
MQSeries® Integrator

Using the Control Center
Version 2.0.2

SC34-5602-03

���

MQSeries® Integrator

Using the Control Center
Version 2.0.2

SC34-5602-03

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix. Notices”
on page 163.

Fourth Edition (May 2001)

This edition applies to IBM® MQSeries Integrator Version 2.0.2 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xi

About this book . xiii
Who this book is for . xiii
What you need to know to understand this book xiii
Terms used in this book . xiv
Migration . xiv

Summary of changes . xv
Changes for this edition (SC34-5602-03) xv

Part 1. Using the Control Center . 1

Chapter 1. Tasks . 5
SupportPacs . 5
Tasks described in this book . 5

Chapter 2. Getting started with the Control Center 9
Starting the Control Center . 9
Naming Control Center resources 11
Managing permissions to Control Center tasks 11

Adding users and groups to the MQSeries Integrator groups 13
Setting user roles . 13
Managing permissions for MQSeries brokers 14
Managing permissions for databases 14

Access to Neon tools . 14
Exiting the Control Center . 14

Chapter 3. Using the workspace 15
Create a new workspace . 15
Open your existing workspace 15
Saving your workspace locally 16
Update your workspace. 16

Revert your workspace to the shared repository 17
Save your workspace to the shared repository 18

Import resources . 19
Export resources . 20

Chapter 4. Defining messages 23
The Message Sets view . 23
Creating message sets . 24
Checking in and checking out message sets 25
Creating messages . 26

Defining a message starting from the lowest level elements 27
Defining messages using the SmartGuide 33
Working with message sets . 34

Reordering elements in compound types 34
Undo action for message sets 35
Editing message sets and components 35
Changing the state of a message set. 38
Adding message sets and message components to the workspace. 38

© Copyright IBM Corp. 2000, 2001 iii

||

||
||
||

||

Importing message definitions 39
Generating MRM message set definitions as XML DTDs 40
Generating language bindings 40
Generating documentation. 42

Chapter 5. Working with message flows. 45
The Message Flows view . 45

Controlling the appearance of the Message Flow Definition pane 45
Creating a message flow . 46
Creating a message flow category 48
Adding a message flow to your workspace. 49
Checking a message flow . 49
Including one message flow in another 50
Promoting message flow node properties 51

Promoting properties through a hierarchy of message flows 52
Converging multiple properties 53
Renaming promoted properties 53
Deleting a promoted property from a message flow 53
Promoting mandatory properties 53
Example of how to promote message flow node properties. 53

Checking in message flows . 54
Checking out message flows . 54
Creating your own message nodes 55
Configuring Message flow nodes 55
Using the check node . 55
Using the Compute node . 56
Using the Database node . 56
Using a DataDelete node . 57
Using a DataInsert node . 57
Using a DataUpdate node . 57
Using an Extract node . 58
Using a Filter node . 58
Using a FlowOrder node . 59
Using the Input Terminal . 59
Using a Label node . 60
Using the MQeInput node . 60
Using the MQeOutput node . 61
Using an MQInput node . 61
Using an MQOutput node . 61
Using an MQReply node . 62
Using the NEONFormatter node 62
Using the NEONMap node . 62
Using the NEONRules node . 63
Using the NEONRulesEvaluation node 63
Using the NEONTransform node 63
Using the Output Terminal . 64
Using the Publication node . 64
Using the ResetContentDescriptor node. 65
Using a RouteToLabel node . 66
Using the SCADAInput node . 68
Using the SCADAOutput node 69
Using a Throw node . 69
Using a Trace node . 70
Using theTryCatch node . 70
Warehouse node . 71

Storing the entire message 71

iv MQSeries Integrator Version 2.0.2 Using the Control Center

||

||
||

||
||
||
||
||

||
||

Storing parts of the message. 71
Using the Warehouse node to store the entire message 71
Using the Warehouse node to store parts of a message. 72

Chapter 6. Defining the broker Topology 75
The Topology view . 75

Controlling the appearance of the Topology pane 75
Checking out the Topology . 76
Creating a broker . 76
Collectives . 77

Creating a collective . 77
Adding an existing broker to a collective 78
Creating a broker to add to a collective 79
Removing a broker from a collective 80

Connecting brokers . 80
Deleting the connection between brokers 81
Deleting a broker from the Topology 81
Renaming a broker . 82
Checking in the Topology . 82

Checking in Topology changes 82
Checking in multiple changes 83

Making changes operational . 83

Chapter 7. Assigning resources to a broker 85
The Assignments view . 85
Creating an execution group . 86
Assigning message flows to execution groups 86

Setting the properties of an assigned message flow 87
Assigning message sets to brokers 88
Removing resources from a broker 89

Deleting an execution group from a broker. 89
Removing a message set from a broker. 89
Removing a message flow from an execution group 90

Checking in the assignments . 90
Checking in a broker . 90
Checking in multiple changes 91

Refreshing the Assignments view 91
Making changes operational . 91

Chapter 8. Deploying configuration data 93
Deleting a broker from the broker domain 93
Deploying delta data of all types 94
Deploying complete data of all types 94
Forcing deployment of all data 95
Deploying delta assignments . 95
Deploying complete assignments 96
Deploying delta topics . 96
Deploying complete topics. 97
Deploying delta topology . 97
Deploying a complete topology 98
Monitoring progress of deployment 98

If deployment is in doubt . 98
If the broker is not running 99

Chapter 9. Setting up publish/subscribe access control lists 101
The Topics view . 101

Contents v

Creating topics . 102
Renaming, copying, and deleting topics 103

Adding a principal to an ACL 103
Resolving permissions. 104

Checking in topics data . 104
Checking in multiple changes 104

Making changes operational 105

Chapter 10. Running the broker domain 107
The Operations view . 107
Monitoring the operational state of the broker domain 108
Starting message flows . 109

Starting all message flows for a broker 109
Starting all message flows within an execution group 109
Starting a single message flow 109

Stopping message flows . 110
Stopping all message flows for a broker 110
Stopping all message flows within an execution group 110
Stopping a single message flow 110

Starting user tracing . 111
Starting user tracing for an execution group 111
Starting user tracing for a single message flow 111

Stopping user tracing . 112
Stopping user tracing for an execution group 112
Stopping user tracing for a single message flow 112

Subscriptions view . 113
Filtering information in the Subscriptions view 113
Refreshing the Subscriptions view 114
Deleting subscriptions . 114

Log view . 114
Problem determination. 116

Controlling service traces. 117

Chapter 11. Debugging message flows 119
Authorization . 119
Debugger View . 119
Set debugger options . 120

Select ports used to connect to the debug plug-in 121
Select debug trace level . 121
Select file to use for tracing 121

Debugging a message flow . 121

Part 2. Concepts and references. 125

Chapter 12. Control Center concepts 127
The workspace . 127
Working with configuration data 127

Configuration and message repositories 128
Shared and deployed configurations 128

Chapter 13. Concepts of message flows 129
Using the IBM supplied message flows 129

Copying the default message flows 129

Chapter 14. Concepts of deployment 131
Types of deployment . 131

vi MQSeries Integrator Version 2.0.2 Using the Control Center

||
||
||
||
||
||
||
||

Complete deployment . 131
Delta deployment . 131
Forced deployment . 131
A summary of deployment actions 131

The stages of the deployment process. 132
Stage one of deployment. 132
Stage two of deployment . 132

Which data is deployed? . 132
If some data has not been checked in 133

Chapter 15. Concepts of debugging 135
Display panes . 135
Basic operation . 135
Multiple simultaneous debug sessions 136
Error handling . 136

Chapter 16. Concepts of XML messages 137
XML Declaration . 137

XmlDecl . 138
Document Type Declaration. 138

DocTypeDecl . 138
NotationDecl . 139
Entities . 139
ElementDef. 140
AttributeList. 140
AttributeDef. 140
DocTypePI and ProcessingInstruction 141
DocTypeWhiteSpace and WhiteSpace 141
DocTypeComment and Comment 141

The XML message body . 142
ProcessingInstruction . 142
WhiteSpace . 142
Comment . 143
AsisElementContent . 143
CDataSection . 143
EntityReferenceStart and EntityReferenceEnd 143

Chapter 17. Concepts of NEONRules and NEONFormatter Support for
MQSeries Integrator . 145

The NEONMSG parser . 145
Parsing a NEON Format message into an MQSeries Integrator message

tree . 145
Reserializing a message tree into a NEONFormatter message format . . . 146

Using the NEONMSG parser with ESQL 146
Referencing fields in a NEONMSG domain message 146
Creating a NEONMSG domain message 147

The NEONTransform and NEONMap nodes. 147
Map Name and Map Version 147
Other attributes . 148
Output Domain . 148
Output Message Type and Output Message Set 148
The NEONMap node . 149

The NEONRulesEvaluation node 150
Map and Transform actions 150
Propagate, Put Queue and Route actions 153

Access to Rules and Formats 154

Contents vii

||
||
||
||
||

|
||
||
|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

Chapter 18. C and COBOL default mappings 155
Mapping C datatypes to MRM datatypes 155
Mapping COBOL datatypes to MRM datatypes. 157

Part 3. Appendixes . 161

Appendix. Notices . 163
Trademarks. 164

Glossary of terms and abbreviations 165

Bibliography . 171
MQSeries Integrator Version 2.0.2 cross-platform publications 171
MQSeries Integrator Version 2.0.2 platform-specific publications 171
MQSeries Everyplace publications 171
NEONRules and NEONFormatter Support for MQSeries Integrator publications 171
Softcopy books . 172

Portable Document Format (PDF) 172
MQSeries information available on the Internet. 173

Index . 175

Sending your comments to IBM 185

viii MQSeries Integrator Version 2.0.2 Using the Control Center

||

Figures

1. The Control Center . 11
2. The Key icon and the New icon . 17
3. The Message Sets view . 23
4. Creating a message - sample message . 26
5. A message defined in the Message Sets view . 27
6. The Message Flows view. 45
7. The Promote Property dialog . 52
8. A message flow with RouteToLabel and Label nodes 67
9. The Assignments view . 85

10. The Operations view . 107
11. The Subscriptions view . 113
12. The Log view. 115
13. The Debugger screen . 120

© Copyright IBM Corp. 2000, 2001 ix

||
||

x MQSeries Integrator Version 2.0.2 Using the Control Center

Tables

1. Editing relationships and properties: check-out requirements 35
2. Typical ResetContentDescriptor node attributes 65
3. Deployment summary . 131
4. Comparison of the functions of the NEONRulesEvaluation node and NEONRules node 150
5. behavior of the NEONRules node reformat action 151
6. behavior of the NEONRulesEvaluation node transform action 152
7. C datatypes and their default settings in the MRM 156
8. COBOL datatypes and their default settings in the MRM 158
9. File names of MQSeries Integrator book PDFs 172

© Copyright IBM Corp. 2000, 2001 xi

||
||
||
||
||

||

xii MQSeries Integrator Version 2.0.2 Using the Control Center

About this book

This book describes how to use theMQSeries Integrator Version 2.0.2 Control
Center.

This edition of the book has been restructured, and readers of earlier editions will
see that the retail scenario and ESQL appendices are no longer included. The retail
scenario is now included in the SupportPac™ IC03, and ESQL is described in a
separate book, MQSeries Integrator ESQL Reference.

MQSeries Integrator Using the Control Center has been structured to make the
information in it easy to access. The details of the tasks that you need to perform,
and their execution are shown in the first part of this book, whilst the second part
describes the concepts that lie behind the tasks. This latter section is provided for
reference purposes: when you start using this book you will probably already have
met most of the concepts involved if you have read the books described in “What
you need to know to understand this book”.

A glossary and bibliography are provided at the end of this book.

Who this book is for
This book is intended for anyone who needs to use the Control Center to perform
the tasks described above.

The first part of this book describes how to perform your tasks using this tool, while
the second part explains both the concepts behind the tool, and useful reference
information.

What you need to know to understand this book
You need to have read and understood the general introduction to all aspects of
MQSeries Integrator in the MQSeries Integrator Introduction and Planning book.

Before you can start to use the Control Center, you must have successfully
completed the following tasks:

v MQSeries Integrator must have been installed.

v Users and groups must have been added to MQSeries Integrator security
groups.

v All databases required by MQSeries Integrator must have been created, and
users and groups authorized to use them.

v A Configuration Manager must have been created. A broker must also have been
created if you will be deploying data.

v If you are using ACLs on publish/subscribe topics, a User Name Server must
have been created and started.

v The MQSeries resources required to connect the queue managers hosting
MQSeries Integrator components must have been defined.

v Listeners for the queue managers must have been started.

v The Configuration Manager must have been started.

For more information about these tasks, see the MQSeries Integrator installation
guide for your operating system.

© Copyright IBM Corp. 2000, 2001 xiii

|

For information about messages, their structure and definition, please see the
MQSeries Integrator ESQL Reference book.

Terms used in this book
All references in this book to MQSeries Integrator are to MQSeries Integrator
Version 2.0 unless otherwise stated.

All references in this book to Windows NT® are also applicable to Windows® 2000
unless otherwise stated. MQSeries Integrator components that are installed and
operated on Windows NT can also be installed and operated on Windows 2000.

Migration
If you are migrating from an earlier version of MQSeries Integrator then please see
the migration information in the MQSeries Integrator Administration Guide.

About this book

xiv MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

Summary of changes

This section describes changes in this edition of MQSeries Integrator using the
Control Center . Changes since the previous edition of the book are marked by
vertical lines to the left of the changes.

Changes for this edition (SC34-5602-03)
v This book has been reformatted so that all the tasks you can perform using the

Control Center are described in the first part of the book. The second half of the
book provides reference and concept information.

v The chapter on ESQL, and much of the background information on message
structure has been moved to the MQSeries Integrator ESQL Reference

v The section “Chapter 17. Concepts of NEONRules and NEONFormatter Support
for MQSeries Integrator” on page 145 is new.

v The description of Control Center tour has been moved to the MQSeries
Integrator Introduction and Planning book.

v The new debugger facility is described in “Chapter 11. Debugging message
flows” on page 119 and “Chapter 15. Concepts of debugging” on page 135.

v The cut and duplicate functions have been removed, and copy and paste now
work more intuitively.

v The function of the message flow import and export has been enhanced.

v You are now able to change the orientation of terminals on nodes in a Message
Flows pane.

v Log view has been redesigned.

v The lock menu has been removed, however the check-in, check-out, and unlock
menus remain so there is no loss of function.

v You can now double-click on a resource in a list to add it to a workspace.

v You can double-click on items in the Views to show the property dialog.

v It is now possible to create bend points when connecting message nodes.

v When using the Message Flow and Topology panes the settings for zoom,
Manhattan, and snap to grid can be saved between sessions.

v It is now possible to add a description of the connection between message flow
nodes.

v A progress indicator is now shown when checking-in, saving a workspace,
importing and exporting.

v The addition of new NEON nodes:

– NEONTransform

– NEONMap

– NEONRulesEvaluation

the NEONFormatter and NEONRules nodes become obsolete in this release,
and are only included for backwards compatibility.

v The MQeInput, MQeOutput, SCADAInput and SCADAOutput nodes are all new
for this release.

The second edition (SC34-5602-02) of this book included new a section ″Copying
messages between parsers″ which can now be found in the MQSeries Integrator
ESQL Reference book .

© Copyright IBM Corp. 2000, 2001 xv

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|
|

Changes for the first edition (SC34-5602-01) of this book include:

v Additional information to cover the following product changes:

– New products MQSeries Integrator for AIX® Version 2.0.1 and MQSeries
Integrator for Sun Solaris Version 2.0.1.

– New IBM primitive nodes (FlowOrder, Label, and RouteToLabel)

v Extended scenario showing additional function

v Extended examples of ESQL usage

v Extended information about supported messages

v Minor technical and editorial improvements throughout the book

Changes

xvi MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|
|

|

|

|

|

|

Part 1. Using the Control Center

Chapter 1. Tasks . 5
SupportPacs . 5
Tasks described in this book . 5

Chapter 2. Getting started with the Control Center 9
Starting the Control Center . 9
Naming Control Center resources 11
Managing permissions to Control Center tasks 11

Adding users and groups to the MQSeries Integrator groups 13
Using Windows NT . 13
Using Windows 2000 . 13

Setting user roles . 13
Setting Control Center preferences 13

Managing permissions for MQSeries brokers 14
Managing permissions for databases 14

Access to Neon tools . 14
Exiting the Control Center . 14

Chapter 3. Using the workspace 15
Create a new workspace . 15
Open your existing workspace 15
Saving your workspace locally 16
Update your workspace. 16

Revert your workspace to the shared repository 17
Save your workspace to the shared repository 18

Import resources . 19
Export resources . 20

Chapter 4. Defining messages 23
The Message Sets view . 23
Creating message sets . 24
Checking in and checking out message sets 25
Creating messages . 26

Defining a message starting from the lowest level elements 27
Defining messages using the SmartGuide 33
Working with message sets . 34

Reordering elements in compound types 34
Undo action for message sets 35
Editing message sets and components 35
Changing the state of a message set. 38
Adding message sets and message components to the workspace. 38

Importing message definitions 39
Generating MRM message set definitions as XML DTDs 40
Generating language bindings 40
Generating documentation. 42

Chapter 5. Working with message flows. 45
The Message Flows view . 45

Controlling the appearance of the Message Flow Definition pane 45
Node orientation . 46
Creating bend points . 46

Creating a message flow . 46
Creating a message flow category 48

© Copyright IBM Corp. 2000, 2001 1

|

||
||
||

||

||

||

||
||

Adding a message flow to your workspace. 49
Checking a message flow . 49
Including one message flow in another 50
Promoting message flow node properties 51

Promoting properties through a hierarchy of message flows 52
Converging multiple properties 53
Renaming promoted properties 53
Deleting a promoted property from a message flow 53
Promoting mandatory properties 53
Example of how to promote message flow node properties. 53

Checking in message flows . 54
Checking out message flows . 54
Creating your own message nodes 55
Configuring Message flow nodes 55
Using the check node . 55
Using the Compute node . 56
Using the Database node . 56
Using a DataDelete node . 57
Using a DataInsert node . 57
Using a DataUpdate node . 57
Using an Extract node . 58
Using a Filter node . 58
Using a FlowOrder node . 59
Using the Input Terminal . 59
Using a Label node . 60
Using the MQeInput node . 60
Using the MQeOutput node . 61
Using an MQInput node . 61
Using an MQOutput node . 61
Using an MQReply node . 62
Using the NEONFormatter node 62
Using the NEONMap node . 62
Using the NEONRules node . 63
Using the NEONRulesEvaluation node 63
Using the NEONTransform node 63
Using the Output Terminal . 64
Using the Publication node . 64
Using the ResetContentDescriptor node. 65
Using a RouteToLabel node . 66
Using the SCADAInput node . 68
Using the SCADAOutput node 69
Using a Throw node . 69
Using a Trace node . 70
Using theTryCatch node . 70
Warehouse node . 71

Storing the entire message 71
Storing parts of the message. 71
Using the Warehouse node to store the entire message 71
Using the Warehouse node to store parts of a message. 72

Chapter 6. Defining the broker Topology 75
The Topology view . 75

Controlling the appearance of the Topology pane 75
Checking out the Topology . 76
Creating a broker . 76
Collectives . 77

2 MQSeries Integrator Version 2.0.2 Using the Control Center

||

||
||

||
||
||
||
||

||
||

Creating a collective . 77
Adding an existing broker to a collective 78
Creating a broker to add to a collective 79
Removing a broker from a collective 80

Connecting brokers . 80
Deleting the connection between brokers 81
Deleting a broker from the Topology 81
Renaming a broker . 82
Checking in the Topology . 82

Checking in Topology changes 82
Checking in multiple changes 83

Making changes operational . 83

Chapter 7. Assigning resources to a broker 85
The Assignments view . 85
Creating an execution group . 86
Assigning message flows to execution groups 86

Setting the properties of an assigned message flow 87
Assigning message sets to brokers 88
Removing resources from a broker 89

Deleting an execution group from a broker. 89
Removing a message set from a broker. 89
Removing a message flow from an execution group 90

Checking in the assignments . 90
Checking in a broker . 90
Checking in multiple changes 91

Refreshing the Assignments view 91
Making changes operational . 91

Chapter 8. Deploying configuration data 93
Deleting a broker from the broker domain 93
Deploying delta data of all types 94
Deploying complete data of all types 94
Forcing deployment of all data 95
Deploying delta assignments . 95
Deploying complete assignments 96
Deploying delta topics . 96
Deploying complete topics. 97
Deploying delta topology . 97
Deploying a complete topology 98
Monitoring progress of deployment 98

If deployment is in doubt . 98
If the broker is not running 99

Chapter 9. Setting up publish/subscribe access control lists 101
The Topics view . 101
Creating topics . 102

Renaming, copying, and deleting topics 103
Adding a principal to an ACL 103

Resolving permissions. 104
Checking in topics data . 104

Checking in multiple changes 104
Making changes operational 105

Chapter 10. Running the broker domain 107
The Operations view . 107

Part 1. Using the Control Center 3

Monitoring the operational state of the broker domain 108
Starting message flows . 109

Starting all message flows for a broker 109
Starting all message flows within an execution group 109
Starting a single message flow 109

Stopping message flows . 110
Stopping all message flows for a broker 110
Stopping all message flows within an execution group 110
Stopping a single message flow 110

Starting user tracing . 111
Starting user tracing for an execution group 111
Starting user tracing for a single message flow 111

Stopping user tracing . 112
Stopping user tracing for an execution group 112
Stopping user tracing for a single message flow 112

Subscriptions view . 113
Filtering information in the Subscriptions view 113
Refreshing the Subscriptions view 114
Deleting subscriptions . 114

Log view . 114
Problem determination. 116

Controlling service traces. 117

Chapter 11. Debugging message flows 119
Authorization . 119
Debugger View . 119
Set debugger options . 120

Select ports used to connect to the debug plug-in 121
Select debug trace level . 121
Select file to use for tracing 121

Debugging a message flow . 121

4 MQSeries Integrator Version 2.0.2 Using the Control Center

||
||
||
||
||
||
||
||

Chapter 1. Tasks

Depending on the tasks and the level of experience, more or less information will
be required when identifying and implementing tasks. To help in this process we
have separated the different levels of information so you can find what you need
more easily.

If you are unfamiliar with MQSeries Integrator then you will need to understand the
sorts of tasks that you can perform using the Control Center. The primary source for
this information is this book, and a summary of all the Control Center tasks are
described in “Tasks described in this book”.

Note: If you want to create your own plug-in nodes and carry out the tasks for
installation, this is described in the MQSeries Integrator Programming Guide.

Once you have identified the tasks that you need to perform, you can use the
online help to

v Populate the views of the Control Center

v Develop, design and connect resources you create

When developing message flows you might decide to use complex nodes such as
the Compute node. Complex nodes need to be customized to suit your
environment. This manipulation is done using ESQL which is described in the
MQSeries Integrator ESQL Reference.

SupportPacs
v SupportPac IC03 describes business scenarios, for example a retail scenario,

which includes sample code and worked examples in addition to documentation.

v SupportPac IC04 provides suggested procedures for version management and
change control of MQSeries Integrator Version 2.0 objects.

v SupportPac IH03 contains a GUI based utility that is useful for the development
and testing of MQSeries Integrator Version 2.0 applications. Test messages are
stored as files, which are then read by the application and written to an
MQSeries queue.

v SupportPac ID03 MQSeries Integrator - Working with MQSeries Everyplace and
SCADA, contains information about using MQSeries Everyplace and SCADA.

See “MQSeries information available on the Internet” on page 173 for more details.

Tasks described in this book
This part of this book describes the tasks and sub-tasks that you might wish to
perform when using the Control Center.

The main tasks, which are summarized in this chapter, are:

v “Chapter 2. Getting started with the Control Center” on page 9

v “Chapter 3. Using the workspace” on page 15

v “Chapter 4. Defining messages” on page 23

v “Chapter 5. Working with message flows” on page 45

v “Chapter 6. Defining the broker Topology” on page 75

v “Chapter 7. Assigning resources to a broker” on page 85

© Copyright IBM Corp. 2000, 2001 5

|

|

|
|
|
|

|
|
|
|

|
|

|
|

|

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|

|
|

|
|

|

|

|

|

|

|

|

v “Chapter 8. Deploying configuration data” on page 93

v “Chapter 9. Setting up publish/subscribe access control lists” on page 101

v “Chapter 10. Running the broker domain” on page 107

v “Chapter 11. Debugging message flows” on page 119

Note: Authority to perform tasks
It is important to have the appropriate level of authorization to perform each of
these tasks. For more information see “Managing permissions to Control
Center tasks” on page 11.

Apart from starting and exiting from the Control Center, ″Getting started with the
Control Center″, describes:

v The naming conventions for Control Center resources

v How to authorize Users to different roles, and manage access to tasks according
to role responsibilities

″Using the Workspace″ describes the tasks you might wish to perform on a
workspace including:
v “Create a new workspace” on page 15
v “Open your existing workspace” on page 15
v “Saving your workspace locally” on page 16
v “Update your workspace” on page 16
v “Import resources” on page 19
v “Export resources” on page 20

The concepts of using a workspace are described in “The workspace” on page 127.

The ″Defining messages″ chapter shows you how to create and manage message
sets. It describes both the Message Repository Manager (MRM), (bottom-up
approach, and SmartGuide message creation. The latter method:
v Creates message type automatically
v Can create elements and lengths
v Can reorder elements
v Means that you will need to set Connection and Custom Wire attributes after the

message is created

The chapter also describes:
v “Importing message definitions” on page 39
v “Generating MRM message set definitions as XML DTDs” on page 40
v “Generating language bindings” on page 40
v “Generating documentation” on page 42

″Defining message flows″ describes how to create and update a message flow,
how to tailor a view of a flow to meet your requirements, and describes the
message flow nodes available. An example of how to use each node is also given.
For information about parameters (for example) used by these nodes, see the
online help.

For more information about message flow concepts, see “Chapter 13. Concepts of
message flows” on page 129.

″Defining the broker topology″ describes how to set up your broker environment
so that you will be ready for ″Assigning resources to a broker″.

SupportPacs

6 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|

|
|

|
|
|
||||

|
|

|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

″Deploying configuration data″ describes how to implement your new
configuration, by transmitting it to the relevant brokers.

For more information about the concepts of deployment, see “Chapter 14. Concepts
of deployment” on page 131.

″Setting up publish/subscribe access control″ describes how to:

v Create a new publish/subscribe topic

v Manage access control lists

v Publish messages

v Request persistent delivery of messages

v Subscribe to topics

″Running the broker domain″ describes how to monitor the status of brokers and
message flows while they are running. This chapter also describes how to use user
traces, and covers problem determination.

″Debugging message flows″ describes how to use the debugging tool provided
with MQSeries Integrator Version 2.0.2.

SupportPacs

Chapter 1. Tasks 7

|
|

|
|

|

|

|

|

|

|

|
|
|

|
|

8 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 2. Getting started with the Control Center

This chapter describes:

v “Starting the Control Center”

v “Naming Control Center resources” on page 11

v “Managing permissions to Control Center tasks” on page 11

v “Exiting the Control Center” on page 14

v “Problem determination” on page 116

.

