set dialog 195
58. The Topics view 219
59. The Operations view 228
60. The Subscriptions view 235
61. The Log view 237
62. Scenario message flow 241
63. XML message 242
64. The message set properties, showing the

identifier 248
65. The receipt message extended with an

MQRFH2 header. 249
66. MQInput node properties 251
67. Audit message flow 252
68. Check node properties 252
69. Warehouse node properties 254
70. Finance message flow 254
71. Extract node properties 255
72. Trace node properties 257
73. Stock message flow 258
74. Partner message flow 260
75. Filter node properties showing the set up for

the MRM-defined message 261
76. The loop to record data in the database 262
77. Data Insert node properties 265
78. The Register subscriptions flow 266
79. The error subflow 269
80. Repeating fields in a message 297
81. Message and destination list for an exception 358
82. Exception list structure 361
83. Retrieving the exception error code 362

© Copyright IBM Corp. 2000 ix

x MQSeries Integrator Using the Control Center

Tables

1. Editing relationships and properties: check-out
requirements 75

2. The IBM Primitives 98
3. Check node terminals 100
4. Compute node terminals 102
5. Database node terminals 106
6. DataDelete node terminals 109
7. DataInsert node terminals 112
8. DataUpdate node terminals 115
9. Extract node terminals 118

10. Filter node terminals 120
11. FlowOrder node terminals 123
12. Input Terminal node terminals 125
13. Label node terminals 127
14. MQInput node terminals. 129
15. MQOutput node terminals 134
16. MQReply node terminals 137
17. NEONFormatter node terminals 139
18. NEONRules node terminals. 141
19. Output Terminal node terminals 143
20. Publication node terminals 145
21. ResetContentDescriptor node terminals 147
22. RouteToLabel node terminals 150
23. Throw node terminals 154
24. Trace node terminals 156
25. TryCatch node terminals 159
26. Warehouse node terminals 161
27. Deployment summary 204
28. Simple elements, types, names, and identifiers 243
29. STRING elements, lengths, names, and

identifiers 244
30. INTEGER elements, values, names, and

identifiers 244
31. Compound type names and identifiers 245
32. Elements to add to compound types 245
33. Compound type names, identifiers, and types 245
34. C datatypes and their default settings in the

MRM 272
35. COBOL datatypes and their default settings

in the MRM 274

36. Format of interval strings and qualifiers 288
37. MQSeries constants references 293
38. Logical operators and NULL values 295
39. Supported CASTs 324
40. Implicit CASTs for comparison. 329
41. Implicit CASTs for arithmetic operations 331
42. Conversions from MQSeries Integrator to

SQL data types 333
43. Implicit CASTS for database data types to

MQSeries Integrator types 334
44. Exception list name-value elements 359
45. MQCIH parser element names, types, and

attributes 366
46. MQDLH parser element names, types, and

attributes 367
47. MQIIH parser element names, types, and

attributes 368
48. MQMD parser orphan element names, types,

and attributes 369
49. MQMD parser native element names, types,

and attributes 369
50. MQMDE parser element names, types, and

attributes 370
51. MQRFH parser element names, types, and

attributes 371
52. MQRFH2 parser element names, types, and

attributes 372
53. MQRMH parser element names, types, and

attributes 373
54. MQSAPH parser element names, types, and

attributes 374
55. MQWIH parser element names, types, and

attributes 375
56. SMQ_BMH parser element names, types, and

attributes 376
57. BLOB parser element names, types, and

attributes 377
58. Procedures for implementing message flows

with NEON nodes 381

© Copyright IBM Corp. 2000 xi

xii MQSeries Integrator Using the Control Center

About this book

This book describes how to use the MQSeries Integrator Version 2 Release 0
Modification Level 1 Control Center.

Who this book is for
This book is intended for anyone who needs to use the Control Center to perform
these tasks:
v Defining messages and message sets
v Defining message flows
v Defining and managing the broker topology
v Setting up publish/subscribe access control

What you need to know to understand this book
You need to have read and understood the general introduction to all aspects of
MQSeries Integrator in the MQSeries Integrator Introduction and Planning book.

Terms used in this book
Term Meaning

click Point to an object or action specified in the instructions, then press and
release the left mouse button.

right click
Point to an object or action specified in the instructions, then press and
release the right mouse button.

double-click
Point to an object or action specified in the instructions then press and
release the left mouse button twice in rapid succession.

drag Point to an object specified in the instructions, then press and hold the left
mouse button and move the mouse pointer to the desired location. Release
the left mouse button.

© Copyright IBM Corp. 2000 xiii

Where to find more information
Becoming familiar with the MQSeries Integrator library will help you accomplish
MQSeries Integrator tasks quickly. The library covers planning, installation,
administration, and client application tasks.

MQSeries Integrator publications
The following books make up the MQSeries Integrator V2.0.1 library:
v MQSeries Integrator Introduction and Planning, GC34-5599
v MQSeries Integrator for AIX®® Installation Guide, GC34-5841
v MQSeries Integrator for Sun Solaris Installation Guide, GC34-5864
v MQSeries Integrator for Windows NT®® Installation Guide, GC34-5600
v MQSeries Integrator Messages, GC34-5601
v MQSeries Integrator Using the Control Center, GC34-5602 (this book)
v MQSeries Integrator Programming Guide, SC34-5603
v MQSeries Integrator Administration Guide, SC34-5792

MQSeries information available on the Internet
The MQSeries Business Solution, of which MQSeries Integrator is a part, has a Web
site at:
http://www.ibm.com/software/ts/mqseries

By following links from this web site you can:
v Obtain the latest information about all MQSeries family products.
v Access all the books for the MQSeries family products.
v Down-load MQSeries SupportPacs™.

You might be interested in the MQSeries Integrator problem determination Q&A
SupportPac™ (MHI1) that you can access from:
http://www.ibm.com/software/ts/mqseries/txppacs/

About this book

xiv MQSeries Integrator Using the Control Center

Summary of changes

This section describes changes in this edition of MQSeries Integrator Using the
Control Center. Changes since the previous edition of the book are marked by
vertical lines to the left of the changes.

Changes for this edition (SC34-5602-02)
This edition includes a new section in appendix C, ″Compute node ESQL″, which
describes ″Copying messages between parsers″.

Changes for the first edition:
v Additional information to cover the following product changes:

– New products MQSeries Integrator for AIX Version 2.0.1 and MQSeries
Integrator for Sun Solaris Version 2.0.1.

– New IBM primitive nodes (FlowOrder, Label, and RouteToLabel)
v Extended scenario showing additional function
v Extended examples of ESQL usage
v Extended information about supported messages
v Minor technical and editorial improvements throughout the book

© Copyright IBM Corp. 2000 xv

|
|

Changes

xvi MQSeries Integrator Using the Control Center

Part 1. Introducing the Control Center

Chapter 1. Control Center concepts 3
Working with configuration data 3

Configuration and message repositories 3
Shared and deployed configurations 3

The workspace 4
Managing the contents of the workspace 4
Saving the workspace 5

Monitoring the broker domain 5

Chapter 2. Getting started with the Control Center 7
Before you start 7
Release to release migration 7
Starting the Control Center 8

Exiting the Control Center 10
The Control Center Tour 10
Managing permissions to Control Center tasks . . 12

Adding users and groups to the MQSeries
Integrator groups 13
Setting user roles 13

Performing workspace tasks 14
Creating a new workspace 14
Opening an existing workspace. 14
Saving the workspace 15
Updating the workspace 15

Reverting your workspace to the shared
repository 16
Saving the workspace to the shared repository 16

Importing resources 18
Exporting the workspace 20

Naming Control Center resources 20
Problem determination 21

Controlling service traces 21

© Copyright IBM Corp. 2000 1

2 MQSeries Integrator Using the Control Center

Chapter 1. Control Center concepts

This chapter introduces the Control Center by describing its role in an MQSeries
Integrator broker domain, and defining those concepts that you need to
understand as a Control Center user. For a comprehensive description of MQSeries
Integrator concepts, see the MQSeries Integrator Introduction and Planning book.

The Control Center has two main functions in a broker domain. These are:
v The creation, manipulation, and deployment of configuration data for a broker

domain
v The monitoring and management of the operational state of the same broker

domain

These functions are described in the remainder of this chapter.

Working with configuration data
When a broker is created using the mqsicreatebroker command, and started for
the first time using the mqsistart command, it has no configuration to run. A
broker can perform useful functions only when it has been given a configuration to
run by the Control Center user.

Configuration data is of three types:

Assignments data
Is the assignment of: execution groups to brokers; message flows to
execution groups; and message sets to brokers.

Topology data
Is the relationship between brokers and collectives in a publish/subscribe
network in the broker domain.

Topics data
Is topics and associated Access Control List (ACL) entries used in a
publish/subscribe network in the broker domain.

Configuration and message repositories
Configuration data of all three types is created by Control Center users, and is
managed by the Configuration Manager in two repositories called the configuration
repository and the message repository.
v The message repository contains definitions of message sets.
v The configuration repository contains all other configuration data.

There is only ever one Configuration Manager in a broker domain, but there can
be any number of instances of the Control Center.

Shared and deployed configurations
The Configuration Manager manages two versions of the configuration data. These
are the shared configuration and the deployed configuration.

Shared configuration
Consists of configuration data as created by one or more Control Center
users and made visible to other Control Center users in the broker domain.

© Copyright IBM Corp. 2000 3

Deployed configuration
Is the configuration data that is operational in (that is, that is having an
effect in) the broker domain.

Configuration data in the shared configuration is sent to brokers by the
Configuration Manager under the direction of Control Center users, by means of
an operation called deploy. If deployment is successful, the Configuration Manager
updates its deployed configuration accordingly.

The workspace
The concept of the workspace is key to the operation of the Control Center. It is the
term given to the “snapshot” of that part of the shared configuration data that you,
as a Control Center user, want to work with. The shared configuration can consist
of many brokers, collectives, execution groups, message flows, message sets, and
topics, many of which are of no interest to you. The workspace allows you to work
with a subset of this overall set of configuration data.

All brokers, collectives, execution groups, and topics in the shared configuration
always appear in your workspace. However, you can choose which message flows
and message sets you want to appear, to make your view of the shared
configuration more manageable. For example, if there are 500 message flows
defined in the shared configuration, you can choose to see only the 10 that are
owned by you. You do this using an operation called add. Similarly you can remove
any configuration resource from your workspace.

In summary, the workspace is a collection of references to specific objects in the
configuration.

Managing the contents of the workspace
If you want to create new configuration resources, you use an operation called
create. This creates a new object within the Control Center and adds a reference to
it to your workspace.

At this point, your new object does not exist in the shared configuration. To make
your object visible in the shared configuration, you use an operation called check in.
Once an object has been checked in it becomes visible to all other Control Center
users.

If you want to modify an object in the shared configuration, you use an operation
called check out. This locks the object in the shared configuration, preventing other
Control Center users from modifying it, and makes a copy in your Control Center.

When you have made your modifications, you save them back to the shared
configuration using check in, which also unlocks the object so that others can
modify it.

If you want to destroy an object, you use an operation called delete. The object is
deleted from wherever it exists, which could be the Control Center (if the object is
newly created), or the shared configuration. If the object that you delete is in the
shared configuration, and another user has a copy of this object in a local
workspace, that user is not notified that you have deleted the object unless a
refresh is requested.

Control Center concepts

4 MQSeries Integrator Using the Control Center

Saving the workspace
You can save your workspace, so that it is preserved from one invocation of the
Control Center to another, and to prevent work being lost. The workspace is saved
as an XML (eXtensible Markup Language) file to the local file system. Any objects
that you have created or have checked out are also saved to the local file system,
to a directory known as your local repository. Therefore, the references in your
workspace are to objects that exist either in the shared configuration or in your
local configuration.

You can have as many workspaces as you like, but you have only one local
configuration per shared configuration. When an object is checked in, it is removed
from the local configuration, if it existed there.

Monitoring the broker domain
When a deploy operation has taken place successfully, the target brokers
automatically start to run the message flows, or to provide the publish/subscribe
capability, associated with the deployment request. Using the Control Center, you
can monitor the status of the brokers and the message flows they are running, and
can perform a limited number of actions to control the operation of the brokers.
For example, you can start and stop message flows.

Figure 1 on page 6 summarizes the concepts that have been introduced in this
section. It shows:
v How the Control Center relates to other components of MQSeries Integrator
v The different containers of configuration data (the workspace, the local

configuration, and the shared and deployed configurations)
v The main Control Center operations on the configuration data (save, check in,

check out, deploy, and various operational actions)

1. It is possible to switch between shared configurations on different Configuration Managers (for example, between a test and
production system) using the File —> Connection dialog, as described in “Chapter 2. Getting started with the Control Center” on
page 7. For each such shared configuration, there is one local configuration.

Control Center concepts

Chapter 1. Control Center concepts 5

“Chapter 2. Getting started with the Control Center” on page 7 provides
instructions for performing many of the tasks introduced in this chapter.

Broker1

Message
flows

Execution groups

User Name Server

Configuration
Manager

Control Center1

Shared
configuration

Persistent
store

Broker3

Broker2

Checkout,
Checkin

Local
configuration

Control Center2

Local
configuration

Action Workspace

Workspace

Deployed
configuration

Configuration
repository

Checkout,
Checkin

Deploy

Save

Save

Figure 1. The role of the Control Center in the broker domain. In this figure, the configuration repository includes the
message repository for simplicity. Terms in italics are Control Center operations.

Control Center concepts

6 MQSeries Integrator Using the Control Center

Chapter 2. Getting started with the Control Center

This chapter describes how to get started with the Control Center. It introduces
general considerations, such as tailoring your view of the Control Center,
managing access to Control Center tasks, and working with the workspace.

Before you start
You are assumed to have read the MQSeries Integrator Introduction and Planning
book. Before you can start to use the Control Center, you must have successfully
completed the following tasks:
v MQSeries Integrator must have been installed.
v Users and groups must have been added to MQSeries Integrator security

groups.
v All databases required by MQSeries Integrator must have been created, and

users and groups authorized to use them.
v A Configuration Manager must have been created. A broker must also have been

created if you will be deploying data.
v If you are using ACLs on publish/subscribe topics, a user name server must

have been created and started.
v The MQSeries resources required to connect the queue managers hosting

MQSeries Integrator components must have been defined.
v Listeners for the queue managers must have been started.
v The Configuration Manager must have been started.

For more information about these tasks, see the MQSeries Integrator Installation
Guide for your operating system.

Release to release migration
If you are already using MQSeries Integrator Version 2.0, and are upgrading to the
new release 2.0.1, you must be aware of the following:
v The Control Center at Version 2.0.1 level can only interact with a Configuration

Manager that is also at Version 2.0.1 level. If the Configuration Manager is at
Version 2.0 level, the connection fails with message BIP1360.

v The Control Center at Version 2.0 level can interact with a Configuration
Manager that is at Version 2.0.1 level. However, you are recommended to
upgrade all Control Center installations to Version 2.0.1 when you install a
broker or the Configuration Manager at Version 2.0.1. This will ensure product
and component consistency.

v You must delete and recreate the Configuration Manager after installing Version
2.0.1. This enables access to the new message processing nodes and message sets
supplied with the product. For details of this task, see the MQSeries Integrator
Administration Guide.

v Before you upgrade your Control Center to Version 2.0.1, you are recommended
to check in message flows that you have checked out, or that are new (and have
never been checked in). After installation, all message flows will reflect the
changes made to the IBM supplied nodes.

© Copyright IBM Corp. 2000 7

v If you have exported a workspace from a Version 2.0 Control Center, and import
that workspace into a Control Center at Version 2.0.1 level, you can add the
three new primitive nodes (FlowOrder, Label, and RouteToLabel) using the
Message Flow —> Add to workspace option.

The following usability improvements have been made to the Control Center:
v File —> Update from Shared has been replaced by View —> Refresh from

Shared and a Refresh icon on the toolbar to provide consistent refresh actions
across the views.

v File —> Local —> Revert to Shared has been replaced by File —> Revert to
Shared.

v File —> Check In List has been replaced by File —> Check In —> List.
v File —> Local —> Save to Shared has been replaced by File —> Check In —>

All (Save to Shared).
v A new action, File —> Check In —> All in Current Workspace saves to the

shared configuration only those resources that are new or checked out in the
current workspace. It includes a check that informs you if dependent resources
from other workspaces have been checked in as a result of this action.

v The Deploy Topology action is only accessible from the Topology document
context menu.

v The Deploy All Types action is now only available from the File menu (not from
the Topology document context menu).

v The Log view now appears by default. The File —> Log action has been
removed: the Log view selection is now on the User Preferences dialog.

v The detailed action of Clear Log and Refresh Log has changed to ensure that
messages are preserved across restarts of the Control Center:
– Refresh Log now only displays messages in the Log view.
– Clear Log now clears the Log view and deletes messages from the

Configuration Manager’s deployed configuration.

Starting the Control Center
To start the Control Center, you can:
v Double click the Control Center icon in the MQSeries Integrator product folder

on your desktop.

or
v From the Start menu, click Programs —> IBM MQSeries Integrator Version 2.0

—> Control Center.

Release to release migration

8 MQSeries Integrator Using the Control Center

When you start the Control Center, the Configuration Manager Connection dialog
is displayed. To complete the dialog:
v In the Host Name field, type the network host name of the system on which the

Configuration Manager has been created.
v In the Port field, type the port number on which the queue manager hosting the

Configuration Manager is listening. The default port number is 1414. (You can
find out the port number to enter here from MQSeries Services. Right click the
listener associated with the queue manager, select Properties and click the
Parameters tab to display the port number.) No other queue manager must be
listening on this port.

v In the Queue Manager Name field, type the name of the queue manager hosting
the configuration manager.

v Click OK.

After you have started the Control Center and connected to the Configuration
Manager, you can update these connection details. To do this, click Connection
from the Control Center File menu. The Configuration Manager Connection
dialog is displayed. You can alter the values displayed in this dialog, and click OK
to apply the new values. If you do this from an unsaved workspace, you are given
the opportunity to save the workspace before changing the connection information.

If you change your mind about the values you have typed in the dialog and have
not clicked OK to apply them, click Reset to restore the values with which you
connected to the Configuration Manager.

Note: You must not alternate between alias names for the Host Name value. If you
connect using a different alias for the same host, you get a different local
configuration that is unique to the alias name. You will no longer be able to
access resources you created in your original local configuration, nor will
you be able to check in any resources checked out to the original local
configuration.

When you start the Control Center subsequently, the fields in the Configuration
Manager Connection dialog display the values you supplied when you last
connected to the Configuration Manager.

Starting the Control Center

Chapter 2. Getting started with the Control Center 9

The Control Center interface presented to you initially looks something like this:

You see all the tabs shown here if your user role is All roles. User roles are
described in “Managing permissions to Control Center tasks” on page 12.

Exiting the Control Center
To exit the Control Center, click Exit from the File menu in the taskbar. You are
prompted to save any unsaved work before exiting.

The Control Center Tour
The Control Center provides an online tour, accessible from the Help menu. The
tour gives you an overview of the MQSeries Integrator product: the components,
the tasks you have to do to install, configure and run it, and the main interface
you’ll use (the Control Center).

The Tour introduces the product in three ways:
v It provides introductory information that you can read, with links to MQSeries

information on the Web.
v It provides animated sequences of actions in the Control Center. For example,

you can see how a message flow and message set are created using the Control
Center.

v It creates sample objects, in your own Control Center workspace. These sample
objects cannot be deployed but you can examine them to see how the business
scenario can be implemented.

Figure 2. The Control Center

Starting the Control Center

10 MQSeries Integrator Using the Control Center

The Tour is based on a simple example scenario, in which MQSeries Integrator is
used to integrate the processes of an international company.

To access any section of the Tour, click on the title of the section in the left-hand
panel. When you run the animated sequences, there are four buttons at the bottom
of the panel. These buttons let you play, pause, stop, and view a particular
segment of the movie you are playing.

If you use the Tour to create definitions in your workspace, note the following:
v You have to create definitions in the Tour in the order in which they are

presented. You cannot use the Tour to create a message set, for example, then
close it, reopen and go directly to assigning that message set to a broker in the
Control Center.

v You can save the sample objects to the shared repository if you are the only user
of the Tour on a particular Configuration Manager. If another user has already
performed this task, you will not be able to update the shared repository with
the sample objects created in your workspace.

To use the Tour:
v Your logon user ID must be a member of one of the MQSeries Integrator groups

(mqbrkrs, mqbrasgn, mqbrdevt, mqbrops, or mqbrtpic).
v You must have one of the following Control Center roles:

– Message flow and message set developer
– Message flow and message set assigner
– Operational domain controller
– All roles

If you want to use the Tour to create definitions in the workspace, you must have
the appropriate authority and have set the appropriate Control Center role. See
“Managing permissions to Control Center tasks” on page 12 for further details
about user roles and authorizations.

To run the animated sequences supplied as part of the Tour you need to have
installed two plug-ins:
v Java™ Plugin 1.1.2_001
v Lotus® Media 2.2

If you did not install these plug-ins when you installed the Control Center, you can
install them now from the TourXtra directory on the product CD.

Quick Tour

Chapter 2. Getting started with the Control Center 11

Managing permissions to Control Center tasks
The Control Center supports many different tasks that you perform when working
with configuration data or monitoring operational brokers. These tasks are grouped
by user role, as follows:

Message flow and message set developer
Can create message flows and message sets.

Message flow and message set assigner
Can create execution groups within brokers, assign message flows to
execution groups, and assign message sets to brokers. Can also deploy this
data.

Operational domain controller
Can create brokers and collectives, and define the relationships between
them (the topology). Can also deploy all types of data, and monitor the
operational broker domain.

Topic security administrator
Can create topics and associated ACLs. Can also deploy this data.

How to select the role you want to adopt is described in “Setting user roles” on
page 13.

According to the role you select, the Control Center displays only those views or
tabs that are relevant to that role, as follows:
v The Message flow and message set developer sees the Message Sets view and

the Message Flows view.
v The Message flow and message set assigner sees the Assignments view only.
v The Topic security administrator sees the Topics view and the Topology view.
v The Operational domain controller sees the Topology view, the Assignments view,

the Topics view, the Operations view, and the Subscriptions view.

If you want to perform all tasks, you should select All roles, which allows you to
see all available views.

The role you select for yourself only configures what you see on the Control
Center. It does not control the type of objects you can view or modify. For security
purposes, this aspect is controlled by the MQSeries Integrator security groups of
which you are a member.

The MQSeries Integrator security groups, and the Control Center tasks that
membership of those groups allows, are:

mqbrdevt
Members of this group can design message sets and message flows.

mqbrasgn
Members of this group can manage execution groups within brokers; view
message sets and message flows; assign message flows to execution
groups; and assign message sets to brokers.

mqbrops
Members of this group can create and delete brokers; deploy, start, and
stop message flows; start and stop trace activity on message flows; manage
and deploy the broker domain topology, including collectives; view the

Managing permissions to Control Center tasks

12 MQSeries Integrator Using the Control Center

whole deployed system, including message sets, message flows, and
subscriptions; deploy topics; and view logs that report on the deployment
activity.

mqbrtpic
Members of this group can manage topics, and the access control lists for
the topic tree; deploy topics; view the logs that report on that deployment
activity.

The Configuration Manager performs a security check based on the above
whenever a Control Center user attempts to view or modify an object in the
configuration and message repositories.

Adding users and groups to the MQSeries Integrator groups
You must use the Windows NT User Manager to add users and groups to the
MQSeries Integrator security groups, as follows:
1. Invoke the Windows NT User Manager by selecting Start —> Programs —>

Administrative Tools (Common) —> User Manager.
2. Double click the MQSeries Integrator group you want to update.
3. Select Add. From the list of available user IDs, select the user ID to be added to

the group.
4. Click Add. Click OK to the close the Add Users and Groups dialog.
5. Click OK to close the Local Group Properties dialog.
6. Close the User Manager.

The authorization is effective after a delay of approximately five minutes, as the
Configuration Manager caches this information.

For more detailed information about the MQSeries Integrator groups, and about
security in general, see the MQSeries Integrator Introduction and Planning book.

Setting user roles
At any time during a Control Center session, you can change your user role. To set
your Control Center user role:
1. From the File menu in the Control Center taskbar, click Preferences.

The Control Center Preferences dialog is displayed.
2. In the left-hand pane of the dialog, click User’s role.

In the User’s role pane, as shown in Figure 3 on page 14, select the role you
want to adopt, and click OK.

You can select only one role at a time.

User preferences that govern the general appearance of the Control Center can also
be set by selecting File —> Preferences.... For more information, see the Control
Center online help.

Managing permissions to Control Center tasks

Chapter 2. Getting started with the Control Center 13

You can also control the presence of the Log view from the Control Center
Preferences dialog. The default setting is that the Log view is always visible,
regardless of the user role currently in force. You can change this setting if you
choose, to suppress the Log view, by deselecting the check box.

The setting of this option is remembered from session to session.

Performing workspace tasks
This section describes the various ways in which you can manipulate the contents
of the entire workspace.

Creating a new workspace
To create a new workspace, click File —> New Workspace.

A new workspace is created. This workspace is untitled, and displays the default
contents. You specify a title for the workspace when you save it.

You are prompted to save any changes made in a previous workspace: if you do
not do so, they are discarded.

Opening an existing workspace
When you open an existing workspace, your workspace is populated with the
resources from the chosen file, and these replace the contents of any previous
workspace.

You are prompted to save any changes made in a previous workspace: if you do
not do so, they are discarded.

Figure 3. Setting the user role

Setting user roles

14 MQSeries Integrator Using the Control Center

To open an existing workspace:
1. Click File —> Open Workspace.

The Open dialog is displayed.
2. Select the file (which must be a file of any name and extension that contains

valid XML: typically the file will have an extension of .xml). from the list
presented, or specify the name of the file in the File name field. Click Open to
open the selected workspace.

Alternatively, if you have recently used the workspace, click the File menu in the
Control Center taskbar, which displays the names of the most recently used
workspaces. There can be up to four names in this list. If the workspace you want
is listed in the File menu, click its name to open it.

Saving the workspace
When you save a workspace, both the workspace and any resources created or
modified in that workspace are saved to the local configuration.

To save a workspace, click File —> Save Workspace. The workspace contents are
saved to an XML file. If the workspace is untitled, you are prompted for a name.
The name you give it is displayed on the Control Center title bar whenever that
workspace is your current workspace.

To save a named workspace under a different name, click File —> Save
Workspace As. The workspace contents are saved to an XML file of the specified
name. This effectively takes a copy of the workspace contents.

Updating the workspace
Before you can make significant updates to any resource in your workspace, you
must check it out of the repository in which it is maintained. Message sets and all
their components are maintained in the message repository, all other resources are
maintained in the configuration repository. Resources that are currently checked
out have the Key icon against their entries wherever they are displayed. They are
locked to your user ID, thus preventing other users making changes to them.

You can also work with new resources, that you create within your workspace.
New resources that have never been checked in have the New icon against their
entries wherever they are displayed.

Performing workspace tasks

Chapter 2. Getting started with the Control Center 15

The two icons are shown in Figure 4.

You can also take the following actions for the workspace itself:
v Revert to the shared version of the workspace
v Save the workspace to the shared configuration

Reverting your workspace to the shared repository
When you revert your workspace to the shared repository, any changes you made
to it since opening the local version are lost, and any resources you had checked
out are unlocked. The latest versions of the workspace objects in the shared
repository are opened.

To revert to the shared version of the workspace, you can use either of the
following two methods:
v File —> Revert to Shared

This action unlocks all resources you have checked out, in all your workspaces.
Changes you have made are lost. All resources revert back to the state they were
in when you checked them out.
For example, if you have checked out a message flow and have changed a
property value for a node within it, and then select Revert to Shared, the
message flow is unlocked and its content reloaded from the Configuration
Manager. The change you have made to the node is lost.
This action does not restore deleted resources. Any resource that you have
deleted remains deleted.

v View —> Refresh from Shared

This action does not affect the state of the resources you have checked out. The
content of all other resources is updated to be consistent with the information
held by the Configuration Manager. This allows you to update to and work with
the latest changes that other users have made, without losing any changes you
are making.

Saving the workspace to the shared repository
When you save the workspace to the shared repository, configuration changes you
have made are saved, and objects that were checked out are checked in.

You can check in any individual resource at any time by selecting it, right-clicking
to bring up the resource menu, and selecting Check In.

Figure 4. The Key icon and the New icon. The Topology is checked out, and brokers
BROKER_1 and BROKER_2 and the collective have never been checked in. Broker
MQSI_SAMPLE_BROKER is already checked in (and has no icon against it).

Performing workspace tasks

16 MQSeries Integrator Using the Control Center

When you click Check In, other resources that are dependent on this resource are
also checked in.

You can find out which configuration resources are checked out to you in your
current workspace by selecting File —> Check In —> List. The Check In List
dialog, shown in Figure 5, is displayed.

When you select one or more items from this list, other resources that are
dependent on this resource are displayed in a dialog, and you can choose to
continue with the check in action, or cancel it.

You can check in all the objects that are new or checked out in your current
workspace. Your current workspace is identified in the title bar of the Control
Center. Select File —> Check In —> All in Current Workspace to select this
option.

The Control Center locates the new and locked objects that you have in this
current workspace, and it checks for other new or locked objects that are
referenced directly (in this same workspace) or indirectly (in another workspace)
by these objects.

Therefore this action can check in more than you have in your current workspace.
This extra action is required to ensure that the data in the message and
configuration repositories retains its integrity and consistency.

You are presented with a dialog box, shown in Figure 6 on page 18, that lists all the
resources that will be checked in by this action, and you can continue or cancel the
action.

Figure 5. The Check In list dialog

Performing workspace tasks

Chapter 2. Getting started with the Control Center 17

You can also check in all the objects that are new or checked out in all your local
workspaces. Select File —> Check In —> All (Save to Shared). Information from
all your workspaces (your current open workspace and all others on your local
system) are reviewed by the Control Center to identify new or locked objects. All
items are checked in together.

You can check in a resource from the Check In List dialog by highlighting the
resource and clicking Check In.

You can find further details on checking resources in and out in the online help for
the Control Center.

Importing resources
You can import resources from an XML export file into the local repository. To
import resources:
1. Click File —> Import.

The Import dialog is displayed.

Figure 6. The Check In All in Current Workspace dialog

Figure 7. The Import dialog

Performing workspace tasks

18 MQSeries Integrator Using the Control Center

2. Select a file from the list in the dialog, or specify a name in the File name field.
You must specify the fully-qualified path for the file.
The specified file is interrogated, and you are given a choice of types of
resources that you want to import from the file you have selected. The valid
types are:
v Topology
v Topics
v Message flows

Importing and exporting message sets
You cannot import message sets using this method. You must use the import
and export command (mqsimrmimpexp) to import message sets. See the
MQSeries Integrator Administration Guide for details.

When you have selected the type or types of resources you want to be imported,
the relevant contents of the file are imported. The file contents replace the current
workspace contents. Your current workspace is being replaced with the workspace
in the export file to help you locate the imported resources.

You cannot import individual resources: the import action imports all the message
flows, all the topics, all the topology data, depending on the type of resource you
have selected.

When the import action has completed, a report is displayed indicating how many
resources have been imported.

For the import action to succeed:
v You must check out objects that you are importing if they already exist in the

shared configuration. Each existing checked out object that is successfully
imported is included in the report displayed, and remains in your workspace
and is marked with the key icon.

v If you do not check out an existing object, and it is in the import file, it is not
imported but it is added to your workspace. You will therefore see the object
appear in the appropriate view, but it is not checked out and will therefore not
be marked by the key icon.

v Resources that do not already exist are imported into your workspace and are
marked with the new icon. You must check these in if you want to save them in
the shared configuration. The imported workspace might refer to resources that
cannot be found in the Configuration Manager you are currently connected to.
You can safely remove these resources if you do not want them created in this
Configuration Manager.

v You must check out the Topology root if you are importing Topology
information.

v You must check out the Topic root, and any other topic that will be changed by
the import, if you are importing Topic information.

If the current workspace contents were unsaved, you are prompted to save them
before the new resources are imported.

Please see the Control Center online help for more information about the effects of
the import operation.

Performing workspace tasks

Chapter 2. Getting started with the Control Center 19

Exporting the workspace
When you export a workspace, all resources currently displayed in your current
workspace (including topology, message flows, and topics but excluding message
sets), and all resources that they depend on, are exported to an XML file, along
with the workspace itself. The export file can then be imported by other Control
Center users.

Export does not permit selection of objects, as import does. You can only export a
complete workspace.

Importing and exporting message sets
You cannot export message sets using this method. You must use the import
and export command (mqsimrmimpexp) to import message sets. See the
MQSeries Integrator Administration Guide for details.

To export a workspace:
1. Click File —> Export.

The Export dialog is displayed.
2. Select a file from the list in the dialog (if you want to export the workspace to

an existing file) or specify a name in the File name field.
The workspace is exported to the specified file. Its contents are in addition to
any resources already in the file.

Note that information being exported might contain sensitive information
pertaining to the users and groups who are defined on the User Name Server. If
you are a member of MQSeries Integrator group mqbrtpic or mqbrops, the topic
hierarchy and associated ACL are also exported. If you want to avoid this, you
should sign on as a user who is not a member of either group before you run the
export.

Naming Control Center resources
There are some rules you must follow when providing names for the resources you
create using the Control Center:
v You can use the characters:

– Uppercase A — Z
– Lowercase a — z
– Numerics 0 — 9
– The special characters $ % ‘ ’ - _ @ ˜ ! () { } [] | # & + , ; =

v You can also use the space character, and any Unicode character with an ASCII
value greater than 127 (X'7F').

More specific guidelines exist on some operating systems. For example, names on
UNIX® systems (AIX and Sun Solaris) are case sensitive, but on Windows NT they
are not. Therefore you must ensure that names specified in the Control Center, for
example broker names, exactly match the names used on the system on which they
are created. For more information about these guidelines, see the MQSeries
Integrator Administration Guide.

Performing workspace tasks

20 MQSeries Integrator Using the Control Center

Problem determination
If an error occurs while you are performing a Control Center operation, the
Control Center displays a dialog box containing an MQSeries Integrator V2.0.1
message. The message can originate from either the Control Center itself or from
the Configuration Manager. The message should explain any corrective action you
can take.

Any errors that occur:
v During the second phase of a deploy operation

or
v From starting or stopping message flows

or
v From starting or stopping user tracing

or
v From deleting subscriptions

are displayed as MQSeries Integrator messages in the Log view. These messages
originate from the broker.

You might also find it helpful to refer to additional information provided in the
MQSeries Integrator V2.0 SupportPac MHI1. This SupportPac provides latest
problem determination information in a useful question-and-answer format. You
can find this SupportPac at:
http://www.ibm.com/software/ts/mqseries/txppacs/

Controlling service traces
The Control Center can be traced by invoking it with a special command, mqsilcc,
which is described in the MQSeries Integrator Administration Guide. You are
recommended to use service traces only when you receive an error message that
instructs you to start service trace, or when directed to do so by your IBM Support
Center.

Problem determination

Chapter 2. Getting started with the Control Center 21

22 MQSeries Integrator Using the Control Center

Part 2. Using the Control Center

Chapter 3. Defining messages 27
Basic message concepts 27

A message tree 27
Message domains 28

How a message is interpreted 28
Unstructured messages in the BLOB domain 29
Self-defining messages in the XML domain . . 29
Predefined messages in the MRM domain . . 30
Predefined messages in the NEON domain . . 31

Working with unstructured messages in the BLOB
domain 31
Working with messages in the XML domain . . . 32

XML Declaration 32
XmlDecl 33

Document Type Declaration 33
DocTypeDecl 33
NotationDecl 34
Entities 34
ElementDef 35
AttributeList 35
AttributeDef 35
DocTypePI and ProcessingInstruction 36
DocTypeWhiteSpace and WhiteSpace 36
DocTypeComment and Comment 36

The XML message body 36
ProcessingInstruction 37
WhiteSpace 37
Comment 37
AsisElementContent 37
CDataSection 38
EntityReferenceStart and EntityReferenceEnd 38

Working with messages in the MRM domain . . . 39
An overview of the message definition process 39
The message model. 40

Reference relationship 40
Member relationship 40
The components of a message definition. . . 40
Component identifiers and names 43
An example message definition. 44
Message sets 45

The data model layers 45
The documentation layer 46
The C language layer 46
The COBOL language layer 46
The Custom Wire Format layer 47

Message set properties. 47
Message set states 49
Message set versioning 50

Importing legacy formats 51
Generating MRM message set Document Type
Descriptors (DTDs) 51
Authorization to work with Messages 52
The Message Sets view 53
Creating message sets 54
Creating messages 56
Using the SmartGuide to create messages . . . 65

Working with message sets 67
Adding message sets and message components
to the workspace 69
Importing message definitions 70
Generating MRM message set definitions in XML
DTDs 71
Generating language bindings 72
Generating documentation 73
Editing message sets and components 75
Changing the state of a message set 78
Checking in and checking out message sets. . . 79

Chapter 4. Defining message flows. 81
Authorization to work with message flows 81
The Message Flows view 81

Controlling the appearance of the Message Flow
Definition pane 82

Creating a message flow 83
Creating a message flow category 87
Adding a message flow to your workspace 88
Checking a message flow 89
Including one message flow in another 91
Promoting message flow node properties 92

Promoting properties through a hierarchy of
message flows 93
Converging multiple properties. 93
Renaming promoted properties 94
Deleting a promoted property from a message
flow 94
Promoting mandatory properties 94
Example: promoting message flow node
properties 94

Checking in message flows 96
Creating your own message nodes 97
The IBM Primitives 98
Check node 100

Description 100
Check node terminals 100
Check node properties 100
Configuring the check node 100

Compute node 102
Description 102
Compute node terminals 102
Compute node properties 102
Configuring the Compute node 103

Database node 106
Description 106
Database node terminals 106
Database node properties 106
Configuring the Database node 107

DataDelete node 109
Description 109
DataDelete node terminals 109
DataDelete node properties. 109
Configuring a DataDelete node 110

DataInsert node 112

© Copyright IBM Corp. 2000 23

Description 112
DataInsert terminals 112
DataInsert node properties 112
Configuring a DataInsert node. 113

DataUpdate node 115
Description 115
DataUpdate node terminals. 115
DataUpdate node properties 115
Configuring a DataUpdate node 116

Extract node 118
Description 118
Extract node terminals 118
Extract node properties 118
Configuring an Extract node 118

Filter node 120
Description 120
Filter node terminals 120
Filter node properties. 120
Configuring a filter node 121

FlowOrder node 123
Description 123
FlowOrder node terminals 123
FlowOrder node properties 123
Configuring a FlowOrder node 123

Input Terminal 125
Description 125
Input Terminal node terminals 125
Input Terminal properties 125
Configuring the Input Terminal 125

Label node 127
Description 127
Label node terminals 127
Label node properties 127
Configuring a Label node 128

MQInput node 129
Description 129
MQInput node terminals 129
MQInput node properties 129
Configuring an MQInput node 132

MQOutput node 134
Description 134
MQOutput node terminals 134
MQOutput node properties. 134
Configuring an MQOutput node 136

MQReply node 137
Description 137
MQReply node terminals 137
MQReply node properties 137
Configuring an MQReply node 138

NEONFormatter node 139
Description 139
NEONFormatter node terminals 139
NEONFormatter node properties 139
Configuring a NEONFormatter node 140

NEONRules node 141
Description 141
NEONRules node terminals 141
NEONRules node properties 141
Configuring a NEONRules node 141

Output Terminal 143
Description 143

Output Terminal node terminals 143
Output Terminal properties. 143
Configuring the Output Terminal. 143

Publication node 145
Description 145
Publication node terminals 145
Publication node properties 145
Configuring the Publication node. 145

ResetContentDescriptor node 147
Description 147
ResetContentDescriptor node terminals. . . . 147
ResetContentDescriptor node properties . . . 147
Configuring the ResetContentDescriptor node 148

RouteToLabel node 150
Description 150
RouteToLabel node terminals 150
RouteToLabel node properties 150
Configuring a RouteToLabel node 150
Using a RouteToLabel node 151

Throw node 154
Description 154
Throw node terminals 154
Throw node properties 154
Configuring a Throw node 154

Trace node 156
Description 156
Trace node terminals 156
Trace node properties. 156
Configuring the Trace node. 157
Using a Trace node 157

TryCatch node 159
Description 159
TryCatch node terminals 159
TryCatch node properties 159
Configuring the TryCatch node 159

Warehouse node 161
Description 161
Warehouse node terminals 161
Storing the entire message 161
Storing parts of the message 162
Warehouse node properties 162
Configuring the Warehouse node to store the
entire message 162
Configuring the Warehouse node to store parts
of a message 164

Using the IBM-supplied message flows. 165
Preparing to use the supplied message flows 166
Version 1 Migration Compatibility message flow 166
The default publish/subscribe message flow 168
Copying the default message flows 169

Chapter 5. Defining the broker topology . . . 171
Authorization to work with Topology 171
The Topology view 171

Controlling the appearance of the Topology
pane 171

Checking out the Topology 173
Creating a broker 174
Creating a collective 176
Adding an existing broker to a collective 178
Creating a broker to add to a collective. 180

24 MQSeries Integrator Using the Control Center

Removing a broker from a collective 181
Connecting brokers 182
Deleting the connection between brokers 183
Deleting a broker from the topology. 184
Renaming a broker 185
Checking in the Topology 186

Checking in Topology changes 186
Checking in multiple changes 186

Making changes operational 187

Chapter 6. Assigning resources to a broker . . 189
Authorization to assign resources to a broker. . . 189
The Assignments view 189
Creating an execution group 190
Assigning message flows to execution groups . . 192

Setting the properties of an assigned message
flow 193

Assigning message sets to brokers 195
Removing resources from a broker 197

Deleting an execution group from a broker . . 197
Removing a message set from a broker 197
Removing a message flow from an execution
group 197

Checking in the Assignments 199
Checking in assignments 199
Checking in multiple changes 199

Refreshing the Assignments view. 200
Making changes operational 201

Chapter 7. Deploying configuration data . . . 203
Three types of deployment 203

Complete deployment 203
Delta deployment 203
Forced deployment 204
A summary of deployment actions 204

The stages of the deployment process 204
Stage one of deployment 204
Stage two of deployment 204

Which data is deployed? 205
If some data has not been checked in 205

Finding out whether deployment has worked . . 205
If deployment times out 206
If the broker is not running. 206

Deleting a broker from the broker domain. . . . 207
Authorization to deploy configuration data . . . 209
Deploying delta data of all types 210
Deploying complete data of all types 211
Forcing deployment of all data 212
Deploying delta assignments 213
Deploying complete assignments 214
Deploying delta topics 215
Deploying complete topics 216
Deploying delta topology 217
Deploying complete topology 218

Chapter 8. Setting up publish/subscribe access
control 219
Authorization to set up publish/subscribe access
control 219
The Topics view 219
Creating topics 221

Renaming, duplicating, and deleting topics . . 222
Adding a principal to an ACL 223

Resolving permissions 223
Checking in topics data 224

Checking in multiple changes 224
Making changes operational 225

Chapter 9. Running the broker domain 227
Authorization to run the broker domain 227
The Operations view 227
Monitoring the operational state of the broker
domain 228
Starting message flows 229

Starting all message flows for a broker 229
Starting all message flows within an execution
group 229
Starting a single message flow. 229

Stopping message flows 231
Stopping all message flows for a broker . . . 231
Stopping all message flows within an execution
group 231
Stopping a single message flow 231

Starting user tracing 233
Starting user tracing for an execution group . . 233
Starting user tracing for a single message flow 233

Stopping user tracing. 234
Stopping user tracing for an execution group 234
Stopping user tracing for a single message flow 234

The Subscriptions view 235
Filtering the information in the Subscriptions
view 235
Refreshing the Subscriptions view 236
Deleting subscriptions 236

The Log view 237

Part 2. Using the Control Center 25

26 MQSeries Integrator Using the Control Center

Chapter 3. Defining messages

MQSeries Integrator Version 2 provides a message brokering function that can
transform messages from one format to another. The brokers that manage these
transformations need to interpret the structure and content of the messages they
receive to perform the full range of transformation functions available with
MQSeries Integrator.

This chapter introduces the messages supported by MQSeries Integrator, and how
those messages are handled. It contains the following sections:
v “Basic message concepts”
v “Working with unstructured messages in the BLOB domain” on page 31
v “Working with messages in the XML domain” on page 32
v “Working with messages in the MRM domain” on page 39

Basic message concepts
A message consists of a one dimensional array of bits organized into bytes. The
applications that send and receive messages, and the broker that provides
additional message processing between sender and receiver, place a particular
interpretation on the bytes of each message, and their order.

When a broker receives a message, its first task is to pass the message to a
message parser. This reads the string of bits and converts them to a tree format.
The tree format is easier to understand and manipulate, but contains identical
content to the bits from which it is formed. When a broker delivers a message to a
recipient, the message is converted back into a bit-stream.

A message tree
A message tree is made up of a number of elements. At the top of the tree is the
root: this has no parent and no siblings. The root is parent to a number of child
elements. Each child must have a parent, it can have zero or more siblings (with
which it shares its parent), and it can have zero or more children.

The tree structure of a message is shown in Figure 8 on page 28. The message root
has two children, ElementA1 and ElementB1 (which are therefore siblings sharing
a single parent). The child ElementA1 has three children (ElementA2, ElementB2,
and ElementC2) and ElementB2 has a further child ElementC1.

© Copyright IBM Corp. 2000 27

This tree structure is explored further in the MQSeries Integrator Programming Guide.

Message domains
The messages supported by MQSeries Integrator are of three broad types, that are
identified by a property of the message called the message domain:
1. A message can be unstructured: its message domain must be set to BLOB.
2. A message can be self-defining: its message domain must be set to XML.

Two additional domains are included in this category to support JMS messages:
the domain JMSMap can be used for jms_map messages and the domain
JMSStream can be used for jms_stream messages.

3. A message can be predefined: its message domain must be set to one of:
a. MRM
b. NEON

A predefined message has a logical structure and a physical structure:
v The logical structure of a predefined message is a tree structure that

demonstrates the hierarchical relationships between the components of a
message (illustrated in Figure 8).

v The physical structure of a message, which is also referred to as its wire
format, is just a string of bits and bytes. Without the logical structure, the
physical structure (the bit-stream) has no intrinsic meaning.

How a message is interpreted
When the message arrives in a broker, it is removed from the input queue by the
MQInput node defined in the message flow that processes messages from this
queue. It must be processed by an appropriate parser to decode the physical
structure and create the logical structure.

Figure 8. A message tree structure

Basic message concepts

28 MQSeries Integrator Using the Control Center

The MQInput node determines what to do with each message:
v If the message has an MQRFH or MQRFH2 header following the MQMD

header, the domain identified in the MQRFH2 header is used to decide which
root message parser is invoked.

v If the message does not have an MQRFH or MQRFH2 header, but the properties
of the MQInput node indicate the domain of the message, the parser specified
by the node property is invoked.

v If the message has a valid MQMD, but the message body cannot be recognized,
the message cannot be interpreted or parsed, and it is handled as a binary object
(BLOB). See “Working with unstructured messages in the BLOB domain” on
page 31 for more information about these messages.

Each message received must have an MQMD header, and can have zero or more
additional headers. MQSeries Integrator provides a parser for each of the following
MQSeries headers:
v MQCFH
v MQCIH
v MQDLH
v MQIIH
v MQMD
v MQMDE
v MQRFH
v MQRFH2
v MQRMH
v MQSAPH
v MQWIH
v SMQ_BMH

Further details about the support for these parsers is given in “Appendix D.
MQSeries message header parsers” on page 363.

MQSeries Integrator also supports the use of additional parsers. You can create a
message parser using a defined programming interface. This interface and the
techniques you must employ to create your own “plug-in” parsers are described in
the MQSeries Integrator Programming Guide. If you use your own parser, you must
set up your MQInput node properties to identify your parser.

Unstructured messages in the BLOB domain
An unstructured message must have a message domain of BLOB. It has no known
(or defined structure). These messages can be processed and routed by MQSeries
Integrator, but the manipulation that you can perform is very limited.

You can perform some simple manipulation at the message level, and take other
actions on the whole message. See “Working with unstructured messages in the
BLOB domain” on page 31 for further details.

Self-defining messages in the XML domain
A self-defining message must have a message domain of XML. It carries the
information about its content and structure within the message. Its definition is not
held anywhere else.

When a self-defining message is received by the broker, it is handled by the XML
parser, and a tree is created according to the XML definitions contained within that
message.

Basic message concepts

Chapter 3. Defining messages 29

A self-defining message is also known as a generic XML message. It does not have a
recorded format.

A self-defining message can be handled by every IBM-supplied message processing
node. The whole message can be stored in a database, and headers can be added
to or removed from the message as it passes through the message flow.

The message can also be manipulated, constructed, and reformatted by nodes in
the message flow, using a specialized form of standard database Structured Query
Language (SQL). This specialized form is known as Extended SQL, or ESQL, and
supports MQSeries Integrator processing of the message structure. This means that
although you do not have to define the message structure to the Control Center,
you do have to understand the definition to be able to construct valid ESQL for
message manipulation.

See “Working with messages in the XML domain” on page 32 for further details.

Predefined messages in the MRM domain
A predefined message in the MRM message domain must have its message
domain set to MRM. It must be defined to the Message Repository Manager, a
component of the Configuration Manager. You can define messages to the MRM
domain using the Control Center (Message Sets view). The MRM maintains these
messages in the message repository.

You can also predefine a message to the MRM in the XML message domain (the
domain is defined as a message set property, as described in “Message set
properties” on page 47). If you define a message to the XML domain, you can use
all the facilities available to MRM domain messages to manipulate and reference
the message in the nodes within your message flows in the Control Center.
However, you are not expected to assign these message sets to a broker, nor to
deploy them. Because the domain is set to XML, the XML parser is invoked by the
broker and does not reference any external message definition.

An MRM message can be handled by every IBM-supplied message processing
node. The whole message, or parts of the message, can be stored in a database,
and headers can be added to or removed from the message as it passes through
the message flow. The message can be manipulated using ESQL defined within all
message processing nodes that support manipulation (for example, compute and
filter).

You can also transform any message in the MRM domain into any other format
defined to the MRM using ESQL (in most cases, just one line of ESQL). This
includes code page and encoding conversion: this capability provides the
significant benefit that data conversion exists in MQSeries are not required to
provide this function.

For a fuller discussion of data conversion considerations, see Chapter 9, Planning
your MQSeries Integrator network, in MQSeries Integrator Introduction and Planning.
For an example of conversion in a message processing node, see “Appendix C.
ESQL reference” on page 277.

Messages with a message domain of MRM have three other characteristics for
further classification:
1. Message format

Three message formats are supported by the MRM:

Basic message concepts

30 MQSeries Integrator Using the Control Center

a. A message can have a message format of CWF (Custom Wire Format).
These messages are MRM representations of legacy datastructures created in
the C or COBOL programming language, and imported into the MRM using
the Control Center facilities. See “Importing legacy formats” on page 51 for
details of how to complete this task.
You can also create new messages using this format.

b. A message can have a message format of PDF.
This is a specialized format used predominantly in the finance industry. It
does not have any connection with the Portable Document Format defined
by Adobe (also known as PDF).
If you already use messages of this format, you can continue to use them
and process them by specifying this format in the definitions.

c. A message can have a message format of XML.
These messages are represented as XML documents. They conform to an
XML DTD (Document Type Definition) that can be generated by the Control
Center for documentation purposes.

2. Message set
This identifies the message set to which each message belongs. This is specified
as the message set identifier, not the message set name. When you define a
message in the MRM message domain, you must define a message set that
contains it. A message set can contain one or more related messages.

3. Message type
The message type identifies the message definition within the set. It is the
unique identifier for each message of this particular content and format.

See “Working with messages in the MRM domain” on page 39 for further details.

Predefined messages in the NEON domain
A predefined message in the NEON message domain must have its message
domain set to NEON. It must be defined using the MQSeries Integrator Version 1
graphical utilities that are supplied with MQSeries Integrator Version 2. You can
create new messages and use existing messages defined to the NEON domain.

A NEON message can be handled by every IBM-supplied message processing
node. The whole message can be stored in a database, and headers can be added
to or removed from the message as it passes through the message flow. The
NEONFormatter node can be used to transform a NEON message. No other node
can manipulate the message contents.

For further information about working with these messages, refer to “Appendix E.
NEON Rules and Formatter” on page 379 and the MQSeries Integrator Version 1.1
User’s Guide.

Working with unstructured messages in the BLOB domain
The structure and format of an unstructured message are not recognized or
understood. Therefore the broker cannot perform any validation on messages in
this domain, and a message in the BLOB domain cannot be manipulated within a
message flow, except at the message level. For example, you can work with a
substring of the message (for example, the 10th to 20th characters) but you cannot
work at the field or element level, as these structures are not known.

Basic message concepts

Chapter 3. Defining messages 31

You can, however, store the message full in a database, you can route the message
according to topic (derived from the header), and you can add or remove headers
from the message.

Working with messages in the XML domain
Self-defining or generic XML messages are those whose content are documents that
adhere to the XML specification. The following sections describe how these
messages are represented in a tree of syntax elements.

The following topics are discussed:
v “XML Declaration”
v “Document Type Declaration” on page 33
v “The XML message body” on page 36

The name elements used in this description (for example, XmlDecl) are provided
by MQSeries Integrator for symbolic use within the SQL that defines the
processing of message content that is to be performed by the nodes within a
message flow (for example, a filter node). They are not a part of the XML
specification itself. You can find examples of SQL syntax that handles the definition
of generic XML messages in “Examples for generic XML messages” on page 347.

The information provided here does not provide a full definition or description of
XML terminology, concepts, and message constructs: it is a summary that
highlights aspects that are important when you use XML messages with MQSeries
Integrator. For further information about XML, see the IBM web site at:
http://www.ibm.com/developer/xml

XML Declaration
The beginning of an XML message must contain what is called an XML
declaration.

An XML declaration might take the following form in the XML bit-stream:
<?xml version="1.0" standalone="yes" encoding="UTF-8" ?>

The XML declaration must be at the beginning of every XML message.

Basic message concepts

32 MQSeries Integrator Using the Control Center

XmlDecl
This is a name element that corresponds to the XML declaration itself. The
XmlDecl element must be a child of the root element, and is the element that is
written to a bit-stream first. This element can have three children of the following
types:
1. Version

The version element is a value element and stores the data corresponding to
the version string in the actual declaration. It is always a child of the XmlDecl
element. For example, for the declaration shown above the version element
would contain the string value ″1.0″.

2. Standalone
The standalone element is a value element and stores the data corresponding to
the value of the standalone string in the declaration. It is always a child of the
XmlDecl element. The values for the standalone element must be the string
″yes″ or ″no″.
″no″ is the default: this means that processing of the message depends on an
external (DTD) reference.

3. Encoding
The encoding element is also a value element and is always a child of the
XmlDecl element. The value of the encoding element is a string which
corresponds to the value of the encoding string in the declaration. In the
example shown above the encoding element would have a value of ″UTF-8″.

Note: MQSeries encodings cannot be specified in this element.

Document Type Declaration
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

Only internal DTD subsets are represented in the syntax element tree. External
DTD subsets (identified by the SystemID or PublicId elements described below)
can be referenced in the message but those referenced are not resolved in the
MQSeries Integrator run-time environment.

DocTypeDecl
The DocTypeDecl is a named element and must be a child of the root element. It is
written to the bit-stream before the element that represents the body of the
document during serialization. The following can be specified within this element:
1. IntSubset

IntSubset is a named element that groups all of those elements that represent
the DTD constructs contained in the internal subset of the message. Although
the IntSubset element is a named element its name is not relevant.

2. SystemId
SystemId is a value element and is used to represent a general system identifier
construct found in an XML message. It can be a part of a DocTypeDecl or a
NotationDecl element. The value of the SystemId is a URI, and is typically a
URL or the name of a file on the current system. A system identifier of the
form SYSTEM “Note.dtd” has a string value of ″Note.dtd″

3. PublicId

Generic XML messages

Chapter 3. Defining messages 33

PublicId represents a general public identifier construct found in an XML
message. It can be a part of a DocTypeDecl or a NotationDecl element. The
value of the PublicId is typically a URL.

NotationDecl
The NotationDecl element represents a notation declaration in an XML message. It
is a name element whose name corresponds to the name given with the notation
declaration. It must have a SystemId as a child, and it can optionally have a child
element of type PublicId.

Entities
Entities in the DTD are represented by one of five named element types described
below.
1. ParameterEntityDecl

The ParameterEntityDecl represents a parameter entity definition in the internal
subset of the DTD. It is a named element and has a single child element that is
of type EntityDeclValue. For parameter entities the name of the entity does not
include the percent sign %. In XML a parameter entity declaration takes the
form:

<!ENTITY % inline "#PCDATA | emphasis | link">

2. ExternalParameterEntityDecl
The ExternalParameterEntityDecl represents a parameter entity definition where
the entity definition is contained externally to the current message. It is a
named element and has a child of type SystemId. It can also have a child of
type PublicId. The name of the entity does not include the percent sign %. In
XML an external parameter entity declaration takes the form:

<!ENTITY % bookDef SYSTEM "BOOKDEF.DTD">

This is represented by an ExternalParameterEntityDecl element of name
bookDef with a single child of type SystemId with a string value of
“BOOKDEF.DTD”.

3. EntityDecl
The EntityDecl element represents a general entity and is declared in the
internal subset of the DTD. It is a named element and has a single child
element which is of type EntityDeclValue.
An entity declaration of the form:

<!ENTITY bookTitle "User Guide">

has an EntityDecl element of name ″bookTitle″, and a child element of type
EntityDeclValue with a string value of “User Guide”.

4. ExternalEntityDecl
The ExternalEntityDecl element represents a general entity where the entity
definition is contained externally to the current message. It is a named element
and has a child of type SystemId. It can also have a child of type PublicId.
An external entity declaration of the form:

<!ENTITY bookAppendix SYSTEM "appendix.txt">

has an EntityDecl element of name ″bookAppendix″ and a child element of
type SystemId with a string value of ″appendix.txt″.

5. UnparsedEntityDecl
An unparsed entity is an external entity whose external reference is not parsed
by an XML processor.

Generic XML messages

34 MQSeries Integrator Using the Control Center

The UnparsedEntityDecl is named element. It has a child of type SystemId and
optionally a child of type PublicId. The presence of NDATA after the SystemId
in the entity declaration indicates that this entity is not parsed by the XML
processor. After NDATA is the name of a corresponding notation declaration. In
XML an unparsed entity declaration takes the form:

<!ENTITY pic SYSTEM "scheme.gif" NDATA gif>

v NotationReference
The NotationReference name element represents a reference to a notation
declaration from within an UnparsedEntityDecl element. It is always a child
of an UnparsedEntityDecl element.

EntityDeclValue: This value element represents the value of an EntityDecl, or a
ParameterEntityDecl defined internally in the DOCTYPE construct. It is always a
child of an element of one of those types, and is a value element. For the following
entity:

<!ENTITY bookTitle "User Guide">

the EntityDeclValue element has the string value ″User Guide″.

ElementDef
The ElementDef name-value element represents the <!ELEMENT construct in a
DTD. The name of the element that is defined corresponds to the name member of
the syntax element. The value member corresponds to the element definition.

AttributeList
The AttributeList name element represents the <!ATTLIST construct in a DTD. The
name of the AttributeList element corresponds to the name of the element for
which the list of attributes is being defined.

AttributeDef
The AttributeDef name element describes the definition of an attribute within a
<!ATTLIST construct. It is always a child of the AttributeList element. The name of
the syntax element is the name of the attribute being defined. It can have three
children:
1. AttributeDefValue

For attributes of type CDATA (see AttributeDefType below) the
AttributeDefValue gives the default value of the attribute.

2. AttributeDefDefaultType
The AttributeDefDefaultType syntax element is a value element which
represents the attribute default as defined under the attribute definition. The
value can be one of the following strings:
v #REQUIRED
v #IMPLIED
v #FIXED

3. AttributeDefType
The AttributeDefType syntax element is a name-value element whose name
corresponds to the attribute type found in the attribute definition. Possible
values for the name are:
v CDATA
v ID
v IDREF
v IDREFS
v ENTITY
v ENTITIES

Generic XML messages

Chapter 3. Defining messages 35

v NMTOKEN
v NMTOKENS
v NOTATION

If there is an enumeration present for the attribute definition the entire
enumeration string is held as a string in the value member of the name-value
syntax element. The value string starts with an open bracket “{” and ends with a
close bracket “}”. Each entry in the enumeration string will be separated by a ‘|’
character. For an enumerated type that is not a NOTATION, the name member of
the syntax element is empty.

DocTypePI and ProcessingInstruction
The DocTypePI element represents a processing instruction found within the DTD.
The ProcessingInstruction element represents a processing instruction found in the
XML message body.

Both of these elements are name-value elements. In both cases, the name of the
element is used to store the processing instruction target name, and the value
contains the character data of the processing instruction. The value of the element
can be empty. The name cannot be the string ″XML″ or any uppercase or lowercase
variation of ″XML″.

DocTypeWhiteSpace and WhiteSpace
The DocTypeWhiteSpace element represents whitespace found inside the DTD that
is not represented by any other element. The WhiteSpace element represents any
white space characters found in the message body that is not represented by any
other element. Both are value elements.

For example, white space within the body of the message is reported as element
content using the pcdata element type, but white space characters found between
the XML declaration and the beginning of the message body are represented by the
WhiteSpace element.

<?xml version="1.0"?> <BODY>....</BODY>

The characters between 1.0″?>″ and <BODY> are represented by the WhiteSpace
element. White space characters found within a DocType between two definitions
are represented by the DocTypeWhiteSpace element.

<!DOCTYPE Note SYSTEM "Note.DTD"[
<!ENTITY % bookDef SYSTEM "BOOKDEF.DTD"> <!ENTITY bookTitle "User Guide">]>

The characters between DTD″> and <!ENTITY are represented by the
DocTypeWhiteSpace element.

DocTypeComment and Comment
Comments in the XML message are represented by the Comment and
DocTypeComment elements. The former is used within the message body, the
latter within the DTD. Both element types are value elements where the value
string contains the comment text.

The XML message body
Every XML message must have a body element. The body element is a top level
XML element which encapsulates the whole of the body. XML elements are
represented in the syntax element tree with a type of “tag”.
v tag

The tag syntax element is the default name element supported by the XML
parser and is the most common element. This element can have many children

Generic XML messages

36 MQSeries Integrator Using the Control Center

of many different types. XML attributes that are attached to an XML element are
represented by a series of ″attr″ elements that are children of the tag element.
Similarly, sections of PCDATA which are content of the XML element are
represented by syntax elements of type ″pcdata″. ″tag″ elements can also have
other tag elements as children.
– attr

The attr element is the principal name-value element supported by the XML
parser. It is used to represent attributes that are associated with elements in
the XML message. The name and value of the syntax element correspond to
the name and value of the attribute being represented. ″attr″ elements have
no children and must always be children of a ″tag″ element.

– pcdata
Element content is represented by the pcdata value element. There can be
more than one pcdata element child of a single tag element. In these cases
they would be separated by any syntax elements that represent XML
constructs allowed within element content, including ″tags″,
″ProcessingInstruction″, ″Cdata″, ″EntityDecl″.

The following XML illustrates an extract of message body:
<PERSON age="32" height="172cm">

<FIRSTNAME>Cormac</FIRSTNAME>
<SECONDNAME>Keogh</SECONDNAME>

</PERSON>

This is represented in the syntax element tree as:
v One “tag” element with a name of ″PERSON″. This tag has seven children.

1. Two attr (name-value) with names ″age″ and ″height″ and string values ″32″
and ″172cm″ respectively.

2. One pcdata (value) element with string value containing the white space
character data found between ″172cm″> and <FIRST.

3. One tag (name) with a name ″FIRSTNAME″. This tag has one child:
– One pcdata (value) containing the string value ″Cormac″.

4. One pcdata (value) element with string value containing the white space
character data found between TNAME> and <SECOND.

5. One tag (name) with a name ″SECONDNAME″. This tag has 1 child:
– One pcdata (value) containing the string value ″Keogh″.

6. One pcdata (value) element with string value containing the white space
character data found between DNAME> and </PERSO.

ProcessingInstruction
This is described in “DocTypePI and ProcessingInstruction” on page 36.

WhiteSpace
This is described in “DocTypeWhiteSpace and WhiteSpace” on page 36.

Comment
This is described in “DocTypeComment and Comment” on page 36.

AsisElementContent
Normally an XML processor must replace any occurrences of the characters
ampersand (&), less than (<), greater than (>), double quote (”), and apostrophe (’)
with an escape sequence that is used to represent them (&, <, >, ",
and '). The escape sequences are defined as entities.

Generic XML messages

Chapter 3. Defining messages 37

The AsisElementContent is a value element that is similar to the pcdata element
but provides a means to suppress this behavior for the content of an element.
Occurrences of any of the characters in the value of an AsisElementContent
element are substituted by their appropriate entity reference.

CDataSection
CData sections in the XML message are represented by the CDataSection value
element. The content of the CDataSection element is the value of the CDataSection
element without the <![CDATA[that marks the beginning, and without the]]> that
marks the end of the Cdata section.

For example, the following Cdata section:
<![CDATA[<greeting>Hello, world!</greeting>]]>

is represented by a CDataSection element with a string value of:
"<greeting>Hello, world!</greeting>"

Unlike pcdata, occurrences of <, >, &, “, and ’ are not translated to their escape
sequences when the Cdata section is written out to a serialized message.

EntityReferenceStart and EntityReferenceEnd
When an entity is encountered in the XML message it is reported in the syntax
element tree in expanded form. In order to determine if a section of the tree has
been derived from an expanded entity, a couple of marker elements are placed in
the tree to denote the beginning and end of an entity’s expansion.
v The EntityReferenceStart element is a value element that marks the beginning of

an entity expansion.
v The EntityReferenceEnd element is a value element which marks the end of an

entity expansion.

The value of both elements corresponds to the name of the entity being expanded.
Any syntax elements found between these two place holders, and their children
have been derived from the expansion of the entity in question.

Generic XML messages

38 MQSeries Integrator Using the Control Center

Working with messages in the MRM domain

This section describes how to work with messages that you define, or definitions
you import, using the facilities of the Control Center. It covers the following
introductory topics:
v “An overview of the message definition process”
v “The message model” on page 40
v “The data model layers” on page 45
v “Message set properties” on page 47
v “Importing legacy formats” on page 51
v “Generating MRM message set Document Type Descriptors (DTDs)” on page 51
v “Authorization to work with Messages” on page 52
v “The Message Sets view” on page 53

It also describes the following tasks:
v “Creating message sets” on page 54
v “Creating messages” on page 56
v “Using the SmartGuide to create messages” on page 65
v “Working with message sets” on page 67
v “Adding message sets and message components to the workspace” on page 69
v “Importing message definitions” on page 70
v “Generating MRM message set definitions in XML DTDs” on page 71
v “Generating language bindings” on page 72
v “Generating documentation” on page 73
v “Editing message sets and components” on page 75
v “Changing the state of a message set” on page 78
v “Checking in and checking out message sets” on page 79

An overview of the message definition process
The message definition process is managed by the Message Repository Manager
(MRM) component of the Control Center.

When you create or modify message definitions using the Control Center, the
MRM stores them in the message repository, a set of tables in a database created and
maintained by the Configuration Manager.

Each message definition is created within, and belongs to, a message set, which is
simply an organizational grouping of related messages. A message set includes the
definitions of one or more related messages, typically those used by a single
application. You construct each message using a set of building blocks, known as
message components, some of which are supplied with MQSeries Integrator (the
simple types) and some of which you define using the Control Center (the
compound types).

So, for example, for a banking application you could define simple elements, such
as Account Number and Account Balance, then include those simple elements in a
compound element, such as Customer Record. The Account Number, Account

2. The configuration repository and message repository are implemented using an IBM DB2 Universal Database® for Windows NT.

MRM messages

Chapter 3. Defining messages 39

Balance, and Customer Record elements would all be reusable by other message
definitions within the same message set. The components of a message are
described in detail in “The components of a message definition”.

You must assign message sets to those brokers that need to understand them.
When you deploy message-set assignments in the broker domain, the MRM
constructs a message dictionary from each message set (one dictionary plus one CWF
descriptor file for each set) and sends it to each broker that needs access to the
message definitions.

The message model
The MQSeries Integrator message model provides a platform- and
language-independent way of defining logical messages that represent structured
business information.

In this message model, a message definition comprises separate, reusable message
components. The relationship between components is defined as being either a
member relationship or a reference relationship.

Reference relationship
A reference relationship is a defining relationship between two components. For
example, an element component of type STRING has a reference relationship to an
element length component that defines the length of the element.

Reference relationships are always mandatory.