Starting the Control Center
To start the Control Center, you can:

v Double click the Control Center icon in the MQSeries Integrator product folder
on your desktop.

or

v From the Start menu, its Programs —>MQSeries Integrator 2.0. —> Control
Center

When you start the Control Center, the Configuration Manager Connection dialog
is displayed. To complete the dialog:

v In the Host Name field, type the network host name of the system on which the
Configuration Manager has been created.

v In the Port field, type the port number on which the queue manager hosting the
Configuration Manager is listening. The default port number is 1414. (You can
find out the port number to enter here from MQSeries Services. Right click the
listener associated with the queue manager, select Properties and click the
Parameters tab to display the port number.) No other queue manager must be
listening on this port.

v In the Queue Manager Name field, type the name of the queue manager hosting
the configuration manager.

v Click OK.

After you have started the Control Center and connected to the Configuration
Manager, you can update these connection details. To do this, click Connection
from the Control Center File menu. The Configuration Manager Connection
dialog is displayed. You can alter the values displayed in this dialog, and click OK
to apply the new values. If you do this from an unsaved workspace, you are given
the opportunity to save the workspace before changing the connection information.

If you change your mind about the values you have typed in the dialog and have
not clicked OK to apply them, click Reset to restore the values with which you
connected to the Configuration Manager.

Note: You must not alternate between alias names for the Host Name value. If you
connect using a different alias for the same host, you get a different local
configuration that is unique to the alias name. You will no longer be able to
access resources you created in your original local configuration, nor will you
be able to check in any resources checked out to the original local
configuration.

© Copyright IBM Corp. 2000, 2001 9

When you start the Control Center subsequently, the fields in the Configuration
Manager Connection dialog display the values you supplied when you last
connected to the Configuration Manager.

Starting the Control Center

10 MQSeries Integrator Version 2.0.2 Using the Control Center

The Control Center interface looks something like this:

You see all the tabs shown here if your user role is All roles. User roles are
described in “Managing permissions to Control Center tasks”.

Naming Control Center resources
There are some rules you must follow when providing names for the resources you
create using the Control Center:

v You can use the characters:

– Uppercase A — Z

– Lowercase a — z

– Numerics 0 — 9

– The special characters $ % ‘ ’ - _ @ ˜ ! () { } [] | # & + , ; =

v You can also use the space character, and any Unicode character, except control
codes and reserved characters, with an ASCII value greater than 127 (X'7F').

More specific guidelines exist on some operating systems. For example, names on
UNIX® systems (AIX, HP-UX, and Sun Solaris) are case sensitive, but on Windows
NT they are not. Therefore you must ensure that names specified in the Control
Center, for example broker names, exactly match the names used on the system on
which they are created. For more information about these guidelines, see the
MQSeries Integrator Administration Guide.

Managing permissions to Control Center tasks
The Control Center supports many different tasks that you perform when working
with configuration data or monitoring operational brokers. These tasks are grouped
by user role, as follows:

Figure 1. The Control Center

Starting the Control Center

Chapter 2. Getting started with the Control Center 11

|
|

Message flow and message set developer
Can create message flows and message sets.

Message flow and message set assigner
Can create execution groups within brokers, assign message flows to
execution groups, and assign message sets to brokers. Can also deploy
this data.

Operational domain controller
Can create brokers and collectives, and define the relationships between
them (the topology). Can also deploy all types of data, and monitor the
operational broker domain.

Topic security administrator
Can create topics and associated ACLs. Can also deploy this data.

How to select the role you want to adopt is described in “Setting user roles” on
page 13.

According to the role you select, the Control Center displays only those views or
tabs that are relevant to that role, as follows:

v The Message flow and message set developer sees the Message Sets view
and the Message Flows view.

v The Message flow and message set assigner sees the Assignments view only.

v The Operational domain controller sees the Topology view, the Assignments
view, the Topics view, the Operations view, and the Subscriptions view.

v The Topic security administrator sees the Topics view and the Topology view.

If you want to perform all tasks, you should select All roles, which allows you to see
all available views.

The role you select for yourself only configures what you see on the Control Center.
It does not control the type of objects you can view or modify. For security
purposes, this aspect is controlled by the MQSeries Integrator security groups of
which you are a member.

The MQSeries Integrator security groups, and the Control Center tasks that
membership of those groups allows, are:

mqbrdevt
Members of this group can design message sets and message flows.

mqbrasgn
Members of this group can manage execution groups within brokers; view
message sets and message flows; assign message flows to execution
groups; and assign message sets to brokers.

mqbrops
Members of this group can create and delete brokers; deploy, start, and
stop message flows; start and stop trace activity on message flows;
manage and deploy the broker domain topology, including collectives; view
the whole deployed system, including message sets, message flows, and
subscriptions; deploy topics; and view logs that report on the deployment
activity.

Managing permissions to Control Center tasks

12 MQSeries Integrator Version 2.0.2 Using the Control Center

mqbrtpic
Members of this group can manage topics, and the access control lists for
the topic tree; deploy topics; view the logs that report on that deployment
activity.

The Configuration Manager performs a security check based on the above
whenever a Control Center user attempts to view or modify an object in the
configuration and message repositories.

Adding users and groups to the MQSeries Integrator groups
The method for adding users and groups to MQSeries Integrator is described here
for both Windows NT and Windows 2000.

Using Windows NT
You must use the Windows NT User Manager to add users and groups to the
MQSeries Integrator security groups, as follows:

1. Invoke the Windows NT User Manager by selecting Start —> Programs —>
Administrative Tools (Common) —> User Manager.

2. Double click the MQSeries Integrator group you want to update.

3. Either double-click on the user ID or

v Select Add. From the list of available user IDs, select the user ID to be
added to the group

v Click Add. Click OK to close the Add Users and Groups

v Click OK to close the Local Group Properties dialog.

4. Close the User Manager.

Using Windows 2000
To add users and groups to the MQSeries Integrator Groups:

1. Invoke Start -> Settings -> Control Panel -> Users and Passwords

2. Go to the Advanced tab

3. Select Advanced User Management

4. Select groups from the Local Users and Groups window

5. Double click on each of the MQSeries Integrator groups and select to add users

The authorization is effective after a delay of approximately five minutes, as the
Configuration Manager caches this information.

For more detailed information about the MQSeries Integrator groups, and about
security in general, see the MQSeries Integrator Introduction and Planning.

Setting user roles
At any time during a Control Center session, you can change your user role. To set
your Control Center user role:

1. From the File menu in the Control Center menu bar, click Preferences and then
Control Center.

The Control Center Preferences dialog is displayed.

2. In the page, which is collapsed by default, click on User roles

Setting Control Center preferences
You can select only one role at a time.

Managing permissions to Control Center tasks

Chapter 2. Getting started with the Control Center 13

|
|

|

|
|

|

|

|
|

|

|

|

|

|

|

|
|

User preferences that govern the general appearance of the Control Center can
also be set by selecting File —> Preferences.... For more information, see the
Control Center online help.

You can also control the presence of the Log view from the Control Center
Preferences dialog. The default setting is that the Log view is always visible,
regardless of the user role currently in force. You can change the Show Log setting
in the Control Center page if you want to suppress the Log view.

The setting of this option is remembered from session to session.

Managing permissions for MQSeries brokers
Please see MQSeries Integrator Administration Guide for information about
managing permissions for MQSeries brokers.

Managing permissions for databases
Please see MQSeries Integrator Administration Guide for information about
managing permissions for databases.

Access to Neon tools
There is a Neon menu item provided in the Control Center Message Sets pane.
This gives you access to the NEONFormatter, NEONRules, and Visual Tester.

See the NEON books for more information as NEON tools are not described in the
MQSeries Integrator documentation.

Exiting the Control Center
To exit the Control Center, click Exit from the File menu in the menu bar. You are
prompted to save any unsaved work before exiting.

Setting user roles

14 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|

|
|
|
|

|

Chapter 3. Using the workspace

If you want to create new configuration resources, you use an operation called
create. This creates a new object within the Control Center and adds a reference to
it to your workspace.

At this point, your new object does not exist in the shared configuration. To make
your object visible in the shared configuration, you use an operation called check in.
Once an object has been checked in it becomes visible to all other Control Center
users.

If you want to modify an object in the shared configuration, you use an operation
called check out. This locks the object in the shared configuration, preventing other
Control Center users from modifying it, and makes a copy in your Control Center.

When you have made your modifications, you save them back to the shared
configuration using check in, which also unlocks the object so that others can
modify it.

If you want to destroy an object, you use an operation called delete. The object is
deleted from wherever it exists, which could be the Control Center (if the object is
newly created), or the shared configuration. If the object that you delete is in the
shared configuration, and another user has a copy of this object in a local
workspace, that user is not notified that you have deleted the object unless a
refresh is requested.

Create a new workspace
To create a new workspace, click File —> New Workspace.

A new workspace is created. This workspace is untitled, and displays the default
contents. You specify a title for the workspace when you save it.

You are prompted to save any changes made in a previous workspace: if you do
not do so, they are discarded.

Open your existing workspace
When you open an existing workspace, your workspace is populated with the
resources from the chosen file, and these replace the contents of any previous
workspace.

You are prompted to save any changes made in a previous workspace: if you do
not do so, they are discarded.

To open an existing workspace:

1. Click File —> Open Workspace.

The Open dialog is displayed.

2. Select the file (which must be a file of any name and extension that contains
valid XML: typically the file will have an extension of .xml) from the list
presented, or specify the name of the file in the File name field. Click Open to
open the selected workspace.

© Copyright IBM Corp. 2000, 2001 15

Alternatively, if you have recently used the workspace, click the File menu in the
Control Center menu bar, which displays the names of the most recently used
workspaces. There can be up to four names in this list. If the workspace you want
is listed in the File menu, click its name to open it.

Saving your workspace locally
When you save a workspace, both the workspace and any resources created or
modified in that workspace are saved to the local configuration.

To save a workspace, click File —> Save Workspace. The workspace contents are
saved to an XML file. If the workspace is untitled, you are prompted for a name.
The name you give it is displayed on the Control Center title bar whenever that
workspace is your current workspace.

Note: If you want to save all the resources ″behind the workspace″ then you must
export them as described in “Export resources” on page 20.

To save a named workspace under a different name, click File —> Save
Workspace As. The workspace contents are saved to an XML file of the specified
name. This takes a copy of the workspace contents. While the save is in progress,
the status bar at the bottom of the window, displays the percentage of work done,
and text describing the work in progress.

You can have as many workspaces as you like, but you can have only one local
configuration per shared configuration.

It is possible to switch between shared configurations on different Configuration
Managers (for example, between a test and production system) using the File —>
Connection dialog. For each such shared configuration, there is one local
configuration.

Update your workspace
Before you can make significant updates to any resource in your workspace, you
must check it out of the repository in which it is maintained. Message sets and all
their components are maintained in the message repository, all other resources are
maintained in the configuration repository. Resources that are currently checked out
have the Key icon against their entries wherever they are displayed. They are
locked to your user ID, thus preventing other users making changes to them.

You can also work with new resources, that you create within your workspace. New
resources that have never been checked in have the New icon against their entries
wherever they are displayed:

Using the workspace

16 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|
|

|
|
|
|

The two icons are shown in Figure 2.

If you see an instance of an item flagged with an X, it is a ″stale reference″. A stale
reference can occur when a message flow type is created and dropped on to a
message flow. This message flow type is subsequently deleted by someone else on
the server, and the name of an instance of an item on the pop-up menu is flagged
with an X.

You can also take the following actions for the workspace itself:
v “Revert your workspace to the shared repository”
v “Save your workspace to the shared repository” on page 18

Revert your workspace to the shared repository
When you revert your workspace to the shared repository, any changes you made
to it since opening the local version are lost, and any resources you had checked
out are unlocked. The latest versions of the workspace objects in the shared
repository are opened.

To revert to the shared version of the workspace, you can use either of the
following two methods:

v File —> Revert to Shared

This action unlocks all resources you have checked out, in all your workspaces.
Changes you have made are lost. All resources revert back to the state they
were in when you checked them out.

For example, if you have checked out a message flow and have changed a
property value for a node within it, and have then selected Revert to Shared, the
message flow is unlocked and its content reloaded from the Configuration
Manager. The change you have made to the node is lost.

Figure 2. The Key icon and the New icon. The Topology is checked out, and brokers
BROKER_1 and BROKER_2 and the collective have never been checked in. Broker
MQSI_SAMPLE_BROKER is already checked in (and has no icon against it).

Using the workspace

Chapter 3. Using the workspace 17

|
|
|
|
|

This action does not restore deleted resources. Any resource that you have
deleted remains deleted.

v View —> Refresh from Shared

This action does not affect the state of the resources you have checked out. The
content of all other resources is updated to be consistent with the information
held by the Configuration Manager. This allows you to update to and work with
the latest changes that other users have made, without losing any changes you
are making.

Save your workspace to the shared repository
When you save the workspace to the shared repository, configuration changes you
have made are saved. New objects and ones that were checked out are checked
in.

You can check in any individual resource at any time by selecting it, right-clicking to
bring up the resource menu, and selecting Check In.

When you click Check In, other resources that are dependent on this resource are
also checked in.

You can find out which configuration resources are checked out to you in your
current workspace by selecting File —> Check In —> List to display the Check In
List dialog.

You can check in a resource from the Check In List dialog by highlighting the
resource and clicking Check In. When you select one or more items from this list,
other resources that are dependent on this resource are displayed in a dialog, and
you can choose to continue with the check in action, or cancel it.

You can check in all the objects that are new or checked out in your current
workspace. Your current workspace is identified in the title bar of the Control
Center. Select File —> Check In —> All in Workspace to select this option.

The Control Center locates the new and locked objects that you have in this current
workspace, and it checks for other new or locked objects that are referenced
directly (in this same workspace) or indirectly (in another workspace) by these
objects.

Therefore this action can check in more than you have in your current workspace.
This extra action is required to ensure that the data in the message and
configuration repositories retains its integrity and consistency.

A dialog box lists all the resources that will be checked in by this action, and you
can continue or cancel the action.

You can also check in all the objects that are new or checked out in all your local
workspaces. Select File —> Check In —> All (Save to Shared). Information from
all your workspaces (your current open workspace and all others on your local
system) are reviewed by the Control Center to identify new or locked objects. All
items are checked in together.

Note: Whenever items are being checked in, the status bar at the bottom of the
window will display the percentage of work done together with text describing
the work in progress.

Using the workspace

18 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|

|

|
|
|
|
|

|
|
|

You can find further details on checking resources in and out in the online help for
the Control Center.

Import resources

Importing and exporting message sets
You cannot import message sets using this method. You must use the import
and export command (mqsiimpexpmsgset) to import message sets. See the
MQSeries Integrator Administration Guide for details.

You can import resources from an XML export file into the local repository. Multiple
files can be imported in one import operation, by browsing and selecting the files
you require. To import resources:

1. Set up your preferences by selecting:

File —> Preferences —> Control Center -> Import and Export.

In this dialog you can choose whether you show or hide import results.

2. If you are importing topology data or Topics remember to:

v Check out the Topology root in your current workspace

v Check out the parent topic (which might be the Topic root)

3. Click File —> Import to workspace.

The Import dialog is displayed.

4. Select the type of resources you wish to import:
v Topology
v Topics
v Message flows:

– When a message flow is imported, a reference is added to the existing
workspace if it does not already exist.

– If a Message Flow exists on the Configuration Manager and is not locked ,
the user can import it, and then update the Configuration Manager with
the imported version by selecting Replace resources in Configuration
Manager which are not locked.

5. Click on the Browse button in the Import Resources dialog and select the files
you wish to import.

6. Click on Import. The relevant contents of the file are imported. The file contents
do not replace the current workspace contents. While the import is in progress,
the status bar at the bottom of the window will display the percentage of work
done and text describing the work in progress.

You can import individual message flows provided that they were exported as
individual message flows. The import action cannot pick out individual resources, for
example a particular message flow, topic or broker definition, from an export file
which contains multiple message flows, topics or broker definitions.

When the import action has completed, the results of the import operation are
shown in a dialog containing a list of imported resources.

For the import action to succeed:

v For Message Flows with Replace resources in configuration manager if not
locked selected:

Using the workspace

Chapter 3. Using the workspace 19

|

|

|
|
|
||||

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

– If the object you want to import already exists in a shared configuration and it
is checked out by you

then the normal rules for import apply (described in ″Normal import rules″).

– If the object you want to import already exists in a shared configuration and it
is checked out to another user

Nothing about the object will be changed.

– If the object you want to import already exists in a shared configuration and it
is NOT checked out to another user:

- The object will be imported

- If it is not already in your workspace, it will be added to the workspace

- It will appear in the appropriate view

- It will not be marked by the Key icon (as it is not checked out)

v For Message Flows with Replace resources in configuration manager if not
locked not selected

The normal rules for import apply (described in ″Normal import rules″).

v Normal import rules: For all objects (except for aspects of message flows
described earlier) the following rules apply:

– If the objects you want to import already exist in a shared configuration you
must check them out

– If the objects you want to import already exist in a shared configuration, are
not checked out by you, and appear in the import file, they are not imported. If
the objects

- Were not in your workspace before import, they are not added to the
workspace

- Were in your workspace before import, they are unchanged

v Resources that do not already exist are imported into your workspace and are
marked with the New icon. You must check these in if you want to save them in
the shared configuration. The imported workspace might refer to resources that
cannot be found in the Configuration Manager you are currently connected to.
You can safely remove these resources if you do not want them created in this
Configuration Manager.

v You must check out the Topology root if you are importing Topology information.

v You must check out the Parent topic (which might be the Topic root), if you are
importing Topic information.

If the current workspace contents were unsaved, you are prompted to save them
before the new resources are imported.

See the Control Center online help for more information about the effects of the
import operation.

Export resources

Importing and exporting message sets
You cannot export message sets using this method. You must use the import
and export command (mqsiimpexpmsgset) to export message sets. See the
MQSeries Integrator Administration Guide for details.

It is possible to select either an item or a group of items to export. To do this:

Using the workspace

20 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|

|
|

|

|
|

|

|

|

|

|
|

|

|
|

|
|

|
|
|

|
|

|

|
|
|
|
|
|

|

|
|

|
|

|
|

|

|

|
|
|
||||

|

1. Set up your preferences by selecting:

File -> Preferences —> Control Center —> Import and Export.

In this dialog you can choose from the following settings for import and export
operations:
v Whether you want to show or hide export results
v Specify that files will be exported to a predefined directory with generated file

names

Note: By default, export files go to
<<mqsi_root\Tool\export

v Choose not to be warned if an export file already exists
v When exporting a multiple items, decide whether they are to be exported to

single or multiple files

2. To export a message flow: From the Message Flow pane, select the items you
want to export. If you have selected multiple items grouped together, also
known as collection, you can choose either to export all collection members
from the Configuration Manager, or just those in the workspace. While export is
in progress, the status bar at the bottom of the window will display the
percentage of work done and text describing the work in progress.

3. To export everything in a workspace: From the Workspace select File
—>Export all in workspace. While export is in progress, the status bar at the
bottom of the window will display the percentage of work done and text
describing the work in progress.

Note that information being exported might contain sensitive information pertaining
to the users and groups who are defined on the User Name Server. If you are a
member of MQSeries Integrator group mqbrtpic or mqbrops, the topic hierarchy
and associated ACL are also exported. If you want to avoid this, you should sign on
as a user who is not a member of either group before you run the export.

Using the workspace

Chapter 3. Using the workspace 21

|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

22 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 4. Defining messages

This chapter describes how to define a message or a message set. For more
information about messages, for example :

v The message tree

v Message domains

v Parsers

v and other details related to messages

Please see the MQSeries Integrator ESQL Reference book.

The Message Sets view
The Message Sets view is the Control Center interface to the MRM. To display the
Message Sets view, click the Message Sets tab in the Control Center. Figure 3
shows an example of the Message Sets view.

When you click on the plus sign (+) to the left of a message set folder, the contents
of the folder are displayed. Each message set folder contains an entry for each of
the seven message components. When you create new components within the
message set, they appear under the relevant component entry. For example, if you
create an element, it appears under the Elements folder within the message set.
New components have the New blue box icon against them.

Figure 3. The Message Sets view. The left-hand pane, the Message Sets pane, shows a tree
view of the message sets in your workspace. The right-hand pane, the Properties pane,
displays the properties of the currently selected entry in the Message Sets pane.

© Copyright IBM Corp. 2000, 2001 23

|
|

|

|

|

|

|

Creating message sets
To create a new message set:

1. Either in the Message Sets pane, right click the

v Message Sets root and click Create —> Message Set

or alternatively in the menu bar, you can click the

v Message Sets menu and click Create —> Message Set

2. Complete the fields on the initial panel:

v In the Name field, type a name for this new message set. This must follow
the naming rules described in “Naming Control Center resources” on page 11.
Enter the name ’Consolidated Message Set’ or another name of your choice.

v Specify a level number if appropriate. For information about setting the level
of a message set, see the MQSeries Integrator ESQL Reference book.

v This is a new message set, so the Finalized and Freeze Time Stamp fields
can be ignored.

v If the message set is to be based on another, finalized message set, select
that message set from the Base Message Set drop-down list. This list shows
all the message sets in the configuration manager, including those for the
standard MQSeries headers, which are provided by MQSeries Integrator.

v Click Finish to proceed.

3. Click the Run Time tab.

Select the message parser for messages belonging to this set from the
drop-down list. You can choose from:

v MRM

v XML

v NEONMSG

v JMSMap

v JMSStream

The default is MRM.

For more information about this property see the MQSeries Integrator ESQL
Reference book.

4. Click the C Language tab and complete the Main Header File Name and
Orphan Header File Name fields. The defaults for these are CSTRUCTS.H and
ORPHANS.H. You can overtype these defaults if you choose. These properties
are mandatory, and are used when you generate C language header files from
this message set.

5. Click the COBOL Language tab and specify a name for the copy book in the
Main Copy Book Name field. The default is MAINBOOK.CPY. You can overtype
this default if you choose. These properties are mandatory, and are used when
you generate COBOL language header files from this message set.

6. If this message set is to contain legacy messages (for example, if message
definitions are to be imported into this message set), you need to specify the
CWF values.

Click the Custom Wire Format tab. The default Custom Wire Format Identifier
is CWF. You are recommended to use this default value. If you choose the
change this value, you must set it to a string of 8 characters or less, and the
first three characters must be CWF.

Creating message sets

24 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|

|

|

|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

7. If you want to provide a description of this message set, click the Description
tab. Any description text you provide here is included in documentation
generated by the MRM.

Type a short description, or a long description, or both.

8. Click Finish to complete the definition of this message set. The message is now
created and checked out.

A locked entry appears under Message Sets root in the Message Sets pane. When
the new message set entry is highlighted in the Message Sets pane, its properties
appear in the Properties pane. Notice that an identifier for the new message set has
been generated automatically by the MRM.

When you are ready to share a new message set with other Control Center users,
you check it into the shared configuration. You can do this before the message set
contains any message definitions, if you want. For more information about checking
in message sets, see “Checking in and checking out message sets”.

Now that you have defined a message set, you are ready to define the messages
that will belong to it, as described in “Creating messages” on page 26.

Checking in and checking out message sets
When you have created and populated a message set, you can assign it to a
broker (as described in “Assigning message sets to brokers” on page 88). You do
not need to have checked the message set into the shared configuration before
assigning it. However, you must check it in before the assignment of message set
to broker can be deployed in the broker domain.

To check in a message set, in the Message Sets pane right click the folder of the
message set you want to check in, and click Check In.

The message set is checked into the shared configuration. It still appears in your
workspace, but the Key icon against its folder has disappeared.

When you check in a message set, any checked out objects in the message set are
not checked in by this action. You must check in these objects individually.
Alternatively, you can select one of the more comprehensive check in options
(available from the File menu) when you check in the message set:

v File —> Check In —> All in Workspace checks in all objects that are contained
within your current workspace (this is identified on the title bar of the Control
Center).

v File —> Check In —> All (Save to Shared) checks in all objects in your local
repository (that is, within all of your available workspaces).

When you have checked in a message set, it is available to other users from the
shared configuration. If you want to make further changes to the message set, you
must first check it out of the shared configuration:

1. In the Message Sets pane, right click the folder of the message set you want to
edit.

2. Click Check Out.

The message set is checked out of the shared configuration. Its entry in the
Messages Pane has a Key icon against it to remind you that the definition is
checked out.

Creating message sets

Chapter 4. Defining messages 25

|

|
|
|

Creating messages
This section describes how to create a message, using the message shown in
Figure 4 to illustrate the process. The Control Center also provides a SmartGuide
for message creation, that handles simpler message formats and makes the task of
creating them easier. For details of the SmartGuide, see “Defining messages using
the SmartGuide” on page 33.

You will work with the message set ’Consolidated Message Set’. Within this
message set, you will create a message named ’Grocery Receipt’, of the type
’Transaction Log’. When you have created the message, you will add it to the
category ’Store Receipts’. It is assumed you have already created the message set,
and have checked this out of the message repository (that is, the message set is
displayed with the Key icon against it).

Figure 5 on page 27 shows the Message Sets view populated with this message
and message set. This is the setup you will create if you complete the following
message creation instructions.

Grocery Receipt (TransactionLog)
Store Details

Store Name (STRING, Length 20, Fixed Length, Left Justified,
Padding character Space)

Branch No. (INTEGER, Extended Decimal, Length 8,
Unsigned 30000000 - 39999999)

Cashier No. (INTEGER, Extended Decimal, Length 3,
Unsigned 000 - 500)

Till No. (INTEGER, Extended Decimal, Length 8,
Unsigned 700 - 799)

Purchase (Can have up to 15 purchases on one transaction
log)

Item Name (STRING, Length 40, Fixed Length, Left Justified,
Padding character Space)

Item Code (STRING, Length 20, Fixed Length, Left Justified,
Padding character Space)

Item Price (FLOAT, Packed Decimal, Length=4, Signed, VDP=2)
Item Quantity (INTEGER, Packed Decimal, Length=2, Signed)

Totals
Total Items (INTEGER, Packed Decimal, Length=5, Signed)
Multibuy (STRING, Length 5, Fixed Length, Left Justified,

Padding character Space)
Total Sales (FLOAT, Packed Decimal, Length=6, Signed, VDP=2)

Note: where VDP means virtual decimal point.

Figure 4. Creating a message - sample message

Creating messages

26 MQSeries Integrator Version 2.0.2 Using the Control Center

|

Defining a message starting from the lowest level elements
These instructions demonstrate how to create the message illustrated in Figure 4 on
page 26 from the bottom up (that is, starting with the lowest-level elements and
working towards the top of the message hierarchy). All of these tasks are performed
in the context of a single message set.

To define this message:

1. Define element length components for all STRING elements.

a. In the Message Sets pane, right click the entry of the message set
Consolidated Message Set and select Create —> Length.

The Create a new Length dialog is displayed.

b. In the Create a new Length dialog, type Multibuy Length 5 in the Name
field; type StrLen5 in the Identifier field; and type 5 in the Maximum
Length field.

c. Repeat this procedure for the String Length 20 and String Length 40
element length components.

d. Click Finish to complete the definition of this element length component.

An entry for this new element length component appears in the Element
lengths folder in the Consolidated Message Set Receipts.

Note: If you wanted to provide a description of this component:

1) Highlight the length

2) Click on the Description tab

3) Type a short description, or a long description, or both

2. Define element valid value components for the Branch No., Cashier No., and Till
No. elements.

Figure 5. A message defined in the Message Sets view

Defining a message starting from the lowest level elements

Chapter 4. Defining messages 27

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Element Valid Value.