Member relationship
A member relationship is a parent-child relationship between two components. For
example, a (parent) compound type has a member relationship with one or more
(child) elements. Note that the member relationship is always expressed as an
attribute of the parent, not of the child.

Member relationships are always optional.

The components of a message definition
The components of a message definition are described in the remainder of this
section. For each component, the reference and member relationships are
identified.

Message definition process

40 MQSeries Integrator Using the Control Center

Message component: The message component defines both the business meaning
and the format of a single unit of information to be exchanged between
applications.
v A message component has a reference relationship to a single type component (a

compound type) that defines the content of the message. It can also have a
reference relationship to an element qualifier.

v A message component has no member relationships.

Once a message component has been created, the reference of the type component
cannot be changed.

Element component: The element component defines both the business meaning
and the format of a single unit of information within a message.
v An element component has a reference relationship to a single type component

(a simple type or a compound type) that defines the content of the element.
An element component also has a reference relationship to an element length
component, if the element is of simple type STRING.

v An element component can have a member relationship to one or more (child)
element valid value components, which must have the same type as the element.

Once an element has been created, the identifiers of the type and element length
components to which it refers cannot be changed.

Type component: The type component defines the format or content of a message
or an element. A type can be a simple type or a compound type.

Simple type
Is a basic data type supported by the run-time message parsers. The simple
types are: STRING, INTEGER, FLOAT, BOOLEAN, and BINARY. The
simple types are created automatically when you create a message set.

Compound type
Is a structure made up of one or more element components.

v A type component has no reference relationships.
v A compound type component has member relationships to one or more (child)

elements.

Element length component: The element length component defines a maximum
length value that completes the definition of any element of the simple type
STRING.
v An element length component has no reference relationships.
v An element length component has no member relationships.

Category component: The category component groups messages within a
message set, typically by business function. The extraction and generation
functions of the MRM can produce their output by category.
v A category component has no reference relationships.
v A category component can have member relationships to one or more (child)

messages.

Element valid value component: The element valid value component defines
either a single value, or a range of values. One or more element valid value
components can be associated with an element, or with an element qualifier, or
both. One element valid value can define the default value of an element.

The message model

Chapter 3. Defining messages 41

v An element valid value component has a reference relationship to a type
component that defines the content of any element component to which the
value may apply. (In other words, a valid value of type STRING can only be
applied to an element of type STRING, or to its element qualifier.)

v An element valid value component has no member relationships.

Element qualifier component: An element qualifier component provides
additional information that qualifies the definition of an element component. An
element qualifier component can be associated with a specific element component
within a specific message component to qualify its use in that message component
only. For example, an element qualifier can specify that a specific element is
mandatory in a specific message, even though it is optional elsewhere.
v An element qualifier component has a required reference relationship to an

element component. The element qualifier component can be used to qualify the
use of its related element in a specific instance.

v An element qualifier component can have member relationships to zero or more
element valid value components, that must have the same type as the referenced
element. If valid values are present for an element qualifier in a message, they
apply to the related element within the specific message only (overriding those
defined for the element). One such element valid value can denote a default
value.

Figure 9 on page 43 shows all possible components of a message definition and
summarizes the relationships between them.

The message model

42 MQSeries Integrator Using the Control Center

Component identifiers and names
Each component of a message definition has an identifier and a name.

Component identifier
Identifies a component uniquely within a message set. No two components
in a message set can have the same identifier, and no two components of
the same class (for example, two elements or two categories) can have
identifiers that differ only by case. For example, you cannot define an
element with the identifier “ADDRESS” and an element with the identifier
“address” in the same message set.

In the case of element components, the element identifier is used in
application programs to access data values assigned to the element.

An identifier must begin within an alphabetic character. The remainder of
the value, up to a maximum of 254 characters, can contain alphanumeric,
underscore (_), and period (.) characters. Other characters, including space
characters, are not valid.

You cannot change the identifier of a component.

Component name
Is a descriptive name for a component. It is typically the full name of a

Figure 9. The components of a message

The message model

Chapter 3. Defining messages 43

component (for example, “Street Name” or “Account Number Length”), in
contrast to the component identifier, which is often an abbreviated name
and subject to environmental conventions.

You can change the name of a component (using the Rename action).

An example message definition
To illustrate the concepts introduced in this section, consider this example of a
simple message:

Some items to note about this message:
v The top-level elements HomeAddress and WorkAddress have the same

substructure, which you can define by creating a compound type component
called Address that contains the common elements Line, Country, and ZipCode.
The compound type Address would be referenced by the top-level elements
HomeAddress and WorkAddress.

v The elements Line, Country, and ZipCode all reference the simple type STRING,
which is created by default when a message set is created. These elements must
also reference an element length component.

If you create a message definition from the bottom up (that is, starting with the
lowest-level components and working up to the top of the hierarchy), you are
guaranteed to create a referenced component before you create the component that
contains the reference.

The components of our example AddressesMessage would be created in the
following order:
1. Simple type STRING (created by default when the message set is created)
2. Element length components, in any order:

a. Maximum Length 50
b. Maximum Length 20

The message model

44 MQSeries Integrator Using the Control Center

3. Element components, in any order:
a. Element Line, referencing simple type STRING and element length

Maximum Length 50.
b. Element Country, referencing simple type STRING and element length

Maximum Length 50.
c. Element Zip Code, referencing simple type STRING and element length

Maximum Length 20.
4. Compound type component Address, with member relationships to the

following child elements:
v Element component Line
v Element component Country
v Element component Zip Code

5. Element components, in any order:
a. Element Home Address, referencing compound type Address
b. Element Work Address, referencing compound type Address

6. Compound type component HomeAndWork, with member relationships to the
following child elements:
v Element Home Address
v Element Work Address

7. Message component AddressesMessage, referencing compound type
HomeAndWork.

Clearly, before you use the Control Center to define your messages, you need to
have done the data analysis that will enable you to create complete and accurate
definitions in an efficient manner.

For information about using the Control Center to define messages, see “Creating
messages” on page 56.

Message sets
A message set contains the definitions of one or more messages, plus the
definitions of the components that make up those messages. A typical message set
contains the definitions of all messages required by a single application. The
run-time message dictionary provided by the MRM to the run-time message
parsers contains definitions for all messages in a single message set.

In common with the components of a message, message sets must have a name.
They must also have a level number that identifies this version of the message set.
Message set properties, related to the data model layers, are described in “Message
set properties” on page 47.

The data model layers
So far, we have discussed the concepts underlying the MRM’s message model.
However, the message set contains additional “layers” of information that support
related MRM functions. These are:
v The documentation layer
v The C language layer
v The COBOL language layer
v The run-time layer
v The Custom Wire Format layer

These layers of information are visible to you in the Properties pane of the
Message Sets view, as described in “The Message Sets view” on page 53. They are
described in more detail in the following sections.

The message model

Chapter 3. Defining messages 45

The documentation layer
When you define each message component and each message set, you have the
opportunity to provide a short description or a long description, or both, of that
component or message set. You are recommended to use these description fields to
describe the business meaning of the object, and to record any business rules that
govern their use.

The documentation extractors of the MRM include this information in generated
documentation. For more information about generating documentation from the
MRM, see “Generating documentation” on page 73.

The C language layer
The MRM can generate C header files from the message definitions you create that
can be used in messaging applications developed in C language. You specify
values for properties of the components to support this function. These properties
are mandatory. Although you might never wish to generate language bindings, the
message set is incomplete if these properties are missing.

For the category component, you specify:

Category Header File Name
Provides the name of the header file into which structure definitions for all
messages in this category are generated.

Include in Main Header
Specifies whether this header file is included from the main header file for
the message set.

For the element component, you specify:

C Language Name
Provides the name used for this element as a field within C structure
definitions. By default, the element identifier is used.

For the type component, you specify:

C Language Name
Provides the name for the C structure definition that is generated for the
type. By default, the type identifier is used.

File Name
Provides a name for a header file to be generated containing a structure
definition for the type. This value is optional, and is not usually specified:
the structure definitions for type components appear only in the category
header files.

The COBOL language layer
The MRM can generate COBOL copy books from the message definitions you
create that can be used in messaging applications developed in COBOL language.
You specify values for properties of the components to support this function. These
properties are mandatory. Although you might never wish to generate language
bindings, the message set is incomplete if these properties are missing.

For the category component, you specify:

Category Copy Book Name
Provides the name of the copy book file into which structure definitions
for all messages in this category are generated.

The data model layers

46 MQSeries Integrator Using the Control Center

For the message component, you specify:

COBOL Language Name
Provides the name used for the COBOL structure definition that is
generated for the message. By default, the message identifier is used.

Message Copy Book Name
Provides the name of the copy book file into which the structure definition
for the message is generated.

For the element component, you specify:

COBOL Language Name
Provides the name used for this element as a field within COBOL structure
definitions. By default, the element identifier is used.

For the type component, you specify:

COBOL Language Name
Provides the name for the COBOL structure definition that is generated for
the type. By default, the type identifier is used.

Structure Copy Book Name
Provides a copy book file name into which the structure definition for the
type is generated.

The Custom Wire Format layer
The CWF layer defines additional information that is used to define the mapping
between logical messages and legacy message formats defined by applications that
use data structure features of languages such as C and COBOL to populate the
message structure. This information is used to produce a wire format descriptor
that can be used by a run-time message parser.

You specify some of the following properties for each element that is a child in a
type. For example, if the logical type is string, the physical type packed decimal is
not applicable. Similarly, if the logical type is float, and the physical type is
extended decimal, and the signed field is set to True, then the sign orientation field
is applicable. The properties that might be applicable are:
v Physical type
v Length (Count or Value Of)
v Signed and Sign Orientation
v Skip count
v Byte alignment
v String justification
v Padding character
v Virtual decimal point
v Repeat (Count or Value Of)

Message set properties
The properties of a message set are displayed on several tabs, displayed in the
Properties pane of the Message Sets view. The tabs are:

Basic tab (identified by message set name)
This tab defines basic properties for the message set. These are:

Level Is a numeric value that identifies the version of the message set. If
you are creating a second (or subsequent) version, you must set
this property to a value higher than the highest existing level
number.

The data model layers

Chapter 3. Defining messages 47

Finalized
Indicates if the message set has been finalized (true) or not (false).

Freeze Time Stamp
Indicates the date and time when the message set was frozen. If
this is not set, the message set has never been frozen.

Identifier
Is the identifier by which the message is known (used in addition
to its name). It is a unique value, and is automatically allocated
when the message set is created.

Base Message Set
Is the base message set from which this message set’s definition is
derived. All components defined in the base message set are also
defined in this message set.

C Language tab
The MRM can generate C header files from the message definitions you
create that can be used in messaging applications developed in C language.

This tab defines properties that identify names for header files generated
from this message set using the Message Sets —> Generate command
from the Control Center. These properties are mandatory.

Main Header File Name
Is the name of the generated header file that contains C structure
definitions of the messages in this message set.

Orphan Header File Name
Is the name of the generated header file that contains definitions of
C structures (types) that are not used by any message in this
message set.

COBOL Language tab
The MRM can generate COBOL copy books from the message definitions
you create that can be used in messaging applications developed in
COBOL language.

This tab defines the property Main Copy Book Name that identifies the
name of the main copy book generated from this message set by using the
Message Sets —> Generate command from the Control Center. These
properties are mandatory.

Custom Wire Format tab
The CWF defines additional information that is used to define the
mapping between logical messages and legacy message formats defined by
applications that use data structure features of languages such as C and
COBOL to populate the message structure. This information is used to
produce a wire format descriptor that can be used by a run-time message
parser.

The properties on this tab are:

Custom Wire Format Identifier
You are recommended to use the default value of CWF. You can
extend this identifier to eight characters if you choose, but the first
three characters must always be CWF. You cannot specify
embedded blanks or special characters.

Message set properties

48 MQSeries Integrator Using the Control Center

Byte Alignment Pad
This defines the default padding character used for this message
set. The default is 0.

Boolean True and False Values
Boolean True and False Values define the True and False values to
be used by every element of type Boolean in this message set. The
defaults are 00000001 and 00000000.

Boolean True and False Values must be the same length, and can
be between 1 and 4 bytes long. They must be defined in half-byte
values and you must specify an even number (to define a number
of whole bytes). For example, if you want your Boolean values to
be ASCII characters Y and N, you would enter the two characters
54 in the True field and the two characters 46 in the False field.

Run Time tab
Defines the property parser that identifies the message domain for this
message set, and therefore the parser that the broker invokes to interpret
the messages. Two options are available:
v MRM. This is the default and usual case.
v XML. You can set the domain and parser to XML if you want to define

the message set for easier manipulation and reference in the message
flows in which it is used (as described in “Predefined messages in the
MRM domain” on page 30.

Description tab
Includes a short description and a long description of the message set.
Both are optional properties.

When you define each message component and each message set, you
have the opportunity to provide a short description or a long description,
or both, of that component or message set. You are recommended to use
these description fields to describe the business meaning of the object, and
to record any business rules that govern their use.

The documentation extractors of the MRM include this information in
generated documentation. For more information about generating
documentation from the MRM, see “Generating documentation” on
page 73.

Message set states
The state of a message set varies in line with development, testing, and production
cycles.

The states of a message set are:

Normal
If a message set is not locked (checked out), frozen, or finalized, it is
considered to be in normal working state (but this state is not specified in
the view). It can be checked out, updated, and checked in. This state is not
explicitly stated in the Control Center: it is inferred by the message not
being locked, frozen, or finalized.

Note: When you create a new message set, it is automatically checked in,
then checked out, and you will see the key icon appear against the
new message set. A message set is never shown in new state (with

Message set properties

Chapter 3. Defining messages 49

the new icon against it). However, components of the message set
(for example, an element) do appear as new when they are first
created.

Locked
The state of a message set while it is checked out (locked) by a Control
Center user. A message set must be in this state before you can change any
of its properties. A message set must also be locked before you can freeze
it.

Frozen
The state of a message set that is not expected to change (for example, on
entry to a test phase). Neither the message set itself nor its contents can be
changed while it is in this state, nor can they be checked out. A message
set can be unfrozen by selecting Unfreeze if subsequent change is required.
Frozen state is indicated by the existence of a Freeze date in the message
properties.

An attempt to freeze a message set fails if any component of the message
set is checked out or if any of the message definitions it contains is
incomplete.

A message set must move to the frozen state from the locked state, and
both state changes must be requested by the same user.

Finalized
A message set and its components in this state cannot be changed or
checked out. Finalized state is indicated by the message property Finalized
set to true.

An attempt to finalize a message set fails if any component of the message
set is checked out or if any of the message definitions it contains is
incomplete.

A message set can move to the finalized state from any other state.
However, if it moves from the locked state to the finalized state, both state
changes must be requested by the same user.

Once a message set is finalized, no further changes can be made to its contents.
However, you can create a new message set based on the finalized message set,
within which you can define new messages. You can also make limited changes to
the existing messages in the new message set. For more information, see “Message
set versioning”.

Message set versioning
A message set can be based on another message set, provided that the message set
on which it is based has been finalized. You might want to use this facility to
maintain separate versions of a message set, reflecting the evolution of a message
set through maintenance and other fixes.

When a message set is based on another message set, it contains a copy of the
complete contents of the base message set. Within the new message set, new
messages can be defined, and limited modifications can be performed on existing
messages. A separate run-time dictionary is produced for the new message set.

A message set can have the same name as another message set in the same
message repository if:
v The new message set is based on the message set of the same name.

Message set properties

50 MQSeries Integrator Using the Control Center

v The message set on which it is based has a higher level number than any other
message set with the same name in the same repository.

v The level number of the new message set is higher than that of the message set
on which it is based.

Importing legacy formats
The MRM provides C and COBOL language importers, which you can use to help
you create a message set containing message definitions that originate from legacy
applications. Such applications are typically those that use C or COBOL data
structures to populate messages. The source code of those applications must be
available to the import function of the MRM.

The import function parses the source code files, isolates the data structure
definitions, and creates logical definitions that correspond to those data structures.
It also sets the appropriate CWF properties to define the mapping between the
logical definitions and the physical message format, as defined by the C or COBOL
data structures.

A compound type is created for each data structure, and elements and element
lengths are created for each field within the data structure. For more detailed
information about the way in which C and COBOL data structures are interpreted
by the MRM language importers, see “Appendix B. C and COBOL default
mappings” on page 271.

A report is generated by the import function that describes all the definitions that
have been created. It includes information about errors or conflicts within the
definitions. You can elect to produce this report without committing any changes
to the message set. You are recommended to do this and check the report before
running the complete import process.

When the import process is complete, you need only to create a message
component for each compound type that defines a complete message; all other
components are created automatically. However, you are recommended to review
your message definition, and edit it if necessary, to ensure that it meets your
needs.

See “Importing message definitions” on page 70 for details of how to import these
structures.

Note: You cannot import message sets created by another Control Center user into
your Control Center session. This function is only supported by the message
set import and export command (mqsimrmimpexp), which is described in
the MQSeries Integrator Administration Guide.

Generating MRM message set Document Type Descriptors
(DTDs)

A broker accesses a message set definition in a message dictionary (each message
set is deployed in a separate dictionary). Client applications cannot access message
dictionaries. They must use one of following two options for accessing the
definitions used by the broker.
v You can generate an XML Document Type Descriptor (DTD) from the message

set within the message repository. For information about this task, see
“Generating MRM message set definitions in XML DTDs” on page 71.

Message set properties

Chapter 3. Defining messages 51

v If you have created the MRM definitions by importing C or COBOL data
structures, your applications can continue to use those data structures. For
information about importing, see “Importing message definitions” on page 70.

Authorization to work with Messages
To perform any of the tasks described in this chapter, you must:
v Have the correct Control Center user role, which can be one of:

– Message flow and message set developer

– All roles

For information about setting your user role, see “Setting user roles” on page 13.
v Be a member of the MQSeries Integrator group mqbrdevt

Generating MRM DTDs

52 MQSeries Integrator Using the Control Center

The Message Sets view
The Message Sets view is the Control Center interface to the MRM. To display the
Message Sets view, click the Message Sets tab in the Control Center. Figure 10
shows an example of the Message Sets view.

When you click on the plus sign (+) to the left of a message set folder, the contents
of the folder are displayed. Each message set folder contains an entry for each of
the seven message components. When you create new components within the
message set, they appear under the relevant component entry. For example, if you
create an element, it appears under the Elements folder within the message set.
New components have the New icon against them.

Figure 10. The Message Sets view. The left-hand pane, the Message Sets pane, shows a
tree view of the message sets in your workspace. The right-hand pane, the Properties pane,
displays the properties of the currently selected entry in the Message Sets pane.

The Message Sets view

Chapter 3. Defining messages 53

Creating message sets
To create a new message set:
1. In the Message Sets pane, right click the Message Sets root and click Create

—> Message Set.
The Create a new Message Set dialog is displayed, as shown in Figure 11.

2. Complete the fields on the initial panel:
v In the Name field, type a name for this new message set. This must follow

the naming rules described in “Naming Control Center resources” on
page 20. Enter the name ’Consolidated Message Set’ or another name of your
choice.

v Specify a level number if appropriate. For information about setting the level
of a message set, see “Message set versioning” on page 50.

v This is a new message set, so the Finalized and Freeze Time Stamp fields can
be ignored.

v If the message set is to be based on another, finalized message set, select that
message set from the Base Message Set drop-down list. This list shows
message sets in your workspace, including those for the standard MQSeries
headers, which are provided by MQSeries Integrator.

3. Click the Run Time tab.
Select the message parser for messages belonging to this set from the
drop-down list. The default is MRM: you can also select XML. For more
information about tihs property, see “Message set properties” on page 47.

4. Click the C Language tab and complete the Main Header File Name and
Orphan Header File Name fields. The defaults for these are CSTRUCTS.H and
ORPHANS.H. You can overtype these defaults if you choose. These properties

3. Alternatively, you can click the Message Sets menu in the taskbar and click Create —> Message Set.

Figure 11. The Create a new Message Set dialog

Creating message sets

54 MQSeries Integrator Using the Control Center

are mandatory, and are used when you generate C language header files from
this message set. For information about these fields, see “Message set
properties” on page 47.

5. Click the COBOL Language tab and specify a name for the copy book in the
Main Copy Book Name field. The default is MAINBOOK.COPY. You can
overtype this default if you choose. These properties are mandatory, and are
used when you generate COBOL language header files from this message set.
For information about this field, see “Message set properties” on page 47.

6. If this message set is to contain legacy messages (for example, if message
definitions are to be imported into this message set), you need to specify the
CWF values.
Click the Custom Wire Format tab. The default Custom Wire Format Identifier
is CWF. You are recommended to use this default value. If you choose the
change this value, you must set a value of 8 characters or less, and the first
three characters must be CWF. For more information about the CWF values, see
“Message set properties” on page 47.

7. If you want to provide a description of this message set, click the Description
tab. Any description text you provide here is included in documentation
generated by the MRM, as described in “Message set properties” on page 47.
Type a short description, or a long description, or both.

8. Click Finish to complete the definition of this message set.

A locked entry appears under Message Sets root in the Message Sets pane. When
the new message set entry is highlighted in the Message Sets pane, its properties
appear in the Properties pane. Notice that an identifier for the new message set has
been generated automatically by the MRM.

When you are ready to share a new message set with other Control Center users,
you check it into the shared configuration. You can do this before the message set
contains any message definitions, if you wish. For more information about
checking in message sets, see “Checking in and checking out message sets” on
page 79.

Now that you have defined a message set, you are ready to define the messages
that will belong to it, as described in “Creating messages” on page 56.

Creating message sets

Chapter 3. Defining messages 55

Creating messages
This section describes how to create a message, using the message illustrated in
Figure 12 to illustrate the process. The Control Center also provides a SmartGuide
for message creation, that handles simpler message formats and makes the task of
creating them easier. For details of the SmartGuide, see “Using the SmartGuide to
create messages” on page 65.

You will work with the message set ’Consolidated Message Set’. Within this
message set, you will create a message named ’Grocery Receipt’, of the type
’Transaction Log’. When you have created the message, you will add it to the
category ’Store Receipts’. It is assumed you have already created the message set,
and have checked this out of the message repository (that is, the message set is
displayed with the Key icon against it).

Figure 13 on page 57 shows the Message Sets view populated with this message
and message set. This is the setup you will create if you complete the following
message creation instructions.

Grocery Receipt (TransactionLog)
Store Details

Store Name (STRING, Length 20, Fixed Length, Left Justified,
Padding character Space)

Branch No. (INTEGER, Extended Decimal, Length 8,
Unsigned 30000000 - 39999999)

Cashier No. (INTEGER, Extended Decimal, Length 3,
Unsigned 000 - 500)

Till No. (INTEGER, Extended Decimal, Length 8,
Unsigned 700 - 799)

Purchase (Can have up to 15 purchases on one transaction
log)

Item Name (STRING, Length 40, Fixed Length, Left Justified,
Padding character Space)

Item Code (STRING, Length 20, Fixed Length, Left Justified,
Padding character Space)

Item Price (FLOAT, Packed Decimal, Length=4, Signed, VDP=2)
Item Quantity (INTEGER, Packed Decimal, Length=2, Signed)

Totals
Total Items (INTEGER, Packed Decimal, Length=5, Signed)
Multibuy (STRING, Length 5, Fixed Length, Left Justified,

Padding character Space)
Total Sales (FLOAT, Packed Decimal, Length=6, Signed, VDP=2)

Figure 12. Creating a message - sample message

Creating messages

56 MQSeries Integrator Using the Control Center

These instructions demonstrate how to create a message definition from the bottom
up (that is, starting with the lowest-level elements and working towards the top of
the message hierarchy). All of these tasks are performed in the context of a single
message set.

To define this message:
1. Define element length components for all STRING elements.

a. In the Message Sets pane, right click the entry of the message set
Consolidated Message Set and select Create —> Length.
The Create a new Length dialog is displayed.

b. In the Create a new Length dialog, type String Length 5 in the Name field;
type StrLen5 in the Identifier field; and type 5 in the Maximum Length
field.

c. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

d. Click Finish to complete the definition of this element length component.
An entry for this new element length component appears in the Element
lengths folder in the message set Receipts.

Repeat this procedure for the String Length 20 and String Length 40 element
length components.

Figure 13. A message defined in the Message Sets view

Creating messages

Chapter 3. Defining messages 57

2. Define element valid value components for the Branch No., Cashier No., and
Till No. elements.
a. In the Message Sets pane, right click the entry of the message set and select

Create —> Element Valid Value.
The Create a new Element Valid Value dialog is displayed.

b. In the Create a new Element Valid Value dialog, type Cashier No. Limits in
the Name field; type Cashier_VV in the Identifier field; select type
INTEGER from the Type drop-down list; type 000 in the Minimum Value
field; and type 500 in the Maximum Value field.

c. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

d. Click Finish to complete the definition of this element valid value
component.
An entry for this new element valid value component appears in the
Element valid values folder in the Message Sets pane.

Repeat this procedure for Branch No. Limits, specifying the identifier
Branch_VV, minimum value 30000000, and maximum value 39999999. Repeat
this procedure for Till No. Limits, specifying the identifier Till_VV, minimum
value 700, and maximum value 799.

3. Create all elements of simple type.
a. In the Message Sets pane, right click the entry of the message set and select

Create —> Element.
The Create a new Element dialog is displayed, as shown in Figure 14.

b. In the Create a new Element dialog, type Store Name in the Name field;
type StoreName in the Identifier field; and select type STRING from the
Type drop-down list.

c. Click the C Language tab and enter a C name for this element in the C
Language Name field. This property is mandatory and is used when you
include this element in a C language structure generated from the message
repository.

Figure 14. The Create a new Element dialog

Creating messages

58 MQSeries Integrator Using the Control Center

d. Click the COBOL Language tab and enter a COBOL name for this element
in the COBOL Language Name field. This property is mandatory and is
used when you include this element in a COBOL language structure
generated from the message repository.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this element component.
An entry for this new element component appears in the Elements folder of
the Receipts message set.

Repeat this process for the remaining elements of simple type:

Name Identifier Type

Branch No. BranchNo INTEGER

Cashier No. CashierNo INTEGER

Till No. TillNo INTEGER

Item Name ItemName STRING

Item Code ItemCode STRING

Item Price ItemPrice FLOAT

Item Quantity ItemQty INTEGER

Total Items TotalItems INTEGER

Multibuy Multibuy STRING

Total Sales TotalSales FLOAT

4. Add a length reference to elements of type STRING.
a. In the Message Sets pane, right click the entry for the Store Name element

in the Elements folder of the message set. Click Add —> Length.
The Add an existing Length dialog is displayed.

b. From the list of element length components in the Add an existing Length
dialog, select String Length 20. Click Finish.
An entry for the String Length 20 component appears under the Store
Name entry in the Elements folder.

Repeat this procedure for the elements Item Name (String Length 40), Item
Code (String Length 20), and Multibuy (String Length 5).

5. Add a valid value reference to elements Branch No., Cashier No., and Till No.:
a. In the Message Sets pane, right click the entry for Branch No. in the

Elements folder, and click Add —> Element Valid Value.
The Add an existing Element Valid Value dialog is displayed.

b. From the list of element valid value components in the Add an existing
Element Valid Value dialog, select Branch No. Limits. Click Finish.
An entry for Branch_VV appears beneath the Branch No. entry in the
Elements folder.

Repeat this procedure for Cashier No. (Cashier No. Limits) and Till No. (Till
No. Limits).

6. Create the compound types Store Details Type, Purchase Type, and Totals Type.
a. In the Message Sets pane, right click the entry of the message set and click

Create —> Compound Type.
The Create a new Compound Type dialog is displayed.

Creating messages

Chapter 3. Defining messages 59

b. In the Name field enter Store Details Type, and in the Identifier field enter
StoreDetsType.

c. Click the C Language tab and enter a C name for this element in the C
Language Name field. This property is mandatory and is used when you
include this element in a C language structure generated from the message
repository. Type the file name in the File Name field.

d. Click the COBOL Language tab and enter a COBOL name for this element
in the COBOL Language Name field. This property is mandatory and is
used when you include this element in a COBOL language structure
generated from the message repository. Type a copy book name in the
Structure Copy Book Name field.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this compound type component.
The new compound type appears in the Types folder of the Receipts
message set.

Repeat this process for the compound types Purchase Type and Totals Type.
7. Create the elements Store Details, Purchase, and Totals.

a. In the Message Sets pane, right click the entry of the message set and select
Create —> Element.
The Create a new Element dialog is displayed, as shown in Figure 14 on
page 58 .

b. In the Create a new Element dialog, type Store Details in the Name field;
type StoreDets in the Identifier field; and select type Store Details Type
from the Type drop-down list.

c. Click the C Language tab and enter a C name for this element in the C
Language Name field. This property is mandatory and is used when you
include this element in a C language structure generated from the message
repository.

d. Click the COBOL Language tab and enter a COBOL name for this element
in the COBOL Language Name field. This property is mandatory and is
used when you include this element in a COBOL language structure
generated from the message repository.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this element component.
An entry for this new element component appears in the Elements folder of
the Receipts message set.

Repeat this procedure for the elements Purchase and Totals.
8. Add child elements to elements Store Details, Purchase, and Totals.

a. Right click the element Store Details in the Messages Pane. Click Add —>
Element.
The Add an existing Element dialog is displayed, showing all elements in
your workspace.

b. Hold down the Ctrl key and select the elements Store Name, Branch No.,
Cashier No., and Till No. from this list. Click Finish.
The selected elements appear under the entry Store Details in the Elements
folder.

Repeat this procedure to populate the Purchase and Totals elements.

Creating messages

60 MQSeries Integrator Using the Control Center

9. To change the order of the child elements in an element, right click the parent
element entry in the Messages Pane, and click Reorder —> Element. Change
the order of the displayed elements, and click Finish.
The reordered elements appear in their new order under the entry for the
parent element.

10. Add the CWF characteristics to the child elements in each compound type.
a. Type Purchase must be checked out.
b. In the Types folder, expand the Purchase entry and click the child Item

Name to select it.
c. Click the Custom Wire Format tab in the Properties pane. The contents of

the tab are shown in Figure 15
In the Length field enter 40, and in the Padding Character field type the
word Space.
Click the Apply bar at the bottom of the Properties pane.

d. In the Types folder, expand the Purchase entry and click the child Item
Price to select it.

e. Click the Custom Wire Format tab in the Properties pane.
In the Physical type field, select the type Packed decimal. In the Length
field, type 4. In the Signed field, type Yes. In the VDP field, type 2.
Click the Apply bar at the bottom of the Properties pane.

Follow this procedure for the child elements of the compound types Store
Details and Totals, and for the remaining child elements in compound type
Purchase.

Figure 15. The Custom Wire Format tab

Creating messages

Chapter 3. Defining messages 61

Note: The CWF characteristics do not belong to an element in isolation. They
belong to an element in its context within a type.

Check in any compound types and child elements that are checked out.
11. Create the compound type Transaction Log Type.

a. In the Message Sets pane, right click the entry of the Receipts message set
and click Create —> Compound Type.
The Create a new Compound Type dialog is displayed.

b. In the Name field enter Transaction Log Type, and in the Identifier field,
enter TransLogType.

c. Click the C Language tab and enter a C name for this type in the C
Language Name field. This property is mandatory and is used when you
include this type in a C language structure generated from the message
repository. Type the file name in the File Name field.

d. Click the COBOL Language tab and enter a COBOL name for this type in
the COBOL Language Name field. This property is mandatory and is used
when you include this type in a COBOL language structure generated from
the message repository. Type a copy book name in the Structure Copy
Book Name field.

e. If you want to provide a description of this component, click the
Description tab. Type a short description, or a long description, or both.

f. Click Finish to complete the definition of this compound type component.

The new compound type appears in the Types folder of the Receipts message
set.

12. Add elements to type Transaction Log.
a. Right click the entry for the Transaction Log type in the Types folder of the

message set Consolidated Message Set. Click Add —> Element.
The Add an existing Element dialog is displayed, showing all elements in
your workspace.

b. Hold down the Ctrl key and select the elements Store Details, Purchase,
and Totals from this list. Click Finish.

The selected elements appear under the entry Transaction Log in the Types
folder of the Consolidated Message Set message set.

13. To change the order of the child elements in a type, right click the Transaction
Log type entry in the Types folder of the message set Consolidated Message
Set, and click Reorder —> Element. Change the order of the displayed
elements to that shown in Figure 12 on page 56, and click Finish.
The reordered elements appear in their new order under the entry for the
parent element.

14. Add repeat information to child element Purchase in the compound type
Transaction Log.
a. Type Transaction Log must be checked out.
b. In the Types folder, expand the entry Transaction Log and click the child

Purchase to select it.
c. Click the Connection tab in the Properties pane.

In the Repeat field, type Yes. Click the Apply bar at the bottom of the
Properties pane.

d. Click the Custom Wire Format tab in the Properties pane.
In the Repeat Count field, type 15. This is illustrated in Figure 16 on
page 63. Click the Apply bar at the bottom of the Properties pane.

Creating messages

62 MQSeries Integrator Using the Control Center

e. Check in Transaction Log.

Note: The repeat information does not belong to an element in isolation. It
belongs to an element in its context within a type.

15. Create the message component Grocery Receipt.
a. In the Message Sets pane, right click the entry of the message set and

select Create —> Message.
The Create a new Message dialog is displayed.

b. In the Name field, enter Grocery Receipt. In the Identifier field, enter
GroceryReceipt. From the Type field drop-down list, select the value
Transaction Log Type. Click Finish.

The new message appears in the Messages folder of the Receipts message sets.
16. Create a message category.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Category to define the message category.
The Create a new Category dialog is displayed.

b. In the Name field, enter Store Receipts. In the Identifier field, enter
StoreReceipts. Click OK.

The new category appears in the Categories folder in the Message Sets pane.
17. Add the message Grocery Receipt to the category Store Receipts.

a. Right click the category element in the Message Pane. Click Add —>
Message.
The Add an existing Message dialog is displayed, showing all messages in
your workspace.

Figure 16. Setting up repeating fields

Creating messages

Chapter 3. Defining messages 63

b. Select the message Grocery Receipt. Click Finish.

The selected message appears under the entry for category Store Receipts in
the Receipts message set.

18. The Multibuy element is optional: it is included only when the customer earns
a discount by purchasing a specified multiple of any item. To specify that the
element is optional:
a. Highlight the Multibuy element in the Totals compound element of the

Receipts message set so that its properties are displayed in the Properties
pane.

b. Click the Connection tab in the Properties pane. Set the Mandatory field to
No.

c. Click the Apply bar at the bottom of the Properties pane to apply the
change.

Other types of message could be added to this category within this message set.
For example, messages describing receipts from clothing stores or from book stores
could be added to the category Store Receipts. The messages themselves could be
constructed using many of the message components defined for the message
Grocery Receipt.

For a further example of defining messages to the message repository, see
Appendix A. An example scenario (section “Defining the message in the message
repository” on page 243).

When you are ready to share a new message set with other Control Center users,
you check it into the shared configuration. You must also check in the components
you have created within the message set, for example, the messages, elements, and
compound types you have created to complete the message set. For more
information about checking in message sets, see “Checking in and checking out
message sets” on page 79.

Creating messages

64 MQSeries Integrator Using the Control Center

Using the SmartGuide to create messages
The MQSeries Integrator Control Center includes a SmartGuide that you can use to
create messages from the top down. The SmartGuide also allows you to create
compound types, and lets you specify that the compound type created is itself
created as a message.

The SmartGuide provides a faster method of defining messages than the process
described in “Creating messages” on page 56, not least because it assumes that all
the building blocks of the message or compound type are available and do not
have to be defined.

The SmartGuide also allows you to reorder elements within the message or
compound type you are creating: this makes it easier to view and check the order
of elements while you complete the message or compound type structure.

The process for defining a message and defining a compound type are almost
identical: this process is described below.
v To create a compound type using the SmartGuide:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set you want to add definitions to and click Create with
SmartGuide —> Compound Type.
The Create a new Compound Type dialog is displayed, as shown in
Figure 17.

2. Complete the dialog:
a. In the Name field, enter the name for this new compound type.
b. From the Element drop-down list, select an element to add to the

compound type. If you want to create a new element, type the name of
the new element in the list box. If you select an existing element from the
list, the Type and Length fields are disabled (because you cannot change
these values for a defined element).

Figure 17. Create a new Compound Type using the SmartGuide

Using the SmartGuide to create messages

Chapter 3. Defining messages 65

c. From the Type drop-down list, select a type for the element.
d. If you select the STRING type, the Length field is enabled. You can select

a length value from the drop-down list, or you can enter a new numeric
value (for example, 25). The value you enter becomes the name as well as
the value of the length.

e. Click Add.
f. Repeat this selection process for additional elements that you want to add

to this compound type. To delete any element you have defined, select the
element and click Delete.

g. You can reorder the elements you have defined in the compound type by
highlighting the element, and using the up and down buttons to move
the element to where you want it in the structure.

h. Select the Create as message check box if you want this entire compound
type to be a created as a message.

i. Click Finish. The compound type you have created is now included in the
Types folder of the message set. It has been given an identifier of t_
followed by the name you gave the type. For example, if the name of the
type you created is ctype1, the identifier assigned for you is t_ctype1.
Similarly, any elements you have created are given an identifier of e_
followed by the name of the element (for example, e_element1) and the
length values you create are given an identifier of l_ followed by the
length value (for example, _33).
Note that any elements and lengths you create within the new compound
type are not automatically added to the elements and element lengths
folders in the message set, but you can add them if you want to.

The new compound type is added to the Types folder of the message set.
v To create a message using the SmartGuide, use the same procedure as that

described above for a Compound Type. Click Create with SmartGuide —>
Message from the message set actions list, and complete the Create a new
Message dialog. (The only difference between the two dialogs is that the Create
as message check box is not included in the Create a new Message dialog.)

Using the SmartGuide to create messages

66 MQSeries Integrator Using the Control Center

Working with message sets
You can use the following actions on message sets or components:
v Copy and Paste

– Copy and Paste within a message set
When you copy and paste within a container (folder or a parent component),
an exact renamed copy of the component is created. Only the parent
component is renamed (and a new uuid is created). If the parent has any
child component, these are not renamed: all references to child components
(the uuids) remain the same.
If you copy and paste across containers, a reference to the copied component
is pasted into the target component. However, if a reference to the copied
component already exists in the target component, a new, renamed copy of
the source component is created and a reference to it is added to the target
component. The renamed component takes a name that is not already used
by another component occurring under the collection folder.
For example, if the Elements folder includes e1, copy and paste e1 from
compound type T1 to itself creates a new element e1_1. If the Elements folder
has e1 and e1_1 under it, copy and paste e1 from T1 to T2 where T2 has no
children results in e1 as a reference. If you paste e1 again under T2, then a
new e1_2 is created.

– Copy and paste between two message sets
If you copy and paste a parent component from one message set to another,
and the identifier of the parent already exists within the target message set,
you are presented with a message dialog that indicates that the component
already exists and the paste is not allowed.
Child components or references of the copied parent component are also
copied across if they do not already exist within the target message set. If
they do already exist, references to these existing components are used.
However, this could result in a copied component differing from the source
component (because child components or references have the same identifier
but are not structurally the same). If this happens, you are presented with a
message dialog warning you that existing referenced components already
exist in the target message set will be used and not overwritten.
There is no link between the copied components in the target message set and
the source message set components. All copied components appear as if
newly created in the target message set.

– Copy and Paste of complete message sets
This function is not available through the Control Center: you must use the
command mqsimrmcopymsgset to perform this task. This command creates a
second message set with a unique name that is identical in every way to the
first message set. When the copy has completed, you must restart both the
Control Center and the Configuration Manager. The new message set is then
available in the message repository and you can add it to your workspace for
update and assignment.
For further details of this command, see the MQSeries Integrator Administration
Guide.

v Reorder
The reorder action is only supported for compound types. Right click the
compound type you want to reorder, and select Reorder->Element. The Reorder
Elements SmartGuide is displayed listing the elements defined within the
compound type. You can move these elements up or down to change the order

Working with messages sets

Chapter 3. Defining messages 67

as you choose. You cannot add new elements using this option. You cannot
reorder external elements (those with the global icon).
Press Finish to confirm you new order: the new order is reflected in the tree in
the left hand pane.
You can use this action if you want to reorder elements to change the rules that
apply when the CWF attributes are set.

v Undo
The undo action for message sets is consistent with undo across the Control
Center, but you are unable to undo the following actions:
– Deleting a message set
– Deleting a compound type
– Deleting an element

Working with messages sets

68 MQSeries Integrator Using the Control Center

Adding message sets and message components to the
workspace

You can add any message set or component that is defined in the message
repository to your workspace. The message repository includes all objects defined
by current users of the Control Center, and all objects imported into the message
repository through the use of the mqsimrmimpexp command. To add an existing
message set to the workspace:
1. In the Message Sets pane, right click the Message Sets root.
2. Click Add to Workspace—> Message Set.

The Add an existing Message Set dialog is displayed, showing all message sets
that you can add to your workspace (and that aren’t already in the workspace).

3. Select message sets from this list as follows:
v To select a single message set, click the message set name.
v To select multiple message sets that appear sequentially in the list, click on

the first message set you want, press and hold the Shift key, then click on the
last message set you want. This action selects the two message sets you
highlighted, plus any that appear between these two in the list.

v To select multiple message sets that do not appear in a sequence in the list,
hold down Ctrl and click each message set you want.

4. When you have selected the message sets you want, click Finish.

You now see the selected message sets in the Message Sets view. All of the
components of the message set (messages, elements, and so on) are now available
to your workspace, but are not automatically added. This is because message sets
can be very complex, and it is likely that you do not need to view or access many
of the subcomponents. If you add large numbers of components to the workspace,
this can cause slow response times and out-of-memory problems.

You can add just those components that you want to work with, or view, by
selecting the appropriate folder and adding the components when and as you need
them.

For example, to add an element to your workspace:
1. Right click the Element folder of the message set to which you want to make

the element available, and click Add to Workspace —> Element.
The Add an existing Element dialog is displayed, showing all elements that
you can add, that is, all the elements that are defined in the message set.

2. Select one or more elements from the list:
v To select a single element, click the element name.
v To select multiple elements that appear sequentially in the list, click on the

first element you want, press and hold the Shift key, then click on the last
element you want. This action selects the two message sets you highlighted,
plus any that appear between these two in the list.

v To select multiple elements that do not appear in a sequence in the list, hold
down Ctrl and click each element set you want.

The selected elements are added to the Elements folder of the appropriate
message set in the Message Sets pane.

You can add categories, element qualifiers, element lengths, messages, types, and
element valid values to your workspace in the same way.

Adding message sets to the workspace

Chapter 3. Defining messages 69

Importing message definitions
Legacy definitions can be imported into the message repository, as described in
“Importing legacy formats” on page 51.

To import a message definition:
1. In the Message Sets pane of the Message Sets view, right click the message set

into which you want to import the definition and click Import to Message Set
—> C or Import to Message Set —> COBOL. The action is also available if
you select Message Sets from the task bar and click Import to Message Set —>
C or Import to Message Set —> COBOL.
The C Language Importer dialog or COBOL Language Importer dialog is
displayed.

2. Type the fully qualified name of the source file you are importing in the Import
Source File field, or use the Browse button to search for and select the file you
want to import. If you want only to generate a report at this time, select the
Report only check box. Click OK.

This process imports the specified structures and creates definitions as a new
message set in the message repository. To complete the process, you must create a
message component for each of the compound types that define a complete
message, as described in step 15 on page 63. You do not need to create any other
message component.

Note: You cannot import message sets created by another Control Center user into
your Control Center session. This function is only supported by the message
set import and export command (mqsimrmimpexp), which is described in
the MQSeries Integrator Administration Guide.

Importing message definitions

70 MQSeries Integrator Using the Control Center

Generating MRM message set definitions in XML DTDs
If you have defined messages with an XML message format in the message
repository, you can request a Document Type Descriptor (DTD) to be generated by
the MRM.

To generate a DTD:
1. In the Message Sets pane of the Message Sets view, right click the folder of the

message set for which you want to generate the DTD. Click Generate —>
DTD.
The Generate DTD dialog is displayed.

2. In the Generate DTD dialog, enter the name of the DTD file in the DTD
Filename field. Click Start.

The DTD for this message set is generated as requested and written to the
specified location.

Generating MRM message set DTDs

Chapter 3. Defining messages 71

Generating language bindings
You can generate C or COBOL language bindings from message definitions you
have created using the Control Center:

To generate C language bindings:
1. In the Message Sets pane of the Message Sets view, right click the folder of the

message set for which you want to generate language bindings. Click Generate
—> Language Bindings —> C.
The C Language Extractor dialog is displayed.

2. In the C Language Extractor dialog, enter the fully qualified name of the
directory of the generated file in the Generated File Location field. If you want
to freeze the message set at this time, select the Freeze Message Set check box.
(If the message set is already finalized, you cannot select this check box.)
The categories defined in this message set are listed in the Categories field. You
can select a subset of these for inclusion in the language bindings. Alternatively,
to include them all, select the Select All check box.
You must select at least one category for successful generation of language
bindings. If no category is listed in this dialog, you must create one.

3. Click Start.
The requested language bindings are generated and written to the specified
location.

The process for generating COBOL bindings is identical.

Generating language bindings

72 MQSeries Integrator Using the Control Center

Generating documentation
You can generate the following documentation in HTML format from the message
repository:
v A message book, which contains an entry for each message in a message set or

specified category, showing its hierarchical structure.
v A glossary, which contains descriptions of all elements in a message set or

specified category, ordered alphabetically by name.

To generate a message book:
1. In the Message Sets pane of the Message Sets view, right click the folder of the

message set or message category for which you want to generate
documentation.

2. Click Generate —> Documentation —> Message Book.
The Message Definition Book dialog is displayed.

3. In the Message Definition Book dialog, type the fully qualified name of the
generated documentation file in the Generated File Location field. This file
must be created on the system on which the Configuration Manager is running,
not on the local system.
If you want to freeze the message set at this time, select the Freeze Message Set
check box. (If the message set is already finalized, you cannot select this check
box.)
You can generate documentation based on categories or messages. The
categories or messages (depending on which you select) defined in this
message set are listed in the Categories or Messages field. You can select a
subset of these for inclusion in the language bindings. Alternatively, to include
them all, select the Select All check box.
You must select at least one category or one message for successful generation
of documentation. If there is no category listed, you must create one.

4. Click Start.

The Message Book is generated and written to the specified location: the file
MRM-MAIN.HTML is created, along with a subdirectory named Private. This
subdirectory contains a large number of files, for example, image files and indexes.

The description of each element within each compound type included in the
Message Book indicates whether the element is mandatory or optional. There are
four possible settings:
1. The element can be Optional.

This value is set if the element is optional within its type.
2. The element can be Mandatory if parent present.

This value is set if the element is mandatory within its type.
3. The element can be Always Mandatory.

This is set if the element is associated with a context tag and that context tag is
mandatory within the message for which the documentation has been created.
This setting overrides the values Optional and Mandatory if parent present.
If the element is associated with a context tag and that context tag is optional
within the message, the current setting of Optional or Mandatory if parent
present is not overridden.

4. The element can be Implied Mandatory.

Generating documentation

Chapter 3. Defining messages 73

This value is set if one of its descendants has been given the value Always
Mandatory. This value will override the value set for the element in isolation
unless the element itself has the Always Mandatory value.

Repeating elements are indicated by the characters *** after the element name.

To generate a glossary:
1. In the Message Sets pane of the Message Sets view, right click the folder of the

message set or message category for which you want to generate
documentation.

2. Click Generate —> Documentation —> Glossary from the action list of the
message set.
The Glossary dialog is displayed.
This dialog is identical to the Message Definition Book dialog, except that
only categories are available.

3. Complete the dialog and click Start.

The Glossary is generated and written to the specified location: the file
MAINGLOS.HTML is created, along with a subdirectory named Private. This
subdirectory contains a large number of files, for example, html files.

Generating documentation

74 MQSeries Integrator Using the Control Center

Editing message sets and components
You can edit the properties of message sets and components. You can also edit the
relationships between components (for example, you can remove an element from
a compound element), and you can delete components or remove them from the
workspace.

All properties you can edit are displayed in the Properties pane of the Message
Sets view. For example, if you highlight an element in the Message Sets pane, its
properties, including those you can edit, are displayed in the Properties pane.
When you change the value of a property, you click the Apply bar at the bottom of
the Properties pane to make the change take effect.

An individual message component can be removed from the workspace or deleted
from the shared configuration. For example, to remove an element from the
workspace, right click the element in the Messages Pane and click Remove. Note,
however, that whether a component is checked out dictates whether you can edit
its properties, remove it from the workspace, or delete it, as does the check-out
status of any related component. Table 1 summarizes the available edit actions and
shows for each action:
v Which component needs to be checked out
v What happens when you make the change

Table 1. Editing relationships and properties: check-out requirements

If you want to: You must check out: Then:

Edit the basic
properties of a
component

The component you
want to edit

You can edit the component and check it back in

Edit the connection
tab of a child element

The compound type
that is the parent of
the element

You can edit the connection tab then check the parent back in.

Edit the CWF of a
child element

The compound type
that is the parent of
the element

You can edit the CWF tab then check the parent back in.

Edit the C language
tab, COBOL language
tab, or Description tab
of a component

The component you
want to edit

You can edit all three tabs. The name is C-validated or COBOL
validated by the Control Center; you cannot click Apply if they are
invalid. If they are valid, you can check the component back in.

Edit an element
qualifier assignment

The associated
message

You can edit the message then check it back in.

Delete an element
length from the
Element Lengths
folder

Nothing If nobody has the element length checked out, and if no string
element depends on the element length, the element length is
deleted from the shared repository. Otherwise, you get an error
message and are not allowed to delete the element length.

Remove an element
length from the
Element Lengths
folder.

Check-out status is
not significant

The element length is removed from the workspace and there is no
change in the shared repository. The element length can be added
to the workspace again.

Delete a compound
type from the Types
folder

Nothing If any user has an element or a message of this type checked out,
or if any user has this type checked out. you get an error message
and are not allowed to delete. Otherwise, the type is deleted and all
elements of this type are also deleted throughout the message set.

Remove a compound
type from the Types
folder

Check-out status is
not significant

The type and its children are removed from the workspace under
the Types folder. Nothing else is affected. The compound type can
be added to the workspace again.

Editing message sets and components

Chapter 3. Defining messages 75

Table 1. Editing relationships and properties: check-out requirements (continued)

If you want to: You must check out: Then:

Remove a simple type
from the Types folder

Nothing The type is removed from the workspace under the Types folder.
Nothing else is affected. The simple type can be added to the
workspace again.

Remove a child
simple element from a
type in the Types
folder

The type from which
you will remove the
element

The child is deleted from the type. When you check the type in, it
is updated in the shared repository, but the child element continues
to exist. Other types that contain the element as a child are not
affected.

Delete a child simple
element from a type
in the Types folder

Nothing If nobody has the child simple element checked out and if nobody
has any type or element qualifier that is a parent of the simple
element checked out, the element is deleted from the shared
repository and all the types that previously used it as a child are
updated. Otherwise, an error message is issued and you are not
allowed to perform the delete.

Delete a child
compound element
from a type in the
Types folder

Nothing If nobody has the child compound element checked out and if
nobody has any type or element qualifier that is a parent of the
compound element checked out, the element is deleted from the
shared repository and all the types that previously used it as a
child are updated. Otherwise, an error message is issued and you
are not allowed to perform the delete.

Remove a child
compound element
from a type in the
Types folder

The type from which
you will remove the
element

The child is deleted from the type and, on check in, the type is
updated in the shared repository but the child element continues to
exist. Other types that contain the element as a child are unaffected.

Delete a simple
element from the
Elements folder

Nothing If nobody has the element checked out, and if nobody has any type
or element qualifier that is a parent of the element checked out, the
element is deleted from the shared repository and all the types that
previously used it as a child are updated. Otherwise, an error
message is issued and you are not allowed to perform the delete.

Remove a simple
element from the
Elements folder

Check-out status is
not significant

The element is removed from the workspace under the Elements
folder. Nothing else is affected. The element can be added to the
workspace again.

Delete a top-level
compound element in
the Elements folder

Nothing If nobody has the element checked out, and if nobody has any type
or element qualifier that is a parent of the element checked out, the
element is deleted from the shared repository, and all the types that
used the element as a child are updated. Otherwise, an error
message is issued and you are not allowed to perform the delete.

Remove a top-level
compound element in
the Elements folder

Check-out status is
not significant.

The element and its children are removed from the workspace
under the Elements folder. Nothing else is affected. The compound
element can be added to the workspace again.

In the Elements folder,
alter a compound
element by deleting a
child simple element

Nothing If nobody has the child element checked out; and if nobody has any
type or element qualifier that is a parent of the element checked
out; and if nobody has the type of the compound element checked
out; the element is deleted from the shared repository, and all the
types that previously used the element as a child are updated.
Otherwise, an error message is issued and you are not allowed to
perform the delete.

In the Elements folder,
alter a compound
element by removing
a child simple element

The type associated
with the compound
element

The child is deleted from the type, and when you check the type
back in, it is updated in the shared repository but the child element
continues to exist. Other types that contain the element as a child
are not affected.

Editing message sets and components

76 MQSeries Integrator Using the Control Center

Table 1. Editing relationships and properties: check-out requirements (continued)

If you want to: You must check out: Then:

In the Elements folder,
alter a compound
element by deleting a
child compound
element

Nothing If nobody has the child element checked out; and if nobody has any
type or element qualifier, of which the compound element is a
child, checked out; and if nobody has the type of the parent
compound element checked out; then the element is deleted from
the shared repository and all the types that used the element as a
child are updated. Otherwise, an error message is issued and you
are not allowed to perform the delete.

In the Elements folder,
alter a compound
element by removing
a child compound
element

The type associated
with the parent
compound element

The child compound element is removed from the workspace.
Nothing else is affected. The compound element can be added to
the workspace again.

Delete a message in
the Messages folder

Nothing If nobody has the message checked out, and if nobody has any
category of which the message is a child checked out, the message
is deleted from the shared repository, Otherwise, an error message
is issued and you are not allowed to perform the delete.

Remove a message
from the Messages
folder

Check-out status is
not significant

The message and its children are removed from the workspace
under the Messages folder. Nothing else is affected. The message
can be added to the workspace again.

Alter a message by
deleting a simple
child element in the
Messages folder

Nothing If nobody has the child element checked out, and if nobody has the
type of the message checked out, and if nobody has any type, of
which the element is a child, checked out, then the element is
deleted from the shared repository and all the types that used the
element as a child are updated. Otherwise, an error message is
issued and you are not allowed to perform the delete.

Alter a message by
removing a child
simple element in the
Messages folder

The type associated
with the message that
contains the element

The child is deleted from the type, and on check in the type is
updated in the shared repository, but the child element continues to
exist and other types that contain the element as a child are not
affected.

Alter a message by
deleting a child
compound element in
the Messages folder.

Nothing If nobody has the child element checked out; and if nobody has any
type or element qualifier that is a parent of the child compound
element checked out; and if nobody has the type of the message
checked out; then the element is deleted from the shared repository
and all the types that used the element as a child are updated.
Otherwise, an error message is issued and you are not allowed to
perform the delete.

Alter a message by
removing a child
compound element in
the Messages folder

The type associated
with the message that
contains the element

The child compound element is removed from the workspace.
Nothing else is affected. The child compound element can be added
to the workspace again.

Editing message sets and components

Chapter 3. Defining messages 77

Changing the state of a message set
When a message state is created, its state is normal. During their development,
message sets can be frozen, unfrozen, and finalized, as described in “Message set
states” on page 49.

To change the state of a message set:
1. In the Message Sets pane, right click the message set whose state you want to

change.
2. Click the state you want. For example, to freeze a message set, click Freeze.

Note the following:
v When you freeze a message set, the freeze timestamp is added to the properties

of the message set.
v If you unfreeze a message set, the freeze timestamp in the properties of the

message set is reset to blank.
v When you finalize a message set, the Finalized field in the properties of the

message set is set to True and the freeze timestamp is set. Finalize cannot be
reversed. For more information, see “Message set states” on page 49.

v You cannot freeze or finalize a message set if any of the elements it contains is
checked out.

Changing the state of a message set

78 MQSeries Integrator Using the Control Center

Checking in and checking out message sets
When you have created and populated a message set, you can assign it to a broker
(as described in “Assigning message sets to brokers” on page 195). You do not
need to have checked the message set into the shared configuration before
assigning it. However, you must check it in before the assignment of message set
to broker can be deployed in the broker domain.

To check in a message set, in the Message Sets pane right click the folder of the
message set you want to check in, and click Check In.

The message set is checked into the shared configuration. It still appears in your
workspace, but the Key icon against its folder has disappeared.

When you check in a message set, any checked out objects in the message set are
not checked in by this action. You must check in these objects individually.
Alternatively, you can select one of the more comprehensive check in options
(available from the File menu) when you check in the message set:
v File —> Check In —> All in Current Workspace checks in all objects that are

contained within your current workspace (this is identified on the title bar of the
Control Center).

v File —> Check In —> All (Save to Shared) checks in all objects in your local
repository (that is, within all of your available workspaces).

Once you have checked in a message set, it is available to other users from the
shared configuration. If you want to make further changes to the message set, you
must first check it out of the shared configuration:
1. In the Message Sets pane, right click the folder of the message set you want to

edit.
2. Click Check Out.

The message set is checked out of the shared configuration. Its entry in the
Messages Pane has a Key icon against it to remind you that the definition is
checked out.

Checking in and checking out message sets

Chapter 3. Defining messages 79

Checking in and checking out message sets

80 MQSeries Integrator Using the Control Center

Chapter 4. Defining message flows

This chapter describes the tasks you need to perform to create message flows.
These are:
v “Creating a message flow” on page 83
v “Creating a message flow category” on page 87
v “Adding a message flow to your workspace” on page 88
v “Checking a message flow” on page 89
v “Including one message flow in another” on page 91
v “Promoting message flow node properties” on page 92
v “Checking in message flows” on page 96
v “Creating your own message nodes” on page 97
v “The IBM Primitives” on page 98
v “Using the IBM-supplied message flows” on page 165

“Appendix A. An example scenario” on page 241 provides an example that shows
how to construct a message flow.

Authorization to work with message flows
To perform any of the tasks described in this chapter, you must:
v Have the correct Control Center user role, which can be one of:

– Message flow and message set developer
– All roles

For information about setting your user role, see “Setting user roles” on page 13.
v Be a member of the MQSeries Integrator group mqbrdevt

The Message Flows view
To display the Message Flows view, click the Message Flows tab in the Control
Center. Figure 18 on page 82 shows an example of the Message Flows view.

© Copyright IBM Corp. 2000 81

Controlling the appearance of the Message Flow Definition
pane

When you add an instance of a message flow node into a message flow by
dragging it into the Message Flow Definition pane, the graphical symbol
representing the node is created. You can control the appearance and arrangement
of these symbols by right-clicking in the Message Flow Definition pane and
selecting from the following actions:

Layout graph
Arranges the nodes in the Message Flow Definition pane from left to right,
right to left, top to bottom, or bottom to top.

Zoom Alters the size of all node symbols in the Message Flow Definition pane.

Manhattan style
Shows connections between nodes as lines at right angles (as shown in
Figure 18).

Snap to grid
Aligns the symbols in the Message Flow Definition pane on an invisible
grid.

Figure 18. The Message Flows view. The left-hand pane, the Message Flow Types pane, shows a tree view of the
message flows in your workspace. The right-hand pane, the Message Flow Definition pane, contains an arrangement
of graphical symbols that represent the message flow nodes in a selected message flow.

The Message Flows view

82 MQSeries Integrator Using the Control Center

Creating a message flow
1. In the Message Flow Types pane of the Message Flows view, right click the

Message Flows root, and click Create —> Message Flow.
The Create a new Message Flow dialog is displayed.

2. In the Name field, type the name of your new message flow. This must follow
the naming rules described in “Naming Control Center resources” on page 20.
Click Finish.
Confirmation that the message flow has been created appears in two places in
the Message Flows view:
v The name of the new message flow appears in the title bar of the Message

Flow Definition pane.
v An entry for the new message flow appears in the Message Flow Types pane

with a New icon against it.

If you copy and paste a message flow, this action creates a new reference to the
original message flow, but does not create a new object. Therefore any updates
you make to the copy (including rename and delete) are automatically made to
the original message flow. If you want a new message flow based on an
existing message flow, but independent of it, you must use duplicate.

You are now ready to assemble the message flow from the available message
flow nodes.

3. In the Message Flow Types pane, drag each of the message flow nodes you
want to use into the Message Flow Definition pane. (This step fails if you have
not defined a message flow into which you can drag the message flow nodes.)
A graphical symbol representing each of the nodes you select is shown in the
Message Flow Definition pane. The first node of each type that you select has
the number “1” appended to its name. For example, if you construct a simple
message flow using the MQInput, DataUpdate, and MQOutput message nodes,
each appears in the Message Flow Definition pane as shown in Figure 19 on
page 84.
If you use more than one instance of any of these nodes within a single
message flow, and do not rename each node immediately (as described below),
the number appended is incremented each time (the second instance has “2”,
the third has “3”, and so on).

Creating a message flow

Chapter 4. Defining message flows 83

4. If you want these nodes to have different names from those assigned, you can
rename them by following this procedure:
a. In the Message Flow Definition pane, right click on one of the message flow

node symbols, and click Rename.
The Rename MessageProcessingNode dialog is displayed.

b. In the New Name field, type the new name of this instance of the message
node. Click Finish.

The new name of the message flow node appears beneath its symbol in the
Message Flow Definition pane. Repeat this process for other message nodes
you want to rename.

Now you are ready to connect the message nodes in your message flow in a
way that will provide the processing logic you require. For the remainder of
this section, let’s assume that you are connecting the MQInput message flow
node to the DataUpdate message flow node.

5. To connect the out terminal of MQInput to the in terminal of DataUpdate, right
click the MQInput symbol in the Message Flow Definition pane, and click
Connect —> Out. (All terminals available to this node appear in this list.) The
cursor becomes a cross-hair attached by a red line to the out terminal.

Figure 19. Dragging message flow nodes into the Message Flow Definition pane. These message flow nodes are
instances of the IBM Primitives MQInput, DataUpdate, and MQOutput. The “1” appended to their names ensures
unique naming.

Creating a message flow

84 MQSeries Integrator Using the Control Center

6. Move the cross-hair to the in terminal shown on the symbol of the DataUpdate
node, and click. A line now connects the out terminal of the MQInput node to
the in terminal of the DataUpdate node.
Follow this process for all terminals within the message flow between which
you want to establish connections.
Figure 20 shows a simple message flow with connections between message
flow nodes.

7. You must configure the nodes in your message flow to match your processing
requirements. Configuration instructions for each IBM Primitive node are
provided in order of message-node name, beginning with “Check node” on
page 100. Note that, once you have assembled the message nodes you want to
use in the Message Flow Definition pane, the order in which you rename,
connect, and configure them is unimportant.

8. If you are ready to make this message flow generally available within the
broker domain, check it into the shared configuration as described in
“Checking in message flows” on page 96.

4. An alternative way of connecting terminals is to move the cursor slowly over the terminal icons of the node until the label of the
terminal you want to connect is displayed, then press the right mouse button. This action converts the cursor to a cross-hair
attached by a red line to the node, which you can move to the appropriate terminal of the next node. Release the mouse button to
connect the line. This method requires a certain dexterity.

Figure 20. A message flow showing connections between terminals. In this example, the out terminal of MQInput1 has
been connected to the in terminal of DataUpdate1, and the out terminal of DataUpdate has been connected to the in
terminal of MQOutput1.

Creating a message flow

Chapter 4. Defining message flows 85

You must be aware of the following information regarding those message flows
that access external databases:
1. When a database is accessed from a message flow, data is converted from the

local code page of the broker process to Unicode (as used internally by the
broker), and vice versa. ESQL statements are converted from Unicode to the
local code page of the process prior to execution. The data in a result set
produced by an SQL SELECT is converted into Unicode from the code page of
the process. If the database being accessed is configured with a different code
page from that of the broker process, a data conversion is performed by the
ODBC driver or the database, based on the conversions supported by that
database.

2. Fully globally coordinated message flows that involve a DB2® resource
manager are supported on DB2 Universal Database V6.1 only.

3. The message flow thread connects to the specified data source, unless it is
already connected. Once a thread has acquired a connection to an ODBC data
source, the connection is not relinquished.
You are recommended to determine the number of database connections
required by a broker for capacity and resource planning purposes. The default
action taken by DB2 is to limit the number of concurrent connections to a
database to the value of the maxappls configuration parameter. The default for
maxappls is 40. Check the appropriate documentation for connections to
databases from other suppliers.
The connection requirements for a single message flow are:
v One required per message flow thread that contains a publication node.
v One required per database access node to separate ODBC data source names

per message flow thread (that is, if the same DSN is used by a different
node, the same connection is used).

Note: These database connections are in addition to the run-time connections
required by the broker (to the DB2 or SQL Server database that is defined to
hold its internal information). For details of these connections, refer to the
MQSeries SupportPac MHI1 (see “MQSeries information available on the
Internet” on page xiv for access to this and other MQSeries SupportPacs).

Creating a message flow

86 MQSeries Integrator Using the Control Center

Creating a message flow category
When you have a large number of message flows in your workspace, the Message
Flows tree in the Message Flow Types pane can become difficult to navigate. To
introduce some structure into the list, you can define message flow categories,
under which you can organize related message flows. (The IBM Primitives, for
example, belong to the IBMPrimitives message flow category.)

To create a message flow category:
1. In the Message Flow Types pane, right click the root of the Message Flows tree,

and click Create —> Message Flow Category.
The Create a new Message Flow Category dialog is displayed.

2. In the Name field, type the name of your message flow category. Click Finish.

An entry for the new message flow category appears in the Message Flow Types
pane.

You can create new message flows within this new message flow category, as
follows:
1. Right click on the message flow category folder in the Message Flow Types

pane, and click Create —> Message Flow.
2. Follow the instructions for creating a message flow from step 2 on page 83.

You can also add existing message flows to a message flow category, as described
in “Adding a message flow to your workspace” on page 88.

Creating a message flow category

Chapter 4. Defining message flows 87

Adding a message flow to your workspace
If you want to incorporate message flows created by other Control Center users in
your own message flows, you need to begin by adding them to your workspace.
When you add definitions to your workspace, a reference to each definition is
created in your workspace.

To add a message flow to your workspace:
1. Right click the Message Flows root in the Message Flow Types pane, and click

Add to Workspace —> Message Flow.
The Add an existing Message Flow dialog is displayed, as shown in Figure 21.

v To select a single entry from this list, click the message flow name.
v To select multiple entries that appear sequentially in the list, click on the first

message flow you want, press and hold the Shift key, then click on the last
one you want. This action selects the two message flows you highlighted,
plus any that appear between the two in the list.

v To select multiple message flows that do not appear in a sequence in the list,
hold down Ctrl and click each entry you want.

2. When you have selected the message flows you want, click Finish.
The items you selected are added to the Message Flow Types pane, from where
you can include them in new message flows.

If you perform this task by right clicking on a message flow category in the
Message Flow Types pane and clicking Add —> Message Flow, the items you
select are added to the folder of the message flow category in the Message Flow
Types pane.

Figure 21. Add an existing Message Flow dialog. The dialog displays all message flows that
have been checked into the shared configuration in this broker domain.

Adding a message flow to your workspace

88 MQSeries Integrator Using the Control Center

Checking a message flow
When you have created a message flow, you can use the message flow SmartGuide
to check the following:
v All ESQL syntax is correct.
v All references to message fields are resolved.
v All message flow properties (including promoted properties) are valid.
v All message field names are recognized.

This option allows you to check for errors before you deploy the message flow,
thus saving time and inconvenience.

To use the message flow check SmartGuide:
1. Right click the message flow you want to check, and select Check message

flow....
2. Select the message set and messages that are used in the message flow from the

list presented in the dialog.

3. Click Next. The SmartGuide performs the checks identified above, and presents
a results window.

Figure 22. Check message flow dialog

Checking a message flow

Chapter 4. Defining message flows 89

You can use the information displayed in this window to identify the node that
is incorrect, and the nature of the error. The upper part of the screen lists the
errors found: the lower part of the screen provides the details of the error
selected in the upper part. You can move through the list of errors using the
arrow keys on the right hand side of the window.

You can leave this window active as a reference while you make the changes
and corrections.

Figure 23. Check message flow results

Checking a message flow

90 MQSeries Integrator Using the Control Center

Including one message flow in another
You can create a message flow that includes a mixture of message flow nodes and
existing message flows. You might want to do this, for example, if you have
created a standard message flow to process errors or to perform a particular
calculation. You can define this standard message flow once and include it in other
message flows wherever it is required, which is easier than redefining the same
sequence of nodes in each message flow that uses them.