The Create a new Element Valid Value dialog is displayed.

b. In the Create a new Element Valid Value dialog, type Cashier No. Limits in
the Name field; type Cashier_VV in the Identifier field; select type
INTEGER from the Type drop-down list; type 000 in the Minimum Value
field; and type 500 in the Maximum Value field.

c. If you want to provide a description of this component, click the Description
tab. Type a short description, or a long description, or both.

d. Click Finish to complete the definition of this element valid value
component.

An entry for this new element valid value component appears in the Element
valid values folder in the Message Sets pane.

e. If you want to provide a description of this component:

1) Click on the Description tab

2) Type a short description, or a long description, or both

Repeat this procedure for Branch No. Limits, specifying the identifier
Branch_VV, minimum value 30000000, and maximum value 39999999. Repeat
this procedure for Till No. Limits, specifying the identifier Till_VV, minimum value
700, and maximum value 799.

3. Create all elements of simple type.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Element.

b. In the Create a new Element dialog, type Store Name in the Name field;
type StoreName in the Identifier field; and select type STRING from the
Type drop-down list.

c. Click the C Language tab and enter a C name for this element in the C
Language Name field. This property is mandatory and is used when you
include this element in a C language structure generated from the message
repository.

Note: You can take the defaults for C Language tabs.

d. Click the COBOL Language tab and enter a COBOL name for this element
in the COBOL Language Name field. This property is mandatory and is used
when you include this element in a COBOL language structure generated
from the message repository.

Note: You can take the defaults for COBOL Language tabs.

e. Repeat this process for the remaining elements of simple type:

f. Click Finish to complete the definition of this element component.

An entry for this new element component appears in the Elements folder of
the Receipts Consolidated Message Set.

g. If you want to provide a description of this component:

1) Click on the Description tab

2) Type a short description, or a long description, or both

Name Identifier Type

Branch No. BranchNo INTEGER

Cashier No. CashierNo INTEGER

Defining a message starting from the lowest level elements

28 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|

|

|

|

Name Identifier Type

Till No. TillNo INTEGER

Item Name ItemName STRING

Item Code ItemCode STRING

Item Price ItemPrice FLOAT

Item Quantity ItemQty INTEGER

Total Items TotalItems INTEGER

Multibuy Multibuy STRING

Total Sales TotalSales FLOAT

4. Add a length reference to elements of type STRING.

a. In the Message Sets pane, right click the entry for the Store Name element
in the Elements folder of the message set. Click Add —> Length.

The Add an existing Length dialog is displayed.

b. From the list of element length components in the Add an existing Length
dialog, select String Length 20. Click Finish.

An entry for the String Length 20 component appears under the Store Name
entry in the Elements folder.

Repeat this procedure for the elements Item Name (String Length 40), Item
Code (String Length 20), and Multibuy (String Length 5).

5. Add a valid value reference to elements Branch No., Cashier No., and Till No.:

a. In the Message Sets pane, right click the entry for Branch No. in the
Elements folder, and click Add —> Element Valid Value.

The Add an existing Element Valid Value dialog is displayed.

b. From the list of element valid value components in the Add an existing
Element Valid Value dialog, select Branch No. Limits. Click Finish.

Repeat this procedure for Cashier No. (Cashier No. Limits) and Till No. (Till No.
Limits).

6. Create the compound types Store Details Type, Purchase Type, and Totals
Type.

a. In the Message Sets pane, right click the entry of the message set and click
Create —> Compound Type.

The Create a new Compound Type dialog is displayed.

b. In the Name field enter Store Details Type, and in the Identifier field enter
StoreDetsType.

c. Click the C Language tab and enter a C name for this element in the C
Language Name field. This property is mandatory and is used when you
include this element in a C language structure generated from the message
repository. Type the file name in the File Name field.

Note: You can take the defaults for C Language tabs.

d. Click the COBOL Language tab and enter a COBOL name for this element
in the COBOL Language Name field. This property is mandatory and is used
when you include this element in a COBOL language structure generated
from the message repository. Type a copy book name in the Structure Copy
Book Name field.

Defining a message starting from the lowest level elements

Chapter 4. Defining messages 29

Note: You can take the defaults for COBOL Language tabs.

e. Repeat this process for the compound types Purchase Type and Totals
Type.

f. Click Finish to complete the definition of this compound type component.

The new compound type appears in the Types folder of the Receipts
message set.

g. If you want to provide a description of this component:

1) Click on the Description tab

2) Type a short description, or a long description, or both

7. Create the elements Store Details, Purchase, and Totals.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Element.

The Create a new Element dialog is displayed.

b. In the Create a new Element dialog, type Store Details in the Name field;
type StoreDets in the Identifier field; and select type Store Details Type
from the Type drop-down list.

c. Click the C Language tab and enter a C name for this element in the C
Language Name field. This property is mandatory and is used when you
include this element in a C language structure generated from the message
repository.

Note: You can take the defaults for C Language tabs.

d. Click the COBOL Language tab and enter a COBOL name for this element
in the COBOL Language Name field. This property is mandatory and is used
when you include this element in a COBOL language structure generated
from the message repository.

Note: You can take the defaults for COBOL Language tabs.

e. Repeat this procedure for the elements Purchase and Totals.

f. Click Finish to complete the definition of this element component.

An entry for this new element component appears in the Elements folder of
the Receipts Consolidated Message Set.

g. If you want to provide a description of this component:

1) Click on the Description tab

2) Type a short description, or a long description, or both

8. Add child elements to elements Store Details, Purchase, and Totals.

a. Right click the element Store Details in the Messages Pane. Click Add —>
Element.

The Add an existing Element dialog is displayed, showing all elements in
your workspace.

b. Hold down the Ctrl key and select the elements Store Name, Branch No.,
Cashier No., and Till No. from this list. Click Finish.

The selected elements appear under the entry Store Details in the Elements
folder.

Repeat this procedure to populate the Purchase and Totals elements.

9. To change the order of the child elements in an element, right click the Type
entry in the Messages Pane, and click Reorder —> Element. Change the order
of the displayed elements, and click Finish.

Defining a message starting from the lowest level elements

30 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|

|

|

|

|
|
|

The reordered elements appear in their new order under the entry for the parent
element.

10. Add the CWF characteristics to the child elements in each compound type:

a. Type Purchase must be checked out.

b. In the Types folder, expand the Purchase entry and click the child Item
Name to select it.

c. Click the Custom Wire Format tab in the Properties pane.

In the Length count field enter 40, and in the Padding Character field type
the word Space.

Click the Apply bar at the bottom of the Properties pane.

d. In the Types folder, expand the Purchase entry and click the child Item
Price to select it.

e. Click the Custom Wire Format tab in the Properties pane.

In the Physical type field, select the type Packed decimal. In the Length
Count field, type 4. In the Signed field, type Yes. In the VDP field, type 2.

Click the Apply bar at the bottom of the Properties pane.

Follow this procedure for the child elements of the compound types Store
Details and Totals, and for the remaining child elements in compound type
Purchase.

Note: The CWF characteristics do not belong to an element in isolation. They
belong to an element in its context within a type.

11. Create the compound type Transaction Log Type.

a. In the Message Sets pane, right click the entry of the Receipts
Consolidated Message Set and click Create —> Compound Type.

The Create a new Compound Type dialog is displayed.

b. In the Name field enter Transaction Log Type, and in the Identifier field,
enter TransLogType.

c. Click Finish.

d. Click the C Language tab and enter a C name for this type in the C
Language Name field. This property is mandatory and is used when you
include this type in a C language structure generated from the message
repository. Type the file name in the File Name field.

Note: You can take the defaults for C Language tabs.

e. Click the COBOL Language tab and enter a COBOL name for this type in
the COBOL Language Name field. This property is mandatory and is used
when you include this type in a COBOL language structure generated from
the message repository. Type a copy book name in the Structure Copy
Book Name field.

f. If you want to provide a description of this component, click the Description
tab. Type a short description, or a long description, or both.

Note: You can take the defaults for COBOL Language tabs.

g. Click Finish to complete the definition of this compound type component.

The new compound type appears in the Types folder of the Receipts
Consolidated Message Set.

12. Add elements to type Transaction Log.

Defining a message starting from the lowest level elements

Chapter 4. Defining messages 31

|
|

|
|

|
|

|

a. Right click the entry for the Transaction Log type in the Types folder of the
message set Consolidated Message Set. Click Add —> Element.

The Add an existing Element dialog is displayed, showing all elements in
your workspace.

b. Hold down the Ctrl key and select the elements Store Details, Purchases,
and Totals from this list. Click Finish.

The selected elements appear under the entry Transaction Log in the Types
folder of the Consolidated Message Set message set.

13. To change the order of the child elements in a type, right click the Transaction
Log type entry in the Types folder of the message set Consolidated Message
Set, and click Reorder —> Element. Change the order of the displayed
elements to that shown in Figure 4 on page 26, and click Finish.

The reordered elements appear in their new order under the entry for the
parent element.

14. Add repeat information to child element Purchase in the compound type
Transaction Log.

a. Type Transaction Log must be checked out.

b. In the Types folder, expand the entry Transaction Log and click the child
Purchase to select it.

c. Click the Connection tab in the Properties pane.

In the Repeat field, type Yes. Click the Apply bar at the bottom of the
Properties pane.

d. Click the Custom Wire Format tab in the Properties pane.

In the Repeat Count field, type 15. Click the Apply bar at the bottom of the
Properties pane.

e. Check in Transaction Log.

Note: The repeat information does not belong to an element in isolation. It
belongs to an element in its context within a type.

15. Create the message component Grocery Receipt.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Message.

The Create a new Message dialog is displayed.

b. In the Name field, enter Grocery Receipt. In the Identifier field, enter
GroceryReceipt. From the Type field drop-down list, select the value
Transaction Log Type. Click Finish.

The new message appears in the Messages folder of the Receipts
Consolidated Message Sets.

16. Create a message category.

a. In the Message Sets pane, right click the entry of the message set and
select Create —> Category to define the message category.

The Create a new Category dialog is displayed.

b. In the Name field, enter Store Receipts. In the Identifier field, enter
StoreReceipts. Click OK.

The new category appears in the Categories folder in the Message Sets pane.

17. Add the message Grocery Receipt to the category Store Receipts.

Defining a message starting from the lowest level elements

32 MQSeries Integrator Version 2.0.2 Using the Control Center

a. Right click the category element in the Message Pane. Click Add —>
Message.

The Add an existing Message dialog is displayed, showing all messages
in your workspace.

b. Select the message Grocery Receipt. Click Finish.

The selected message appears under the entry for category Store Receipts in
the Receipts Consolidated Message Set.

18. The Multibuy element is optional: it is included only when the customer earns a
discount by purchasing a specified multiple of any item. To specify the
element:

a. Check out the Totals compound type

b. Right-click on the Multibuy element in the Totals compound type of the
Properties pane

c. Click the Connection tab in the Properties pane. Set the Mandatory field to
No.

d. Click the Apply bar at the bottom of the Properties pane to apply the
change.

Other types of message could be added to this category within this message set.
For example, messages describing receipts from clothing stores or from book stores
could be added to the category Store Receipts. The messages themselves could be
constructed using many of the message components defined for the message
Grocery Receipt.

When you are ready to share a new message set with other Control Center users,
you check it into the shared configuration. You must also check in the components
you have created within the message set, for example, the messages, elements,
and compound types you have created to complete the message set. For more
information about checking in message sets, see “Checking in and checking out
message sets” on page 25.

Defining messages using the SmartGuide
The MQSeries Integrator Control Center includes a SmartGuide that you can use to
create messages from the top down. The SmartGuide also allows you to create
compound types, and lets you specify that the compound type created is itself
created as a message.

The SmartGuide provides a faster method of defining messages than the process
described in “Creating messages” on page 26, not least because it assumes that all
the building blocks of the message or compound type are available and do not have
to be defined.

The SmartGuide also allows you to reorder elements within the message or
compound type you are creating: this makes it easier to view and check the order
of elements while you complete the message or compound type structure.

The process for defining a message and defining a compound type are almost
identical: this process is described below.

v To create a compound type using the SmartGuide:

1. Ensure that any lengths you need are defined.

Defining a message starting from the lowest level elements

Chapter 4. Defining messages 33

|

2. In the Message Sets pane of the Message Sets view, right click the folder of
the message set you want to add definitions to and click Create with
SmartGuide —> Compound Type.

The Create a new Compound Type dialog is displayed.

3. Complete the dialog:

a. In the Name field, enter the name for this new compound type.

b. Select the Create Element tab to create a new element for this
compound type.

– Enter the new element name

– Select the Type and Length for the element

You cannot create a new Type in this dialog.

– If you have selected the STRING type, choose its length from the
dialog box

c. If you want to add an existing element to the compound type, select the
Add Element tab, and add one or more elements by selecting from the
list of available elements

d. Click Add and this element will be added to a compound type

e. Repeat this selection process for additional elements that you want to add
to this compound type. To remove any existing element, or one you have
created, select the element and click Remove

f. You can reorder the elements you have defined in the compound type by
highlighting the element, and using the up and down buttons to move the
element to where you want it in the structure.

g. Click Finish. The compound type you have created is now included in the
Types folder of the message set. It has been given an identifier of t_
followed by the name you gave the type. For example, if the name of the
type you created is ctype1, the identifier assigned for you is t_ctype1.

Similarly, any elements you have created are given an identifier of e_
followed by the name of the element (with spaces removed). For
example, e_element1.

Note that any elements you create within the new compound type are not
automatically added to the elements folder in the message set, but you
can add them if you want to.

The new compound type is added to the Types folder of the message set.

v To create a message using the SmartGuide, use the same procedure as that
described above for a Compound Type. Click Create with SmartGuide —>
Message from the message set actions list, and complete the Create a new
Message dialog. (The only difference between the two dialogs is that the Create
as message check box is not included in the Create a new Message dialog.)

Working with message sets
Message sets can be reordered, and edited. Additionally, most actions carried out
against a message set can be undone.

Reordering elements in compound types
The reorder action is only supported for compound types. Right click the compound
type you want to reorder, and select Reorder->Element. The Reorder Elements
SmartGuide is displayed listing the elements defined within the compound type. You

Using the SmartGuide to create messages

34 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

can move these elements up or down to change the order as you choose. You
cannot add new elements using this option. You cannot reorder external elements
(those with the global icon).

Press Finish to confirm you new order: the new order is reflected in the tree in the
left hand pane.

You can use this action if you want to reorder elements to change the rules that
apply when the CWF attributes are set.

Undo action for message sets
The undo action for message sets is consistent with undo across the Control
Center, but you are unable to undo the following actions:
v Deleting a message set
v Deleting a compound type
v Deleting an element

Editing message sets and components
You can edit the properties of message sets and components. You can also edit the
relationships between components (for example, you can remove an element from
a compound element), and you can delete components or remove them from the
workspace.

All properties you can edit are displayed in the Properties pane of the Message
Sets view. For example, if you highlight an element in the Message Sets pane, its
properties, including those you can edit, are displayed in the Properties pane. When
you change the value of a property, you click the Apply bar at the bottom of the
Properties pane to make the change take effect.

An individual message component can be removed from the workspace or deleted
from the shared configuration. For example, to remove an element from the
workspace, right click the element in the Messages Pane and click Remove. Note,
however, that whether a component is checked out dictates whether you can edit its
properties, remove it from the workspace, or delete it, as does the check-out status
of any related component. Table 1 summarizes the available edit actions and shows
for each action:
v Which component needs to be checked out
v What happens when you make the change

Table 1. Editing relationships and properties: check-out requirements

If you want to: You must check out: Then:

Edit the basic
properties of a
component

The component you
want to edit

You can edit the component and check it back in

Edit the connection
tab of a child element

The compound type
that is the parent of
the element

You can edit the connection tab then check the parent back in.

Edit the CWF of a
child element

The compound type
that is the parent of
the element

You can edit the CWF tab then check the parent back in.

Edit the C language
tab, COBOL language
tab, or Description tab
of a component

The component you
want to edit

You can edit all three tabs. The name is C-validated or COBOL
validated by the Control Center; you cannot click Apply if they are
invalid. If they are valid, you can check the component back in.

Reordering message sets

Chapter 4. Defining messages 35

Table 1. Editing relationships and properties: check-out requirements (continued)

If you want to: You must check out: Then:

Edit an element
qualifier assignment

The associated
message

You can edit the message then check it back in.

Delete an element
length from the
Element Lengths
folder

Nothing If nobody has the element length checked out, and if no string
element depends on the element length, the element length is
deleted from the shared repository. Otherwise, you get an error
message and are not allowed to delete the element length.

Remove an element
length from the
Element Lengths
folder.

Check-out status is
not significant

The element length is removed from the workspace and there is no
change in the shared repository. The element length can be added
to the workspace again.

Delete a compound
type from the Types
folder

Nothing If any user has an element or a message of this type checked out,
or if any user has this type checked out. you get an error message
and are not allowed to delete. Otherwise, the type is deleted and all
elements of this type are also deleted throughout the message set.

Remove a compound
type from the Types
folder

Check-out status is
not significant

The type and its children are removed from the workspace under
the Types folder. Nothing else is affected. The compound type can
be added to the workspace again.

Remove a simple type
from the Types folder

Nothing The type is removed from the workspace under the Types folder.
Nothing else is affected. The simple type can be added to the
workspace again.

Remove a child simple
element from a type in
the Types folder

The type from which
you will remove the
element

The child is deleted from the type. When you check the type in, it is
updated in the shared repository, but the child element continues to
exist. Other types that contain the element as a child are not
affected.

Delete a child simple
element from a type in
the Types folder

Nothing If nobody has the child simple element checked out and if nobody
has any type or element qualifier that is a parent of the simple
element checked out, the element is deleted from the shared
repository and all the types that previously used it as a child are
updated. Otherwise, an error message is issued and you are not
allowed to perform the delete.

Delete a child
compound element
from a type in the
Types folder

Nothing If nobody has the child compound element checked out and if
nobody has any type or element qualifier that is a parent of the
compound element checked out, the element is deleted from the
shared repository and all the types that previously used it as a child
are updated. Otherwise, an error message is issued and you are not
allowed to perform the delete.

Remove a child
compound element
from a type in the
Types folder

The type from which
you will remove the
element

The child is deleted from the type and, on check in, the type is
updated in the shared repository but the child element continues to
exist. Other types that contain the element as a child are unaffected.

Delete a simple
element from the
Elements folder

Nothing If nobody has the element checked out, and if nobody has any type
or element qualifier that is a parent of the element checked out, the
element is deleted from the shared repository and all the types that
previously used it as a child are updated. Otherwise, an error
message is issued and you are not allowed to perform the delete.

Remove a simple
element from the
Elements folder

Check-out status is
not significant

The element is removed from the workspace under the Elements
folder. Nothing else is affected. The element can be added to the
workspace again.

Editing message sets and components

36 MQSeries Integrator Version 2.0.2 Using the Control Center

Table 1. Editing relationships and properties: check-out requirements (continued)

If you want to: You must check out: Then:

Delete a top-level
compound element in
the Elements folder

Nothing If nobody has the element checked out, and if nobody has any type
or element qualifier that is a parent of the element checked out, the
element is deleted from the shared repository, and all the types that
used the element as a child are updated. Otherwise, an error
message is issued and you are not allowed to perform the delete.

Remove a top-level
compound element in
the Elements folder

Check-out status is
not significant.

The element and its children are removed from the workspace under
the Elements folder. Nothing else is affected. The compound
element can be added to the workspace again.

In the Elements folder,
alter a compound
element by deleting a
child simple element

Nothing If nobody has the child element checked out; and if nobody has any
type or element qualifier that is a parent of the element checked out;
and if nobody has the type of the compound element checked out;
the element is deleted from the shared repository, and all the types
that previously used the element as a child are updated. Otherwise,
an error message is issued and you are not allowed to perform the
delete.

In the Elements folder,
alter a compound
element by removing a
child simple element

The type associated
with the compound
element

The child is deleted from the type, and when you check the type
back in, it is updated in the shared repository but the child element
continues to exist. Other types that contain the element as a child
are not affected.

In the Elements folder,
alter a compound
element by deleting a
child compound
element

Nothing If nobody has the child element checked out; and if nobody has any
type or element qualifier, of which the compound element is a child,
checked out; and if nobody has the type of the parent compound
element checked out; then the element is deleted from the shared
repository and all the types that used the element as a child are
updated. Otherwise, an error message is issued and you are not
allowed to perform the delete.

In the Elements folder,
alter a compound
element by removing a
child compound
element

The type associated
with the parent
compound element

The child compound element is removed from the workspace.
Nothing else is affected. The compound element can be added to
the workspace again.

Delete a message in
the Messages folder

Nothing If nobody has the message checked out, and if nobody has any
category of which the message is a child checked out, the message
is deleted from the shared repository, Otherwise, an error message
is issued and you are not allowed to perform the delete.

Remove a message
from the Messages
folder

Check-out status is
not significant

The message and its children are removed from the workspace
under the Messages folder. Nothing else is affected. The message
can be added to the workspace again.

Alter a message by
deleting a simple child
element in the
Messages folder

Nothing If nobody has the child element checked out, and if nobody has the
type of the message checked out, and if nobody has any type, of
which the element is a child, checked out, then the element is
deleted from the shared repository and all the types that used the
element as a child are updated. Otherwise, an error message is
issued and you are not allowed to perform the delete.

Alter a message by
removing a child
simple element in the
Messages folder

The type associated
with the message that
contains the element

The child is deleted from the type, and on check in the type is
updated in the shared repository, but the child element continues to
exist and other types that contain the element as a child are not
affected.

Editing message sets and components

Chapter 4. Defining messages 37

Table 1. Editing relationships and properties: check-out requirements (continued)

If you want to: You must check out: Then:

Alter a message by
deleting a child
compound element in
the Messages folder.

Nothing If nobody has the child element checked out; and if nobody has any
type or element qualifier that is a parent of the child compound
element checked out; and if nobody has the type of the message
checked out; then the element is deleted from the shared repository
and all the types that used the element as a child are updated.
Otherwise, an error message is issued and you are not allowed to
perform the delete.

Alter a message by
removing a child
compound element in
the Messages folder

The type associated
with the message that
contains the element

The child compound element is removed from the workspace.
Nothing else is affected. The child compound element can be added
to the workspace again.

Changing the state of a message set
When a message set state is created, its state is normal. During their development,
message sets can be frozen, unfrozen, and finalized.

To change the state of a message set:

1. In the Message Sets pane, right click the message set whose state you want to
change.

2. Click the state you want. For example, to freeze a message set, click Freeze.

Note the following:

v When you freeze a message set, the freeze timestamp is added to the properties
of the message set.

v If you unfreeze a message set, the freeze timestamp in the properties of the
message set is reset to blank.

Note: To unfreeze a message set, it must be checked out to you.

v When you finalize a message set, the Finalized field in the properties of the
message set is set to True and the freeze timestamp is set. Finalize cannot be
reversed.

v You cannot freeze or finalize a message set if any of the elements it contains is
checked out.

Adding message sets and message components to the workspace
You can add any message set or component that is defined in the message
repository to your workspace. The message repository includes all objects defined
by current users of the Control Center, and all objects imported into the message
repository through the use of the mqsiimpexpmsgset command. See MQSeries
Integrator Administration Guide for more details. To add an existing message set to
the workspace:

1. In the Message Sets pane, right click the Message Sets root.

2. Click Add to Workspace—> Message Set.

The Add an existing Message Set dialog is displayed, showing all message
sets that you can add to your workspace (and that aren’t already in the
workspace).

3. Select message sets from this list as follows:

v To select a single message set, click the message set name.

Editing message sets and components

38 MQSeries Integrator Version 2.0.2 Using the Control Center

v To select multiple message sets that appear sequentially in the list, click on
the first message set you want, press and hold the Shift key, then click on the
last message set you want. This action selects the two message sets you
highlighted, plus any that appear between these two in the list.

v To select multiple message sets that do not appear in a sequence in the list,
hold down Ctrl and click each message set you want.

4. When you have selected the message sets you want, click Finish.

You now see the selected message sets in the Message Sets view. All of the
components of the message set (messages, elements, and so on) are now
available to your workspace, but are not automatically added. This is because
message sets can be very complex, and it is likely that you do not need to view or
access many of the subcomponents. If you add large numbers of components to
the workspace, this can cause slow response times and out-of-memory problems.

You can add just those components that you want to work with, or view, by
selecting the appropriate folder and adding the components when and as you need
them.

For example, to add an element to your workspace:

1. Right click the Element folder of the message set to which you want to make
the element available, and click Add to Workspace —> Element.

The Add an existing Element dialog is displayed, showing all elements that
you can add, that is, all the elements that are defined in the message set.

2. Select one or more elements from the list:

v To select a single element, click the element name.

v To select multiple elements that appear sequentially in the list, click on the
first element you want, press and hold the Shift key, then click on the last
element you want. This action selects the two message sets you highlighted,
plus any that appear between these two in the list.

v To select multiple elements that do not appear in a sequence in the list, hold
down Ctrl and click each element set you want.

The selected elements are added to the Elements folder of the appropriate
message set in the Message Sets pane.

You can add categories, element qualifiers, element lengths, messages, types, and
element valid values to your workspace in the same way.

Importing message definitions
Legacy definitions can be imported into the message repository. For example, to
save you having to create message definitions in the Control Center for your
existing C and COBOL messages, you can import these messages into the Control
Center and use MQSeries Integrator to create equivalent message repository
definitions for you.

To import a message definition:

1. In the Message Sets pane of the Message Sets view, right click the message
set into which you want to import the definition and click Import to Message
Set —> C or Import to Message Set —> COBOL. The action is also available
if you select Message Sets from the task bar and click Import to Message Set
—> C or Import to Message Set —> COBOL.

Adding message sets to the workspace

Chapter 4. Defining messages 39

The C Language Importer dialog or COBOL Language Importer dialog is
displayed.

2. Type the fully qualified name of the source file you are importing in the Import
Source File field, or use the Browse button to search for and select the file you
want to import. If you want only to generate a report at this time, select the
Report only check box. Click OK.

This process imports the specified structures and creates definitions as a new
message set in the message repository. To complete the process, you must create
a message component for each of the compound types that define a complete
message, as described in step 15 on page 32. You do not need to create any other
message component.

Note: You cannot import message sets created by another Control Center user in
another configuration manager. To do this use the message set import and
export command (mqsiimpexpmsgset), which is described in MQSeries
Integrator Administration Guide.

Generating MRM message set definitions as XML DTDs
If you have defined messages with an XML message format in the message
repository, you can request a Document Type Definition (DTD) to be generated by
the MRM.

To generate a DTD:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set for which you want to generate the DTD. Click Generate —>
DTD.

The Generate DTD dialog is displayed.

2. In the Generate DTD dialog, enter the name of the DTD file in the DTD
Filename field. Click Start.

The DTD for this message set is generated as requested and written to the
specified location.

Generating language bindings
You can generate C or COBOL language bindings from message definitions you
have created using the Control Center:

To generate C language bindings:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set for which you want to generate language bindings. Click
Generate —> Language Bindings —> C.

The C Language Extractor dialog is displayed.

2. In the C Language Extractor dialog, enter the fully qualified name of the
directory of the generated file in the Generated File Location field. If you want to
freeze the message set at this time, select the Freeze Message Set check box.
(If the message set is already finalized, you cannot select this check box.)

The categories defined in this message set are listed in the Categories field.
You can select a subset of these for inclusion in the language bindings.
Alternatively, to include them all, select the Select All check box.