A set of nodes created as a partial message flow for use in this way is also known
as a subflow, or embedded flow.

Note: Any message flow that you intend to reuse in this way does not normally
use the standard MQInput and MQOutput nodes to start and end the flow.
Instead, it uses the Input Terminal and Output Terminal nodes that are
included in the IBMPrimitives message category.
1. To include an existing, reusable message flow in a new message flow,

you must begin by adding that message flow to your workspace, if it
isn’t already there, as described in “Adding a message flow to your
workspace” on page 88.

2. Create the new message flow, following steps 1 and 2 on page 83.
3. In the Message Flow Types pane, drag the message flows that will make

up your new flow into the Message Flow Definition pane.
Embedded message flows have terminal icons that represent the Input
Terminal and Output Terminal nodes they contain. For example, if the
nested message flow has one Input Terminal node and two Output
Terminal nodes, the message flow icon will have one input terminal and
two output terminals, which you connect to other nodes in the
higher-level flow in the usual way. You can rename these terminals if
you want: for example, one of the Output Terminals might be for an
error path, and you might rename this ’failure’.

The retail scenario described in “Appendix A. An example scenario” on page 241
uses an embedded flow to define an error routine. The subflow, and its inclusion
into a larger flow, are illustrated in Figure 79 on page 269 and Figure 62 on
page 241.

You can work with the subflow by adding it to your workspace and either
selecting it in the Message Flow Types pane (as you can with any message flow),
or by double-clicking on the node icon for the embedded flow displayed within
the main flow in the Message Flow Definition pane.

The right-hand pane changes to display the configuration for that subflow. You can
also reach this view by right-clicking the subflow node, and selecting Open
sub-flow.

For example, if you double-click on the node Exception handle1 in the main retail
flow, which is a named instance of a subflow called Exception Handling, you will
see the view shown in Figure 79 on page 269.

You can return to the parent flow by right-clicking the Message Flow Definition
pane and selecting the menu item Return to parent flow.

Including one message flow in another

Chapter 4. Defining message flows 91

Promoting message flow node properties
A message flow contains one or more message flow nodes, each of which is an
instance of a message flow type (either an IBM Primitive, or one you have
defined). You can promote the properties of these message flow nodes to apply to
the message flow to which they belong. If you do this, any user of the message
flow can set values for the properties of the nodes in the message flow, by setting
them at the message flow level, without being aware of the message flow’s internal
structure.

For example, you might want to set the name of a data source as a property of the
message flow, rather than a property of each individual node in the message flow
that references that data source.

You are creating a message flow that accesses a database called SALESDATA.
However, while you are testing the message flow, you want to use a test database
called TESTDATA. If you set the data source properties of each individual node
within the message flow to reference TESTDATA, you will have to update all these
references when you put your message flow into production.

If you promote the data source property, you can set the properties for all of the
individual nodes to be SALESDATA, and set the value of TESTDATA for the
promoted property to override the node data source values while you test the
message flow (the promoted property always takes precedence over the settings for
the properties within any relevant nodes).

To promote message flow node properties to a message flow:
1. You must check out the message flow for which you want to promote

properties. If it is not checked out, right click the entry for the message flow in
the Message Flow Types pane, and click Check Out.
The message flow contents are now displayed in the Message Flow Definition
pane.

2. Right click the symbol of the message flow node whose properties you want to
promote, and click Promote Property.
The Promote Property dialog is displayed.

3. In the Promote Property dialog, the names of the properties of the message
flow node are displayed in the left-hand pane. This pane is always fully
expanded to show all properties that are available for promotion. If you have
already promoted properties from this node, they do not appear in the
left-hand pane, but in the right-hand pane.
The names of the properties of the message flow itself, of which the message
flow node is a part, are displayed in the right-hand pane. These are properties
that have already been promoted up to the message flow. The original name of
the property and the name of the message flow node from which it came, are
shown beneath the property entry. This allows you to determine the specific
node that is the origin of each promoted property, regardless of the name of the
promoted property. See “Renaming promoted properties” on page 94 for
information about renaming properties.

4. To promote a property from the message flow node to the message flow, drag
its entry from the left-hand pane of the Promote Property dialog to the
right-hand pane and drop it in an empty part of the pane. It then appears at
the top of the pane.
Figure 24 on page 93 shows an example of the Promote Property dialog.

Promoting message flow node properties

92 MQSeries Integrator Using the Control Center

5. When you have selected the properties you want to promote to the message
flow, click OK.

The message flow node properties have been promoted to the message flow. To
confirm this, in the Message Flow Types pane, right click the entry for this
message flow and click Properties.

The Properties dialog of the message flow is displayed, showing the message flow
node properties you promoted. If you now set a value for one of these properties,
that value appears as the default value for the property whenever the message
flow is itself included in other message flows.

When you select an embedded message flow within another message flow and
view its properties, you see the promoted property values. If you look inside the
embedded flow (that is, if you select Open sub-flow), you see the original values
for the properties. The value of a promoted property does not replace the original
property, but it takes precedence at deploy time.

Promoting properties through a hierarchy of message flows
The process of promoting message flow node properties can be repeated as you
construct a hierarchy of message flows. You can promote properties from any level
in the hierarchy to the next level above, and so on through the hierarchy. The
value of a property is propagated from the highest point in the hierarchy at which
it is set down to the original message flow node when the message flow is
deployed to a broker. The value of that property on the original message flow
node is overridden.

Converging multiple properties
It is possible for a promoted property to provide a value for several message flow
node properties at once. For example, if a message flow contains two Database
nodes that each refer to the same physical database, you have to define the
physical database only once on the message flow. To do this, you promote several
message flow properties to a single promoted property. Drag the property entry
from the left-hand pane to the right-hand pane, and drop it onto an existing

Figure 24. The Promote Property dialog. Some of the properties of the message flow node
have been dragged across to the message flow and thus promoted.

Promoting message flow node properties

Chapter 4. Defining message flows 93

promoted property (instead of into the empty pane). You can now see the new
property added under the existing promoted property.

Note: If the type of the property you are promoting does not match the type of the
existing promoted property, when you drop the property onto the existing
property, a new promoted property is created at the top of the pane.

Renaming promoted properties
To rename a promoted property:
1. In the Promote Property dialog, right click the promoted property, and click

Rename.
2. In the Rename dialog, type the new name for the property. Click OK.

The new name of the property appears in the right-hand pane of the Promote
Property dialog.

Deleting a promoted property from a message flow
To delete a promoted property from a message flow, in the Promote Property
dialog, right click the promoted property, and click Delete.

Note: Any higher level message flow that has used this message flow, and that has
set a value for the deleted property, is not automatically updated to reflect
the deletion. However, when you deploy that message flow in the broker
domain, the deleted property is ignored.

Promoting mandatory properties
If you promote a property that is mandatory (that is, the name appears in bold
type in the properties dialog of the message flow node), the mandatory
characteristic of the property is not preserved. You are recommended always to
provide a default value for the property via the properties dialog of the message
flow node from which the property originated.

Example: promoting message flow node properties
This example demonstrates how to promote message flow node properties.
1. Create a new message flow called Base.
2. Drag an MQInput node and an MQOutput node from the Message Flow

Types pane into the Message Flow Definition pane.
3. In the Message Flow Definition pane, right click the symbol of the MQInput

node, and click Promote Property.
The Promote Property dialog is displayed.

4. Drag the properties you want to promote from the left-hand pane into the
right-hand pane. Click OK.

5. Repeat steps 3 through 4 for the MQOutput node.
6. Create a new message flow called Middle.
7. Click on the entry for the message flow Middle in the Message Flow Types

pane, then drag the message flow Base into the Message Flow Definition pane.
A graphical symbol of the message flow labelled Base1 appears in the
Message Flow Definition pane.

8. In the Message Flow Definition pane, right click the symbol of the Base1
message flow, and click Properties.

Promoting message flow node properties

94 MQSeries Integrator Using the Control Center

The properties you promoted from the MQInput and MQOutput nodes
appear as properties of the message flow Base1. You will notice that the
values are not displayed: however, they will be acted on when the message
flow is deployed.

9. Click Cancel.
10. In the Message Flow Definition pane, right click the symbol of the Base1

message flow again, and click Promote Property.
The properties that appear in the left-hand pane of the Promote Property
dialog are those you promoted from the message flow nodes in the Base1
message flow. You can promote these properties to the message flow Middle,
displayed in the right-hand pane. If you do this, note that Base1 is listed as
the originating message flow.

11. Repeat this procedure to add further levels to the hierarchy of message flows
and to promote properties throughout the hierarchy.

Promoting message flow node properties

Chapter 4. Defining message flows 95

Checking in message flows
When you have created a message flow, you can assign it to an execution group
(as described in “Assigning message flows to execution groups” on page 192). You
do not need to have checked the message flow into the shared configuration before
assigning it. However, you must check it in before you can deploy it to one or
more brokers in the message domain.

To check in a message flow, right click the folder of the message flow you want to
check in within the Message Flow Types pane, or right click on the background of
the Message Flow Definition pane, and click Check In.

The message flow is checked into the shared configuration. It still appears in your
workspace (as evidenced by the inclusion of its folder in the Message Flow Types
pane), but the New icon or the Key icon against its folder has disappeared.

Once you have checked in a message flow, it is available to other users from the
shared configuration. If you want to make further changes to the message flow,
you must first check it out of the shared configuration:
1. In the Message Flow Types pane, right click the folder of the message flow you

want to edit.
2. Click Check Out.

The message flow is checked out of the shared configuration. Its entry in the
Message Flow Types pane has a Key icon against it to remind you that the
definition is checked out.

Checking in message flows

96 MQSeries Integrator Using the Control Center

Creating your own message nodes
For a full description of this task, including instructions for installing a node in the
Control Center, see the MQSeries Integrator Programming Guide

Creating your own message nodes

Chapter 4. Defining message flows 97

The IBM Primitives
Table 2 identifies the message flow nodes supplied with MQSeries Integrator
V2.0.1, which are known as the IBM Primitives, and directs you to a detailed
description of each.

With the exception of the Compute node, the input message received by a node,
and the output message sent on by the node, are identical.

A number of these nodes allow manipulation of the message using ESQL. For
further details about ESQL, and examples of its use, see “Appendix C. ESQL
reference” on page 277.

You are recommended to refer to the MQSeries Integrator SupportPac MHI1 which
is updated periodically to include further usage information for the primitive
nodes. MHI1 is available on the MQSeries Web site at:
http://www.ibm.com/software/ts/mqseries/txppacs/

Table 2. The IBM Primitives

IBM Primitive Function See:

Check node Compares the format of an incoming message with a
predefined message specification.

Page 100.

Compute node Derives an output message from an input message and,
optionally, from data taken from a external database. A
computation can be applied to each element of the input
message before the output message is constructed.

Page 102.

Database node Combines database operations with message processing. Page 106.

DataDelete node Deletes one or more rows from a database table. Page 109.

DataInsert node Inserts one or more rows in a database table. Page 112.

DataUpdate node Updates the contents of one or more rows in a database
table.

Page 115.

Extract node Derives an output message from the fields in an input
message.

Page 118.

Filter node Evaluates an input message against an ESQL expression. Page 120.

FlowOrder node Determines a specific order for the processing of a
message.

Page 123.

Input Terminal Provides an in terminal for an embedded message flow. Page 125.

Label node Receives a message from a RouteToLabel node. Page 127.

MQInput node Reads MQSeries messages from a specified message
queue.

Page 129.

MQOutput node Writes MQSeries messages to a specified message queue. Page 134.

MQReply node Sends a response message to the originator of the
message that caused this message flow to be invoked.

Page 137.

NEONFormatter node Transforms an input message using the NEON Formatter
engine.

Page 139.

NEONRules node Passes an input message to the NEON Rules engine for
evaluation.

Page 141.

Output Terminal Provides an out terminal for an embedded message flow. Page 143.

Publication node Publishes a message to subscribers. Page 145.

ResetContentDescriptor node Reparses the bit stream of an input message. Page 147.

The IBM Primitives

98 MQSeries Integrator Using the Control Center

Table 2. The IBM Primitives (continued)

IBM Primitive Function See:

RouteToLabel Routes a message to one or more specific destinations
that are identified in the message.

Page 150.

Throw node Throws an exception within a message flow. Page 154.

Trace node Generates a trace record. Page 156.

TryCatch node Catches any exceptions that are thrown by nodes further
on in the message flow.

Page 159.

Warehouse node Stores message data in a data repository. Page 161.

The IBM Primitives

Chapter 4. Defining message flows 99

Check node

Description

The Check node compares the format of a message arriving on its input
terminal with a message-type specification that you supply when you
configure the Check node. The message-type specification comprises any
combination of the message domain, message set, and message type. The
Check node checks only the message-type specification; it does not check
the message body.

Check node terminals
Table 3 describes the terminals of the check node.

Table 3. Check node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

match The output terminal to which the message is routed if its properties match
the message-type specification.

failure The output terminal to which the message is routed if its properties do not
match the message-type specification. If the failure terminal is not
connected to another message flow node, an exception is thrown.

Check node properties
These properties are displayed when you right click a Check node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Domain
Identifies the parser for the message. Values supported by MQSeries
Integrator are MRM, XML, NEON, and BLOB.

Check Domain
If this field contains a check mark (U), the Domain value is to be
considered part of the message-type specification.

Set Identifies the message set containing the definition of the message.

Check Set
If this field contains a check mark (U), the Set value is to be considered
part of the message-type specification.

Type Identifies the message definition within the message set.

Check Type
If this field contains a check mark (U), the Type value is to be considered
part of the message-type specification.

Configuring the check node
For a description of the properties of the Check node and their possible values, see
“Check node properties”.

To configure a Check node:

Check node

100 MQSeries Integrator Using the Control Center

1. In the Message Flow Definition pane, right click the symbol of the Check node
you want to configure and click Properties.
The Check dialog is displayed, as shown in Figure 25.

2. In the Check dialog, type values for those properties that you want to be
considered part of the message-type specification. For each value you enter,
select the relevant check box. For example, if you supply a Domain value,
select the Check Domain check box.

3. If you want to provide a description of this instance of the Check node (which
is recommended if you want other Control Center users to be able to make use
of it), click the Description tab of the Check dialog. Type a short description,
or a long description, or both.

4. Click OK to finish configuring this Check node.

Figure 25. The Check dialog

Check node

Chapter 4. Defining message flows 101

Compute node

Description

The Compute node constructs a new message, or modifies elements
(headers, header fields, and body data) within an existing message, or its
associated destination or exception list, or both. These components of the
message can be defined using an ESQL expression, and can be based on
elements of both the input message and data from an external database.
The expression can make use of arithmetic operators, text operators (for
example, concatenation), logical operators, and other built-in functions.

Compute node terminals
Table 4 describes the terminals of the compute node.

Table 4. Compute node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal that outputs the transformed message.

failure The output terminal to which the original message is routed if a failure is
detected during the computation. For example, if an integer is divided by
another integer that has a value of zero.

Compute node properties
These properties are displayed when you right click a Compute node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Data Source
If data from an external database is to be used in constructing the
transformed message, Data Source identifies ODBC name for the database.

Transaction
The Transaction value, which is always automatic for a Compute node,
specifies that the decision to commit or roll back the Compute node action
depends on the success or failure of the message flow to which it belongs.

Compute Expression
The ESQL expression generated when you configure a Compute node.

Compute Mode
Identifies the components of the message with which you want to work in
this Compute node. Any combination of Message (the default value),
Exception, and Destination can be specified. The destination list structure
represents the destinations to which the message will be sent. The
exception list structure represents any exception conditions that have
occurred during message processing.

The components of the message that are not included in your selection are
propagated through the node unchanged (that is, the output value equals
the input value). You can manipulate these components if you choose, but
any modifications are valid within the node only, and are not passed to the
next node.

Compute node

102 MQSeries Integrator Using the Control Center

If you are using the RouteToLabel node (described in “RouteToLabel node”
on page 150) in the message flow for this Compute node, you can set up

specific destinations in this compute node by selecting a Compute Mode
that includes Destination.

For more information about the message, exception list, and destination list
structures, see “Appendix C. ESQL reference” on page 277.

Configuring the Compute node
For a description of the properties of the Compute node and their possible values,
see “Compute node properties” on page 102.

To configure a compute node:
1. In the Message Flow Definition pane, right click the symbol of the Compute

node you want to configure and click Properties.
The Compute dialog is displayed, as shown in Figure 26.

2. In the Compute dialog, click the left-hand Add button (or right-click on the
left-hand pane and select Add) to define the Inputs.
The Add dialog is displayed.

3. In the Add dialog, either:
v Click Message and select the names of a message set and message from the

drop-down lists.

or
v Click Database table and type values in the Data Source and Table Name

fields. These two values identify the database and database table from
which data will be taken.

Click OK.

Figure 26. The Compute dialog

Compute node

Chapter 4. Defining message flows 103

Depending on which you choose, the message or database tree structure
appears in the Inputs pane of the Compute dialog. A tab is added to the
Inputs pane for each input data source you specify. To delete any of these,
click Delete when the relevant tab is to the fore.

When you select a database as a source of input, the Transaction property is
displayed on the pane. This is always set to Automatic: you cannot change this
value.

4. For any database you have added to the Inputs pane, you must identify the
columns you want to work with within the database table you identified. To
do this:
a. Right click anywhere in the white space around the database tree structure

in the Inputs pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Inputs pane.

Repeat this process for each column you want to work with.

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot be
determined until the message flow is deployed and executed within a broker.

5. Repeat steps 3 and 4 for all input sources (messages or database tables) you
require.

6. In the Compute dialog, click the right-hand Add button (or right-click on the
right-hand pane and select Add) to define the Output Messages.
The Add dialog is displayed, with Message preselected.
Select the names of a message set and message from the drop-down lists.
If you want this message to define the MessageSet and MessageType of the
output message, select the Use as message body option that is located below
the specification of the message and message set.
Click OK.

7. To copy the entire message from the input message to the output message
before you apply the computation, click Copy entire message.
If you want to manipulate header information only, click Copy message
headers.

8. Drag elements from the Inputs pane to the Output Messages pane to compose
the output message.
As you do this, ESQL statements are generated automatically in the Mappings
section of the dialog.
Click on the ESQL tab if you want to edit the generated ESQL directly, or if
you want to add your own ESQL to customize the node. When you click on
the ESQL tab, you will see a comment in the input window that reads:
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.

The ESQL that is generated automatically by actions that you take (selecting
Mappings or radio buttons) appears above this comment. You can make
changes to this ESQL, but you must be aware that any changes you make
above the line are discarded if the ESQL is regenerated. This will happen if
you:

Compute node

104 MQSeries Integrator Using the Control Center

v Select Use as message body in an output message panel
v Select or deselect the copy message headers radio button
v Select or deselect the copy entire message radio button
v Add a mapping or drag-drop to the ESQL field

The following actions do not cause the ESQL to be regenerated:
v Modifying long or short description properties
v Modifying the Compute mode property on the Advanced tab
v Adding an input message
v Adding an input table
v Adding an output message if you do not select use as message body

v Adding an output table

If you want to add extra ESQL statements of your own, you are recommended
to add these below the comment line. All data you add below the comment
line is preserved when the generated ESQL is regenerated. If you have added
your own statements above the comment, they are lost if the ESQL is
regenerated.

If you make any changes to the comment line itself, these will be overwritten
with the standard comment line if the ESQL is regenerated.

The comment is passed to the run-time code, but as it is only a comment, it is
ignored.

For information about valid ESQL statements, see “Appendix C. ESQL
reference” on page 277.

9. Click on the Advanced tab to select a Compute Mode value from the
drop-down list.
If you want the Compute node to act on the exception list structure or the
destination list structure, you must remember to select the appropriate
Compute Mode. If you fail to do this, only the Message structure (the default
value) is used.
The following values are supported:
v Message
v Destination
v Destination and Message
v Exception
v Exception and Message
v Exception and Destination
v All

10. If you want to provide a description of this instance of the Compute node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Compute dialog. Type a short
description, or a long description, or both.

11. Click OK to finish configuring the Compute node.

For an example of configuring a Compute node within a message flow, see the
retail scenario described in Appendix A. An example scenario (section “Stock flow”
on page 257). This provides an example configuration for both an MRM message

and an XML message.

Compute node

Chapter 4. Defining message flows 105

Database node

Description

The Database node allows a database operation in the form of an ESQL
statement to be applied to the specified ODBC data source. Data from the
input message can be substituted into the ESQL expression, and transforms
can be applied to the data as part of that assignment. A node property
controls whether the update to the database is committed immediately, or
deferred until the completion of processing of the message flow at which
time the update is committed or rolled back according to the overall
completion status of the message flow.

Database node terminals
Table 5 describes the terminals of the database node.

Table 5. Database node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the database statement.

failure The output terminal to which the original message is routed if a failure is
detected during execution of the database statement. For example, if the
connection to the database fails, or if the table specified is invalid.

Database node properties
These properties are displayed when you right click a Database node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Data Source
Identifies the ODBC name of the external database to which the ESQL
expression is to be applied.

Statement
Is the ESQL statement or expression, generated automatically from the
values you specify when configuring the Database node, that performs the
database operation.

Transaction
The Transaction value specifies whether the action performed by this node
is to be viewed as part of a larger transaction, or managed independently
of the work performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the Database node action
depends on the success or failure of the message flow to which it
belongs. This is the default value.

Commit
The action of the Database node is to be committed, irrespective of
the success or failure of the message flow as a whole.

Database node

106 MQSeries Integrator Using the Control Center

Treat warnings as errors
Specifies whether warning messages generated during this node’s
processing are to be treated as errors, causing the message to be routed to
the failure terminal.

Configuring the Database node
For a description of the properties of the Database node and their possible values,
see “Database node properties” on page 106.

To configure a Database node:
1. In the Message Flow Definition pane, right click the symbol of the Database

node you want to configure and click Properties.
The Database dialog is displayed, as shown in Figure 27.

2. In the Database dialog, click Add to define the Input Message.
The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message set
and message from the drop-down lists to define the Input Messages value.
Click OK.
The message tree structure appears in the Input Messages pane of the
Database dialog, and a tab is added to the Input Messages pane showing the
name of the message.
Repeat this step if you want to identify additional messages. To delete any of
the messages you have added to the Input Messages pane, click Delete when
the relevant tab is to the fore.

4. Click Add to define the Output Database Table.
The Add dialog is displayed.

5. In the Add dialog, Database table is preselected. Enter Data Source and Table
Name values. Click OK.

Figure 27. The Database dialog

Database node

Chapter 4. Defining message flows 107

The database tree structure appears in the Output Database Table pane of the
dialog.

6. Now you must identify the columns you want to work with within the
database table you identified. To do this:
a. Right click anywhere in the white space around the database tree structure

in the Output Database Table pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot be
determined until the message flow is deployed and executed within a broker.

7. Drag elements from the Input Messages pane to the database columns in
Output Database Table pane to compose the output data. As you do this,
ESQL statements are generated automatically.
You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate
that the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select Automatic or Commit.
9. If you want warnings to be treated as errors, click the Advanced tab of the

Database dialog, and select the Treat warnings as errors check box.
10. If you want to provide a description of this instance of the Database node

(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Database dialog. Type a short
description, or a long description, or both.

11. Click OK to finish configuring this Database node.

For an example of configuring a Database node within a message flow, see the
retail scenario described in Appendix A. An example scenario (section “Updating
the Multibuy database” on page 263).

Database node

108 MQSeries Integrator Using the Control Center

DataDelete node

Description

The DataDelete node is a specialized form of the Database node that allows
deletion of one or more rows from a table in the specified ODBC data
source. Data from the input message can be substituted into the ESQL
expression, and transforms can be applied to the data as part of that
assignment. A property controls whether the update to the database is
committed immediately, or deferred until the completion of processing of
the message flow at which time the update is committed or rolled back
according to the overall completion status of the message flow.

DataDelete node terminals
Table 6 describes the terminals of the DataDelete node.

Table 6. DataDelete node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the data delete statement. The message is identical to the
input message.

failure The output terminal to which the original message is routed if a failure is
detected during execution of the data delete statement. For example, if the
connection to the database fails, or if the table specified is invalid.

DataDelete node properties
These properties are displayed when you right click a DataDelete node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Table Identifies the database table from which rows are to be deleted.

Transaction
The Transaction value specifies whether the action performed by this node
is to be viewed as part of a larger transaction, or managed independently
of the work performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the DataDelete node action
depends on the success or failure of the message flow to which it
belongs. This is the default value.

Commit
The action of the DataDelete node is to be committed, irrespective
of the success or failure of the message flow as a whole.

Statement
The ESQL statement or expression, generated automatically from the
values you specify when configuring a DataDelete node, that performs the
delete operation.

DataDelete node

Chapter 4. Defining message flows 109

Data Source
It is the ODBC name of the database containing the table from which rows
will be deleted.

Treat warnings as errors
Specifies whether warning messages generated during this node’s
processing are to be treated as errors, causing the message to be routed to
the failure terminal.

Configuring a DataDelete node
For a description of the properties of the DataDelete node and their possible
values, see “DataDelete node properties” on page 109.

To configure a DataDelete node:
1. In the Message Flow Definition pane, right click the DataDelete node you

want to configure and click Properties.
The DataDelete dialog is displayed, as shown in Figure 28.

2. In the DataDelete dialog, click Add to define the Input Messages.
The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message set
and message from the drop-down lists to define the Input Messages value.
Click OK.
The message tree structure appears in the Input Messages pane of the
DataDelete dialog.
Repeat this step for additional messages. A tab is added to the Input Messages
pane for each message you add. To delete any message from the Input
Messages pane, click Delete when the relevant tab is to the fore.

Figure 28. The DataDelete dialog

DataDelete node

110 MQSeries Integrator Using the Control Center

4. Click Add to define the Output Database Table.
The Add dialog is displayed.

5. In the Add dialog, Database table is preselected. Enter Data Source and Table
Name values. Click OK.
The database tree structure is shown in the Output Database Table pane.

6. Now you must identify the columns you want to work with within the
database table you identified. To do this:
a. Right click anywhere in the white space around the database tree structure

in the Output Database Table pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot be
determined until the message flow is deployed and executed within a broker.

7. Drag elements from the Input Messages pane to the Output Database Table
columns to compose the output. As you do this, ESQL mappings are
generated automatically. WHERE clauses are generated to delete rows from
the database.
You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate
that the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select Automatic or Commit.
9. If you want warnings to be treated as errors, click the Advanced tab of the

DataDelete dialog, and select the Treat warnings as errors check box.
10. If you want to provide a description of this instance of the DataDelete node

(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the DataDelete dialog. Type a
short description, or a long description, or both.

11. Click OK to finish configuring this DataDelete node.

DataDelete node

Chapter 4. Defining message flows 111

DataInsert node

Description

The DataInsert node is a specialized form of the Database node that allows
insertion of one or more rows into a table in the specified ODBC data
source. Data from the input message can be substituted into the ESQL
expression, and transforms can be applied to the data as part of that
assignment. A property controls whether the update to the database is
committed immediately, or deferred until the completion of processing of
the message flow at which time the update is committed or rolled back
according to the overall completion status of the message flow.

DataInsert terminals
Table 7 describes the terminals of the DataInsert node.

Table 7. DataInsert node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the data insert statement.

failure The output terminal to which the message is routed if a failure is detected
during execution of the data insert statement. For example, if the
connection to the database fails, or if the table specified is invalid.

DataInsert node properties
These properties are displayed when you right click a DataInsert node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Table Is the database table into which the new row is to be inserted.

Transaction
The Transaction value specifies whether the action performed by this node
is to be viewed as part of a larger transaction, or managed independently
of the work performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the DataInsert node action
depends on the success or failure of the message flow to which it
belongs. This is the default value.

Commit
The action of the DataInsert node is to be committed, irrespective
of the success or failure of the message flow as a whole.

Statement
Is the ESQL statement or expression, generated automatically from the
values you specify when configuring the DataInsert node, that performs
the insert operation.

DataInsert node

112 MQSeries Integrator Using the Control Center

Data Source
It is the ODBC datasource name of the database containing the table into
which rows are to be inserted.

Treat warnings as errors
Specifies whether warning messages generated during this node’s
processing are to be treated as errors, causing the message to be routed to
the failure terminal.

Configuring a DataInsert node
For a description of the properties of the DataInsert node and their possible values,
see “DataInsert node properties” on page 112.

To configure a DataInsert node:
1. In the Message Flow Definition pane, right click the symbol of the DataInsert

node you want to configure and click Properties.
The DataInsert dialog is displayed, as shown in Figure 29.

2. In the DataInsert dialog, click Add to define the Input Messages.
The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message set
and message from the drop-down lists to define the Input Messages value.
Click OK.
The message tree structure appears in the Input Messages pane of the
DataInsert dialog. A tab showing the name of the message is added to the
Input Messages pane.
Repeat this step for additional messages. To delete a message from the Input
Messages pane, click Delete when the relevant tab is to the fore.

Figure 29. The DataInsert dialog

DataInsert node

Chapter 4. Defining message flows 113

4. Click Add to define the Output Database Table.
The Add dialog is displayed.

5. In the Add dialog, Database Table is preselected. Enter Data Source and Table
Name values. Click OK.
The database tree structure is added to the Output Database Table pane.

6. Now you must identify the columns you want to work with within the
database table you identified. To do this:
a. Right click anywhere in the white space around the database tree structure

in the Output Database Table pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot be
determined until the message flow is deployed and executed within a broker.

7. Drag elements from the Input Messages pane to the Output Database Table
pane to compose the output. As you do this, ESQL mappings are generated
automatically. A VALUE clause is generated to insert each new row into the
database.
You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate
that the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select Automatic or Commit.
9. If you want warnings to be treated as errors, click the Advanced tab of the

DataInsert dialog, and select the Treat warnings as errors check box.
10. If you want to provide a description of this instance of the DataInsert node

(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the DataInsert dialog. Type a
short description, or a long description, or both.

11. Click OK to finish configuring this DataInsert node.

DataInsert node

114 MQSeries Integrator Using the Control Center

DataUpdate node

Description

The DataUpdate node is a specialized form of the Database node that
allows the modification of one or more rows in a table in specified ODBC
data source. Data from the input message can be substituted into the ESQL
expression, and transforms can be applied to the data as part of that
assignment. A property controls whether the update to the database is
committed immediately, or deferred until the completion of processing of
the message flow at which time the update is committed or rolled back
according to the overall completion status of the message flow.

DataUpdate node terminals
Table 8 describes the terminals of the DataUpdate node.

Table 8. DataUpdate node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed following the
execution of the data update statement.

failure The output terminal to which the original message is routed if a failure is
detected during execution of the data update statement. For example, if
the connection to the database fails, or if the table specified is invalid.

DataUpdate node properties
These properties are displayed when you right click a DataUpdate node entry in
the Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Table Is the database table in which rows are to be updated.

Transaction
The Transaction value specifies whether the action performed by this node
is to be viewed as part of a larger transaction, or managed independently
of the work performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the DataUpdate node action
depends on the success or failure of the message flow to which it
belongs. This is the default value.

Commit
The action of the DataUpdate node is to be committed, irrespective
of the success or failure of the message flow as a whole.

Statement
The ESQL statement or expression, generated automatically from the
values you specify when configuring the DataUpdate node, that performs
the update operation.

DataUpdate node

Chapter 4. Defining message flows 115

Data Source
The name ODBC datasource name of the database containing the table in
which rows are to be updated.

Treat warnings as errors
Specifies whether warning messages generated during this node’s
processing are to be treated as errors, causing the message to be routed to
the failure terminal.

Configuring a DataUpdate node
For a description of the properties of the DataUpdate node and their possible
values, see “DataUpdate node properties” on page 115.

To configure a DataUpdate node:
1. In the Message Flow Definition pane, right click the symbol of the

DataUpdate node you want to configure and click Properties.
The DataUpdate dialog is displayed, as shown in Figure 30.

2. In the DataUpdate dialog, click Add to define the Input Messages.
The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message set
and message from the drop-down lists to define the Input Messages value.
Click OK.
The message tree structure appears in the Input Messages pane of the
DataUpdate dialog. A tab is added to the Input Messages pane showing the
name of the message.
Repeat this step for additional messages. To delete a message from the Input
Messages pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output Database Table.
The Add dialog is displayed.

Figure 30. The DataUpdate dialog

DataUpdate node

116 MQSeries Integrator Using the Control Center

5. In the Add dialog, Database table is preselected. Enter Data Source and Table
Name values. Click OK.
The database tree structure appears in the Output Database Table pane. A tab
is added to the Output Database Table pane showing the name of the
database table.

6. Now you must identify the columns you want to work with within the
database table you identified. To do this:
a. Right click anywhere in the white space around the database tree structure

in the Output Database Table pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Output Database
Table pane.

Repeat this process for each column you want to work with.

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot be
determined until the message flow is deployed and executed within a broker.

7. Drag elements from the Input Messages pane to the columns in the Output
Database Table pane to generate the Key Mappings and the Update
Mappings.
The Key Mappings specify the WHERE conditions in the generated ESQL
statement. The Update Mappings specify the changes to be made to the
selected columns in the database table.
You can edit the mappings that you generate by dragging input to output. To
edit the ESQL, double-click on it and enter your modifications. To indicate
that the field can be edited, its border changes to yellow.

8. From the Transaction Mode drop-down list, select Automatic or Commit.
9. If you want warnings to be treated as errors, click the Advanced tab of the

DataUpdate dialog, and select the Treat warnings as errors check box.
10. If you want to provide a description of this instance of the DataUpdate node

(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the DataUpdate dialog. Type a
short description, or a long description, or both.

11. Click OK to finish configuring this DataUpdate node.

DataUpdate node

Chapter 4. Defining message flows 117

Extract node

Description

The Extract node derives an output message from an input message. The
output message comprises only those elements of the input message that
you specify for inclusion when configuring the Extract node.

Extract node terminals
Table 9 describes the terminals of the Extract node.

Table 9. Extract node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the transformed message is routed.

failure The output terminal to which the message is routed if an element specified
for inclusion in the output message is not present in the input message.
The message consists of only those elements that could be extracted from
the input message.

Extract node properties
These properties are displayed when you right click an Extract node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Element List
Is the list of elements to be extracted.

Compute Expression
The expression to be evaluated. This is generated automatically when you
configure an Extract node.

Configuring an Extract node
For a description of the properties of the Extract node and their possible values,
see “Extract node properties”.

To configure an Extract node:
1. In the Message Flow Definition pane, right click the symbol of the Extract node

you want to configure and click Properties.
The Extract dialog is displayed, as shown in Figure 31 on page 119.

Extract node

118 MQSeries Integrator Using the Control Center

2. In the Extract dialog, click Add to define the input message.
The Add dialog is displayed, with Message preselected.

3. In the Add dialog, select a message set and message from the drop-down lists.
Click OK.
The message tree structure appears in the Message pane. A tab showing the
name of the message is added to the Message pane.
Repeat this step for additional messages. To delete a message from the Message
pane, click Delete when the relevant tab is to the fore.

4. Drag elements from the Message pane down to the ESQL pane (the mapping
table) to compose the output message.
For example, if you have a message consisting of the elements Name, Street,
and Town, and you want to extract only the Town value, drag Town into the
ESQL pane to create the output message.

5. If required, select Copy message headers.
6. If you want to provide a description of this instance of the Extract node (which

is recommended if you want other Control Center users to be able to make use
of it), click the Description tab of the Extract dialog. Type a short description,
or a long description, or both.

7. Click OK to finish configuring the Extract node.

For an example of configuring an Extract node within a message flow, see the
retail scenario described in Appendix A. An example scenario (section “Extracting
elements from the message” on page 255).

Figure 31. The Extract dialog

Extract node

Chapter 4. Defining message flows 119

Filter node

Description

The Filter node routes a message according to message content using a
filter expression specified in ESQL. The filter expression can include
elements of the input message or message properties. It can also use data
held in an external database. The output terminal to which the message is
routed depends on whether the expression is evaluated to true, false, or
unknown.

Filter node terminals
Table 10 describes the terminals of the Filter node.

Table 10. Filter node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

true The output terminal to which the message is routed if the specified filter
expression evaluates to true.

false The output terminal to which the message is routed if the specified filter
expression evaluates to false.

unknown The output terminal to which the message is routed if the specified filter
expression evaluates to unknown. For example, if the field in the message
that is being referenced does not exist.

failure The output terminal to which the message is routed if a failure is detected
during the filter operation. For example, if an integer is divided by
another integer that has a value of zero.

Filter node properties
These properties are displayed when you right click a Filter node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Data Source
Is the name of the database.

Transaction
Specifies that the action performed by this node is to be viewed as part of
a larger transaction, or managed independently of the work performed by
other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the Filter node action depends
on the success or failure of the message flow to which it belongs.
This is the default value.

No The action of the Filter node is not part of a larger transaction.

Filter Expression
This defines the expression, for example, SQL WHERE, against which the
input data is to be evaluated.

Filter node

120 MQSeries Integrator Using the Control Center

Configuring a filter node
For a description of the properties of the Filter node and their possible values, see
“Filter node properties” on page 120.

To configure a Filter node:
1. In the Message Flow Definition pane, right click the symbol of the Filter node

you want to configure and click Properties.
The Filter dialog is displayed, as shown in Figure 32.

In the Filter dialog, click Add to define the input message.

The Add dialog is displayed.
2. In the Add dialog, either:

v Click Message and select the names of a message set and message from the
drop-down lists.

or
v Click Database and type the names of the database and database table from

which data will be used.

Click OK.

Depending on which you choose, the message or database tree structure
appears in the Filter dialog. A tab is added to the Inputs pane showing the
name of the message or database table.

To delete a message or database table from the Inputs pane, click Delete when
the relevant tab is to the fore.

3. For any database you have added to the Inputs pane, you must identify the
columns you want to work with within the database table you identified. To do
this:

Figure 32. The Filter dialog

Filter node

Chapter 4. Defining message flows 121

a. Right click anywhere in the white space around the database tree structure
in the Inputs pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Inputs pane.

Repeat this process for each column you want to work with.
4. Drag elements from the Inputs pane to the filter field at the bottom of the

dialog to generate the ESQL mappings. You can also edit the ESQL field
directly. (For information about valid ESQL, see “Appendix C. ESQL reference”
on page 277.)

5. If you want to provide a description of this instance of the Filter node (which is
recommended if you want other Control Center users to be able to make use of
it), click the Description tab of the Filter dialog. Type a short description, or a
long description, or both.

6. Click OK to finish configuring this Filter node.

For an example of configuring a Filter node within a message flow, see the retail
scenario described in Appendix A. An example scenario (section “Filtering
multibuy records” on page 260).

Filter node

122 MQSeries Integrator Using the Control Center

FlowOrder node

Description

The FlowOrder node enables you to control the order in which a
message is processed by a message flow. You can use this node to
specify the order in which each message is propagated to each (of two)
output terminals. The message is only propagated to the second output
terminal if propagation to the first output terminal is successful.

You can include this node in a message flow at any point where the order of
execution of subsequent nodes is important. The FlowOrder node by definition
propagates the input message through the first output terminal and its target node
or nodes before propagating the input message to the second output terminal and
its target node or nodes. The default behavior of all other nodes is for the order of
propagation to any output terminal to be random and unpredictable.

If you connect multiple target nodes to the first terminal, or the second terminal or
both, the order in which the multiple connections on each terminal are processed is
random and unpredictable. However, the message is propagated to all target nodes
connected to the first terminal, and all must complete successfully before it is
propagated to any connection on the second output terminal.

FlowOrder node terminals
Table 11 describes the terminals of the FlowOrder node.

Table 11. FlowOrder node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

first The output terminal to which the message is routed in the first instance.

second The output terminal to which the message is routed in the second
instance.

failure The output terminal to which the message is routed if an error is
encountered.

FlowOrder node properties
The FlowOrder node has no properties.

Configuring a FlowOrder node

The FlowOrder node has no configurable properties. However, you can provide a
description of this instance of the node, as follows:
1. In the Message Flow Definition pane, right click the FlowOrder node you want

to configure and click Properties.
The FlowOrder dialog is displayed, as shown in Figure 7 on page 18.

FlowOrder node

Chapter 4. Defining message flows 123

2. Click the Description tab of the FlowOrder dialog. Type a short description, or
a long description, or both.

3. Click OK to finish configuring this FlowOrder node.

Figure 33. The FlowOrder dialog

FlowOrder node

124 MQSeries Integrator Using the Control Center

Input Terminal

Description

The Input Terminal provides an in terminal for an embedded message
flow.

From an Input Terminal, you can make a connection to any in terminal on any
message flow node. The Input Terminal is the first node of a subflow that you can
embed in another flow. An MQInput node is not required in a subflow. For more
information about embedded flows, see “Including one message flow in another”
on page 91.

Input Terminal node terminals
Table 12 describes the terminals of the Input Terminal.

Table 12. Input Terminal node terminals

Terminal Description

out The output terminal to which the message is routed.

Input Terminal properties
The Input Terminal has no properties.

Configuring the Input Terminal
The Input Terminal has no configurable properties. However, you can provide a
description of this instance of the node, as follows:
1. In the Message Flow Definition pane, right click the Input Terminal for which

you want to provide a description and click Properties.
The Input Terminal dialog is displayed, as shown in Figure 34 on page 126.

Input Terminal

Chapter 4. Defining message flows 125

2. In the Input Terminal dialog, click the Description tab. Type a short
description, or a long description, or both.

3. Click OK to finish configuring this Input Terminal.

Figure 34. The Input Terminal dialog

Input Terminal

126 MQSeries Integrator Using the Control Center

Label node

Description

The Label node is a named destination for a message processed by a
RouteToLabel node. The Label node is identified by an entry in a
destination list of the message when it is processed by a RouteToLabel
node.

The combination of a RouteToLabel node with Label nodes provides a level of
dynamic routing within a message flow, with the destination of the message
following the RouteToLabel node being determined by the contents of the
destination list within the message itself.

Typically, a label node connects to a subflow that processes each message in a
specific way, and either ends in an output node or in another RouteToLabel node.

Figure 45 on page 152 illustrates a message flow that is made up of subflows that
are associated with the main flow using RouteToLabel and Label nodes.

Label node terminals
Table 13 describes the terminals of the Label node.

Table 13. Label node terminals

Terminal Description

out The output terminal to which the message is routed.

Label node properties
These properties are displayed when you right click a Label node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Label Name
Is the unique name of the node to which the message is propagated. You
can specify any value or characters in this field.

This value is not the same as the name of the instance of the node created.
The name of the Label node might be enhanced by the Control Center
when the message flow of which this node is a part is incorporated as a
nested message flow within one or more other message flows. The Label
Name is referenced by the RouteToLabel node and must therefore always
retain the same value.

For example, you create a Label node in a message flow and name this
instance of the node Test Route 1. You set the Label Name property of the
node Test Route 1 to the value testroute1. The Label name value must be
set to a value that will be set in a Destination list by a Compute node, and
referenced in (and removed from) the Destination list by a RouteToLabel
node. A message with a destination of testroute1 will be routed to node
Test Route 1. A message with a destination of Test Route 1 will not.

The uniqueness of the name within the entire message flow is checked
when that message flow is instantiated in the broker.

Label node

Chapter 4. Defining message flows 127

Configuring a Label node

For a description of the properties of the Label node and the possible values, see
“Label node properties” on page 127.

To configure a Label node:
1. In the Message Flow Definition pane, right click the Label node you want to

configure and click Properties.
The Label dialog is displayed, as shown in Figure 35.

2. In the Label dialog, enter the string value that is the unique label for this node.
3. If you want to provide a description of this instance of the Label node (which

is recommended if you want other Control Center users to be able to make use
of it), click the Description tab of the Label dialog. Type a short description, or
a long description, or both.

4. Click OK to finish configuring this Label node.

Figure 35. The Label dialog

Label node

128 MQSeries Integrator Using the Control Center

MQInput node

Description

The MQInput node uses MQGET to read a message from an MQSeries
message queue defined on the broker’s queue manager, and establishes the
processing environment for the message.

MQInput routes messages to the out terminal. If this fails, the message is retried. If
the retry out expires (as defined by the BackoutThreshold attribute of the input
queue), the message is routed to the failure terminal. If this is not connected, the
message is written to the backout queue.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the catch terminal.

You have to ensure that you define a backout requeue queue or a dead letter
queue (DLQ) to prevent the message looping continuously through the node.

You must use the supplied MQInput node: you cannot replace it with a
user-written equivalent.

MQInput node terminals
Table 14 describes the terminals of the MQInput node.

Table 14. MQInput node terminals

Terminal Description

out The output terminal to which the message is routed.

failure The output terminal to which the message is routed if the backout count
of the message is greater than or equal to the backout count threshold on
the queue. Only failures internal to the MQInput node are routed to its
failure terminal.

catch The output terminal to which the message is propagated if an exception is
thrown downstream and then caught by this node.

MQInput node properties
These properties are displayed when you right click an MQInput node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Queue Name
Is the name of the MQSeries queue from which the MQInput node reads
messages. The queue manager associated with this queue is the broker’s
queue manager. The maximum length of a queue name is 48 characters.

Message Domain
Is the name of the message domain of the input message. If the message
has an MQRFH2 header with an <mcd> folder, this property is derived
from the header.

MQInput node

Chapter 4. Defining message flows 129

For further information about supported message domains, see “Message
domains” on page 28.

Message Set
Is the name of the message set of the input message. For an MRM
message, this is the message set identifier. If the message has an MQRFH2
header with an <mcd> folder, this property is derived from the header.

Message Type
Is the name of the message type of the input message. For an MRM
message, this is the message identifier. If the message has an MQRFH2
header with an <mcd> folder, this property is derived from the header.

Message Format
Is the name of the message format of the input message. If the message
has an MQRFH2 header with an <mcd> folder, this property is derived
from the header.

Topic Is the topic identifier. If the message has an MQRFH2 header with an
<psc> folder, this property is derived from the header.

Transaction Mode
Defines whether this instance of a message flow is under transaction
control. Valid values are:

Automatic
The message flow is under transaction control only if the incoming
message is marked persistent. This remains true for messages
derived from this input message and output by an MQOutput
node, unless the MQOutput node explicitly overrides the
transaction status.

Yes The message flow is under transaction control. This remains true
for messages derived from this input message and output by an
MQOutput node, unless the MQOutput node explicitly overrides
the transaction status. This is the default.

No The message flow is not under transaction control. This remains
true for messages derived from this input message and output by
an MQOutput node, unless the MQOutput node explicitly
overrides the transaction status.

Order Mode
Determines the order in which messages are retrieved from the queue, and
processed. Valid values are:

Default
Messages are retrieved from the queue in the order defined by the
queue attributes, but are processed in random order by the one or
more instances of the message flow in which this node appears. If
more than one instance of the message flow is active, the order in
which message processing completes is unpredictable.

By UserId
Messages that are associated with a specific user ID are retrieved
in the order defined by the queue attributes, and that order is
guaranteed to be retained such that these messages reach the
output node or nodes in the order they are retrieved by the input
node. That is, only one message for a given user is processed
concurrently.

MQInput node

130 MQSeries Integrator Using the Control Center

By Queue Order
Messages are retrieved in the order defined by the queue
attributes. and they are propagated to target nodes in the order in
which they are retrieved: therefore message order is guaranteed.

Logical Order
Determines whether messages are received in logical order, as defined by
MQSeries. Valid values are:

yes Messages that are part of a message group are received in the
correct order as assigned by the sending application. This is the
default value.

no Messages sent as part of a group are not received in a
predetermined order. If a broker expects to receive messages in
groups when Logical Order is set to no, either the order of the
input messages must not be significant or the message flow must
be designed to process them appropriately.

All Messages Available
Specifies whether all messages in a group need to be available before
retrieval of a message is possible. By default, this value is not selected.

Match Message ID
Specifies whether the MQInput node receives only those messages with a
matching message identifier value, as set in the MsgId field of the MQMD.
If the supplied hexadecimal string is shorter than the MsgId field, it is
assumed to be padded to the right with X'00' characters.

By default, this value is not selected.

Match Correlation ID
Specifies whether the MQInput node receives only those messages with a
matching correlation identifier value, as set in the CorrelId field of the
MQMD. If the supplied hexadecimal string is shorter than the CorrelId
field, it is assumed to be padded to the right with X'00' characters.

By default, this value is not selected.

Convert
Determines whether MQSeries performs data conversion on the message,
in conformance with the CodedCharSetId and Encoding values. If this
value is selected, the values of the properties Convert Encoding and
Convert Coded Character Set ID are used to update the MQMD to cause
the required conversion to take place.

By default this value is not selected.

Convert Encoding
Specifies the representation used for numeric values in the message data,
expressed as an integer value. This property is relevant only when the
Convert value has been selected.

Convert Coded Character Set ID
Specifies the coded character set identifier of character data in the message
data, expressed as an integer value. This property is relevant only when
the Convert value has been selected.

By default, this value is not selected.

Commit By Message Group
Specifies at what point a transaction is committed when processing
messages that are part of a message group. If this value is selected, a

MQInput node

Chapter 4. Defining message flows 131

commit is performed only after the final message in the group has been
received. Note that the Logical Order value must also be selected in this
case. If this value is not selected, a commit is performed after each message
has been routed completely through the message flow.

By default, this value is not selected.

Validate
Specifies whether the message parsers should use any validation
capabilities they have.

By default, this value is not selected.

Configuring an MQInput node

For a description of the properties of the MQInput node and their possible values,
see “MQInput node properties” on page 129.

To configure an MQInput node:
1. In the Message Flow Definition pane, right click the MQInput node you want

to configure and click Properties.
The MQInput dialog is displayed, as shown in Figure 36.

2. In the MQInput dialog, click the Basic tab. Type a value in the Queue Name
field.

Figure 36. The MQInput dialog

MQInput node

132 MQSeries Integrator Using the Control Center

3. In the MQInput dialog, click the Default tab.
If you wish, type values in the fields:
v Message Domain
v Message Set
v Message Type
v Message Format
v Topic

If the incoming message does not contain an MQRFH or MQRFH2 header,
these values constitute a default message template and enable MQSeries
Integrator to parse the message.

4. In the MQInput dialog, click the Advanced tab.
Supply values for the following fields to suit your processing requirements:
v Transaction Mode
v Order Mode
v Logical Order
v All Messages Available
v Match Message Id
v Match CorrelId
v Convert
v Convert Encoding
v Convert Coded Character Set ID
v Commit by Message Group
v Validate

5. If you want to provide a description of this instance of the MQInput node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the MQInput dialog. Type a short
description, or a long description, or both.

6. Click OK to finish configuring this MQInput node.

For an example of configuring an MQInput node within a message flow, see the
retail scenario described in Appendix A. An example scenario (section “Getting the
message” on page 251).

MQInput node

Chapter 4. Defining message flows 133

MQOutput node

Description

The MQOutput node uses MQPUT to write messages to an MQSeries
message queue defined on any queue manager accessible by the broker’s
queue manager, or to the destinations identified in the destination list
associated with the message.

MQOutput node terminals
Table 15 describes the terminals of the MQOutput node.

Table 15. MQOutput node terminals

Terminal Description

in The terminal that accepts a message for processing by the node.

failure The output terminal to which the message is routed if an MQPUT call
returns an error.

MQOutput node properties
These properties are displayed when you right click an MQOutput node entry in
the Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Queue Manager Name
Is the name of the MQSeries queue manager to which the output queue is
defined. The maximum length of a queue manager name is 48 characters.

Queue Name
Is the name of the MQSeries queue to which the message is written if
Destination Mode is fixed. The maximum length of a queue name is 48
characters.

Destination Mode
Identifies the queue to which the message will be sent. Valid values are:

Queue Name
The message is sent to the queue named in the Queue Name
property. This is the default value.

replyToQueue
The message is sent to the queue named in the replyToQueue field
in the MQMD.

Destination List
The message is sent to the queues named in the destination list.

MQOutput node

134 MQSeries Integrator Using the Control Center

Transaction Mode
Specifies whether the message will be put as part of a transaction.

Valid values are:

Automatic
The message transactionality is as it was specified at the MQInput
node. This is the default value.

Yes The message is put transactionally.

No The message is not put transactionally.

Persistence Mode
Specifies if the message will be put persistently.

Valid values are:

Automatic
The persistence is as specified in the incoming message. This is the
default value.

Yes The message is put persistently.

No The message is not put persistently.

As Defined for Queue
The message persistence is as defined for the MQSeries queue to
which the message is written.

New Message ID
Specifies whether MQSeries generates a new message identifier to replace
the contents of the MsgId field in the MQMD.

By default, this value is not selected.

New Correlation ID
Specifies whether MQSeries generates a new correlation identifier to
replace the contents of the CorrelId field in the MQMD.

By default, this value is not selected.

Segmentation Allowed
Specifies whether MQSeries can, if appropriate, break the message into
segments.

By default, this value is not selected.

Message Context
Valid values are:
v Pass All
v Pass Identity
v Set All
v Set Identity
v Default
v None

Its default value is passAll.

Alternate User Authority

By default, this value is not selected.

MQOutput node

Chapter 4. Defining message flows 135

Configuring an MQOutput node

For a description of the properties of the MQOutput node and their possible
values, see “MQOutput node properties” on page 134.

To configure an MQOutput node:
1. In the Message Flow Definition pane, right click the MQOutput node you want

to configure and click Properties.
The MQOutput dialog is displayed, as shown in Figure 37.

2. In the MQOutput dialog, click the Basic tab. Type a value in the Queue
Manager Name field and in the Queue Name field. These values are required
if Destination Mode is fixed.

3. In the MQOutput dialog, click the Advanced tab.
Supply values for the following fields to suit your processing requirements:
v Destination Mode
v Transaction Mode
v Persistence Mode
v New MessageID
v New Correl ID
v Segmentation Allowed
v Message Context
v Alternate User Authority

4. If you want to provide a description of this instance of the MQOutput node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the MQOutput dialog. Type a
short description, or a long description, or both.

5. Click OK to finish configuring this MQOutput node.

Figure 37. The MQOutput dialog

MQOutput node

136 MQSeries Integrator Using the Control Center

MQReply node

Description

The MQReply node is a specialized form of the MQOutput node that sends
a response to the originator of the message by putting a message to the
MQSeries queue identified by the ReplyToQ field of the message header.

MQReply node terminals
Table 16 describes the terminals of the MQReply node.

Table 16. MQReply node terminals

Terminal Description

in The terminal that accepts a message for processing by the node.

failure The output terminal to which the message is routed if a failure is detected.
For example, if the MQPUT operation to the reply-to queue fails.

MQReply node properties
These properties are displayed when you right click an MQReply node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Segmentation Allowed
Specifies whether MQSeries can, if appropriate, break the message into
segments.

By default, this value is not selected.

Persistence Mode
Specifies whether the message will be put persistently.

Valid values are:

Automatic
Persistence is as specified in the incoming message. This is the
default value.

Yes The message is put persistently.

No The message is not put persistently.

As Defined for Queue
The message persistence is as defined for the MQSeries queue to
which the message is put.

MQReply node

Chapter 4. Defining message flows 137

Transaction Mode
Specifies whether the message will be put as part of a transaction.

Valid values are:

Automatic
The message transactionality is as it was specified at the MQInput
node. This is the default value.

Yes The message is put transactionally.

No The message is not put transactionally.

Configuring an MQReply node

For a description of the properties of the MQReply node and their possible values,
see “MQReply node properties” on page 137.

To configure an MQReply node:
1. In the Message Flow Definition pane, right click the MQReply node you want

to configure and click Properties.
The MQReply dialog is displayed, as shown in Figure 38.

2. In the MQReply dialog, supply values for the following fields to suit your
processing requirements:
v Segmentation Allowed
v Persistence Mode
v Transaction Mode

3. If you want to provide a description of this instance of the MQReply node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the MQReply dialog. Type a short
description, or a long description, or both.

4. Click OK to finish configuring this MQReply node.

Figure 38. The MQReply dialog

MQReply node

138 MQSeries Integrator Using the Control Center

NEONFormatter node

Description

The NEONFormatter node is used transform a message from a
known input format to a specified output format. The message
definition and transformations are defined using the NEON Formatter
graphical utility, not the MQSeries Integrator Control Center.

NEONFormatter node terminals
Table 17 describes the terminals of the NEONFormatter node.

Table 17. NEONFormatter node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the transformed message is routed.

failure The output terminal to which the untransformed message is routed if a
failure is detected during the reformatting.

NEONFormatter node properties
These properties are displayed when you right click a NEONFormatter node entry
in the Message Flow Types pane, and click Properties. The values displayed are
the default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Target Format
Is the format to which the information being passed through the node will
be transformed.

The remaining properties of the NEONFormatter node define the message
properties used to parse the message after it has been transformed. They have no
effect on the reformatting performed by this node.

Output Domain
Is the message domain.

Output Set
Is the message set.

Output Type
Is the message type.

Output Wire Format
Is the output wire format.

NEONFormatter node

Chapter 4. Defining message flows 139

Configuring a NEONFormatter node

For a description of the properties of the NEONFormatter node and their possible
values, see “NEONFormatter node properties” on page 139.

To configure a NEONFormatter node:
1. In the Message Flow Definition pane, right click the NEONFormatter node you

want to configure and click Properties.
The NEONFormatter dialog is displayed, as shown in Figure 39.

2. In the NEONFormatter dialog, supply values for the following fields to suit
your processing requirements:
v Target Format (a required value)
v Output Domain
v Output Set
v Output Type
v Output Wire Format

3. If you want to provide a description of this instance of the NEONFormatter
node (which is recommended if you want other Control Center users to be able
to make use of it), click the Description tab of the NEONFormatter dialog.
Type a short description, or a long description, or both.

4. Click OK to finish configuring this NEONFormatter node.

Figure 39. The NEONFormatter dialog

NEONFormatter node

140 MQSeries Integrator Using the Control Center

NEONRules node

Description

The NEON Rules node provides an encapsulation of the NEON Rules
engine within the MQSeries Integrator Version 2 environment. The firing of
the Propagate action propagates the output message to the propagate
terminal. The firing of the PutQueue action attaches a queue name to the
destination list associated with the message and routes the message to the
putqueue terminal.

NEONRules node terminals
Table 18 describes the terminals of the NEONRules node.

Table 18. NEONRules node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

propagate The output terminal to which the message is routed when the propagate
action is executed in the rules engine.

failure The output terminal to which the message is routed if a failure is detected
during the extraction.

putqueue The output terminal to which the message is routed if the queue name
given under the Putqueue action is added to the message’s destination list.

noHit The output terminal to which the input message is routed if no rule is
triggered.

NEONRules node properties
The NEONRules node has no properties.

Configuring a NEONRules node
The NEONRules node has no configurable properties. However, you can provide a
description of this instance of the node, as follows:
1. In the Message Flow Definition pane, right click the NEONRules node for

which you want to provide a description and click Properties.
The NEONRules dialog is displayed, as shown in Figure 40 on page 142.

NEONRules node

Chapter 4. Defining message flows 141

2. In the NEONRules dialog, click the Description tab. Type a short description,
or a long description, or both.

3. Click OK to finish configuring this NEONRules node.

The database connection details for this node are obtained from the file named on
the environment variable MQSI_PARAMETERS_FILE. For more information, see
“Appendix E. NEON Rules and Formatter” on page 379.

Figure 40. The NEONRules dialog

NEONRules node

142 MQSeries Integrator Using the Control Center

Output Terminal

Description

The Output Terminal provides an out terminal for an embedded
message flow.

An Output Terminal can only receive connections from a message flow node. The
Output Terminal is the last node of a subflow that you can embed in another flow.
A subflow can be set up with more than one Output Terminal. When the subflow
is included in an embedding flow, the number of out terminals displayed
represents the number of Output Terminals in the embedded subflow. Each out
connector is labelled with the name you assigned to the Output Terminal node. For
more information about embedded flows, see “Including one message flow in
another” on page 91.

Output Terminal node terminals
Table 19 describes the terminals of the Output Terminal.

Table 19. Output Terminal node terminals

Terminal Description

in The terminal that accepts the message for processing by the node.

Output Terminal properties
The Output Terminal has no properties.

Configuring the Output Terminal
The Output Terminal has no configurable properties. However, you can provide a
description of this instance of the node, as follows:
1. In the Message Flow Definition pane, right click the Output Terminal for which

you want to provide a description and click Properties.
The Output Terminal dialog is displayed, as shown in Figure 41 on page 144.

Output Terminal

Chapter 4. Defining message flows 143

2. In the Output Terminal dialog, click the Description tab. Type a short
description, or a long description, or both.

3. Click OK to finish configuring this Output Terminal.

Figure 41. The Output Terminal dialog

Output Terminal

144 MQSeries Integrator Using the Control Center

Publication node

Description

The Publication node filters and transmits the output from a message flow
to subscribers who have registered an interest in a particular set of topics.

The Publication node must always be an output node of a message flow
and has no output terminals of its own.

Publication node terminals
Table 20 describes the terminals of the Publication node.

Table 20. Publication node terminals

Terminal Description

in The terminal that accepts a message for processing by the node.

Publication node properties
These properties are displayed when you right click a Publication node entry in
the Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Implicit Stream Naming
If this value is selected, the name of the MQSeries queue on which the
message is received is also the stream name. This feature is provided for
compatibility with MQSeries base publish/subscribe function, and applies
to messages with an MQRFH header when MQPSStream is not specified.

By default, this value is not selected.

Subscription Point
The subscription point value for the node. If the property is not specified,
the default subscription point is assumed.

Configuring the Publication node

For a description of the properties of the Publication node and their possible
values, see “Publication node properties”.

To configure a Publication node:
1. In the Message Flow Definition pane, right click the Publication node you want

to configure and click Properties.
The Publication dialog is displayed, as shown in Figure 42 on page 146.

Publication node

Chapter 4. Defining message flows 145

2. In the Publication dialog, supply values for the following fields to suit your
processing requirements:
v Implicit Stream Naming
v Subscription Point

3. If you want to provide a description of this instance of the Publication node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Publication dialog. Type a
short description, or a long description, or both.

4. Click OK to finish configuring this Publication node.

See the MQSeries Integrator Programming Guide for information about
publish/subscribe implementation.

Figure 42. The Publication dialog

Publication node

146 MQSeries Integrator Using the Control Center

ResetContentDescriptor node

Description

The ResetContentDescriptor node takes the bit stream of the
input message and reparses it using a different message
template from the same or a different message dictionary.
The node can reset any combination of message domain, set,
type, and format.

ResetContentDescriptor node terminals
Table 21 describes the terminals of the ResetContentDescriptor node.

Table 21. ResetContentDescriptor node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the message is routed when it is successfully
reparsed by the specified parser.

failure The output terminal to which the message is routed if it is not successfully
reparsed.

ResetContentDescriptor node properties
These properties are displayed when you right click a ResetContentDescriptor
node entry in the Message Flow Types pane, and click Properties. The values
displayed are the default properties for this instance of the node. They cannot be
edited when displayed from the Message Flow Types pane.

Message Domain
Is the new message domain.

For further information about supported message domains, see “Message
domains” on page 28.

Reset Message Domain
If this value is selected, the message domain is reset.

By default, this value is not selected.

Message Set
Is the new message set.

Reset Message Set
If this value is selected, the message set is reset.

By default, this value is not selected.

Message Type
Is the new message type.

Reset Message Type
If this value is selected, the message type is reset.

By default, this value is not selected.

Message Format
Is the new message format.

ResetContentDescriptor node

Chapter 4. Defining message flows 147

Reset Message Format
If this value is selected, the message format is reset.

By default, this value is not selected.

These properties set the domain, set, type, and format in the message header of the
message passing through the ResetContentDescriptor node. However, this will only
happen if suitable headers already exist. If the message does not have an MQRFH
or MQRFH2 header, the node does not create one.

When you exit the ResetContentDescriptor node properties, the Standard
Properties are set to reflect the new values specified by this node. The parse tree
available to all the nodes placed further along the message flow is also made
consistent with these values.

Configuring the ResetContentDescriptor node

For a description of the properties of the ResetContentDescriptor node and their
possible values, see “ResetContentDescriptor node properties” on page 147.

To configure a ResetContentDescriptor node:
1. In the Message Flow Definition pane, right click the ResetContentDescriptor

node you want to configure and click Properties.
The ResetContentDescriptor dialog is displayed, as shown in Figure 43.

2. In the ResetContentDescriptor dialog, supply values for the following fields to
suit your processing requirements:
v Message Domain
v Reset Message Domain
v Message Set
v Reset Message Set

Figure 43. The ResetContentDescriptor dialog

ResetContentDescriptor node

148 MQSeries Integrator Using the Control Center

v Message Type
v Reset Message Type
v Message Format
v Reset Message Format

3. If you want to provide a description of this instance of the
ResetContentDescriptor node (which is recommended if you want other
Control Center users to be able to make use of it), click the Description tab of
the ResetContentDescriptor dialog. Type a short description, or a long
description, or both.

4. Click OK to finish configuring this ResetContentDescriptor node.

ResetContentDescriptor node

Chapter 4. Defining message flows 149

RouteToLabel node

Description

The RouteToLabel node provides a dynamic routing facility based on the
contents of the destination list associated with the message. The
destination list contains the identity of one or more target Label nodes,
identified by their Label Name property (not the node name).

The destination, defined by the Label Name of a Label node, is resolved by the
broker itself during message flow processing: you do not connect a terminal on the
RouteToLabel node to the destination nodes.

RouteToLabel node terminals
Table 22 describes the terminals of the RouteToLabel node.

Table 22. RouteToLabel node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

failure The terminal to which the message is routed if the destination label is not
valid.

RouteToLabel node properties
These properties are displayed when you right click a RouteToLabel node entry in
the Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Mode Specifies how the labels in the destination list within the message are
processed.

Valid values are:

Route To First
The first entry in the destination list is removed, and processing is
transferred to the Label node that has property Label Name set to
the value of the entry that has been removed.

Route To Last
The last entry in the destination list is removed, and processing is
transferred to the Label node that has property Label Name set to
the value of the entry that has been removed. This is the default.

Configuring a RouteToLabel node

For a description of the properties of the RouteToLabel node and their possible
values, see “RouteToLabel node properties”.

To configure a RouteToLabel node:
1. In the Message Flow Definition pane, right click the RouteToLabel node you

want to configure and click Properties.
The RouteToLabel dialog is displayed, as shown in Figure 44 on page 151.

RouteToLabel node

150 MQSeries Integrator Using the Control Center

2. In the RouteToLabel dialog, select the method of operation you require for this
node.

3. If you want to provide a description of this instance of the RouteToLabel node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the RouteToLabel dialog. Type a
short description, or a long description, or both.

4. Click OK to finish configuring this RouteToLabel node.

Using a RouteToLabel node
A RouteToLabel node uses a destination list within a message to route the message
to a target node of type Label that matches the label within the destination list
item. Therefore the message must include a destination list to be acted on by the
RouteToLabel node.

You must create the destination list, and include it in the message, in a compute
node. You must select the Advanced tab on the Compute node properties dialog,
and select an option that includes Destination from the drop-down list.

The destinations are set up as a list of label names. The label names can be any
string value, and can be explicitly specified in the compute node or taken or cast
from any field in the message or from a database. A label name in the destination
list must, however, match the Label Name property of a corresponding Label
Node.

Figure 45 on page 152 illustrates a message flow that uses these techniques to
achieve dynamic routing based on message content. The flow is made up of
subflows that are associated with the main flow using RouteToLabel and Label
nodes.

Figure 44. The RouteToLabel dialog

RouteToLabel node

Chapter 4. Defining message flows 151

The message flow shows how you might handle brokerage transactions if you
want to process high-value trading requests, low-value trading requests and
requests to updates customer details differently.

The use of RouteToLabel and Label nodes makes a simpler message flow than the
message flow you would need if you used a sequence of Filter nodes that identify
and route the message for different processing, or a sequence of nodes that each
performs an action on a subset of the total number of messages processed by the
message flow.

Each message in this brokerage example has a request field that indicates whether
the message contains ″hightrade″, ″lowtrade″, or ″custdetails″ information. Each
type is routed to a different sequence of nodes before being completed by a
common flow.

You configure the compute node ″Set destination labels″ to create a destination list
in the message by entering the following ESQL:
SET OutputDestinationList.Destination.RouterList.DestinationData[1].labelname
= 'continue';
SET OutputDestinationList.Destination.RouterList.DestinationData[2].labelname
= "InputBody.MRM.trademsg.request";

If you set Route To Last on the RouteToLabel node, a message is routed to the last
label in the destination list. In this example, that is the label that matches the value
of the ″request″ field in the message. Therefore a message with a value of
″hightrade″ in the request field is routed to the Label node with a Label Name
property of ″hightrade″.

If the message fragment performing the dynamically routed work itself ends in a
RouteToLabel node, the message is passed to the next destination in the list. In the

Figure 45. A message flow with RouteToLabel and Label nodes. This shows the nodes
connected ’Manhattan Style’ (you can select this style of connecting the nodes by right
clicking on the pane background).

RouteToLabel node

152 MQSeries Integrator Using the Control Center

example above, the message is passed to the Label node with a Label Name
property of ″continue″, and continues along the common part of the message flow.

There are four message flow fragments, beginning with a Label node:
1. Continue (Label Name property = continue). This fragment does not end in a

RouteToLabel node. It might end in an MQOutput node to complete the
message flow execution or it might continue with work that is not required to
be dynamically routed. Typically, the Label Name of this fragment is the one at
index [1] of the destination list. This means that, when all the dynamically
routed work is complete, the flow either finishes or continues with common
processing.

2. High Trade (Label Name property = hightrade). This fragment performs
processing specific to high-value trading requests, for example storing records
of the trade in a database and performing credit authorizations. This fragment
ends in a RouteToLabel node to send the message on to the next destination in
the list.

3. Low Trade (label name property = lowtrade). This fragment performs
processing specific to low-value trading requests. It ends in a RouteToLabel
node to send the message on to the next destination in the list.

4. Customer Details (Label Name property = custdetails). This performs
processing specific to requests to update customer details, for example,
updating a customer details database. This fragment ends in a RouteToLabel
node to send the message on to the next destination in the list.

The flexibility of this dynamic routing facility enables an infinite number of
variations on the above scenario.

You must ensure that you include all related Label nodes and the subflows that
follow from the Label nodes within the Message Flow Definition pane of the
embedding message flow, or its surrounding subflow. This ensures that all the
Label nodes are included when you deploy the message flow. The Label node is
not connected to a prior node: if you create a subflow that starts with any other
type of node, the subflow defined in the Message Flow Definition pane is ignored
when the message flow is deployed. Subflows that start with a Label node are not
ignored.

For more information about destination lists, see “Exception and destination list
structure” on page 356. If you intend to derive destination values from the message
itself, or from a database, you might also need to cast values from one type to
another. Casts are described in more detail in “CAST expressions” on page 328.

RouteToLabel node

Chapter 4. Defining message flows 153

Throw node

Description

The Throw node provides a mechanism for throwing an exception within a
message flow. The exception might be caught and processed by a preceding
TryCatch node within the message flow, or handled by the MQInput node.

Throw node terminals
Table 23 describes the terminals of the Throw node.

Table 23. Throw node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

Throw node properties
These properties are displayed when you right click a Throw node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Message Catalog
The name of the message catalog in which the error text that explains the
error number of the exception is to be found.

Message Number
The error number of the exception being thrown. The numbers 3000-3019
are reserved in the MQSeries Integrator catalog for this use but in principle
any number can be used.

Message Text
Text giving the cause of the error. This can be different from that associated
with the message number in the message catalog.

Configuring a Throw node

For a description of the properties of the Throw node and their possible values, see
“Throw node properties”.

To configure a Throw node:
1. In the Message Flow Definition pane, right click the Throw node you want to

configure and click Properties.
The Throw dialog is displayed, as shown in Figure 46 on page 155.

Throw node

154 MQSeries Integrator Using the Control Center

2. In the Throw dialog, supply values for the following fields to suit your
processing requirements. The values you specify define the contents of the
exception thrown by the Throw node.
v Message Catalog
v Message Number
v Message Text

3. If you want to provide a description of this instance of the Throw node (which
is recommended if you want other Control Center users to be able to make use
of it), click the Description tab of the Throw dialog. Type a short description,
or a long description, or both.

4. Click OK to finish configuring this Throw node.

Figure 46. The Throw dialog

Throw node

Chapter 4. Defining message flows 155

Trace node

Description

The Trace node generates trace records that can incorporate text, message
content, and date and time information, to help you to monitor the
behavior of the message flow.

The operation of the Trace node is independent of the setting of user tracing for
the message flow in which it is included: output from the trace node is written
even if user tracing is set off. In particular, if user tracing is set to None, and a Trace
node in that message flow has its Destination property set to User Trace, the
entries written by the Trace node are recorded in the user trace log.

Trace node terminals
Table 24 describes the terminals of the Trace node.

Table 24. Trace node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed, even if a
failure occurs while the message is in the trace node.

Trace node properties
These properties are displayed when you right click a Trace node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Destination
Specifies the destination of the trace record.

Valid values are:

None No trace record is produced.

User Trace
The trace record is written to the userTrace log. This is the default
value.

File The trace record is written to the file specified in the File Path
property.

File Path
Is the fully qualified name of the file to which trace records are to be
written.

Pattern
Defines the format of the trace record to be produced. The pattern that you
enter is passed to the trace destination, and any expression of the form
${...} is resolved by evaluating the ESQL expression between the braces.
Any ESQL expression that is valid on the right-hand side of a compute
statement can be used.

Trace node

156 MQSeries Integrator Using the Control Center

Configuring the Trace node

For a description of the properties of the Trace node and their possible values, see
“Trace node properties” on page 156.

To configure a Trace node:
1. In the Message Flow Definition pane, right click the Trace node you want to

configure and click Properties.
The Trace dialog is displayed, as shown in Figure 47.

2. In the Trace dialog, supply values for the following fields to suit your
processing requirements:
v Destination
v File Path
v Pattern

3. If you want to provide a description of this instance of the Trace node (which is
recommended if you want other Control Center users to be able to make use of
it), click the Description tab of the Trace dialog. Type a short description, or a
long description, or both.

4. Click OK to finish configuring this Trace node.

For an example of configuring a Trace node within a message flow, see the retail
scenario described in Appendix A. An example scenario (section “Writing a trace
entry” on page 256).

Using a Trace node
An example of the trace output is below:

(0x1000010)XML = (
(0x5000018)XML = (

(0x6000011) = '1.0'
)

Figure 47. The Trace dialog

Trace node

Chapter 4. Defining message flows 157

(0x1000000)MESSAGETAG = (
(0x3000000)highlevel = '1'
(0x3000000)higherlevel = '21'
(0x1000000)m_m1 = (

(0x3000000)level2 = '2'
(0x1000000)e_string01 = (

(0x3000000)level3 = '3'
(0x2000000) = 'IAPMDI27 ddddddd'

This can be interpreted as follows:
1. The numbers in brackets at the left hand end of each line are element types.

These numbers, which do not display leading zeros, are defined as follows:
v Bits 0 to 7 identify the specific element type. See the parser descriptions in

“Appendix D. MQSeries message header parsers” on page 363 for details
about element types.

v Bits 8 to 23. These bits are not used.
v Bits 24 to 31 identify the generic element type:

– Bit 24 indicates that the element has a name.
– Bit 25 indicates that the element has a value.
– Bit 26 indicates that the element is meaningful only to its parser type

(therefore it is not copied to others).
2. The names after the brackets are element names.
3. The values after the equal sign are the element values. These values are

displayed as ESQL literals. Where a node contains other nodes this is indicated
by the nesting.

For further usage information, see “Writing a trace entry” on page 256 in
“Appendix A. An example scenario” on page 241.

Trace node

158 MQSeries Integrator Using the Control Center

TryCatch node

Description

The TryCatch node provides a special handler for exception processing. The
input message is initially routed on the try terminal of this node. If an
exception is subsequently thrown by a downstream node, it is caught by
this node, which then routes the original message to its catch terminal. If
the TryCatch node catch terminal is not connected, the message is
discarded.

TryCatch node terminals
Table 25 describes the terminals of the TryCatch node.

Table 25. TryCatch node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

try The output terminal to which the original message is routed.

catch The output terminal to which the message is routed if an exception is
thrown downstream and then caught by the node (that is, it was not
caught by another TryCatch node further downstream). If the catch
terminal is unconnected, the message is lost.

TryCatch node properties
The TryCatch node has no properties.

Configuring the TryCatch node
The TryCatch node has no configurable properties. However, you can provide a
description of this instance of the node, as follows:
1. In the Message Flow Definition pane, right click the TryCatch node for which

you want to provide a description and click Properties.
The TryCatch dialog is displayed, as shown in Figure 48 on page 160.

TryCatch node

Chapter 4. Defining message flows 159

2. In the TryCatch dialog, click the Description tab. Type a short description, or a
long description, or both.

3. Click OK to finish configuring this TryCatch node.

Figure 48. The TryCatch dialog

TryCatch node

160 MQSeries Integrator Using the Control Center

Warehouse node

Description

The Warehouse node is a specialized form of the Database node that stores
the entire message, or parts of the message, or both, to the specified ODBC
data source.

Warehouse node terminals
Table 26 describes the terminals of the Warehouse node.

Table 26. Warehouse node terminals

Terminal Description

in The input terminal that accepts a message for processing by the node.

out The output terminal to which the original message is routed when
processing completes successfully.

failure The output terminal to which the message is routed if a failure is detected
during processing. For example, if the connection to the database fails, or
the table specified is invalid.

You can use a message warehouse:
v To maintain an audit trail of messages
v For offline or batch processing of messages (a process sometimes referred to as

data mining)
v To enable subsequent reprocessing of selected messages

Once stored in the message warehouse, messages can be retrieved using standard
database query and data mining techniques. No explicit support for these functions
is supplied by MQSeries Integrator.

You can choose to store in the message warehouse:
v The entire message
v Selected parts of the message

Storing the entire message
When you store the entire message in a message warehouse, it is stored as a binary
object. You can choose to store a timestamp for the message, though this is
optional. Any timestamp is stored in a separate column from the message itself.

The advantages of storing the entire message are:
v You do not have to have decided how you will use the data before you store it.
v You do not have to have defined a database schema for every type of message

that could pass through the broker.

However, you could consider preceding each Warehouse node with a Compute
node that would convert each message to a common schema before the Warehouse
node stores it.

Warehouse node

Chapter 4. Defining message flows 161

Storing parts of the message
If you store selected parts of a message, with a timestamp if required, you must
define a database schema for that message type. The message is mapped to true
type: for example, a character string in a message is stored as a character string.

Warehouse node properties
These properties are displayed when you right click a Warehouse node entry in the
Message Flow Types pane, and click Properties. The values displayed are the
default properties for this instance of the node. They cannot be edited when
displayed from the Message Flow Types pane.

Transaction
The Transaction value specifies whether the action performed by this node
is to be viewed as part of a larger transaction, or managed independently
of the work performed by other nodes in the message flow.

Valid values are:

Automatic
The decision to commit or roll back the Warehouse node action
depends on the success or failure of the message flow to which it
belongs. This is the default value.

Commit
The action of the Warehouse node is to be committed, irrespective
of the success or failure of the message flow as a whole.

Field Mapping
Is a list of assignment statements mapping message content into database
fields.

Data Source
Is the name of the database to be used as the warehouse.

Treat warnings as errors
Specifies whether warning messages generated during this node’s
processing are to be treated as errors, causing the message to be routed the
failure terminal.

Configuring the Warehouse node to store the entire message

For a description of the properties of the Warehouse node and their possible
values, see “Warehouse node properties”.
1. In the Message Flow Definition pane, right click the symbol of the Warehouse

node you want to configure and click Properties.
The Warehouse dialog is displayed, as shown in Figure 49 on page 163.

Warehouse node

162 MQSeries Integrator Using the Control Center

2. In the Warehouse dialog, click Add to define the input message.
The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message set
and message from the drop-down lists. Click OK.
The message tree structure appears in the Input pane. A tab is added to the
Input pane showing the name of the message.
Repeat this step for additional messages. To remove a message from the Input
pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output.
The Add dialog is displayed. Database table is preselected.

5. In the Add dialog, enter Data Source and Table Name values. Click OK.
The database tree structure is shown in the Output pane. You can name only
one database in this pane. To delete table and database names, click Delete.

6. Now you must identify the columns you want to work with within the
database table you identified. To do this:
a. Right click anywhere in the white space around the database tree structure

in the Output pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Output pane.

Repeat this process for each column you want to work with. (You need entries
for only those columns you will be using, even if additional columns exist in
the database.)

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot be
determined until the message flow is deployed and executed within a broker.

Figure 49. The Warehouse dialog

Warehouse node

Chapter 4. Defining message flows 163

7. Select the Store Message check box, and select the column in which you want
to store the index record and attached binary object.

8. From the Transaction Mode drop-down list, select automatic or commit.
9. If you want to store a timestamp, select the Store Timestamp check box and

select the column in which you want to store it.
10. If you want warnings to be treated as errors, click the Advanced tab of the

Warehouse dialog, and select the Treat warnings as errors check box.
11. If you want to provide a description of this instance of the Warehouse node

(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Warehouse dialog. Type a
short description, or a long description, or both.

12. Click OK to finish configuring this Warehouse node.

Configuring the Warehouse node to store parts of a message

For a description of the properties of the Warehouse node and their possible
values, see “Warehouse node properties” on page 162.
1. In the Message Flow Definition pane, right click the symbol of the Warehouse

node you want to configure and click Properties.
The Warehouse dialog is displayed, as shown in Figure 49 on page 163.

2. In the Warehouse dialog, click Add to define the input message.
The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message set
and message template from the drop-down lists. Click OK.
The message tree structure appears in the Input pane. A tab is added to the
Input pane showing the name of the message.
Repeat this step for additional messages. To remove a message from the Input
pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output.
The Add dialog is displayed. Database table is preselected.

5. In the Add dialog, enter Data Source and Table Name values. Click OK.
The database tree structure is shown in the Output pane. You can name only
one database in this pane. To delete table and database names, click Delete.

6. Now you must identify the columns you want to work with within the
database table you identified. To do this:
a. Right click anywhere in the white space around the database tree structure

in the Output pane, and click Add column.
The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.
c. Click OK.

The column is added to the database tree structure in the Output pane.

Repeat this process for each column you want to work with. (You need entries
for only those columns you will be using, even if additional columns exist in
the database.)

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot be
determined until the message flow is deployed and executed within a broker.

Warehouse node

164 MQSeries Integrator Using the Control Center

7. Drag components of the input data from the Input pane to the target database
column in the Output pane. This process is known as mapping, and
represents the ESQL mappings that will be used in the processing of data
through the node. The mappings are shown in the Input Message ESQL and
Output Message ESQL pane. To delete mappings, right click on the expression
to delete and click Delete. To delete all the expressions in the pane, click
Delete All.

8. From the Transaction Mode drop-down list, select automatic or commit.
9. If you want to store a timestamp, select the Store Timestamp check box and

select the column in which you want to store it.
10. If you want warnings to be treated as errors, click the Advanced tab of the

Warehouse dialog, and select the Treat warnings as errors check box.
11. If you want to provide a description of this instance of the Warehouse node

(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Warehouse dialog. Type a
short description, or a long description, or both.

12. Click OK to finish configuring this Warehouse node.

For an example of configuring a Warehouse node within a message flow, see the
retail scenario described in Appendix A. An example scenario (section
“Configuring the Warehouse node” on page 253).

Using the IBM-supplied message flows
Some message flows are supplied with MQSeries Integrator V2.0.1. These are of
two types:
1. The default message flows, which are:

v A Neon message flow.
This message flow provides function equivalent to an MQSeries Integrator
Version 1.1 daemon. It is described in detail in “Version 1 Migration
Compatibility message flow” on page 166.

v A publish/subscribe message flow.
This message flow provides a simple publish/subscribe service. It is
described in detail in “The default publish/subscribe message flow” on
page 168.

2. The verification message flows, which are:
v The ScribbleInversion message flow.

This message flow is required by the Scribble application, described in the
MQSeries Integrator Installation Guide.

v The Soccer message flow.
This message flow is required by the Soccer Results Service, described in the
MQSeries Integrator Installation Guide.

v The Postcard message flow.
This message flow is required by the Postcard application, described in the
MQSeries Integrator Installation Guide.

The definitions of these message flows are provided in the import file
SampleWorkspaceForImport. The definition of the message set required by the
Postcard IVP is provided in the file PostcardMS.mrp. The MQSeries Integrator
Installation Guide describes the IVP message flows and message set in detail,
and explains how to import the supplied definitions and save them for future

Warehouse node

Chapter 4. Defining message flows 165

use. It provides information on how to create the MQSeries resources required
by the IVPs. It also describes how to deploy the message flows and message set
to prepare for their use within a broker.

The following sections provide more information about the default message flows,
and guidelines for using them.

Preparing to use the supplied message flows
Before you can use the supplied message flows, there are several actions you must
complete. The message flows and the topology definitions in the import file make
some assumptions For full details of these assumptions, and how to use the
message flows, see the MQSeries Integrator Installation Guide for your operating
system. A summary of actions is provided here.
1. Import the Postcard message set into the message repository using the

command mqsimrmimpexp. You must restart the Configuration Manager to
force it to pick up these changes.

2. Check out the Topology. Import the message flow and topology definitions
from the supplied file and save them into the shared configuration repository.

3. If you want to run the Postcard verification program, you must assign the
Postcard message set to the broker.

4. Deploy the message flows and the Postcard message set to the broker.
5. Check the success of the deployment: select the Log view and refresh the

contents (you can click the green refresh icon or select View —> Refresh). It
can take a few minutes for the deployment messages and responses flowing
between the Configuration Manager and the broker to be displayed. Keep
refreshing this view until you see the completion messages.

Version 1 Migration Compatibility message flow
This message flow can be deployed to any broker in your broker domain to
provide equivalence to a NEON Rules and Formatter daemon. It incorporates the
NEONRules and NEONFormatter nodes to process messages according to the
Neon rules engine. An input node, to read messages from an input queue, and a
set of output nodes, that provide failure, no-hit, and process action functions, are
connected to the NEONRules node.

Using the IBM-supplied message flows

166 MQSeries Integrator Using the Control Center

The operation of the five nodes within this message flow is:
1. The Get next message node (type MQInput) gets messages from a specified

input queue and passes them to the NEONRules node.
Before deploying this node you must configure it as follows:
v Identify the input queue you want this message flow to use as the source of

its messages. You specify the queue name in the Queue Name property of
the MQInput properties dialog (Basic tab).

v You must ensure that the Message Domain on the Default tab of the
properties dialog is set to NEON. You must specify the default NEON
Application Group and Message Format attributes as the Message Set and
Message Type properties respectively (on the Default tab) unless all messages
that will be processed by the message flow contain an MQRFH header
specifying the Application Group and Message Format. If one or more
messages might not contain an MQRFH header, you must set these values.
(For information about configuring an MQInput node, see “MQInput node”
on page 129.)

2. The Evaluate rules node (type NEONRules) evaluates the message against the
rules specified in the NEONRules engine.
v If a putQueue action is triggered by the rules evaluation node, the message is

routed through the putqueue terminal to the Process putQueue action node.
v If no rule is triggered as a result of the evaluation is the NoHit condition, the

message is routed to the Write to NoHit queue node.
v If a failure is detected, the original message is routed to the Write to failure

queue node.

You do not have to configure this node before you deploy this message flow.

Figure 50. MQSeries Integrator V1 Migration Compatibility message flow

Using the IBM-supplied message flows

Chapter 4. Defining message flows 167

3. The Write to NoHit queue node (type MQOutput) puts the message to the
output (NoHit) queue.
Before you deploy this message flow, you must set the desired target queue
and queue manager in the Queue Name and Queue Manager Name properties
on the Basic tab of the properties dialog. The Destination Mode property on the
Advanced tab is set to Queue Name: you must not change this property. (For
information about configuring an MQOutput node, see “MQOutput node” on
page 134.)

4. The Write to failure queue node (type MQOutput) puts the message to the
output (failure) queue.
Before you deploy this message flow, you must set the desired target queue
and queue manager in the Queue Name and Queue Manager Name properties
on the Basic tab of the properties dialog. The Destination Mode property on the
Advanced tab is set to Queue Name: you must not change this property. (For
information about configuring an MQOutput node, see “MQOutput node” on
page 134.)

5. The Process putQueue action node (type MQOutput) puts the message to the
output queue for further processing. The output queue is specified by the
Destination List attached to the message by the EvaluateRules node.
Before you deploy this message flow, you must set the desired target queue
and queue manager in the Queue Name and Queue Manager Name properties
on the Basic tab of the properties dialog. The Destination Mode property on the
Advanced tab is set to Destination List: you must not change this property. (For
information about configuring an MQOutput node, see “MQOutput node” on
page 134.)

The default publish/subscribe message flow
This message flow provides a simple publish/subscribe service. It emulates exactly
the basic publish/subscribe function supported by the Publish/Subscribe SDK, and
is appropriate for all publish/subscribe services in which no additional processing
of the message content is required.

Using the IBM-supplied message flows

168 MQSeries Integrator Using the Control Center

The operation of the two nodes within this message flow is:
1. The Get next message node (type MQInput) gets the next available message

from the input queue and passes it to the Publication node for matching
against the table of subscription requests. The input queue is initially defined to
be SYSTEM.BROKER.DEFAULT.STREAM, but you can change this according to
your requirements.
Failures in this node are not handled explicitly: the failing message is put to a
backout queue or dead letter queue (if these queues have been defined). You
can change this behavior by connecting other nodes to the failure terminal of
this node, if you want to.

2. The Route to matching subscribers node (type Publication) matches the
inbound publication against its internal subscription table (created and
maintained in response to client subscription requests).
For each matching subscription, the message is delivered to the subscriber by
putting it to the queue on the queue manager specified in the subscription.

For a more comprehensive example of a publish/subscribe message flow using
MQSeries Integrator Version 2 functions, refer to “Appendix A. An example
scenario” on page 241.

Copying the default message flows
If you want to deploy either of the default message flows, you are recommended
to make a copy of it. This preserves the default message flow in your configuration
repository for future reuse.

To make a copy of a default message flow:
1. Click the Message Flows tab.

Figure 51. MQSeries Integrator V1 Migration Compatibility message flow

Using the IBM-supplied message flows

Chapter 4. Defining message flows 169

2. Select the message flow you want to use from the folder IBM Default Message
Flows, and click Duplicate.

3. A copy of the default message flow is created as a new message flow (with a
new icon beside it). Click on the copy and select Rename to give it a unique
name.

4. Make the changes you need to tailor your new copy of the supplied message
flow.

5. Save your new message flow in the configuration repository using either Check
In or one of the File —> Check In menu options.

Using the IBM-supplied message flows

170 MQSeries Integrator Using the Control Center

Chapter 5. Defining the broker topology

This chapter describes the following tasks:
v “Checking out the Topology” on page 173
v “Creating a broker” on page 174
v “Creating a collective” on page 176
v “Adding an existing broker to a collective” on page 178
v “Creating a broker to add to a collective” on page 180
v “Removing a broker from a collective” on page 181
v “Connecting brokers” on page 182
v “Deleting the connection between brokers” on page 183
v “Deleting a broker from the topology” on page 184
v “Renaming a broker” on page 185
v “Checking in the Topology” on page 186
v “Making changes operational” on page 187

Authorization to work with Topology
To perform any of the tasks described in this chapter, you must:
v Have the correct Control Center user role, which can be one of:

– Operational domain controller

– All roles

For information about setting your user role, see “Setting user roles” on page 13.
v Be a member of the MQSeries Integrator group mqbrops

The Topology view
To display the Topology view, click the Topology tab in the Control Center.

The Topology view has two panes:
v The left-hand pane, the Domain Hierarchy pane, shows a tree view of the

topology of this broker domain.
v The right-hand pane, the Topology pane, contains an arrangement of graphical

symbols that represent the current topology.

Controlling the appearance of the Topology pane
When you populate the broker domain in your workspace, graphical symbols
representing collectives and brokers are added to the Topology pane. You can
control the appearance and arrangement of these symbols by right-clicking in the
Topology pane to display the Topology list, and selecting from the following
actions:

Layout graph
Arranges the connected brokers and collectives in the Topology pane from
left to right, right to left, top to bottom, or bottom to top.

Zoom Alters the size of all broker and collective symbols in the Topology pane.

Manhattan style
Shows connections between brokers as lines at right angles.

© Copyright IBM Corp. 2000 171

Snap to grid
Aligns the symbols in the Topology pane on an invisible grid.

The Topology view

172 MQSeries Integrator Using the Control Center

Checking out the Topology
The remainder of this chapter describes tasks that alter the topology of the broker
domain. You cannot perform any of these tasks unless you have exclusive access to
the Topology document, which you obtain by checking the Topology out of the
configuration repository.

To check out the Topology:
1. In the Domain Hierarchy pane of the Topology view, right click the root of the

Topology tree.
2. Click Check Out.

The Key icon appears to the right of the root of the Topology tree to confirm that
the Topology document is checked out. You can now update the Topology. Other
users with access to this broker domain via another instance of the Control Center
cannot make changes to the Topology while it remains checked out to you.

The collectives that you define in the Topology are considered part of the Topology
itself for check out and check in purposes. Therefore if you want to update a
collective, for example to add a broker to it, you must check out the Topology. You
cannot check out the collective as a separate resource. See “Adding an existing
broker to a collective” on page 178 and “Removing a broker from a collective” on
page 181 for further details about updating collectives.

5. Alternatively, you can right click anywhere on the background of the Topology pane, or you can highlight the root of the
Topology tree and click on the Domain Hierarchy menu in the taskbar.

Checking out the Topology

Chapter 5. Defining the broker topology 173

Creating a broker
To create a broker in the configuration repository:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173.
2. In the Domain Hierarchy pane of the Topology view, right click the root of the

Topology tree. (Alternatively, you can right click anywhere on the background
of the Topology pane, or you can highlight the root of the Topology tree and
click the Topology menu in the Control Center taskbar.)

3. Click Create —> Broker.
The Create a new Broker dialog, shown in Figure 52, is displayed.

4. In the Name field, type the name of your broker.
This must be exactly the name specified when the broker was created (that is,
the broker name specified on the mqsicreatebroker command). You must
specify the name using the same case (lower, upper, or mixed). This value is
required and must be unique.

5. In the Queue Manager field, type the name of the broker’s queue manager.
This must be exactly the name specified for the broker’s queue manager when
the broker was created (that is, the queue-manager name specified on the
mqsicreatebroker command). You must specify the name using the same case
(lower, upper, or mixed). This value is required and must be unique in your
MQSeries network.

Figure 52. Create a new Broker dialog

Creating a broker

174 MQSeries Integrator Using the Control Center

6. For documentation purposes, you can provide either a short description, or a
long description, or both, of your broker, though a description is not required.
If you want to provide a description, click the Description tab in the Create a
new Broker dialog, and type some text.

7. Click Finish in the Create a new Broker dialog to complete creation of this
broker.

Confirmation that your new broker has been created appears in two places in the
Topology view:
v An entry representing the broker appears under the root of the Topology tree in

the Domain Hierarchy pane. The New icon next to the broker entry indicates
that this new definition has not yet been checked into the shared configuration.

v A graphical symbol of the broker appears in the Topology pane.

It also appears in the Domain Topology pane of the Assignments view.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

Creating a broker

Chapter 5. Defining the broker topology 175

Creating a collective
To create a collective in the configuration repository:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173.
2. In the Domain Hierarchy pane of the Topology view, right click the root of the

Topology tree. (Alternatively, you can right click anywhere on the background
of the Topology pane, or you can highlight the root of the Topology tree and
click the Topology menu in the Control Center taskbar.)

3. Click Create —> Collective.
The Create a new Collective dialog, shown in Figure 53, is displayed.

4. In the Name field, type the name of your collective. This must follow the
naming rules described in “Naming Control Center resources” on page 20 and
must be unique within your broker domain.

5. Click Finish in the Create a new Collective dialog to complete creation of this
collective.

Confirmation that your new collective has been created appears in two places in
the Topology view:
v A folder representing the collective appears under the root of the Topology tree

in the Domain Hierarchy pane. The New icon next to the collective entry
indicates that this new definition has not yet been checked into the shared
configuration.

v A graphical symbol representing the empty collective appears in the Topology
pane.

Figure 53. Create a new Collective dialog

Creating a collective

176 MQSeries Integrator Using the Control Center

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

Note that collectives are checked in as part of the Topology check in, not as
separate resources, as they exist only in the Topology document.

Creating a collective

Chapter 5. Defining the broker topology 177

Adding an existing broker to a collective
There are several ways of adding an existing broker to a collective using the
Control Center. This section describes one of these methods in detail, then
mentions others briefly.

When you add brokers to the collective, the collective symbol in the Topology pane
can appear crowded. To increase the size of the collective symbol, drag the
double-headed arrow at the bottom-right corner of the symbol downward.

To add an existing broker to a collective:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173. (You cannot check out the collective.)
2. Right click the collective folder in the Topology tree.
3. Click Add —> Broker.

The Add an existing Broker dialog, shown in Figure 54, is displayed.

v To select a single broker from this list, click the broker name.
v To select multiple brokers that appear sequentially in the list, click on the

first broker you want, press and hold the Shift key, then click on the last
broker you want. This action selects the two brokers you highlighted, plus
any that appear between these two in the list.

v To select multiple brokers that do not appear in a sequence in the list, hold
down Ctrl and click each broker you want.

4. When you have selected the brokers you want to add to the collective from this
list, click Finish.

Figure 54. Add an existing Broker dialog. This dialog lists all brokers that you have created
and those that exist in the shared configuration that are eligible for inclusion in this collective
(that is, that are not already assigned to another collective).

Adding an existing broker to a collective

178 MQSeries Integrator Using the Control Center

Confirmation that the selected brokers have been added to the collective appears in
two places in the Topology view:
v In the Domain Hierarchy pane, the brokers are now shown under the collective

folder.
v In the Topology pane, the broker symbols now appear inside the collective

symbol.

Alternatively, you can invoke the Add an existing Broker dialog from the
Topology menu in the Control Center taskbar.

You can also add an existing broker to a collective simply by:
v Dragging the broker symbol in the Topology pane into the symbol of the

collective
or

v Dragging the broker entry in the Domain Hierarchy pane into the symbol of the
collective in the Topology pane.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

6. When the Topology pane has the focus, the Topology menu appears in the Control Center taskbar. When the Domain Hierarchy
pane has the focus, the Domain Hierarchy menu appears in the Control Center taskbar. The menu items of the Topology and
Domain Hierarchy menus are identical.

Adding an existing broker to a collective

Chapter 5. Defining the broker topology 179

Creating a broker to add to a collective
To create a broker to add to a collective:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173.
2. In the Domain Hierarchy pane, right click on the collective folder in the

Topology tree.
3. Click Create —> Broker.

The Create a new Broker dialog, shown in Figure 52 on page 174, is displayed.
4. In the Name field, type the name of your broker.

This must be exactly the name specified when the broker was created (that is,
the broker name specified on the mqsicreatebroker command). You must
specify the name using the same case (lower, upper, or mixed). This value is
required and must be unique.

5. In the Queue Manager field, type the name of the broker’s queue manager.
This must be exactly the name specified for the broker’s queue manager when
the broker was created (that is, the queue-manager name specified on the
mqsicreatebroker command). This value is required.

6. For documentation purposes, you can provide either a short description, or a
long description, or both, of your broker, though a description is not required.
If you want to provide a description, click the Description tab in the Create a
new Broker dialog, and type some text.

7. Click Finish in the Create a new Broker dialog to complete creation of this
broker.

Confirmation that your new broker has been created appears in two places in the
Topology view:
v An entry representing the broker appears under the appropriate collective folder

in the Domain Hierarchy pane. The New icon next to the broker entry indicates
that this new definition has not yet been checked into the shared configuration.

v A graphical symbol of the broker appears inside the symbol of the appropriate
collective in the Topology pane.

The broker has been both created and added to the collective.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

7. You can also select the Create —> Broker action by highlighting the collective symbol in the Topology pane, then clicking the
Topology menu in the Control Center taskbar.

Creating a broker to add to a collective

180 MQSeries Integrator Using the Control Center

Removing a broker from a collective
To remove a broker from a collective:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173. (You cannot check out the collective.)
2. In the Topology pane, right click the symbol of the broker inside the collective

symbol.
3. Click Remove.

Confirmation that the broker has been removed from the collective appears in two
places in the Topology view:
v In the Domain Hierarchy pane, the broker is no longer shown under the

collective folder.
v In the Topology pane, the broker symbol now appears outside the collective

symbol.

Alternatively, you can simply drag the broker symbol out of the symbol of the
collective in the Topology pane. You can also right click the broker entry under the
relevant collective in the Domain Hierarchy pane, and click Remove.

If the removed broker was connected to a broker outside the collective, you might
need to remove the connection also. For more information, see “Deleting the
connection between brokers” on page 183.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

Removing a broker from a collective

Chapter 5. Defining the broker topology 181

Connecting brokers
To connect one broker to another:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173.
2. In the Topology pane, right click the symbol of one of the two brokers you

want to connect.
3. Click Connect —> port.

The cursor becomes a cross-hair attached by a red line to the broker you
selected initially.

4. Move the cross-hair to the symbol of the broker you want to connect to, and
click.

The brokers are now connected. In the Topology pane, a line connects the symbols
of the two brokers.

Note that:
v You cannot connect a single broker outside a collective to more than one of the

brokers in a single collective.
v You can connect a single broker outside a collective to multiple collectives (that

is, to one broker per collective).
v You can connect a broker in one collective to a broker in another collective.
v You can connect two brokers outside a collective.
v A connection is created only if a cycle of connections would not result. If the

addition of a connection would cause a cycle, an error message is issued.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

Connecting brokers

182 MQSeries Integrator Using the Control Center

Deleting the connection between brokers
To delete the connection between two brokers:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173.
2. In the Topology pane, right click on the line between the two brokers you want

to disconnect.
3. Click Delete.

The line between the two brokers disappears. The brokers are now disconnected.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

Deleting the connection between brokers

Chapter 5. Defining the broker topology 183

Deleting a broker from the topology
This procedure describes how to delete a broker reference from the configuration
repository. This procedure does not delete the broker from your system: it simply
marks the broker as logically deleted from the configuration repository. For a full
description of the process required to delete a broker from your broker domain, see
“Deleting a broker from the broker domain” on page 207.
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173.
2. Ensure that the broker you want to delete is checked in. If it is not (that is, if

the Key icon is displayed next to its entry in the Domain Hierarchy pane), right
click the broker entry and click Check In. All execution groups assigned to the
broker must also be checked in before you can delete the broker.

3. In the Topology pane, right click the broker you want to delete.
4. Click Delete.
5. A confirmation message is displayed. If you want to proceed with the deletion,

click Yes.

Confirmation that the broker has been deleted appears in two places in the
Topology view:
v The broker entry no longer appears in the Domain Hierarchy pane.
v The broker symbol no longer appears in the Topology pane.

If the broker was connected to another, the connection is also deleted.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 186.

Deleting a broker

184 MQSeries Integrator Using the Control Center

Renaming a broker
You might need to rename a broker if your original attempt at creating a broker
reference contained an error: renaming the broker is simpler than deleting and
recreating it.

To rename a broker:
1. Ensure that you have checked out the Topology, as described in “Checking out

the Topology” on page 173.
2. Ensure that the broker you want to rename is checked out. If it is not (that is, if

neither the Key icon nor the New icon is displayed next to its entry in the
Domain Hierarchy pane), right click the broker entry in the Topology tree and
click Check Out.

3. In the Topology pane, right click the broker you want to rename.
4. Click Rename.

The Rename Broker dialog is displayed.
5. In the New name field, type the new name of the broker. This must be exactly

the name specified on the mqsicreatebroker command. Click Finish.

Confirmation that the broker has been renamed appears in two places in the
Topology view:
v The broker entry in the Domain Hierarchy pane shows the new name.
v The broker symbol in the Topology pane shows the new name.

If you need also to specify a different queue manager name for the renamed
broker:
1. In the Topology pane, right click the broker you want to rename.
2. Click Properties.
3. In the broker’s properties panel, type the new queue manager name, and

correct the description if necessary. The name you specify must be exactly the
name specified for this broker’s queue manager on the mqsicreatebroker
command. Click Finish.

If you have no further topology changes to make:
1. Check in the broker:

a. In the Topology pane, right click the broker you want to check in.
b. Click Check In.

The Key icon against the broker entry in the Topology tree disappears.
2. Check in the Topology as described in “Checking in the Topology” on page 186.

Renaming a broker

Chapter 5. Defining the broker topology 185

Checking in the Topology
When you have finished making changes to the Topology, you must check it in.
Until you check in the Topology, no one else is able to make changes to the
topology of this broker domain, nor can you deploy the changes you have made.

You can check in Topology changes only, or all changes.

Checking in Topology changes
To check in the Topology:
1. Right click the root of the Topology tree.
2. Click Check In to store the Topology document in the Configuration Manager

database.

To confirm that the Topology has been checked in:
v The Key icon disappears from the root of the Topology tree in the Domain

Hierarchy pane.
v The New icon against any new brokers and collectives in the Topology tree

disappears, indicating that they have also been checked into the shared
configuration. Newly created resources are checked in automatically to ensure
that the configuration remains consistent.

Note that any brokers with the Key icon against them must be checked in
separately; they are not checked in as part of the general Topology check in.

Checking in multiple changes
The File —> Check In menu option allows you to check in multiple changes. You
can use this instead of checking in individual objects such as the Topology. The
options are:
v File —> Check In —> List

v File —> Check In —> All in Current Workspace

v File —> Check In —> All (Save to Shared)

These options are more efficient when you have many different resources checked
out. The List option also allows you to check which resources are checked out in
your current workspace before you decide which resources to check in.

For more information about check in options, see “Saving the workspace to the
shared repository” on page 16.

Checking in the Topology

186 MQSeries Integrator Using the Control Center

Making changes operational
In checking in resources that are new or that you have altered, you make them
visible in the shared configuration. However, the changes you have made have no
operational effect until you deploy them in the broker domain. For information
about deploying resources, see “Chapter 7. Deploying configuration data” on
page 203.

Making changes operational

Chapter 5. Defining the broker topology 187

188 MQSeries Integrator Using the Control Center

Chapter 6. Assigning resources to a broker

This chapter describes the following tasks:
v “Creating an execution group” on page 190
v “Assigning message flows to execution groups” on page 192
v “Assigning message sets to brokers” on page 195
v “Removing resources from a broker” on page 197
v “Checking in the Assignments” on page 199
v “Refreshing the Assignments view” on page 200
v “Making changes operational” on page 201

Authorization to assign resources to a broker
To perform any of the tasks described in this chapter, you must:
v Have the correct Control Center user role, which can be one of:

– Message flow and message set assigner

– All roles

For information about setting your use role, see “Setting user roles” on page 13.
v Be a member of the MQSeries Integrator group mqbrasgn

The Assignments view
To display the Assignments view, click the Assignments tab in the Control Center.
Figure 55 on page 190 shows an example of the Assignments view.

© Copyright IBM Corp. 2000 189

Creating an execution group
When you create a broker, it has a default execution group. If you want additional
execution groups, you must create them explicitly.

To create an execution group:
1. Ensure that the broker to which you want to assign the new execution group is

checked out of the shared configuration.
If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. In the Domain Hierarchy pane, right click the entry for the broker.
3. Click Create —> Execution Group.

The Create a new Execution Group dialog is displayed.
4. In the Name field, type the name of the execution group. This must follow the

naming rules described in “Naming Control Center resources” on page 20. Click
Finish.

The new execution group appears:
v Inside the broker symbol in the Domain Topology pane, alongside the symbols

for other execution groups assigned to this broker

Figure 55. The Assignments view. The left-hand pane, the Domain Hierarchy pane, shows the current hierarchy of
brokers, execution groups, message flows, and message sets in your workspace. The center pane, the Assignable
Resources pane, shows the message sets and message flows in your workspace. The right-hand pane, the Domain
Topology pane, shows in a graphical form the current assignment of execution groups to brokers; of message flows to
execution groups; and of message sets to brokers in your workspace.

Creating an execution group

190 MQSeries Integrator Using the Control Center

v Beneath the broker folder in the Domain Hierarchy pane, with a New icon
against it

Creating an execution group

Chapter 6. Assigning resources to a broker 191

Assigning message flows to execution groups
To assign a message flow to an execution group:
1. Ensure that the execution group to which you want to assign the message flow

is checked out of the shared configuration.
If the execution group entry in the Domain Hierarchy pane of the Assignments
view has neither the Key icon nor the New icon against it, right click the
execution group entry, and click Check out.

2. Drag the message flow symbol from the Assignable Resources pane into the
symbol of the execution group in the Domain Topology pane. The Assignable
Resources pane lists all message flows in your workspace.

3. Check in the execution group.

An alternative approach, and one that is useful when you have a large number of
message flows to assign to a single execution group, is as follows:
1. In the Domain Hierarchy pane, right click the entry for the checked-out

execution group to which you want to assign a message flow.
2. Click Add —> Message Flow.

The Add an existing Message Flow dialog is displayed, showing all message
flows in this workspace. Figure 56 shows an example of the Add an existing
Message Flow dialog.

Figure 56. The Add an existing Message Flow dialog. This dialog lists all message flows in your workspace.

Assigning message flows to execution groups

192 MQSeries Integrator Using the Control Center

v To select a single message flow from this list, click the message flow name.
v To select multiple message flows that appear sequentially in the list, click the

first message flow you want, press and hold the Shift key, then click the last
message flow you want. This action selects the two message flows you
highlighted, plus any that appear between these two in the list.

v To select multiple message flows that do not appear in a sequence in the list,
hold down Ctrl and click each message flow you want.

3. When you have selected the message flows you want to assign to the execution
group from this list, click Finish.

When you assign message flows:
v You cannot add a single message flow more than once to any execution group.
v Subflows are included in the Add an existing Message Flow dialog. If you are

using a subflow in a higher-level flow, you must assign only the higher-level
flow to the execution group: this action includes the subflow.

The message flows you selected appear:
v Inside the execution group symbol in the Domain Topology pane.
v Beneath the execution group entry in the Domain Hierarchy pane.

When you deloy an assigned message flow, each node in the message flow is
allocated a label that consists of the name you gave the node qualified by its
containing flow, if any. This guarantees the uniqueness of each label within the
message flow.

For example, if you deploy a message flow called Top, that contains an instance of
subflow Base that you have called myBase, and your subflow contains a compute
node called myCompute, the label allocated to this compute node is
Top.myBase.myCompute.

A few of the primitive nodes are known as compound nodes (that is, they are
based on another node). The inclusion of compound nodes in the message flow
affects the labels allocated. For example, the extract node is based on the compute
node. Therefore if your node in the message flow myBase is an extract node, the
label will be Top.myBase.myExtract.Compute1.

Setting the properties of an assigned message flow
You can change some of the properties of a message flow after you have assigned
it to an execution group. To change the properties of a message flow, right click the
entry for the message flow under the appropriate execution group in the Domain
Hierarchy pane, and click Properties. The properties whose values you can change
are:

Additional Instances
Specifies the number of threads that the broker should start in order to
read messages from the input queue named on the MQInput node of the
message flow and process them concurrently. You can have up to 256
threads.

Having additional threads can increase the throughput of a message flow.
However, you should consider the impact on message order and set the
Order Mode property on the MQInput node (Advanced tab) accordingly.
You must also ensure that the input queue has been defined with the
SHARE attribute to enable multiple threads to read the same queue.

Its default value is 0.

Assigning message flows to execution groups

Chapter 6. Assigning resources to a broker 193

Commit Count
Specifies how many input messages are processed by a message flow
before a syncpoint is taken (by issuing an MQCMIT).

This attribute should be used only if the Additional Instances property is
set to 0.

The default value of 1 is also the minimum permitted value. Change this
attribute if you want to avoid frequent MQCMIT calls when messages are
being processed quickly and the lack of an immediate commit can be
tolerated by the receiving application.

Use the Commit Interval to ensure that a commit is performed periodically
when not enough messages are received to fulfill the Commit Count.

Commit Interval
Specifies a time interval at which a commit is taken when the Commit
Count property is greater than 1 (that is, where the message flow is
batching messages) but the number of messages processed has not reached
the value of the Commit Count property. It ensures that a commit is
performed periodically when not enough messages are received to fulfill
the Commit Count.

The time interval is specified in seconds and must be in the range 0
through 60.

This attribute should be used only if the Additional Instances property is
set to 0.

Its default value is 0.

Coordinated transaction
Controls whether the message flow is processed as a global transaction,
coordinated by MQSeries. Such a message flow is said to be fully
globally-coordinated.

Use coordinated transactions only where you need the message and any
database updates performed by the message flow to be processed in a
single unit-of-work, using a two-phase commit protocol. This means that
both the message is read and the database updates are performed, or
neither is done.

If you change this value, you must ensure that the broker’s queue manager
is configured correctly. If you do not set up the queue manager correctly, a
message is generated by the broker when a message is received by the
message flow to indicate that although the message flow is to be globally
coordinated, the queue manager configuration does not support this.

See the MQSeries Integrator Administration Guide for information about
which databases are supported as participants in a global transaction, and
the MQSeries System Administration book for how to configure MQSeries
and the database managers.

The default value is no.

Assigning message flows to execution groups

194 MQSeries Integrator Using the Control Center

Assigning message sets to brokers
To assign a message set to a broker:
1. Ensure that the broker to which you want to assign the message set is checked

out of the shared configuration.
If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. Drag the message set symbol from the Assignable Resources pane into the
symbol of the broker (but not into any execution group contained in the broker)
in the Domain Topology pane. The Assignable Resources pane lists all message
sets in your workspace.

An alternative approach, and one that is useful when you have a large number of
message sets to assign to a single broker, is as follows:
1. In the Domain Hierarchy pane, right click the entry for the checked-out broker

to which you want to assign a message set.
2. Click Add —> Message Set.

The Add an existing Message Set dialog is displayed, showing all message sets
in this workspace. Figure 57 shows an example of the Add an existing Message
Set dialog.

Figure 57. The Add an existing Message Set dialog. This dialog lists all message sets in your workspace.

Assigning message sets to brokers

Chapter 6. Assigning resources to a broker 195

v To select a single message set from this list, click the message set name.
v To select multiple message sets that appear sequentially in the list, click the

first message set you want, press and hold the Shift key, then click the last
message set you want. This action selects the two message sets you
highlighted, plus any that appear between these two in the list.

v To select multiple message sets that do not appear in a sequence in the list,
hold down Ctrl and click each message set you want.

Note that you cannot assign a single message set more than once to any broker.
3. When you have selected the message sets you want to assign to the broker

from this list, click Finish.

The message sets you selected appear:
v Inside the broker symbol in the Domain Topology pane.
v Beneath the broker symbol in the Domain Hierarchy pane.

Assigning message sets to brokers

196 MQSeries Integrator Using the Control Center

Removing resources from a broker
You can remove message sets from the broker to which they have been assigned,
you can remove message flows from the execution groups to which they have been
assigned, and you can delete execution groups from their owning broker.

Deleting an execution group from a broker
To delete an execution group from a broker:
1. Ensure that the broker from which you want to delete the execution group is

checked out of the shared configuration.
If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. Ensure that the execution group you want to delete is not checked out.
If the execution group entry in the Domain Hierarchy pane of the Assignments
view has the Key icon against it, right click the execution group entry and click
Check in.

3. Right click the execution group entry under the broker in the Domain
Hierarchy pane, or right click the execution group symbol in the Domain
Topology pane, and click Delete.

The execution group and any message flow assignments it contains are deleted:
v From the broker symbol in the Domain Topology pane
v From the relevant broker entry in the Domain Hierarchy pane

The message flows themselves are not deleted or removed from your workspace,
and remain in the Assignable Resources pane to be assigned to other execution
groups.

Removing a message set from a broker
To remove a message set from a broker:
1. Ensure that the broker from which you want to remove the message set is

checked out of the shared configuration.
If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry,
and click Check out.

2. Right click the message set symbol in the Domain Topology pane, or right click
its entry in the Domain Hierarchy pane, and click Remove.

The message set assignment disappears from:
v The broker symbol in the Domain Topology pane
v The broker entry in the Domain Hierarchy pane

The message set is not deleted or removed from your workspace, and is still
available in the Assignable Resources pane to be assigned to other brokers.

Removing a message flow from an execution group
To remove a message flow from an execution group:
1. Ensure that the execution group from which you want to remove the message

flow is checked out of the shared configuration.

Removing resources from a broker

Chapter 6. Assigning resources to a broker 197

If the execution group entry in the Domain Hierarchy pane of the Assignments
view has neither the Key icon nor the New icon against it, right click the
execution group entry, and click Check out.

2. Right click the message flow symbol inside the execution group symbol in the
Domain Topology pane, or right click the message flow entry in the Domain
Hierarchy pane, and click Remove.

The message flow assignment disappears from:
v The execution group symbol in the Domain Topology pane
v The execution group entry in the Domain Hierarchy pane

The message flow is not deleted or removed from your workspace, and is still
available in the Assignable Resources pane to be assigned to other execution
groups.

Removing resources from a broker

198 MQSeries Integrator Using the Control Center

Checking in the Assignments
When you have finished assigning resources to a broker, you must check in any
brokers and execution groups that are checked out. Until you check in brokers and
execution groups, no one else is able to make changes to them, nor can you deploy
the assignments you have made.

When a newly created broker or execution group is checked in, all related
resources are also checked in automatically. For example, when you check in a new
broker, its default execution group and the Topology document are also checked in,
to ensure consistency of configuration data. MQSeries Integrator does this to
prevent you from accidentally stranding important information in a way that
cannot easily be corrected. After a new resource has been checked in for the first
time, you can check individual resources out, modify them, and check them in
individually.

You can check in brokers and execution groups only, or all changes.

Checking in assignments
To check in a broker:
1. Right click the broker entry in the Domain Hierarchy pane.
2. Click Check in to store the broker in the shared configuration.

To confirm that the broker assignments have been checked in, the Key icon
disappears from the broker entry in the Domain Hierarchy pane.

To check in an execution group:
1. Right click the execution group entry in the Domain Hierarchy pane.
2. Click Check in to store the execution group in the shared configuration.

To confirm that the execution group has been checked in, the Key icon disappears
from the execution group in the Domain Hierarchy pane.

Checking in multiple changes
The File —> Check In menu option allows you to check in multiple changes. You
can use this instead of checking in individual objects such as Assignments data.
The options are:
v File —> Check In —> List

v File —> Check In —> All in Current Workspace

v File —> Check In —> All (Save to Shared)

These options are more efficient when you have many different resources checked
out. The List option also allows you to check which resources are checked out in
your current workspace before you decide which resources to check in.

For more information about check in options, see “Saving the workspace to the
shared repository” on page 16.

Checking in the Assignments

Chapter 6. Assigning resources to a broker 199

Refreshing the Assignments view
You can update the Assignments view with the most recent contents of the
configuration repository at any time. Select View —> Refresh from Shared. This
shows changes to resources that are not checked out: if you have a resource
checked out, the version you have in your current workspace is not overwritten
with the version from the shared configuration.

Refreshing

200 MQSeries Integrator Using the Control Center

Making changes operational
In checking in resources that are new or that you have altered, you make them
visible in the shared configuration. However, the changes you have made have no
operational effect until you deploy them in the broker domain. For information
about deploying resources, see “Chapter 7. Deploying configuration data” on
page 203.

Making changes operational

Chapter 6. Assigning resources to a broker 201

202 MQSeries Integrator Using the Control Center

Chapter 7. Deploying configuration data

The following types of configuration data need to be deployed before they can take
effect in the broker domain:

Assignments data
Execution groups to brokers; message flows to execution groups; and
message sets to brokers.

Topics data
Topics and associated Access Control Lists (ACLs) for the broker domain

Topology data
Broker and collective data for the broker domain

When you request deployment of any type of configuration data, the Configuration
Manager copies the relevant configuration data from the shared configuration and
transmits it to the relevant brokers. When the deployment is successful, the brokers
are able to act in accordance with the newly deployed data.

This chapter begins with a discussion of the deployment function, then provides
instructions for deploying the various types of configuration data.

Three types of deployment
You can deploy assignments data, topics data, topology data, or all three types of
data at once. For each of these types of configuration data, you can request:
v A complete deployment
v A delta deployment

In addition, you can request a forced deployment. This type of deployment is valid
only when all configuration data of all types is being deployed.

Complete deployment
A complete deployment:
1. Deletes all configuration data of that type that is currently deployed on the

target brokers
2. Creates new configuration data from the shared configuration

For example, if you request a complete deployment of topics data, the
Configuration Manager deploys instructions to all brokers to delete all currently
deployed topics data and create a new set of topics data from those in the shared
configuration.

Delta deployment
When you request a delta deployment, the Configuration Manager compares the
configuration data of that type that is currently deployed on the target brokers
with the shared configuration, and deploys only the differences between the two
versions. Therefore, the delta deployment is better for performance, especially
when you have a large amount of configuration data in the shared configuration.

© Copyright IBM Corp. 2000 203

Forced deployment
The forced deployment, which overrides any outstanding deployment request, is
used typically to correct error situations. Therefore, to maintain consistency of the
configuration data throughout the broker domain, a forced deployment is allowed
only when deploying all types of configuration data. A forced deployment is
always a complete deployment.

A summary of deployment actions
Table 27 summarizes the available deployment actions, showing:
v The type of deployment supported for each type of configuration data
v The Control Center view from which the deployment can be requested
v The brokers to which the deployment can be targeted

Table 27. Deployment summary

Data deployed Complete Delta Forced From Control
Center view

Target

Assignments Yes Yes No Assignments Single broker Single execution
group All brokers

Topics Yes Yes No Topics All brokers

Topology Yes Yes No Topology All brokers

All types Yes Yes Yes Topology All brokers

Note: The Topics, Topology, and All types deployments must apply to all brokers to maintain consistent
configuration data throughout the broker domain.

The stages of the deployment process
Deployment of configuration data takes place in two stages.

Stage one of deployment
During stage one of deployment, which is synchronous, the Configuration
Manager sends a configuration data stream to the
SYSTEM.BROKER.ADMIN.QUEUE of each target broker. When the configuration
data has been sent to all relevant brokers, control is returned to you.

If the first stage is successful, message BIP1520I is displayed identifying the
brokers to which the data was deployed.

However, if an error is detected during the first stage of deployment, the
deployment is abandoned: no configuration data is sent to any broker, and an
appropriate error message is displayed in a Control Center dialog box.

Stage two of deployment
During stage two of the deployment process, which is asynchronous, the target
brokers process the received configuration data and return a response on the
Configuration Manager’s SYSTEM.BROKER.ADMIN.REPLY queue. The
Configuration Manager then updates its record of the deployed configuration.

Deployment of data to a target broker might be only partially successful. This is
because the unit of deployment on a broker is the execution group: the
deployment of one execution group to a broker might succeed, but the deployment

Three types of deployment

204 MQSeries Integrator Using the Control Center

of another to the same broker might fail. A unit of deployment is transactional,
however, so either all changes are made to a given execution group or no change is
made.

For deployment purposes, topics and topology data are considered to belong to a
separate unit of deployment, so either all changes are made to both topics and
topology, or no change is made.

Which data is deployed?
When a deployment of any type of configuration data takes place, the data of that
type that has been checked into the shared configuration by all Control Center
users in the broker domain is that which is deployed to the configuration
repository. Data that has not been checked in is not deployed. Note also that
descriptive text that you can supply when defining Control Center resources is not
deployed.

If some data has not been checked in
If the fact that some data has not been checked in leaves the shared configuration
in an inconsistent state, the deployment is likely to fail. If the Configuration
Manager detects an inconsistency, you receive a message indicating that some
Control Center resources are not checked in.

To help avoid this situation occurring, you can request a list of all resources in
your workspace that have not been checked in (using the File —> Check In List
action) before you deploy. You can also check in all checked-out configuration data
in your workspace using the File —> Save to Shared action. Of course, if multiple
users are creating shared configuration data, that activity must cease while a
deployment takes place, and all users must check in any checked-out resources
before the deployment is requested.

Finding out whether deployment has worked
You can find out whether stage two of a deployment has succeeded by refreshing
the Log view: click the green refresh button on the taskbar, or select View —>
Refresh. It might take a while for the response to arrive. The refreshed Log view
displays a group of messages for each broker to which configuration data has been
deployed. Typical messages are:

Message
Meaning

BIP2056
Indicates that a deployment was completely successful for the broker.

BIP2086
Indicates that a deployment was partially successful for the broker.

BIP2087
Indicates that a deployment was completely unsuccessful for the broker.

If a deployment fails completely or partially succeeds, and message BIP4046 also
appears in the Log view, Topics or Topology data was not processed. In this case,
the broker in question is out of step with the rest of the broker domain, and so you
must correct the problem that caused the failure and deploy again to restore
consistency of data throughout the broker domain. This might occur, for example,
if you have deleted and recreated a broker. See “Deleting a broker from the broker
domain” on page 207 for further details.

Stages of deployment

Chapter 7. Deploying configuration data 205

Refresh the Operations view of the Control Center to display the status of each
broker after the deployment.

If deployment times out
It is possible for the deployment of an execution group to time out while it is
being processed by the target broker. This effectively leaves the status of the
execution group in doubt. This status is shown in the Operations view by the
appearance of a yellow question mark over the traffic light status icon. A message
in the Log view confirms the problem. The in-doubt status of the execution group
can be resolved only by a subsequent deployment of all assignments data. (Note
that a subsequent delta deployment is automatically converted to a complete
deployment if any execution group is in the in-doubt state).

If the broker is not running
If a broker is not running when a deployment takes place, or an MQSeries queue
manager on the route to the broker is not running, the deployment message is not
processed immediately. Note, however, that the deployment message does not
expire, so it will be processed eventually. You cannot perform a complete or delta
deployment to a broker when a deployment of any type is outstanding to that
broker: an attempt to do so returns an error message in a Control Center dialog
box. Stage two of the deploy must complete before a further deploy is allowed,
unless a forced deployment is requested.

Finding out whether deployment worked

206 MQSeries Integrator Using the Control Center

Deleting a broker from the broker domain
When you delete a broker using the Control Center, the broker symbol is no longer
visible in the Assignments view or the Topology view.
v If the broker has never been deployed to, the broker and all execution groups

assigned to it are deleted immediately from the shared configuration repository.
v If the broker has been deployed to, its definition remains in the shared deployed

configuration after the topology (with the broker deleted) has been checked in,
until the updated configuration is deployed.
– When configuration data of any type is next deployed after the broker is

deleted, the Configuration Manager sends a configuration data stream
requesting deletion of all data of the type relevant to that deployment request
(which can be topology, topics, assignments, or all types) to the deleted
broker.
For example, if you request a delta deployment of topics data after having
deleted a broker using the Control Center, the Configuration Manager
constructs a configuration data stream to delete all topics data deployed to
the deleted broker.

– When all configuration data of all types has been successfully deleted in this
way, which might take several deployment requests, the deleted broker is
finally removed from both the shared and the deployed configurations.

You can, of course, force early completion of this stage by requesting a complete
or delta deployment of all types of data.

When the broker has been removed from both the shared and the deployed
configurations, it is removed from the Operations view when you next refresh
that view.

You are strongly recommended to perform the actions for deleting a broker that
has been deployed to in the following order:
– Delete the broker reference in the Control Center.
– Deploy this change by selecting File—>Deploy—> Complete Configuration

(all types)—>Normal. You cannot deploy just the topology data in this
situation.

– Delete the physical broker on its local system using the mqsideletebroker
command.

This order ensures that the deletion messages described above are processed by
the broker on its local system before it is deleted and avoids potential
inconsistency of deployed data.

v If you subsequently recreate a broker with the same name as a deleted broker,
you must complete the necessary steps in the recommended order above,
followed by these steps:
– Recreate the physical broker on its local system using the mqsicreatebroker

command, and recreate the broker reference in the Control Center.
– Deploy your changes. Because the previous instance of this broker has been

completely deleted, you can select either File—>Deploy—> Complete
Configuration (all types)—>Normal. or Deploy—>Complete Topology
Configuration or Deploy—>Delta Topology Configuration in the Topology
view (described in “Deploying delta topology” on page 217 and “Deploying
complete topology” on page 218).

Deleting a broker from the broker domain

Chapter 7. Deploying configuration data 207

The act of deployment, recreation, and redeployment in the Control Center is
required to reset the configuration repository and update internal identifiers for
the broker that are generated by the create command. If you do not delete and
recreate the broker, and redeploy all data to that broker, the identifiers will not
match and check in or deployment will fail.

Deleting a broker from the broker domain

208 MQSeries Integrator Using the Control Center

Authorization to deploy configuration data
To perform any of the tasks described in the remainder of this chapter, you must:
v Have the correct Control Center user role, as follows:

– To deploy assignments only, you must have the user role Message flow and
message set assigner, Operational domain controller, or All roles.

– To deploy topics only, you must have the user role Topic security
administrator, Operational domain controller, or All roles.

– To deploy topology only, you must have the user role Operational domain
controller or All roles.

– To deploy all types of data, you must have the user role Operational domain
controller or All roles.

For information about setting your user role, see “Setting user roles” on page 13.
v Be a member of the appropriate MQSeries Integrator group, as follows:

– To deploy assignments data, you must be a member of group mqbrops.
– To deploy topics data, you must be a member of group mqbrops or group

mqbrtpic.
– To deploy topology data, you must be a member of group mqbrops.

Authorization to deploy configuration data

Chapter 7. Deploying configuration data 209

Deploying delta data of all types
You can deploy delta data of all types from all views on the Control Center.
1. Ensure that the assignments, topics, and topology data you want to deploy has

been checked into the shared configuration, as described in “Checking in the
Assignments” on page 199, “Checking in topics data” on page 224, and
“Checking in the Topology” on page 186.

2. Click File —> Deploy —> Delta configuration (all types).

The Configuration Manager compares data of all types for all brokers in the shared
configuration with the currently deployed data for all brokers, and deploys only
the differences between the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying delta data of all types

210 MQSeries Integrator Using the Control Center

Deploying complete data of all types
You can deploy complete data of all types from all views on the Control Center.
1. Ensure that the assignments, topics, and topology data you want to deploy has

been checked into the shared configuration, as described in “Checking in the
Assignments” on page 199, “Checking in topics data” on page 224, and
“Checking in the Topology” on page 186.

2. Click File —> Deploy —> Complete configuration (all types) —> Normal.

The Configuration Manager creates a request consisting of instructions to delete all
deployed data of all types, followed by instructions to create a new set of data,
based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying complete data of all types

Chapter 7. Deploying configuration data 211

Forcing deployment of all data
You can force deployment of complete data of all types from all views on the
Control Center.
1. Ensure that the assignments, topics, and topology data you want to deploy has

been checked into the shared configuration, as described in “Checking in the
Assignments” on page 199, “Checking in topics data” on page 224, and
“Checking in the Topology” on page 186.

2. Click File —> Deploy —> Complete configuration (all types) —> Forced.

The Configuration Manager creates a request consisting of instructions to delete all
deployed data of all types, followed by instructions to create a new set of data,
based on the shared configuration, and deploys it to the target brokers. Any
outstanding deployment request, of any type, is overridden by this forced
deployment of configuration data.

If you have deleted and recreated a broker, and have not followed the order of
actions indicated in “Deleting a broker from the broker domain” on page 207, you
might find it necessary to use a forced deployment to reset your broker domain
configuration.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Forcing deployment of all data

212 MQSeries Integrator Using the Control Center

Deploying delta assignments
You must be in the Assignments view to deploy only assignments data.
1. Ensure that the assignments data you want to deploy has been checked into the

shared configuration, as described in “Checking in the Assignments” on
page 199.

2. Select the objects to which you want to deploy the assignments data.
If you are deploying to all brokers in the broker domain:
v In the Domain Hierarchy pane of the Assignments view, right click the root

of the Broker tree. Select Deploy—>Delta Assignments Configuration.

If you are deploying to a single broker:
v In the Domain Hierarchy pane of the Assignments view, right click the entry

of the broker to which you want to deploy assignments data. Select
Deploy—>Delta Assignments Configuration.
Alternatively, you can right click the broker symbol in the Domain Topology
pane and select Deploy—>Delta Assignments Configuration.

If you are deploying to a single execution group:
v In the Domain Hierarchy pane of the Assignments view, right click the

execution group to which you want to deploy assignments data. Select
Deploy—>Delta Assignments Configuration.
Alternatively, you can right click the execution group symbol in the Domain
Topology pane and select Deploy—>Delta Assignments Configuration.

3. You can also invoke the Deploy —> Delta Assignments Configuration action
from the Domain Hierarchy menu on the Control Center taskbar.

The Configuration Manager compares assignments data for the target brokers or
execution groups in the shared configuration with the currently deployed
assignments data for the same brokers, and deploys only the differences between
the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying delta assignments

Chapter 7. Deploying configuration data 213

Deploying complete assignments
You must be in the Assignments view to deploy only assignments data.
1. Ensure that the assignments data you want to deploy has been checked into the

shared configuration, as described in “Checking in the Assignments” on
page 199.

2. Select the objects to which you want to deploy assignments data.
If you are deploying to all brokers in the broker domain:
v In the Domain Hierarchy pane of the Assignments view, right click the root

of the Broker tree. Select Deploy—>Complete Assignments Configuration.

If you are deploying to a single broker:
v In the Domain Hierarchy pane of the Assignments view, right click the entry

of the broker to which you want to deploy assignments data. Select
Deploy—>Complete Assignments Configuration.
Alternatively, you can right click the broker symbol in the Domain Topology
pane and select Deploy—>Complete Assignments Configuration.

If you are deploying to a single execution group:
v In the Domain Hierarchy pane of the Assignments view, right click the

execution group to which you want to deploy assignments data. Select
Deploy—>Complete Assignments Configuration.
Alternatively, you can right click the execution group symbol in the Domain
Topology pane and select Deploy—>Complete Assignments Configuration.

3. You can also invoke the Deploy —> Complete Assignments Configuration
action from the Domain Hierarchy menu on the Control Center taskbar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed assignments data, followed by instructions to create a new set of
assignments data, based on the shared configuration, and deploys it to the target
brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying complete assignments

214 MQSeries Integrator Using the Control Center

Deploying delta topics
You must be in the Topics view to deploy only topics data.
1. Ensure that the topics data you want to deploy has been checked into the

shared configuration, as described in “Checking in topics data” on page 224.
2. In the Topics pane of the Topics view, right click TopicRoot.

Select Deploy —> Delta Topics Configuration.
3. You can also invoke the Deploy —> Delta Topics Configuration action from

the Topics menu on the Control Center taskbar.

The Configuration Manager compares topics data for all brokers in the shared
configuration with the currently deployed topics data for all brokers, and deploys
only the differences between the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying delta topics

Chapter 7. Deploying configuration data 215

Deploying complete topics
You must be in the Topics view to deploy only topics data.
1. Ensure that the topics data you want to deploy has been checked into the

shared configuration, as described in “Checking in topics data” on page 224.
2. In the Topics pane of the Topics view, right click TopicRoot.

Select Deploy —> Complete Topics Configuration.
3. You can also invoke the Deploy —> Complete Topics Configuration action

from the Topics menu on the Control Center taskbar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed topics data, followed by instructions to create a new set of topics data,
based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying complete topics

216 MQSeries Integrator Using the Control Center

Deploying delta topology
You must be in the Topology view to deploy only topology data.
1. Ensure that the topology data you want to deploy has been checked into the

shared configuration, as described in “Checking in the Topology” on page 186.
2. Choose one of the following options:

v In the Domain Hierarchy pane of the Topology view, right click the root of
the Topology tree. Select Deploy —> Delta Topology Configuration.
You can also select Deploy —> Delta Topology Configuration. from the
Domain Hierarchy menu on the Control Center taskbar.

v In the Topology pane of the Topology view, right click the background and
select Deploy —> Delta Topology Configuration.
You can also select Deploy —> Delta Topology Configuration from the
Topology menu on the Control Center taskbar.

The Configuration Manager compares topology data for all brokers in the shared
configuration with the currently deployed topology data for all brokers, and
deploys only the differences between the two versions.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying delta topology

Chapter 7. Deploying configuration data 217

Deploying complete topology
You must be in the Topology view to deploy only topology data.
1. Ensure that the topology data you want to deploy has been checked into the

shared configuration, as described in “Checking in the Topology” on page 186.
2. Choose one of the following options:

v In the Domain Hierarchy pane of the Topology view, right click the root of
the Topology tree. Select Deploy —> Complete Topology Configuration.
You can also select Deploy —> Complete Topology Configuration. from the
Domain Hierarchy menu on the Control Center taskbar.

v In the Topology pane of the Topology view, right click the background and
select Deploy —> Complete Topology Configuration.
You can also select Deploy —> Complete Topology Configuration from the
Topology menu on the Control Center taskbar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed topology data, followed by instructions to create a new set of topology
data, based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Finding out whether deployment has worked” on page 205.

Deploying complete topology

218 MQSeries Integrator Using the Control Center

Chapter 8. Setting up publish/subscribe access control

This chapter describes how to create a new publish/subscribe topic, and how to
update access control lists (ACLs). ACLs allow you to restrict user permission to
publish messages, subscribe to topics, and request persistent delivery of messages.