You must select at least one category for successful generation of language
bindings. If no category is listed in this dialog, you must create one.

Importing message definitions

40 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|

3. Click Start.

The requested language bindings are generated and written to the specified
location.

The process for generating COBOL bindings is identical.

Note: The Run NLS check box is not operational at this time.

Generating language bindings

Chapter 4. Defining messages 41

|

Generating documentation
You can generate the following documentation in HTML format from the message
repository:

v A message book, which contains an entry for each message in a message set or
specified category, showing its hierarchical structure.

v A glossary, which contains descriptions of all elements in a message set or
specified category, ordered alphabetically by name.

To generate a message book:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set or message category for which you want to generate
documentation.

2. Click Generate —> Documentation —> Message Book.

The Message Definition Book dialog is displayed.

3. In the Message Definition Book dialog, type the fully qualified name of the
generated documentation file in the Generated File Location field. This file must
be created on the system on which the Configuration Manager is running, not
on the local system.

If you want to freeze the message set at this time, select the Freeze Message
Set check box. (If the message set is already finalized, you cannot select this
check box.)

You can generate documentation based on categories or messages. The
categories or messages (depending on which you select) defined in this
message set are listed in the Categories or Messages field. You can select a
subset of these for inclusion in the language bindings. Alternatively, to include
them all, select the Select All check box.

You must select at least one category or one message for successful generation
of documentation. If there is no category listed, you must create one.

4. Click Start.

The Message Book is generated and written to the specified location: the file
MRM-MAIN.HTML is created, along with a subdirectory named Private. This
subdirectory contains a large number of files, for example, image files and indexes.

The description of each element within each compound type included in the
Message Book indicates whether the element is mandatory or optional. There are
four possible settings:

1. The element can be Optional.

This value is set if the element is optional within its type.

2. The element can be Mandatory if parent present.

This value is set if the element is mandatory within its type.

3. The element can be Always Mandatory.

This is set if the element is associated with a context tag and that context tag is
mandatory within the message for which the documentation has been created.
This setting overrides the values Optional and Mandatory if parent present.

If the element is associated with a context tag and that context tag is optional
within the message, the current setting of Optional or Mandatory if parent
present is not overridden.

4. The element can be Implied Mandatory.

Generating documentation

42 MQSeries Integrator Version 2.0.2 Using the Control Center

This value is set if one of its descendants has been given the value Always
Mandatory. This value will override the value set for the element in isolation
unless the element itself has the Always Mandatory value.

Repeating elements are indicated by the characters *** after the element name.

To generate a glossary:

1. In the Message Sets pane of the Message Sets view, right click the folder of
the message set or message category for which you want to generate
documentation.

2. Click Generate —> Documentation —> Glossary from the action list of the
message set.

The Glossary dialog is displayed.

This dialog is identical to the Message Definition Book dialog, except that only
categories are available.

3. Complete the dialog and click Start.

The Glossary is generated and written to the specified location: the file
MAINGLOS.HTML is created, along with a subdirectory named Private. This
subdirectory contains a large number of files, for example, HTML files.

Generating documentation

Chapter 4. Defining messages 43

Generating documentation

44 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 5. Working with message flows

This chapter describes the tasks you need to perform to create message flows.

The Message Flows view
To display the Message Flows view, click the Message Flows tab in the Control
Center. Figure 6 shows an example of the Message Flows view.

Double-click on any item in the Message Flow Definition pane to see its properties.

Controlling the appearance of the Message Flow Definition pane
When you add an instance of a message flow node into a message flow by
dragging it into the Message Flow Definition pane, the graphical symbol
representing the node is created. You can control the appearance and arrangement
of these symbols by right-clicking in the Message Flow Definition pane and
selecting from the following actions:

Layout graph
Arranges the nodes in the Message Flow Definition pane from left to right,
right to left, top to bottom, or bottom to top.

Zoom
Alters the size of all node symbols in the Message Flow Definition pane.

Your zoom settings are saved on exit, and are used when restarting
applications.

Figure 6. The Message Flows view. The left-hand pane, the Message Flow Types pane, shows a tree view of the
message flows in your workspace. The right-hand pane, the Message Flow Definition pane, contains an arrangement
of graphical symbols that represent the message flow nodes in a selected message flow.

© Copyright IBM Corp. 2000, 2001 45

|

|
|

Manhattan style
Shows connections between nodes as lines at right angles (as shown in
Figure 6 on page 45).

Your style settings are saved on exit, and are used when restarting
applications.

Snap to grid
Aligns the symbols in the Message Flow Definition pane on an invisible
grid.

The settings for aligning your symbols are saved on exit, and used when
restarting applications.

Node orientation
You can change the orientation of message flow nodes in the Message Flows pane.
The default orientation for nodes is left-to-right; however, you can change the
orientation of your nodes to any of the following:

v Right-to-left

v Top-to-bottom

v Bottom-to-top

Additionally, by right clicking on the node, you can:

v Flip the node

v Rotate the node either clockwise or counter clockwise

These settings are saved when you save your workspace.

Creating bend points
When connecting nodes you might want to introduce bend points. Bend points,
which are displayed as dots, will only appear if a connection is selected. To create
bend points for a new connection:

1. Start the connection by either

v Left clicking on the node terminal and dragging the mouse to the required
position on the canvas

or

v By using the pop-up menu (right button) and adding the bend points by
clicking on the canvas at the positions you want the bend to occur

2. Complete the connection by selecting the target node

To cancel the connection before it is completed, either hit the ESC key, or click
the mouse on a component outside of the canvas.

To bend an existing connection:

1. Click on an existing connection

2. Drag the connection to its new position

3. Release the mouse button, and the bend point will appear

Creating a message flow
1. In the Message Flow Types pane of the Message Flows view, right click the

Message Flows root, and click Create —> Message Flow.

The Create a new Message Flow dialog is displayed.

2. In the Name field, type the unique name of your new message flow. This must
follow the naming rules described in “Naming Control Center resources” on
page 11. Click Finish.

The Message Flows view

46 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

|

|
|

|

|
|

|

|
|

|

|

|

|

|

|
|
|

Confirmation that the message flow has been created appears in two places in
the Message Flows view:

v The name of the new message flow appears in the title bar of the Message
Flow Definition pane.

v An entry for the new message flow appears in the Message Flow Types pane
with a New icon against it.

You are now ready to assemble the message flow from the available message
flow nodes.

3. From the Message Flow Types pane, drag each of the message flow nodes you
want to use into the Message Flow Definition pane. (This step fails if you have
not defined a message flow into which you can drag the message flow nodes.)

A graphical symbol representing each of the nodes you select is shown in the
Message Flow Definition pane. The first node of each type that you select has
the number “1” appended to its name. For example, if you construct a simple
message flow using the MQInput, DataUpdate, and MQOutput message nodes,
each appears in the Message Flow Definition pane with a ″1″ appended to its
name (that is, MQInput1, DataUpdate1, and MQOutput1).

If you use more than one instance of any of these nodes within a single
message flow, and do not rename each node immediately, the number
appended is incremented each time (the second instance has “2”, the third has
“3”, and so on).

4. If you want these nodes to have different names from those assigned, you can
rename them by following this procedure:

a. Check out the message flow

b. In the Message Flow Definition pane, right click on one of the message flow
node symbols, and click Rename.

The Rename Message Flow Node dialog is displayed.

c. In the New Name field, type the new name of this instance of the message
node. Click Finish.

The new name of the message flow node appears beneath its symbol in the
Message Flow Definition pane. Repeat this process for other message nodes
you want to rename.

Now you are ready to connect the message nodes in your message flow in a
way that will provide the processing logic you require. For the remainder of this
section, let’s assume that you are connecting the MQInput message flow node
to the DataUpdate message flow node.

5. To connect the out terminal of MQInput to the in terminal of DataUpdate, right
click the MQInput symbol in the Message Flow Definition pane, and click
Connect —> Out. (All terminals available to this node appear in this list.) The
cursor becomes a cross-hair attached by a red line to the out terminal.

6. Move the cross-hair to the in terminal shown on the symbol of the DataUpdate
node, and click. A line now connects the out terminal of the MQInput node to
the in terminal of the DataUpdate node.

Note: An alternative way of connecting terminals is to move the cursor slowly
over the terminal icons of the node until the label of the terminal you
want to connect is displayed, then press the left mouse button. This
action converts the cursor to a cross-hair attached by a red line to the

Creating a message flow

Chapter 5. Working with message flows 47

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

node, which you can move to the appropriate terminal of the next node.
Release the mouse button to connect the line. This method requires a
certain dexterity.

Follow this process for all terminals within the message flow between which you
want to establish connections.

To view or change the description of a connection, select the Properties menu,
Properties, and view or modify the description as required.

7. You must configure the nodes in your message flow to match your processing
requirements.

Note: When you have assembled the message nodes you want to use in the
Message Flow Definition pane, the order in which you rename, connect,
and configure them is unimportant.

8. If you are ready to make this message flow generally available within the broker
domain, check it into the shared configuration as described in “Checking in
message flows” on page 54.

You must be aware of the following information regarding message flows that
access external databases:

1. Fully globally coordinated message flows that involve a DB2® resource manager
are supported on DB2 Universal Database® V6.1 and V7.1.

2. The message flow thread connects to the specified data source, unless it is
already connected. When a thread has acquired a connection to an ODBC data
source, the connection is not relinquished.

You are recommended to determine the number of database connections
required by a broker for capacity and resource planning purposes. The default
action taken by DB2 is to limit the number of concurrent connections to a
database to the value of the maxappls configuration parameter. The default for
maxappls is 40. Check the appropriate documentation for connections to
databases from other suppliers.

The connection requirements for a single message flow are:

v One required per message flow thread that contains a publication node.

v One required per database access node to separate ODBC data source
names per message flow thread (that is, if the same DSN is used by a
different node, the same connection is used).

Note: These database connections are in addition to the run-time connections
required by the broker (to the DB2 or SQL Server database that is defined to
hold its internal information). For details of these connections, see the
MQSeries web site.

Creating a message flow category
When you have a large number of message flows in your workspace, the Message
Flows tree in the Message Flow Types pane can become difficult to navigate. To
introduce some structure into the list, you can define message flow categories,
under which you can organize related message flows. (The IBM Primitives, for
example, belong to the IBM Primitives message flow category.)

To create a message flow category:

1. In the Message Flow Types pane, right click the root of the Message Flows tree,
and click Create —> Message Flow Category.

Creating a message flow

48 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|

|
|

|
|

The Create a new Message Flow Category dialog is displayed.

2. In the Name field, type the name of your message flow category. Click Finish.

An entry for the new message flow category appears in the Message Flow Types
pane.

You can create new message flows within this new message flow category, as
follows:

1. Right click on the message flow category folder in the Message Flow Types
pane, and click Create —> Message Flow.

2. Follow the instructions for creating a message flow from step 2 on page 46.

You can also add existing message flows, to a message flow category, as described
in “Adding a message flow to your workspace”.

Adding a message flow to your workspace
If you want to incorporate message flows:

v Created by other Control Center users

v Created in another Control Center session

v Removed from the Control Center in the current Control Center session

into your own workspace, you need to begin by adding them into your workspace.
When you add definitions to your workspace, a reference to each definition is
created in your workspace.

To add a message flow to your workspace:

1. Right click the Message Flows root in the Message Flow Types pane, and click
Add to Workspace —> Message Flow.

The Add an existing Message Flow dialog is displayed.

v To select a single entry from this list, click the message flow name.

v To select multiple entries that appear sequentially in the list, click on the first
message flow you want, press and hold the Shift key, then click on the last
one you want. This action selects the two message flows you highlighted,
plus any that appear between the two in the list.

v To select multiple message flows that do not appear in a sequence in the list,
hold down Ctrl and click each entry you want.

2. When you have selected the message flows you want, click Finish.

The items you selected are added to the Message Flow Types pane, from
where you can include them in new message flows.

If you perform this task by right clicking on a message flow category in the
Message Flow Types pane and clicking Add —> Message Flow, the items you
select are added to the folder of the message flow category in the Message Flow
Types pane.

Checking a message flow
When you have created a message flow, you can use the message flow
SmartGuide to check the following:

v All ESQL syntax is correct.

v All references to message fields are resolved.

Creating a message flow category

Chapter 5. Working with message flows 49

|

|

|

|

|
|
|

v All message flow properties (including promoted properties) are valid.

v All message field names are recognized.

This SmartGuide allows you to check for errors before you deploy the message
flow, thus saving time and inconvenience.

To use the message flow check SmartGuide:

1. Right click the message flow you want to check, and select Check message
flow....

2. Select the message set and messages that are used in the message flow from
the list presented in the dialog.

3. Click Next. The SmartGuide performs the checks identified above and presents
a results window.

You can use the information displayed in this window to identify the node that is
incorrect and the nature of the error. The upper part of the screen lists the
errors found: the lower part of the screen provides the details of the error
selected in the upper part. You can move through the list of errors using the
arrow keys on the right hand side of the window.

You can leave this window active as a reference while you make the changes
and corrections.

Including one message flow in another
You can create a message flow that includes a mixture of message flow nodes and
existing message flows. You might want to do this, for example, if you have created
a standard message flow to process errors or to perform a particular calculation.
You can define this standard message flow once and include it in other message
flows wherever it is required, which is easier than redefining the same sequence of
nodes in each message flow that uses them.

A set of nodes created as a partial message flow for use in this way is also known
as a subflow or embedded flow.

Note: Any message flow that you intend to reuse in this way does not normally use
the standard MQInput and MQOutput nodes to start and end the flow.
Instead, it uses the Input Terminal and Output Terminal nodes that are
included in the IBM Primitives message category.

1. To include an existing, reusable message flow in a new message flow,
you must begin by adding that message flow to your workspace, if it isn’t
already there, as described in “Adding a message flow to your
workspace” on page 49.

2. Create the new message flow, following steps 1 and 2 on page 46.

3. In the Message Flow Types pane, with the new message highlighted in
the Message Flow Types pane, drag the message flows and nodes that
will make up your new flow into the Message Flow Definition pane.

Embedded message flows have terminal icons that represent the Input
Terminal and Output Terminal nodes they contain. For example, if the
nested message flow has one Input Terminal node and two Output
Terminal nodes, the message flow icon will have one input terminal and
two output terminals, which you connect to other nodes in the
higher-level flow in the usual way. You can rename these terminals if you
want: for example, one of the Output Terminals might be for an error
path, and you might rename this ’failure’.

Checking a message flow

50 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|

|
|
|
|
|
|
|
|

You can work with the subflow by adding it to your workspace and either selecting it
in the Message Flow Types pane (as you can with any message flow), or by
double-clicking on the node icon for the embedded flow displayed within the main
flow in the Message Flow Definition pane.

The right-hand pane changes to display the configuration for that subflow. You can
also reach this view by right-clicking the subflow node, and selecting Open
sub-flow.

You can return to the parent flow by right-clicking the Message Flow Definition pane
and selecting the menu item Return to parent flow.

Promoting message flow node properties
A message flow contains one or more message flow nodes, each of which is an
instance of a message flow type (either an IBM Primitive, or one you have defined).
You can promote the properties of these message flow nodes to apply to the
message flow to which they belong. If you do this, any user of the message flow
can set values for the properties of the nodes in the message flow, by setting them
at the message flow level, without being aware of the message flow’s internal
structure.

For example, you might want to set the name of a data source as a property of the
message flow, rather than a property of each individual node in the message flow
that references that data source.

You are creating a message flow that accesses a database called SALESDATA.
However, while you are testing the message flow, you want to use a test database
called TESTDATA. If you set the data source properties of each individual node
within the message flow to reference TESTDATA, you will have to update all these
references when you put your message flow into production.

If you promote the data source property, you can set the properties for all of the
individual nodes to be SALESDATA, and set the value of TESTDATA for the
promoted property to override the node data source values while you test the
message flow (the promoted property always takes precedence over the settings for
the properties within any relevant nodes).

To promote message flow node properties to a message flow:

1. You must check out the message flow for which you want to promote properties.
If it is not checked out, right click the entry for the message flow in the Message
Flow Types pane, and click Check Out.

The message flow contents are now displayed in the Message Flow Definition
pane.

2. Right click the symbol of the message flow node whose properties you want to
promote, and click Promote Property.

The Promote Property dialog is displayed.

3. In the Promote Property dialog, the names of the properties of the message
flow node are displayed in the left-hand pane. This pane is always fully
expanded to show all properties that are available for promotion. If you have
already promoted properties from this node, they do not appear in the left-hand
pane, but in the right-hand pane.

The names of the properties of the message flow itself, of which the message
flow node is a part, are displayed in the right-hand pane. These are properties

Including one message flow in another

Chapter 5. Working with message flows 51

that have already been promoted up to the message flow. The original name of
the property and the name of the message flow node from which it came, are
shown beneath the property entry. This allows you to determine the specific
node that is the origin of each promoted property, regardless of the name of the
promoted property. See “Renaming promoted properties” on page 53 for
information about renaming properties.

4. To promote a property from the message flow node to the message flow, drag
its entry from the left-hand pane of the Promote Property dialog to the
right-hand pane and drop it in an empty part of the pane. It then appears at the
top of the pane.

Figure 7 shows an example of the Promote Property dialog.

5. When you have selected the properties you want to promote to the message
flow, click OK.

The message flow node properties have been promoted to the message flow. To
confirm this, in the Message Flow Types pane, right click the entry for this message
flow and click Properties.

The Properties dialog of the message flow is displayed, showing the message flow
node properties you promoted. If you now set a value for one of these properties,
that value appears as the default value for the property whenever the message flow
is itself included in other message flows.

When you select an embedded message flow within another message flow and
view its properties, you see the promoted property values. If you look inside the
embedded flow (that is, if you select Open sub-flow), you see the original values
for the properties. The value of a promoted property does not replace the original
property, but it takes precedence at deploy time.

Promoting properties through a hierarchy of message flows
The process of promoting message flow node properties can be repeated as you
construct a hierarchy of message flows. You can promote properties from any level
in the hierarchy to the next level above, and so on through the hierarchy. The value
of a property is propagated from the highest point in the hierarchy at which it is set

Figure 7. The Promote Property dialog. Some of the properties of the message flow node
have been dragged across to the message flow and thus promoted.

Promoting message flow node properties

52 MQSeries Integrator Version 2.0.2 Using the Control Center

down to the original message flow node when the message flow is deployed to a
broker. The value of that property on the original message flow node is overridden.

Converging multiple properties
It is possible for a promoted property to provide a value for several message flow
node properties at once. For example, if a message flow contains two Database
nodes that each refer to the same physical database, you can define the physical
database only once on the message flow. To do this, you promote several message
flow properties to a single promoted property. Drag the property entry from the
left-hand pane to the right-hand pane, and drop it onto an existing promoted
property (instead of into the empty pane). You can now see the new property added
under the existing promoted property.

Note: If the type of the property you are promoting does not match the type of the
existing promoted property, a new promoted property is created at the top of
the pane when you drop the property onto the existing property.

Renaming promoted properties
To rename a promoted property:

1. In the Promote Property dialog, right click the promoted property, and click
Rename.

2. In the Rename dialog, type the new name for the property. Click OK.

The new name of the property appears in the right-hand pane of the Promote
Property dialog.

Deleting a promoted property from a message flow
To delete a promoted property from a message flow, in the Promote Property
dialog, right click the promoted property, and click Delete.

Note: Any higher level message flow that has used this message flow, and that
has set a value for the deleted property, is not automatically updated to
reflect the deletion. However, when you deploy that message flow in the
broker domain, the deleted property is ignored.

Promoting mandatory properties
If you promote a property that is mandatory (that is, the name appears in bold type
in the properties dialog of the message flow node), the mandatory characteristic of
the property is not preserved. You are recommended always to provide a default
value for the property using the properties dialog of the message flow node from
which the property originated.

Example of how to promote message flow node properties
This example demonstrates how to promote message flow node properties.

1. Create a new message flow called Base.

2. Drag an MQInput node and an MQOutput node from the Message Flow Types
pane into the Message Flow Definition pane.

3. In the Message Flow Definition pane, right click the symbol of the MQInput
node, and click Promote Property.

The Promote Property dialog is displayed.

4. Drag the properties you want to promote from the left-hand pane into the
right-hand pane. Click OK.

Promoting message flow node properties

Chapter 5. Working with message flows 53

5. Repeat steps 3 on page 53 through 4 on page 53 for the MQOutput node.

6. Create a new message flow called Middle.

7. Click on the entry for the message flow Middle in the Message Flow Types
pane, then drag the message flow Base into the Message Flow Definition
pane.

A graphical symbol of the message flow labeled Base1 appears in the
Message Flow Definition pane.

8. In the Message Flow Definition pane, right click the symbol of the Base1
message flow, and click Properties.

The properties you promoted from the MQInput and MQOutput nodes appear
as properties of the message flow Base1.

9. Click Cancel.

10. In the Message Flow Definition pane, right click the symbol of the Base1
message flow again, and click Promote Property.

The properties that appear in the left-hand pane of the Promote Property
dialog are those you promoted from the message flow nodes in the Base1
message flow. You can promote these properties to the message flow Middle,
displayed in the right-hand pane. If you do this, note that Base1 is listed as the
originating message flow.

11. Repeat this procedure to add further levels to the hierarchy of message flows
and to promote properties throughout the hierarchy.

Checking in message flows
When you have created a message flow, you can assign it to an execution group as
described “Assigning message flows to execution groups” on page 86. You do not
need to have checked the message flow into the shared configuration before
assigning it. However, you must check it in before you can deploy it to one or more
brokers in the message domain.

To check in a message flow, right click the folder of the message flow you want to
check in within the Message Flow Types pane, or right click on the background of
the Message Flow Definition pane, and click Check In.

The message flow is checked into the shared configuration. It still appears in your
workspace (as evidenced by the inclusion of its folder in the Message Flow Types
pane), but the New icon or the Key icon against its folder has disappeared.

Checking out message flows
Once you have checked in a message flow, it is available to other users from the
shared configuration. If you want to make further changes to the message flow, you
must first check it out of the shared configuration:

1. In the Message Flow Types pane, right click the folder of the message flow you
want to edit.

2. Click Check Out.

The message flow is checked out of the shared configuration. Its entry in the
Message Flow Types pane has a Key icon against it to remind you that the
definition is checked out.

How to promote message flow node properties

54 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

Creating your own message nodes
You can create your own nodes, called plug-in nodes, to extend the function of
MQSeries Integrator. This is described in the MQSeries Integrator Programming
Guide.

These nodes have to be represented in the Control Center so that users can
include them in message flows. The Message Flows (designer view) contains a
SmartGuide to help you define the interface for plug-in nodes. See the online help
for how to use this SmartGuide and the MQSeries Integrator Programming Guide
for details on how to build the runtime library, and where to store the library to
enable the node’s use. This book also provides information about how to write
customizers and property editors that allow you to extend the function of your node
beyond the defaults supplied by IBM.

Configuring Message flow nodes
The message flow nodes supplied with MQSeries Integrator Version 2.0.2 are also
known as the IBM Primitives. For reference information about the message flow
nodes, for example, their properties, see the online help.

With the exception of the Compute node, NEONMap and NEONTransform the input
message received by a node, and the output message sent on by the node, are
identical.

A number of these nodes allow manipulation of the message using ESQL. For more
information about ESQL please refer to the MQSeries Integrator ESQL Reference
book, or SupportPac IC03 (see “MQSeries information available on the Internet” on
page 173 for more details).

Using the check node

The Check node compares the format of a message arriving on its input
terminal with a message-type specification that you supply when you
configure the Check node. The message-type specification comprises any
combination of the message domain, message set, and message type. The
Check node checks only the message-type specification; it does not check
the message body.

The following scenario illustrates one possible use for this node:

You might receive electronic messages from your staff at your head office. These
messages are used for multiple purposes, for example to request technical support,
stationery, or advising you about new customer leads. These messages can be
processed automatically because your staff fill in a standard form. If you want these
messages to be processed separately from other messages received, you use the
Check node to ensure that only staff messages which have a specific message type
are processed by this message flow.

Creating your own message nodes

Chapter 5. Working with message flows 55

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

Using the Compute node

The Compute node constructs a new message, or modifies elements
(headers, header fields, and body data) within an existing message, or its
associated destination or exception list, or both. These components of the
message can be defined using an ESQL expression, and can be based on
elements of both the input message and data from an external database.
The expression can make use of arithmetic operators, text operators (for
example, concatenation), logical operators, and other built-in functions.

The Compute node can be used

v To build a new message using a set of assignment statements

v To copy messages between parsers

v For data conversion

v For message transformation

For more detail about how to construct the ESQL to do each of these tasks, see the
MQSeries Integrator ESQL Reference book.

The following scenario illustrates one possible use for this node:

You want to give each order you receive a unique identifier for audit purposes. The
Compute node does not modify its input message, it creates a new, modified copy
of the message as an output message. You can use the Compute node to insert a
unique identifier for your order into the output message.

Using the Database node

The Database node allows a database operation in the form of an ESQL
statement to be applied to the specified ODBC data source. Data from the
input message can be substituted into the ESQL expression, and transforms
can be applied to the data as part of that assignment. A node property
controls whether the update to the database is committed immediately, or
deferred until the completion of processing of the message flow at which
time the update is committed or rolled back according to the overall
completion status of the message flow.

The syntax of the statements that are accepted by the Database node is a subset
of the statements that are accepted by a Compute node.

Like the Compute node, the Database node is configured using a series of
statements. All of the normal compute statements such as SET, WHILE, DECLARE,
and IF can be used to control the flow of the series of statements.

Unlike the Compute node, however, the Database node propagates the message
that it receives at its input terminal to its output terminal unchanged. This means
that, like the Filter node, there is only one message to be referred to in a Database
node.

Because you can't modify any part of any message, the assignment statement (the
SET statement, not the SET clause of the INSERT statement) can only assign
values to temporary variables. Therefore the scope of actions you can take with an
assignment statement is limited.

The following scenario illustrates one possible use for this node:

Compute node

56 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|

|

|

|
|

|

|
|
|
|

|

If you receive an order for 20 monitors, and have sufficient numbers of monitors in
your warehouse, you want to decrement the stock level on your Stock database.
You can use the Database node to check you have sufficient monitors available,
and decrement the value of the quantity field in your database.

Using a DataDelete node

The DataDelete node is a specialized form of the Database node that allows
deletion of one or more rows from a table in the specified ODBC data
source. Data from the input message can be substituted into the ESQL
expression, and transforms can be applied to the data as part of that
assignment. A property controls whether the update to the database is
committed immediately, or deferred until the completion of processing of the
message flow at which time the update is committed or rolled back
according to the overall completion status of the message flow.

This node offers an alternative way of deleting data from a database. You could
also use the Database node.

The following scenario illustrates one possible use for this node:

You were running a limited promotion. The goods are only available for the period
of the promotion, and each customer can only have one item. When stocks of the
sale goods run out, you want to remove their details from the stock database, when
a message containing an order for the last item comes in, the DataDelete node is
triggered to remove all the details for that item from the database.

Using a DataInsert node

The DataInsert node is a specialized form of the Database node that allows
insertion of one or more rows into a table in the specified ODBC data
source. Data from the input message can be substituted into the ESQL
expression, and transforms can be applied to the data as part of that
assignment. A property controls whether the update to the database is
committed immediately, or deferred until the completion of processing of the
message flow at which time the update is committed or rolled back
according to the overall completion status of the message flow.