Authorization to set up publish/subscribe access control
To perform any of the tasks described in this chapter, you must:
v Have the correct Control Center user role, which can be one of:

– Topic security administrator

– All roles

For information about setting your user role, see “Setting user roles” on page 13.
v Be a member of the MQSeries Integrator group mqbrtpic

The Topics view
To display the Topics view, click the Topics tab in the Control Center. Figure 58
shows an example of the Topics view.

In the Topics view, you can create the topics under which messages can be
published. In addition, you can give users or groups permission to publish
messages, or to subscribe to messages published under these topics. You can also

Figure 58. The Topics view.

© Copyright IBM Corp. 2000 219

deny users or groups these access rights. You would do this to ensure that
privileged information was not being viewed by unauthorized users or groups, for
example.

The information in the Topics view can be viewed in two ways:
v The hierarchy of topics is shown in the Topics/Users view, where the Access

Control List (ACL) for the selected topic is shown.
v The list of users and groups is shown in the Users/Topics view, and the access

to each topic is shown for the selected user or group.

In addition to the Topics view, you can use the Subscriptions view to see currently
registered subscriptions if you are a member of MQSeries Integrator group
mqbrops.

The Topics view

220 MQSeries Integrator Using the Control Center

Creating topics
You create new topics beneath the TopicRoot, which is always displayed in the
Topics pane, or beneath any topic already defined. Any topic can have any number
of children, and each of these can have different ACL settings.

To create a new topic:
1. Click the Topics/Users button in the Topics view.
2. Ensure that the topic under which you want to create a new one, which can be

TopicRoot or any topic already defined, is checked out. If it is not checked out,
right click the topic and click Check Out.

3. Right click the parent topic and click Create —> Topic.
The Create a new Topic dialog is displayed.

4. In the Create a new Topic dialog, type the name of the topic in the Name field.
5. Select the users and groups that are to have explicit access defined for this

topic. Note that this list contains users and groups (principals) only if you have
a User Name Server installed and running, and the Configuration Manager is
configured to communicate with it.
If you do not select users or groups from the list on this dialog, access for this
topic defaults to the ACL setting for PublicGroup for the topic root. You can
update access to this topic for explicit users at a later time, if you do not do so
now.
To specify explicit users or groups access now, expand the Groups and Users
folders and select the users or groups:
v To select a single user or group from the list, click the user or group name.
v To select multiple users or groups that appear sequentially in the list, click

the first user or group you want, press and hold the Shift key, then click the
last user or group you want. This action selects the two users or groups you
highlighted, plus any that appear between these two in the list.

v To select multiple users or groups that do not appear in a sequence in the
list, hold down Ctrl and click each principal you want.

6. Select the required access setting for this topic. The values that you set apply to
all users and groups that you selected in the create topic dialog (step 4).
v For the Publish field, select one of

Allow Publications are allowed.
Deny Publications are not permitted.
Inherit

Permission to publish is inherited.
v For the Subscribe field, select one of

Allow Subscriptions are allowed.
Deny Subscriptions are not permitted
Inherit

Permission to subscribe is inherited.

8. TopicRoot is a special topic that cannot be deleted or renamed. It always has the PublicGroup in its ACL.

Creating topics

Chapter 8. Setting up publish/subscribe access control 221

v For the Persistent field, select one of
Yes Persistent delivery of messages is allowed.
No Persistent delivery of messages is not allowed.
Inherit

Permission to request persistent delivery of messages is inherited.
7. Click Finish.

The new topic appears beneath its parent topic.

After you create a topic, you can add more users or groups to the ACL using the
Properties dialog as described “Adding a principal to an ACL” on page 223.

If you do not select any users or groups when you create the topic, the ACL is
empty, and the Topics Access Control List pane is left blank. In this case, each user
or group inherits the same access to this topic as it has to the parent topic.

If you have selected users or groups, they appear in the Topic Access Control List
pane. Beside the users or groups, you see the permissions they have to publish
messages, subscribe to messages, and request persistent delivery of messages. You
can change these permissions by selecting them. A drop down list is shown,
allowing you to select a different permission.

Renaming, duplicating, and deleting topics
Topics can be renamed, duplicated, or deleted by right clicking the appropriate
topic and selecting the desired action from the pop-up menu. When you duplicate
a topic, a sibling topic with a unique name is created. Note that the parent topic
must be checked out before you can perform any of these actions.

Creating topics

222 MQSeries Integrator Using the Control Center

Adding a principal to an ACL
To add a principal to an ACL:
1. In the Topics view, click the Topics/Users button.
2. Ensure that the topic for which you would like to edit the ACL is checked out.

If it is not checked out, right click the topic and click Check Out.
3. Right click the topic and click Properties.
4. Expand the Groups or Users folders in the Available Principals.

You can add principals that are not yet listed in the ACL; principals that are
already in the ACL are not shown. You can grant permissions to a principal, or
revoke permissions for a principal. You can specify that the principal inherit the
same level of access to a permission as it has to the parent topic. Setting the
access level of a principal in the ACL of the TopicRoot to Inherit is not allowed,
since the TopicRoot does not have a parent topic. Each principal can be
assigned the following permissions:

Publish
Permits or denies the principal permission to publish messages on this
topic.

Subscribe
Permits or denies the principal permission to subscribe to messages on
this topic.

Persistent
Permits or denies the principal permission to request persistent delivery
of a publication when the principal subscribes to the topic.

If a user subscribes to a topic, and the user requests persistent delivery of the
messages, the user must be granted permission both to subscribe to that topic and
to request persistent delivery of messages for that topic. If the user does not
request persistent delivery, only permission to subscribe to that topic is required.

Permission for persistent delivery does not affect the publishing of messages. You
need only to be granted publish permissions to be able to publish messages on a
topic.

To remove a entry from an ACL, right click the entry and click Remove.

Resolving permissions
Many factors play a part in determining whether the user has permission to
publish messages on a topic, subscribe to messages under a topic, and to request
persistent delivery of messages being subscribed to. The user can be explicitly
listed in the topic’s ACL. Groups to which the user belongs can also be listed, and
their permissions may differ from each other and with the user’s ACL entry. Users
can also inherit permissions from parent topics. Determining whether the user has
a permission might not always be straightforward.

For a complete description of how permissions are resolved, see the MQSeries
Introduction and Planning Guide.

9. A principal is a user or a group.

Adding a principal to an ACL

Chapter 8. Setting up publish/subscribe access control 223

Checking in topics data
To check in topics data:
1. Right click the topic entry in the Topics view.
2. Click Check in to store the topics data in the shared configuration.

To confirm that the topics data has been checked in, the New icon or the Key icon
disappears from the topic entry.

When you check in a new topic, its parent is also checked in. When you check in a
parent topic, all new child topics are also checked in.

Checking in multiple changes
The File —> Check In menu option allows you to check in multiple changes that
you have made in this or any other view. You can use this instead of checking in
individual objects in the Topics view. The options are:
v File —> Check In —> List

v File —> Check In —> All in Current Workspace

v File —> Check In —> All (Save to Shared)

These options are more efficient when you have many different resources checked
out. The List option also allows you to check which resources are checked out in
your current workspace before you decide which resources to check in.

For more information about check in options, see “Saving the workspace to the
shared repository” on page 16.

Checking in topics data

224 MQSeries Integrator Using the Control Center

Making changes operational
When you check in resources that are new, or that you have altered, you make
them visible in the shared configuration. However, the changes you have made
have no operational effect until you deploy them in the broker domain. For
information about deploying resources, see “Chapter 7. Deploying configuration
data” on page 203.

Making changes operational

Chapter 8. Setting up publish/subscribe access control 225

226 MQSeries Integrator Using the Control Center

Chapter 9. Running the broker domain

This chapter describes the Operations view and Control Center tasks that are
related to running the operational broker domain. These are:
v “Monitoring the operational state of the broker domain” on page 228
v “Starting message flows” on page 229
v “Stopping message flows” on page 231
v “Starting user tracing” on page 233
v “Stopping user tracing” on page 234
v “Deleting subscriptions” on page 236

It also describes:
v The Subscriptions view, and how you can monitor and manage subscriptions, in

“The Subscriptions view” on page 235.
v The Log view, and how you can manage the log contents, in “The Log view” on

page 237.

Authorization to run the broker domain
To perform any of the tasks described in this chapter, you must:
v Have the correct Control Center user role, which can be one of:

– Operational domain controller
– All roles

For information about setting your user role, see “Setting user roles” on page 13.
v Be a member of the MQSeries Integrator group mqbrops

The Operations view
To display the Operations view, click the Operations tab in the Control Center.
Figure 59 on page 228 shows an example of the Operations view.

© Copyright IBM Corp. 2000 227

Monitoring the operational state of the broker domain
To display the current status of the broker domain, you must refresh the view. You
can either click the green circular refresh icon below the taskbar, or select View —>
Refresh. This causes the Configuration Manager to update the information
displayed in the Domain Topology pane from its deployed configuration.

Any resource shown in the Domain Topology pane of the Operations view can be
in one of three states:
Started

Indicated by a green traffic light next to the resource.
Stopped

Indicated by a red traffic light next to the resource.
Unknown

Indicated by a yellow question mark next to the resource.

If you initiate a complete deployment, the operational state of all resources is reset.
Therefore, if, for example, you have stopped an individual message flow, or you
have started user trace, you will have to reissue this requests.

Figure 59. The Operations view. The left-hand pane, the Domain Hierarchy pane, shows a tree view of the brokers in
your broker domain. The execution groups and message sets assigned to a broker are displayed when you expand
the broker. The message flows assigned to an execution group are displayed when you expand the execution group.
The right-hand pane, the Domain Topology pane, contains an arrangement of graphical symbols that represent the
current broker domain. Execution groups and message sets appear inside the brokers to which they have been
assigned. Message flows appear inside the execution groups to which they have been assigned. The brokers shown
in the Operations view are those to which configuration data has been deployed.

Monitoring the operational state of the broker domain

228 MQSeries Integrator Using the Control Center

Starting message flows
You can start:
v All message flows in all execution groups assigned to a specified broker
v All message flows in a specified execution group
v A single message flow

Starting all message flows for a broker
To start all message flows in all execution groups assigned to a specified broker:
1. Right click the broker symbol in the Domain Topology pane or the broker entry

in the Domain Hierarchy pane. (Alternatively, you can highlight the broker in
either pane, then click the Domain Hierarchy or Domain Topology menu in the
taskbar.)

2. Click Start Message Flows.
The Configuration Manager sends a configuration message to the broker
requesting that all message flows be started.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, all
message flows within the broker have a green status light against them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting all message flows within an execution group
To start all message flows in an execution group:
1. Right click the execution group symbol in the Domain Topology pane or the

execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy
or Domain Topology menu in the taskbar.)

2. Click Start Message Flows.
The Configuration Manager sends a configuration message to the broker
requesting that all message flows within the specified execution group be
started.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, all
message flows within the execution group have a green status light against
them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting a single message flow
To start a single message flow:
1. Right click the message flow symbol in the Domain Topology pane or the

message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click Start.
The Configuration Manager sends a configuration message to the broker
requesting that the specified message flow be started.

Starting message flows

Chapter 9. Running the broker domain 229

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, the
message flow has a green status light against it.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting message flows

230 MQSeries Integrator Using the Control Center

Stopping message flows
You can stop:
v All message flows in all execution groups assigned to a specified broker
v All message flows in a specified execution group
v A single message flow

Stopping all message flows for a broker
To stop all message flows in all execution groups assigned to a specified broker:
1. Right click the broker symbol in the Domain Topology pane or the broker entry

in the Domain Hierarchy pane. (Alternatively, you can highlight the broker in
either pane, then click the Domain Hierarchy or Domain Topology menu in the
taskbar.)

2. Click Stop Message Flows.
The Configuration Manager sends a configuration message to the broker
requesting that all message flows be stopped.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, all
message flows within the broker have a red status light against them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping all message flows within an execution group
To stop all message flows in an execution group:
1. Right click the execution group symbol in the Domain Topology pane or the

execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy
or Domain Topology menu in the taskbar.)

2. Click Stop Message Flows.
The Configuration Manager sends a configuration message to the broker
requesting that all message flows within the specified execution group be
stopped.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, all
message flows within the execution group have a red status light against
them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping a single message flow
To stop a single message flow:
1. Right click the message flow symbol in the Domain Topology pane or the

message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click Stop.
The Configuration Manager sends a configuration message to the broker
requesting that the specified message flow be stopped.

Stopping message flows

Chapter 9. Running the broker domain 231

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, the
message flow has a red status light against it.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping message flows

232 MQSeries Integrator Using the Control Center

Starting user tracing
You can start user tracing:
v For all message flows in a specified execution group
v For a single message flow

The user tracing function of MQSeries Integrator is described in the MQSeries
Integrator Administration Guide. Refer to this for information about the levels of
tracing that can be started (normal and debug), and for information on how to
format and read the output.

Starting user tracing for an execution group
To start user tracing of all message flows in an execution group:
1. Right click the execution group symbol in the Domain Topology pane or the

execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy
or Domain Topology menu in the taskbar.)

2. Click User Trace —> Normal or User Trace —> Debug.
The Configuration Manager sends a configuration message to the broker
requesting that user tracing be started for all message flows within the
specified execution group.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, the
execution group has an icon against it indicating that user tracing is active.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting user tracing for a single message flow
To start user tracing for a single message flow:
1. Right click the message flow symbol in the Domain Topology pane or the

message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click User Trace —> Normal or User Trace —> Debug.
The Configuration Manager sends a configuration message to the broker
requesting that user tracing be started for the specified message flow.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, the
message flow has an icon against it indicating that user tracing is active.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting user tracing

Chapter 9. Running the broker domain 233

Stopping user tracing
The user tracing function of MQSeries Integrator is described in the MQSeries
Integrator Administration Guide. You can stop user tracing:
v For all message flows in a specified execution group
v For a single message flow

Stopping user tracing for an execution group
To stop user tracing of all message flows in an execution group:
1. Right click the execution group symbol in the Domain Topology pane or the

execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy
or Domain Topology menu in the taskbar.)

2. Click User Trace —> None.
The Configuration Manager sends a configuration message to the broker
requesting that user tracing be stopped for all message flows within the
specified execution group.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, any
user tracing icon against the execution group has disappeared.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping user tracing for a single message flow
To stop user tracing for a single message flow:
1. Right click the message flow symbol in the Domain Topology pane or the

message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the taskbar.)

2. Click User Trace —> None.
The Configuration Manager sends a configuration message to the broker
requesting that user tracing be stopped for the specified message flow.

3. To monitor the outcome of this request, after a suitable delay:
a. Refresh the Operations view, as described in “Monitoring the operational

state of the broker domain” on page 228. If the request was successful, any
user tracing icon against the message flow has disappeared.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping user tracing

234 MQSeries Integrator Using the Control Center

The Subscriptions view
You use the Subscriptions view to monitor subscriptions to topics taken out by the
applications running in your broker domain. Figure 60 shows an example of the
Subscriptions view.

Filtering the information in the Subscriptions view
Within any broker domain there can be many hundreds of active subscriptions.
You are unlikely to want to view information relevant to all of these subscriptions
at any one time. Therefore, the Subscriptions view allows you to select the
information you are interested in by specifying a filter. You can filter the
information displayed in the Subscriptions view by specifying any combination of:
v Brokers
v Topics
v Users
v Registration date
v Subscription points

For example, you can restrict the information displayed to particular topics within
a single broker.

Figure 60. The Subscriptions view. Subscriptions owned by the brokers in this broker domain are shown in this view in
a tabular form. Each subscription occupies one row in the table. For each subscription, the Topic, User, Broker,
Subscription Point, Registration Date, Client, and Content Filter are displayed. Fields at the top of the view support
filtering of information. The entries in the list of subscriptions are not timestamped, and are not ordered.

The Subscriptions view

Chapter 9. Running the broker domain 235

To filter the information by broker:
1. Click the Brokers drop-down list and click the broker name.
2. Refresh the Subscriptions view by clicking Query, clicking the green refresh

icon below the taskbar, or selecting View —> Refresh.

The Subscriptions view is refreshed to display information for the selected broker.

To filter information by any other value, simply enter data in the appropriate field
in the view. For example, to filter by Topic, enter the topic name in the Topics
field, and refresh the Subscriptions view as described above. The wildcard
character (%) can be used to represent any number of characters in the topic, user,
and subscription point values.

To clear all data from the table, click the clear table icon next to the refresh icon on
the taskbar. This action does not delete subscriptions; it simply clears the data from
the Subscriptions view.

Refreshing the Subscriptions view
The Subscriptions view displays a snapshot of all current subscriptions in the
broker domain, filtered by the current filter. The Configuration Manager updates
its record of the deployed configuration whenever a subscription is created,
changed, deleted, or expires. However, the Subscriptions view is not updated
automatically to reflect these changes. You have to request that the Subscriptions
view is refreshed by clicking Query, or by clicking the green refresh icon on the
taskbar, or by selecting View —> Refresh.

Deleting subscriptions
To delete (deregister) a subscription from the deployed configuration:
1. In the Subscriptions view, select the subscriptions that you want to delete:

a. To select a single subscription, click the row pertaining to that subscription.
b. To select multiple rows that appear in a sequence in the table, click the first

row you want to delete, press and hold the Shift key, then click the last row
you want. This action selects the two rows you highlighted, plus any that
appear between these two in the table.

c. To select multiple rows that do not appear in a sequence in the table, hold
down Ctrl and click each row you want.

2. From the Subscriptions menu in the taskbar, click Delete.
3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Subscriptions view, as described in “Refreshing the
Subscriptions view”. If the subscription has been successfully deleted, its
entry is no longer included in the Subscriptions view.

b. Refresh the Log view. Any messages returned by the broker in response to
this deletion request are displayed here.

Note that some subscriptions (specifically those used internally by the broker
and the Configuration Manager) cannot be deleted. Any request to delete such
a subscription fails.

The Subscriptions view

236 MQSeries Integrator Using the Control Center

The Log view

To display the contents of the Log view, click the Log tab in the Control Center.
Figure 61 shows an example of the Log view.

The Log view is accessible unless you suppress it using the options on the Control
Center Preferences dialog (see “Setting user roles” on page 13). The Log view
shows messages associated with your user ID, and those that have no associated
user ID.

When you change to the Log view, you must refresh the view to see the latest
information available. You can request a refresh using the refresh button on the
taskbar, the View menu, or the popup menu within the message pane.

You can perform the following tasks from the Log view, by right-clicking anywhere
within the Log pane to display the pop-up menu:
v Save Log As, which saves the Log view in a file

When you have saved the log to a filename and location of your choice, the
saved records remain in the view. They are not removed unless you select the
Clear Log action. You can view the saved log file, and print its contents if you
want.
You can use a text editor to open and work with a saved log file: you cannot
open it in the Control Center Log view.

Figure 61. The Log view. The Log view displays messages returned to you by the Configuration Manager in response
to requests that update the broker domain configuration. It also displays messages relating to deployment requests
and to requests to delete subscriptions.

The Log view

Chapter 9. Running the broker domain 237

v Clear Log, which removes messages
This menu option implements two actions:
1. All messages are removed from the Log view.
2. All messages specific to your user ID are removed from the Configuration

Manager’s database.

If you select this option, you cannot retrieve any of the messages cleared from
the Log. You are recommended to save the log if you want to preserve some or
all of its content.

If you do not clear messages from the Configuration Manager’s database using
the Clear function, they are automatically cleared after 72 hours to ensure that
the database is not filled.

v Refresh, which adds any new messages to the Log view
The Refresh action does not remove or overwrite existing messages in the Log
view. Therefore if you frequently Refresh without clearing or saving the Log, the
messages will build up in the local view and within the Configuration
Manager’s database.

The Log view

238 MQSeries Integrator Using the Control Center

Part 3. Appendixes

© Copyright IBM Corp. 2000 239

240 MQSeries Integrator Using the Control Center

Appendix A. An example scenario

This appendix describes one way in which you can implement the retail scenario
that is described in Chapter 3 of the MQSeries Integrator Introduction and Planning
book.

You should use the information in this appendix in conjunction with the
information in the rest of this book.

The whole message flow is shown in Figure 62:

The following sections look at the messages and message flows necessary to fulfil
the business requirements of the scenario.

You can work through the scenario either with a self-defining XML message or
with a message defined in the MQSeries Integrator message repository. The nodes
used in the scenario differ slightly depending on which type of message you use.

The following sections describe the different messages (self-defining XML message
and message sets) used and how these messages are used in configuring the nodes
within the message flow.

The receipt message as an XML message
A self-defining XML message can be passed through a message flow without
having to be defined as part of a message set defined to the message repository
through the Control Center. However, you cannot use some of the nodes without
having a message repository message set.

Figure 62. Scenario message flow

© Copyright IBM Corp. 2000 241

Figure 63 shows an example of the type of generic XML message used:

<Message>
<receiptmsg>
<transactionlog>
<storedetailselement>
<storename>SRUCorp</storename>
<branchnum>9</branchnum>
<cashiernum>05</cashiernum>
<tillnum>09</tillnum>
<date>01/04/99</date>
<time>14:30</time>
</storedetailselement>
<purchaseselement>
<itemname>Shampoo</itemname>
<itemcode>00056734097</itemcode>
<itemprice>2.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<purchaseselement>
<itemname>Shampoo</itemname>
<itemcode>00056734097</itemcode>
<itemprice>2.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<purchaseselement>
<itemname>Toothpaste</itemname>
<itemcode>0005663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>
</purchaseselement>
<totalselement>
<totalitems>10</totalitems>
<multibuy>No</multibuy>
<totalsales>34.98</totalsales>
<change>5.02</change>
</totalselement>
</transactionlog>
</receiptmsg>
</Message>

Figure 63. XML message

An example scenario

242 MQSeries Integrator Using the Control Center

Defining the message in the message repository
The logical structure and the physical structure (the wire format) of the message
need to be defined to the message repository using the Control Center. This section
provides a systematic example that shows you how to create a message for the
receipt data. It shows you how to create a message using the bottom-up approach
but there is nothing to stop you using a top-down approach.

The message set you create will contain two messages called Receipt Message and
Stock Message. The purpose of the receipt message is to take information from a
shop receipt and, through the message flow, feed the information to the people
who need it. For example, a financial controller needs to know the sales figures
from each branch. The Stock Message is used to illustrate how information from
one message can be modified and mapped into another message. For example, the
stock controller needs to know the total quantity of a particular item per receipt.
The Compute node in the Stock flow adds the number of items and puts that
value into the Stock Message.

The message uses structured compound elements that you populate with simple
elements. Each of these elements defines a unit of information.

Refer to “Creating message sets” on page 54 and “Creating messages” on page 56
for details on how to perform each of the tasks below. This appendix focuses on
how you set up the properties to make this example work.
1. Create a message set.

Give this message set any name. In our example, it is called Receipt Messages.
Check that the parser on the Run Time tab is set to MRM. When you click
Finish, MQSeries Integrator assigns the message set a unique identifier and
writes this into the Identifier field of the message set properties. This is the
identifier you will need to name on either the MQInput node or in the
MQRFH2 header.

2. Create simple elements: the lowest-level units of information. You can give
them any name and identifier you want. Table 28 summarizes the simple
elements, the type selected for each one, and the name and identifier used in
our example.
The XML descriptor tag for the element in the message must match the
identifier used in the definition. For example, the element Store Name has an
identifier storename and is represented in the message as <storename>.
Note that, for the elements Date and Time, after you click Finish on the
element property pages but before you move on to the next element, you
should go to the COBOL tab and change the default settings of the COBOL
Language Name property from DATE and TIME to something else. (Using a
COBOL keyword in these fields is not permitted.)

Table 28. Simple elements, types, names, and identifiers

Simple element name Identifier Type

Store Name storename STRING

Branch Number branchnum INTEGER

Cashier Number cashiernum INTEGER

Till Number tillnum INTEGER

Date date STRING

Time time STRING

An example scenario

Appendix A. An example scenario 243

Table 28. Simple elements, types, names, and identifiers (continued)

Simple element name Identifier Type

Item Name itemname STRING

Item Code itemcode INTEGER

Item Price itemprice FLOAT

Item Quantity itemquantity INTEGER

Total Items totalitems INTEGER

Multibuy multibuy STRING

Total Sales totalsales FLOAT

Change change FLOAT

Total Item Quantity totalitemquantity INTEGER

3. Create element lengths for elements of type STRING.
You can give them any name and identifier you want. Table 29 summarizes
the STRING elements, the length defined for each one, and the name and
identifier used in our example.

Table 29. STRING elements, lengths, names, and identifiers

Element name Element length
name

Maximum Length Element length
identifier

Store Name Store Name Length 20 storenamelen

Date Date Length 10 datelen

Time Time Length 10 timelen

Item Name Item Name Length 40 itemnamelen

Multibuy Multibuy Length 5 multibuylen

4. Add the lengths to the corresponding string elements. For example, add Store
Name Length to the element Store Name.

5. Create element valid values for some of the elements. You can give them any
name and identifier you want. Type must be the same type of the element that
the valid value is associated with. Table 30 summarizes the INTEGER
elements, the minimum and maximum valid value defined for each one, and
the name and identifier used in our example.

Table 30. INTEGER elements, values, names, and identifiers

Element name Element valid
value name

Element valid
value identifier

Type Minimum Valid
Value

Maximum Valid
Value

Branch Number Branch Number
Value

branchnumval INTEGER 00000000 99999999

Cashier Number Cashier Number
Value

cashiernumval INTEGER 000 999

Till Number Till Number
Value

tillnumval INTEGER 000 999

6. Add the valid values to the corresponding elements. For example, add Branch
Number Value to the element Branch Number.

7. Create compound types. These will be used as the type for compound
elements (higher-level elements) within the message. Transactionlog will be
used as the type for the message itself, thereby bringing all the lower-level

An example scenario

244 MQSeries Integrator Using the Control Center

structures together. You can give them any name and identifier you want.
Table 31 summarizes the compound types, names, and identifiers used in our
example.

Table 31. Compound type names and identifiers

Compound type name Identifier

Store Details storedetails

Purchases purchases

Totals totals

Transaction Log transactionlog

Output Transaction Log outputtransactionlog

8. Add elements to the compound types. (Leave transactionlog and
outputtransactionlog for now.) The order of elements in the message being
passed through the message flow must match the order of elements in the
message definition. This order is defined by the order of elements in the
compound types. When you add elements to a compound type, they are
added in reverse order. For example, selecting Store Name then Branch
Number will produce an order of Branch Number then Store Name. There is a
Reorder option on the Types pulldown to resequence the elements within a
type. To match the message shown in Figure 64 on page 248, add the elements
in the sequence shown in Table 32. Use Ctrl+left-click to select multiple
elements.

Table 32. Elements to add to compound types

Compound type Elements to be added

Store Details v Time
v Date
v Till Number
v Cashier Number
v Branch Number
v Store Name

Purchases v Item Quantity
v Item Price
v Item Code
v Item Name

Totals v Change
v Total Sales
v Multibuy
v Total Items
v Total Item Quantity

9. Create elements with compound types. These elements bring together a
number of lower-level elements. Because you added the simple elements to
the compound type, when you create the compound element, those simple
elements are automatically associated with it. You can give them any name
and identifier you want. Table 33 on page 246 summarizes the compound
element names, types, and identifiers used in our example.
The XML descriptor tag for the element in the message must match the
identifier used in the message repository definition. For example, the element
Store Details Element has an identifier storedetailselement and is represented
in the message as <storedetailselement>.

An example scenario

Appendix A. An example scenario 245

Table 33. Compound type names, identifiers, and types

Compound element name Identifier Type

Store Details Element storedetailselement storedetails

Purchases Element purchaseselement purchases

Totals Element totalselement totals

10. Add the compound elements Totals Element, Purchases Element, and Store
Details Element (in that order) to the compound type Transactionlog. This
pulls all the elements of the receipt message together in a single type.

11. Add the elements Total Item Quantity, Purchases Element, Time, Date, Branch
Number and Store Name (in that order) to the compound type
outputtransactionlog. This pulls all the elements of the stock message together
in a single type.

12. Create a message of type transactionlog. Give it any name or identifier you
like. In our example, the message name is Receipt Message and the identifier
is receiptmsg. The identifier is the one that you will need to name on either
the MQInput node or in the MQRFH2 header.

An example scenario

246 MQSeries Integrator Using the Control Center

13. Create a message of type outputtransactionlog. Give it any name or identifier
you like. In our example, the message name is Stock Message and the
identifier is stockmsg. The identifier is the one that you will need to name on
either the MQInput node or in the MQRFH2 header.

14. Make the Purchases Element a repeating element. Make sure that the types
transactionlog and outputtransactionlog are checked out. In the Receipt
Message, check out the Purchases Element and open its properties pages. On
the Connection tab, change Repeat to yes. Click Apply. Repeat this step for
the Stock Message.

15. Create a category to contain the messages. This is optional but might be useful
if you want to experiment with the functions to generate documentation about
the message set. You can give the category any name and identifier you like.
In our example, we used a category name of Transaction Log Messages and
an identifier of transactionlogmsgs.
Add the receipt message and the stock message to the category.

16. Save the definitions to the shared repository. (Select File —> Check In —
All(Save to Shared).)

Associating the receipt message with a message repository
definition

When a message coming into the MQInput node has a corresponding definition in
the message repository, you have to associate the incoming message with that
definition. MQSeries Integrator needs to know which parser you are expecting to
use for the message (called the message domain), which message set the message
belongs to (called the message set) and which is the identifier of the message
definition (called the message type).

There are two ways of doing this:
1. Define the message domain, message set, and message type on the Default tab

of the MQInput node. See Figure 66 on page 251.
2. Define the message domain, message set, and message type on the

NAMEVALUEDATA part of an MQRFH2 header.

Figure 65 on page 249 shows the receipt message defined in the previous section
extended with an MQRFH2 header. The mcd folder within the message provides
basic definition information, the psc folder contains information specific to
publications.
v mcd folder

Msd The parser to be used for this message. This is MRM in our example.
Other values are BLOB, XML, and NEON. It must be entered in
uppercase.

Set The identifier of the message set to which the message belongs. This is
the identifier assigned by MQSeries Integrator when you create the
message set in the Control Center. In our example, this is
DHMG25G06S001 (see Figure 64 on page 248).

An example scenario

Appendix A. An example scenario 247

Type The identifier of the message definition to which this message maps. It is
the identifier you assign when you define the message in the Control
Center. In our example, this is receiptmsg. You cannot copy and paste
the identifier from the message properties in the Control Center so be
sure to enter it exactly as shown there.

Fmt This is the custom wire format of the message. In our example, it is
XML. Other possible values are CWF and PDF.

v psc folder

Command
Specifies that the message is to be published.

Topic Specifies the topic for publication.

Figure 65 on page 249 illustrates the receipt message extended with an MQRFH2
header.

Figure 64. The message set properties, showing the identifier

An example scenario

248 MQSeries Integrator Using the Control Center

Assigning the message set to the broker
For the message flow to process a message that has a definition in the message
repository (that is, an MRM message set) you have to assign the message set to the
broker.

In the Assignments view, check out the broker. Drag and drop the message set
(Receipt Messages) onto the name of the broker in the graphic in the Domain
Topology pane. Check in the broker when you have finished these updates. The
message set information is sent to the broker in the form of a message dictionary
when you deploy your changes (see “Deploying the configuration” on page 270 for
information about deploying).

<mcd><Msd>MRM</Msd><Set>DHMG25G06S001></Set><Type>receiptmsg</Type><Fmt>XML</Fmt></mcd>
<psc><Command>Publish</Command><Topic>Multibuy</Topic></psc>
<?xml version="1.01?>
<!DOCTYPE MRM PUBLIC "www.mrmnames.net/DHMG25G06S001" "DHMG25G06S001">
<MRM>
<receiptmsg>

<storedetailselement>
<storename>SRUCorp</storename>
<branchnum>9</branchnum>
<cashiernum>05</cashiernum>
<tillnum>09</tillnum>
<date>01/04/00</date>
<time>14:30</time>

</storedetailselement>
<purchaseselement>

<itemname>Shampoo</itemname>
<itemcode>0005663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>

</purchaseselement>
<purchaseselement>

<itemname>Shampoo</itemname>
<itemcode>0005663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>

</purchaseselement>
<purchaseselement>

<itemname>Toothpaste</itemname>
<itemcode>0005663548</itemcode>
<itemprice>1.99</itemprice>
<itemquantity>1</itemquantity>

</purchaseselement>
<totalselement>

<totalitems>10</totalitems>
<multibuy>Yes</multibuy>
<totalsales>13.49</totalsales>
<change>5.02</change>

</totalselement>
</receiptmsg>
</MRM>

Figure 65. The receipt message extended with an MQRFH2 header.

An example scenario

Appendix A. An example scenario 249

Message flows
The scenarios makes use of three separate message flows:
1. The main flow.

The main flow has one input node and many output nodes. It is configured to
provide different back-end systems with different data, according to their
requirements:
v The Audit branch of the flow (described in “Audit flow” on page 252) is

used to check that the incoming message belongs to the expected message
set, and is therefore valid to be processed by the rest of the flow. If the
message is valid, it also stores the receipt information in a database for later
retrieval. See “Checking the message (predefined message only)” on page 252
and “Storing the entire message” on page 253.

v The Finance branch of the flow (described in “Finance flow” on page 254)
extracts some information from the message to suit the Finance department’s
needs, writes a trace record to a file to record the information that has been
extracted, and passes the message on to the Finance Department. See
“Extracting elements from the message” on page 255 and “Writing a trace
entry” on page 256.

v The Stock branch of the flow (described in “Stock flow” on page 257) is used
to add up all instances of an item sold. This information is passed on to the
Distribution group so that they can maintain stock levels.

v The Partner branch of the flow (described in “Partner Flow” on page 259) is
used to filter messages that contain more than one purchase (multibuys) of
the same item (“Filtering multibuy records” on page 260), store multibuy
information in a database (“Updating the Multibuy database” on page 263),
and publish messages containing multibuys to subscribers (“Publishing the
message” on page 266).

2. The register subscriptions flow.
This flow (described in “The Register subscriptions flow” on page 266) is used
to subscribe to publications based on a topic or on a part of the content of the
message.

3. The exception handling flow.
This flow (described in “Including one message flow in another” on page 268)
is an example of a message flow that has been created to be embedded within
a higher-level flow. This illustrates the use of a repeated sequence of actions
that can be included at several points within a larger message flow to provide
common function.

How to create a message flow
To create a message flow like those described here, you must be in the Message
Flows view. Select the Message Flows root object, right click and select Create —
Message Flow. You are presented with a dialog in which you must enter the
message flow name.

The new message flow, for example, the Audit flow, is listed under the Message
Flows root in the left hand pane. The right hand pane is empty, awaiting the new
message processing nodes. You can drag and drop the primitives in the left hand
pane into the right hand pane to create the flow you want. The nodes are allocated
a default name when they appear in the right hand pane: to rename them to the
names illustrated here you must right click the node and select Rename.

An example scenario

250 MQSeries Integrator Using the Control Center

To complete the flows for the scenario, use the instructions for each to decide
which nodes you need, how to connect them, and how to configure their
properties.

For more details about how to create message flows and connect nodes, see
“Creating a message flow” on page 83.

Getting the message
The first node in the message flow, Receipt Message, is an MQInput node. This
node gets the message from an MQSeries queue on the queue manager hosting the
broker (MQSI_SAMPLE_QM for MQSI_SAMPLE_BROKER). In our example, all of
the properties, except the queue name, have been left to default.

If you have an MRM-defined message and you don’t specify the message domain,
message set, message type, message format, and topic in the MQRFH2 header, you
must specify these on the Default tab of the MQInput node, as shown in Figure 66.

Two terminals of the Receipt Message MQInput node are connected:
v Out connects to the next node in the flow. For a message repository defined

message, this is Check Messages. For an XML message, this is Store Messages.
v Failure connects to an MQOutput node which puts messages to a failure queue.

Figure 66. MQInput node properties

An example scenario

Appendix A. An example scenario 251

Audit flow

The Audit flow for a message repository defined message contains two nodes:
Check and Warehouse. The flow is used to check that the incoming message
belongs to the expected message set and is therefore valid to pass through the rest
of the flow, and to store the receipt information in a database for retrieval later.

The Audit flow for a self-defining XML message contains a Database node. No
checking is necessary against a message set and the Warehouse node is for use
only with a message repository defined message.

Checking the message (predefined message only)
This node applies only when you have an incoming message that has been
predefined using the Control Center. If you are using an XML message, leave this
node out. See “Check node” on page 100 for details of the Check node.

For this example, configure the node properties as shown in Figure 68. Note that
the message set number is the identifier given to the message set created in
“Defining the message in the message repository” on page 243. The message type
is the identifier given to the message definition.

Figure 67. Audit message flow

Figure 68. Check node properties

An example scenario

252 MQSeries Integrator Using the Control Center

Storing the entire message
You need a message repository definition of the message to be able to use the
Warehouse node.

If you are using an XML message, you would replace this node with a Database
node, configured in a similar way to the Multibuy Database node, described in
“Updating the Multibuy database” on page 263. You create a database schema for
every element of the message and itemize every element in the ESQL used in the
node to insert values into database columns. Part of the ESQL is shown below:
INSERT INTO Database.RECEIPTINFO2 (Storename, Branchnum, Cashiernum, Till
num, Date, Time, Itemname, Itemcode, Itemprice, Itemquantity, TotalItems,
Multibuy, Totalsales, Change)
VALUES
(Body.Message.receiptmsg.transactionlog.storedetailselement.storename,
Body.Message.receiptmsg.transactionlog.storedetailselement.branchnum,
Body.Message.receiptmsg.transactionlog.storedetailselement.cashiernum,
Body.Message.receiptmsg.transactionlog.storedetailselement.tillnum,

(and so on)

For more information about using these field references in ESQL, see “Referring to
simple fields in a message” on page 284.

Configuring the Warehouse node: The Warehouse node stores the message as a
binary object with a timestamp.

Before you can complete the Warehouse node, you must create the following:
v A database called MYDB (in this example)
v An ODBC connection to the MYDB database
v A table called receiptinfo in the MYDB database
v The columns spmsg and msgtime in the receiptinfo table

You must also ensure that the broker to which you will deploy this message flow
has access to the database MYDB.

The following extract of ESQL illustrates how you can create the table and two
columns in a DB2 database. From a DB2 command window, enter the following:
db2 connect to MYDB
db2 create table receiptinfo (spmsg BLOB(4M) not null, msgtime TIMESTAMP)

When you have set up the database in this way, you can set up the Warehouse
node. In the node properties:
v Click the Output Add button and add the database MYDB and table

RECEIPTINFO, then the columns SPMSG and TIMESTAMP.

Note: You do not need to add the Input message, receiptmsg, because you are
storing the entire message, and do not need to refer to elements within
the message. If you want to warehouse a subset of the input message, you
do need to add this on the Warehouse node properties dialog.

v Check the box to Store Message and select the column SPMSG.
v Check the box to Store Timestamp and select the column MSGTIME.
v Click OK.

An example scenario

Appendix A. An example scenario 253

You can check whether the message is stored in the Warehouse. For example, in a
DB2 command window type
db2 connect to MYDB
db2 select * from receiptinfo

You won’t see the text of the message because of the way it is stored (as a BLOB)
but you will see the timestamp at the bottom.

The out terminal of the Warehouse node (Store Messages) is connected to the in
terminal of three nodes:
v Extract node (Extract financial information) at the start of the Finance flow.
v Compute node (Add product instances) at the start of the Stock flow.
v Filter node (Multibuy filter) at the start of the Partners flow

Finance flow

The Finance flow contains three nodes: Extract (or Compute) Trace, and Output.
The Finance department wants to receive only part of the information from the
receipt message. The Extract Financial information node extracts the branch
number, date, and total sales information. The Trace node writes a trace record to a
file to record the information that has been extracted. The Output node passes the
finance message to the Finance department.

Figure 69. Warehouse node properties

Figure 70. Finance message flow

An example scenario

254 MQSeries Integrator Using the Control Center

Extracting elements from the message
The node you use here depends on your message definition:
v If you have a message repository definition of the message, use an Extract node.

In the Extract node properties:
– Click Add and select the message set called Receipt Messages and the

message called receiptmsg.
– Expand the elements storedetailselement and totalselement. Drag branchnum,

date, and totalsales into the mapping window below.
– Click OK.

Figure 71. Extract node properties

An example scenario

Appendix A. An example scenario 255

v If you have a self-defining XML message, use a Compute node. In the Compute
node properties:
1. Select Copy message headers.
2. On the ESQL tab, use the following ESQL:

3. Click OK.

You can browse the extracted message using MQSeries Explorer. Select the message
on the output queue, click Properties, then the Data tab.

The out terminal of the Extract or Compute nodes is connected to the Trace node.

Writing a trace entry
The trace node writes a trace entry according to the pattern that you define for the
node properties. This can include any text that appears as comments
(documentation), and values that are substituted from the message (for example,
field contents). The values to be substituted must be surrounded by the characters
${(value)}.

The following ESQL pattern is used to write a trace entry containing the three
extracted elements and a simple timestamp to a file:
v For the message with the message repository definition:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;
END WHILE;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum

= InputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.date

= InputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.date;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalsales

= InputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalsales;

Message passed through the Trace node with the following fields:
Branch number is: ${Body.storedetailselement.branchnum}
Date is: ${Body.storedetailselement.date}
Total sales are: ${Body.totalselement.totalsales}
Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}:${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

An example scenario

256 MQSeries Integrator Using the Control Center

v For the self-defining XML message:

The trace file in this example is called mytrace in location c:\$user\trace.

Figure 72 illustrates the node properties set up for the MRM message. The property
Destination has been changed to file.

The out terminal of the Trace node is connected to an MQOutput node, that names
an MQSeries queue on which the message from the Finance flow will be put.

Stock flow
The stock flow is used to add up all instances of an item sold and this information
is passed to the Distribution group so that they can maintain stock levels. For
example, if a shopper buys two bottles of shampoo, the receipt will contain two
instances of shampoo, as shown in the messages described in Figure 63 on page 242
and Figure 65 on page 249.

The stock flow contains a Compute node that adds up product instances as shown
in Figure 73 on page 258 The example below shows how you can use ESQL to add
the product instances and put the value into a new field (total item quantity) in the
message being output from the node. For a message repository defined message,
the example in “Using the stock flow with a predefined message” on page 258
illustrates how you can use the drag-and-drop capabilities of the node to map
selected elements from an input message (Receipt Message) to a different output
message (Stock Message) as well as calculating the total item quantity.

Message passed through the Trace node with the following fields:
Branch number is: ${Body.XML.Message.receiptmsg.transactionlog.storedetailselement.branchnum}
Date is: ${Body.XML.Message.receiptmsg.transactionlog.storedetailselement.date}
Total sales are: ${Body.XML.Message.receiptmsg.transactionlog.totalselement.totalsales}
Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}:${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

Figure 72. Trace node properties

An example scenario

Appendix A. An example scenario 257

Using the stock flow with an XML message
You can use the following ESQL to add up product instances in a Compute node
for self-defining XML messages:

This declares a new element called TotalItemQuantity as an integer and sets its
value to the sum of ItemQuantity where the ItemName is (in this example)
Shampoo. The TotalItemQuantity element is placed within the Totals compound
element in the output message.

Alternatively, you can use the following ESQL using a WHILE loop to output the
same message:

This loops through the receipt message increasing the value of TotalItemQuantity
by one each time it comes across an instance of Shampoo, therefore adding up all
instances of the Shampoo product in the receipt. Again, the TotalItemQuantity
element is placed within the Totals compound element in the output message.

Using the stock flow with a predefined message
The example below extracts the store name, branch number, date, time, and
purchases details from the incoming message (Receipt message) and puts them,
and a value for total item quantity, into a different output message (Stock
Message).

Figure 73. Stock message flow

SET OutputRoot = InputRoot;
DECLARE TotalItemQuantity INTEGER;
SET TotalItemQuantity = (SELECT SUM(CAST(T.itemquantity AS INT))
FROM InputBody.Message.receiptmsg.transactionlog.purchaseselement.[] AS T
WHERE CAST(T.itemname AS CHAR) = 'Shampoo');
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalitemquantity

= TotalItemQuantity;

SET OutputRoot = InputRoot;
DECLARE TotalItemQuantity INTEGER;
SET TotalItemQuantity = 0;
DECLARE current INTEGER;
DECLARE stop INTEGER;
SET current = 1;
SET stop = CARDINALITY(InputBody.Message.receiptmsg.transactionlog.*[]);

WHILE current <= stop DO
IF CAST(InputBody.Message.receiptmsg.transactionlog.purchaseselement[current].
itemname AS CHAR) = 'Shampoo' THEN

SET TotalItemQuantity = TotalItemQuantity +
CAST(InputBody.Message.receiptmsg.transactionlog.purchaseselement[current]itemquantity AS INTEGER)

END IF;
SET current = current + 1;

END WHILE;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.totalselement.totalitemquantity

= TotalItemQuantity;

An example scenario

258 MQSeries Integrator Using the Control Center

In the Compute node:
1. Click Add to add an input message. Select the message set Receipt Messages

and the message Receipt Message.
2. Click Add to add an output message. Select the message set Receipt Messages

and the message Stock Message.
3. Select Use as message body.
4. Select Copy message headers

5. Expand the storedetailselement and totalselement of the input message.
Drag simple elements of storedetailselement (for example, storename,
branchnum, and so on) from the input message onto their equivalent in the
output message. You will see the mappings build up on the Mappings tab.

6. On the ESQL tab, edit the ESQL as shown below. (Much of the ESQL will have
been generated for you already by the selections you made on the node
properties and by the mappings.)
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
SET "OutputRoot"."MRM"."storedetailselement"."storename" =
"InputBody"."storedetailselement"."storename";
SET "OutputRoot"."MRM"."storedetailselement"."branchnum" =
"InputBody"."storedetailselement"."branchnum";
SET "OutputRoot"."MRM"."storedetailselement"."date" =
"InputBody"."storedetailselement"."date";
SET "OutputRoot"."MRM"."storedetailselement"."time" =
"InputBody"."storedetailselement"."time";

DECLARE stop INTEGER;
DECLARE countitems INTEGER;
DECLARE current INTEGER;

SET stop = CARDINALITY("InputBody"."purchaseselement"[]);
SET current = 1;
SET countitems = 0;

WHILE current <= stop DO
SET "OutputRoot"."MRM"."purchaseselement"[current] =

"InputBody"."purchaseselement"[current];
IF "InputBody"."purchaseselement"[current]."itemname" = 'Shampoo' THEN
SET countitems = countitems +

"InputBody"."purchaseselement"[current]."itemquantity";
END IF;
SET current = current + 1;
END WHILE;

SET "OutputRoot"."MRM"."outputtotalselement"."totalitemquantity" = countitems;
SET OutputRoot.Properties.MessageSet = 'DHM695G070001';
SET OutputRoot.Properties.MessageType = 'stockmsg';

The out terminal of the Compute node is connected to an MQOutput node, which
names an MQSeries queue on which the message from the Stock flow will be put.

Partner Flow
The partner flow is used to track and keep details of products that are selling well.
If more than one of the same product is bought on the same transaction, this is
called a ‘multibuy’. Each multibuy record is placed into a database for easy access
and reference by partners.

An example scenario

Appendix A. An example scenario 259

The message flow contains a Filter node to filter ‘multibuy’ records and a Database
node to insert the records into the Multibuy database for partners.

Database updates are completed in a loop within the flow: this allows the database
to be updated for every item in the receipt message.

The messages are also published through a Publication node. If the message is a
self-defining XML message, a Compute node is used to add the required MQRFH2
header information to the message before routing it to the Publication node. The
MRM-defined message used in this scenario has the MQRFH2 header in it already.

Partners subscribe to the publications, either by topic (″Multibuy″), or by filtering
on the content of the message (the value of the ″itemname″ field).

Filtering multibuy records
The Filter node is set up to filter all messages with the value Yes in the Multibuy
field on to the Database or DataInsert node.

To configure the filter node for a self-defining XML message, use the following
ESQL:
Body.Message.receiptmsg.transactionlg.totalselement.multibuy = 'Yes'

To configure the Filter node to use the MRM-defined message set:
1. Click Add and select the message set Receipt messages and the message

receiptmsg.
2. Expand totalselement. Drag and drop the multibuy element into the filter field

below.
3. Edit the ESQL by adding ='Yes' to the expression that was generated by the

drag-and-drop.

Figure 74. Partner message flow

An example scenario

260 MQSeries Integrator Using the Control Center

Two terminals of the Filter node are connected:
v The true terminal of the Filter node is connected to the next node in the flow

(the ″Set counter″ compute node).
v The false terminal of the Filter node is connected to an MQOutput node that

names an MQSeries queue on which messages will be put when their
“multibuy” value is “no”.

Using a loop to update the database
The loop in the message flow ensures that every item in the receipt message is
recorded in the Multibuy database. The loop is made up of five nodes:
1. A compute node named ″Set counter″, that sets up a flag count.
2. A Filter node, named ″Test value of counter″. This tests if the value of the flag

counter is greater than zero. If the expression evaluates to true, the message
continues through the loop. If the expression evaluates to false, the message is
propagated to the Compute node ″Create Publication″ to continue its route
through the main message flow.

3. A Compute node named ″Prepare for database″: this prepares values for
corresponding columns in the Multibuy database.

4. A Database node named ″Multibuy database″, that inserts values into the
Multibuy database table.

5. A Compute node named ″Reset counter″ that resets the flag counter and
connects back to the ″Test value of counter″ Filter node.

Initializing the loop control flag
The ″Set counter″ compute node sets the initial value for a counter to control the
loop.
1. Access the node properties.
2. Select Copy entire message.

Figure 75. Filter node properties showing the set up for the MRM-defined message

An example scenario

Appendix A. An example scenario 261

3. On the ESQL tab, enter the following ESQL below the comment line:

4. Click OK to confirm the property updates.
5. Connect the out terminal of the node to the in terminal of the ″Test value of

counter″ node.

Figure 76 illustrates the nodes that make up the loop, and their connections with
the main message flow.

SET OutputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.f_reserve =
CARDINALITY(InputRoot.XML.Message.receiptmsg.transactionlog.purchaseselement[]);

Figure 76. The loop to record data in the database

An example scenario

262 MQSeries Integrator Using the Control Center

Testing the value of the loop control flag
The ″Test value of counter″ filter node ensures the loop is terminated when the
total number of items have been recorded in the database.

To configure this node:
1. Enter the following ESQL:

Body.Message.receiptmsg.transactionlog.storedetailselement.f_reserve > 0

2. Connect the true terminal (when the counter indicates the loop must be
reiterated) to the in terminal of the ″Prepare for database″ compute node. This
ensures the loop is executed one more time.

3. Connect the false terminal (when the counter indicates the loop must be
terminated) to route the message to the remainder of the main message flow:
a. For the XML message, connect to the in terminal of the ″Create Publication″

compute node.
b. For the MRM message, connect to the in terminal of the ″Publish″ node.

Preparing the values for insertion in the database
You must change the data type of some fields in the message that you want to
store in the database.

TO configure this node:
1. Click Copy entire message.
2. On the ESQL tab, use the following ESQL:

3. Connect the out terminal of this node to the in terminal of the ″Multibuy
database″ database node.

Updating the Multibuy database
You can use either a Database or a DataInsert node to update the Multibuy
database.

If you are using an XML message, use the Database node. Before you can complete
the Database node, you must create the following:
v A database called MYDB
v An ODBC connection to the MYDB database
v A table called MULTIBUY in the MYDB database
v The columns BRANCHNUM, ITEMNAME, and QUANTITY in the MULTIBUY

table

DECLARE elementnum INTEGER;
SET OutputRoot = InputRoot;
SET elementnum =
CAST(InputRoot.XML.Message.receiptmsg.transactionlog.storedetailselement.f_reserve AS INTEGER);
SET OutputRoot.XML.Message.receiptmsg.transactionlog. storedetailselement.n_reserve
= InputRoot.XML.Message.receiptmsg.transactionlog.purchaseselement[elementnum].itemname;
SET OutputRoot.XML.Message.receiptmsg.transactionlog. storedetailselement.q_reserve
= InputRoot.XML.Message.receiptmsg.transactionlog.purchaseselement[elementnum].itemquantity;

An example scenario

Appendix A. An example scenario 263

You can achieve this using the following commands, entered in a DB2 command
window:
db2 create database MYDB
db2 connect to MYDB
db2 create table MULTIBUY (branchnum integer not null, itemname char(40)
not null, quantity integer not null)

You must also ensure that the broker to which you will deploy this message flow
has access to this database.

When you have set up the database in this way, you can define the ESQL to access
the information in the Database node.
1. Select Add to add the Output Database Table. Enter the name of the database

and the table.
2. Enter the following ESQL:

INSERT INTO Database.MULTIBUY(branchnum,itemname,quantity)
VALUES(Body.Message.receiptmsg.transactionlog.storedetailselement.branchnum,
Body.Message.receiptmsg.transactionlog.storedetailselement.n_reserve,
Body.Message.receiptmsg.transactionlog.storedetailselement.q_reserve)

3. Select the Advanced tab. Check the box for Treat warnings as errors. This
action is not specifically required, but it is taken here both to illustrate the use
of this option, and to allow easier testing of the error processing within the
message flow.

If you have created an MRM-defined message set, you can use the DataInsert node
for inserting information into a database in place of the Database node.

To configure the DataInsert node:
1. Click Add and select the message set Receipt messages and the message

receiptmsg.
2. Click Add and add the database name, table, and columns.
3. Expand storedetailselement and purchaseselement. Drag and drop branchnum,

itemname, and quantity onto the name of the target column.
4. Select the Advanced tab. Check the box for Treat warnings as errors.

An example scenario

264 MQSeries Integrator Using the Control Center

Connect the out terminal of this node to the in terminal of the ″Reset counter″
compute node.

Updating the value of the loop control counter
You must configure the ″Reset counter″ compute node to update the loop control
counter to ensure the loop is executed the correct number of times.

To configure the node:
1. Click Copy entire message.
2. On the ESQL tab, use the following ESQL:

SET OutputRoot = InputRoot;
SET OutputRoot.XML.Message.receiptmsg.transactionlog.

storedetailselement.f_reserve =
CAST(InputRoot.XML.Message.receiptmsg.transactionlog.

storedetailselement.f_reserve AS INTEGER)-1;

3. Connect the out terminal of this node to the in terminal of the ″Test value of
counter″ filter node.

Creating the publication (XML message only)
In this scenario, the self-defining XML message does not have an MQRFH2 header.
Therefore you must add a header to the message to define it as a publication and
to set a topic of ″Multibuy″. A Compute node (named Create Publication) is used
to do this. (The predefined message shown in Figure 65 on page 249 already has
the required header information, so this action is not necessary if you are using the
message defined to the MRM.)

Figure 77. Data Insert node properties

An example scenario

Appendix A. An example scenario 265

To configure the Compute node:
1. Click Copy message headers.
2. On the ESQL tab, use the following ESQL:

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
SET OutputRoot.MQRFH2.psc.Command = 'Publish';
SET OutputRoot.MQRFH2.psc.Topic = 'Multibuy';
SET OutputRoot.XML = InputBody;

Publishing the message
A Publication node is added to the flow. All properties are left to default on this
node.

The Register subscriptions flow
A separate message flow, the Register subscriptions flow illustrated in Figure 78, is
used to register a subscription.

The actions performed by this flow are:
1. You put an XML message to the queue you define as the input queue (SUBIN

in this example).
2. The MQInput node retrieves the message.
3. The subscription registration information and any additional filter criteria are

set in the MQRFH2 header.
4. The subscription message is put, through the MQOutput node, to the broker’s

queue SYSTEM.BROKER.CONTROL.QUEUE. If you have set the subscription

Figure 78. The Register subscriptions flow

An example scenario

266 MQSeries Integrator Using the Control Center

message type to 1 (MQMT_REQUEST), the broker sends back a response. If
you want to see this response (which should be ″Completion OK″), you must
update the MQMD of the XML subscription message to include a ReplyToQ
and ReplyToQmgr. The broker sends the response to the subscription message
to this queue.

5. Any published messages that match the criteria set in the MQRFH2 header of
the subscription message are put on to the queue also named in the MQRFH2
header (in the QName and QMName fields).

This additional flow must be assigned to the broker in the same way as the other
scenario flows. See “Assigning message flows to the execution group” on page 270
for further details.

The example shows filtering on the value of a field in the message (content-based
filtering). If you want to subscribe only by topic, remove the filter line. Be aware
that if you set up a subscription on a topic of ″Multibuy″, you will have to delete
that subscription if you then want to do a content-based filter from the same
subscriber application ID. The second, content-based, subscription does not
overwrite the more general topic-based one. You can delete subscriptions from the
Control Center Subscriptions view.

Configuring the Register subscriptions flow
You must configure the nodes within the subscription flow as follows:
1. Specify the name of the queue from which the messages are read by the

MQInput queue. The queue is called SUBIN.
2. The Compute node is used to add the MQRFH2 header information. To

configure the Compute node:
v Click on Copy message headers.
v On the ESQL tab, use the following ESQL:

.
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I+1;

END WHILE;
SET OutputRoot.MQRFH2.psc.Command = 'RegSub';
SET OutputRoot.MQRFH2.psc.Topic = 'Multibuy';

If you are subscribing to a self-defining XML message, set the filter like this
(note that all quotes used in this example are single quotes):
.
SET OutputRoot.MQRFH2.psc.Filter

= 'Message.receiptmsg.transactionlog.purchaseselement.itemname = ''Shampoo''';

If you are subscribing to an MRM-defined message, set the filter like this
(note that all quotes used in this example are single quotes):
SET OutputRoot.MQRFH2.psc.Filter = 'purchaseselement.itemname =''Shampoo''';

SET OutputRoot.MQRFH2.psc.QMName = 'MQSI_SAMPLE_QM';
SET OutputRoot.MQRFH2.psc.QName = 'SUBS';
SET OutputRoot.XML = InputBody;

QName and QMName identify the queue on which you want to receive any
publication messages that match the subscription.

An example scenario

Appendix A. An example scenario 267

You might have noticed that the form of the filter in this header and in the
Filter node look different. The expressions in the Filter node were:
– Body.Message.receiptmsg.transactionlog.purchaseselement.multibuy (for

the XML message).
– ″Body″.″totalselement″.″multibuy″ (for the MRM-defined message).

This is because when the message is tested by the broker to see if it matches
a subscription request, it has already been parsed and processed. It is no
longer in the parse tree, so there is no concept of Body.xxx, as there is in the
Filter node. In the subscription, you filter on the message data only.

3. The MQOutput node has SYSTEM.BROKER.CONTROL.QUEUE as the Queue
Name. The Queue Manager Name is the name of the queue manager hosting
the broker.

Including one message flow in another
The company in the scenario has connected the failure terminal of the MQInput
node (called Receipt Message). Any failure downstream causes the message to be
rolled back to the MQInput node and propagated through the failure terminal to
an MQSeries queue called FAILED. You must define this queue to receive these
messages.

If you connect the failure terminal of any node, this action makes you responsible
for handling exceptions generated by the message flow. Therefore MQSeries
Integrator does not report any messages to the local error log to show which of the
nodes downstream caused the failure.

When the company extends its message flow for this retail scenario, potentially to
several hundred nodes, it must be able to trap exception information where it
occurs, and take appropriate action.

The company decides to create a simple message flow to handle these error
situations, and to include this message flow within the larger message flows. The
error subflow has one Input Terminal connected to a Compute node that is in turn
connected to two Output Terminals.

An example scenario

268 MQSeries Integrator Using the Control Center

This simple flow is attached to the failure terminal of the Database (Multibuy
Database) node. If an XML message is passed through the Database node with a
value that does not match the ESQL statements in the node (for example,
<receiptmsg1> instead of <receiptmsg>), a warning message is generated. This is
handled as an error because of the Treat warnings as errors property of the
Database node, and it causes a failure.

You can reuse this simple error subflow from any node and in any higher-level
message flow, with just a simple customization of the text field within the
Compute node ESQL.

The Compute node in the simple flow is used to create an XML message that
contains:
v User-written text to identify the point of failure (the node to which the

Exceptions flow was attached) and, if known, probable causes.
v The message that caused the failure
v The exception list that is generated by MQSeries Integrator

The Output terminal of the simple message flow is connected to an MQOutput
node, which interacts with the MQSeries queue EXCEPTION.

To set up the embedded flow:
1. Create the simple message flow shown in Figure 79. Drag and connect the

Input Terminal, the Compute node, and the Output Terminals.
2. Configure the Compute node:

Figure 79. The error subflow

An example scenario

Appendix A. An example scenario 269

a. Click Copy message headers.
b. On the ESQL tab, add the following lines to the generated ESQL:

SET OutputRoot.XML.ERROR.TEXT = 'Failure in Multibuy database node
- check XML attributes and SQL references match';

SET OutputRoot.XML.ERROR.(XML.tag)MSG = InputBody;
SET OutputRoot.XML.ERROR.EXCEPTLST = InputExceptionList;

3. Drag the simple message flow into the scenario flow. Connect the failure
terminal of the Multibuy Database (database) node to the Input Terminal of the
Exceptions flow. Connect the Output Terminal of the Exceptions flow to an
MQOutput node naming the queue EXCEPTION as the destination for the
exception message. You must define this queue to receive these messages.
Figure 62 on page 241 shows how the loop is used within the complete flow.

Assigning message flows to the execution group
You must assign message flows to an execution group in a broker before they are
able to process messages.

In the Assignments view, check out the execution group. Drag and drop the main
flow and the Register subscription flow onto the name of the execution group in
the graphic in the Domain Topology pane. The exception flow is assigned
automatically, as part of the main flow. Check in the execution group.

Deploying the configuration
Finally, to use the configuration set up, you must deploy it. To do this, select File
—> Deploy —> Complete configuration (all types) —> Normal. When the
configuration has been successfully deployed, you can put receipt messages and
subscription messages to the appropriate queues and the messages will be
processed through the message flows. You can check the success of the deploy by
refreshing and viewing the messages displayed in the Log view.

An example scenario

270 MQSeries Integrator Using the Control Center

Appendix B. C and COBOL default mappings

This appendix describes the defaults that the C and COBOL importers use when
mapping C datatypes or COBOL datatypes to MRM datatypes. The data designer
defining a message set in the Control Center might want to follow these defaults,
but this decision will depend on the business usage of the data.

The MRM:
v Does not support pointer datatypes.
v Does not suppport the COBOL construct REDEFINES.
v Does not support the COBOL datatypes DBCS, external floating point, or binary

items that have a PIC declaration greater than 9 digits.
v Does not fully support the C datatype long double.

Mapping C datatypes to MRM datatypes
Table 34 on page 272 defines the datatype mappings for C structures.

Notes:

1. Long Double is outside the scope of the importer.

© Copyright IBM Corp. 2000 271

Ta
bl

e
34

.
C

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

C
d

at
at

yp
e

M
R

M
lo

gi
ca

l
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

gt
h

S
ig

n
S

tr
in

g
ju

st
if

ic
at

io
n

R
ep

ea
t

L
on

g
In

te
ge

r
In

te
ge

r
4

Si
gn

ed

C
ha

r
St

ri
ng

Fi
xe

d
L

en
gt

h
1

C
ha

r[
10

]
St

ri
ng

Fi
xe

d
L

en
gt

h
10

L
ef

t
ju

st
if

y

C
ha

r[
10

][
3]

St
ri

ng
Fi

xe
d

L
en

gt
h

3
L

ef
t

ju
st

if
y

10

C
ha

r[
10

][
3]

[6
]

St
ri

ng
Fi

xe
d

L
en

gt
h

6
L

ef
t

ju
st

if
y

30

In
t

In
te

ge
r

In
te

ge
r

4
Si

gn
ed

In
t[

2]
In

te
ge

r
In

te
ge

r
4

Si
gn

ed
2

In
t[

2]
[3

]
In

te
ge

r
In

te
ge

r
4

Si
gn

ed
6

U
ns

ig
ne

d
In

t
In

te
ge

r
In

te
ge

r
4

U
ns

ig
ne

d

U
ns

ig
ne

d
Sh

or
t

In
te

ge
r

In
te

ge
r

2
U

ns
ig

ne
d

Fl
oa

t
Fl

oa
t

Fl
oa

t
4

D
ou

bl
e

Fl
oa

t
Fl

oa
t

8

Sh
or

t
In

te
ge

r
In

te
ge

r
2

Si
gn

ed

U
ns

ig
ne

d
ch

ar
In

te
ge

r
In

te
ge

r
1

U
ns

ig
ne

d
ch

ar
[2

]
B

in
ar

y
B

in
ar

y
2

(#
de

fi
ne

)B
OO

L
in
t

B
oo

le
an

B
oo

le
an

(#
de

fi
ne

)B
oo

le
an

B
oo

le
an

B
oo

le
an

C and COBOL default mappings

272 MQSeries Integrator Using the Control Center

Mapping COBOL datatypes to MRM datatypes
Columns 1 to 5 in Table 35 on page 274 describe some examples of COBOL data
definitions. Columns 6 to 12 describe the equivalent data mappings used to store
these definitions in the MRM.

Notes:

1. Column 5 (of 12) Internal representation assumes an ASCII Big Endian code
page.

2. Column 12 (of 12) Jst. indicates the justification of the datatype.
3. The following datatypes are outside the scope of the importer:

v Binary (10 to 18 digits)
v External floating point
v DBCS

C and COBOL default mappings

Appendix B. C and COBOL default mappings 273

Ta
bl

e
35

.
C

O
B

O
L

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

C
O

B
O

L
d

at
at

yp
e

P
er

m
it

te
d

sy
m

b
ol

s
P

IC
T

U
R

E
an

d
U

S
A

G
E

an
d

op
ti

on
al

S
IG

N
cl

au
se

V
al

u
e

In
te

rn
al

re
p

re
se

n
ta

ti
on

M
R

M
L

og
ic

al
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

gt
h

in
b

yt
es

S
ig

n
V

ir
tu

al
d

ec
.

p
oi

n
t

P
ad

.
ch

ar
.

Js
t.

E
xt

er
na

l
d

ec
im

al
(Z

on
ed

D
ec

im
al

)

9
P

S
V

If
>

9
d

ig
it

s:
fl

oa
t

If
a

fr
ac

ti
on

:f
lo

at
E

ls
e:

in
te

ge
r

ex
te

nd
ed

d
ec

im
al

=
nu

m
of

d
ig

it
s.

If
si

gn
is

se
pa

ra
te

,a
d

d
1

PI
C

S9
99

9
DI
SP

LA
Y

+
12

34
31

32
33

34
In

te
ge

r
ex

te
nd

ed
d

ec
im

al
4

Y in
cl

ud
in

g
tr

ai
lin

g

0

-1
23

4
31

32
33

74

12
34

31
32

33
34

PI
C

99
99

DI
SP

LA
Y

12
34

31
32

33
34

in
te

ge
r

ex
te

nd
ed

d
ec

im
al

4
N

0

PI
C

99
V9

9
DI
SP

LA
Y

12
34

31
32

33
34

fl
oa

t
ex

te
nd

ed
d

ec
im

al
4

N
2

PI
C

S9
99

9
DI
SP

LA
Y

SI
GN

LE
AD

IN
G

+
12

34
31

32
33

34
in

te
ge

r
ex

te
nd

ed
d

ec
im

al
4

Y in
cl

ud
in

g
le

ad
in

g

0

-1
23

4
71

32
33

34

PI
C

S9
99

9
DI
SP

LA
Y

SI
GN

LE
AD

IN
G

SE
PA

RA
TE

+
12

34
2B

31
32

33
34

in
te

ge
r

ex
te

nd
ed

d
ec

im
al

5
Y

se
pa

ra
te

le
ad

in
g

0

-1
23

4
2D

31
32

33
34

PI
C

S9
99

9
DI
SP

LA
Y

SI
GN

TR
AI

LI
NG

SE
PA

RA
TE

+
12

34
31

32
33

34
2B

in
te

ge
r

ex
te

nd
ed

d
ec

im
al

5
Y

se
pa

ra
te

tr
ai

lin
g

0

-1
23

4
31

32
33

34
2D

B
in

ar
y

9
P

S
V

in
te

ge
r

in
te

ge
r

if
<

5
d

ec
im

al
d

ig
it

s,
2

by
te

s
If

5
th

ru
9

d
ig

it
s,

4
by

te
s

PI
C
S9
99

9
BI

NA
RY

or
CO

MP
or

CO
MP
-4

or
CO

MP
-5

+
12

34
04

D
2

in
te

ge
r

in
te

ge
r

2
Y

-1
23

4
FB

2E

PI
C
99
99

BI
NA

RY
or

CO
MP

or
CO
MP
-4

or
CO

MP
-5

12
34

04
D

2
in

te
ge

r
in

te
ge

r
2

N

C and COBOL default mappings

274 MQSeries Integrator Using the Control Center

Ta
bl

e
35

.
C

O
B

O
L

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

(c
on

tin
ue

d)

C
O

B
O

L
d

at
at

yp
e

P
er

m
it

te
d

sy
m

b
ol

s
P

IC
T

U
R

E
an

d
U

S
A

G
E

an
d

op
ti

on
al

S
IG

N
cl

au
se

V
al

u
e

In
te

rn
al

re
p

re
se

n
ta

ti
on

M
R

M
L

og
ic

al
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

gt
h

in
b

yt
es

S
ig

n
V

ir
tu

al
d

ec
.

p
oi

n
t

P
ad

.
ch

ar
.

Js
t.

In
te

rn
al

D
ec

im
al

(P
ac

ke
d

D
ec

im
al

)

9
P

S
V

If
>

9
d

ig
it

s,
fl

oa
t

If
a

fr
ac

ti
on

,f
lo

at
E

ls
e

in
te

ge
r

R
ou

nd
ed

d
ow

n
re

su
lt

of
(N

um
of

d
ig

it
s+

2)
/

2

PI
C

S9
99

9
PA

CK
ED

-D
EC

IM
AL

or
CO

MP
-3

+
12

34
01

23
4C

in
te

ge
r

pa
ck

ed
d

ec
im

al
3

Y

-1
23

4
01

23
4D

PI
C

99
99

PA
CK

ED
-D

EC
IM

AL
or

CO
MP

-3

12
34

01
23

4F
in

te
ge

r
pa

ck
ed

d
ec

im
al

3
N

In
te

rn
al

fl
oa

ti
ng

po
in

t

no
PI

C
cl

au
se

CO
MP

-1
+

12
34

44
9A

40
00

fl
oa

t
fl

oa
t

4
Y

-1
23

4
C

4
9A

40
00

no
PI

C
cl

au
se

CO
MP

-2
+

12
34

40
93

48
00

00
00

00
00

fl
oa

t
fl

oa
t

8
Y

-1
23

4
C

0
93

48
00

00
00

00
00

A
lp

ha
be

ti
c

A
PI

C
A(

3)
DI

SP
LA

Y
A

B
C

41
42

43
st

ri
ng

fi
xe

d
le

ng
th

3
ch

ar
s

sp
ac

e
L

A
lp

ha
nu

m
er

ic
X

PI
C

XX
XX

DI
SP

LA
Y

D
E

F
44

45
46

20
st

ri
ng

fi
xe

d
le

ng
th

4
ch

ar
s

sp
ac

e
d

ef
au

lt
L

PI
C

X(
4)

JU
ST

IF
IE

D
RI

GH
T

D
E

F
20

44
45

46
st

ri
ng

fi
xe

d
le

ng
th

4
ch

ar
s

sp
ac

e
R

JU
ST

RI
GH

T

A
lp

ha
nu

m
er

ic
ed

it
ed

X
B
0

9
/

PI
C

BX
/9

DI
SP

LA
Y

A
/

3
20

41
2F

33
st

ri
ng

fi
xe

d
le

ng
th

4
ch

ar
s

sp
ac

e
L

N
um

er
ic

ed
it

ed
B

P
V

Z
9

0/
co

mm
a

sy
mb

ol
pe

ri
od

sy
mb

ol
+

-
CR

DB
*

$

le
ng

th
in

ch
ar

s=
su

m
of

ch
ar

s
in

PI
C

st
ri

ng
ex

cl
ud

in
g

V

sp
ac

e
d

ef
au

lt
R

PI
C

99
99

01
23

30
31

32
33

st
ri

ng
fi

xe
d

le
ng

th
4

sp
ac

e
R

PI
C

ZZ
Z9

12
3

20
31

32
33

C and COBOL default mappings

Appendix B. C and COBOL default mappings 275

Ta
bl

e
35

.
C

O
B

O
L

da
ta

ty
pe

s
an

d
th

ei
r

de
fa

ul
t

se
tti

ng
s

in
th

e
M

R
M

(c
on

tin
ue

d)

C
O

B
O

L
d

at
at

yp
e

P
er

m
it

te
d

sy
m

b
ol

s
P

IC
T

U
R

E
an

d
U

S
A

G
E

an
d

op
ti

on
al

S
IG

N
cl

au
se

V
al

u
e

In
te

rn
al

re
p

re
se

n
ta

ti
on

M
R

M
L

og
ic

al
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

gt
h

in
b

yt
es

S
ig

n
V

ir
tu

al
d

ec
.

p
oi

n
t

P
ad

.
ch

ar
.

Js
t.

PI
C

$$
Z9

$1
23

24
31

32
33

$1
2

20
24

31
32

PI
C

99
9V

9
12

34
31

32
33

34

PI
C

ZZ
ZV

9
12

34
31

32
33

34

PI
C

$Z
ZZ

,Z
Z9

V.
99

$1
23

,4
56

.7
8

24
31

32
33

2C
34

35
36

2E
37

38
st

ri
ng

fi
xe

d
le

ng
th

11
sp

ac
e

R

C and COBOL default mappings

276 MQSeries Integrator Using the Control Center

Appendix C. ESQL reference

This appendix describes how to use the ESQL expressions that are necessary for
configuring Filter, Compute, and Database nodes in MQSeries Integrator. A
common syntax, based on standard SQL and known an ESQL (Extended SQL) is
used in these nodes. Exceptions to standard SQL constructs are included here: the
standard constructs are not documented in detail.

This appendix does not provide information about content-based filters. Refer to
Appendix A in the MQSeries Integrator Programming Guide which discusses and
explains this topic.

Basic message structure
The example below is the text of a simple XML message. Many of the examples in
this appendix are based on this message or messages of this form.
<Trade type='buy'
Company='IBM'
Price='200.20'
Date='2000-01-01'
Quantity='1000'/>

If this message is received on an MQSeries queue, the message originated in the
message flow from an MQInput node, and had an MQRFH2 header. The tree
representation of this message would look like this (where indentation shows
containment):

© Copyright IBM Corp. 2000 277

A good way to see the structure of the syntax element tree of a message is to use a
simple message flow that contains a Trace node configured using a trace pattern
such as "${Root}". The Trace node produces a trace entry that contains a tree
similar to the one shown above. For an explanation of the different datatypes that
fields can have, such as character string and GMT timestamp, see “Data types” on
page 285.

For more information on basic message concepts, see “Chapter 3. Defining
messages” on page 27.

Understanding the message structure
When a message is received from an MQSeries queue, the broker parses it into a
tree format. This is illustrated in “Basic message concepts” on page 27.

The first child of Root is the Properties folder. The next sibling of Properties is the
folder for the MQMD of the incoming message. The next sibling is the folder for
the MQRFH2 header. The last child of Root is the Body that represents the message
content.

Root
Properties

CreationTime=GMTTIMESTAMP '1999-11-24 13:10:00'
(a GMT timestamp field)

... and other fields ...

MQMD
PutDate=DATE '19991124'
(a date field)

PutTime=GMTTIME '131000'
(a GMTTIME field)

... and other fields ...

MQRFH
mcd
msd='xml'

(a character string field)

.. and other fields ...

XML
Trade
type='buy'
(a character string field)

Company='IBM'
(a character string field)

Price='200'
(a character string field)

Date='2000-01-01'
(a character string field)

Quantity='1000'
(a character string field)

Basic message structure

278 MQSeries Integrator Using the Control Center

If the tree structure is not clear from just from looking at your message, you can
generate a trace record to show it. Create, assign, and deploy a simple message
flow containing an MQInput node to get the message from an MQSeries queue,
and a Trace node with a Destination property of file, a File Path property set to a
fully-qualified path name of the file where the trace record will be written, and a
Pattern property of ${Root}.

The following figure shows the structure of the predefined receipt message used in
the example scenario (see Figure 65 on page 249).

(
(0x1000000)Properties = (

(0x3000000)MessageSet = 'DHOOL7806S001'
(0x3000000)MessageType = 'receiptmsg'
(0x3000000)MessageFormat = 'XML'
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Transactional = TRUE
(0x3000000)Persistence = FALSE
(0x3000000)CreationTime = GMTTIMESTAMP '2000-06-15 14:02:46.770'
(0x3000000)ExpirationTime = -1
(0x3000000)Priority = 0
(0x3000000)Topic = 'Multibuy'

)
(0x1000000)MQMD = (

(0x3000000)SourceQueue = 'IN'
(0x3000000)Transactional = TRUE
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Format = 'MQHRF2 '
(0x3000000)Version = 2
(0x3000000)Report = 0
(0x3000000)MsgType = 8
(0x3000000)Expiry = -1
(0x3000000)Feedback = 0
(0x3000000)Priority = 0
(0x3000000)Persistence = 0
(0x3000000)MsgId = X'414d51204d5153495f53414d504c455f8e12463913700300'
(0x3000000)CorrelId = X'00'
(0x3000000)BackoutCount = 0
(0x3000000)ReplyToQ = ' '
(0x3000000)ReplyToQMgr = 'MQSI_SAMPLE_QM '
(0x3000000)UserIdentifier = 'gb055075 '
(0x3000000)AccountingToken = X'1601051500000021355b0f025f447e8c3b3515e803000000000000000000000b'
(0x3000000)ApplIdentityData = ' '
(0x3000000)PutApplType = 11
(0x3000000)PutApplName = 'C:\Argo\scenario\argoput.exe'
(0x3000000)PutDate = DATE '2000-06-15'
(0x3000000)PutTime = GMTTIME '14:02:46.770'
(0x3000000)ApplOriginData = ' '
(0x3000000)GroupId = X'00'
(0x3000000)MsgSeqNumber = 1
(0x3000000)Offset = 0
(0x3000000)MsgFlags = 0
(0x3000000)OriginalLength = 1096

)

Basic message structure

Appendix C. ESQL reference 279

(0x1000000)MQRFH2 = (
(0x3000000)Version = 2
(0x3000000)Format = ' '
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Flags = 0
(0x3000000)NameValueCCSID = 437
(0x1000000)mcd = (

(0x1000000)Msd = (
(0x2000000) = 'MRM'

)
(0x1000000)Set = (

(0x2000000) = 'DHOOL7806S001'
)
(0x1000000)Type = (

(0x2000000) = 'receiptmsg'
)
(0x1000000)Fmt = (

(0x2000000) = 'XML'
)

) (0x1000000)psc = (
(0x1000000)Command = (

(0x2000000) = 'Publish'
)
(0x1000000)Topic = (

(0x2000000) = 'Multibuy'
)

)
)
(0x1000008)MRM = (

(0x1000001)storedetailselement = (
(0x3000001)storename = 'ShopAholics'
(0x3000001)branchnum = 9
(0x3000001)cashiernum = 5
(0x3000001)tillnum = 9
(0x3000001)date = '01/04/00'
(0x3000001)time = '14:30'

)
(0x1000001)purchaseselement = (

(0x3000001)itemname = 'Shampoo'
(0x3000001)itemcode = 56734097
(0x3000001)itemprice = 2.99E+0
(0x3000001)itemquantity = 1

)
(0x1000004)purchaseselement = (

(0x3000001)itemname = 'Shampoo'
(0x3000001)itemcode = 56734097
(0x3000001)itemprice = 2.99E+0
(0x3000001)itemquantity = 1

)
(0x1000004)purchaseselement = (

(0x3000001)itemname = 'Shampoo'
(0x3000001)itemcode = 5663548
(0x3000001)itemprice = 1.99E+0
(0x3000001)itemquantity = 1

)
(0x1000001)totalselement = (

(0x3000001)totalitems = 10
(0x3000001)multibuy = 'Yes'
(0x3000001)totalsales = 1.348E+3
(0x3000001)change = 5.02E+0

)
)

)

Basic message structure

280 MQSeries Integrator Using the Control Center

The following figure shows the equivalent self-defining XML message, that does
not have an MQRFH2 header.

(
(0x1000000)Properties = (

(0x3000000)MessageSet = ''
(0x3000000)MessageType = ''
(0x3000000)MessageFormat = ''
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Transactional = TRUE
(0x3000000)Persistence = FALSE
(0x3000000)CreationTime =

GMTTIMESTAMP '2000-06-15 12:47:25.210'
(0x3000000)ExpirationTime = -1
(0x3000000)Priority = 0
(0x3000000)Topic = NULL

)
(0x1000000)MQMD = (

(0x3000000)SourceQueue = 'IN'
(0x3000000)Transactional = TRUE
(0x3000000)Encoding = 546
(0x3000000)CodedCharSetId = 437
(0x3000000)Format = 'XML '
(0x3000000)Version = 2
(0x3000000)Report = 0
(0x3000000)MsgType = 8
(0x3000000)Expiry = -1
(0x3000000)Feedback = 0
(0x3000000)Priority = 0
(0x3000000)Persistence = 0
(0x3000000)MsgId = X'414d51204d5153495f53414d504c455f8e12463913100300'
(0x3000000)CorrelId = X'00'
(0x3000000)BackoutCount = 0
(0x3000000)ReplyToQ = ' '
(0x3000000)ReplyToQMgr = 'MQSI_SAMPLE_QM '
(0x3000000)UserIdentifier = 'gb055075 '
(0x3000000)AccountingToken = X'1601051500000021355b0f025f447e8c3b3515e803000000000000000000000b'
(0x3000000)ApplIdentityData = ' '
(0x3000000)PutApplType = 11
(0x3000000)PutApplName = 'C:\Argo\scenario\argoput.exe'
(0x3000000)PutDate = DATE '2000-06-15'
(0x3000000)PutTime = GMTTIME '12:47:25.210'
(0x3000000)ApplOriginData = ' '
(0x3000000)GroupId = X'00'
(0x3000000)MsgSeqNumber = 1
(0x3000000)Offset = 0
(0x3000000)MsgFlags = 0
(0x3000000)OriginalLength = 858

)

Basic message structure

Appendix C. ESQL reference 281

(0x1000010)XML = (
(0x1000000)Message = (

(0x1000000)receiptmsg = (
(0x1000000)transactionlog = (

(0x1000000)storedetailselement = (
(0x1000000)storename = (

(0x2000000) = 'ShopAholics'
)
(0x1000000)branchnum = (

(0x2000000) = '9'
)
(0x1000000)cashiernum = (

(0x2000000) = '05'
)
(0x1000000)tillnum = (

(0x2000000) = '09'
) (0x1000000)date = (

(0x2000000) = '01/04/00'
)
(0x1000000)time = (

(0x2000000) = '14:30'
)

)
(0x1000000)purchaseselement = (

(0x1000000)itemname = (
(0x2000000) = 'Shampoo'

)
(0x1000000)itemcode = (

(0x2000000) = '00056734097'
)
(0x1000000)itemprice = (

(0x2000000) = '2.99'
)
(0x1000000)itemquantity = (

(0x2000000) = '1'
)

)
(0x1000000)purchaseselement = (

(0x1000000)itemname = (
(0x2000000) = 'Shampoo'

)
(0x1000000)itemcode = (

(0x2000000) = '00056734097'
)
(0x1000000)itemprice = (

(0x2000000) = '2.99'
)
(0x1000000)itemquantity = (

(0x2000000) = '1'
)

)

Basic message structure

282 MQSeries Integrator Using the Control Center

(0x1000000)purchaseselement = (
(0x1000000)itemname = (

(0x2000000) = 'Shampoo'
)
(0x1000000)itemcode = (

(0x2000000) = '0005663548'
)
(0x1000000)itemprice = (

(0x2000000) = '1.99'
)
(0x1000000)itemquantity = (

(0x2000000) = '1'
)

)
(0x1000000)totalselement = (

(0x1000000)totalitems = (
(0x2000000) = '10'

)
(0x1000000)multibuy = (

(0x2000000) = 'Yes'
)
(0x1000000)totalsales = (

(0x2000000) = '1348'
)
(0x1000000)change = (

(0x2000000) = '5.02'
)

)
)

)
)

)
)

Basic message structure

Appendix C. ESQL reference 283

Referring to simple fields in a message
You refer to fields in a message using a field reference (further described in “Field
references” on page 302). A field reference has a very similar format and meaning
to a path in a file system. In its simplest form, a field reference consists of a
period-separated sequence of identifiers. These identify the path in the message
tree that get to the field that you want. The simplest form of identifier is a
sequence of alphanumeric characters, the first of which must be an alphabetic
character. Not all paths have to start at the root of the tree, so the first identifier in
the chain indicates the starting point for the navigation.

The starting point of the field reference (the first identifier in the chain) is called
the correlation name. For example, the correlation name ″Root″ means ″start at the
root of the tree″, and ″Body″ means ″start at the body of the message″.

The following message root names are defined:

Root name Used in node

Root Filter
InputRoot Compute
OutputRoot Compute

The following pseudo message roots are also recognized. These pseudo roots do
not refer to the root of a particular message, but to the root element of one of the
addressable message parsers immediately beneath the root element.

Pseudo root name Equivalent path Used in node

Body Root.*[LAST] Filter Database
InputBody InputRoot.*[LAST] Compute
OutputBody OutputRoot.*[LAST] Compute
InputProperties InputRoot.Properties Compute
OutputProperties OutputRoot.Properties Compute

The correlation name differs depending on where you are making the reference to
the field.
v If you are making the reference from a node:

1. If you can alter the message in a node (for example, in a Compute node),
you must use:
– InputRoot (the root of the message coming into the node)
– OutputRoot (the root of the message going out of the node)
– InputBody (= InputRoot.Body) (the body of the input message)

2. If you cannot alter the message in a node (for example, in a Filter node), use:
– Root (the root of the message coming in and going out of the node)
– Body (= Root.Body)

Body refers to the last element of the root tree and depends on the type of
message. If you have a self-defining XML message, Body equals XML so both
of the following statements are valid:
Body.Trade.Quantity.
Root.XML.Trade.Quantity.

The first form is the recommended form.

Basic message structure

284 MQSeries Integrator Using the Control Center

You can also further refer to specific elements that share a type and name by using
the bracketed index value after the name. You can use an integer value or the
defined constant LAST (shown above). The index numbering starts at value 1, and
numbering is assigned from left to right. For example, you can refer to the second
occurrence of the Initial field within a parent with children Salutation, Initial,
Initial, Surname, by specifying Initial[2].

Using quotes in the field reference
If you need to refer to fields with periods or spaces in their names, you must use
double quotes around the reference:

Body."Companies on Wall Street"."mycompany.com"

If you need to refer to fields that contain double quotes, you must use two sets of
double quotes around the reference:

Body.""hello""

If you need to refer to fields that have the same name as an ESQL keyword, you
must use double quotes around the reference:

Body."Set"

For a full list of keywords, see “Reserved keywords” on page 344.

Data types
Now that you have been introduced to simple filter expressions, you need to
understand some more about the types of value that you can work with.

Note: It is important to realize when working with generic XML messages, such as
the one shown in the previous example, that all of the values derived from a
generic XML message are character strings. In some situations, the character
string values are implicitly cast to other types, but in other situations it is
necessary explicitly to cast the value into one of the correct type. For a more
detailed explanation of the implications of these actions, see “CASTs” on
page 324.

When working with message formats that are managed through the Control
Center, either XML or record-oriented messages, you define the datatype associated
with each field. For example, in this case you would have defined the Quantity
field to be an integer type, and the field would be represented in the tree as an
integer, rather than as a string.

Numbers
The standard SQL datatypes INTEGER, FLOAT and DECIMAL are supported, but you
should take note of the following:

Integers
The integer datatype stores numbers using 64-bit binary precision, so
giving a range of values between -9223372036854775808 and
9223372036854775807. In addition to the normal integer literal format,
integer literals can be written in hexadecimal notation, for example
0x1234abc.

The hexadecimal letters A to F can be written in uppercase or lowercase, as
can the 'x' after the initial zero.

Basic message structure

Appendix C. ESQL reference 285

Note: If a literal of this form is too large to be represented as an integer, it
is represented as a decimal.

Floats A value of the float datatype is a 64 bit approximation of a real number. A
float literal is defined using the scientific notation, as in 6.6260755e-34.

The case of the "e" is not significant so "E" can be used instead if necessary.
It is the "e" that identifies this value as a float literal.

Strings
Strings can be character strings, byte strings, or bit strings.
v A string of any type must be enclosed in single quotes (as shown in the

examples below, and throughout this appendix).
v If you want to include a single quote within a character string literal, you must

use another single quote as an escape character.
For example, the assignment SET X=’he’’was’’’ puts the value he'was' into X.

Character strings
Character strings in MQSeries Integrator are stored using Unicode.

Byte strings
A byte string is a series of 8-bit bytes that is used to represent arbitrary
binary data. A byte string literal is defined using a string of hexadecimal
digits, as in the following example:
X'0123456789ABCDEF'

There must be an even number of digits in the string, because two digits
are required to define each byte. Each digit can be one of the hexadecimal
digits. The hexadecimal letters can be specified in uppercase or lowercase.

Bit strings
A bit string is a series of bits used to represent arbitrary binary data that
does not contain an exact number of bytes. Bit string literals are defined in
a similar way to byte string literals, for example:
B'0100101001'

Any number of digits, which must be either 0 or 1, can be specified.

Datetime types
The DATE, TIME, TIMESTAMP, GMTTIME and GMTTIMESTAMP datatypes are collectively
known as datetime datatypes. The following are examples of literals for these
datatypes:
DATE '1999-11-18'
DATE '2000-02-29'
TIME '12:02:00'
TIME '06:00:00'
TIME '11:49:23.656'
TIMESTAMP '1999-12-31 23:59:59'

The format of the character string following the DATE keyword is 'yyyy-mm-dd'.
The character string includes a 4-digit year field, followed by a 2-digit month field,
in which '01' represents January. (Note that a leading zero is required as the field
must always be two digits.) The month field is followed by a 2-digit day field,
which must also always be 2 digits, so a leading zero might be required. Each of
the hour, minute and second fields in a TIME or TIMESTAMP literal must always be
two digits. The exception is the optional fractional seconds field which, if present,
can be up to 6 digits in length.

Data types

286 MQSeries Integrator Using the Control Center

GMTTime
The GMTTime datatype is very similar to the Time datatype, except that
the time values are interpreted as values in Greenwich Mean Time.
GMTTime values are defined in much the same way as Time values, that
is, as GMTTIME '12:00:00'.

GMTTimestamp
As with the GMTTime datatype, the GMTTimestamp datatype is very
similar to the Timestamp datatype, except that the values are interpreted as
values in Greenwich Mean Time. GMTTimestamp values are defined in
much the same way as Timestamp values, that is as GMTTIMESTAMP
'1999-12-31 23:59:59.999999'.

Interval
An interval value represents an interval of time. There are two kinds of interval
values:
v One that is specified in years and months.
v One that is specified in days, hours, minutes and seconds (including fractions of

a second).

The split between months and days arises because the number of days in each
month varies. An interval of one month and a day is not really meaningful, and
certainly cannot be sensibly converted into an equivalent interval in numbers of
days only.

An interval value has a qualifier associated with it that indicates which fields are
present. If it contains both a year and a month value, the month value must be
within the range [0, 11]. However, in the case of an interval containing just a
month value, that value is unconstrained. So, for example, an interval value of 18
months is valid, but an interval value of 2 years and 18 months is not valid.

A day interval contains a sign and a contiguous sequence of fields from the list
DAY, HOUR, MINUTE, and SECOND. The qualifier indicates which fields are
present. As with year-and-month intervals, the value of the first field is
unconstrained, but the values of the subsequent fields are constrained as follows:

Field Valid Values

HOUR 0-23

MINUTE 0-59

SECOND 0-59.999...

Some examples of valid interval values are:
v 72 hours
v 3 days and 23 hours
v 3600 seconds
v 90 minutes and 5 seconds

Data types

Appendix C. ESQL reference 287

Some examples of invalid interval values are:
v 3 days and 36 hours

A day field is specified, so the hours field is constrained to [0,23].
v 1 hour and 90 minutes

An hour field is specified, so minutes are constrained to [0,59].

An interval literal is defined by the following syntax:
INTERVAL <interval string> <interval qualifier>

The format of interval string and interval qualifier are defined by the following
table:

Table 36. Format of interval strings and qualifiers

Interval qualifier Interval string format Example

YEAR '<year>' or '<sign> <year>' '10'

YEAR TO MONTH '<year>-<month>' or '<sign>
<year>-<month>'

'- 2-06'

MONTH '<month>' or '<sign> <month>' '18'

DAY '<day>' or '<sign> <day>' '-30'

DAY TO HOUR '<day> <hour>' or <sign> <day>
<hour>'

'1 02'

DAY TO MINUTE '<day> <hour>:<minute>' or '<sign>
<day> <hour>:<minute>'

'1 02:30'

DAY TO SECOND '<day> <hour>:<minute>:<second>'
or '<sign> <day>
<hour>:<minute>:<second>'

'1 02:30:15' or '-1 02:30:15.333'

HOUR '<hour>' or '<sign> <hour>' '24'

HOUR TO MINUTE '<hour>:<minute>' or '<sign>
<hour>:<minute>'

'1:30'

HOUR TO SECOND '<hour>:<minute>:<second>' or
'<sign> <hour>:<minute>:<second>'

'1:29:59' or '1:29:59.333'

MINUTE '<minute>' or '<sign> <minute>' '90'

MINUTE TO SECOND '<minute>:<second>' or '<sign>
<minute>:<second>'

'89:59'

SECOND '<second>' or '<sign> <second>' '15' or '15.7'

Here are some simple examples of interval literals:
INTERVAL '1' HOUR
INTERVAL '90' MINUTE
INTERVAL '1-06' YEAR TO MONTH

Boolean
A boolean represents a true or false value although there are exceptions. See
“Optional fields and NULLs” on page 295 for more information.

A valid filter expression must always return a boolean value. A literal boolean can
be defined using one of the keywords TRUE, FALSE, or UNKNOWN.

Data types

288 MQSeries Integrator Using the Control Center

Predicates
The expression used to configure a Filter node must produce a boolean result. That
means that in general it will consist of one kind of predicate. Many of the standard
predicates are supported, and are listed in this section. Predicates can be combined
using the AND, OR and NOT operators. In the following description, only the
differences from standard SQL are described.

BETWEEN predicate
The standard default asymmetric form of the BETWEEN predicate is supported.
This requires you to specify the smallest end-point value first, followed by the
largest. You can use the ASYMMETRIC keyword, but in its absence the asymmetric
form is implied.

If you prefer you can make the BETWEEN predicate symmetric by specifying the
optional keyword SYMMETRIC after BETWEEN. In the symmetric form of the
predicate, the order in which you specify the two end-point values is not
significant. For example, the following two expressions are identical:
2 BETWEEN SYMMETRIC 1 AND 3
2 BETWEEN SYMMETRIC 3 AND 1

Both expressions return the value "TRUE".

LIKE predicate
The LIKE predicate searches for strings that have a certain pattern. The standard
LIKE predicate for performing simple string-pattern matching is supported.

The pattern is specified by a string in which the percent (%) and underscore (_)
characters can be used to have special meaning:
v The underscore character _ represents any single character.

For example, the following predicate finds matches for ‘IBM’ and for ‘IGI’, but
not for ‘International Business Machines’ or ‘IBM Corp’:
Body.Trade.Company LIKE ‘I__’

v The percent character % represents a string of zero or more characters.
For example, the following predicate finds matches for ‘IBM’, ‘IGI’, ‘International
Business Machines’, and ‘IBM Corp’:
Body.Trade.Company LIKE ‘I%’

If you want to use the percent and underscore characters within the expressions
that are to be matched, you must precede these with an ESCAPE character, which
defaults to the backslash (\) character.

For example, the following predicate finds a match for ‘IBM_Corp’.
Body.Trade.Company LIKE ‘IBM_Corp’

You can specify a different escape character by using the ESCAPE clause on the
LIKE predicate. For example, you could also specify the previous example like this:
Body.Trade.Company LIKE ‘IBM$_Corp’ ESCAPE ‘$’

IN predicate
An IN predicate of the following form is supported:
expression IN (expressiona, expressionb, ..., expressionk)

Predicates

Appendix C. ESQL reference 289

The IN predicate:
v Evaluates to TRUE if the comparison between the first expression and one of the

expressions inside the parentheses evaluates to TRUE.
v Evaluates to FALSE if the comparison between the left-hand expression and all

of the expressions inside the parentheses evaluate to FALSE.
v Evaluates to UNKNOWN if at least one comparison evaluates to UNKNOWN,

and none evaluate to TRUE.

Other sorts of expression
The examples of predicates so far have all used simple literals or field references as
the operands. However, you can use more general expressions.

CASE expressions
Both the simple and searched forms of the ESQL CASE expression are supported.
You can only use CASE as an expression, not as a statement.

If you use the simple form, the value of the expression prior to the first WHEN
keyword is tested for equality with the value of the expression following the
WHEN keyword. The datatype of the expression prior to the first WHEN keyword
must therefore be comparable to the datatype of each expression following a
WHEN keyword.

\\ CASE
ELSE NULL

searched-when-clause END
simple-when-clause ELSE result-expression

\]

searched-when-clause:

WHEN search-condition THEN result-expression
NULL

simple-when-clause:

expression WHEN expression THEN result-expression
NULL

Predicates

290 MQSeries Integrator Using the Control Center

The following examples show CASE expressions used as part of a Filter
expression:
Body.TestCase.Result = CASE SUBSTRING(Body.TestCase.Val1 FROM 1 FOR 1)
WHEN 'A' THEN 'Administration'
WHEN 'B' THEN 'Human Resources'
WHEN 'C' THEN 'Accounting'
WHEN 'D' THEN 'Design'
WHEN 'E' THEN 'Operations'
ELSE 'Manufacturing'
END

Body.TestCase.Result = CASE
WHEN CAST(Body.TestCase.Val1 AS INT) < 15 THEN 'SECONDARY'
WHEN CAST(Body.TestCase.Val1 AS INT) < 19 THEN 'COLLEGE'
END

The following two examples show CASE expressions as part of a Filter expression
where the CASE is being used within a SELECT against an external database.
Body.TestCase.Val1 =

THE (SELECT ITEM CASE SUBSTRING(B.broker_firstname FROM 1 FOR 1)
WHEN 'D' THEN 'Dave' ELSE 'noname' END
FROM Database.broker_details AS B
WHERE B.broker_id = CAST(Body.TestCase.Val2 AS INT))

CAST(Body.TestCase.Val1 AS INT) =
THE (SELECT ITEM C.cust_id FROM Database.customer_details AS C WHERE

C.cust_id = CAST(Body.TestCase.Val2 AS INT) AND
C.cust_status = CASE WHEN

CAST(Body.TestCase.Val3 AS INT) = 1 THEN 'A'
ELSE 'I' END)

EVAL expressions

You can use EVAL in two ways:
1. You can use it in place of a complete ESQL statement.
2. You can use it in place of an expression that forms part of an ESQL statement.

EVAL cannot be used in place of a non-expressional part of a statement.

EVAL takes one parameter in the form of an expression, and it evaluates this
expression and casts the resulting value to a character string if it is not one already.
The expression that is passed to EVAL must therefore be able to be represented as
a character string.

After this first stage evaluation is complete, the behavior of EVAL depends on
whether it is being used in place of a complete ESQL statement, or in place of an
expression that forms part of an ESQL statement:
1. If it is a complete ESQL statement, the character string derived from the first

stage evaluation is executed as if it were an ESQL statement.
2. If it is an expression that forms part of an ESQL statement, the character string

is evaluated as if it were an expression and EVAL returns the result.

EVAL expression

\\ EVAL (expression) \]

Other sorts of expression

Appendix C. ESQL reference 291

In the following examples A and B are integer scalar variables, and scalarVar1,
operatorAsString are character string scalar variables.

The following statements are valid uses of EVAL:
v SET OutputRoot.XML.Data.Result = EVAL(A+B);

The expression A+B is acceptable because, although it returns an integer value,
integer values are representable as character strings, and the necessary cast is
therefore performed before EVAL continues with its second stage of evaluation.

v SET OutputRoot.XML.Data.Result = EVAL('A' || operatorAsString || 'B');

v EVAL('SET ' || scalarVar1 || ' = 2;');

The semicolon included at the end of the final string literal is necessary because
if EVAL is being used in place of an ESQL statement, then its first stage
evaluation must return a string that represents a valid ESQL statement,
including the terminating semicolon.

The following are not valid uses of EVAL:
v SET EVAL(scalarVar1) = 2;

In this example, EVAL is being used to replace a field reference, not an
expression.

v SET OutputRoot.XML.Data.Result[] = EVAL((SELECT T.x FROM Database.y));

In this example, the (SELECT T.x FROM Database.y) passed to EVAL returns a
list, which is not representable as a character string.

The following example is acceptable because ’(SELECT T.x FROM Database.y)’ is a
character string literal, not an expression in itself, and therefore is of course
representable as a character string.
SET OutputRoot.XML.Data.Result[]
= EVAL('(SELECT T.x FROM Database.y)');

The real power of EVAL is that it allows you to dynamically construct ESQL
statements or expressions. In the second and third valid examples shown, for
example, the value of scalarVar1 or operatorAsString can be set according to the
value of an incoming message field, or other dynamic value, thus allowing you to
effectively control what ESQL is executed without requiring a potentially lengthy
IF...THEN ladder.

However, you must consider the performance implications in using EVAL -
dynamic construction and execution of statements or expressions is necessarily
more time-consuming than simply executing pre-constructed ones. If performance
is vital, you might find it preferable to write more specific, but faster, ESQL.

Comments
Comments can be included in an expression. There are two forms of comment:
v Line comments are initiated by two consecutive minus signs, and the comment

is terminated by an end-of-line character.
v Block comments are initiated by "/*" and are terminated by "*/". Block

comments can be nested.

In arithmetic expressions you must take care not to initiate a line comment
accidentally. For example, consider the expression:
1 - -2

Removing all white space from the expression results in:

Other sorts of expression

292 MQSeries Integrator Using the Control Center

1--2

which is interpreted as the number 1, followed by a line comment.

Using MQSeries constants in message headers
You can reference and update the fields within the MQSeries headers that are
associated with each message. Every message has at least an MQMD, and most
messages have one or more additional headers, for example the MQIIH
(IMS/ESA® bridge header).

You can use the defined MQSeries constants to test and assign values to the
message header fields, both in their symbolic form, and as defined values.
However, in a small number of cases, the datatype of the constant has been
changed to be consistent with the MQSeries Integrator implementation of the field
to which it refers. Check “Appendix D. MQSeries message header parsers” on
page 363 for individual field properties.

All MQSeries constants are registered in the global namespace (unqualified) and
you can use them in any context without providing a qualifier. Constants are also
registered in a qualified (parser-specific) namespace, and in this case must be
qualified by the characters namespace.. For example, each parser resgisters a
contstant of type CHARACTER called ParserClassName. The parser class for the
MQMD must therefore be referenced by the string MQMD.ParserClassName.

For example, to set the message type field, you can specify:
SET OutputRoot.MQMD.MsgType = MQMT_DATAGRAM

You can achieve the same effect using the numeric value of MQMT_DATAGRAM:
SET OutputRoot.MQMD.MsgType = 8

When you use these constants in the ESQL in a node, the syntax checker accepts
their use. However, if you use the Check message flow facility, the use of MQSeries
constants might generate errors at this stage, with a message to indicate that the
constants are not defined. You can ignore these messages: the constants will be
processed correctly at run-time.

Table 37 tells you where you can find the definitions of the MQSeries constants for
the MQSeries headers supported by MQSeries Integrator.

Table 37. MQSeries constants references

Header Description Reference

MQPCF PCF header comprising:
v MQCFH Command format

header
v MQCFIN PCF integer

parameter
v MQCFST PCF string

parameter
v MQCFIL PCF integer list

parameter
v MQCFSL PCF string list

parameter

MQSeries Programmable System Management

MQCIH CICS®® bridge MQSeries Application Programming Reference

MQDLH Dead letter MQSeries Application Programming Reference

Other sorts of expression

Appendix C. ESQL reference 293

Table 37. MQSeries constants references (continued)

Header Description Reference

MQIIH IMS bridge MQSeries Application Programming Reference

MQMD Message descriptor MQSeries Application Programming Reference

MQMDE MQMD extension MQSeries Application Programming Reference

MQRFH Rules and formats MQSeries Publish/Subscribe User’s Guide

MQRFH2 Rules and formats version 2 MQSeries Integrator Programming Guide

MQRMH Reference message MQSeries Application Programming Reference

MQSAPH
SMQ_BMH

SAP R/3 Link headers MQSeries Link for R/3 User’s Guide

MQWIH Workload information MQSeries Application Programming Reference

CodedCharSetId, Encoding, and data conversion
The broker supports the MQSeries manifest constants for CodedCharSetId and
Encoding fields, and follows the MQSeries architecture rules for supporting
MQCCSI_INHERIT and MQCCSI_DEFAULT as necessary when generating a
bitstream.

Symbolic constants

294 MQSeries Integrator Using the Control Center

Optional fields and NULLs
If you want to process XML messages based on a field that is not always present
in a message, you can use a DTD and define default values for attributes. With
other messages, you can write a field reference in an expression that refers to any
field, regardless of whether such a field exists in the message, or could ever exist
in the message. If, when that field reference is evaluated, no matching field is
found, a NULL value is returned. A NULL value indicates the absence of a value,
and should not be confused with, for example, the empty string. You can always
write a filter expression such as:
Body.Every.Field.Is.Valid > 123

However, it is probable that the field reference will result in a NULL value.

NULLs and expressions
The effect on a predicate or expression if one of the values is NULL is that the
whole expression evaluates to NULL. The expression in the previous example
attempts to compare the NULL value to the integer 123, which results in the NULL
value. This behavior is based on interpreting NULL as "Could be anything". If the
value of one field in an expression could be anything, the result of the expression
could be anything.

Note that the UNKNOWN boolean value is interpreted as a NULL so, for example,
comparing TRUE with UNKNOWN results in UNKNOWN, in the same way that
comparing an integer with NULL results in unknown.

The logical operations AND and OR treat null values differently. The effect of
NULL expressions on the values P and Q in AND | OR | NOT operations (as in
standard SQL usage) are shown below.

Table 38. Logical operators and NULL values

P Q P AND Q P OR Q

T T T T

F T F T

T F F T

F F F F

U T U T Note the AND and OR results.

U F F U Note the AND and OR results.

T U U T Note the AND and OR results.

F U F U Note the AND and OR results.

U U U U Note the AND and OR results.

The NULL predicate
Given that NULLs can have undesirable effects on expressions, you can guard
against getting unexpected NULL values in your expressions by testing optional
expressions to see whether the field evaluates to NULL using the NULL predicate
before using it. The NULL predicate has the following form:
Body.Invoice.Quantity IS NOT NULL

The above expression returns true if the Invoice.Quantity field appeared in the
message.

Optional fields and NULLs

Appendix C. ESQL reference 295

The NOT keyword can be omitted to reverse the result.

Logical operators

An expression_primary must result in a boolean expression. A run-time error is
generated if it does not.

The boolean values are combined according to the results documented in Table 38
on page 295.

Note:

NOT(TRUE) = FALSE
NOT(FALSE) TRUE
NOT(UNKNOWN) = UNKNOWN

Repeating fields
The examples so far have been based on a relatively simple message. However,
messages are very likely to contain repeating fields, and these are supported by
MQSeries Integrator.

Logical operators

\\ expression_primary
boolean_expression AND boolean_expression
boolean_expression OR boolean_expression
NOT boolean_expression
predicate
expression_primaryIS TRUE

NOT FALSE
UNKNOWN

\]

Optional fields and NULLs

296 MQSeries Integrator Using the Control Center

Figure 80 defines a message with some repeating fields that illustrate some of these
facilities. This message contains product order information, such as might appear
in an invoice message, or an online bookshop purchase.

<Invoice>
<Customer>
<Name>Albert Einstein</Name>
<InvoiceAddress>
<Address>Patent Office</Address>
<Address>Bern</Address>
<Address>Switzerland</Address>
</InvoiceAddress>
</Customer>
<Item>
<Book>
<Title>Principia Mathmatica</Title>
<Author>Isaac Newton</Author>
<ISBN>0-520-0881606</ISBN>
</Book>
<Price>60</Price>
<Quantity>1</Quantity>
</Item>
<Item>
<Book>
<Title>A Brief History of Time</Title>
<Author>Stephen Hawking</Author>
<ISBN>0-553-175211</ISBN>
</Book>
<Price>7.99</Price>
<Quantity>1</Quantity>
</Item>
<Item>
<Stationary>pencil</Stationary>
<Price>0.20</Price>
<Quantity>200</Quantity>
</Item>
<Item>
<Stationary>paper</Stationary>
<Price>1.99</Price>
<Quantity>100</Quantity>
</Item>
</Invoice>

Figure 80. Repeating fields in a message

Repeating fields

Appendix C. ESQL reference 297

Array indices
If you know how many instances there are of a repeating field, and you want to
access a specific instance of such a field, you can use an array index as part of a
field reference. For example, if you wanted to filter on the first line of an address,
to expedite the delivery of an order, you could write an expression such as:
Body.Invoice.Customer.InvoiceAddress.Address[1] = '10 Downing Street'

The array index [1] indicates that it is the first instance of the repeating field that
you are interested in (array indices start at 1). An array index such as this can be
used at any point in a field reference, so you could, for example, filter on:
Body.Invoice."Item"[1].Quantity > 2

If you do not know exactly how many instances of a repeating field there are, you
can look at the last instance, or a relative field (for example, the third field from
the end). You can refer to the last instance of a repeat by using the special LAST
array index, as in:
Body.Invoice."Item"[LAST]

Alternatively, you can use the CARDINALITY function to determine how many
instances of a repeating field there are, and use the result to refer to the second to
last, for example. The following example shows how to do this:
Body.Invoice."Item"[CARDINALITY(Body.Invoice."Item"[]) - 2]

In this case, the CARDINALITY function is passed a field reference that ends in [].
The meaning of this is "count all instances of the Item field". The [] at the end
appears superfluous, because the context indicates that this is the meaning, but its
presence is required. This makes the syntax consistent with other instances where
it is necessary to refer to "all instances" of something. Remember that array indices
start at 1, so the array index in the above example refers to the third-from-last
instance of the Item field.

Arbitrary repeats: the quantified predicate
It is more likely that you do not know how many instances of a repeating field
there are in a message. This is the situation that arises with the Item field in the
example message. In order to write a filter that takes into account all instances of
the Item field, you need to use a construct that can iterate over all instances of a
repeating field. The quantified predicate allows you to execute a predicate against
all instances of a repeating field, and collate the results.

For example, you might want to verify that none of the items that were being
ordered had a unit price greater than 1000 pounds. To do this you could write:
FOR ALL Body.Invoice."Item"[] AS I (I.Quantity <= 1000)

There are several things to note about this example. Firstly, you have to put double
quotation marks around the Item in the field reference Body.Invoice.Item[]. This
is because Item is a keyword, and the double quotation marks are necessary to
prevent it from being interpreted as a keyword and so giving a syntax error.
Secondly, note that the expression "I.Quantity <= 1000" compares a character
string value (the value of the Quantity field from the message) with an integer (the
literal 1000). This makes use of the implicit casting of the character string to an
integer that occurs in this instance.

Repeating fields

298 MQSeries Integrator Using the Control Center

With the quantified predicate itself, the first thing to note is the "[]" on the end of
the field reference after the "FOR ALL". The square brackets tell you that you are
iterating over all instances of the Item field.

In some cases, this syntax appears unnecessary because you can get that
information from the context, but it is done for consistency with other pieces of
syntax.

The "AS" clause associates the name I with the current instance of the repeating
field. This is similar to the concept of iterator classes used in some object oriented
languages such as C++. The expression in parentheses is a predicate that is
evaluated for each instance of the Item field.

Repeating fields

Appendix C. ESQL reference 299

A fuller description of this example is:
1. Iterate over all instances of the field Item inside Body.Invoice.
2. For each iteration:

a. Bind the name I to the current instance of Item.
b. Evaluate the predicate I.Quantity <= 1000. If the predicate:

v Evaluates to TRUE for all of the instances of Item, return TRUE.
v FALSE for any instance of Item, return FALSE.
v Returns a mixture of TRUE and UNKNOWN, return UNKNOWN.

The above is a description of how the predicate is evaluated if the "ALL" keyword
is used. An alternative is to specify "SOME", or "ANY", which are equivalent. In
this case the quantified predicate returns TRUE if the sub-predicate returns TRUE
for any instance of the repeating field. Only if the sub-predicate returns FALSE for
all instances of the repeating field does the quantified predicate return FALSE. If a
mixture of FALSE and UNKNOWN values is returned from the sub-predicate, an
overall value of UNKNOWN is returned.

Another example of the quantified predicate shows how you can take special
action when someone orders a copy of "Principia Mathematica". You can write the
following filter expression:
FOR ANY Body.Invoice."Item"[] AS I (I.Book.Title = 'Principia Mathematica')

Note: The sub-predicate evaluates to UNKNOWN for the last two instances of
Item in the message, because they do not contain a Book field. This does not
affect the result in the case of an invoice that does contain an order for a
copy of "Principia Mathematica", but it does mean that if a copy of that
book does not appear on the invoice, the quantified predicate returns the
value UNKNOWN.

This is an example of a case where great care must be taken to deal with the
possibility of null values appearing. You are therefore recommended to write
this filter with an explicit check on the existence of the field, as follows:
FOR ANY Body.Invoice."Item"[] AS I (I.Book IS NOT NULL AND
I.Book.Title = 'Principia Mathematica')

The "IS NOT NULL" predicate ensures that if an Item field does not contain
a Book, a FALSE value is returned from the sub-predicate.

Arbitrary repeats: the SELECT expression
Another way of dealing with arbitrary repeats of fields within a message is to use
a SELECT expression. Suppose that you want to perform a special action on
invoices that have a total order value greater that a certain amount. In order to
calculate the total order value of an Invoice field, you need to multiply the Price
fields by the Quantity fields in all of the Items in the message, and total the result.
You can do this using a SELECT expression as follows:
(
SELECT SUM(CAST(I.Price AS DECIMAL) * CAST(I.Quantity AS INTEGER))
FROM Body.Invoice."Item"[] AS I

) > 100

It is necessary to use CAST expressions to cast the string values of the fields Price
and Quantity into the correct datatypes. The cast of the Price field into a decimal
produces a decimal value with the "natural" scale and precision, that is, whatever
scale and precision is necessary to represent the number.

Repeating fields

300 MQSeries Integrator Using the Control Center

The SELECT expression works in a similar way to the quantified predicate, and
works in much the same way in which a SELECT works in standard database SQL.
The FROM clause specifies what we are iterating over, in this case, all Item fields
in Invoice, and establishes that the current instance of Item can be referred to
using "I". This form of SELECT involves a column function, in this case the SUM
function, so the SELECT is evaluated by adding together the results of evaluating
the expression inside the SUM function for each Item field in the Invoice. As with
standard SQL, NULL values are ignored by column functions, with the exception
of the count(*) column function explained below, and a NULL value is returned by
the column function only if there are no non-NULL values to combine.

The other column functions that are provided are MAX, MIN, and COUNT. The
COUNT function has two forms which work in different ways with regard to
NULLs. In the first form you use it much like the SUM function above, so, for
example:
SELECT COUNT(I.Quantity)
FROM Body.Invoice."Item"[] AS I

This expression returns the number of Item fields for which the Quantity field is
non-NULL. That is, the COUNT function counts non-NULL values, in the same
way that the SUM function adds non-NULL values. The alternative way of using
the COUNT function is as follows:
SELECT COUNT(*)
FROM Body.Invoice."Item"[] AS I

Using COUNT(*) counts the total number of Item fields, regardless of whether any
of the fields is NULL. The above example is in fact equivalent to using the
CARDINALITY function, as in:
CARDINALITY(Body.Invoice."Item"[])

In all of the examples of SELECT given here, just as in standard SQL, a WHERE
clause could have been specified to provide filtering on the fields. Note that the
SELECT, FROM and WHERE clauses are the only clauses supported. You cannot
specify GROUP BY, HAVING, or ORDER BY, nor can you use the ALL or
DISTINCT qualifiers in the SELECT clause.

Repeating fields

Appendix C. ESQL reference 301

Field references
The full syntax for field references is defined:

Within this syntax, field_name is an identifier and field_type is a symbolic
constant.

So far, this appendix has explained only those path elements consisting of a
field_name. The meaning of the first part of the path element is to define search
parameters to find the correct syntax element. If only a field name is supplied, that
is an instruction to search for elements that have a field name, regardless of the
field type that they might have. Similarly, if a path element specifies only a field
type, that is an instruction to search for elements that have the given element type,
regardless of the name that they might have.

An asterisk in a path element indicates that all syntax elements should be
searched, regardless of the field names or field types. These two options are
discussed more in the following sections.

Anonymous field names
It is possible to refer to the array of all children of a particular entity by using a
path element of "*". So, for example:
InputRoot.*[]

is a path that identifies the array of all children of InputRoot. This is often used in
conjunction with an array subscript to refer to a particular child of an entity by
position, rather than by name. So, for example:

InputRoot.*[LAST]
Refers to the last child of the root of the input message, that is, the "body"
of the message.

InputRoot.*[1]
Refers to the first child of the root of the input message.

It is useful to be able to find out the name of an entity that has been identified
with a path of this kind. To do this, you can use the FIELDNAME function. This
function takes a path as its only parameter and returns as a string the field name
of the entity to which the path refers. Here are some examples of its usage:

Path element

\\ _

.

*

(field_type)field_name
[expression]

(field_type)
[LAST]

field_name
[]

\]

Field references

302 MQSeries Integrator Using the Control Center

FIELDNAME(InputRoot.XML)
Returns 'XML'.

FIELDNAME(InputBody)
Returns the name of the last child of InputRoot, which could be 'XML'.

FIELDNAME(InputRoot.*[LAST])
Returns the name of the last child of InputRoot, which could be 'XML'.

Field types for the XML parser
There are some instances when it is not enough to identify a field just by name
and array subscript. Some message parsers have more complicated models to
expose; it is to cope with these cases that an optional type can be associated with
element. The message model exposed by the generic XML parser makes heavy use
of this facility to deal with the more complicated XML features.

When a type is not present in a path element, it specifies that the type of the
syntax element is not important. That is, a path element of "name" matches any
syntax element that has a name of "name", regardless of the element type.

In the same way that a path element can specify a name and not a type, a path
element can specify a type and not a name. Such a path element matches any
syntax element that has the specified type, regardless of name. An example of this
is shown below:
FIELDNAME(InputBody.(XML.tag)[1])

This example returns the name of the first tag in the body of the message
(assuming that it is an XML message). For an example of when it is necessary to
use types in paths, consider the following generic XML:
<tag1 attr1='abc'>

<attr1>123</attr1>
</tag1>

The path "InputBody.tag1.attr1" refers to the attribute called "attr1", because
attributes appear before nested tags in a syntax tree generated by an XML parser.
In order to refer to the tag called "attr1" it would be necessary to use a path
"InputBody.tag1.(XML.tag)attr1". However, it would be advisable always to include
types in these situations to be explicit about which entity is being referred to.

Field types for MQRFH2 headers
When you construct MQRFH2 headers in a compute node, there are two types of
fields:
1. Fields in the MQRFH2 header structure (for example, Format and

NameValueCCSID
2. Fields in the MQRFH2 NameValue buffer (for exampl mcd and psc)

To differentiate between these two possible field types, you must insert a value in
front of the referenced field in the MQRFH2 field to identify its type (a value for
the NameValue buffer is not required because this is the default). The value you
must specify for the header structure is (MQRFH2.Field).

For example:
v To create or change an MQRFH2 Format field, specify the following ESQL:

SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = 'MQSTR ';

v To create or change change the psc folder with a topic:

Field references

Appendix C. ESQL reference 303

SET OutputRoot.MQRFH2.psc.Topic = 'department';

v To add an MQRFH2 header to an outgoing message that is to be used to make a
subscription request:
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;
END WHILE;
SET OutputRoot.MQRFH2.(MQRFH2.Field)Version = 2;
SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = 'MQSTR';
SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208;
SET OutputRoot.MQRFH2.psc.Command = 'RegSub';
SET OutputRoot.MQRFH2.psc.Topic = "InputRoot"."MRM"."topel";
SET OutputRoot.MQRFH2.psc.QMgrName = 'DebugQM';
SET OutputRoot.MQRFH2.psc.QName = 'PUBOUT';
SET OutputRoot.MQRFH2.psc.RegOpt = 'PersAsPub';

Compute node ESQL
The Compute node and the Filter node share a common expression syntax. In its
simplest form, a Compute node provides a way of building up a new message
using a set of assignment statements. The expressions that appear on the right
hand side of the assignment, that is, the source expressions, are expressions of
exactly the same form as can appear in a Filter node. But, they are not restricted to
returning single boolean values in the same way that a filter expression is.

A Compute node works by constructing a tree representation of a new message
based on a list of assignment statements. A new message is always (at least
conceptually) constructed, because the message passed to the node must be
preserved in its original form (it is not permissible in a message flow to modify
pass information back "upstream"). The simplest possible Compute node simply
constructs a new message as an exact copy of the input message. Such a Compute
node would consist of the following statement
SET OutputRoot = InputRoot;

There are a number of things to discuss about this example. First, statements in a
Compute node are all semicolon (";") terminated. The semicolon is a terminator,
and not a separator, so it must appear at the end of every statement, even the last
one.

Because there are two messages involved in a Compute node, it is not sufficient to
refer to "Root" as can be done in a Filter node where there is only one message.
Instead you have to refer to "InputRoot" and "OutputRoot" in a Compute node.
You can also refer to "InputBody" in a Compute node in the same way that you
can refer to "Body" in a Filter node, though you cannot refer to "OutputBody",
because there is no fixed concept of what the "body" of the output message is until
the output message has been fully constructed.

The above example causes a complete copy of the input message to be propagated
to the output terminal of the Compute node because when the right hand side of
an assignment statement consists of a field reference, a complete recursive tree
copy is performed to duplicate the tree representation of the input message.

Field references

304 MQSeries Integrator Using the Control Center

Copying messages between parsers
Compute node expressions can copy part of an input message to an output
message. The results of such a copy depend upon the type of input and output
parsers involved.

Like parsers
Where both the source and target messages have the same folder structure at root
level, a like-parser-copy is performed. For example:
SET OutputRoot.MQMD = InputRoot.MQMD;

will result in all the children in the MQMD folder of the input message being
copied to the MQMD folder of the output message.

Another example of a tree structure which will support a like-parser-copy is:
SET OutputRoot.XML.Data.Account = InputRoot.XML.Customer.Bank.Data;

Unlike parsers
Where the source and target messages have different folder structures at root level,
it is not possible to make an exact copy of the message source. Instead, the
unlike-parser-copy views the source message as a set of nested folders terminated
by a leaf name-value pair. For example, copying the following message from XML
to MTI:
<Name3><Name31>Value31</Name31>Value32</Name3>

will produce a name element ″Name3″, and a name-value element called
″Name31″ with the value ″Value31″.

Note: The second XML pcdata (Value32) cannot be represented and will be
discarded.

The unlike-parser-copy scans the source tree, and copies folders, also known as
name elements, and leaf name-value pairs. Everything else, including elements
flagged as ″special″ by the source parser, will not be copied.

An example of a tree structure resulting in an unlike-parser-copy is:
SET OutputRoot.MTI.Data.Account = InputRoot.XML.Data.Account;

Note: If the algorithum used to make an unlike-parser-copy does not suit your tree
structure, it might be necessary to further qualify the source field to restrict
the amount of tree copied.

Assignment statement
The general form of an assignment statement is:
SET field_reference = expression ;

The field reference on the left of the assignment identifies the field in the output
message which is to be set, and takes the same form as a field reference in a filter
expression, except that it must start with "OutputRoot" or "OutputProperties". The
field referenced will be created if it doesn't already exist in the output message; if
the value already exists in the output message, its value will be overwritten. Note
that when array indices are used in the field reference, only one instance of a
particular field will ever get created, so for example if you write as assignment
statement starting:
SET OutputRoot.XML.Message.Structure[2].Field = ...

copying messages between parsers

Appendix C. ESQL reference 305

|

|
|
|

|
|
|

|

|
|

|

|

|
|
|
|
|
|

|

|
|

|
|

|
|
|

|

|

|
|
|

|

at least one instance of "Structure" must already exist in the message. That is, the
only elements in the tree that are created are ones on a direct path from the root to
the element identified by the field reference. A common example of Compute node
will consist of a node which makes a modification to a message, either changing a
field, or maybe adding a new field to the original message. Such a Compute node
would be programmed by statements like the following:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Order.Name = UPPER(OutputRoot.XML.Order.Name);

This example simply puts one field in the message into uppercase. The first
statement constructs an output message which is a complete copy of the input
message (as per the very first simple example). The second statement sets the
value of the "Order.Name" field (which it is assumed the message flow writer
knows will exist in the input message) to a new value, as defined by the
expression on the right.

It is interesting to note what the effect is if the Order.Name field hadn't existed in
the original input message. Because it didn't exist in the input message, it won't
exist in the output message as generated by the first statement. The expression on
the right of the second statement will return NULL, because the field referenced
inside the UPPER function call does not exist). Assigning the NULL value to a field
has the effect of deleting it if it already exists, and so the effect is that the second
statement has no effect.

Whenever the right hand side of an assignment statement is a field reference, a
tree copy will be performed. This does not only happen when a whole message is
copied. For example:
SET OutputRoot = InputRoot;
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.InputMessage = InputRoot;

All these result in a tree copy.

DECLARE statement
The DECLARE statement declares a simple scalar variable that can be used to store
some temporary value. The syntax of the declare statements is:
DECLARE variable_name datatype

where datatype is one of the following:
CHARACTER or CHAR
FLOAT
DATE
DECIMAL
INTEGER or INT
INTERVAL
TIME
TIMESTAMP
GMTTIME
GMTTIMESTAMP
BIT
BLOB
BOOLEAN

For an example of the DECLARE statement see the example in the description of
the WHILE statement.

copying messages between parsers

306 MQSeries Integrator Using the Control Center

WHILE statement
A WHILE statement executes a sequence of statements repeatedly while the
controlling predicate evaluates to true. The same caveats apply to using the
WHILE statement as apply in any language, that is, it is up to you to ensure that
the loop will terminate. Note that if the control expression evaluates to unknown
the loop terminates: unknown and false are treated in the same way in this respect.
The WHILE statement takes the following form:
WHILE predicate DO

controlled statements
END WHILE;

For example:
DECLARE I INTEGER;
SET I = 1;
WHILE I <= 10 DO

SET I = I + 1;
END WHILE;

copying messages between parsers

Appendix C. ESQL reference 307

IF statement
An IF statement controls execution of one set of statements or another based on
the result of evaluating a predicate.

Note that if the control expression evaluates to unknown, the "else" statements are
executed; "unknown" is treated the same as false.

The IF statement takes one of the following forms:
IF condition THEN

controlled statements
END IF;

or:
IF condition THEN

controlled statements 1
ELSE

controlled statements 2
END IF;

Using the compute node for data conversion
You can use the ESQL within a compute node to provide data conversion for code
page and encoding of messages. You must set MQMD CCSID and Encoding fields
of the output message, plus the CCSID and Encoding of any headers, to the
required target value.

The following example illustrates what is required for a CWF message to pass
from MQSeries Integrator to IMS on OS/390®®.
1. You have defined the input message in XML and are using an MQRFH2

header. The header must be removed before the message is passed to IMS.
2. The message passed to IMS must have MQIIH header, and must be in the

OS/390 codepage. This message is defined in the MRM and has identifier
m_IMS1. The PIC X fields in this message must be defined as logical type
string for EBCDIC <-> ASCII conversion to take place. If they are logical type
binary, no data conversion occurs.

3. The message received from IMS is also defined in the MRM and has identifier
m_IMS2. The PIC X fields in this message must be defined as logical type
string for EBCDIC <-> ASCII conversion to take place. If they are logical type
binary, no data conversion occurs.

4. The reply message must be converted to the Windows NT codepage. The
MQIIH header is retained on this message.

5. You have created a message flow that contains:
a. The outbound flow, MQInput1 —> Compute1 —> MQOutput1.
b. The inbound flow, MQInput2 —> Compute2 —> MQOutput2.

6. You must set up the ESQL in Compute1 (outbound) node as follows:
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) - 1 DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
SET OutputRoot.MQMD.CodedCharSetId = 500;
SET OutputRoot.MQMD.Encoding = 785;
SET OutputRoot.MQMD.Format = 'MQIMS ';
SET OutputRoot.MQIIH.StrucId = 'IIH ';
SET OutputRoot.MQIIH.Version = 1;

copying messages between parsers

308 MQSeries Integrator Using the Control Center

SET OutputRoot.MQIIH.StrucLength = 84;
SET OutputRoot.MQIIH.Encoding = 785;
SET OutputRoot.MQIIH.CodedCharSetId = 500;
SET OutputRoot.MQIIH.Format = 'MQIMSVS ';
SET OutputRoot.MQIIH.Flags = 0;
SET OutputRoot.MQIIH.LTermOverride = ' ';
SET OutputRoot.MQIIH.MFSMapName = ' ';
SET OutputRoot.MQIIH.ReplyToFormat = 'MQIMSVS ';
SET OutputRoot.MQIIH.Authenticator = ' ';
SET OutputRoot.MQIIH.TranInstanceId = X'00000000000000000000000000000000';
SET OutputRoot.MQIIH.TranState = ' ';
SET OutputRoot.MQIIH.CommitMode = '0';
SET OutputRoot.MQIIH.SecurityScope = 'C';
SET OutputRoot.MQIIH.Reserved = ' ';
SET OutputRoot.MRM.e_elen08 = 30;
SET OutputRoot.MRM.e_elen09 = 0;
SET OutputRoot.MRM.e_string08 = InputBody.e_string01;
SET OutputRoot.MRM.e_binary02 = X'31323334353637383940';
SET OutputRoot.Properties.MessageDomain = 'MRM';
SET OutputRoot.Properties.MessageSet = 'DHCJOEG072001';
SET OutputRoot.Properties.MessageType = 'm_IMS1';
SET OutputRoot.Properties.MessageFormat = 'CWF';

7. You must set up the ESQL in Compute2 (inbound) node as follows:
DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
SET OutputRoot.MQMD.CodedCharSetId = 437;
SET OutputRoot.MQMD.Encoding = 546;
SET OutputRoot.MQMD.Format = 'MQIMS ';
SET OutputRoot.MQIIH.CodedCharSetId = 437;
SET OutputRoot.MQIIH.Encoding = 546;
SET OutputRoot.MQIIH.Format = ' ';
SET OutputRoot.MRM = InputBody;
SET OutputRoot.Properties.MessageDomain = 'MRM';
SET OutputRoot.Properties.MessageSet = 'DHCJOEG072001';
SET OutputRoot.Properties.MessageType = 'm_IMS2';
SET OutputRoot.Properties.MessageFormat = 'CWF';

You do not have to set any specific values for the MQInput1 node properties
because the message and message set are identified in the MQRFH2 header, and
no conversion is required.

You must set values for Domain, set, type and format in the MQInput node for the
inbound message flow (MQInput2). You do not need to set conversion parameters.

Using the compute node for message transformation
You can use the ESQL within a compute node to transform a message from one
format to another.

For example, if you want to transform a generic XML message into an MRM
message, you can:
1. Add the MRM message to Output Messages on the basic tab of the compute

node properties dialog.
2. If you want to retain the headers of the message, select Copy message headers.
3. Select the Use as message body check box. This generates ESQL similar to:

SET OutputRoot.Properties.MessageSet = 'DHOP5F709S001';
SET OutputRoot.Properties.MessageType = 'test_message';

copying messages between parsers

Appendix C. ESQL reference 309

Note that it is the message identifier that is required in the MessageType field.
4. Specify the output format of the message (this must be one of CWF, PDF, or

XML). For example:
SET OutputRoot.Properties.MessageFormat = 'CWF';

5. Specify the new message domain (in this transformation, this step is not
necessary because MRM is the default, but you are recommended to include
this for completeness):
SET OutputRoot.Properties.MessageDomain = 'MRM';

6. Create ESQL statements to populate your output message, either manually or
by using drag and drop to generate automatic mappings.

The same principles apply for other message transformations.

More complicated SELECTs: ROWs and LISTs
The examples of the SELECT expression given above all involved column
functions, because these are a common form in filter expressions However, more
general subselects can also be used. These operate in much the same way that
standard SQL selects do, but the "result sets" that are generated from the different
forms need some discussion. As a way of illustrating the various forms that a
SELECT clause can take, consider the following examples of assigning the results
of database queries to fields in a message using a Compute node.

Example 1
Using the Control Center, create a message flow consisting of an MQInput node
wired to a Compute node, wired to an MQOutput node. Configure the queue
names on the MQInput node and MQOutput node to point to suitable queues, and
set the Message Domain attribute on the Defaults tab of the MQInput node
property editor to be "XML". Configure the Compute node using the following
ESQL statements:
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result[] =
(SELECT T.Field4, T.Structure1 FROM InputBody.Test.Input[] AS T);

Deploy the message flow to a suitable broker, and then send a simple trigger
message like the following to the input queue:

copying messages between parsers

310 MQSeries Integrator Using the Control Center

You should receive the following message on the output queue:

The order in which the tags appear inside the Result tag reflects the order in which
the items appeared in the select clause, not the order in which the fields appeared
in the original message. Also, the Structure1 fields are copied in their entirety from
the input message: that is, a tree copy has been performed. You can of course
rename the fields by using an AS clause after some or all of the items in the
SELECT clause.

Example 2
The following example shows the use of the ITEM keyword, which selects one
item and creates a single value. (Example 1 shows a structure that creates a single
field.)
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result[] =
(SELECT ITEM T.Field1 FROM InputBody.Test.Input[] AS T);

Sending the same trigger message will result in a message on the output queue
which looks like this:

<Test>
<Input>
<Field1>value1</Field1>
<Structure1>
<Field2>value2</Field2>
<Field3>value3</Field3>
</Structure1>
<Field4>value4</Field4>
</Input>
<Input>
<Field1>value5</Field1>
<Structure1>
<Field2>value6</Field2>
<Field3>value7</Field3>
</Structure1>
<Field4>value8</Field4>
</Input>
</Test>

<Test>
<Result>
<Field4>value4</Field4>
<Structure1>
<Field2>value2</Field2>
<Field3>value3</Field3>
</Structure1>
</Result>
<Result>
<Field4>value8</Field4>
<Structure1>
<Field2>value6</Field2>
<Field3>value7</Field3>
</Structure1>
</Result>
</Test>

More complicated SELECTs

Appendix C. ESQL reference 311

<Test>
<Result>value1</Result>
<Result>value5</Result>
</Test>

Comparing this message to the one which is produced if the ITEM keyword is
omitted:

illustrates the effect of the ITEM keyword. The evaluation of the ESQL expressions
happens independently of any information about the schema of the target message.
In the case of generating a generic XML message there is no message schema for
the message being generated, so the structure of the message that is generated
must be defined entirely by the ESQL.

Example 3
The two examples above have both specified a list as the source of the SELECT in
the FROM clause (so the field reference had a [] at the end), and so in general the
SELECT will generate a list of results. Because of this it was necessary to specify a
list as the target of the assignment (thus the "Result[]" as the target of the
assignment). However, often you will know that the WHERE clause that you
specify as part of the SELECT will only return true for one item in the list. In this
case the "THE" keyword can be used to indicate this. The following shows the
effect of using the THE keyword
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.Result =
THE (SELECT T.Field4, T.Structure1 FROM InputBody.Test.Input[]
AS T WHERE T.Field1 = 'value1';

The "THE" keyword means that the target of the assignment becomes
"OutputRoot.XML.Test.Result" (the "[]" is no longer necessary, or even allowed).
This results in the following message:

Example 4
Using selects for projection:

<Test>
<Result>
<Field1>value1</Field1>
</Result>
<Result>
<Field1>value5</Field1>
</Result>
</Test>

<Test>
<Result>
<Field4>value4</Field4>
<Structure1>
<Field2>value2</Field2>
<Field3>value3</Field3>
</Structure1>
</Result>
</Test>

More complicated SELECTs

312 MQSeries Integrator Using the Control Center

SET OutputRoot.XML.Projection =
(SELECT M.field1,

M.field2,
CAST(M.field3 AS INTEGER) *CAST(M.field4 AS INTEGER) AS field5

FROM InputBody.Message AS M);

equivalent to:
SET OutputRoot.XML.Projection.field1 = InputBody.Message.field1;
SET OutputRoot.XML.Projection.field2 = InputBody.Message.field2;
SET OutputRoot.XML.Projection.field5 =

CAST(InputBody.Message.field3 AS INTEGER)
* CAST(InputBody.Message.field4 AS INTEGER);

Example 5
The FROM clause is not restricted to having one item. Specifying multiple items in
the FROM clause has the usual "joining" effect that it does in standard SQL. For
example:
SELECT A.a, B.b
FROM InputBody.Test.A[], InputBody.Test.B[]

The following message:

<Test>
<A>
<a>1

<A>
<a>2

3

4

</Test>

More complicated SELECTs

Appendix C. ESQL reference 313

produces the following output message:

Note that because repeating fields can be nested in messages, it is possible to write
an expression such as:
SELECT A.a, B.b
FROM InputBody.Test.A[], A.B[]

In this case, the following message:

<Test>
<Result>
<a>1
3
</Result>
<Result>
<a>1
4
</Result>
<Result>
<a>2
3
</Result>
<Result>
<a>2
4
</Result>
</Test>

<Test>
<A>
<a>1

2

3

<A>
<a>4

5

6

</Test>

More complicated SELECTs

314 MQSeries Integrator Using the Control Center

produces the following output:

Example 6
You can join between a list and a non-list, two non-lists, and so on.
OutputRoot.XML.Test.Result1[] =

(SELECT ... FROM InputBody.Test.A[], InputBody.Test.b);
OutputRoot.XML.Test.Result1 =

(SELECT ... FROM InputBody.Test.A, InputBody.Test.b);

Note carefully the location of the "[]" in each case. Of course, any number of items
can be specified in the FROM list, not just one or two, and in each case if any of
the items specify "[]" to indicate a list of items, the SELECT will generate a list of
results (the list may contain only one item, but the SELECT can potentially return a
list of items), and so the target of the assignment must specify a list (so must end
in "[]" or else the THE keyword must be used if is known that the WHERE clause
will guarantee that only one combination is matched.