This node offers an alternative way of inserting data into a database. You could also
use the Database node.

The following scenario illustrates one possible use for this node:

You have developed a new product. The details about the product have been sent
from your engineering department, and you need to extract details from the
message and add them as a new row in your stock database.

Using a DataUpdate node

The DataUpdate node is a specialized form of the Database node that
allows the modification of one or more rows in a table in specified ODBC
data source. Data from the input message can be substituted into the ESQL
expression, and transforms can be applied to the data as part of that
assignment. A property controls whether the update to the database is
committed immediately, or deferred until the completion of processing of the
message flow at which time the update is committed or rolled back
according to the overall completion status of the message flow.

Database node

Chapter 5. Working with message flows 57

|
|
|
|

|
|

|

|
|
|
|
|

|
|

|

|
|
|

This node offers an alternative way of updating data in a database. You could also
use the Database node.

The following scenario illustrates one possible use for this node:

You have already added details of a new product, a keyboard, to your stock
database. Now you have received a message from the Goods In department which
indicates that 500 keyboards have been delivered to your premises. You can use
the DataUpdate node to change the quantity of keyboards in your database from
zero to 500.

Using an Extract node

The Extract node derives an output message from an input message. The
output message comprises only those elements of the input message that
you specify for inclusion when configuring the Extract node.

The following scenario illustrates one possible use for this node:

When you receive orders from new clients, you might want to collect their names
and addresses for future promotions. To do this you would extract their names and
addresses from the orders, and send them as a new message to head office. These
messages would be processed at head office so that the customer details can be
included in the next marketing campaign.

Using a Filter node

The Filter node routes a message according to message content using a
filter expression specified in ESQL. The filter expression can include
elements of the input message or message properties. It can also use data
held in an external database. The output terminal to which the message is
routed depends on whether the expression is evaluated to true, false, or
unknown.

The filter node can route a message depending on a:

v Value in the message body

v Calculation, resulting in a value

v True or false being returned from an expression

The following scenario illustrates one possible use for this node:

There is an online test with 10 multiple choice questions. Each message coming in
has a candidate name and address followed by a series of answers. Each answer
is checked, and if it is correct the field ″SCORE″ is incremented by 1. Once all the
answers have been checked, the field ″SCORE″ is tested to see if it is greater than
5. If it is, the filter node propagates the message to the flow which handles
successful candidate input, otherwise the message is filtered into the rejection
process, and a rejection message is created.

DataUpdate node

58 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|

|
|
|
|
|

|

|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|

Using a FlowOrder node

The FlowOrder node enables you to control the order in which a
message is processed by a message flow. You can use this node to
specify the order in which each message is propagated to each (of two)
output terminals. The message is only propagated to the second output
terminal if propagation to the first output terminal is successful.

You can include this node in a message flow at any point where the order of
execution of subsequent nodes is important. The FlowOrder node by definition
propagates the input message through the first output terminal and its target node
or nodes before propagating the input message to the second output terminal and
its target node or nodes. The default behavior of all other nodes is for the order of
propagation to any output terminal to be random and unpredictable.

If you connect multiple target nodes to the first terminal, or the second terminal or
both, the order in which the multiple connections on each terminal are processed is
random and unpredictable. However, the message is propagated to all target nodes
connected to the first terminal, and all must complete successfully before it is
propagated to any connection on the second output terminal.

The following scenario illustrates one possible use for this node:

You might want to use a FlowOrder node to control the sequence of branching
when, for example, receiving orders from the internet. When the order is received, it
is processed by nodes connected to the first terminal. The tasks performed here
could be to debit the stock level in your database and raise an invoice. Finally a
check is done to see if the customer has said his details can be sent to other
suppliers. If the customer has indicated that he does not wish this information to be
divulged, then this check fails and no further processing occurs. If however, the
customer is happy for you to share his details with other companies (that is, the test
is successful) then the input message is propagated to the second terminal so the
customers details can be added to the mailing list.

Using the Input Terminal

The Input Terminal provides an in terminal for an embedded message
flow.

From an Input Terminal, you can make a connection to any in terminal on any
message flow node. The Input Terminal is the first node of a subflow that you can
embed in another flow. An MQInput node is not required in a subflow. For more
information about embedded flows, see “Including one message flow in another” on
page 50.

The following scenario illustrates one possible use for this node:

A subflow might be used for common tasks, such as setting up a counter for a loop.
The InputTerminal is the entry point into the subflow.

FlowOrder node

Chapter 5. Working with message flows 59

|

|

|
|

Using a Label node

The Label node is a named destination for a message processed by a
RouteToLabel node. The Label node is identified by an entry in a
destination list of the message when it is processed by a RouteToLabel
node.

The combination of a RouteToLabel node with Label nodes provides a level of
dynamic routing within a message flow, with the destination of the message
following the RouteToLabel node being determined by the contents of the
destination list within the message itself.

Typically, a label node connects to a subflow that processes each message in a
specific way, and either ends in an output node or in another RouteToLabel node.

Figure 8 on page 67 illustrates a message flow that is made up of subflows that are
associated with the main flow using RouteToLabel and Label nodes.

Using the MQeInput node

The MQeInput node reads messages from a specified ″bridge″ queue on
the broker’s MQSeries Everyplace queue manager (which must be
created and configured before a message flow containing this node is
deployed), and establishes the processing environment for the message.

If you plan to deploy message flows containing MQeInput nodes to a broker, you
can only use one execution group, no matter how many message flows that is. The
MQSeries Everyplace nodes in the flows must all specify the same MQSeries
Everyplace queue manager name. You’ll get an error on deploy otherwise.

MQeInput routes messages to the out terminal. If this fails, the message is retried.
If the retry out expires, the message is routed to the failure terminal. If this is not
connected, the message is written to the backout queue.

If the message is caught by this node after an exception has been thrown further on
in the message flow, the message is routed to the catch terminal.

You must define a backout requeue queue or a dead letter queue (DLQ) within
MQSeries Everyplace to prevent the message looping continuously through the
node.

See MQSeries Integrator Programming Guide for information about writing
MQSeries Everyplace applications which communicate with MQSeries Integrator.

The following scenario illustrates one possible use for this node:

A farmer in Australia checks his fields to see how well they are irrigated. He is
carrying a Palm Pilot with MQSeries Everyplace installed. He sees an area of field
requiring water, so using his Palm Pilot and a Global Satellite Navigation link, he
sends a message to an MQeInput node. The data is manipulated using a Compute
node, and a message is published so that a remote SCADA device can pick up the
message and trigger the irrigation sprinklers. The farmer can see the water
delivered to the field minutes after sending his message.

Label node

60 MQSeries Integrator Version 2.0.2 Using the Control Center

|

||

|

|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|

Using the MQeOutput node

The MQeOutput node forwards messages to MQSeries Everyplace
queue managers. This node has three Destination mode options:

v Queue Name

v Destination List

v Reply to Queue

If a non-local destination queue manager is specified, ensure there is
either a route to the queue manager, or store-and-forward queue
servicing for the queue manager if it exists.

Using an MQInput node

The MQInput node uses MQGET to read a message from an MQSeries
message queue defined on the broker’s queue manager, and establishes
the processing environment for the message.

MQInput routes messages to the out terminal. If this fails, the message is retried. If
the retry out expires (as defined by the BackoutThreshold attribute of the input
queue), the message is routed to the failure terminal. If this is not connected, the
message is written to the backout queue.

If the message is caught by this node after an exception has been thrown further on
in the message flow, the message is routed to the catch terminal.

You must define a backout requeue queue or a dead letter queue (DLQ) to prevent
the message looping continuously through the node.

You must use one of the supplied MQInput nodes (MQInput, MQeInput,
SCADAInput): you cannot replace it with a user-written equivalent.

The following scenario illustrates one possible use for this node:

Set the ″Convert″ property to ″yes″, so data conversion will be performed on the
message received (in conformance with the CodedCharSetId and Encoding values
set in the MQMD).

Using an MQOutput node

The MQOutput node uses MQPUT to write messages to an MQSeries
message queue defined on any queue manager accessible by the broker’s
queue manager, or to the destinations identified in the destination list
associated with the message.

You do not have to use this output node, you could use either of the MQSeries
Integrator output nodes: MQOutput or MQeOutput.

The following scenario illustrates one possible use for this node:

You can set the node properties to specify that MQSeries can, if appropriate, break
the message into segments in the queue manager.

Using the MQeOutput node

Chapter 5. Working with message flows 61

|

||

|

|
|

|

|

|

|
|
|
|

|

|

|
|

|

Using an MQReply node

The MQReply node is a specialized form of the MQOutput node that sends
a response to the originator of the message by putting a message to the
MQSeries queue identified by the ReplyToQ field of the message header.

The following scenario illustrates one possible use for this node:

This node is useful when receiving an order from a customer. When the order
message is processed, a response is sent to the customer acknowledging receipt of
his order and providing a possible date for delivery.

Using the NEONFormatter node

The NEONFormatter node is used transform a message from a known
input format to a specified output format. The message definition and
transformations are defined using the NEON Formatter graphical
utility, not the MQSeries Integrator Control Center. This node is
deprecated and has been superseded by the NEONMap and
NEONTransform nodes. You are not recommended to use this node
except to maintain backwards compatability with existing message
flows.

See “Chapter 17. Concepts of NEONRules and NEONFormatter Support for
MQSeries Integrator” on page 145 for more information.

Using the NEONMap node

The NEONMap node performs exactly the same function as the
NEONTransform node except that any output operations associated with
the specified Target Format are not applied to the output message. See
“Chapter 17. Concepts of NEONRules and NEONFormatter Support for
MQSeries Integrator” on page 145 for more information concerning the
use of the NEONMap node.

See “The NEONMap node” on page 149 for more information.

The following scenario illustrates one possible use for this node:

You wish to reformat a input format message to an output format for the purposes
of processing the message. However the output format has output operations
associated with it that cause extra formatting information, such as delimiters or tags,
to be added to the output message data. The NEONMap node may be employed to
reformat the message without applying these operations, thus allowing it to be used
as a generic content model format without the need to alter its definition in the
NEONFormatter User Interface.

MQReply node

62 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|
|
|

|

||

|

|
|
|
|
|
|
|
|
|

|
|

|

||

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

Using the NEONRules node

The NEONRules node provides an encapsulation of the NEONRules engine
within MQSeries Integrator 2.0. The firing of the Propagate action
propagates the output message to the propagate terminal. The firing of the
PutQueue action attaches a queue name to the destination list associated
with the message and routes the message to the putqueue terminal. This
node is deprecated and has been superseded by the NEONRulesEvaluation
node. You are not recommended to use this node except to maintain
backwards compatability with existing message flows.

See “Chapter 17. Concepts of NEONRules and NEONFormatter Support for
MQSeries Integrator” on page 145 for more information.

Using the NEONRulesEvaluation node

The NEONRulesEvaluation node implements the processing and
execution of the Rules defined in the NEONRules User Interface. These
rules transform and redirect incoming messages based on the format,
application group and content of the messages. See the NEONRules and
NEONFormatterSupport documentation for more information regarding
Rule definition. Three of the actions which a Rule may invoke include Put
Queue, Route and Propagate. These result in the output message being
sent to the putqueue, route and propagate terminals of the
NEONRulesEvaluation node respectively. The Put Queue and Route
actions also cause the Destination List of the output message to be
appropriately configured for it to be processed by an MQOutput or
RouteToLabel node. Messages are sent to the nohit terminal when they
fail to meet the criteria for any of the defined Rules.

See “The NEONRulesEvaluation node” on page 150 for more information.

The following scenario illustrates one possible use for this node:

You wish to place incoming messages to various MQSeries queues depending on
the value of a field within the message. The NEONRulesEvaluation node may be
employed to do this. You must first define an appropriate input format for the
incoming messages in the NEONFormatter User Interface, then define a Rule in the
NEONRules User Interface which executes various Put Queue actions depending
on the contents of the required field. The putqueue terminal of the
NEONRulesEvaluation node must be connected either directly or indirectly to an
MQOutput node configured with a Destination Mode of ″Destination List″ in order
for the Put Queue action to have any effect.

Using the NEONTransform node

The NEONTransform node is used to transform a message from a known
input format to a specified output format. The message format definitions
are defined using the NEONFormatter graphical utility, not the MQSeries
Integrator Control Center.

See “The NEONTransform and NEONMap nodes” on page 147 for more
information.

NEONRules node

Chapter 5. Working with message flows 63

|

||

|

|
|
|
|
|
|
|
|
|

|
|

|

||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

||

|

|
|
|
|

|

|
|

The following scenario illustrates one possible use for this node:

You wish to translate a message with a wire format suitable for one system into a
wire format suitable for a second, different, system. This may be accomplished by
defining both wire formats within the NEONFormatter User Interface and setting the
Target Format attribute of the NEONTransform node to the name of the required
output format. For more information concerning the definition of input and output
formats, and the mappings between them, see the NEONRules and
NEONFormatter Support documentation.

Using the Output Terminal

The Output Terminal provides an out terminal for an embedded message
flow.

An Output Terminal can only receive connections from a message flow node. The
Output Terminal is the last node of a subflow that you can embed in another flow. A
subflow can be set up with more than one Output Terminal. When the subflow is
included in an embedding flow, the number of out terminals displayed represents
the number of Output Terminals in the embedded subflow. Each out connector is
labeled with the name you assigned to the Output Terminal node. For more
information about embedded flows, see “Including one message flow in another” on
page 50.

The following scenario illustrates one possible use for this node:

A subflow might be used for common tasks, such as setting up a counter for a loop.
The OutputTerminal is the exit point from the subflow.

Using the Publication node

The Publication node filters and transmits the output from a message flow to
subscribers who have registered an interest in a particular set of topics.

The Publication node must always be an output node of a message flow
and has no output terminals of its own.

The default publish/subscribe message flow provides a simple publish/subscribe
service. It emulates exactly the basic publish/subscribe function supported by the
Publish/Subscribe SDK, and is appropriate for all publish/subscribe services in
which no additional processing of the message content is required. For more
information see “Using the IBM supplied message flows” on page 129.

The operation of the two nodes within this node is:

1. The Get next message node (type MQInput) gets the next available message
from the input queue and passes it to the Publication node for matching against
the table of subscription requests. The input queue is initially defined to be
SYSTEM.BROKER.DEFAULT.STREAM, but you can change this according to
your requirements.

Failures in this node are not handled explicitly: the failing message is put to a
backout queue or dead letter queue (if these queues have been defined). You
can change this behavior by connecting other nodes to the failure terminal of
this node, if you want to.

NEONTransform node

64 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|
|
|
|
|
|
|

|

|
|

2. The Route to matching subscribers node (type Publication) matches the
inbound publication against its internal subscription table (created and
maintained in response to client subscription requests).

For each matching subscription, the message is delivered to the subscriber by
putting it to the queue on the queue manager specified in the subscription.

If you want to deploy this default message flow, you are recommended to make a
copy of it. This preserves the default message flow in your configuration repository
for future reuse.

Using the ResetContentDescriptor node

The ResetContentDescriptor node takes the bit stream of the
input message and reparses it using a different message
template and either the same or a different parser. The node
can reset any combination of message domain, set, type,
and format.

The following scenario illustrates one possible use for this node:

You can use a ResetContentDescriptor node to swap between two message
parsers in the middle of a message flow. For example, you can swap between the
BLOB and the MRM parser.

The format of an incoming message might be unknown when it enters a message
flow, so the BLOB parser is invoked. Later on in the message flow, you might
decide that the message is defined in the MRM format and you can use the
ResetContentDescriptor node to reparse the message using the MRM parser.

The following table shows typical ResetContentDescriptor node attributes:

Table 2. Typical ResetContentDescriptor node attributes

messageDomain MRM

resetMessageDomain check

messageSet DH53CU406U001

resetMessageSet check

messageType m_MESSAGE1

resetMessageType check

messageFormat CWF

resetMessageFormat check

The messageDomain is set to MRM, which causes the MRM parser to be invoked.
The message set, type, and format are the message template values that define the
message format in MRM, and all the reset boxes are checked because all the
properties need to change.

The ResetContentDescriptor node in the previous example causes the incoming
BLOB parser to construct the physical bitstream of the message (not the logical tree
representation of it) and pass this bitstream to the MRM parser. The MRM parser
then parses the bitstream using the message template given above (messageSet,
messageType, and messageFormat).

It is important to note that the ResetContentDescriptor node does NOT:

Publication node

Chapter 5. Working with message flows 65

|
|
|
|
|

|

|
|
|

|
|
|
|

|

||

||

||

||

||

||

||

||

||
|
|
|
|
|

|
|
|
|
|

|

v Change the physical bit stream, only the way in which the bitstream is parsed in
MQSeries Integrator.

v Convert the message from one format to another. For example, if the incoming
message has a messageFormat of XML and the outgoing messageFormat is
CWF, the ResetContentDescriptor node does not do any reformatting. It attempts
to parse the bitstream of the incoming XML message as a CWF message. This
results in all the XML tags remaining in the message and the reparse will fail.

Using a RouteToLabel node

The RouteToLabel node provides a dynamic routing facility based on the
contents of the destination list associated with the message. The
destination list contains the identity of one or more target Label nodes,
identified by their Label Name property (not the node name).

The destination, defined by the Label Name of a Label node, is resolved by the
broker itself during message flow processing: you do not connect a terminal on the
RouteToLabel node to the destination nodes.

A RouteToLabel node uses a destination list within a message to route the message
to a target node of type Label that matches the label within the destination list item.
Therefore the message must include a destination list to be acted on by the
RouteToLabel node.

You must create the destination list, and include it in the message, in a Compute
node. You must select the Advanced tab on the Compute node properties dialog,
and select an option, for the Compute node, that includes Destination from the
drop-down list.

The destinations are set up as a list of label names. The label names can be any
string value, and can be explicitly specified in the Compute node or taken or cast
from any field in the message or from a database. A label name in the destination
list must, however, match the Label Name property of a corresponding Label Node.

Figure 8 on page 67 illustrates a message flow that uses these techniques to
achieve dynamic routing based on message content. The flow is made up of
subflows that are associated with the main flow using RouteToLabel and Label
nodes.

ResetContentDescriptor node

66 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|
|
|
|
|

The message flow shows how you might handle brokerage transactions if you want
to process high-value trading requests, low-value trading requests and requests to
updates customer details differently.

The use of RouteToLabel and Label nodes makes a simpler message flow than the
message flow you would need if you used a sequence of Filter nodes that identify
and route the message for different processing, or a sequence of nodes that each
performs an action on a subset of the total number of messages processed by the
message flow.

Each message in this brokerage example has a request field that indicates whether
the message contains ″hightrade″, ″lowtrade″, or ″custdetails″ information. Each
type is routed to a different sequence of nodes before being completed by a
common flow.

You configure the compute node ″Set destination labels″ to create a destination list
in the message by entering the following ESQL:
SET OutputDestinationList.Destination.RouterList.DestinationData[1].labelname
= 'continue';
SET OutputDestinationList.Destination.RouterList.DestinationData[2].labelname
= "InputBody.MRM.trademsg.request";

If you set Route To Last on the RouteToLabel node, a message is routed to the last
label in the destination list. In this example, that is the label that matches the value
of the ″request″ field in the message. Therefore a message with a value of
″hightrade″ in the request field is routed to the Label node with a Label Name
property of ″hightrade″.

Figure 8. A message flow with RouteToLabel and Label nodes. This shows the nodes
connected ’Manhattan Style’ (you can select this style of connecting the nodes by right
clicking on the pane background).

RouteToLabel node

Chapter 5. Working with message flows 67

If the message fragment performing the dynamically routed work itself ends in a
RouteToLabel node, the message is passed to the next destination in the list. In the
example above, the message is passed to the Label node with a Label Name
property of ″continue″, and continues along the common part of the message flow.

There are four message flow fragments, beginning with a Label node:

1. Continue (Label Name property = continue). This fragment does not end in a
RouteToLabel node. It might end in an MQOutput node to complete the
message flow execution or it might continue with work that is not required to be
dynamically routed. Typically, the Label Name of this fragment is the one at
index [1] of the destination list. This means that, when all the dynamically routed
work is complete, the flow either finishes or continues with common processing.

2. High Trade (Label Name property = hightrade). This fragment performs
processing specific to high-value trading requests, for example storing records
of the trade in a database and performing credit authorizations. This fragment
ends in a RouteToLabel node to send the message on to the next destination in
the list.

3. Low Trade (label name property = lowtrade). This fragment performs processing
specific to low-value trading requests. It ends in a RouteToLabel node to send
the message on to the next destination in the list.

4. Customer Details (Label Name property = custdetails). This performs processing
specific to requests to update customer details, for example, updating a
customer details database. This fragment ends in a RouteToLabel node to send
the message on to the next destination in the list.

The flexibility of this dynamic routing facility enables an infinite number of variations
on the above scenario.

Message flows can be self-contained, or can include subflows within them. Where
the message flow contains no ″lower Level″ flows, the Label nodes and their
subflows which follow must be defined in the Message Flow Definition pane for that
message flow. Where a message flow contains other message flows, the Label
nodes and their subflows which follow must be defined in either, the Message Flow
Definition pane of the ″lower level″ message flow, or the Message Flow Definition
pane of the ″high level″ message flow.

This ensures that all the Label nodes are included when you deploy the message
flow. The Label node is not connected to a prior node: if you create a subflow that
starts with any other type of node, the subflow defined in the Message Flow
Definition pane is ignored when the message flow is deployed. Subflows that start
with a Label node are not ignored.

If you intend to derive destination values from the message itself, or from a
database, you might also need to cast values from one type to another. Casts and
destination lists are described in more detail in MQSeries Integrator ESQL
Reference.

Using the SCADAInput node

The SCADAInput node receives a message from a client connecting using
the MQIsdp protocol into the format recognized by MQSeries Integrator
and establishes the processing environment for the message.

RouteToLabel node

68 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|
|
|
|

|
|
|
|

|

||

|

|
|
|

|

If you plan to deploy message flows containing SCADA nodes to a broker, you can
only use one execution group, no matter how many message flows that is.

A SCADA listener can be started and stopped using publish and subscribe
messages with a specific topic. This can be done for all ports, or, for a single port
identified in the message.

The following scenario illustrates one possible use for this node:

The SCADAInput node receives messages each minute from a remote machine.
The messages contain details of the machine’s switch settings. The data received is
fed into a ResetContentDescriptor node to cast the data from binary to MRM
message format. The information about the machine is stored in a database using
the Database node, and then ″enriched″ using a Compute node to create an XML
message which is Published using a Publication node.

Since XML messages are expensive to send (because satellite transmission has a
high cost per byte), it is advantageous to use this method as data is enriched by
the broker.

Note: If you want to process the data in an incoming SCADA message, then it will
be necessary to use a node like the ResetContentDescriptor.

Using the SCADAOutput node

The SCADAOutput node sends a message to a client connecting using
the MQIsdp protocol. Only occasionally, in advanced applications, might
you need to use the SCADAOutput node directly; for example, if you want
to write your own Publication node.

If you plan to deploy message flows containing SCADA nodes to a broker, you can
only use one execution group, no matter how many message flows that is.

Using a Throw node

The Throw node provides a mechanism for throwing an exception within a
message flow. The exception might be caught and processed by a
preceding TryCatch node within the message flow, or handled by the
MQInput node.

The following scenario illustrates one possible use for this node:

You might want to use the Throw and TryCatch nodes where you are using the
Compute node to calculate a total. You might want to create a message that is sent
to your system administrator when the total calculated exceeds the maximum value
for the Total field.

Using the SCADAInput node

Chapter 5. Working with message flows 69

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|

|
|

||

|

|
|
|
|

|

|
|

|

|
|
|
|

Using a Trace node

The Trace node generates trace records that can incorporate text, message
content, and date and time information, to help you to monitor the behavior
of the message flow.

The operation of the Trace node is independent of the setting of user tracing for the
message flow in which it is included: output from the trace node is written even if
user tracing is set off. In particular, if user tracing is set to None, and a Trace node
in that message flow has its Destination property set to User Trace, the entries
written by the Trace node are recorded in the user trace log.

An example of the trace output is below:
(0x1000010)XML = (

(0x5000018)XML = (
(0x6000011) = '1.0'

)
(0x1000000)MESSAGETAG = (

(0x3000000)highlevel = '1'
(0x3000000)higherlevel = '21'
(0x1000000)m_m1 = (

(0x3000000)level2 = '2'
(0x1000000)e_string01 = (

(0x3000000)level3 = '3'
(0x2000000) = 'IAPMDI27 ddddddd'

This can be interpreted as follows:

1. The numbers in brackets at the left hand end of each line are element types.
These numbers, which do not display leading zeros, are defined as follows:

v Bits 0 to 7 identify the specific element type. See the parser descriptions
inMQSeries Integrator ESQL Reference for details about element types.

v Bits 8 to 23. These bits are not used.

v Bits 24 to 31 identify the generic element type:

– Bit 24 indicates that the element has a name.

– Bit 25 indicates that the element has a value.

– Bit 26 indicates that the element is meaningful only to its parser type
(therefore it is not copied to others).

2. The names after the brackets are element names.

3. The values after the equal sign are the element values. These values are
displayed as ESQL literals. Where a node contains other nodes this is indicated
by the nesting.

Note: Floating point numbers, which are stored internally as IEEE double precision
are rounded to 15 decimal places when output to a trace.

Using theTryCatch node

The TryCatch node provides a special handler for exception processing. The
input message is initially routed on the try terminal of this node. If an
exception is subsequently thrown by a downstream node, it is caught by this
node, which then routes the original message to its catch terminal. If the
TryCatch node catch terminal is not connected, the message is discarded.

The following scenario illustrates one possible use for this node:

Trace node

70 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|

You might want to use the Throw and TryCatch nodes where you are using the
Compute node to calculate a total. You might want to create a message that is sent
to your system administrator when the total calculated exceeds the maximum value
for the Total field.

Warehouse node

The Warehouse node is a specialized form of the Database node that stores
the entire message, or parts of the message, or both, to the specified ODBC
data source.

You can use a message warehouse:

v To maintain an audit trail of messages

v For offline or batch processing of messages (a process sometimes referred to as
data mining)

v To enable subsequent reprocessing of selected messages

Once stored in the message warehouse, messages can be retrieved using standard
database query and data mining techniques. No explicit support for these functions
is supplied by MQSeries Integrator.

You can choose to store in the message warehouse:
v The entire message
v Selected parts of the message

Storing the entire message
When you store the entire message in a message warehouse, it is stored as a
binary object. You can choose to store a timestamp for the message, though this is
optional. Any timestamp is stored in a separate column from the message itself.

The advantages of storing the entire message are:

v You do not have to have decided how you will use the data before you store it.

v You do not have to have defined a database schema for every type of message
that could pass through the broker.

However, you could consider preceding each Warehouse node with a Compute
node that would convert each message to a common schema before the
Warehouse node stores it.

Storing parts of the message
If you store selected parts of a message, with a timestamp if required, you must
define a database schema for that message type. The message is mapped to true
type: for example, a character string in a message is stored as a character string.

Using the Warehouse node to store the entire message
To configure the Warehouse node to store the entire message:

1. In the Message Flow Definition pane, right click the symbol of the Warehouse
node you want to configure and click Properties.

2. In the Warehouse dialog, click Add to define the input message.

The Add dialog is displayed.

TryCatch node

Chapter 5. Working with message flows 71

|
|
|
|

3. In the Add dialog, Message is preselected. Select the names of a message
set and message from the drop-down lists. Click OK.