Example 7
A SELECT with a column function is not the only form of SELECT that can be
used in a scalar expression. You can make a SELECT return a scalar value by
issuing both the THE and ITEM keywords as in:
1 + THE(SELECT ITEM T.a FROM Body.Test.A[] AS T WHERE T.b = '123')

<Test>
<Result>
<a>1
2
</Result>
<Result>
<a>1
3
</Result>
<Result>
<a>4
5
</Result>
<Result>
<a>4
6
</Result>
</Test>

More complicated SELECTs

Appendix C. ESQL reference 315

Example 8
Selecting from a list of scalars, consider the sample message:
<Test>
<A>1
<A>2
<A>3
<A>4
<A>5
</Test>

and the ESQL statements
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XML.Test.A[] = (SELECT A FROM InputBody.Test.A[]
WHERE CAST(A AS INTEGER) BETWEEN 2 AND 4);

Other expressions
In all of the examples above, simple field references are used in the SELECT
clause. As usual, more complicated expressions can be used. In these cases, an AS
clause must be used to give a name to the computed field as in:
SELECT T.Price, T.Quantity, T.Price * T.Quantity AS TotalValue
FROM Body.Invoice."Item"[]

EXISTS predicate
You can use the EXISTS predicate to test whether a WHERE clause successfully
matches any items of a repeating structure in the same way as you can use
standard database SQL. The form of the EXISTS predicate is:
EXISTS(SELECT * FROM something WHERE predicate)

Querying external databases
Queries against external databases can be done in much the same way as can be
done in, for example, embedded SQL.

In order to include a query against an external database in a Filter or Compute
node, the node must be configured with the connection information for the
database. This consists of an ODBC datasource name. It is up to the MQSeries
Integrator or database administrator to ensure that a suitable ODBC datasource has
been created on the systems on which the brokers, to which the message flows are
deployed, are running.

The connection to the database is performed using the database user ID and
password supplied on the mqsicreatebroker command that created the individual
broker. The MQSeries Integrator or database administrator must therefore ensure
that that user has sufficient database privileges to query the required database
tables. If not, a run-time error is generated by the broker when it attempts to
process a message and attempts to connect to the database for the first time.

Whilst the standard SQL SELECT syntax is supported for queries to external
database, there are a number of points to be borne in mind. It is necessary to prefix
the name of the table with the keyword "Database" in order to indicate that the
SELECT is to be targeted at the external database, rather than at a repeating
structure in the message.

Therefore the basic form of database SELECT is:

More complicated SELECTs

316 MQSeries Integrator Using the Control Center

SELECT ...
FROM Database.TABLE1
WHERE ...

If necessary a schema name can be given:
SELECT ...
FROM Database.SCHEMA.TABLE1
WHERE ...

where SCHEMA is the name of the schema in which the table TABLE1 is defined.

References to column names must be qualified with either the table name or the
correlation name defined for the table by the FROM clause. So, where you could
normally execute a query such as:
SELECT column1, column2 FROM table1

it is necessary to write one of the following two forms:
SELECT T.column1, T.column2 FROM Database.table1 AS T

SELECT table1.column1, table2.column2 FROM Database.table1

This is necessary in order to distinguish references to database columns from any
references to fields in a message which may also appear in the SELECT:
SELECT T.column1, T.column2 FROM Database.table1

AS T WHERE T.column3 = Body.Field2

The standard ‘select all’ SQL option is supported in the SELECT clause. If you use
this option, you must qualify the column names with either the table name or the
correlation name defined for the table. For example:
SELECT T.* FROM Database.Table1 AS T

The following examples illustrate how the results sets of external database queries
are represented in MQSeries Integrator. The results of database queries are
assigned to fields in a message using a Compute node.

Example 1
Create a message flow consisting of an MQInput node wired to a Compute node,
wired to an MQOutput node. Configure the queue names on the MQInput node
and MQOutput node to point to suitable queues, and set the Message Domain
attribute on the Defaults tab of the MQInput node property editor to be "XML".

Create a database table called USERTABLE with two char(6) data type columns (or
equivalent), called Column1 and Column2. Insert two rows into the table so that it
looks like this:

Column1 Column2

Row 1 value1 value3

Row 2 value2 value4

Add a database table input to the Compute node by clicking the Add input button
on the properties pane of the node and entering the ODBC Data Source Name and
table name. The user id and password specified when you created the broker is
used for accessing the database, therefore you must ensure that this id and
password pair have appropriate permissions within the DBMS.

Querying external databases

Appendix C. ESQL reference 317

You are also recommended to ensure that you include the schema name when you
create a table, and as the second component of the database table reference (for
example, Database.user1.USERTABLE) in the Compute node ESQL you specify. This
avoids potential confusion that some databases might encounter.

For example, if you create your database table as user id user1, but specified user
id user2 when you created the broker, you might find that the broker attempts to
access table user2.USERTABLE, which does not exist, rather than user1.USERTABLE,
which does.

You can vary the names of the fields produced by explicitly listing the columns
that you want to extract. How you do this depends partly on your database
system. Most database systems are case not sensitive with regard to database
names. In other words, even though a column might be called "COLUMN1", you
can refer to it in a SELECT as "column1".

Configure the Compute node using the following ESQL statements:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =

(SELECT T.Column1, T.Column2 FROM Database.USERTABLE AS T);

To trigger the SELECT, you must send in a trigger message with an XML body that
is of the following form:

The exact structure of the XML is not important, but the enclosing tag must be
<Test>. If it is not, the ESQL statements will result in top-level enclosing tags being
formed, which is not valid XML.

Example 2
If the database system is case sensitive, you must use an alternative approach. This
approach is also necessary if you want to change the name of the generated field
to something different:
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =

(SELECT T.COLUMN1 AS Column1, T.COLUMN2 AS Column2
FROM Database.USERTABLE AS T);

This example produces the same message as Example 1 above.

Example 3
Suppose that the Compute node were configured using the following ESQL
statements:

<Test>
<Result>
<Column1>value1</Column1>
<Column2>value2</Column2>
</Result>
<Result>
<Column1>value3</Column1>
<Column2>value4</Column2>
</Result>
</Test>

Querying external databases

318 MQSeries Integrator Using the Control Center

SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result[] =
(SELECT ITEM T.Column1 FROM Database.USERTABLE AS T);

The same trigger message will produce the following message:
<Test>
<Result>value1</Result>
<Result>value3</Result>
</Test>

The following message is produced if the ITEM keyword is omitted:

Comparing this to the previous generated message illustrates the effect of the
ITEM keyword. The evaluation of the ESQL expressions happens independently of
any information about the schema of the target message. In the case of generating
a generic XML message, there is no message schema for the message being
generated, so the structure of the message that is generated must be defined
entirely by the ESQL.

Example 4
This example illustrates the use of the WHERE clause: the message generated by
this statement is identical to that generated by the previous example.
SET OutputRoot = InputRoot;
SET OutputRoot.XML.Test.Result =
THE (SELECT ITEM T.Column1 FROM Database.USERTABLE AS T
WHERE T.Column2 = ‘value2’);

<Test>
<Result>value1 </Result>
</Test>

Database node statements
The syntax of the statements that are accepted by the Database node is a superset
of the statements that are accepted by a Compute node.

Like the Compute node, the Database node is configured using a series of
statements. All of the normal compute statements such as SET, WHILE, DECLARE,
and IF can be used to control the flow of the series of statements.

Unlike the Compute node, however, the Database node propagates the message
that it receives at its input terminal to its output terminal unchanged. This means
that, like the Filter node, there is only one message to be referred to in a Database
node.

<Test>
<Result>
<Column1>value1</Column1>
</Result>
<Result>
<Column1>value3</Column1>
</Result>
</Test>

Querying external databases

Appendix C. ESQL reference 319

Because you can't modify any part of any message, the assignment statement (the
SET statement, not the SET clause of the INSERT statement) can only assign values
to temporary variables. Therefore the scope of actions you can take with an
assignment statement is limited.

The following sections discuss the extra statements that can be used in a Database
node.

INSERT statement
An INSERT statement can be used to add new rows to an external database.

The optional column name list identifies a list of columns in the target table into
which values are to be inserted. Any columns not mentioned in the column name
list will have their default values inserted.

A run-time error can be generated if problems occur during the insert operation.
For example the database table may have constraints defined which the insert
operation may violate. In these cases, an attempt will be made to propagate the
original message that was received by the node to the failure terminal on the node.

Example
The following example assumes that the dataSource property on the Database node
has been configured and that the database identified by that datasource has a table
called "TABLE1" with columns A, B, and C. Given a message that has the following
generic XML body:
<A>
1
<C>2</C>
<D>3</D>

the following INSERT statement will insert a new row into the table with the
values (1, 2, 3).
INSERT INTO Database.TABLE1(A, B, C) VALUES (Body.A.B, Body.A.C, Body.A.D)

DELETE statement
A DELETE statement deletes rows from a table in an external database based on a
search condition.

INSERT statement

\\ INSERT INTO database.
schema_name.

table_name \

\

_

,

(column_name)

_

,

VALUES(scalar_expression) \]

Database node statements

320 MQSeries Integrator Using the Control Center

A correlation name is created that can be used inside the search condition to refer
to the values of columns in the table. This correlation name is either the name of
the table (without the data source qualifier) or the explicit qualifier specified.

Example
Suppose that you have Database node that has been configured with a connection
to a table SHAREHOLDINGS. The following statement could be written to
configure the Database node:
DELETE FROM Database.SHAREHOLDINGS AS H
WHERE H.ACCOUNTNO = Body.AccountNumber

This will remove all rows from the SHAREHOLDINGS table where the
ACCOUNTNO field in the table is equal to the AccountNumber in the message.

UPDATE statement
An UPDATE statement will update the values of specified columns in a table in an
external database.

Example 1
This example updates the PRICE column of the row in the STOCKPRICES table
whose COMPANY column matched the value given in the Company field in the
message that the Database node is processing.
UPDATE Database.StockPrices AS SP
SET PRICE = Body.StockPrice
WHERE SP.COMPANY =Body.Company

Example 2
In this example, the "INV.QUANTITY" in the right hand side of the assignment
refers to the previous value of the column before any updates have taken place.
UPDATE Database.INVENTORY AS INV
SET QUANTITY = INV.QUANTITY - Body.QuantitySold
WHERE INV.ITEMNUMBER = Body.ItemNumber

Example 3
This example shows multiple column updates.

DELETE statement

\\ DELETE FROM database.
schema_name.

table_name \

\
AScorrelation_name WHEREsearch_condition

\]

UPDATE statement

\\ UPDATE database.
schema_name.

table_name
AScorrelation_name

\

\ _

,

SET column_name=expression
WHEREsearch_condition

\]

Database node statements

Appendix C. ESQL reference 321

UPDATE Database.table AS T
SET column1 = T.column1+1,

column2 = T.column2+1;

Compare the syntax to the way you assign to multiple fields in a compute:
SET field = expression;
SET field = expression;

Note also the form of the assignment: the column on the left of the assignment
must be a single identifier. It must not be qualified with a table name or
correlation name. In contrast, any column references to the right of the assignment
must be qualified with a table name or correlation name.

PASSTHRU statement
The behavior of the PASSTHRU function depends on whether it is passed one,
two, or more parameters. The first parameter of the PASSTHRU function must
always be an ESQL expression that either is, or evaluates to, a string. You must use
question marks in the string to denote where any parameter substitution is
required.

If only one other parameter is passed, that parameter evaluates to one of the
following:
v A single scalar value. If this is the case, it is inserted into the first parameter

marker.
v A list of values. If this is the case, the list items are inserted in order into each of

the parameter markers within the string.

If two or more other parameters are passed, each parameter is bound to the
corresponding question mark in the statement string: that is, the first parameter is
bound to the first question mark, the second parameter is bound to the second
question mark, and so on.

Database node statements

322 MQSeries Integrator Using the Control Center

Here are some examples that illustrate different ways of using the PASSTHRU
statement.

You must take the following points into consideration when you construct string
literals that you will use as the first parameter of the PASSTHRU function:
v If the ESQL statement that you want to execute against the database contains a

single quote, you must escape the single quote when you define the string
literal.
For example, if you want to execute the following ESQL statement:
INSERT INTO TABLE1 VALUES('abc', 'def')

you can use the following PASSTHRU statement:
PASSTHRU('INSERT INTO TABLE1 VALUES(''abc'', ''def'')');

The use of double single quotation marks is required for a definition of a string
literal containing a single quote.

v You must take care with statements that you want to execute that are
particularly long. You cannot split a string literal across multiple lines. :
Instead you must use:
PASSTHRU('SELECT a, b, c ' ||

'FROM table1 ' ||
'WHERE d = 123')

v You must include trailing spaces in the individual string literals to avoid
defining a string containing the text:
'SELECT a, b, c FROM table1 WHERE d = 123'

SET OutputRoot.XML.Result.Data[] = PASSTHRU(’SELECT * FROM user1.stocktable’);

PASSTHRU(’DELETE FROM user2.AccountData WHERE AccountId = ?’, InputBody.Data.Account.Id);

SET OutputRoot.XML.Result.Data
= PASSTHRU(’SELECT AccountNum FROM user2.AccountData

WHERE AccountId = ?’, InputBody.Data.Account.Id);

SET OutputRoot.XML.Result.Data[]
= PASSTHRU(’SELECT AccountNum FROM user2.AccountData

WHERE AccountId IN (? , ? , ?)’,
InputBody.Data.Account.Id[]);

PASSTHRU(’INSERT INTO user1.stocktable (stock_id, quantity)
values (?, ?)’, InputBody.Transaction.Id, InputBody.Transaction.Quantity);

Database node statements

Appendix C. ESQL reference 323

Function reference
This section provides a reference summary of functions discussed in this appendix.

CASTs

CAST specifications

Note: For interval qualifier formats, see Table 36 on page 288.

A CAST specification returns its first operand cast to the type specified by the
data_type. The conversion that is done is the default conversion, More complicated
conversions can be performed using user defined functions. In all cases if the
source expression is NULL, the result will be NULL. If the source value is not
compatible with the target datatype, or if the source value is of the wrong format,
a run-time error is generated.

Supported CASTs
A CAST is not supported between every combination of datatypes. Those that are
supported are listed below, along with the effect of the CAST.

Table 39. Supported CASTs

Source datatype Target datatype Effect

CHARACTER BOOLEAN The character string is interpreted in the same way that a
boolean literal is interpreted. That is, the character string
must be one of the strings TRUE, FALSE, UNKNOWN (in
any case combination).

CHARACTER FLOAT The character string is interpreted in the same way as a
floating point literal is interpreted.

CHARACTER DATE The character string must conform to the rules for a date
literal or for the date string. That is, the character string can
be either DATE '1998-11-09' or 1998-11-09.

CAST statement

\\ CAST (expressionAS CHAR
CHARACTER
FLOAT
DATE
DECIMAL(precision, scale)
INT
INTEGER
INTERVAL interval qualifier
TIME
TIMESTAMP
GMTTIME
GMTTIMESTAMP
BIT
BLOB
BOOLEAN

) \]

Function reference

324 MQSeries Integrator Using the Control Center

Table 39. Supported CASTs (continued)

Source datatype Target datatype Effect

CHARACTER DECIMAL The character string is interpreted in the same way as an
exact numeric literal is interpreted to form a temporary
decimal result with a scale and precision defined by the
format of the string. This is then converted into a decimal of
the specified precision and scale, with a run-time error being
generated if the conversion would result in loss of significant
digits.

CHARACTER INTEGER The character string is interpreted in the same way as an
integer literal is interpreted.

CHARACTER INTERVAL The character string must conform to the rules for an
interval literal with the same interval qualifier as specified in
the CAST specification, or it must conform to the rules for
an interval string that apply for the specified interval
qualifier.

CHARACTER TIME The character string must conform to the rules for a time
literal or for the time string. That is, the character string can
be either TIME '09:24:15' or 09:24:15.

CHARACTER TIMESTAMP The character string must conform to the rules for a
timestamp literal or for the timestamp string. That is, the
character string can be either TIMESTAMP '1998-11-09
09:24:15' or 1998-11-09 09:24:15.

CHARACTER GMTTIME The character string must conform to the rules for a GMT
time literal or for the time string. That is, the character string
can be either GMTTIME '09:24:15' or 09:24:15.

CHARACTER GMTTIMESTAMP The character string must conform to the rules for a GMT
timestamp literal or for the timestamp string. That is, the
character string can be either GMTTIMESTAMP '1998-11-09
09:24:15' or 1998-11-09 09:24:15.

CHARACTER BIT The character string must conform to the rules for a bit
string literal or to the rules for the contents of the bit string
literal. That is, the character string can be of the form
B'bbbbbbb' or bbbbbb (where 'b' can be either '0' or '1').

CHARACTER BLOB The character string must conform to the rules for a binary
string literal or to the rules for the contents of the binary
string literal. That is, the character string can be of the form
X'hhhhhh' or hhhhhh (where 'h' can be any hexadecimal
digit characters).

BOOLEAN CHARACTER If the source value is TRUE, the result is the character string
'TRUE'. If the source value is FALSE, the result is the
character string 'FALSE'. Because the UNKNOWN boolean
value is the same as the NULL value for booleans, the result
will be the NULL character string value if the source value is
UNKNOWN.

FLOAT CHARACTER The result is the shortest character string that conforms to
the definition of an approximate numeric literal and whose
mantissa consists of a single digit that is not '0', followed by
a period and an unsigned integer, and whose interpreted
value is the value of the double.

Function reference

Appendix C. ESQL reference 325

Table 39. Supported CASTs (continued)

Source datatype Target datatype Effect

DATE CHARACTER The result is a string conforming to the definition of a date
literal, whose interpreted value is the same as the source
date value.

For example:

CAST(DATE '1998-11-09' AS CHAR)

would return

DATE '1998-11-09'

DECIMAL CHARACTER The result is the shortest character string that conforms to
the definition of an exact numeric literal and whose
interpreted value is the value of the decimal.

INTEGER CHARACTER The result is the shortest character string that conforms to
the definition of an exact numeric literal and whose
interpreted value is the value of the integer.

INTERVAL CHARACTER The result is a string conforming to the definition of an
interval literal, whose interpreted value is the same as the
source interval value.

For example:

CAST(INTERVAL '4' YEARS AS CHAR)

would return

INTERVAL '4' YEARS

TIME CHARACTER The result is a string conforming to the definition of a time
literal, whose interpreted value is the same as the source
time value.

For example:

CAST(TIME '09:24:15' AS CHAR)

would return

TIME '09:24:15'

TIMESTAMP CHARACTER The result is a string conforming to the definition of a
timestamp literal, whose interpreted value is the same as the
source timestamp value.

For example:

CAST(TIMESTAMP '1998-11-09 09:24:15' AS CHAR)

would return

TIMESTAMP '1998-11-09 09:24:15'

GMTTIME CHARACTER The result is a string conforming to the definition of a
gmttime literal whose interpreted value is the same as the
source value. The result string will have the form GMTTIME
'hh:mm:ss'.

GMTTIMESTAMP CHARACTER The result is a string conforming to the definition of a
gmttimestamp literal whose interpreted value is the same as
the source value. The result string will have the form
GMTTIMESTAMP 'yyyy-mm-dd hh:mm:ss'.

Function reference

326 MQSeries Integrator Using the Control Center

Table 39. Supported CASTs (continued)

Source datatype Target datatype Effect

BIT CHARACTER The result is a string conforming to the definition of a bit
string literal whose interpreted value is the same as the
source value. The result string will have the form B'bbbbbb'
(where b is either '0' or '1').

BLOB CHARACTER The result is a string conforming to the definition of a binary
string literal whose interpreted value is the same as the
source value. The result string will have the form X'hhhh'
(where h is any hexadecimal digit character).

TIME GMTTIME The result value is the source value minus the local time
zone displacement (as returned by LOCAL_TIMEZONE).
The hours field is calculated modulo 24.

GMTTIME TIME The result value is source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE). The
hours field is calculated modulo 24.

GMTTIMESTAMP TIMESTAMP The result value is source value plus the local time zone
displacement (as returned by LOCAL_TIMEZONE).

TIMESTAMP GMTTIMESTAMP The result value is the source value minus the local time
zone displacement (as returned by LOCAL_TIMEZONE).

INTEGER or DECIMAL FLOAT The number is converted, with rounding if necessary.

FLOAT INTEGER or DECIMAL If the conversion would not lead to loss of leading
significant digits, the conversion will happen with the
number being rounded as necessary. If the conversion would
lead to loss of leading significant digits, a run-time error is
generated. Loss of significant digits can occur when
converting an approximate numeric value to an integer, or to
a decimal whose precision is not sufficient.

INTEGER or DECIMAL INTEGER or DECIMAL If the conversion would not lead to loss of leading
significant digits, the conversion will happen with the
number being rounded as necessary. If the conversion would
lead to loss of leading significant digits, a run-time error is
generated. Loss of significant digits can occur when
converting (say) a decimal to another decimal with
insufficient precision, or an integer to a decimal with
insufficient precision.

INTERVAL INTERVAL Year-month intervals are only convertible to year-month
intervals, and day-second intervals are only convertible to
day-second intervals. The conversion is done by converting
the source interval into a scalar in units of the least
significant field of the target interval qualifier. This value is
then normalized into an interval with the target interval
qualifier. For example, to convert an interval which has the
qualifier MINUTE TO SECOND into an interval with the
qualifier DAY TO HOUR, the source value is converted into
a scalar in units of hours, and this value is then normalized
into an interval with qualifier DAY TO HOUR.

INTERVAL INTEGER or DECIMAL If the interval value has a qualifier that has only one field,
the result is an exact numeric with that value. If the interval
has a qualifier with more than one field, such as YEAR TO
MONTH, a run-time error is generated.

INTEGER or DECIMAL INTERVAL If the interval qualifier specified has only one field, the
result will be an interval with that qualifier with the field
equal to the value of the exact numeric. Otherwise a
run-time error is generated.

Function reference

Appendix C. ESQL reference 327

Table 39. Supported CASTs (continued)

Source datatype Target datatype Effect

TIME TIMESTAMP The result is a value whose date fields are taken from the
current date, and whose time fields are taken from the
source time value.

TIMESTAMP TIME The result is a value whose fields consist of the time fields of
the source timestamp value.

TIMESTAMP DATE The result is a value whose fields consist of the date fields of
the source timestamp value.

CAST expressions
A cast expression is used to cast, or change, a value of one datatype into a
corresponding value of another datatype (within the range of supported CASTS
listed in Table 39 on page 324).

CAST expressions are used often when dealing with generic XML messages: all
fields in a generic XML message have string values, therefore to perform arithmetic
calculations or datetime comparisons (for example), the string value of the field
must first be cast into a value of the appropriate type.

For example, if you wanted to filter on trade messages where the date of the trade
was today, you could write the following expression:
CAST(Body.Trade.Date AS DATE) = CURRENT_DATE

In this example, the string value of the Date field in the message is converted into
a date value, and then compared with the current date. The conversion is based on
the same character string format as is used for specifying date literals. This is
generally the case when casting character strings to other types.

Note: It is not always necessary to cast values between types. Some casts are done
implicitly. For example, numbers are implicitly cast between the three
numeric types for the purposes of comparison and arithmetic. Character
strings are also implicitly cast to other datatypes for the purposes of
comparison.

There are three situations in which a data value of one type is implicitly (that is,
without an explicit CAST instruction) cast to another type. The behavior and
restrictions of the implicit cast are the same as described above for explicit CAST,
except where noted in the following sections.

Implicit CASTs for comparisons
The standard SQL comparison operators >, <, >=, <=, =, <> are supported for
comparing two values in ESQL.

When the data types of the two values are not the same, one of them can be
implicitly cast to the type of the other to allow the comparison to proceed. In the
table below, the vertical axis represents the left hand operand, the horizontal axis
represents the right hand operand.

An ″L″ means that the right hand operand is cast to the type of the left hand
operand before comparison, an ″R″ means the opposite, an ″X″ means no implicit
casting takes place, and a blank means that comparison between the values of the
two data types is not supported.

Function reference

328 MQSeries Integrator Using the Control Center

Table 40. Implicit CASTs for comparison

ukn bln int real dec chr tm gtm dt ts gts ivl blb bit

ukn

bln X L

int X R R L

real L X L L

dec L R X L

chr R R R R X R R R R R R1 R R

tm L X L

gtm L R X

dt L X R2 R2

ts L L2 X L

gts L L2 R X

ivl L1 X

blb L X

bit L X

Notes:

1. When casting from a character string to an interval, the character string must be of the format ″INTERVAL
’<values>’ <qualifier>″. The format ″<values>″, which is allowable for an explicit CAST, is not allowable here
because no qualifier external to the string is supplied.

2. When casting from a DATE to a TIMESTAMP or GMTTIMESTAMP, the time portion of the TIMESTAMP is set
to all zero values - ’00:00:00’. This is different to the behavior of the explicit CAST, which sets the time portion to
the current time.

Numeric types: The comparison operators operate on all three numeric types.

Character strings: You cannot define an alternative collation order that, for
example, collates upper and lowercase characters equally.

Note: When comparing character strings, trailing blanks are not significant so the
comparison 'hello' = 'hello ' returns true.

Datetime values: Datetime values are compared in accordance with the natural
rules of the Gregorian calendar and clock.

You can compare the time zone you are working in with the GMT time zone. The
GMT time zone is converted into a local time zone based on the time zone
difference between your local time zone and the GMT time specified.

When you compare your local time with the GMT time, the comparison is based
on the difference at a given time on a given date.

Conversion is always based on the value of LOCALTIMEZONE. This is because
GMTTimestamps are converted to local Timestamps only if it can be done
unambiguously. Converting a local Timestamp to a GMTTimestamp has difficulties
around the daylight saving cut-over time, and converting between times and GMT
times (without date information) has to be done based on the LOCALTIMEZONE
value, because you cannot specify which time zone difference to use otherwise.

Function reference

Appendix C. ESQL reference 329

Booleans: Boolean values can be compared using all or the normal comparison
operators. The TRUE value is defined to be greater than the FALSE value.
Comparing either value to the UNKNOWN boolean value (which is equivalent to
NULL) returns an UNKNOWN result.

Intervals: Intervals are compared by converting the two interval values into
intermediate representations, so that both intervals have the same interval qualifier.
Year-month intervals can be compared only with other year-month intervals, and
day-second intervals can be compared only with other day-second intervals.

For example, if an interval in minutes, such as INTERVAL '120' MINUTE is compared
with an interval in days to seconds, such as INTERVAL '0 02:01:00', the two
intervals are first converted into values that have consistent interval qualifiers,
which can then be compared. So, in this example, the first value could be
converted into an interval in days to seconds, which will give INTERVAL '0
02:00:00' which can then be compared with the second value.

Character strings and other types: If a character string is compared to a value of
another type, MQSeries Integrator attempts to cast the character string into a value
of the same datatype as the other value.

For example, you could write an expression such as:
'1234' > 4567

The character string on the left would be converted into an integer before the
comparison takes place. This behavior reduces some of the need for explicit CAST
operators when comparing values derived from a generic XML message with
literal values. (For details of explicit casts that are supported, see Table 39 on
page 324.) It is this facility that allows you to write an expression such as:
Body.Trade.Quantity > 5000

In this example, the field reference on the left evaluates to the character string
'1000' and, because this is being compared to an integer, that character string is
converted into an integer before the comparison takes place.

Note that you must still check whether the price field that you want interpreted as
a decimal is greater than a given threshold. You must make sure that the literal
you compare it to is a decimal value and not an integer.

For example:
Body.Trade.Price > 100

would not have the desired effect, because the Price field would be converted into
an integer, and that conversion would fail because the character string contains a
decimal point. However, the following expression will succeed:
Body.Trade.Price > 100.00

Implicit CASTs for arithmetic operations
Normally the arithmetic operators (+, -, *, and /) operate on operands of the same
data type, and return a value of the same data type as the operands. Cases where
it is acceptable for the operands to be of different data types, or where the data
type of the resulting value is different from the type of the operands, are in
Table 41 on page 331.

Function reference

330 MQSeries Integrator Using the Control Center

Table 41. Implicit CASTs for arithmetic operations

Left operand data type Right operand data type Supported
operators

Result data type

INTEGER REAL +, -, *, / REAL1

INTEGER DECIMAL +, -, *, / DECIMAL1

INTEGER INTERVAL * INTERVAL4

REAL INTEGER +, -, *, / REAL1

REAL DECIMAL +, -, *, / REAL1

REAL INTERVAL * INTERVAL4

DECIMAL INTEGER +, -, *, / DECIMAL1

DECIMAL REAL +, -, *, / REAL1

DECIMAL INTERVAL * INTERVAL4

TIME TIME - INTERVAL2

TIME GMTTIME - INTERVAL2

TIME INTERVAL +, - TIME3

GMTTIME TIME - INTERVAL2

GMTTIME GMTTIME - INTERVAL2

GMTTIME INTERVAL +, - GMTTIME3

DATE DATE - INTERVAL2

DATE INTERVAL +, - DATE3

TIMESTAMP TIMESTAMP - INTERVAL2

TIMESTAMP GMTTIMESTAMP - INTERVAL2

TIMESTAMP INTERVAL +, - TIMESTAMP3

GMTTIMESTAMP TIMESTAMP - INTERVAL2

GMTTIMESTAMP GMTTIMESTAMP - INTERVAL2

GMTTIMESTAMP INTERVAL +, - GMTTIMESTAMP3

INTERVAL INTEGER *, / INTERVAL4

INTERVAL REAL *, / INTERVAL4

INTERVAL DECIMAL *, / INTERVAL4

INTERVAL TIME + TIME3

INTERVAL GMTTIME + GMTTIME3

INTERVAL DATE + DATE3

INTERVAL TIMESTAMP + TIMESTAMP3

INTERVAL GMTTIMESTAMP + GMTTIMESTAMP3

Function reference

Appendix C. ESQL reference 331

Table 41. Implicit CASTs for arithmetic operations (continued)

Left operand data type Right operand data type Supported
operators

Result data type

Notes:

1. The operand which does not match the data type of the result is cast to the data type of the result before the
operation proceeds. For example, if the left operand to an addition operator is an INTEGER, and the right
operand is a REAL, the left operand is cast to a REAL before the addition operation is performed.

2. Subtracting a (GMT)TIME value from a (GMT)TIME value, a DATE value from a DATE value, or a
(GMT)TIMESTAMP value from a (GMT)TIMESTAMP value results in an INTERVAL value representing the time
interval between the two operands.

3. Adding or subtracting an INTERVAL from a (GMT)TIME, DATE or (GMT)TIMESTAMP value results in a new
value of the data type of the non-INTERVAL operand, representing the point in time represented by the original
non-INTERVAL plus or minus the length of time represented by the INTERVAL.

4. Multiplying or dividing an INTERVAL by an INTEGER, REAL or DECIMAL value results in a new INTERVAL
representing the length of time represented by the original multiplied or divided by the factor represented by
the non-INTERVAL operand. For example, an INTERVAL value 2 hours 16 minutes multiplied by an REAL
value of 2.5 results in a new INTERVAL value of 5 hours 40 minutes. The intermediate calculations involved in
multiplying or dividing the original INTERVAL are carried out in the data type of the non-INTERVAL, but the
individual fields of the INTERVAL (such as HOUR, YEAR, etc) are always integral, so some rounding errors
may occur.

Function reference

332 MQSeries Integrator Using the Control Center

Implicit CASTs for assignment
Values can be assigned to one of three entities:
v A message field (or equivalent in an exception or destination list)

Support for implicit conversion between the MQSeries Integrator data types and
the message (in its bitstream form) is dependent on the appropriate parser. For
example, the XML parser casts everything as character strings before inserting
them into the output message bitstream.

v A field in a database table
MQSeries Integrator converts each of its data types into a suitable standard SQL
C data type, as detailed in Table 42. Conversion between this standard SQL C
data type, and the data types supported by each DBMS, is dependent on the
DBMS. Consult your DBMS documentation for more details.

Table 42. Conversions from MQSeries Integrator to SQL data types

MQSeries Integrator data type SQL data type

NULL, or unknown or invalid value SQL_NULL_DATA

BOOLEAN SQL_C_BIT

INTEGER SQL_C_LONG

REAL SQL_C_DOUBLE

DECIMAL SQL_C_CHAR1

CHARACTER SQL_C_CHAR

TIME SQL_C_TIME

GMTTIME SQL_C_TIME

DATE SQL_C_DATE

TIMESTAMP SQL_C_TIMESTAMP

GMTTIMESTAMP SQL_C_DATE

INTERVAL not supported2

BLOB SQL_C_BINARY

BIT not supported2

Notes:

1. For convenience, DECIMAL values are passed to the DBMS in character form.

2. There is no suitable standard SQL C data type for INTERVAL or BITARRAY. These
must be cast to another data type, such as CHARACTER, if it is necessary to assign
them to a database field.

v A scalar variable. When assigning to a scalar variable, if the value being
assigned is not of the same data type as the variable being assigned to, then an
implicit cast is attempted with exactly the same restrictions and behavior as
specified for the explicit CAST function, except when the data type of the
variable is INTERVAL or DECIMAL.
In both these cases, the value being assigned is first cast to an CHARACTER
value, then an attempt is made to cast the CHARACTER value to an INTERVAL
or DECIMAL. The reason for this is that INTERVAL requires a qualifier and
DECIMAL requires a precision and scale: these must be specified in the explicit
CAST, but must be obtained from the character string when implicitly casting.
Therefore a further restriction is that when implicitly casting to an INTERVAL
variable, the character string must be of the form ″INTERVAL ’<values>’
<qualifier>″ - the shortened ″<values>″ form that is acceptable for the explicit
CAST is not acceptable here.

Function reference

Appendix C. ESQL reference 333

Data types of values from external sources
There are two external sources from which data can be extracted by ESQL:
v Message fields
v Database columns

The ESQL data type of message fields depends on the type of the message (XML,
Neon, and so on), and the parser used to parse it. The ESQL data type of the value
returned by a database column reference depends on the data type of the column
in the database.

Table 43 shows which ESQL data types the various built-in DBMS data types (for
DB2 Version 6.1, SQL Server Version 7.0, Sybase Version 12.0, and Oracle Version
8.1.5) are cast to when they are accessed by MQSeries Integrator.

Table 43. Implicit CASTS for database data types to MQSeries Integrator types

MQSeries Integrator DB2 SQL Server and Sybase Oracle

BOOLEAN BIT

INTEGER SMALLINT INTEGER
BIGINT

INT SMALLINT TINYINT

REAL REAL DOUBLE FLOAT REAL NUMBER()1

DECIMAL DECIMAL DECIMAL NUMERIC MONEY
SMALLMONEY

NUMBER(P)1

NUMBER(P,S)1

CHARACTER CHAR VARCHAR CLOB CHAR VARCHAR TEXT CHAR NCHAR
VARCHAR2 NVARCHAR2
ROWID UROWID LONG
CLOB

TIME TIME

GMTTIME

DATE DATE

TIMESTAMP TIMESTAMP DATETIME SMALLDATETIME DATE

GMTTIMESTAMP

INTERVAL

BLOB BLOB BINARY VARBINARY
TIMESTAMP IMAGE
UNIQUEIDENTIFIER

RAW LONG RAW BLOB

BIT

not supported DATALINK GRAPHIC
VARGRAPHIC DBCLOB

NTEXT NCHAR NVARCHAR NCLOB BFILE

Notes:

1. If an Oracle database column with NUMBER data type is defined with an explicit precision (P) and scale (S),
then it is cast to an ESQL DECIMAL value; otherwise it is cast to a REAL.

For example, an ESQL statement like this:

SET OutputRoot.xxx
= (SELECT T.department FROM Database.personnel AS T);

where ″Database.personnel″ resolves to a TINYINT column in a SQL Server database table, results in a list of
ESQL INTEGER values being assigned to OutputRoot.xxx.

By contrast, an identical query where ″Database.personnel″ resolved to a NUMBER() column in an Oracle
database results in a list of ESQL REAL values being assigned to OutputRoot.xxx.

Function reference

334 MQSeries Integrator Using the Control Center

Numeric expressions
Values from the three numeric datatypes can be combined using the normal
arithmetic operators, which work in the same way as standard SQL operators. For
example:
CAST(Body.Trade.Quantity AS INTEGER)
* CAST(Body.Trade.Price AS DECIMAL) > 1000000

Remember that the fields in this sample generic are character strings because it is a
generic XML message, so you need to cast the fields to values of the correct type.
With all of the arithmetic operators there is the possibility that a run-time error can
occur. For example, a run-time error occurs for the divide-by-zero situation, and
for the arithmetic-overflow situation. Some other common numeric functions are
provided, such as:

ABS Returns the absolute value of a number.

CEIL Returns the smallest number greater than or equal to the argument.

FLOOR
Returns the largest number less than or equal to the argument.

MOD Returns a remainder after integer division.

SQRT Returns the square root of its argument.

More details of all of these functions can be found in “Numeric functions” on
page 339.

Datetime expressions
You can use arithmetic operators to perform various natural calculations on
Datetime values. For example, you can calculate the difference between two dates
as an interval, or you can add an interval to a timestamp.

Adding an interval to a Datetime value
The simplest operation you can perform is to add an interval to, or subtract an
interval from, a Datetime value. For example, you could write the following
expressions:
DATE '2000-01-29' + INTERVAL '1' MONTH
TIMESTAMP '1999-12-31 23:59:59' + INTERVAL '1' SECOND

Adding or subtracting two intervals
Two interval values can be combined using addition or subtraction. The two
interval values must be of compatible types. For example, it is not valid to add a
year-month interval to a day-second interval. So the following example is not
valid:
INTERVAL '1-06' YEAR TO MONTH + INTERVAL '20' DAY

The interval qualifier of the resultant interval is sufficient to encompass all of the
fields present in the two operand intervals. For example:
INTERVAL '2 01' DAY TO HOUR + INTERVAL '123:59' MINUTE TO SECOND

would result in an interval with qualifier DAY TO SECOND, because both day and
second fields are present in at least one of the operand values.

Subtracting two Datetime values
Two Datetime values can be subtracted to return an Interval. In order to do this an
interval qualifier must be given in the expression to indicate what precision the
result should be returned in. For example:

Function reference

Appendix C. ESQL reference 335

(CURRENT_DATE - DATE '1776-07-04') DAY

would return the number of days since the 4th July 1776, whereas:
(CURRENT_TIME - TIME '00:00:00') MINUTE TO SECOND

would return the age of the day in minutes and seconds.

Scaling Intervals
An interval value can be multiplied by or divided by an integer factor:
INTERVAL '2:30' MINUTE TO SECOND / 4

Extracting fields from Datetimes and Intervals
You can extract individual fields from datetime values and intervals using the
EXTRACT function. For example, you could extract the second field of the current
time with the expression:
EXTRACT(SECOND FROM CURRENT_TIME)

You can use any of the keywords YEAR, MONTH, DAY, HOUR, MINUTE, and
SECOND in the EXTRACT function, but you can only extract a field that is present
in the source value. Either a parse-time or a run-time error is generated if the
requested field does not exist but this depends on how early the error can be
detected. Other examples include:
EXTRACT(YEAR FROM CURRENT_DATE)
EXTRACT(HOUR FROM LOCAL_TIMEZONE)

Functions
Most of the function descriptions here impose restrictions on the datatypes of the
arguments that can be passed to the function. If the values passed to the functions
do not match the required datatypes, errors are generated at node configuration
time if is possible to detect the errors at that point, otherwise run-time errors are
generated when the function is evaluated.

String manipulation functions
The following functions perform manipulations on all strings (bit, byte, and
character) with the exception of UPPER and LOWER, which operate only on
character strings.

In these descriptions, the term ’singleton’ is used to refer to a single part (bit, byte,
or character) within a string of that type.

POSITION
The POSITION function returns an integer that gives the position of the first
occurrence of one string (the search_string) in a second string (the
source_string).
POSITION(search_string IN source_string)

If the value of either the search_string or the source_string is NULL, the result of
the POSITION function is NULL. If the value of search_string has a length of zero,
the result is one. If the substring cannot be found, it returns 0.

The behavior of POSITION function is the inverse of SUBSTRING function.

For example,:
POSITION('TQ_' IN Body.Trade.Company)

Function reference

336 MQSeries Integrator Using the Control Center

This second example returns the value 7:
POSITION('World' IN 'Hello World!')

LENGTH
LENGTH(source_string)

The LENGTH function return integer values which give the number of singletons
in source_string. If the value of source_string is a NULL value, the result of the
LENGTH function is the NULL value.

Examples:

LENGTH('Hello World!') returns 11.

LENGTH('') returns 0.

TRIM
The TRIM function is used to remove leading and trailing singletons from a string.

You can specify the TRIM function in any of the following formats:
TRIM(trim_specification trim_singleton FROM source_string)
TRIM(trim_specification FROM source_string)
TRIM(trim_singleton FROM source_string)
TRIM(source_string)

where trim_specification is one of LEADING, TRAILING, or BOTH. If
trim_specification is not specified, BOTH is assumed. If trim_singleton is not
specified, a default singleton is assumed. This default depends on the data type of
source_string:

character ’ ’ (space)
byte X’00’
bit B’0’

TRIM returns a string value of the same data type and content as source_string
but with any leading or trailing singletons that are equal to trim_singleton
removed (depending on the value of trim_specification). If any of the parameters
are the NULL value, the TRIM function returns a NULL value of the same data
type as source_string.

The FROM keyword is not required, and is in fact prohibited if neither a trim
specification, for example LEADING or TRAILING, nor a trim singleton, is
specified.

If you have a field in a message that is padded at the end with an unknown
number of 'x' characters, and you want to compare the body of the character string
to a literal value, you could use the following example:
TRIM(TRAILING 'x' FROM Body.Trade.Company) = 'Uncertain'

If you want to strip 'x' characters from the beginning and end of the string, you
could write:
TRIM('x' FROM Body.Trade.Company) = 'Uncertain'

By default, blanks are stripped from a character string, and you can therefore leave
out the character altogether, as follows:

Functions

Appendix C. ESQL reference 337

TRIM(LEADING FROM Body.Market.Sector) = 'Target'

To strip blanks from the beginning and end of a character string, you could write:
TRIM(Body.Market.Sector) = 'Target'

It is often unnecessary to strip trailing blanks from character strings before
comparison because the rules of character string comparison mean that trailing
blanks are not significant.

The following examples illustrate additional function: Examples:
TRIM(TRAILING 'b' FROM 'aaabBb') returns 'aaabB'
TRIM(' a ') returns 'a'
TRIM(LEADING FROM ' a ') returns 'a '
TRIM('b' FROM 'bbbaaabbb') returns 'aaa'

LTRIM
LTRIM(source_string)

This function is equivalent to TRIM(LEADING ' ' FROM source_string).

RTRIM
RTRIM(source_string)

This function is equivalent to TRIM(TRAILING ' ' FROM source_string).

SUBSTRING
You can use the SUBSTRING function to extract a string of bits, bytes, characters
from within another string of that type. You can use the result of SUBSTRING, for
example, to compare to a known value.

The format of the function is as follows:
SUBSTRING(source_string FROM start_position)
SUBSTRING(source_string FROM start_position FOR string_length)

If any of the parameters to the SUBSTRING function are NULL, the result is the
NULL string (which is different from the empty string).

The following example:
SUBSTRING(Body.Trade.Company FROM 1 FOR 3) = 'TQ_'

compares the first three singletons of a string to a given value. The positions in the
string start at 1, so the FROM 1 clause indicates that the substring should start at the
first singleton. The FOR 3 clause indicates that three singletons are included in the
substring. This has a similar result to using the LIKE predicate.

This second example returns the string 'World!':
SUBSTRING('Hello World!' FROM 7)

The SUBSTRING function is implemented using the following algorithm (the
purpose of the algorithm is to define how the parameters are normalized to ensure
that the start position and the end position both lie inside the source string. The
behavior is otherwise as expected.):
v Let C be the value of source_string. Let LC be the length of C and let S be the

value of start_position.
v If string_length is specified, let L be the value of string_length and let E be S+L.

Otherwise let E be the larger of LC+1 and S.

Functions

338 MQSeries Integrator Using the Control Center

v If E is less than S, the function returns a NULL value.
v If S is greater than LC, or if E is less than 1, the result of the SUBSTRING

function is a zero length string.
v Otherwise Let S1 be the larger of S and 1. Let E1 be the smaller of E and LC+1.

Let L1 be E1-S1.
v The result of the SUBSTRING function is a string containing the L1 singletons of

C starting at number S1 in the same order that the singletons appear in C.

UPPER, UCASE
UPPER(source_string)
UCASE(source_string)

The UPPER and UCASE functions both return a new character string which is the
same length as the source character string and which is identical to the input
string, except is has all lowercase letters replaced with the corresponding
uppercase letters. If the source string is NULL, the return value is NULL.

LOWER, LCASE
LOWER(source_string)
LCASE(source_string)

The LOWER and LCASE functions both return a new character string which is the
same length as the source string and which is identical to the input string, except
that it has all uppercase letters replaced with the corresponding lowercase letters.
If the source string is NULL, the return value is NULL.

OVERLAY
OVERLAY(source_string PLACING source_string2 FROM start_position)
OVERLAY(source_string PLACING source_string2 FROM start_position FOR string_length)

If any of the parameters is NULL, the result is a NULL value of the same datatype
as source_string. If string_length is not specified, string_length is equal to
LENGTH(source_string2).

The result of the OVERLAY function is equivalent to:
SUBSTRING(source_string FROM 1 FOR start_position -1) || source_string2 ||

SUBSTRING(source_string FROM start_position + LENGTH(source_string2))

(where || is the concatenation operator).

Numeric functions
The following functions manipulate numeric strings.

ABS
ABS(expression)
ABSVAL(expression)

The argument must be a numeric value. The function returns the absolute value of
the argument. If the type of the value that the function returns is the same as the
type of the argument that the function is called with. The argument can be NULL.
If the argument is NULL, the function returns a NULL value.

BITAND
BITAND(expression, expression, ...)

Functions

Appendix C. ESQL reference 339

The BITAND function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise and of the binary
representation of the numbers.

BITNOT
BITNOT(expression)

The BITNOT function takes one parameter which must result in an integer value
and results the result of performing the bitwise complement of the binary
representation of the number.

BITOR
BITOR(expression, expression, ...)

The BITOR function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise or of the binary
representation of the numbers.

BITXOR
BITXOR(expression, expression, ...)

The BITXOR function takes two or more parameters that must result in integer
values, and returns the result of performing the bitwise XOR of the binary
representation of the numbers.

CEIL
CEIL(expression)
CEILING(expression)

Returns the smallest integer value greater than or equal to the argument. The
argument can be any numeric type. If the argument is an integer, the function
returns the argument value. The value returned by the function is of the same type
as the argument value. If the argument is null, the result is the null value.

FLOOR
FLOOR(expression)
FLOOR(expression)

Returns the largest integer value less than or equal to the argument. The argument
can be any numeric type. If the argument is an integer, the function returns the
argument value. The value returned by the function is of the same type as the
argument value. If the argument is null, the result is the null value.

MOD
MOD(expression, expression)

Returns the remainder of the first argument divided by the second argument. The
result is negative only if first argument is negative. The arguments must have
integer datatypes. The function returns an integer. If any argument is null, the
result is the null value.

ROUND
ROUND(expression1, expression2)

Returns the expression1 rounded to expression2 placed right of the decimal point.
If expression2 is negative, expression1 is rounded to the absolute value of
expression2 placed to the left of the decimal point. The first argument can be of

Functions

340 MQSeries Integrator Using the Control Center

any built-in numeric data type. The second argument can be integer, decimal or
floating point. A decimal argument is converted to double-precision floating-point
number for processing by the function. The result of the function is integer if the
first argument is integer and double if the first argument is double or decimal. If
any argument is null, the result is the null value.

SQRT
SQRT(expression)

Returns the square root of the argument. The argument can be any built-in
numeric data type. It has to be converted to double-precision floating-point
number for processing by the function. The result of the function is
double-precision floating-point number. If the argument is null, the result is the
null value.

TRUNCATE
TRUNCATE(expression1, expression2)

Returns argument1 truncated to argument2 placed right of decimal point. If
argument2 is negative, argument1 is truncated to the absolute value of argument2
placed to the left of the decimal point. The first argument can be any built-in
numeric data type. The second argument has to be an integer. Decimal values are
converted to double-precision floating-point numbers for processing by the
function.

The result of the function is an integer is the first argument is an integer, and a
double if the first argument is a double or a decimal. If any argument is null, the
result is the null value.

Datetime functions
The following functions allow you to manipulate fields according to date and time
values.

EXTRACT
EXTRACT(extract_field FROM source_field)

where extract_field is one of YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
and source_field must be a, expression which results in a date time or interval
value. If extract_field is YEAR, MONTH, DAY, HOUR or MINUTE, the result is an
integer value. If extract_field is SECOND, the result is a floating point value. If
source_field is NULL, the result is NULL.

CURRENT_DATE
The CURRENT_DATE function returns a date value representing the current date
in local time. That is, it is equivalent to CAST(CURRENT_TIMESTAMP AS DATE).
CURRENT_DATE

The CURRENT_DATE function is not a true function in that no parentheses are
necessary. All calls to CURRENT_DATE within the processing of one node are
guaranteed to return the same value.

CURRENT_TIME
The CURRENT_TIME function returns a non-GMT time value representing the
current local time. That is, it is equivalent to CAST(CURRENT_TIMESTAMP AS
TIME).
CURRENT_TIME

Functions

Appendix C. ESQL reference 341

The CURRENT_TIME function is not a true function in that no parentheses are
necessary. All calls to CURRENT_TIME within the processing of one node are
guaranteed to return the same value.

CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP function returns a non-GMT timestamp value
representing the current local time.
CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP function is not a true function in that no parentheses
are necessary. All calls to CURRENT_TIMESTAMP within the processing of one
node are guaranteed to return the same value.

CURRENT_GMTDATE
The CURRENT_GMTDATE function returns a date value representing the current
date in the GMT time zone. It is equivalent to CAST(CURRENT_GMTTIMESTAMP
AS DATE).
CURRENT_GMTDATE

The CURRENT_GMTDATE function is not a true function in that no parentheses
are necessary. All calls to CURRENT_GMTDATE within the processing of one node
are guaranteed to return the same value.

CURRENT_GMTTIME
The CURRENT_GMTTIME function returns a GMT time value representing the
current time in the GMT time zone. It is equivalent to
CAST(CURRENT_GMTTIMESTAMP AS TIME).
CURRENT_GMTTIME

The CURRENT_GMTTIME function is not a true function in that no parentheses
are necessary. All calls to CURRENT_GMTTIME within the processing of one node
are guaranteed to return the same value.

CURRENT_GMTTIMESTAMP
The CURRENT_GMTTIMESTAMP function returns a GMT timestamp value
representing the current time in the GMT time zone.
CURRENT_GMTTIMESTAMP

The CURRENT_GMTTIMESTAMP function is not a true function in that no
parentheses are necessary. All calls to CURRENT_GMTTIMESTAMP within the
processing of one node are guaranteed to return the same value.

LOCAL_TIMEZONE
The LOCAL_TIMEZONE function returns an interval value which represents the
local time zone displacement from GMT.
LOCAL_TIMEZONE

The LOCAL_TIMEZONE function is not a true function in that no parentheses are
necessary. The value returned is an interval in hours and minutes representing the
displacement of the current time zone from Greenwich Mean Time. The sign of the
interval is such that a local time could be converted to a time in GMT by
subtracting the result of the LOCAL_TIMEZONE function.

Miscellaneous functions
You can also use the CARDINALITY, FIELDNAME, FIELDTYPE, BITSREAM,
COALESCE, and NULLIF functions, as described below.

Functions

342 MQSeries Integrator Using the Control Center

CARDINALITY
CARDINALITY(array)

Returns the number of elements in the argument array.

FIELDNAME
FIELDNAME(path)

Returns the name of the field that the argument path identifies as a string. If the
path identifies a nonexistent entity, NULL is returned.

FIELDTYPE
FIELDTYPE(path)

Returns the type of the field that the argument path identifies as an integer. If the
path identifies a nonexistent entity, NULL is returned. The result of this function
will typically be compared with a symbolic constant defined by a parser which
represents a type value. Note that this is not the datatype of the field that the path
identifies.

BITSTREAM
The BITSTREAM function returns a BLOB representing the actual bit stream of the
portion of the message specified.
BITSTREAM(path)

This function is typically used in message warehouse scenarios, where the bit
stream of a message needs to be stored in a database. The function returns the bit
stream of the physical portion of the message which the syntax element identified
by the path lies in. It does not return the bit stream representing the actual syntax
element identified. So for example the following two calls would return the same
value:
BITSTREAM(Root.MQMD)
BITSTREAM(Root.MQMD.UserIdentifier);

COALESCE
COALESCE returns the first argument that is not null. The arguments are
evaluated in the order in which they are specified, and the result of the function is
the first argument that is not null. The result is null only if all the arguments are
null. The arguments must be compatible. The COALESCE function can be used to
provide a default value for the value of a field which might not exist in a message.
For example, the expression:
COALESCE(Body.Salary, 0)

would return the value of the Salary field in the message if it existed, or 0 (zero) if
that field did not exist.

NULLIF
The NULLIF function returns a null value if the arguments are equal; otherwise, it
returns the value of the first argument. The arguments must be comparable. The
result of using NULLIF(e1,e2) is the same as using the expression
CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is
NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first argument.

Functions

Appendix C. ESQL reference 343

Reserved keywords

ALL ESCAPE MINUTE

AND EXISTS MONTH

ANY FALSE NULL

AS FOR NOT

ASSYMETRIC FLOAT OR

BETWEEN FROM ORDER

BIT GMTTIME PLACING

BLOB GMTTIMESTAMP REPEAT

BOOLEAN GROUP ROW

BOTH HAVING SECOND

BY HOUR SELECT

CASE IF SET

CHAR IN SOME

CHARACTER INSERT SUM

COUNT INT SYMMETRIC

CURRENT_DATE INTEGER THEN

CURRENT_TIME INTERVAL TIME

CURRENT_TIMESTAMP INTO TIMESTAMP

CURRENT_GMTDATE IS TO

CURRENT_GMTTIME ITEM THE

CURRENT_GMTTIMESTAMP ITERATE TRAILING

DATE LAST TRUE

DAY LEADING UNKNOWN

DECLARE LEAVE UNTIL

DELETE LIKE UPDATE

DO LIST VALUES

DISTINCT LOCAL_TIMEZONE WHEN

ELSE LOOP WHERE

ELSEIF MAX WHILE

END MIN YEAR

Initial correlation names
For an expression in a Filter node, or for a statement in a Database node, the
following correlation names are defined by default:

Root Identifies the root of the message passing though the Filter node.

Body Identifies the last child of the root of the message, that is the "body" of the
message. This is just an alias for "Root.*[LAST]" (the interpretation of this
path is explained below).

Properties
Identifies the standard properties of the input message.

Functions

344 MQSeries Integrator Using the Control Center

DestinationList
Identifies the structure which contains the destination list for the message
passing through the node.

ExceptionList
Identifies the structure which contains the current exception list that the
node has access to.

For a Compute node, the initial correlation names are different because there are
two messages involved, the input message and the output message. The initial
correlation names for a compute name are as follows:

InputRoot
Identifies the root of the input message

InputBody
Identifies the "body" of the input message. Like "Body" in a Filter node this
is just an alias for "InputRoot.*[LAST]"

InputProperties
Identifies the standard properties of the input message.

InputDestinationList
Identifies the structure which contains the destination list for the input
message.

InputExceptionList
Identifies the structure which contains the destination list for the message
passing through the node.

OutputRoot
Identifies the root of the output message.

OutputDestinationList
Identifies the structure which contains the destination list for the output
message. For a description of the format of a destination list, see
“Exception and destination list structure” on page 356.

Note that whilst this correlation name is always valid, it only has meaning
when the "Compute Mode" property of the Compute node indicates that
the Compute node is calculating the destination list.

OutputExceptionList
Identifies the structure which contains the destination list which the
Compute node is generating.

Note that whilst this correlation name is always valid, it only has meaning
when the "Compute Mode" property of the Compute node indicates that
the Compute node is calculating the exception list. (“Compute node” on
page 102 includes details of the Compute node properties.)

Note that in a Compute node there is no correlation name "OutputBody".
New correlation names may be introduced by SELECT expressions (see
“Arbitrary repeats: the SELECT expression” on page 300), quantified
predicates, and FOR statements.

Case sensitivity of ESQL syntax
The following text describes instances in which the case in which ESQL statements
are specified is significant.
v The keyword Database is case sensitive.
v References to the following correlation names are case sensitive:

Functions

Appendix C. ESQL reference 345

InputRoot
InputBody
InputProperties
InputDestinationList
InputExceptionList
OutputRoot
OutputDestinationList
OutputExceptionList
Properties

v References to elements in a path are frequently case sensitive. This depends on
the parser. All parsers supplied by MQSeries Integrator are case sensitive.
InputRoot.Properties.MessageSet
InputRoot.Properties.MessageType
InputRoot.Properties.MessageFormat
InputRoot.Properties.Encoding
InputRoot.Properties.CodedCharSetId
InputRoot.Properties.Transactional
InputRoot.Properties.Persistence
InputRoot.Properties.CreationTime
InputRoot.Properties.ExpirationTime
InputRoot.Properties.Priority
InputRoot.Properties.Topic

Expression parsing and evaluation
The expression or statements used to program a Filter, Compute, or Database node
are parsed when it is set into the node by a configuration message. Therefore some
syntax error messages may be produced at this time. The parsing and
understanding of an expression is done without reference to any kind of message
format information. This means that the meaning of the expression is the same for
each message that passes through the Filter node, regardless of the message format
of the message. This is quite different from the way that standard database SQL
expressions are understood. In database systems, a standard SQL expression is
interpreted with reference to the schemas of any relevant tables, so ambiguities can
be detected and possibly resolved. No such rules are possible in the language
described here however.

Note that the reason that it must be possible to understand a filter expression
without looking at a message format is that it must be possible to process
messages which do not have message formats, such as generic XML. This affects
how fields in messages are referred to. This also means that some types of errors
such as type mismatch errors cannot always be caught when the expression is
parsed at configuration time, but can only be caught when the expression is
evaluated against a message, because whether the errors are produced or not can
depend on the data in the message.

Expression type checking
It is not always possible to tell the exact datatype that an expression will result in.
This is because expressions are "compiled" without reference to any kind of
message schema, and so it is not possible to tell what the result of evaluating a
field reference will be. Therefore not all type errors can be caught at "compile"
time. As many as possible will be caught at compile time, but some may only be
caught at run time when the expression is actually evaluated against a message. In
these cases, a run-time error is generated.

Functions

346 MQSeries Integrator Using the Control Center

Examples for generic XML messages
This section provides further details about how you can use ESQL with generic
XML messages. The examples here use a default message. Each example illustrates
the entire message being copied, with additional ESQL to address, add to, or
modify specific parts of the message. You can also create a new message using
these examples as a basis: although this is not illustrated, the principle is the same.

Note: The message domains JMSMap and JMSStream are equivalent to the XML
domain, and the XML constants used to qualify references also apply. These
JMS message domains are not referenced specifically in this section, but the
examples are applicable, with the appropriate substitution for the root
parser name. For example, you can use Root.JMSMap.(XML.attr)abc and
similar references.

XML declaration
The XML declaration takes the following form:

<?xml version="1.0"?>

XmlDecl
You can modify the XML declaration using the following:

SET OutputRoot.XML.(XML.XmlDecl)='';

Version: The default behavior of the parser causes the version to be automatically
included on a call to construct a declaration, and version is set to ’1.0’. However,
the version constant has been retained to allow for later development of the XML
specification.

SET OutputRoot.XML.(XML.XmlDecl).(XML.Version)='1.0';

Standalone: The standalone option indicates whether or not an external DTD is
associated with the XML file.

SET OutputRoot.XML.(XML.XmlDecl).(XML.Standalone)='no';

Encoding: By default XML supports UTF-8 or UTF-16. It is therefore necessary to
inform the parser of any other encoding that the document has been written in.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<A><B C="TODAY IS FRIDAY"><D E="42"/>

To create the above from a message that does not include a declaration, you must
code the following ESQL expressions:

SET OutputRoot=InputRoot ;
SET OutputRoot.XML.(XML.XmlDecl)='';
SET OutputRoot.XML.(XML.XmlDecl).(XML.Version)='1.0';
SET OutputRoot.XML.(XML.XmlDecl).(XML.Encoding)='ISO-8859-1' ;
SET OutputRoot.XML.(XML.XmlDecl).(XML.Standalone)='no';

Document Type Declaration
Document type declarations are optionally found following the XML declaration.
The following sample illustrates the basic building blocks of the DTD (element,
entity attribute, and notation types).

Examples for generic XML messages

Appendix C. ESQL reference 347

The following examples illustrate how you can manipulate these message contents.

DocTypeDecl
The document type declaration is a construct that contains all the other
declarations that make up the components of an XML message. It can optionally
have an external subset, an internal subset, or both.

SET OutputRoot.XML.(XML.DocTypeDecl)Note='';

IntSubset: The internal subset is a constant that has been added to allow the
addressing of that part of the XML-DTD document that has been stored internally.
In the sample above, the internal subset includes everything between the [and the
]>.

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)='';

The SystemId and PublicId are used to identify the location of the external subset
(in a separate DTD file, if specified) that the parser must use in conjunction with
the internal subset defined here (if specified). Both internal and external subsets are
optional.

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE doc SYSTEM "doc.dtd" [
<!ELEMENT doc (header,body)>
<!ELEMENT header (doctitle,byline,pubdate,cpyrt,notes)>
<!ELEMENT doctitle (#PCDATA)>
<!ELEMENT byline (#PCDATA)>
<!ELEMENT pubdate (#PCDATA)>
<!ELEMENT cpyrt (#PCDATA)>
<!ELEMENT notes (#PCDATA)>
<!ELEMENT body (chapter)>
<!ELEMENT chapter (ctitle,formula)>
<!ELEMENT ctitle (#PCDATA)>
<!ELEMENT formula (#PCDATA)>
<!NOTATION TeX PUBLIC "+//ISBN 0-201-13448-9::Knuth//NOTATION The TeXbook//EN">
<!ENTITY XML "eXtensible Markup Language">
<!ATTLIST formula format NOTATION (tex|troff) #REQUIRED>
]>
<doc>
<header>
<doctitle>Sample DTD document</doctitle>
<byline>S P Jones</byline>
<pubdate>Feb 15 2000</pubdate>
<cpyrt>today's sample of XML</cpyrt>
<notes>including a notation of an entity</notes>
</header>
<body>
<chapter>
<ctitle>formula 1</ctitle>
<formula format="tex">$\frac{\sqrt{x+y}} {\pi}$</formula>
</chapter>
</body>
</doc>

Examples for generic XML messages

348 MQSeries Integrator Using the Control Center

SystemId: The SystemId is system specific and normally includes a filename and
location. For example:

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.SystemId)='note.dtd';

PublicId: The PublicId is a non system-specific external entity identifier. For
example:

SET OutputRoot.XML.(XML.DocTypeDecl).
(XML.IntSubset).(XML.NotationDecl).(XML.PublicId)
='+//ISBN 0-201-13448-9::Knuth//NOTATION The TeXbook//EN';

NotationDecl
A notation declaration allows XML documents to access external information. It
usually identifies non-XML information.
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).(XML.NotationDecl)TeX='';

To construct the following Notation declaration within a message that contains no
current example of an XML DTD, use:
SET OutputRoot=InputRoot ;
SET OutputRoot.XML.(XML.DocTypeDecl)Note='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.SystemId)='note.dtd';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.NotationDecl)TeX='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.NotationDecl).(XML.PublicId)
='+//ISBN 0-201-13448-9::Knuth//NOTATION The TeXbook//EN';

This produces the following output:
<?xml version="1.0"?>
<!DOCTYPE Note SYSTEM "note.dtd"[<!NOTATION TeX PUBLIC "

+//ISBN 0-201-13448-9::Knuth//NOTATION The TeXbook//EN">]>
<A><B C="TODAY IS FRIDAY"><D E="42">test</D>

Entities
Samples are provided for each of the five supported entity element types.

ParameterEntityDecl: The following ESQL illustrates a reference to the
ParameterEntityDecl:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.ParameterEntityDecl)test='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.ParameterEntityDecl)test.(XML.EntityDeclValue)
='#PCDATA|emphasis|link';

The ESQL shown generates the following output in the test sample:
<?xml version="1.0"?>
<!DOCTYPE Note SYSTEM "note.dtd"[
<!ENTITY % test "#PCDATA|emphasis|link">
]>
<A><B C="TODAY IS FRIDAY"><D E="42">test</D>

ExternalParameterEntityDecl: The following ESQL illustrates a reference to the
ExternalParameterEntityDecl:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.ExternalParameterEntityDecl)bookdef='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.ExternalParameterEntityDecl)bookdef.(XML.SystemId)
='bookdef.dtd';

Examples for generic XML messages

Appendix C. ESQL reference 349

The ESQL shown generates the following output in the test sample:
<?xml version="1.0"?>
<!DOCTYPE Note SYSTEM "note.dtd"[
<!ENTITY % bookdef SYSTEM "bookdef.dtd">
]>
<A><B C="TODAY IS FRIDAY"><D E="42">test</D>

EntityDecl: The following ESQL illustrates a reference to the EntityDecl:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.EntityDecl)XML='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.EntityDecl)XML.(XML.EntityDeclValue)
= 'eXtensible Markup Language';

This creates a general entity within the internal subset of the DTD. Using the
standard sample, this gives:
<?xml version="1.0"?>
<!DOCTYPE Note SYSTEM "note.dtd"[
<!ENTITY XML "eXtensible Markup Language">
]>
<A><B C="TODAY IS FRIDAY"><D E="42">test</D>

ExternalEntityDecl: The following ESQL illustrates a reference to the
ExternalEntityDecl:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.ExternalEntityDecl)test='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.ExternalEntityDecl)test.(XML.SystemId)='test.txt';

The ESQL shown generates the following output in the test sample:
<?xml version="1.0"?><!DOCTYPE Note SYSTEM "note.dtd"[
<!ENTITY test SYSTEM "test.txt">
]>
<A><B C="TODAY IS FRIDAY"><D E="42">test</D>

UnparsedEntityDecl: The following ESQL illustrates a reference to the
UnparsedEntityDecl:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.UnparsedEntityDecl)pic='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.UnparsedEntityDecl)pic.(XML.SystemId)='scheme.gif';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.UnparsedEntityDecl)pic.(XML.NotationReference)='gif';

Examples for generic XML messages

350 MQSeries Integrator Using the Control Center

The ESQL shown generates the following output in the test sample:
<?xml version="1.0"?>
<!DOCTYPE Note SYSTEM "note.dtd"[
<!ENTITY pic SYSTEM "scheme.gif" NDATA gif>
]>
<A><B C="TODAY IS FRIDAY"><D E="42">test</D>

Subcomponents used in Entities
These are constants that exist to help define the various entities completely.

NotationReference: The notation reference is used to add the NDATA section to
an UnparsedEntityDecl.

The following example illustrates the addition of the NDATA gif.
<!ENTITY pic SYSTEM "scheme.gif" NDATA gif>

This form is created using the following ESQL:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.UnparsedEntityDecl)pic.(XML.NotationReference)='gif';

EntityDeclValue: You can use EntityDeclValue to set a value element that is a
child of any of the five EntityDecl types.