The message tree structure appears in the Input pane. A tab is added to the
Input pane showing the name of the message.

Repeat this step for additional messages. To remove a message from the Input
pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output.

The Add dialog is displayed. Database table is preselected.

5. In the Add dialog, enter Data Source and Table Name values. Click OK.

The database tree structure is shown in the Output pane. You can name only
one database in this pane. To delete table and database names, click Delete.

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

a. Right click anywhere in the white space around the database tree structure
in the Output pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

c. Click OK.

The column is added to the database tree structure in the Output pane.

Repeat this process for each column you want to work with. (You need entries
for only those columns you will be using, even if additional columns exist in the
database.)

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot
be determined until the message flow is deployed and executed within a
broker.

7. Select the Store Message check box, and select the column in which you
want to store the index record and attached binary object.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want to store a timestamp, select the Store Timestamp check box and
select the column in which you want to store it.

10. If you want warnings to be treated as errors, click the Advanced tab of the
Warehouse dialog, and select the Treat warnings as errors check box.

11. If you want to provide a description of this instance of the Warehouse node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Warehouse dialog. Type a
short description, or a long description, or both.

12. Click OK to finish configuring this Warehouse node.

Using the Warehouse node to store parts of a message
To configure the Warehouse node to store parts of a message message:

1. In the Message Flow Definition pane, right click the symbol of the Warehouse
node you want to configure and click Properties.

2. In the Warehouse dialog, click Add to define the input message.

The Add dialog is displayed.

3. In the Add dialog, Message is preselected. Select the names of a message
set and message template from the drop-down lists. Click OK.

Warehouse node

72 MQSeries Integrator Version 2.0.2 Using the Control Center

The message tree structure appears in the Input pane. A tab is added to the
Input pane showing the name of the message.

Repeat this step for additional messages. To remove a message from the Input
pane, click Delete when the relevant tab is to the fore.

4. Click Add to define the Output.

The Add dialog is displayed. Database table is preselected.

5. In the Add dialog, enter Data Source and Table Name values. Click OK.

The database tree structure is shown in the Output pane. You can name only
one database in this pane. To delete table and database names, click Delete.

6. Now you must identify the columns you want to work with within the database
table you identified. To do this:

a. Right click anywhere in the white space around the database tree structure
in the Output pane, and click Add column.

The Enter database column dialog is displayed.

b. Click in the Column field of the dialog, then enter the column identifier.

c. Click OK.

The column is added to the database tree structure in the Output pane.

Repeat this process for each column you want to work with. (You need entries
for only those columns you will be using, even if additional columns exist in the
database.)

Note that there no validation is done on these values at this stage: the
existence of the database, tables, and columns that you specify here cannot
be determined until the message flow is deployed and executed within a
broker.

7. Drag components of the input data from the Input pane to the target database
column in the Output pane. This process is known as mapping, and represents
the ESQL mappings that will be used in the processing of data through the
node. The mappings are shown in the Input Message ESQL and Output
Message ESQL pane. To delete mappings, right click on the expression to
delete and click Delete. To delete all the expressions in the pane, click Delete
All.

8. From the Transaction Mode drop-down list, select automatic or commit.

9. If you want to store a timestamp, select the Store Timestamp check box and
select the column in which you want to store it.

10. If you want warnings to be treated as errors, click the Advanced tab of the
Warehouse dialog, and select the Treat warnings as errors check box.

11. If you want to provide a description of this instance of the Warehouse node
(which is recommended if you want other Control Center users to be able to
make use of it), click the Description tab of the Warehouse dialog. Type a
short description, or a long description, or both.

12. Click OK to finish configuring this Warehouse node.

Warehouse node

Chapter 5. Working with message flows 73

Warehouse node

74 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 6. Defining the broker Topology

This chapter describes how to:

v Check out and check in the Topology

v Create a broker

v Connect brokers

v Delete the connection between brokers

v Delete a broker from the Topology

v Rename a broker

v Making changes operational

The Topology view
To display the Topology view, click the Topology tab in the Control Center.

The Topology view has two panes:

v The left-hand pane, the Domain Hierarchy pane, shows a tree view of the
Topology of this broker domain.

v The right-hand pane, the Topology pane, contains an arrangement of graphical
symbols that represent the current Topology.

Either double-click on any item in the Topology pane to see its properties, or right
click and select Properties from the pop-up menu on any object in either pane.

Controlling the appearance of the Topology pane
When you populate the broker domain in your workspace, graphical symbols
representing collectives and brokers are added to the Topology pane. You can
control the appearance and arrangement of these symbols by right-clicking in the
Topology pane to display the Topology list, and selecting from the following
actions:

Layout graph
Arranges the connected brokers and collectives in the Topology pane from
left to right, right to left, top to bottom, or bottom to top.

Your layout settings are saved on exit, and used when restarting
applications.

Zoom
Alters the size of all broker and collective symbols in the Topology pane.

Your zoom settings are saved on exit, and used when restarting
applications.

Manhattan style
Shows connections between brokers as lines at right angles.

Your style settings are saved on exit, and used when restarting applications.

Snap to grid
Aligns the symbols in the Topology pane on an invisible grid.

The settings for aligning your symbols are saved on exit, and used when
restarting applications.

© Copyright IBM Corp. 2000, 2001 75

|
|

|
|

|
|

|

|
|

Checking out the Topology
The remainder of this chapter describes tasks that alter the Topology of the broker
domain. You cannot perform any of these tasks unless you have exclusive access
to the Topology document, which you obtain by checking the Topology out of the
configuration repository.

To check out the Topology:

1. In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree.

Note: Alternatively, you can right click anywhere on the background of the
Topology pane, or you can highlight the root of the Topology tree and
click on the Domain Hierarchy menu in the menu bar.

2. Click Check Out.

The Key icon appears to the right of the root in the Topology tree to confirm that
the Topology document is checked out. You can now update the Topology. Other
users with access to this broker domain by another instance of the Control Center
cannot make changes to the Topology while it remains checked out to you.

The collectives that you define in the Topology are considered part of the Topology
itself for check out and check in purposes. Therefore if you want to update a
collective, for example to add a broker to it, you must check out the Topology. You
cannot check out the collective as a separate resource. See “Adding an existing
broker to a collective” on page 78 and “Removing a broker from a collective” on
page 80 for further details about updating collectives.

Creating a broker
To create a broker in the configuration repository:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology”.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree.

Note: Alternatively, you can right click anywhere on the background of the
Topology pane, or you can highlight the root of the Topology tree and
click the Topology menu in the Control Center menu bar.

3. Click Create —> Broker.

The Create a new Broker dialog, is displayed.

4. In the Name field, type the name of your broker.

This must be exactly the name specified when the broker was created (that is,
the broker name specified on the mqsicreatebroker command). You must
specify the name using the same case (lower, upper, or mixed). This value is
required and must be unique.

5. In the Queue Manager field, type the name of the broker’s queue manager.

This must be exactly the name specified for the broker’s queue manager when
the broker was created (that is, the queue-manager name specified on the
mqsicreatebroker command). You must specify the name using the same case
(lower, upper, or mixed). This value is required and must be unique in your
MQSeries network.

Checking out the Topology

76 MQSeries Integrator Version 2.0.2 Using the Control Center

6. For documentation purposes, you can provide either a short description, or a
long description, or both, of your broker, though a description is not required.

If you want to provide a description, click the Description tab in the Create a
new Broker dialog, and type some text.

7. Click Finish in the Create a new Broker dialog to complete creation of this
broker.

Confirmation that your new broker has been created appears in two places in the
Topology view:

v An entry representing the broker appears under the root of the Topology tree in
the Domain Hierarchy pane. The New icon next to the broker entry indicates that
this new definition has not yet been checked into the shared configuration.

v A graphical symbol of the broker appears in the Topology pane.

It also appears in the Domain Topology pane of the Assignments view.

If you have no further Topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Collectives
A collective is a set of one or more brokers that are directly connected to each
other. For more information, please see the MQSeries Integrator Introduction and
Planning book.

Creating a collective
To create a collective in the configuration repository:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76.

2. In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree. (Alternatively, you can right click anywhere on the background of
the Topology pane, or you can highlight the root of the Topology tree and click
the Topology menu in the Control Center menu bar.)

3. Click Create —> Collective.

The Create a new Collective dialog is displayed.

4. In the Name field, type the name of your collective. This must follow the naming
rules described in “Naming Control Center resources” on page 11 and must be
unique within your broker domain.

5. Click Finish in the Create a new Collective dialog to complete creation of this
collective.

Confirmation that your new collective has been created appears in two places in the
Topology view:

v A folder representing the collective appears under the root of the Topology tree in
the Domain Hierarchy pane. The New icon next to the collective entry indicates
that this new definition has not yet been checked into the shared configuration.

v A graphical symbol representing the empty collective appears in the Topology
pane.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Creating a broker

Chapter 6. Defining the broker Topology 77

|
|
|

Note that collectives are checked in as part of the Topology check in, not as
separate resources, as they exist only in the Topology document.

Adding an existing broker to a collective
There are several ways of adding an existing broker to a collective using the
Control Center. This section describes one of these methods in detail, then
mentions others briefly.

When you add brokers to the collective, the collective symbol in the Topology pane
can appear crowded. To increase the size of the collective symbol, drag the
double-headed arrow at the bottom-right corner of the symbol downward.

To add an existing broker to a collective:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76. (You cannot check out the collective.)

2. Right click the collective folder in the Topology tree.

3. Click Add —> Broker.

The Add an existing Broker dialog is displayed.

v To select a single broker, double-click on a broker name.

v To select multiple brokers:

a. If they appear sequentially in the list, click on the first broker you want,
press and hold the Shift key, then click on the last broker you want. This
action selects the two brokers you highlighted, plus any that appear
between these two in the list.

b. If they do not appear in a sequence in the list, hold down Ctrl and click
each broker you want.

c. When you have selected the brokers you want to add to the collective
from this list, click Finish.

Confirmation that the selected brokers have been added to the collective appears in
two places in the Topology view:

v In the Domain Hierarchy pane, the brokers are now shown under the collective
folder.

v In the Topology pane, the broker symbols now appear inside the collective
symbol.

Alternatively, you can invoke the Add an existing Broker dialog from the Topology
menu in the Control Center menu bar.

You can also add an existing broker to a collective simply by:
v Dragging the broker symbol in the Topology pane into the symbol of the

collective in the same pane

or
v Dragging the broker entry in the Domain Hierarchy pane into the symbol of the

collective in the Topology pane.

Note: the collective icon should be big enough for the broker icon to fit within the
light blue shading of the collective icon in the Topology pane, otherwise it will
not be added. A broker that has a cross-hair symbol behind it has been
added successfully.

Creating a collective

78 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|

|

|
|
|
|

|
|

|
|

|
|

|

|
|
|
|

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Creating a broker to add to a collective
To create a broker to add to a collective:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76.

2. In the Domain Hierarchy pane or Topology pane, right click on the collective
folder.

Note: When the Topology pane has the focus, the Topology menu appears in
the Control Center menu bar. When the Domain Hierarchy pane has the
focus, the Domain Hierarchy menu appears in the Control Center menu
bar. The menu items of the Topology and Domain Hierarchy menus are
identical.

3. Click Create —> Broker.

The Create a new Broker dialog is displayed.

Note: You can also select the Create —> Broker action by highlighting the
collective symbol in the Topology pane, then clicking the Topology menu
in the Control Center menu bar.

4. In the Name field, type the name of your broker.

This must be exactly the name specified when the broker was created (that is,
the broker name specified on the mqsicreatebroker command). You must
specify the name using the same case (lower, upper, or mixed). This value is
required and must be unique.

5. In the Queue Manager field, type the name of the broker’s queue manager.

This must be exactly the name specified for the broker’s queue manager when
the broker was created (that is, the queue-manager name specified on the
mqsicreatebroker command). This value is required and must be unique in
your MQSeries network.

6. For documentation purposes, you can provide either a short description, or a
long description, or both, of your broker, though a description is not required.

If you want to provide a description, click the Description tab in the Create a
new Broker dialog, and type some text.

7. Click Finish in the Create a new Broker dialog to complete creation of this
broker.

Confirmation that your new broker has been created appears in two places in the
Topology view:

v An entry representing the broker appears under the appropriate collective folder
in the Domain Hierarchy pane. The New icon next to the broker entry indicates
that this new definition has not yet been checked into the shared configuration.

v A graphical symbol of the broker appears inside the symbol of the appropriate
collective in the Topology pane.

The broker has been both created and added to the collective.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Adding an existing broker to a collective

Chapter 6. Defining the broker Topology 79

|
|
|
|
|

Removing a broker from a collective
To remove a broker from a collective:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76. (You cannot check out the collective.)

2. In the Topology pane, right click the symbol of the broker inside the collective
symbol.

3. Click Remove.

Confirmation that the broker has been removed from the collective appears in two
places in the Topology view:

v In the Domain Hierarchy pane, the broker is no longer shown under the collective
folder.

v In the Topology pane, the broker symbol now appears outside the collective
symbol.

Alternatively, you can drag the broker symbol out of the symbol of the collective in
the Topology pane. You can also right click the broker entry under the relevant
collective in the Domain Hierarchy pane, and click Remove.

If the removed broker was connected to a broker outside the collective, you might
need to remove the connection also. For more information, see “Deleting the
connection between brokers” on page 81.

If you have no further topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Connecting brokers
You need to connect brokers so that the brokers know who their neighbors are in
the publish/subscribe topology network. A connection is created only if a cycle of
connections would not result. If the addition of a connection would cause a cycle,
an error message is issued. Before making any connections you should be aware
of the following rules:

v A single broker, outside a collective, can be connected to just one broker inside a
collective.

v You can connect a single broker outside a collective to multiple collectives (that
is, to one broker per collective).

v You can connect a broker in one collective to a broker in another collective.

v You can connect two brokers outside a collective.

v Brokers within a collective cannot be explicitly connected, because they are
already implicitly connected.

To connect one broker to another:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76.

2. In the Topology pane, right click the symbol of one of the two brokers you want
to connect.

3. Click Connect —> port.

The cursor becomes a cross-hair attached by a red line to the broker you
selected initially.

4. Move the cross-hair to the symbol of the broker you want to connect to, and
click.

Removing a broker from a collective

80 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

|
|

|
|

Note: Broker connections can have bend points just like node connections. See
“Creating bend points” on page 46 for more information.

The brokers are now connected. In the Topology pane, a line connects the symbols
of the two brokers.

If you have no further Topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Deleting the connection between brokers
To delete the connection between two brokers:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76.

2. In the Topology pane, right click on the line between the two brokers you want
to disconnect.

3. Click Delete.

The line between the two brokers disappears. The brokers are now disconnected.

If you have no further Topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Deleting a broker from the Topology
This procedure describes how to delete a broker reference from the configuration
repository. This procedure does not delete the broker from your system: it simply
marks the broker as logically deleted from the configuration repository. For a full
description of the process required to delete a broker from your broker domain, see
“Deleting a broker from the broker domain” on page 93.

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76. If this is not done the configuration repository will not
be updated with the change.

2. Ensure that the broker you want to delete is either checked in or new. If it is not
(that is, if the Key icon is displayed next to its entry in the Domain Hierarchy
pane), right click the broker entry and click Check In. All execution groups
assigned to the broker must also be checked in before you can delete the
broker (this can be done from the Assignments view or by using All (Save to
Shared)).

3. In the Topology pane, right click the broker you want to delete.

4. Click Delete.

5. A confirmation message is displayed. If you want to proceed with the deletion,
click Yes.

Confirmation that the broker has been deleted appears in two places in the
Topology view:
v The broker entry no longer appears in the Domain Hierarchy pane.
v The broker symbol no longer appears in the Topology pane.

If the broker was connected to another, the connection is also deleted.

If you have no further Topology changes to make, check in the Topology as
described in “Checking in the Topology” on page 82.

Connecting brokers

Chapter 6. Defining the broker Topology 81

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

Renaming a broker
You might need to rename a broker if your original attempt at creating a broker
reference contained an error: renaming the broker is simpler than deleting and
recreating it.

To rename a broker:

1. Ensure that you have checked out the Topology, as described in “Checking out
the Topology” on page 76.

2. Ensure that the broker you want to rename is checked out. If it is not (that is, if
neither the Key icon nor the New icon is displayed next to its entry in the
Domain Hierarchy pane), right click the broker entry in the Topology tree and
click Check Out.

3. In the Topology pane, right click the broker you want to rename.

4. Click Rename.

The Rename Broker dialog is displayed.

5. In the New name field, type the new name of the broker. This must be exactly
the name specified on the mqsicreatebroker command. Click Finish.

Confirmation that the broker has been renamed appears in two places in the
Topology view:
v The broker entry in the Domain Hierarchy pane shows the new name.
v The broker symbol in the Topology pane shows the new name.

If you need also to specify a different queue manager name for the renamed
broker:

1. In the Topology pane, right click the broker you want to rename.

2. Click Properties.

3. In the broker’s properties panel, type the new queue manager name, and
correct the description if necessary. The name you specify must be exactly the
name specified for this broker’s queue manager on the mqsicreatebroker
command. Click Finish.

If you have no further Topology changes to make:

1. Check in the broker:

a. In the Topology pane, right click the broker you want to check in.

b. Click Check In.

The Key icon against the broker entry in the Topology tree disappears.

2. Check in the Topology as described in “Checking in the Topology”.

Checking in the Topology
When you have finished making changes to the Topology, you must check it in.
Until you check in the Topology, no one else is able to make changes to the
Topology of this broker domain, nor can you deploy the changes you have made.

You can check in Topology changes only, or all changes.

Checking in Topology changes
To check in the Topology:

1. Right click the root of the Topology tree.

Renaming a broker

82 MQSeries Integrator Version 2.0.2 Using the Control Center

2. Click Check In to store the Topology document in the Configuration Manager
database.

To confirm that the Topology has been checked in:

v The Key icon disappears from the root of the Topology tree in the Domain
Hierarchy pane.

v The New icon against any new brokers and collectives in the Topology tree
disappears, indicating that they have also been checked into the shared
configuration. Newly created resources are checked in automatically to ensure
that the configuration remains consistent.

Note that any brokers with the Key icon against them must be checked in
separately; they are not checked in as part of the general Topology check in.

Checking in multiple changes
The File —> Check In menu option allows you to check in multiple changes. You
can use this instead of checking in individual objects such as the Topology. The
options are:

v File —> Check In —> List

v File —> Check In —> All in Current Workspace

v File —> Check In —> All (Save to Shared)

These options are more efficient when you have many different resources checked
out. The List option also allows you to check which resources are checked out in
your current workspace before you decide which resources to check in.

For more information about check in options, see “Save your workspace to the
shared repository” on page 18.

Making changes operational
In checking in resources that are new or that you have altered, you make them
visible in the shared configuration. However, the changes you have made have no
operational effect until you deploy them in the broker domain. For information about
deploying resources, see “Chapter 8. Deploying configuration data” on page 93.

Checking in the topology

Chapter 6. Defining the broker Topology 83

84 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 7. Assigning resources to a broker

This chapter describes how to:

v “Assigning message flows to execution groups” on page 86

v “Assigning message sets to brokers” on page 88

v “Removing resources from a broker” on page 89

v “Checking in the assignments” on page 90

v “Refreshing the Assignments view” on page 91

v “Making changes operational” on page 91

The Assignments view
To display the Assignments view, click the Assignments tab in the Control Center.
Figure 9 shows an example of the Assignments view.

Double-click on any item in the Domain Topology pane to see its properties.

Figure 9. The Assignments view. The left-hand pane, the Domain Hierarchy pane, shows the current hierarchy of
brokers, execution groups, message flows, and message sets in your workspace. The center pane, the Assignable
Resources pane, shows the message sets and message flows in your workspace. The right-hand pane, the Domain
Topology pane, shows in a graphical form the current assignment of execution groups to brokers; of message flows to
execution groups; and of message sets to brokers in your workspace.

© Copyright IBM Corp. 2000, 2001 85

|

Creating an execution group
When you create a broker, it has a default execution group. If you want additional
execution groups, you must create them explicitly. For more details about why you
might want to use multiple execution groups, see MQSeries Integrator Introduction
and Planning.

To create an execution group:

1. Ensure that the broker to which you want to assign the new execution group is
checked out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry, and
click Check out.

2. In the Domain Hierarchy pane or Topology pane, right click the entry for the
broker.

3. Click Create —> Execution Group.

The Create a new Execution Group dialog is displayed.

4. In the Name field, type the unique name of the execution group. This must
follow the naming rules described in “Naming Control Center resources” on
page 11. Click Finish.

The new execution group appears:

v Inside the broker symbol in the Domain Topology pane, alongside the symbols
for other execution groups assigned to this broker

v Beneath the broker folder in the Domain Hierarchy pane, with a New icon against
it

Assigning message flows to execution groups
To assign a message flow to an execution group:

1. Ensure that the execution group to which you want to assign the message flow
is checked out of the shared configuration.

If the execution group entry in the Domain Hierarchy pane of the Assignments
view has neither the Key icon nor the New icon against it, right click the
execution group entry, and click Check out.

2. Drag the message flow symbol from the Assignable Resources pane into the
symbol of the execution group in the Domain Topology pane. The Assignable
Resources pane lists all message flows in your workspace.

3. Check in the execution group.

An alternative approach, and one that is useful when you have a large number of
message flows to assign to a single execution group, is as follows:

1. In the Domain Hierarchy pane, right click the entry for the checked-out
execution group to which you want to assign a message flow.

2. Click Add —> Message Flow.

The Add an existing Message Flow dialog is displayed, showing all message
flows in this workspace.

v To select a single message flow from this list, click the message flow name.

v To select multiple message flows that appear sequentially in the list, click the
first message flow you want, press and hold the Shift key, then click the last
message flow you want. This action selects the two message flows you
highlighted, plus any that appear between these two in the list.

Creating an execution group

86 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|

|
|

v To select multiple message flows that do not appear in a sequence in the list,
hold down Ctrl and click each message flow you want.

3. When you have selected the message flows you want to assign to the execution
group from this list, click Finish.

When you assign message flows:

v You cannot add a single message flow more than once to any execution group.

v Subflows are included in the Add an existing Message Flow dialog. If you are
using a subflow in a higher-level flow, you must assign only the higher-level flow
to the execution group: this action includes the subflow.

The message flows you selected appear:
v Inside the execution group symbol in the Domain Topology pane.
v Beneath the execution group entry in the Domain Hierarchy pane.

When you deploy an assigned message flow, each node in the message flow is
allocated a label that consists of the name you gave the node qualified by its
containing flow. This guarantees the uniqueness of each label within the message
flow.

Setting the properties of an assigned message flow
You can change some of the properties of a message flow after you have assigned
it to an execution group. To change the properties of a message flow, right click the
entry for the message flow under the appropriate execution group in the Domain
Hierarchy pane, and click Properties. The properties whose values you can change
are:

Additional Instances
Specifies the number of threads that the broker should start in order to read
messages from the input queue named on the MQInput node of the
message flow and process them concurrently. You can have up to 256
threads.

Having additional threads can increase the throughput of a message flow.
However, you should consider the impact on message order and set the
Order Mode property on the MQInput node (Advanced tab) accordingly.
You must also ensure that the input queue has been defined with the
SHARE attribute to enable multiple threads to read the same queue.

Its default value is 0.

Commit Count
Specifies how many input messages are processed by a message flow
before a syncpoint is taken (by issuing an MQCMIT).

This attribute should be used only if the Additional Instances property is set
to 0.

The default value of 1 is also the minimum permitted value. Change this
attribute if you want to avoid frequent MQCMIT calls when messages are
being processed quickly and the lack of an immediate commit can be
tolerated by the receiving application.

Use the Commit Interval to ensure that a commit is performed periodically
when not enough messages are received to fulfill the Commit Count.

Commit Interval
Specifies a time interval at which a commit is taken when the Commit
Count property is greater than 1 (that is, where the message flow is

Assigning message flows to execution groups

Chapter 7. Assigning resources to a broker 87

|
|
|
|

batching messages) but the number of messages processed has not
reached the value of the Commit Count property. It ensures that a commit is
performed periodically when not enough messages are received to fulfill the
Commit Count.

The time interval is specified in seconds and must be in the range 0
through 60.

This attribute should be used only if the Additional Instances property is set
to 0.

Its default value is 0.

Coordinated Transaction
Controls whether the message flow is processed as a global transaction,
coordinated by MQSeries. Such a message flow is said to be fully
globally-coordinated. The default value is no.

Use coordinated transactions only where you need the message and any
database updates performed by the message flow to be processed in a
single unit-of-work, using a two-phase commit protocol. This means that
both the message is read and the database updates are performed, or
neither is done.

If you change this value, you must ensure that the broker’s queue manager
is configured correctly. If you do not set up the queue manager correctly, a
message is generated by the broker when a message is received by the
message flow to indicate that although the message flow is to be globally
coordinated, the queue manager configuration does not support this.

See the MQSeries Integrator Administration Guide for information about
which databases are supported as participants in a global transaction, and
the MQSeries System Administration book for how to configure MQSeries
and the database managers.

Assigning message sets to brokers
To assign a message set to a broker:

1. Ensure that the broker to which you want to assign the message set is checked
out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry, and
click Check out.

2. Drag the message set symbol from the Assignable Resources pane into the
symbol of the broker (but not into any execution group contained in the broker)
in the Domain Topology pane. The Assignable Resources pane lists all message
sets in your workspace.

An alternative approach, and one that is useful when you have a large number of
message sets to assign to a single broker, is as follows:

1. In the Domain Hierarchy pane, right click the entry for the checked-out broker to
which you want to assign a message set.

2. Click Add —> Message Set.

The Add an existing Message Set dialog is displayed, showing all message
sets in this workspace.

v To select a single message set from this list, click the message set name.

Assigning message flows to execution groups

88 MQSeries Integrator Version 2.0.2 Using the Control Center

v To select multiple message sets that appear sequentially in the list, click the
first message set you want, press and hold the Shift key, then click the last
message set you want. This action selects the two message sets you
highlighted, plus any that appear between these two in the list.

v To select multiple message sets that do not appear in a sequence in the list,
hold down Ctrl and click each message set you want.

Note that you cannot assign a single message set more than once to any
broker.

3. When you have selected the message sets you want to assign to the broker
from this list, click Finish.

The message sets you selected appear:
v Inside the broker symbol in the Domain Topology pane.
v Beneath the broker symbol in the Domain Hierarchy pane.

Removing resources from a broker
You can remove message sets from the broker to which they have been assigned,
you can remove message flows from the execution groups to which they have been
assigned, and you can delete execution groups from their owning broker.

Deleting an execution group from a broker
To delete an execution group from a broker:

1. Ensure that the broker from which you want to delete the execution group is
checked out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry, and
click Check out.

2. Ensure that the execution group you want to delete is not checked out.

If the execution group entry in the Domain Hierarchy pane of the Assignments
view has the Key icon against it, right click the execution group entry and click
Check in.

3. Right click the execution group entry under the broker in the Domain Hierarchy
pane, or right click the execution group symbol in the Domain Topology pane,
and click Delete.

The execution group and any message flow assignments it contains are deleted:
v From the broker symbol in the Domain Topology pane
v From the relevant broker entry in the Domain Hierarchy pane

The message flows themselves are not deleted or removed from your workspace,
and remain in the Assignable Resources pane to be assigned to other execution
groups.