For example:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.EntityDecl)XML.(XML.EntityDeclValue)='eXtensible Markup Language';

SystemID and PublicID: SystemID and PublicID can be used as children of
ExternalEntityDecl, ExternalParameterEntityDecl, or UnparsedEntityDecl.

ElementDef
ElementDef represents the <!ELEMENT construct. The following ESQL example
illustrates the use of ElementDef.
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset)='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.ElementDef)warning='(para+)';

The ESQL shown generates the following statement within the internal DTD
subset.
<!ELEMENT warning (para+)>

Attribute definitions
The following examples illustrate the ESQL required to set up the <!ATTLIST
construct and its contents.

AttributeList: AttributeList represents the <!ATTLIST construct. The contents of
the construct are defined by the following elements:
v AttributeDef

This name element defines an attribute in the attribute list.
v AttributeDefValue

This value element gives the default value of the attribute.
v AttributeDefDefaultType

This value element indicates the default type for the attribute.
v AttributeDefType

Examples for generic XML messages

Appendix C. ESQL reference 351

This is a name-value element where the name corresponds to the attribute type,
and is one of:
– CDATA
– ID
– IDREF
– IDREFS
– ENTITY
– ENTITIES
– NMTOKEN
– NMTOKENS
– NOTATION

If the attribute has an enumeration, the value of the name-value element
contains the enumerated list.

An attribute list might be coded in XML as follows:
<!ATTLIST formula format NOTATION (tex|troff) #REQUIRED>

You must code the following ESQL to create this element:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)formula='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)formula.(XML.AttributeDef)format='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)formula.(XML.AttributeDef)format.
(XML.AttributeDefDefaultType)='REQUIRED';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)formula.(XML.AttributeDef)format.
(XML.AttributeDefType)NOTATION='(tex|troff)';

A second example of an attribute list is:
<!ATTLIST report security (public|confidential|secret)"public">

This can be constructed using the following ESQL:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)report='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)report.(XML.AttributeDef)security='';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)report.(XML.AttributeDef)security.
(XML.AttributeDefType)='(public|confidential|secret)';
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).
(XML.AttributeList)report.(XML.AttributeDef)security.
(XML.AttributeDefValue)='public';

The XML message body
This sections discusses the following components of the XML message body:
v tag
v attr
v pcdata
v ProcessingInstruction
v CDataSection

The examples here use the following XML message structure:
<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<A>
<B C="TODAY IS FRIDAY">

Examples for generic XML messages

352 MQSeries Integrator Using the Control Center

<D E="42">1234</D>
<D>test</D>

XML.tag
XML.tag can be used to identify a specific occurrence of a tag within the message
body.

If you want to address the second <D> tag in the example message, in most cases
you can specify the simplest form:

InputRoot.XML.A.B.D[2]

You can also specify:
InputRoot.XML.A.B.(XML.tag)D[2]

If the message is fully validated (that is, it is fully defined in the DTD and the root
XML message element matches the DTD name), you must use the following form:

InputRoot.XML.(XML.tag)A.B.D[2]

Consider a second example:
<a><b c="1234"><d d="1234"><d>1234</d><d>2345</d>

To address the first <d> tag, the following forms are valid:
InputRoot.XML.a.b.d.d[2]

InputRoot.XML.a.b.d.(XML.tag)d

InputRoot.XML.a.b.d.(XML.tag)d[1]

XML.attr
XML.attr is used to reference an attribute of a tag within the message.

To change the attribute with name E on the first D tag you must specify:
SET OutputRoot.XML.A.B.D.(XML.attr)E='57';

This results in:
...<B C="TODAY IS FRIDAY"><D E=57">1234</D><D>test</D>...

XML.pcdata
You can use XML.pcdata to reference the data associated with a tag within the
body.

To change the pcdata field of the second <D> tag (currently set to test) you can
specify:

SET OutputRoot.XML.A.B.D[2](XML.pcdata)='result';

The same result can be achieved with the following:
SET OutputRoot.XML.A.B.D[2]='result';

Both assignments give the following output:
...<B C="TODAY IS FRIDAY"><D E="42">1234</D><D>result</D>...

To change the value of the first D tag (1234), you can specify:
SET OutputRoot.XML.A.B.D[1].(XML.pcdata)='5555';

Examples for generic XML messages

Appendix C. ESQL reference 353

This produces:
...<B C="TODAY IS FRIDAY"><D E="42">5555</D><D>result</D>...

ProcessingInstruction and DocTypePI
An XML processing instruction contains information required by a specific
application expected to process XML data.

SET OutputRoot.XML.A.B.D.(XML.ProcessingInstruction)test='Do this';

This statement produces the following output:
<A><B C="TODAY IS FRIDAY"><D E="42"><?test Do this?></D>

WhiteSpace and DocTypeWhiteSpace: This adds a series of blanks into the
message at the desired location.

SET OutputRoot.XML.A.B.(XML.WhiteSpace)=' ';

This produces the output:
<?xml version="1.0"?><!DOCTYPE Note SYSTEM "note.dtd">
<A><B C="TODAY IS FRIDAY"><D E="42">test</D>

Comment and DocTypeComment: These elements refer to comments within the
message.

SET OutputRoot=InputRoot ;
SET OutputRoot.XML.A.B.D.(XML.Comment)='This is a comment';

This changes
<A><B C="TODAY IS FRIDAY"><D E="42"></D>

into
<A><B C="TODAY IS FRIDAY"><D E="42"><!--This is a comment--></D>

Examples for generic XML messages

354 MQSeries Integrator Using the Control Center

Similarly:
SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

(XML.DocTypeComment)='comment';

produces the following output
<?xml version="1.0"?><!DOCTYPE Note SYSTEM "note.dtd"
[<!--comment-->]><A><B C="TODAY IS FRIDAY"><D E="42">test</D>

The declarations and the internal subset have been added by this example.

CDataSection
A CDATA section is an area of message text that is to remain unparsed. You can
therefore include characters that are normally excluded from markup within the
CDATA section.

SET OutputRoot.XML.A.B.D.(XML.CDataSection)='1122334455';

This produces the output:
<A><B C="TODAY IS FRIDAY"><D E="42"><![CDATA[1122334455]]></D>

Examples for generic XML messages

Appendix C. ESQL reference 355

Exception and destination list structure
A tree representation is used within a broker to represent the data contained in the
bit-stream representation of a message used outside the broker. Within the broker
this tree representation is supplemented by two additional trees:
v The destination list tree

This represents the destinations to which a message is sent.
v The exception list tree

This represents the exception conditions that have occurred while processing
that message.

A message being processed within the broker consists of three separate syntax
element trees:
v The destination list tree
v The exception list tree
v The message tree

You can query and manipulate each of these trees in much the same way in Filter,
Database, and Compute nodes. Elements can be created, examined, or even copied
from one tree to another. Note that the destination and exception list trees only
exist within the broker and are not replicated in the bit stream. The following
sections describe the structure of the destination and exception lists.

Destination lists
A destination list tree describes a list of internal and external destinations to which
a message will be sent. Output nodes can be configured to examine this list and
send the message to the given destinations. Alternatively, they can be configured to
send messages to a fixed destination. In this case, the destination list has no effect
on broker operations and can be empty (that is, consist of a Destination List
element only).

The destination list tree has a definite structure that is illustrated in the following
figure:

Exception and destination list structure

356 MQSeries Integrator Using the Control Center

The root of the tree is called “Destination List”. The tree consists of a single name
element called “Destination”: this is the first and only child of the Destination List.
The Destination element consists of a number of children that indicate the
transport types to which the message will be directed (the Transport identifiers).
Each element is a single name element, for example, MQSeries or RouterList.

The transport name element might contain an element called “Defaults”. If it does,
this must be in the first child and contains a set of name-value elements that give
default values for the message destination and its put options.

The element that identifies the transport might also contain a number of elements
called “DestinationData”. Each of these contains a set of name-value elements that
defines a message destination and its put options.
v For MQSeries, the set of elements that define destination comprises:

queueManagerName
queueName
transactionMode
persistenceMode
newMsgId
newCorrelId
segmentationAllowed
alternateUserAuthority

All of these elements have a data type of string. See the description of the
MQOutput node in the on-line help for their descriptions and valid values. You
can access the online help from the Help menu in the Control Center taskbar or
by highlighting an MQOutput node, right clicking, and selecting Help.

v For RouterList, the set of elements that define destination has a single entry:
labelName

Exception and destination list structure

Appendix C. ESQL reference 357

Exception lists
If no exception conditions occur while you are processing a message, the exception
list associated with that message consists of a root element only. This is, in effect,
an empty list of exceptions.

If an exception condition occurs, message processing is suspended and an
exception is thrown. Control is passed back to a higher level, that is, an enclosing
catch block. An exception list is built to describe the failure condition, and then the
whole message, together with the destination list and the newly-populated
exception list, is propagated through an exception handling message flow path.

Exception handling paths start at a failure terminal (most message processing
nodes have these), the catch terminal of an MQInput node, or the catch terminal of
a TryCatch node, but are no different in principle from a normal message flow
path. Such a flow consists of a set of interconnected message flow nodes defined
by the designer of message flow. The exception handling paths differ in detail. For
example, they might examine the exception list to determine the nature of the
error, and so be able to make an appropriate response.

The message and destination list that are propagated to the exception handling
message flow path are those in effect at the start of the exception path, not
necessarily those in effect when the exception is thrown. Figure 81 illustrates this
point:
v A message (M1) and destination list (D1) are being processed by a message flow.

They are passed through the TryCatch node to Compute1.
v Compute1 updates the message and destination list and propagates a new

message (M2) and destination list (D2) to the next node, Compute2.
v An exception is thrown in Compute2. The exception is propagated back to the

TryCatch node, but the message and destination list are not. Therefore the
exception handling path starting at point A has access to the first message and
destination list, M1 and D1.

v If there had been no TryCatch node in the message flow, and the failure terminal
of Compute2 had been connected (point B), the message and destination list M2
and D2 would have been propagated to the node connected to that failure
terminal.

Figure 81. Message and destination list for an exception

Exception and destination list structure

358 MQSeries Integrator Using the Control Center

The exception list tree has a definite structure. The root of the tree is called
“ExceptionList”, and the tree itself consists of a set of one or more exception
descriptions. Each exception description consists of a name element whose name is
one of the following:
v RecoverableException
v ParserException
v ConversionException
v UserException

These name elements contain children that take the form of a number of
name-value elements that give details of the exception and zero or more name
elements whose name is “Insert”. The NLS (National Language Support) message
number identified in a name-value element in turn identifies an MQSeries
Integrator error message. All error messages are defined in detail in the MQSeries
Integrator Messages book. The Insert values are used to replace the variables within
this message, and provide further detail of the precise cause of the exception.

The name-value elements within the exception list are shown in Table 44.

Table 44. Exception list name-value elements

Name Type Description

File1 String C++ source file name

Line1 Integer C++ source file line number

Function1 String C++ source function name

Type2 String Source object type

Name2 String Source object name

Label2 String Source object label

Text1 String Additional text

Catalog3 String NLS message catalog name4

Severity3 Integer 1=information 2=warning 3=error

Number3 Integer NLS message number4

Insert3 Type Integer The data type of the value: 0=Unknown 1=Boolean
2=Integer 3=Real 4=Decimal 5=Character 6=Time
7=GMT Time 8=Date 9=Timestamp 10=GMT
Timestamp 11=Interval 12=Byte Array 13=Bit Array
14=Pointer

Text String The data value

Notes:

1. The File, Line, Function, and Text elements should not be used for exception handling
decision making. These elements ensure that information can be written to a log for use
by IBM service personnel.

2. The Type, Name, and Label elements define the object (usually a Message Flow node)
that was processing the message when the exception condition occurred.

3. The Catalog, Severity, and Number elements define an NLS message: the Insert
elements that contain the two name-value elements shown define the inserts into that
NLS message.

4. NLS message catalog name and NLS message number refer to a translatable message
catalog and message number.

The exception description structure can be both repeated and nested to produce an
exception list tree. In this tree:

Exception and destination list structure

Appendix C. ESQL reference 359

v The depth (that is, the number of parent-child steps from the root) represents
increasingly detailed information for the same exception.

v The width of the tree represents the number of separate exception conditions
that occurred before processing was abandoned. You will find that this number
is usually one, and results in an exception tree that consists of a number of
exception descriptions connected as children of each other.

Figure 82 on page 361 illustrates one way in which an exception list can be
constructed.

Exception and destination list structure

360 MQSeries Integrator Using the Control Center

Notes:

1. The first exception description �1� is a child of the root. This identifies error
number 2230, indicating an exception has been thrown. The node that has
thrown the exception is also identified (mf1.Compute1).

2. Exception description �2� is a child of the first exception description �1�. This
identifies error number 2439.

ExceptionList {
RecoverableException = { �1�

File = 'f:/build/argo/src/DataFlowEngine/ImbDataFlowNode.cpp'
Line = 538
Function = 'ImbDataFlowNode::createExceptionList'
Type = 'ComIbmComputeNode'
Name = '0e416632-de00-0000-0080-bdb4d59524d5'
Label = 'mf1.Compute1'
Text = 'Node throwing exception'
Catalog = 'MQSeriesIntegrator2'
Severity = 3
Number = 2230
RecoverableException = { �2�

File = 'f:/build/argo/src/DataFlowEngine/ImbRdlBinaryExpression.cpp'
Line = 231
Function = 'ImbRdlBinaryExpression::scalarEvaluate'
Type = 'ComIbmComputeNode'
Name = '0e416632-de00-0000-0080-bdb4d59524d5'
Label = 'mf1.Compute1'
Text = 'error evaluating expression'
Catalog = 'MQSeriesIntegrator2'
Severity = 2
Number = 2439
Insert = {

Type = 2
Text = '2'

}
Insert = {

Type = 2
Text = '30'

}
RecoverableException = { �3�

File = 'f:/build/argo/src/DataFlowEngine/ImbRdlValueOperations.cpp'
Line = 257
Function = 'intDivideInt'
Type = 'ComIbmComputeNode'
Name = '0e416632-de00-0000-0080-bdb4d59524d5'
Label = 'mf1.Compute1'
Text = 'Divide by zero calculating '%1 / %2''
Catalog = 'MQSeriesIntegrator2'
Severity = 2
Number = 2450
Insert = }

Type = 5
Text = '100 / 0'

}
}

}
}

}

Figure 82. Exception list structure

Exception and destination list structure

Appendix C. ESQL reference 361

3. Exception description �3� is a child of the second exception description �2�.
This identifies error number 2450, which indicates that the node has attempted
to divide by zero.

Exception handling paths will base their decisions on the number of exception
conditions on:
v The message number, which identifies the type of exception that has occurred.
v The label, which is the known name of the object in which the exception

occurred.

Figure 83 illustrates an extract of ESQL to show how you can set up a Compute
node to use the exception list. The ESQL loops through the exception list to the last
(nested) exception description, and extracts the error number. This error relates to
the original cause of the problem and normally provides the most precise
information. Subsequent action taken by the message flow can be decided by the
error number retrieved in this way.

/* Error number extracted from exception list */
DECLARE Error INTEGER;
/* Current path within the exception list */
DECLARE Path CHARACTER;

/* Start at first child of exception list */
SET Path = 'InputExceptionList.*[1]';

/* Loop until no more children */
WHILE EVAL('FIELDNAME(' || Path || ') IS NOT NULL') DO

/* Check if error number is available */
IF EVAL('FIELDNAME(' || Path || '.Number) IS NOT NULL') THEN

/* Remember only the deepest error number */
SET Error = EVAL(Path || '.Number');

END IF;

/* Step to last child of current element (usually a nested exception list */
SET Path = Path || '.*[LAST]';

END WHILE; /* End loop */

Figure 83. Retrieving the exception error code

Exception and destination list structure

362 MQSeries Integrator Using the Control Center

Appendix D. MQSeries message header parsers

The following topics are discussed:
v “Parser overview”.
v “The properties pseudo parser”.
v “Maintaining header integrity” on page 364.
v “The MQSeries headers parsers” on page 365.

Parser overview
When a message is received by a message flow, its constituent parts are passed to
the correct parser for interpretation (unless interpretation is not required: for
example if a whole message is copied).

With the exception of the MQMD, which must be the first header, the order of the
headers preceding the message body is not important: the parser for each header
processes that header independently. However, the fields are parsed in a particular
order that is governed by the parser: you cannot predict or rely on the order
chosen.

Fields within the message tree have the following datatypes that are equivalent to
the corresponding fields MQSeries structure description, except where noted:
v MQLONG types are represented as INTEGER.
v MQCHAR and MQCHARn are represented as CHARACTER.
v MQBYTE and MQBYTEn are represented as BYTEARRAY.
v Date and time fields are represented as:

– TIMESTAMP if the field can be converted to a valid TIMESTAMP
– CHARACTER if the field cannot be converted to a valid TIMESTAMP

v The Expiry field in the MQMD is a special case:
– If it is set to -1 (unlimited) it is converted to an integer
– If it is not set to -1, it is converted to a TIMESTAMP

Fields in MQSeries structures, excluding MQRFH2 folders, are represented by
name and value elements. MQRFH2 folder names are represented by name only
elements. Structure length fields and structure identifier fields are not visible, and
are filled in with appropriate values by the broker.

Other fields that are updated by the broker include all Format fields and domain
fields in those parsers that support them. See “Maintaining header integrity” on
page 364 for details of this process.

The properties pseudo parser
Every message has a set of standard properties that you can manipulate in the
message flow nodes in the same way as any other property. The majority of these
fields map to fields in the supported MQSeries headers and are passed to the
appropriate parser when a message is delivered from one node to another.

If no parser is capable of receiving the property, the property is kept in the
property parser until such time as a suitable parser can be found. If the message is

© Copyright IBM Corp. 2000 363

converted to a bitstream, for example in an output node, any properties remaining
solely in the property parser are discarded.

All messages generated by IBM supplied nodes provide a properties folder for the
message as the first child of the root. It is not a requirement for a message to have
a properties folder, although it is recommended. If you are using your own
(plug-in) nodes, the interface provided does not automatically generate the
properties folder for a message: if you want one in a message, you must create the
folder yourself.

Having transmitted properties to each appropriate parser, the properties parser
requests the values back from the owning parser. This ensures that the cached
values of the properties are consistent with the message on entry and exit from
each node. The state within any given node is dependant on the behavior of the
node.

The Root name for this parser is ″Properties″. The standard properties are:
v MessageSet
v MessageType
v MessageFormat
v Encoding
v CodedCharSetId
v Transactional
v Persistence
v CreationTime
v ExpirationTime
v Priority
v Topic (this field contains a list)

Maintaining header integrity
The broker ensures that the integrity of the headers that precede a message body is
maintained. The format of each part of the message is defined by the Format field
in the immediately preceding header:
v The format of the first header is known, because this must be MQMD.
v The format of the next (second) part of the message, which might be another

header, or the message body, is set in the Format field in the MQMD.
v If a third part of the message exists, its format is defined in the format field of

the second part of the message.

This process is repeated as many times as is required by the number of headers
that precede the message body. You do not have to populate these fields yourself:
the broker handles this sequence for you.

If the body parser is not understood by MQSeries, the current Format field is
checked. If it currently contains a registered parser name, it is set to
MQFMT_NONE. The domain field is always updated. These actions might result
in information explicitly stored by an SQL expression being replaced by the broker.

Properties parser

364 MQSeries Integrator Using the Control Center

The MQSeries headers parsers
The following sections define the element names, types, and attributes for each of
the supported MQSeries headers.

The following parsers are described:
v “The MQCIH parser” on page 366
v “The MQDLH parser” on page 367
v “The MQIIH parser” on page 368
v “The MQMD parser” on page 369
v “The MQMDE parser” on page 370
v “The MQRFH parser” on page 371
v “The MQRFH2 parser” on page 372
v “The MQRMH parser” on page 373
v “The MQSAPH parser” on page 374
v “The MQWIH parser” on page 375
v “The SMQ_BMH parser” on page 376
v “The BLOB parser” on page 377

The MQSeries headers parsers

Appendix D. MQSeries message header parsers 365

The MQCIH parser
The Root name for this parser is ″MQCIH″. Table 45 lists the elements native to the
MQCIH header.

Table 45. MQCIH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ReturnCode INTEGER Name Value

CompCode INTEGER Name Value

Reason INTEGER Name Value

UOWControl INTEGER Name Value

GetWaitInterval INTEGER Name Value

LinkType INTEGER Name Value

OutputDataLength INTEGER Name Value

FacilityKeepTime INTEGER Name Value

ADSDescriptor INTEGER Name Value

ConversationalTask INTEGER Name Value

TaskEndStatus INTEGER Name Value

Facility BYTEARRAY Name Value

Function CHARACTER Name Value

AbendCode CHARACTER Name Value

Authenticator CHARACTER Name Value

Reserved1 CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

RemoteSysId CHARACTER Name Value

RemoteTransId CHARACTER Name Value

TransactionId CHARACTER Name Value

FacilityLike CHARACTER Name Value

AttentionId CHARACTER Name Value

StartCode CHARACTER Name Value

CancelCode CHARACTER Name Value

NextTransactionId CHARACTER Name Value

Reserved2 CHARACTER Name Value

Reserved3 CHARACTER Name Value

CursorPosition INTEGER Name Value

ErrorOffset INTEGER Name Value

InputItem INTEGER Name Value

Reserved4 INTEGER Name Value

MQCIH parser

366 MQSeries Integrator Using the Control Center

The MQDLH parser
The Root name for this parser is ″MQDLH″. Table 46 lists the elements native to
the MQDLH header.

Table 46. MQDLH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Reason INTEGER Name Value

DestQName CHARACTER Name Value

DestQMgrName CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

MQDLH parser

Appendix D. MQSeries message header parsers 367

The MQIIH parser
The Root name for this parser is ″MQIIH″. Table 47 lists the elements native to the
MQIIH header.

Table 47. MQIIH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

LTermOverride CHARACTER Name Value

MFSMapName CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

Authenticator CHARACTER Name Value

TranInstanceId BYTEARRAY Name Value

TranState CHARACTER Name Value

CommitMode CHARACTER Name Value

SecurityScope CHARACTER Name Value

Reserved CHARACTER Name Value

MQIIH parser

368 MQSeries Integrator Using the Control Center

The MQMD parser
The Root name for this parser is ″MQMD″. Table 48 lists the orphan elements
adopted by the MQMD header.

Table 48. MQMD parser orphan element names, types, and attributes

Element Name Element Data Type Element Attributes

SourceQueue CHARACTER Name Value

Transactional CHARACTER Name Value

Table 49 lists the elements native to the MQMD header.

Table 49. MQMD parser native element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Report INTEGER Name Value

MsgType INTEGER Name Value

Expiry INTEGER/TIMESTAMP Name Value

Feedback INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Priority INTEGER Name Value

Persistence INTEGER Name Value

MsgId BYTEARRAY Name Value

CorrelId BYTEARRAY Name Value

BackoutCount INTEGER Name Value

ReplyToQ CHARACTER Name Value

ReplyToQMgr CHARACTER Name Value

UserIdentifier CHARACTER Name Value

AccountingToken BYTEARRAY Name Value

ApplIdentityData CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

ApplOriginData CHARACTER Name Value

GroupId BYTEARRAY Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

MQMD parser

Appendix D. MQSeries message header parsers 369

The MQMDE parser
The Root name for this parser is ″MQMDE″. Table 50 lists the elements native to
the MQMDE header.

Table 50. MQMDE parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

GroupId BYTEARRAY Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

MQMDE parser

370 MQSeries Integrator Using the Control Center

The MQRFH parser
The Root name for this parser is ″MQRFH″. Table 51 lists the elements native to
the MQRFH header.

Table 51. MQRFH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Other name value elements might be present that contain information as parsed
from or destined for the option buffer. See the Rules and Format header
documentation for specific names and values.

MQRFH parser

Appendix D. MQSeries message header parsers 371

The MQRFH2 parser
The Root name for this parser is ″MQRFH2″. Table 52 lists the elements native to
the MQRFH2 header.

Table 52. MQRFH2 parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

NameValueCCSID INTEGER Name Value

Other name and child name value elements might be present that contain
information as parsed from or destined for the option buffer. See the Rules and
Format header section in the MQSeries Integrator Documentation for further
details.

MQRFH2 parser

372 MQSeries Integrator Using the Control Center

The MQRMH parser
The Root name for this parser is ″MQRMH″. Table 53 lists the elements native to
the MQRMH header.

Table 53. MQRMH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ObjectType CHARACTER Name Value

ObjectInstanceId BYTEARRAY Name Value

SrcEnv CHARACTER1 Name Value

SrcName CHARACTER2 Name Value

DestEnv CHARACTER3 Name Value

DestName CHARACTER4 Name Value

DataLogicalLength INTEGER Name Value

DataLogicalOffset INTEGER Name Value

DataLogicalOffset2 INTEGER Name Value

Notes:

1. This field represents both SrcEnvLength and Offset

2. This field represents both SrcNameLength and Offset

3. This field represents both DestEnvLength and Offset

4. This field represents both DestNameLength and Offset

MQRMH parser

Appendix D. MQSeries message header parsers 373

The MQSAPH parser
The Root name for this parser is ″MQSAPH″. Table 54 lists the elements native to
the MQSAPH header.

Table 54. MQSAPH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Client CHARACTER Name Value

Language CHARACTER Name Value

HostName CHARACTER Name Value

UserId CHARACTER Name Value

Password CHARACTER Name Value

SystemNumber CHARACTER Name Value

Reserved BYTEARRAY Name Value

MQSAPH parser

374 MQSeries Integrator Using the Control Center

The MQWIH parser
The Root name for this parser is ″MQWIH″. Table 55 lists the elements native to
the MQWIH header.

Table 55. MQWIH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ServiceName CHARACTER Name Value

ServiceStep CHARACTER Name Value

MsgToken BYTEARRAY Name Value

Reserved CHARACTER Name Value

MQWIH parser

Appendix D. MQSeries message header parsers 375

The SMQ_BMH parser
The Root name for this parser is ″SMQ_BMH″. Table 56 lists the elements native to
the SMQ_BMH header.

Table 56. SMQ_BMH parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

ErrorType INTEGER Name Value

Reason INTEGER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

SMQ_BMH parser

376 MQSeries Integrator Using the Control Center

The BLOB parser
The Root name for this parser is ″BLOB″. Table 57 lists the elements native to the
BLOB header.

Table 57. BLOB parser element names, types, and attributes

Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

BLOB BYTEARRAY1 Name Value

UnkownParserName CHARACTER2 Name Value

Notes:

1. This field contains the remaining unparsed bitstream from the message. It is
represented as a BYTEARRAY and may be manipulated as such.

2. This field (if present) contains the class name of the parser that would have been
chosen in preference to the BLOB parser. This information is used by the header
integrity routine (described in “Maintaining header integrity” on page 364) to ensure
that the semantic meaning of the message is preserved.

BLOB parser

Appendix D. MQSeries message header parsers 377

BLOB parser

378 MQSeries Integrator Using the Control Center

Appendix E. NEON Rules and Formatter

The NEON rules and formatter are inherited by MQSeries Integrator from Version
1 of the product. MQSeries Integrator Version 2 message flow nodes do not read
directly from an input queue but instead use the MQInput node. If you are
migrating from Version 1 and need to incorporate NEON messages into your
message flows, you can wire the out terminals on your MQInput nodes into the in
terminal on a NEON Rules node. However, rules and formatting operations will
run unchanged on Version 2 and you will not have to change any of your client
applications.

MQSeries Integrator Version 2 supplies a message flow that provides function
equivalent to the MQSeries Integrator Version 1.1 daemon. This message flow is
described in “Using the IBM-supplied message flows” on page 165.

NEONFormatter and NEONRules nodes
If you are not using MQSeries Integrator Version 1 you do not have any migration
tasks to complete. Instead, the nodes will appear in the list of IBM supplied
message flow nodes and behave as described in “The Message Sets view” on
page 53.

Further information about the NEON nodes is in this appendix and in the
MQSeries Integrator help, accessible by highlighting either node, right clicking, and
selecting Help from the drop down list.

NEON formatter and rules engine
The NEON formatter and rules engines define a set of formats and rules that
govern how an incoming message is processed.

They are both inherited from MQSeries Integrator Version 1. They enable you to
receive messages from Version 1 and so act as an aid to migration, but the tasks
you have to perform to complete migration from Version 1 involve the broker only.

Combining NEON rules with MQSeries Integrator
When you design message flows that combine the use of the NEONRules and
NEONFormatter nodes in conjunction with other message flow nodes, the
following conditions apply:
v A NEONRules or NEONFormatter node can only process messages defined

using the NEONFormatter interface (they cannot process messages defined using
the MRM).

v A message flow node can parse a message that has been defined as an input
format using the NEONFormatter interface.

v A message flow node cannot create or modify a message whose format has been
defined using the NEONFormatter tool unless it is a NEON node.

According to these conditions, the procedures in the following table should be
carried out when you implement message flows that include NEON nodes.

© Copyright IBM Corp. 2000 379

The NEON Rules node has no properties. However, it does have to access the
database in which the NEON rules are defined. Because the NEON message parser
has to access the same database, all the NEONRules nodes in a message flow, and
any NEON parsers, use the same set of database connection parameters.

These database connection parameters are retrieved from a configuration file that
matches the format of the MQSeries Integrator Version 1 rules engine configuration
file. For migration purposes the MQSI_PARAMETERS_FILE environment variable
can be pointed at that file. You must create and initialize this system environment
variable after installation of MQSeries Integrator Version 2. If you use this
parameter on Windows NT, you must restart your system for it to take effect.

The minimum configuration file that is necessary is as follows:
[Rules Database Connection]
#
rules and formatter database connection information (mandatory)
exceptions/notes:
- leave "DatabaseInstance" as "???" (Oracle and DB2 only)
- enter the database name as the value of "ServerName" (DB2 only)
#
ServerName = ???
UserId = ???
Password = ???
DatabaseInstance = ???
#
DatabaseType is a numeric with these values:
SYBASE (CTLIB bindings) = 1
SYBASE (DBLIB bindings) = 2
MSSQL = 4
DB2 = 5
ODBC = 6
ORACLE (version 7.x) = 8
ORACLE (version 8.x) = 9
#
DatabaseType = 5

#
end of file!
#

A message flow node in MQSeries Integrator will accept messages made up of an
MQMD (full details of which are in the on-line help), optionally followed by an
MQRFH or an MQRFH2 header, and a message body that can be parsed by the
NEON parser.

An MQSeries message flow node takes the portion of the bit-stream representation
of the message that is being parsed by the NEON parser. It passes that
representation to the NEON rules processor using the message type and
application group parameters retrieved from the values of the Type and Set
standard properties.

The MQSeries message flow node then processes the actions returned from the
rules processor. Three actions are recognized. These are reformat, putqueue, and
propagate. If no rule is hit then the original message is propagated to the noHit
terminal. If any errors occur whilst evaluating the rules, the original message is
propagated to the failure terminal.

Note: Errors that occur in message flow nodes further down the message flow
than any of the output terminals are not caught by the NEON rules engine.
They are caught by the input node or last TryCatch node instead.

Combining NEON and MQSeries

380 MQSeries Integrator Using the Control Center

Table 58. Procedures for implementing message flows with NEON nodes

Circumstance Action

Nodes preceding the NEON node(s) only
examine the content of the message and do not
modify the message content in any way.

No action required. The message format only
needs to be defined as an input format to
NEON components.

Node following the NEON node(s) only examine
the properties of the message or the message
headers. They do not examine the content of the
message.

No action required.

Message flow nodes that follow the NEON
nodes in a message flow examine and modify
the content of a message.

The format of the message passed out of the
NEON node must be defined either as both an
input and output format in the NEON
dictionary, or as an output format in the
NEON dictionary and as any format in the
MRM.

In this second case, the interchange message
must be a format that can be built by the
NEON formatter and parsed by the IBM
parser.

To make sure that interchange messages are defined in both dictionaries, you must
describe the message format as a COBOL copybook and then import the record
format into both dictionaries.

NEON rules engine
The NEON rules engine works by evaluating a set of rules against an incoming
NEON message. The set of rules applied is selected based on the Application
group and message type of the message. (These values are replaced respectively by
message set and message type properties in Version 2.)

Each rule in the set has a list of subscriptions attached to it, that are executed if the
rule evaluates to true. The possible actions that can be performed as part of this
subscription are:
v Reformat
v Putqueue
v Propagate

These actions result in the following:
v The Reformat action allows a message to be formatted between a NEON input

format and a NEON output format.
v The Putqueue action puts a copy of the message to the putqueue terminal and

attaches the queue given in the action to the message’s destination list. The
Putqueue action has several options that govern how the headers are copied
across (see the MQSeries Integrator User’s Guide Version 1.1 for further details).

v The Propagate action puts a copy of the message to the propagate terminal. It has
identical options to the Putqueue action but does not attach a queue name to the
destination list. The Control Center online help has further information about
the use of the Propagate action.

If no rules evaluate to true, the message is propagated to the noHits terminal
unchanged.

Combining NEON and MQSeries

Appendix E. NEON Rules and Formatter 381

If a failure occurs whilst in the rules node the message is propagated to the failure
terminal.

For full details of how to use and configure the NEON Rules engine, see the
MQSeries Integrator User’s Guide Version 1.1).

NEON rules engine

382 MQSeries Integrator Using the Control Center

Appendix F. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000 383

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX CICS DB2
DB2 Universal Database IBM MQSeries
OS/390 SupportPac

Lotus is a trademark of Lotus Development Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, or service names, may be the trademarks or service
marks of others.

Notices

384 MQSeries Integrator Using the Control Center

Glossary of terms and abbreviations

This glossary defines MQSeries Integrator terms and abbreviations used in this
book. If you do not find the term you are looking for, see the index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the American National Dictionary
for Information Systems, ANSI X3.172-1990, copyright 1990 by the American National
Standards Institute. Copies may be ordered from the American National Standards
Institute, 11 West 42 Street, New York, New York 10036. Definitions are identified
by the symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that have explicit permissions (to publish, to subscribe to, and to
request persistent delivery of a publication message) against a topic in the topic tree. The ACLs define the
implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The programming interface provided by MQSeries that defines a high
level interface to message queuing services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data (for example, the body of a message) that has no discernible
meaning, but is treated as one solid entity that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a common configuration, together with the single Configuration
Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are related in some way. For example, messages that relate to a
particular application.

collective. A hyperconnected (totally connected) set of brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers, execution groups, message flows and message sets assigned to
them, topics and access control specifications.

Configuration Manager. A component of MQSeries Integrator that acts as the interface between the configuration
repository and an executing set of brokers. It provides brokers with their initial configuration, and updates them with
any subsequent changes. It maintains the broker domain configuration.

configuration repository. Persistent storage for broker configuration and topology definition.

connector. See message processing node connector.

© Copyright IBM Corp. 2000 385

content-based filter. An expression that is applied to the content of a message to determine how the message is to
be processed.

context tag. A tag that is applied to an element within a message to enable that element to be treated differently in
different contexts. For example, an element could be mandatory in one context and optional in another.

Control Center. The graphical interface that provides facilities for defining, configuring, deploying, and monitoring
resources of the MQSeries Integrator network.

D
datagram. The simplest form of message that MQSeries supports. Also known as send-and-forget. This type of
message does not require a reply. Compare with request/reply.

deploy. Make operational the configuration and topology of the broker domain.

distribution list. A list of MQSeries queues to which a message can be put using a single statement.

E
e-business. A term describing the commercial use of the Internet and World Wide Web to conduct business (short
for electronic-business).

element. A unit of data within a message that has business meaning, for example, street name

element qualifier. See context tag.

execution group. A named grouping of message flows that have been assigned to a broker. The broker is
guaranteed to enforce some degree of isolation between message flows in distinct execution groups by ensuring that
they execute in separate address spaces, or as unique processes.

Extensible Markup Language (XML). A W3C standard for the representation of data.

F
filter. An expression that is applied to the content of a message to determine how the message is to be processed.

format. A format defines the internal structure of a message, in terms of the fields and order of those fields. A
format can be self-defining, in which case the message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a software product that is graphical rather than textual. It refers to
window-based operational characteristics.

I
implementation function. Function written by a third-party developer for a plug-in node or parser. Also known as
a callback function.

input node. A message flow node that represents a source of messages for the message flow.

installation mode. The installation mode can be Full, Custom, or Broker only. The mode defines the components of
the product installed by the installation process.

J
Java Database Connectivity (JDBC). An application programming interface that has the same characteristics as
ODBC but is specifically designed for use by Java database applications.

386 MQSeries Integrator Using the Control Center

Java Development Kit (JDK). A software package that can be used to write, compile, debug, and run Java applets
and applications.

Java Message Service (JMS). An application programming interface that provides Java language functions for
handling messages.

Java Runtime Environment. A subset of the Java Development Kit (JDK) that contains the core executables and files
that constitute the standard Java platform. The JRE includes the Java Virtual Machine, core classes and supporting
files.

JDBC. Java Database Connectivity.

JDK. Java Development Kit.

JMS. Java Message Service. See also AMI and MQI.

JRE. Java Runtime Environment.

M
message broker. A set of execution processes hosting one or more message flows.

messages. Entities exchanged between a broker and its clients.

message dictionary. A repository for (predefined) message type specifications.

message domain. The source of a message definition. For example, a domain of MRM identifies messages defined
using the Control Center, a domain of NEON identifies messages created using the NEON user interfaces.

message flow. A directed graph that represents the set of activities performed on a message or event as it passes
through a broker. A message flow consists of a set of message processing nodes and message processing node
connectors.

message flow component. See message flow.

message parser. A program that interprets a message bitstream.

message processing node. A node in the message flow, representing a well defined processing stage. A message
processing node can be one of several primitive types or can represent a subflow.

message processing node connector. An entity that connects the output terminal of one message processing node to
the input terminal of another. A message processing node connector represents the flow of control and data between
two message flow nodes.

message queue interface (MQI). The programming interface provided by MQSeries queue managers. The
programming interface allows application programs to access message queuing services. See also AMI and JMS.

message repository. A database holding message template definitions.

message set. A grouping of related messages.

message template. A named and managed entity that represents the format of a particular message. Message
templates represent a business asset of an organization.

message type. The logical structure of the data within a message. For example, the number and location of character
strings.

metadata. Data that describes the characteristic of stored data.

MQI. Message queue interface.

MQRFH. An architected message header that is used to provide metadata for the processing of a message. This
header is supported by MQSeries Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing enhanced function in message processing.

Glossary of terms and abbreviations 387

multi-level wildcard. A wildcard that can be specified in subscriptions to match any number of levels in a topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

Open Database Connectivity. A standard application programming interface (API) for accessing data in both
relational and non-relational database management systems. Using this API, database applications can access data
stored in database management systems on a variety of computers even if each database management system uses a
different data storage format and programming interface. ODBC is based on the call level interface (CLI) specification
of the X/Open SQL Access Group.

output node. A message processing node that represents a point at which messages flow out of the message flow.

P
plug-in. An extension to the broker, written by a third-party developer, to provide a new message processing node
or message parser in addition to those supplied with the product. See also implementation function and utility function.

point-to-point. Style of messaging application in which the sending application knows the destination of the
message. Compare with publish/subscribe.

predefined message. A message with a structure that is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied with the product.

principal. An individual user ID (for example, a log-in ID) or a group. A group can contain individual user IDs and
other groups, to the level of nesting supported by the underlying facility.

property. One of a set of characteristics that define the values and behaviors of objects in the Control Center. For
example, message processing nodes and deployed message flows have properties.

publication node. An end point of a specific path through a message flow to which a client application subscribes.
A publication node has an attribute, subscription point. If this is not specified, the publication node represents the
default subscription point for the message flow.

publish/subscribe. Style of messaging application in which the providers of information (publishers) are decoupled
from the consumers of that information (subscribers) using a broker. Compare with point-to-point. See also topic.

publisher. An application that makes information about a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing applications can put messages on, and get messages from, a queue. A
queue is owned and maintained by a queue manager. Local queues can contain a list of messages waiting to be
processed. Queues of other types cannot contain messages: they point to other queues, or can be used as models for
dynamic queues.

queue manager. A system program that provides queuing services to applications. It provides an application
programming interface (the MQI) so that programs can access messages on the queues that the queue manager owns.

388 MQSeries Integrator Using the Control Center

R
retained publication. A published message that is kept at the broker for propagation to clients that subscribe at
some point in the future.

request/reply. Type of messaging application in which a request message is used to request a reply from another
application. Compare with datagram.

rule. A rule is a definition of a process, or set of processes, applied to a message on receipt by the broker. Rules are
defined on a message format basis, so any message of a particular format will be subjected to the same set of rules.

S
self-defining message. A message that defines its structure within its content. For example, a message coded in
XML is self-defining. Compare with pre-defined message.

send and forget. See datagram.

setup type. The definition of the type of installation requested. This can be one of Full, Broker only, or Custom.

shared. All configuration data that is shared by users of the Control Center. This data is not operational until it has
been deployed.

signature. The definition of the external characteristics of a message processing node.

single-level wildcard. A wildcard that can be specified in subscriptions to match a single level in a topic.

subscriber. An application that requests information about a specified topic from a publish/subscribe broker.

subscription. Information held within a publication node, that records the details of a subscriber application,
including the identity of the queue on which that subscriber wants to receive relevant publications.

subscription filter. A predicate that specifies a subset of messages to be delivered to a particular subscriber.

subscription point. An attribute of a publication node that differentiates it from other publication nodes on the
same message flow and therefore represents a specific path through the message flow. An unnamed publication node
(that is, one without a specific subscription point) is known as the default publication node.

T
terminal. The point at which one node in a message flow is connected to another node. Terminals enable you to
control the route that a message takes, depending whether the operation performed by a node on that message is
successful.

topic. A character string that describes the nature of the data that is being published in a publish/subscribe system.

topology. In the broker domain, the brokers, collectives, and connections between them.

transform. A defined way in which a message of one format is converted into one or more messages of another
format.

U
User Name Server. The MQSeries Integrator component that interfaces with operating system facilities to determine
valid users and groups.

utility function. Function provided by MQSeries Integrator for the benefit of third-party developers writing plug-in
nodes or parsers.

Glossary of terms and abbreviations 389

W
warehouse. A persistent, historical datastore for events (or messages). The Warehouse node within a message flow
supports the recording of information in a database for subsequent retrieval and processing by other applications.

wildcard. A character that can be specified in subscriptions to match a range of topics. See also multilevel wildcard
and single-level wildcard.

wire format. This describes the physical representation of a message within the bit-stream.

W3C. World Wide Web Consortium. An international industry consortium set up to develop common protocols to
promote evolution and interoperability of the World Wide Web.

X
XML. Extensible Markup Language.

390 MQSeries Integrator Using the Control Center

Index

A
Add an existing Broker dialog 178
Add an existing Message Flow

dialog 192
Add an existing Message Set dialog 195
adding

brokers to collectives 178
message components to the

workspace 69
message sets to the workspace 69
principal to an ACL 223

adding to the workspace
message flows 88

Additional Instances property 193
all configuration data

deploying 210, 211
assigning

message flows to execution
groups 192

message sets to brokers 195
assignments

checking in 199
deploying 213, 214
view

displaying 189
authorization required for

assigning resources to brokers 189
creating messages and message

sets 52
running the broker domain 227
setting up publish/subscribe access

control 219

B
broker

adding to a collective 178
connecting to another broker 182
creating 174
creating to add to a collective 180
deleting 184
deleting connections 183
domain, running 227
removing from a collective 181
renaming 185
topology

defining 171

C
C and COBOL default mappings 271
C language bindings, generating 72
categories

adding to the workspace 69
category component of message

definition 41
changing user roles 13
Check node 100
checking

message flows 89

checking in
assignments 199
message flows 96
message sets 79
resources 16

checking out
collectives 173
message flows 96
resources 15
topology 173

clear log messages 238
click, definition of xiii
COBOL language bindings,

generating 72
code-page considerations, external

database 86
collective

creating 176
complete deployment of configuration

data 203
compound types

adding to the workspace 69
creating 65

Compute node 102
message transformation 309
using for data conversion 308

Compute Node
copying between parsers 305

configuration data 3
configuration repository 3
connecting

brokers 182
connections, external database 86
Control Center

exiting 10
main functions of 3
preparation for using 7
starting 8
workspace 4

Control Center views
Message Flows 81
Message Sets 53

coordinated transactions 194
copying

message sets 67
Create a new Broker dialog 174
Create a new Collective dialog 176
Create a new Execution Group

dialog 190
creating

brokers 174
brokers to add to collectives 180
collectives 176
compound types 65
execution group 190
message flow categories 87
message flow nodes 97
message flows 83, 91
message sets 54
messages 56, 65
topics 221

creating (continued)
workspace 14

D
data conversion 308
data model layers 45
Database node 106
DataDelete node 109
DataInsert node 112
DataUpdate node 115
deleting

brokers 184
connections between brokers 183
execution group from a broker 197
promoted property from a message

flow 94
subscriptions 236

delta deployment of configuration
data 203

deployed configuration 3
deploying

all configuration data, complete 211
all configuration data, delta 210
all data, forcibly 212
assignments, complete 214
assignments, delta 213
topics, complete 216
topics, delta 215
topology 217, 218

deployment of configuration data
authorization to perform 209
complete 203
delta 203
forced 204
monitoring progress of 205
stages of 204

deregistering
subscriptions 236

destination list structure 356
documentation, generating 73
double-click, definition of xiii
drag, definition of xiii
DTDs, generating 51
dynamic routing 150

E
editing

message properties 75
element component of message

definition 41
element length component of message

definition 41
element lengths

adding to the workspace 69
element qualifier component of message

definition 42
element qualifiers

adding to the workspace 69

© Copyright IBM Corp. 2000 391

element valid value component of
message definition 41

element valid values
adding to the workspace 69

elements
adding to the workspace 69
reorder 67

ESQL reference 277
anonymous field names 302
assignments 305
basic message structure 277
CASE expressions 290
case sensitivity of ESQL syntax 345
CAST expressions 328
comments 292
complicated SELECTs 310
Compute node SQL 304
correlation names 344
data conversion 308
data types 285
database node statements 319
DATETIME expressions 335
DECLARE statement 306
DELETE statement 320
destination list 356
destination list structure 356
exception list 358
exception list structure 356
EXISTS predicate 316
expression evaluation 346
expression parsing 346
expression type checking 346
expressions

EVAL 291
field references 302
field types for MQRFH2 303
field types for XML 303
function summary 324
functions 336

ABS 339
BITAND 339
BITNOT 340
BITOR 340
BITSTREAM 343
BITXOR 340
CARDINALITY 343
CEIL 340
COALESCE 343
CURRENT_DATE 341
CURRENT_GMTDATE 342
CURRENT_GMTTIME 342
CURRENT_GMTTIMESTAMP 342
CURRENT_TIME 341
CURRENT_TIMESTAMP 342
date and time 341
EXTRACT 341
FIELDNAME 343
FIELDTYPE 343
FLOOR 340
LCASE 339
LENGTH 337
LOCAL_TIMEZONE 342
LOWER 339
LTRIM 338
miscellaneous 342
MOD 340
NULLIF 343

ESQL reference 277 (continued)
functions 336 (continued)

numeric 339
OVERLAY 339
POSITION 336
ROUND 340
RTRIM 338
SQRT 341
string manipulation 336
SUBSTRING 338, 339
TRIM 337
TRUNCATE 341
UCASE 339
UPPER 339

IF statement 308
logical operators 296
mesage transformation 309
MQSeries constants 293
NULLS 295
numeric expressions 335
optional fields 295
PASSTHRU statement 322
predicates 289
querying external databases 316
referring to fields in a message 284
repeating fields 296
reserved keywords 344
SELECT expression 300
supported CASTS 324
symbolic constants 293
UDPATE statement 321
understanding message structure 278
WHILE statement 307
XML examples 347

Attributes 351
CDataSection 355
Comment 354
DocTypeComment 354
DocTypeDecl 348
DocTypePI 354
DocTypeWhiteSpace 354
DTD 347
Entities 349
message body 352
NotationDecl 349
ProcessingInstruction 354
WhiteSpace 354
XML declaration 347
XML.pcdata 353
XmlDecl 347

examples
promoting message flow node

properties 94
exception list structure 356
execution group

creating 190
deleting from a broker 197
deploying, complete 214
deploying, delta 213

exiting the Control Center 10
exporting the workspace 20
external database

code-page considerations 86
connections 86
globally coordinated transactions 86

Extract node 118

F
Filter node 120
FlowOrder node 123
forced deployment of configuration

data 204
forcing deployment of all data 212

G
generating

documentation 73
language bindings 72
message set DTDs 51
XML DTDs 71

global transactions 194
glossary, generating 73

I
identifiers of message components 43
importing legacy formats 51
importing message definitions 70
importing resources into a workspace 18
Input Terminal 125
Input Terminal node 91

L
Label node 127
language bindings, generating 72
layout graph action

Message Flow Definition pane 82
Topology pane 171

legacy formats, importing 51
legacy formats, messages 31
local configuration 5
Log view

clearing 238
refreshing 238
saving the log file 237
working with log messages 237

Log view, description of 237

M
manhattan style action

Message Flow Definition pane 82
Topology pane 171

member relationship between message
components 40

message book, generating 73
message component of message

definition 41
message definition

category component 41
components of 40
element component 41
element length component 41
element qualifier component 42
element valid value component 41
identifiers of components 43
member relationship between

components 40
message component 41
names of components 43

392 MQSeries Integrator Using the Control Center

message definition (continued)
reference relationship between

components 40
type component 41

message definitions
importing 70

message domain
additional 29
BLOB 29
MRM 30
NEON 31
XML 29

message flow nodes
Check

configuring 100
description of 100
properties 100
terminals 100

Compute
configuring 103
description of 102
properties 102
terminals 102

creating 97
Database

configuring 107
description of 106
properties 106
terminals 106

DataDelete
configuring 110
description of 109
properties 109
terminals 109

DataInsert
configuring 113
description of 112
properties 112
terminals 112

DataUpdate
configuring 116
description of 115
properties 115
terminals 115

Extract
configuring 118
description of 118
properties 118
terminals 118

Filter
configuring 121
description of 120
properties 120
terminals 120

FlowOrder
configuring 123
description of 123
properties 123
terminals 123

Input Terminal 91
configuring 125
properties 125
terminals 125

Label
configuring 128
description of 127
properties 127

message flow nodes (continued)
Label (continued)

terminals 127
MQInput

configuring 132
description of 129
properties 129
terminals 129

MQOutput
configuring 136
description of 134
properties 134
terminals 134

MQReply
configuring 138
description of 137
properties 137
terminals 137

NEONFormatter
configuring 140
description of 139
properties 139
terminals 139

NEONRules
configuring 141
description of 141
properties 141
terminals 141

Output Terminal 91
configuring 143
description of 143
properties 143
terminals 143

properties, promoting 92
Publication

configuring 145
description of 145
properties 145
terminals 145

renaming 84
ResetContentDescriptor

configuring 148
description of 147
properties 147
terminals 147

RouteToLabel
configuring 150
description of 150
properties 150
terminals 150

Throw
configuring 154
description of 154
properties 154
terminals 154

Trace
configuring 157
description of 156
properties 156
terminals 156

TryCatch
configuring 159
description of 159
properties 159
terminals 159

Warehouse
configuring 162, 164

message flow nodes (continued)
Warehouse (continued)

description of 161
properties 162
terminals 161

message flows
adding to the workspace 88
Additional Instances property 193
assigning to execution groups 192
authorization to work with 81
categories of, creating 87
checking 89
checking in 96
checking out 96
creating 83, 250
default 165
embedded 91
for installation verification (IVP) 165
IBM-supplied 165
including in other message flows 91
pane, organizing 82
removing from an execution

group 197
setting properties of 193
starting 229
stopping 231
subflow 91, 127, 143

description of 125
view

displaying 81
message model 40
message parser 363

BLOB 377
MQCIH 366
MQDLH 367
MQIIH 368
MQMD 369
MQMDE 370
MQRFH 371
MQRFH2 372
MQRMH 373
MQSAPH 374
MQWIH 375
SMQ_BMH 376
standard properties 363

message repository 3
message repository manager (MRM) 39
message sets 45

adding to the workspace 69
assigning to brokers 195
checking in and out 79
copying 67
creating 54
cut and paste 67
duplicate 67
properties 47
removing from a broker 197
states 49
versions 50
view 53

message transformation 309
messages

adding to the workspace 69
creating 56, 65
CWF format 31
generic XML 32
interpretation 28

Index 393

messages (continued)
legacy formats 31
PDF format 31
predefined MRM 30
predefined NEON 31
self-defining 29, 32
unstructured 29
XML format 31

migration 7
monitoring the broker domain 228
MQInput node 129
MQOutput node 134
MQReply node 137
MQRFH2 field types 303
MQSeries constants in messages 293
MQSeries Integrator groups 12
MRM

message definition process 39
MRM (message repository manager) 39

N
names of message components 43
naming Control Center resources 20
NEON rules and formatter 379
NEONFormatter node 139
NEONRules node 141
new resources 16

O
ODBC connections 86
opening

workspace 14
Operations view, description of 227
Output Terminal 143
Output Terminal node 91

P
parser

plug-in 29
predefined MRM messages 30
predefined NEON messages 31
principal, add to ACL 223
problem determination 21

service trace 21
problem determination Q&A

website xiv
Promote Property dialog 92
promoting message flow node

properties 92
properties of message sets 47
Publication node 145
publish/subscribe access control 219

R
reference relationship between message

components 40
refresh workspace 16
release to release migration 7
removing

brokers from collectives 181
message flow from an execution

group 197

removing (continued)
message set from a broker 197
principal from an ACL 223

renaming
brokers 185
message flow nodes 84
promoted message flow node

properties 94
ResetContentDescriptor node 147
resolving permissions 223
revert to shared 16
right click, definition of xiii
RouteToLabel node 150
running the broker domain 227

S
saving

workspace 15
saving the workspace 5
self-defining messages 29
service trace 21
shared configuration 3
SmartGuide, using to create

messages 65
snap to grid action

Message Flow Definition pane 82
topology pane 172

SQL and ESQL 277
starting

Control Center 8
message flows 229
user tracing 233

states of message sets 49
stopping

message flows 231
user tracing 234

subscriptions
deleting 236
deregistering 236
view

clearing data from 236
description of 235
filtering information displayed

in 235
refreshing 236

T
Throw node 154
topics

creating 221
deploying 215, 216
view

displaying 219
topology

authorization to work with 171
checking in 186
checking out 173
collectives 173
pane, organizing 171
view

displaying 171
Topology

deploying, complete 218
deploying, delta 217

Tour 10

trace, service 21
Trace node 156
TryCatch node 159
type component of message

definition 41

U
unstructured messages 29
user roles, setting 13
user tracing

starting 233
stopping 234

V
versions of message sets 50

W
Warehouse node 161
workspace 4, 14

exporting 20
importing resources 18
refresh 16
revert to shared 16
saving 16
updating 15

X
XML DTDs, generating 71
XML messages

Attributes 35
Comment 36
Document Type Declaration 33
DTD 33
Entities 34
message body 36
ProcesssingInstruction 36
White Space 36
XML declaration 32

XML parser field types 303

Z
zoom action

Message Flow Definition pane 82
Topology pane 171

394 MQSeries Integrator Using the Control Center

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000 395

396 MQSeries Integrator Using the Control Center

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5602-02

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	Where to find more information
	MQSeries Integrator publications
	MQSeries information available on the Internet

	Summary of changes
	Changes for this edition (SC34-5602-02)
	Changes for the first edition:

	Part 1. Introducing the Control Center
	Chapter 1. Control Center concepts
	Working with configuration data
	Configuration and message repositories
	Shared and deployed configurations

	The workspace
	Managing the contents of the workspace
	Saving the workspace

	Monitoring the broker domain

	Chapter 2. Getting started with the Control Center
	Before you start
	Release to release migration
	Starting the Control Center
	Exiting the Control Center

	The Control Center Tour
	Managing permissions to Control Center tasks
	Adding users and groups to the MQSeries Integrator groups
	Setting user roles

	Performing workspace tasks
	Creating a new workspace
	Opening an existing workspace
	Saving the workspace
	Updating the workspace
	Reverting your workspace to the shared repository
	Saving the workspace to the shared repository

	Importing resources
	Exporting the workspace

	Naming Control Center resources
	Problem determination
	Controlling service traces

	Part 2. Using the Control Center
	Chapter 3. Defining messages
	Basic message concepts
	A message tree
	Message domains
	How a message is interpreted
	Unstructured messages in the BLOB domain
	Self-defining messages in the XML domain
	Predefined messages in the MRM domain
	Predefined messages in the NEON domain

	Working with unstructured messages in the BLOB domain
	Working with messages in the XML domain
	XML Declaration
	XmlDecl

	Document Type Declaration
	DocTypeDecl
	NotationDecl
	Entities
	ElementDef
	AttributeList
	AttributeDef
	DocTypePI and ProcessingInstruction
	DocTypeWhiteSpace and WhiteSpace
	DocTypeComment and Comment

	The XML message body
	ProcessingInstruction
	WhiteSpace
	Comment
	AsisElementContent
	CDataSection
	EntityReferenceStart and EntityReferenceEnd

	Working with messages in the MRM domain
	An overview of the message definition process
	The message model
	Reference relationship
	Member relationship
	The components of a message definition
	Component identifiers and names
	An example message definition
	Message sets

	The data model layers
	The documentation layer
	The C language layer
	The COBOL language layer
	The Custom Wire Format layer

	Message set properties
	Message set states
	Message set versioning

	Importing legacy formats
	Generating MRM message set Document Type Descriptors(DTDs)
	Authorization to work with Messages
	The Message Sets view
	Creating message sets
	Creating messages
	Using the SmartGuide to create messages
	Working with message sets
	Adding message sets and message components to theworkspace
	Importing message definitions
	Generating MRM message set definitions in XML DTDs
	Generating language bindings
	Generating documentation
	Editing message sets and components
	Changing the state of a message set
	Checking in and checking out message sets

	Chapter 4. Defining message flows
	Authorization to work with message flows
	The Message Flows view
	Controlling the appearance of the Message Flow Definitionpane

	Creating a message flow
	Creating a message flow category
	Adding a message flow to your workspace
	Checking a message flow
	Including one message flow in another
	Promoting message flow node properties
	Promoting properties through a hierarchy of message flows
	Converging multiple properties
	Renaming promoted properties
	Deleting a promoted property from a message flow
	Promoting mandatory properties
	Example: promoting message flow node properties

	Checking in message flows
	Creating your own message nodes
	The IBM Primitives
	Check node
	Description
	Check node terminals
	Check node properties
	Configuring the check node

	Compute node
	Description
	Compute node terminals
	Compute node properties
	Configuring the Compute node

	Database node
	Description
	Database node terminals
	Database node properties
	Configuring the Database node

	DataDelete node
	Description
	DataDelete node terminals
	DataDelete node properties
	Configuring a DataDelete node

	DataInsert node
	Description
	DataInsert terminals
	DataInsert node properties
	Configuring a DataInsert node

	DataUpdate node
	Description
	DataUpdate node terminals
	DataUpdate node properties
	Configuring a DataUpdate node

	Extract node
	Description
	Extract node terminals
	Extract node properties
	Configuring an Extract node

	Filter node
	Description
	Filter node terminals
	Filter node properties
	Configuring a filter node

	FlowOrder node
	Description
	FlowOrder node terminals
	FlowOrder node properties
	Configuring a FlowOrder node

	Input Terminal
	Description
	Input Terminal node terminals
	Input Terminal properties
	Configuring the Input Terminal

	Label node
	Description
	Label node terminals
	Label node properties
	Configuring a Label node

	MQInput node
	Description
	MQInput node terminals
	MQInput node properties
	Configuring an MQInput node

	MQOutput node
	Description
	MQOutput node terminals
	MQOutput node properties
	Configuring an MQOutput node

	MQReply node
	Description
	MQReply node terminals
	MQReply node properties
	Configuring an MQReply node

	NEONFormatter node
	Description
	NEONFormatter node terminals
	NEONFormatter node properties
	Configuring a NEONFormatter node

	NEONRules node
	Description
	NEONRules node terminals
	NEONRules node properties
	Configuring a NEONRules node

	Output Terminal
	Description
	Output Terminal node terminals
	Output Terminal properties
	Configuring the Output Terminal

	Publication node
	Description
	Publication node terminals
	Publication node properties
	Configuring the Publication node

	ResetContentDescriptor node
	Description
	ResetContentDescriptor node terminals
	ResetContentDescriptor node properties
	Configuring the ResetContentDescriptor node

	RouteToLabel node
	Description
	RouteToLabel node terminals
	RouteToLabel node properties
	Configuring a RouteToLabel node
	Using a RouteToLabel node

	Throw node
	Description
	Throw node terminals
	Throw node properties
	Configuring a Throw node

	Trace node
	Description
	Trace node terminals
	Trace node properties
	Configuring the Trace node
	Using a Trace node

	TryCatch node
	Description
	TryCatch node terminals
	TryCatch node properties
	Configuring the TryCatch node

	Warehouse node
	Description
	Warehouse node terminals
	Storing the entire message
	Storing parts of the message
	Warehouse node properties
	Configuring the Warehouse node to store the entire message
	Configuring the Warehouse node to store parts of a message

	Using the IBM-supplied message flows
	Preparing to use the supplied message flows
	Version 1 Migration Compatibility message flow
	The default publish/subscribe message flow
	Copying the default message flows

	Chapter 5. Defining the broker topology
	Authorization to work with Topology
	The Topology view
	Controlling the appearance of the Topology pane

	Checking out the Topology
	Creating a broker
	Creating a collective
	Adding an existing broker to a collective
	Creating a broker to add to a collective
	Removing a broker from a collective
	Connecting brokers
	Deleting the connection between brokers
	Deleting a broker from the topology
	Renaming a broker
	Checking in the Topology
	Checking in Topology changes
	Checking in multiple changes

	Making changes operational

	Chapter 6. Assigning resources to a broker
	Authorization to assign resources to a broker
	The Assignments view
	Creating an execution group
	Assigning message flows to execution groups
	Setting the properties of an assigned message flow

	Assigning message sets to brokers
	Removing resources from a broker
	Deleting an execution group from a broker
	Removing a message set from a broker
	Removing a message flow from an execution group

	Checking in the Assignments
	Checking in assignments
	Checking in multiple changes

	Refreshing the Assignments view
	Making changes operational

	Chapter 7. Deploying configuration data
	Three types of deployment
	Complete deployment
	Delta deployment
	Forced deployment
	A summary of deployment actions

	The stages of the deployment process
	Stage one of deployment
	Stage two of deployment

	Which data is deployed?
	If some data has not been checked in

	Finding out whether deployment has worked
	If deployment times out
	If the broker is not running

	Deleting a broker from the broker domain
	Authorization to deploy configuration data
	Deploying delta data of all types
	Deploying complete data of all types
	Forcing deployment of all data
	Deploying delta assignments
	Deploying complete assignments
	Deploying delta topics
	Deploying complete topics
	Deploying delta topology
	Deploying complete topology

	Chapter 8. Setting up publish/subscribe access control
	Authorization to set up publish/subscribe access control
	The Topics view
	Creating topics
	Renaming, duplicating, and deleting topics

	Adding a principal to an ACL
	Resolving permissions

	Checking in topics data
	Checking in multiple changes

	Making changes operational

	Chapter 9. Running the broker domain
	Authorization to run the broker domain
	The Operations view
	Monitoring the operational state of the broker domain
	Starting message flows
	Starting all message flows for a broker
	Starting all message flows within an execution group
	Starting a single message flow

	Stopping message flows
	Stopping all message flows for a broker
	Stopping all message flows within an execution group
	Stopping a single message flow

	Starting user tracing
	Starting user tracing for an execution group
	Starting user tracing for a single message flow

	Stopping user tracing
	Stopping user tracing for an execution group
	Stopping user tracing for a single message flow

	The Subscriptions view
	Filtering the information in the Subscriptions view
	Refreshing the Subscriptions view
	Deleting subscriptions

	The Log view

	Part 3. Appendixes
	Appendix A. An example scenario
	The receipt message as an XML message
	Defining the message in the message repository
	Associating the receipt message with a message repositorydefinition

	Assigning the message set to the broker
	Message flows
	How to create a message flow
	Getting the message
	Audit flow
	Checking the message (predefined message only)
	Storing the entire message

	Finance flow
	Extracting elements from the message
	Writing a trace entry

	Stock flow
	Using the stock flow with an XML message
	Using the stock flow with a predefined message

	Partner Flow
	Filtering multibuy records
	Using a loop to update the database
	Initializing the loop control flag
	Testing the value of the loop control flag
	Preparing the values for insertion in the database
	Updating the Multibuy database
	Updating the value of the loop control counter
	Creating the publication (XML message only)
	Publishing the message
	The Register subscriptions flow
	Configuring the Register subscriptions flow

	Including one message flow in another
	Assigning message flows to the execution group
	Deploying the configuration

	Appendix B. C and COBOL default mappings
	Mapping C datatypes to MRM datatypes
	Mapping COBOL datatypes to MRM datatypes

	Appendix C. ESQL reference
	Basic message structure
	Understanding the message structure
	Referring to simple fields in a message
	Using quotes in the field reference

	Data types
	Numbers
	Strings
	Datetime types
	Interval
	Boolean

	Predicates
	BETWEEN predicate
	LIKE predicate
	IN predicate

	Other sorts of expression
	CASE expressions
	EVAL expressions
	Comments

	Using MQSeries constants in message headers
	CodedCharSetId, Encoding, and data conversion

	Optional fields and NULLs
	NULLs and expressions
	The NULL predicate
	Logical operators

	Repeating fields
	Array indices
	Arbitrary repeats: the quantified predicate
	Arbitrary repeats: the SELECT expression

	Field references
	Anonymous field names
	Field types for the XML parser
	Field types for MQRFH2 headers

	Compute node ESQL
	Copying messages between parsers
	Like parsers
	Unlike parsers

	Assignment statement
	DECLARE statement
	WHILE statement
	IF statement
	Using the compute node for data conversion
	Using the compute node for message transformation

	More complicated SELECTs: ROWs and LISTs
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Other expressions
	EXISTS predicate

	Querying external databases
	Example 1
	Example 2
	Example 3
	Example 4

	Database node statements
	INSERT statement
	Example

	DELETE statement
	Example

	UPDATE statement
	Example 1
	Example 2
	Example 3

	PASSTHRU statement

	Function reference
	CASTs
	CAST specifications
	Supported CASTs
	CAST expressions
	Implicit CASTs for comparisons
	Implicit CASTs for arithmetic operations
	Implicit CASTs for assignment
	Data types of values from external sources

	Numeric expressions
	Datetime expressions
	Adding an interval to a Datetime value
	Adding or subtracting two intervals
	Subtracting two Datetime values
	Scaling Intervals
	Extracting fields from Datetimes and Intervals

	Functions
	String manipulation functions
	POSITION
	LENGTH
	TRIM
	LTRIM
	RTRIM
	SUBSTRING
	UPPER, UCASE
	LOWER, LCASE
	OVERLAY

	Numeric functions
	ABS
	BITAND
	BITNOT
	BITOR
	BITXOR
	CEIL
	FLOOR
	MOD
	ROUND
	SQRT
	TRUNCATE

	Datetime functions
	EXTRACT
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_GMTDATE
	CURRENT_GMTTIME
	CURRENT_GMTTIMESTAMP
	LOCAL_TIMEZONE

	Miscellaneous functions
	CARDINALITY
	FIELDNAME
	FIELDTYPE
	BITSTREAM
	COALESCE
	NULLIF

	Reserved keywords
	Initial correlation names
	Case sensitivity of ESQL syntax
	Expression parsing and evaluation
	Expression type checking

	Examples for generic XML messages
	XML declaration
	XmlDecl

	Document Type Declaration
	DocTypeDecl
	NotationDecl
	Entities
	Subcomponents used in Entities
	ElementDef
	Attribute definitions

	The XML message body
	XML.tag
	XML.attr
	XML.pcdata
	ProcessingInstruction and DocTypePI
	CDataSection

	Exception and destination list structure
	Destination lists
	Exception lists

	Appendix D. MQSeries message header parsers
	Parser overview
	The properties pseudo parser
	Maintaining header integrity
	The MQSeries headers parsers
	The MQCIH parser
	The MQDLH parser
	The MQIIH parser
	The MQMD parser
	The MQMDE parser
	The MQRFH parser
	The MQRFH2 parser
	The MQRMH parser
	The MQSAPH parser
	The MQWIH parser
	The SMQ_BMH parser
	The BLOB parser

	Appendix E. NEON Rules and Formatter
	NEONFormatter and NEONRules nodes
	NEON formatter and rules engine
	Combining NEON rules with MQSeries Integrator
	NEON rules engine

	Appendix F. Notices
	Trademarks

	Glossary of terms and abbreviations
	Index
	Sending your comments to IBM