Removing a message set from a broker
To remove a message set from a broker:

1. Ensure that the broker from which you want to remove the message set is
checked out of the shared configuration.

If the broker entry in the Domain Hierarchy pane of the Assignments view has
neither the Key icon nor the New icon against it, right click the broker entry, and
click Check out.

Assigning message sets to brokers

Chapter 7. Assigning resources to a broker 89

2. Right click the message set symbol in the Domain Topology pane, or right click
its entry in the Domain Hierarchy pane, and click Remove.

The message set assignment disappears from:
v The broker symbol in the Domain Topology pane
v The broker entry in the Domain Hierarchy pane

The message set is not deleted or removed from your workspace, and is still
available in the Assignable Resources pane to be assigned to other brokers.

Removing a message flow from an execution group
To remove a message flow from an execution group:

1. Ensure that the execution group from which you want to remove the message
flow is checked out of the shared configuration.

If the execution group entry in the Domain Hierarchy pane of the Assignments
view has neither the Key icon nor the New icon against it, right click the
execution group entry, and click Check out.

2. Right click the message flow symbol inside the execution group symbol in the
Domain Topology pane, or right click the message flow entry in the Domain
Hierarchy pane, and click Remove.

The message flow assignment disappears from:
v The execution group symbol in the Domain Topology pane
v The execution group entry in the Domain Hierarchy pane

The message flow is not deleted or removed from your workspace, and is still
available in the Assignable Resources pane to be assigned to other execution
groups.

Checking in the assignments
When you have finished assigning resources to a broker, you must check in any
brokers and execution groups that are checked out. Until you check in brokers and
execution groups, no one else is able to make changes to them, nor can you
deploy the assignments you have made.

When a newly created broker or execution group is checked in, all related
resources are also checked in automatically. For example, when you check in a
new broker, its default execution group and the Topology document are also
checked in, to ensure consistency of configuration data. MQSeries Integrator does
this to prevent you from accidentally excluding related resources that can not easily
be recovered. After a new resource has been checked in for the first time, you can
check individual resources out, modify them, and check them in individually.

Checking in a broker
To check in a broker using either the Assignments or Topology page:

1. Right click the broker entry in the Domain Hierarchy pane.

2. Click Check in to store the broker in the shared configuration.

To confirm that the broker assignments have been checked in, the Key icon
disappears from the broker entry in the Domain Hierarchy pane.

To check in an execution group using the Assignments page:

Removing resources from a broker

90 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|
|
|
|

|

|

|

|

1. Right click the execution group entry in the Domain Hierarchy pane.

2. Click Check in to store the execution group in the shared configuration.

To confirm that the execution group has been checked in, the Key icon disappears
from the execution group in the Domain Hierarchy pane.

Checking in multiple changes
The File —> Check In menu option allows you to check in multiple changes. You
can use this instead of checking in individual objects such as Assignments data.
The options are:

v File —> Check In —> List

v File —> Check In —> All in Current Workspace

v File —> Check In —> All (Save to Shared)

These options are more efficient when you have many different resources checked
out. The List option also allows you to check which resources are checked out in
your current workspace before you decide which resources to check in.

For more information about check in options, see “Save your workspace to the
shared repository” on page 18.

Refreshing the Assignments view
You can update the Assignments view with the most recent contents of the
configuration repository at any time. Select View —> Refresh from Shared. This
shows changes to resources that are not checked out: if you have a resource
checked out, the version you have in your current workspace is not overwritten with
the version from the shared configuration.

Making changes operational
In checking in resources that are new or that you have altered, you make them
visible in the shared configuration. However, the changes you have made have no
operational effect until you deploy them in the broker domain. For information about
deploying resources, see “Chapter 8. Deploying configuration data” on page 93.

Checking in the assignments

Chapter 7. Assigning resources to a broker 91

|

|

92 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 8. Deploying configuration data

The following types of configuration data need to be deployed before they can take
effect in the broker domain:

Assignments data
Execution groups to brokers; message flows to execution groups; and
message sets to brokers.

Topics data
Topics and associated Access Control Lists (ACLs) for the broker domain

Topology data
Broker and collective data for the broker domain

When you request deployment of any type of configuration data, the Configuration
Manager copies the relevant configuration data from the shared configuration and
transmits it to the relevant brokers. When the deployment is successful, the brokers
are able to act in accordance with the newly deployed data.

For more information about the concepts behind the deployment function, please
see “Chapter 14. Concepts of deployment” on page 131.

Deleting a broker from the broker domain
When you delete a broker using the Control Center, the broker symbol is no longer
visible in the Assignments view or the Topology view.

v If the broker has never been deployed to, the broker and all execution groups
assigned to it are deleted immediately from the shared configuration repository.

v If the broker has been deployed to, its definition remains in the shared deployed
configuration after the topology (with the broker deleted) has been checked in,
until the updated configuration is deployed.

– When configuration data of any type is next deployed after the broker
reference in the Control Center is deleted, the Configuration Manager sends a
configuration data stream requesting deletion of all data of the type relevant to
that deployment request (which can be topology, topics, assignments, or all
types) to the deleted broker.

For example, if you request a delta deployment of topics data after having
deleted a broker using the Control Center, the Configuration Manager
constructs a configuration data stream to delete all topics data deployed to the
deleted broker.

– When all configuration data of all types has been successfully deleted in this
way, which might take several deployment requests if the deploys are of
different types, the deleted broker is finally removed from both the shared and
the deployed configurations.

You can, of course, ensure early completion of this stage by requesting a
complete or delta deployment of all types of data.

When the broker has been removed from both the shared and the deployed
configurations, it is removed from the Operations view when you next refresh
that view.

You are strongly recommended to perform the actions for deleting a broker that
has been deployed to in the following order:

© Copyright IBM Corp. 2000, 2001 93

|
|
|
|
|

|
|
|
|

|
|
|
|

– Delete the broker reference in the Control Center.

– Deploy this change by selecting File—>Deploy—> Complete Configuration
(all types)—>Normal. You can deploy just the topology data, however it is
not recommended as other deploys will be needed as mentioned earlier.

– Delete the physical broker on its local system using the mqsideletebroker
command.

This order ensures that the deletion messages described above are processed
by the broker on its local system before it is deleted and avoids potential
inconsistency of deployed data.

v If you subsequently recreate a broker with the same name as a deleted broker,
you must complete the necessary steps in the recommended order above,
followed by these steps:

– Recreate the physical broker on its local system using the mqsicreatebroker
command

– Create a new broker reference in the Control Center.

– Make any assignments that are needed

– Deploy the new configuration. As the previous instance of this broker has
been completely deleted, you can select either File—>Deploy—> Complete
Configuration (all types)—>Normal. or Deploy—>Complete Topology
Configuration or Deploy—>Delta Topology Configuration in the Topology
view (described in “Deploying delta topology” on page 97 and “Deploying a
complete topology” on page 98).

The act of deployment, recreation, and redeployment in the Control Center is
required to reset the configuration repository and update internal identifiers for
the broker that are generated by the create command. If you do not delete and
recreate the broker, and redeploy all data to that broker, the identifiers will not
match and check in or deployment will fail.

Deploying delta data of all types
You can deploy delta data of all types from all views on the Control Center.

1. Ensure that the assignments, topics, and topology data you want to deploy has
been checked into the shared configuration, as described in“Chapter 7.
Assigning resources to a broker” on page 85.

2. Click File —> Deploy —> Delta configuration (all types).

The Configuration Manager compares data of all types for all brokers in the shared
configuration with the currently deployed data for all brokers, and deploys only the
differences between the two versions.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Deploying complete data of all types
You can deploy complete data of all types from all views on the Control Center.

1. Ensure that the assignments, topics, and topology data you want to deploy has
been checked into the shared configuration, as described in “Chapter 7.
Assigning resources to a broker” on page 85.

2. Click File —> Deploy —> Complete configuration (all types) —> Normal.

Deleting a broker from the broker domain

94 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|

|

|

|
|
|
|
|
|

The Configuration Manager creates a request consisting of instructions to delete all
deployed data of all types, followed by instructions to create a new set of data,
based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Forcing deployment of all data
You can force deployment of complete data of all types from all views on the
Control Center.

1. Ensure that the assignments, topics, and topology data you want to deploy has
been checked into the shared configuration, as described in “Chapter 7.
Assigning resources to a broker” on page 85.

2. Click File —> Deploy —> Complete configuration (all types) —> Forced.

The Configuration Manager creates a request consisting of instructions to delete all
deployed data of all types, followed by instructions to create a new set of data,
based on the shared configuration, and deploys it to the target brokers. Any
outstanding deployment request, of any type, is overridden by this forced
deployment of configuration data.

If you have deleted and recreated a broker, and have not followed the order of
actions indicated in “Deleting a broker from the broker domain” on page 93, you
might find it necessary to use a forced deployment to reset your broker domain
configuration. See “If the broker is not running” on page 99 for another example of
where you might want to use a forced deployment.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Deploying delta assignments
You must be in the Assignments view to deploy only assignments data.

1. Ensure that the assignments data you want to deploy has been checked into
the shared configuration, as described in “Chapter 7. Assigning resources to a
broker” on page 85.

2. Select the objects to which you want to deploy the assignments data.

If you are deploying to all brokers in the broker domain:

v In the Domain Hierarchy pane of the Assignments view, right click the root
of the Broker tree. Select Deploy—>Delta Assignments Configuration.

If you are deploying to a single broker:

v In the Domain Hierarchy pane of the Assignments view, right click the entry
of the broker to which you want to deploy assignments data. Select
Deploy—>Delta Assignments Configuration.

Alternatively, you can right click the broker symbol in the Domain Topology
pane and select Deploy—>Delta Assignments Configuration.

If you are deploying to a single execution group:

v In the Domain Hierarchy pane of the Assignments view, right click the
execution group to which you want to deploy assignments data. Select
Deploy—>Delta Assignments Configuration.

Deploying complete data of all types

Chapter 8. Deploying configuration data 95

Alternatively, you can right click the execution group symbol in the Domain
Topology pane and select Deploy—>Delta Assignments Configuration.

3. You can also invoke the Deploy —> Delta Assignments Configuration action
from the Domain Hierarchy menu on the Control Center menu bar.

The Configuration Manager compares assignments data for the target brokers or
execution groups in the shared configuration with the currently deployed
assignments data for the same brokers, and deploys only the differences between
the two versions.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Deploying complete assignments
You must be in the Assignments view to deploy only assignments data.

1. Ensure that the assignments data you want to deploy has been checked into
the shared configuration, as described in “Chapter 7. Assigning resources to a
broker” on page 85.

2. Select the objects to which you want to deploy assignments data.

If you are deploying to all brokers in the broker domain:

v In the Domain Hierarchy pane of the Assignments view, right click the root
of the Broker tree. Select Deploy—>Complete Assignments Configuration.

If you are deploying to a single broker:

v In the Domain Hierarchy pane of the Assignments view, right click the entry
of the broker to which you want to deploy assignments data. Select
Deploy—>Complete Assignments Configuration.

Alternatively, you can right click the broker symbol in the Domain Topology
pane and select Deploy—>Complete Assignments Configuration.

If you are deploying to a single execution group:

v In the Domain Hierarchy pane of the Assignments view, right click the
execution group to which you want to deploy assignments data. Select
Deploy—>Complete Assignments Configuration.

Alternatively, you can right click the execution group symbol in the Domain
Topology pane and select Deploy—>Complete Assignments
Configuration.

3. You can also invoke the Deploy —> Complete Assignments Configuration
action from the Domain Hierarchy menu on the Control Center menu bar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed assignments data, followed by instructions to create a new set of
assignments data, based on the shared configuration, and deploys it to the target
brokers.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Deploying delta topics
You must be in the Topics view to deploy only topics data.

Deploying delta assignments

96 MQSeries Integrator Version 2.0.2 Using the Control Center

1. Ensure that the topics data you want to deploy has been checked into the
shared configuration, as described in “Checking in topics data” on page 104.

2. In the Topics pane of the Topics view, right click Topics.

Select Deploy —> Delta Topics Configuration.

3. You can also invoke the Deploy —> Delta Topics Configuration action from
the Topics menu on the Control Center menu bar.

The Configuration Manager compares topics data for all brokers in the shared
configuration with the currently deployed topics data for all brokers, and deploys
only the differences between the two versions.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Deploying complete topics
You must be in the Topics view to deploy only topics data.

1. Ensure that the topics data you want to deploy has been checked into the
shared configuration, as described in “Checking in topics data” on page 104.

2. In the Topics pane of the Topics view, right click Topics.

Select Deploy —> Complete Topics Configuration.

3. You can also invoke the Deploy —> Complete Topics Configuration action
from the Topics menu on the Control Center menu bar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed topics data, followed by instructions to create a new set of topics data,
based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Deploying delta topology
You must be in the Topology view to deploy only topology data.

1. Ensure that the topology data you want to deploy has been checked into the
shared configuration, as described in “Checking in the Topology” on page 82.

2. Choose one of the following options:

v In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree. Select Deploy —> Delta Topology Configuration.

You can also select Deploy —> Delta Topology Configuration. from the
Domain Hierarchy menu on the Control Center menu bar.

v In the Topology pane of the Topology view, right click the background and
select Deploy —> Delta Topology Configuration.

You can also select Deploy —> Delta Topology Configuration from the
Topology menu on the Control Center menu bar.

The Configuration Manager compares topology data for all brokers in the shared
configuration with the currently deployed topology data for all brokers, and deploys
only the differences between the two versions.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment” on page 98.

Deploying delta topics

Chapter 8. Deploying configuration data 97

Deploying a complete topology
You must be in the Topology view to deploy only topology data.

1. Ensure that the topology data you want to deploy has been checked into the
shared configuration, as described in “Checking in the Topology” on page 82.

2. Choose one of the following options:

v In the Domain Hierarchy pane of the Topology view, right click the root of the
Topology tree. Select Deploy —> Complete Topology Configuration.

You can also select Deploy —> Complete Topology Configuration. from
the Domain Hierarchy menu on the Control Center menu bar.

v In the Topology pane of the Topology view, right click the background and
select Deploy —> Complete Topology Configuration.

You can also select Deploy —> Complete Topology Configuration from the
Topology menu on the Control Center menu bar.

The Configuration Manager creates a request consisting of instructions to delete all
deployed topology data, followed by instructions to create a new set of topology
data, based on the shared configuration, and deploys it to the target brokers.

For information about checking the progress of this deployment request, see
“Monitoring progress of deployment”.

Monitoring progress of deployment
You can find out whether stage two of a deployment has succeeded by refreshing
the Log view: click the green refresh button on the menu bar, or select View —>
Refresh. It might take a while for the response to arrive. The refreshed Log view
displays a group of messages for each broker to which configuration data has been
deployed. Typical messages are:

Message Meaning

BIP2056 Indicates that a deployment was completely
successful for the broker.

BIP2086 Indicates that a deployment was partially successful
for the broker.

BIP2087 Indicates that a deployment was completely
unsuccessful for the broker.

If a deployment fails completely or partially succeeds, and message BIP4046 also
appears in the Log view, Topics or Topology data was not processed. In this case,
the broker in question is out of step with the rest of the broker domain, and so you
must correct the problem that caused the failure and deploy again to restore
consistency of data throughout the broker domain. This might occur, for example, if
you have deleted and recreated a broker. See “Deleting a broker from the broker
domain” on page 93 for further details.

Refresh the Operations view of the Control Center to display the status of each
broker after the deployment.

If deployment is in doubt
It is possible for the deployment of an execution group to time out while it is being
processed by the target broker. This effectively leaves the status of the execution
group in doubt. This status is shown in the Operations view by the appearance of

Deploying complete topology

98 MQSeries Integrator Version 2.0.2 Using the Control Center

a yellow question mark over the traffic light status icon. A message in the Log view
confirms the problem. The in-doubt status of the execution group can be resolved
only by a subsequent deployment of all assignments data. (Note that a subsequent
delta deployment is automatically converted to a complete deployment if any
execution group is in the in-doubt state).

If the broker is not running
If a broker is not running when a deployment takes place, or an MQSeries queue
manager on the route to the broker is not running, the deployment message is not
processed immediately. Note, however, that the deployment message does not
expire, so it will be processed eventually. You cannot perform a complete or delta
deployment to a broker when a deployment of any type is outstanding to that
broker: an attempt to do so returns an error message in a Control Center dialog
box. Stage two of the deploy must complete before a further deploy is allowed,
unless a forced deployment is requested.

Finding out whether deployment worked

Chapter 8. Deploying configuration data 99

100 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 9. Setting up publish/subscribe access control lists

This chapter describes how to create a new publish/subscribe topic, and how to
update access control lists (ACLs). ACLs allow you to restrict user permission to
publish messages, subscribe to topics, and request persistent delivery of messages.

For more information about the Subscriptions view, monitoring and deleting
subscriptions please see “Subscriptions view” on page 113.

The Topics view
To display the Topics view, click the Topics tab in the Control Center.

In the Topics view, you can create the topics under which messages can be
published. In addition, you can give users or groups permission to publish
messages, or to subscribe to messages published under these topics. You can also
deny users or groups these access rights. You would do this to ensure that
privileged information was not being viewed by unauthorized users or groups, for
example.

The information in the Topics view can be viewed in two ways:

v The hierarchy of topics is shown in the Topic/Users view, where the Access
Control List (ACL) for the selected topic is shown.

v The list of users and groups is shown in the User/Topics view, and the access to
each topic is shown for the selected user or group.

In addition to the Topics view, you can use the Subscriptions view to see currently
registered subscriptions if you are a member ofMQSeries Integrator group
mqbrops.

© Copyright IBM Corp. 2000, 2001 101

Creating topics
Topics is a special topic that cannot be deleted or renamed. It always has the
Public Group in its ACL. You create new topics beneath Topics (always displayed in
the Topics pane) or beneath any topic already defined. Any topic can have any
number of children, and each of these can have different ACL settings.

To create a new topic:

1. Click the Topic/Users button in the Topics view.

2. Ensure that the topic under which you want to create a new one, which can be
Topics or any topic already defined, is checked out. If it is not checked out, right
click the topic and click Check Out.

3. Right click the parent topic and click Create —> Topic.

The Create a new Topic dialog is displayed.

4. In the Create a new Topic dialog, type the name of the topic in the Name field.

5. Select the users and groups that are to have explicit access defined for this
topic. Note that this list contains users and groups (also known as principals)
only if you have a User Name Server installed and running, and the
Configuration Manager is configured to communicate with it.

If you do not select users or groups from the list on this dialog, access for this
topic defaults to the ACL setting for Public Group for the topic root. You can
update access to this topic for explicit users at a later time, if you do not do so
now.

To specify explicit users or groups access now, expand the Groups and Users
folders and select the users or groups:

v To select a single user or group from the list, click the user or group name.

v To select multiple users or groups that appear sequentially in the list, click the
first user or group you want, press and hold the Shift key, then click the last
user or group you want. This action selects the two users or groups you
highlighted, plus any that appear between these two in the list.

v To select multiple users or groups that do not appear in a sequence in the
list, hold down Ctrl and click each principal you want.

6. Select the required access setting for this topic. The values that you set apply to
all users and groups that you selected in the create topic dialog (step 4).

v For the Publish field, select one of

Allow Publications are allowed.

Deny Publications are not permitted.

Inherit Permission to publish is inherited.

v For the Subscribe field, select one of

Allow Subscriptions are allowed.

Deny Subscriptions are not permitted

Inherit Permission to subscribe is inherited.

v For the Persistent field, select one of

Yes Persistent delivery of messages is allowed.

No Persistent delivery of messages is not
allowed.

Inherit Permission to request persistent delivery of
messages is inherited.

Creating topics

102 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|

7. Click Finish.

The new topic appears beneath its parent topic.

After you create a topic, you can add more users or groups to the ACL using the
Properties dialog as described “Adding a principal to an ACL”.

If you do not select any users or groups when you create the topic, the ACL is
empty, and the Topics Access Control List pane is left blank. In this case, each user
or group inherits the same access to this topic as it has to the parent topic.

If you have selected users or groups, they appear in the Topic Access Control List
pane. Beside the users or groups, you see the permissions they have to publish
messages, subscribe to messages, and request persistent delivery of messages.
You can change these permissions by selecting them. A drop down list is shown,
allowing you to select a different permission.

Renaming, copying, and deleting topics
Topics can be renamed, copied, or deleted by right clicking the appropriate topic
and selecting the desired action from the pop-up menu. When you copy a topic, a
sibling topic with a unique name is created.

Adding a principal to an ACL
To add a principal 1 to an ACL:

1. In the Topics view, click the Topic/Users button.

2. Ensure that the topic for which you would like to edit the ACL is checked out. If
it is not checked out, right click the topic and click Check Out.

3. Right click the topic and click Properties.

4. Expand the Groups or Users folders in the Available Principals.

You can add principals that are not yet listed in the ACL; principals that are
already in the ACL are not shown. You can grant permissions to a principal, or
revoke permissions for a principal. You can specify that the principal inherit the
same level of access to a permission as it has to the parent topic. Setting the
access level of a principal in the ACL of the Topics to Inherit is not allowed,
since the Topics do not have a parent topic. Each principal can be assigned the
following permissions:

Publish
Permits or denies the principal permission to publish messages on this
topic.

Subscribe
Permits or denies the principal permission to subscribe to messages on
this topic.

Persistent
Permits or denies the principal permission to request persistent delivery
of a publication when the principal subscribes to the topic.

If a user subscribes to a topic, and the user requests persistent delivery of the
messages, the user must be granted permission both to subscribe to that topic and

1. A principal is a user or a group.

Creating topics

Chapter 9. Setting up publish/subscribe access control lists 103

|
|
|

to request persistent delivery of messages for that topic. If the user does not
request persistent delivery, only permission to subscribe to that topic is required.

Permission for persistent delivery does not affect the publishing of messages. You
need only to be granted publish permissions to be able to publish messages on a
topic.

To remove an entry from an ACL, in the Topic/Users, right click the entry and click
Remove.

Resolving permissions
Many factors play a part in determining whether the user has permission to publish
messages on a topic, subscribe to messages under a topic, and to request
persistent delivery of messages being subscribed to. The user can be explicitly
listed in the topic’s ACL. Groups to which the user belongs can also be listed, and
their permissions may differ from each other and with the user’s ACL entry. Users
can also inherit permissions from parent topics. Determining whether the user has a
permission might not always be straightforward.

For a complete description of how permissions are resolved, see the MQSeries
Integrator Introduction and Planning.

Checking in topics data
To check in topics data:

1. Right click the topic entry in the Topics view.

2. Click Check in to store the topics data in the shared configuration.

To confirm that the topics data has been checked in, the New icon or the Key icon
disappears from the topic entry.

When you check in a new topic, its parent is also checked in. When you check in a
parent topic, all new child topics are also checked in.

Checking in multiple changes
The File —> Check In menu option allows you to check in multiple changes that
you have made in this or any other view. You can use this instead of checking in
individual objects in the Topics view. The options are:

v File —> Check In —> List

v File —> Check In —> All in Current Workspace

v File —> Check In —> All (Save to Shared)

These options are more efficient when you have many different resources checked
out. The List option also allows you to check which resources are checked out in
your current workspace before you decide which resources to check in.

For more information about check in options, see “Save your workspace to the
shared repository” on page 18.

Adding a principal to an ACL

104 MQSeries Integrator Version 2.0.2 Using the Control Center

Making changes operational
When you check in resources that are new, or that you have altered, you make
them visible in the shared configuration. However, the changes you have made
have no operational effect until you deploy them in the broker domain. For
information about deploying resources, see “Chapter 8. Deploying configuration
data” on page 93.

Making changes operational

Chapter 9. Setting up publish/subscribe access control lists 105

106 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 10. Running the broker domain

This chapter describes:

v “The Operations view”

v “Monitoring the operational state of the broker domain” on page 108

v “Starting message flows” on page 109

v “Stopping message flows” on page 110

v “Starting user tracing” on page 111

v “Stopping user tracing” on page 112

v “Subscriptions view” on page 113 describes how to monitor subscriptions for
topics

v “Log view” on page 114

v “Problem determination” on page 116

The Operations view
To display the Operations view, click the Operations tab in the Control Center.
Figure 10 shows an example of the Operations view.

Double-click on any item in Domain Topology pane to see its properties.

Figure 10. The Operations view. The left-hand pane, the Domain Hierarchy pane, shows a tree view of the brokers in
your broker domain. The execution groups and message sets assigned to a broker are displayed when you expand
the broker. The message flows assigned to an execution group are displayed when you expand the execution group.
The right-hand pane, the Domain Topology pane, contains an arrangement of graphical symbols that represent the
current broker domain. Execution groups and message sets appear inside the brokers to which they have been
assigned. Message flows appear inside the execution groups to which they have been assigned. The brokers shown
in the Operations view are those to which configuration data has been deployed.

© Copyright IBM Corp. 2000, 2001 107

|

Monitoring the operational state of the broker domain
When a deploy operation has taken place successfully, the target brokers
automatically start to run the message flows, or to provide the publish/subscribe
capability, associated with the deployment request. Using the Control Center, you
can monitor the status of the brokers and the message flows they are running, and
can perform a limited number of actions to control the operation of the brokers. For
example, you can start and stop message flows.

To display a snapshot of the current status of the broker domain, you must refresh
the view. You can either click the green circular refresh icon below the menu bar, or
select View —> Refresh. This causes the Configuration Manager to update the
information displayed in the Domain Topology pane from its deployed configuration.

Any resource shown in the Domain Topology pane of the Operations view can be
in one of three states:

Started Indicated by a green traffic light next to the
resource.

Stopped Indicated by a red traffic light next to the resource.

Unknown Indicated by a yellow question mark next to the
resource.

If you initiate a complete deployment, the operational state of all resources is reset.
Therefore, if, for example, you have stopped an individual message flow, or you
have started user trace, you will have to reissue this requests.

Monitoring the operational state of the broker domain

108 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|

Starting message flows
You can start:
v All message flows in all execution groups assigned to a specified broker
v All message flows in a specified execution group
v A single message flow

Starting all message flows for a broker
To start all message flows in all execution groups assigned to a specified broker:

1. Right click the broker symbol in the Domain Topology pane or the broker entry
in the Domain Hierarchy pane. (Alternatively, you can highlight the broker in
either pane, then click the Domain Hierarchy or Domain Topology menu in the
menu bar.)

2. Click Start Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows be started.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, all
message flows within the broker have a green status light against them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting all message flows within an execution group
To start all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click Start Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows within the specified execution group be
started.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, all
message flows within the execution group have a green status light against
them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting a single message flow
To start a single message flow:

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click Start.

The Configuration Manager sends a configuration message to the broker
requesting that the specified message flow be started.

Starting message flows

Chapter 10. Running the broker domain 109

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, the
message flow has a green status light against it.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping message flows
You can stop:
v All message flows in all execution groups assigned to a specified broker
v All message flows in a specified execution group
v A single message flow

Stopping all message flows for a broker
To stop all message flows in all execution groups assigned to a specified broker:

1. Right click the broker symbol in the Domain Topology pane or the broker entry
in the Domain Hierarchy pane. (Alternatively, you can highlight the broker in
either pane, then click the Domain Hierarchy or Domain Topology menu in the
menu bar.)

2. Click Stop Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows be stopped.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, all
message flows within the broker have a red status light against them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping all message flows within an execution group
To stop all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click Stop Message Flows.

The Configuration Manager sends a configuration message to the broker
requesting that all message flows within the specified execution group be
stopped.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, all
message flows within the execution group have a red status light against
them.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping a single message flow
To stop a single message flow:

Starting message flows

110 MQSeries Integrator Version 2.0.2 Using the Control Center

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click Stop.

The Configuration Manager sends a configuration message to the broker
requesting that the specified message flow be stopped.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, the
message flow has a red status light against it.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting user tracing
You can start user tracing from the Operations view:
v For all message flows in a specified execution group
v For a single message flow

The user tracing function of MQSeries Integrator is described in the MQSeries
Integrator Administration Guide. Refer to this for information about the levels of
tracing that can be started (normal and debug), and for information on how to
format and read the output.

Starting user tracing for an execution group
To start user tracing of all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click User Trace —> Normal or User Trace —> Debug.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be started for all message flows within the specified
execution group.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, the
execution group has an icon against it indicating that user tracing is active.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting user tracing for a single message flow
To start user tracing for a single message flow:

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click User Trace —> Normal or User Trace —> Debug.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be started for the specified message flow.

Stopping message flows

Chapter 10. Running the broker domain 111

|
|
|

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, the
message flow has an icon against it indicating that user tracing is active.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping user tracing
The user tracing function of MQSeries Integrator is described in the MQSeries
Integrator Administration Guide. You can stop user tracing:
v For all message flows in a specified execution group
v For a single message flow

Stopping user tracing for an execution group
To stop user tracing of all message flows in an execution group:

1. Right click the execution group symbol in the Domain Topology pane or the
execution group entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the execution group in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click User Trace —> None.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be stopped for all message flows within the
specified execution group.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, any
user tracing icon against the execution group has disappeared.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Stopping user tracing for a single message flow
To stop user tracing for a single message flow:

1. Right click the message flow symbol in the Domain Topology pane or the
message flow entry in the Domain Hierarchy pane. (Alternatively, you can
highlight the message flow in either pane, then click the Domain Hierarchy or
Domain Topology menu in the menu bar.)

2. Click User Trace —> None.

The Configuration Manager sends a configuration message to the broker
requesting that user tracing be stopped for the specified message flow.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Operations view, as described in “Monitoring the operational
state of the broker domain” on page 108. If the request was successful, any
user tracing icon against the message flow has disappeared.

b. Refresh the Log view. Any messages returned by the broker in response to
this request are displayed here.

Starting user tracing

112 MQSeries Integrator Version 2.0.2 Using the Control Center

Subscriptions view
You use the Subscriptions view to monitor subscriptions to topics taken out by the
applications running in your broker domain. Figure 11 shows an example of the
Subscriptions view.

Filtering information in the Subscriptions view
Within any broker domain there can be many hundreds of active subscriptions. You
are unlikely to want to view information relevant to all of these subscriptions at any
one time. Therefore, the Subscriptions view allows you to select the information
you are interested in by specifying a filter. You can filter the information displayed in
the Subscriptions view by specifying any combination of:
v Brokers
v Topics
v Users
v Registration date
v Subscription points

For example, you can restrict the information displayed to particular topics within a
single broker.

To filter the information by broker:
1. Click the Brokers drop-down list and click the broker name.
2. Refresh the Subscriptions view by clicking Query, clicking the green refresh

icon below the menu bar, or selecting View —> Refresh.

The Subscriptions view is refreshed to display information for the selected broker.

Figure 11. The Subscriptions view. Subscriptions owned by the brokers in this broker domain are shown in this view in
a tabular form. Each subscription occupies one row in the table. For each subscription, the Topic, User, Broker,
Subscription Point, Registration Date, Client, and Content Filter are displayed. Fields at the top of the view support
filtering of information. The entries in the list of subscriptions are not timestamped, and are not ordered.

Subscriptions view

Chapter 10. Running the broker domain 113

To filter information by any other value, simply enter data in the appropriate field in
the view. For example, to filter by Topic, enter the topic name in the Topics field,
and refresh the Subscriptions view as described above. The wildcard characters
(% which represents any number of characters, and _ (underscore) which
represents one character), can be used to represent characters in the topic, user,
and subscription point values.

To clear all data from the table, click the clear table icon next to the refresh icon on
the menu bar. This action does not delete subscriptions; it simply clears the data
from the Subscriptions view.

Refreshing the Subscriptions view
The Subscriptions view displays a snapshot of all current subscriptions in the
broker domain, filtered by the current filter. The Configuration Manager updates its
record of the deployed configuration whenever a subscription is created, changed,
deleted, or expires. However, the Subscriptions view is not updated automatically
to reflect these changes. You have to request that the Subscriptions view is
refreshed by clicking Query, or by clicking the green refresh icon on the menu bar,
or by selecting View —> Refresh.

Deleting subscriptions
To delete (deregister) a subscription from the deployed configuration:

1. In the Subscriptions view, select the subscriptions that you want to delete:

a. To select a single subscription, click the row pertaining to that subscription.

b. To select multiple rows that appear in a sequence in the table, click the first
row you want to delete, press and hold the Shift key, then click the last row
you want. This action selects the two rows you highlighted, plus any that
appear between these two in the table.

c. To select multiple rows that do not appear in a sequence in the table, hold
down Ctrl and click each row you want.

2. From the Subscriptions menu in the menu bar, click Delete.

3. To monitor the outcome of this request, after a suitable delay:

a. Refresh the Subscriptions view, as described in “Refreshing the
Subscriptions view”. If the subscription has been successfully deleted, its
entry is no longer included in the Subscriptions view.

b. Refresh the Log view. Any messages returned by the broker in response to
this deletion request are displayed here.

Note that some subscriptions (specifically those used internally, start with $SYS
and $ISYS and are used by the broker and the Configuration Manager) cannot
be deleted. Any request to delete such a subscription fails.

Log view

To display the contents of the Log view, click the Log tab in the Control Center.
Figure 12 on page 115 shows an example of the Log view.

The Log view is accessible unless you suppress it using the options on the Control
Center Preferences dialog (see “Setting user roles” on page 13). The Log view
shows messages associated with your user ID, and those that have no associated
user ID.

Subscriptions view

114 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|
|
|

|
|
|

When you change to the Log view, you must refresh the view to see the latest
information available. You can request a refresh using the refresh button on the
menu bar, the View menu, or the pop-up menu within the message pane.

You can perform the following tasks from the Log view or from Log on the toolbar,
by right-clicking on messages within the Log pane to display the pop-up menu:

v Save Log As, which saves the Log view in a file

When you have saved the log to a filename and location of your choice, the
saved records remain in the view. They are not removed unless you select the
Clear Log action. You can view the saved log file, and print its contents if you
want.

The default location for this file is in the <mqsi_root>Tool\working directory.

You can use a text editor to open and work with a saved log file: you cannot
open it in the Control Center Log view.

Figure 12. The Log view. The Log view displays messages returned to you by the Configuration Manager in response
to requests that update the broker domain configuration. It also displays messages relating to deployment requests
and to requests to delete subscriptions.

The Log view

Chapter 10. Running the broker domain 115

|

|
|
|
|

|
|

|

|
|
|
|

|

|
|

v Clear Log, which removes messages

This menu option implements two actions:

1. All messages are removed from the Log view.

2. All messages specific to your user ID are removed from the Configuration
Manager’s database.

If you select this option, you cannot retrieve any of the messages cleared from
the Log. You are recommended to save the log if you want to preserve some or
all of its content.

If you do not clear messages from the Configuration Manager’s database using
the Clear function, they are automatically cleared after 72 hours to ensure that
the database is not filled.

v Use the Save Log As action if you want to refer to an old log in the future. The
Save Log As action prompts you for the name of a file into which the current
Log view contents are saved. The default location for this file is the Tool
directory on your workstation. Note that the log is saved separately to the
workspace.

v Use the Filter log to limit the number of messages displayed on your Log View.
You can filter on:

– Message severity. For example, Error messages

– Message source. For example, a deployed broker

When working with the Filter on you can:

– Refresh, which adds any new messages to the Log view

The Refresh action does not remove or overwrite existing messages in the
Log view. Therefore if you frequently refresh without clearing or saving the
Log, the messages will build up in the local view and within the Configuration
Manager’s database.

When refresh is run, the contents of the view become unfiltered and if
required, the Filter must be applied again.

– Clear removes all log entries that were displayed by the most recent Refresh
action including all those not currently in the filtered view.

Problem determination
If an error occurs while you are performing a Control Center operation, the Control
Center displays a dialog box containing an MQSeries Integrator V2.0.2 message.
The message can originate from either the Control Center itself or from the
Configuration Manager. The message should explain any corrective action you can
take.

Any errors that occur:
v During the second phase of a deploy operation

or
v From starting or stopping message flows

or
v From starting or stopping user tracing

or
v From deleting subscriptions

The Log view

116 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|

|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

are displayed as MQSeries Integrator messages in the Log view. These messages
originate from the broker.

You might also find it helpful to refer to additional information provided in
SupportPac MHI1. This SupportPac provides latest problem determination
information in a useful question-and-answer format. You can find this SupportPac
at:
http://www.ibm.com/software/mqseries

Controlling service traces
The Control Center can be traced by invoking it with a special command, mqsilcc,
which is described in the MQSeries Integrator Administration Guide. You are
recommended to use service traces only when you receive an error message that
instructs you to start service trace, or when directed to do so by your IBM Support
Center.

Problem determination

Chapter 10. Running the broker domain 117

|
|

|
|
|
|

|

|

|
|
|
|
|

118 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 11. Debugging message flows

The debugger is a problem determination tool that can be readily applied to
complex message flows. For example, it can track single messages through a
message flow one step at a time. Alternatively, by putting a breakpoint on one filter
output, you can trap one ’rogue’ message out of hundreds of ’normal’ messages
thus revealing an unexpected condition.

Note: A breakpoint is a position in a message flow. When using the debugger you
can set breakpoints in a message flow to review the properties of any node
at that specific point in the flow.

In practice, the debugger can handle a wide variety of possible bugs. Here are
some examples:

v Nodes may be ’wired-up’ incorrectly, for example outputs connected to incorrect
inputs

v Filter nodes, which are the message flow version of a conditional branch, may
have incorrect conditions

v Compute nodes may have incorrect logic

v Database nodes may make incorrect entries into their target databases

v Messages generated by applications using the flow may be incorrect, or may
have contents that do not match the expectations of the message flow

v Programs may have ’feedback’ loops that result in unintended infinite loops

v User programmed plug-ins may have errors in them, or may fail to be reentrant,
which means they fail to allow concurrent use by two or more tasks

Authorization
The debugger works on assigned message flows. To assign message flows, you
need to be a member of the mqbrasgn security group and have a Control Center
role of Message flow and message set assigner. If you want to run the debugger
and someone else has assigned the flows, you have to be a member of mqbrdevt
and mqbrops and have the Control Center role of Message flow and message
set developer.

Debugger View
In order to debug a flow, you must first open the debugger screen. This is accessed
from the Message Flows view by pressing the Debugger button. You are presented
with the basic debugger screen shown in Figure 13 on page 120.

© Copyright IBM Corp. 2000, 2001 119

|

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

You may perform a number of debugging tasks from this screen.

From the Debug Actions menu (and corresponding toolbar buttons where
appropriate) you can:
v Open and close an assigned message flow using a smart guide
v View the properties of a message flow node
v Start debugging it
v Stop debugging
v Set debug options:

– Set communications options for the debug nodes
– Set debug tracing requirements (these are not the same as normal trace

settings)

On the Message Flow pane you can set and remove breakpoints.

The Stack pane displays the message execution stack when the debugger reaches
a break point.

From the Message pane you can view and edit a message as it progresses
through the flow.

Set debugger options
Use Debug Actions->Settings, to bring up a SmartGuide. Default values are set
for all options (see below). You only need to use the SmartGuide if you need to
change a default value. The SmartGuide has three panes which allow you to set
the following:
v The data and error ports the Control Center uses to connect to the debug plug-in
v Tracing level
v The file to use for tracing, if enabled

Figure 13. The Debugger screen

Debugger View

120 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

You can view the debugger settings at any time, but you can not reset them while a
message flow is being debugged.

Select ports used to connect to the debug plug-in
Select the communication ports to be used to make connections between the debug
plug-in and the Control Center. Separate ports are used for normal message data
and for unexpected errors. Default port numbers are 5000 for data and 3500 for
errors

It is not necessary to change the default port numbers if you only want to run a
debug session in a single Control Center on a particular Windows NT workstation
and as long as they do not conflict with port numbers used by other applications. If
you wish to run debug sessions in multiple Control Centers on the same Windows
NT workstation at the same time, you must adjust the port numbers on the options
panes for each of those Control Centers so that they are not the same.

Select debug trace level
Because the debug nodes do not have access to the normal trace log. The
debugger maintains its own trace levels. You can choose between ’None’, ’Normal’
and ’Debug’.

The default level is ’None’.

Select file to use for tracing
If debug tracing is enabled, data is written to the trace file you have specified. The
format used in writing to the trace file is XML, so that it can be read using the
standard command for formatting the trace file (mqsiformatlog - see MQSeries
Integrator Administration Guide.

Debugging a message flow
1. Check that the message flow you want to debug is not locked (checked out) to

another user. You cannot debug a message flow that is currently checked out by
another user

2. Check that the message flow you want to debug is assigned to an execution
group

3. Open the Debugger. You do this by pressing the Debugger button from the
Message Flows view.

The screen is divided into four sections. These are initially blank but display
information when you start debugging:

v The Execution Stack pane shows the name of the flow being debugged. If
you are working with a message flow that contains sub flows, you can see
the hierarchy of flows in this pane

v The Message Content pane shows the message in the message flow at the
point at which a breakpoint is triggered. The pane shows the field name and
field value of any headers as well as the body of the message. You can edit
the message in this pane as it progresses from breakpoint to breakpoint

v The Message Flow pane shows the name of the message flow that was
opened in this debug session, displays the message flow, and the progress of
the debugger through the breakpoints. You set and remove breakpoints in
this pane. You can view properties of any node in the message flow but you
cannot change them from here

Set debugger options

Chapter 11. Debugging message flows 121

|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|

|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

v The Information pane shows information messages from the debugger, that
the debug session has started or ended or that a breakpoint is encountered

4. Select Open Message Flow on the Debug Action menu (or press the
corresponding toolbar button) and then use the SmartGuide to choose an
assigned message flow

Note: If you open a message flow but have not started debugging it, you can
close it by selecting
Debug Actions->Close Message Flow

or using the equivalent toolbar icon.

5. In the Message Flow pane , right-click on a connection and select Break or
right-click on a message processing node and select Break Before or Break
After. (You cannot set Break Before on an input node or Break After on an
output node.)

A small blue dot appears on the connection to show that the breakpoint is set. If
you try to set Break After on a node that has unconnected terminals, for
example, its failure terminal, you see an informational message
Breakpoints are not allowed at failure ports

The breakpoints you set on all connected terminals are active.

To clear breakpoints, right-click on the connection and select Clear or right-click
on a message processing node and select Clear All. If, for example, you
selected Break After on an input node that has four routes branching off its out
terminal, breakpoints are set on the connections between the input node and
the next node in each of those four routes. Selecting Clear All removes these
four breakpoints.

6. To start the debug session select Debug Actions->Start Debugging or use the
equivalent toolbar icon.

An instrumented copy of the message flow (containing the debugging nodes) is
deployed to the same execution group as the assigned, original message flow.
You are informed that the deploy has been initiated by the standard pop-up
message
BIP1520I Deploy operations successfully initiated.

Note: Starting to debug deploys the complete contents of the execution group
containing the message flow being debugged. The Operations view
shows the status of the debug version of the message flow.

7. To send a message into the flow, put a message to the message flow input
queue using the application that the message flow is designed for. While you
are debugging, only one message at a time can go through the flow, even if you
have multiple input nodes. You can stack the messages up on the input
queue(s) but they will not be processed until any previous message has
finished.

8. When the message flow processing reaches a breakpoint, the content of the
message at that point is displayed in the Message Content pane.

You can change the message, except the message header type and the
message type, before continuing. To edit the message, expand the Message
Content pane, click on the field value to be changed and put in your new value.

Note: The fields in the debugger take a certain range of values and you are not
advised to edit these values unless you are fully aware of the possible

Debugging a message flow

122 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|
|
|

|
|

|

|

|
|
|
|

|
|
|

|

|

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

range. Changing the value to one outside the range may have undesired
effects on further processing of the message through the flow.

If a problem causes a message processing node to throw an exception, this
exception is displayed in the Message Content pane. It shows standard
information for all exceptions (message number of 2230 and trace text) and also
the node and function which threw the exception. This can be helpful if the
exception is caught by a breakpoint some way from the point at which the
exception actually occurred. For example, if the processing is rolling back
through the message flow or if there are a number of nodes between
breakpoints. When an exception is thrown, you can either check the NT Event
Viewer (application view) for messages giving further information about the
cause of the exception, or set a breakpoint on the catch terminal of the input
node. By setting a breakpoint on the catch terminal this will display the full
exception list when the message is rolled back to the input node, and further
information on the exception can be displayed in the Message Content pane.

Note: If you wish to open a sub flow you can either

a. Click on a lower stack level shown in the Stack pane to cause that
nested flow to be displayed in the Message Flow pane.

Note: This is only possible when a message flow is being debugged.
or

b. Right-click in the Flow pane directly over a flow node which is a
nested flow. A pop-up menu appears, from which you should select:
v Open Sub Flow

Selecting this item causes the Message Flow pane to display the
subflow.

To return to the parent flow either

v Click on a higher stack level shown in the Execution Stack pane to
cause that parent flow to be displayed in the Message Flow pane.

Note: This is only possible when a message flow is being debugged.
or

v Right-click in the Message Flow pane not directly on a connection or
a flow node. A pop-up menu appears, from which you should select:
– Return to Parent Flow

Selecting this menu item causes the parent of the current flow, if there
is one, to be displayed. If there is no parent flow, in other words the
displayed flow is the top level flow, this menu item is not be available.

There are a number of functions to control the progress of the message through
the message flow. These options are active only when a message flow is
stopped at a breakpoint. Select the options from Debug Actions or use the
equivalent toolbar icons:

a. Go Go to the next breakpoint or to the output node, if there are no further
breakpoints set in the message flow.

b. Step into Step into a nested flow. The message proceeds into the nested
flow and the flow is displayed in the Message Flow pane.

c. Return Return from a nested flow to the main flow, ignoring any other
breakpoints in the nested flow, to a point just beyond the output terminal of
the nested flow.

Debugging a message flow

Chapter 11. Debugging message flows 123

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

d. Step over Step over the next node or nested flow, even if the nested flow
contains breakpoints.

e. Run to Completion Process the message to the output queue, ignoring all
further breakpoints. If no problems are encountered in the message flow
during the debug session, the session ends and you see Debug Session
ended in the information pane.

You can continue debugging as many messages, one at a time, as desired
before ending the debug session.

9. To stop debugging, select Debug Actions —>Stop Debugging or use the
equivalent toolbar icon. The deployed instrumented (<name>_debug_) flow stops
communicating with the Control Center while it completes processing any
outstanding messages, then redeploys the original (uninstrumented) message
flow. BIP15201 is displayed to show that the operations are initiated.

Stop Debugging is only active when a message flow is being debugged.

Debugging a message flow

124 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|
|
|
|

|
|

|
|
|
|
|

|

Part 2. Concepts and references

Chapter 12. Control Center concepts 127
The workspace . 127
Working with configuration data 127

Configuration and message repositories 128
Shared and deployed configurations 128

Chapter 13. Concepts of message flows 129
Using the IBM supplied message flows 129

Copying the default message flows 129

Chapter 14. Concepts of deployment 131
Types of deployment . 131

Complete deployment . 131
Delta deployment . 131
Forced deployment . 131
A summary of deployment actions 131

The stages of the deployment process. 132
Stage one of deployment. 132
Stage two of deployment . 132

Which data is deployed? . 132
If some data has not been checked in 133

Chapter 15. Concepts of debugging 135
Display panes . 135
Basic operation . 135
Multiple simultaneous debug sessions 136
Error handling . 136

Chapter 16. Concepts of XML messages 137
XML Declaration . 137

XmlDecl . 138
Document Type Declaration. 138

DocTypeDecl . 138
NotationDecl . 139
Entities . 139

EntityDeclValue . 140
ElementDef. 140
AttributeList. 140
AttributeDef. 140
DocTypePI and ProcessingInstruction 141
DocTypeWhiteSpace and WhiteSpace 141
DocTypeComment and Comment 141

The XML message body . 142
ProcessingInstruction . 142
WhiteSpace . 142
Comment . 143
AsisElementContent . 143
CDataSection . 143
EntityReferenceStart and EntityReferenceEnd 143

Chapter 17. Concepts of NEONRules and NEONFormatter Support for
MQSeries Integrator . 145

The NEONMSG parser . 145

© Copyright IBM Corp. 2000, 2001 125

|

||
||
||
||
||

|
||
||

Parsing a NEON Format message into an MQSeries Integrator message
tree . 145

Reserializing a message tree into a NEONFormatter message format . . . 146
Using the NEONMSG parser with ESQL 146

Referencing fields in a NEONMSG domain message 146
Creating a NEONMSG domain message 147

The NEONTransform and NEONMap nodes. 147
Map Name and Map Version 147
Other attributes . 148
Output Domain . 148
Output Message Type and Output Message Set 148
The NEONMap node . 149

The NEONRulesEvaluation node 150
Map and Transform actions 150
Propagate, Put Queue and Route actions 153

Access to Rules and Formats 154

Chapter 18. C and COBOL default mappings 155
Mapping C datatypes to MRM datatypes 155
Mapping COBOL datatypes to MRM datatypes. 157

126 MQSeries Integrator Version 2.0.2 Using the Control Center

|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

Chapter 12. Control Center concepts

This chapter introduces the Control Center by describing its role in an MQSeries
Integrator broker domain, and defining those concepts that you need to understand
as a Control Center user. For a comprehensive description of MQSeries Integrator
concepts, see the MQSeries Integrator Introduction and Planning.

The Control Center has two main functions in a broker domain. These are:

v The creation, manipulation, and deployment of configuration data for a broker
domain

v The monitoring and management of the operational state of the same broker
domain

The workspace
The concept of the workspace is key to the operation of the Control Center. It is the
term given to the “snapshot” of that part of the shared configuration data that you,
as a Control Center user, want to work with. The shared configuration can consist
of many brokers, collectives, execution groups, message flows, message sets, and
topics, many of which may be of no interest to you. The workspace allows you to
work with a subset of this overall set of configuration data.

All brokers, collectives, execution groups, and topics in the shared configuration
always appear in your workspace. However, you can choose which message flows
and message sets you want to appear, to make your view of the shared
configuration more manageable. For example, if there are 500 message flows
defined in the shared configuration, you can choose to see only the 10 that are
owned by you. You do this using an operation called add. Similarly you can remove
any configuration resource from your workspace.

In summary, the workspace is a collection of references to specific objects in the
configuration.

Working with configuration data
When a broker is created using the mqsicreatebroker command, and started for
the first time using the mqsistart command, it has no configuration to run. A broker
can perform useful functions only when it has been given a configuration to run by
the Control Center user.

Configuration data is of three types:

Assignments data
Is the assignment of: execution groups to brokers; message flows to
execution groups; and message sets to brokers.

Topology data
Is the relationship between brokers and collectives in a publish/subscribe
network in the broker domain.

Topics data
Is topics and associated Access Control List (ACL) entries used in a
publish/subscribe network in the broker domain.

© Copyright IBM Corp. 2000, 2001 127

Configuration and message repositories
Configuration data of all three types is created by Control Center users, and is
managed by the Configuration Manager in two repositories called the configuration
repository and the message repository.

v The message repository contains definitions of message sets.

v The configuration repository contains all other configuration data.

There is only ever one Configuration Manager in a broker domain, but there can be
any number of instances of the Control Center.

Shared and deployed configurations
The Configuration Manager manages two versions of the configuration data. These
are the shared configuration and the deployed configuration.

Shared configuration
Consists of configuration data as created by one or more Control Center
users and made visible to other Control Center users in the broker domain.

Deployed configuration
Is the configuration data that is operational, or having an effect, in the
broker domain.

Configuration data in the shared configuration is sent to brokers by the
Configuration Manager under the direction of Control Center users, by means of an
operation called deploy. If deployment is successful, the Configuration Manager
updates its deployed configuration accordingly.

Control Center concepts

128 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

Chapter 13. Concepts of message flows

This chapter introduces concepts which you might need to understand when
working with message flows. One term which you might encounter is Execution
Group. Execution group describes the run-time environment, provided by a broker,
for a set of deployed message flows. For more information about execution groups,
see the MQSeries Integrator Introduction and Planning book.

Using the IBM supplied message flows
Before you can use the supplied message flows, there are several actions you must
complete. The message flows and the topology definitions in the import file make
some assumptions. For full details of these assumptions, and how to use the
message flows, see the MQSeries Integrator Installation Guide for your operating
system. A summary of actions is provided here.

1. Import the Postcard message set into the message repository using the
command mqsiimpexpmsgset. You must restart the Configuration Manager to
force it to pick up these changes.

2. Check out the Topology. Import the message flow and topology definitions from
the supplied file and save them into the shared configuration repository.

3. If you want to run the Postcard verification program, you must assign the
Postcard message set to the broker.

4. Deploy the message flows and the Postcard message set to the broker.

5. Check the success of the deployment: select the Log view and refresh the
contents (you can click the green refresh icon or select View —> Refresh). It
can take a few minutes for the deployment messages and responses flowing
between the Configuration Manager and the broker to be displayed. Keep
refreshing this view until you see the completion messages.

Copying the default message flows
If you want to deploy either of the default message flows, you are recommended to
make a copy of it. This preserves the default message flow in your configuration
repository for future reuse.

To make a copy of a default message flow:

1. Click the Message Flows tab.

2. Select the message flow you want to use from the folder IBM Default Message
Flows, and click Copy.

3. Paste the message flow into your folder.

4. A copy of the default message flow is created as a new message flow (with a
new icon beside it). Click on the copy and select Rename to give it a unique
name.

5. Make the changes you need to tailor your new copy of the supplied message
flow.

6. Save your new message flow in the configuration repository using either Check
In or one of the File —> Check In menu options.

© Copyright IBM Corp. 2000, 2001 129

|
|
|
|
|

|
|

|

130 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 14. Concepts of deployment

This chapter describes the concepts behind the deployment tasks:

Types of deployment
You can deploy assignments data, topics data, topology data, or all three types of
data at once. For each of these types of configuration data, you can request:
v A complete deployment
v A delta deployment

In addition, you can request a forced deployment. This type of deployment deploys
all data and is valid at anytime.

Complete deployment
A complete deployment:

1. Deletes all configuration data of that type that is currently deployed on the target
brokers

2. Creates new configuration data from the shared configuration

For example, if you request a complete deployment of topics data, the Configuration
Manager deploys instructions to all brokers to delete all currently deployed topics
data and create a new set of topics data from those in the shared configuration.

Delta deployment
When you request a delta deployment, the Configuration Manager compares the
configuration data of that type that is currently deployed on the target brokers with
the shared configuration, and deploys only the differences between the two
versions. Therefore, the delta deployment is better for performance, especially when
you have a large amount of configuration data in the shared configuration.

Forced deployment
The forced deployment, which overrides any outstanding deployment request, is
used typically to correct error situations. Therefore, to maintain consistency of the
configuration data throughout the broker domain, a forced deployment is allowed
only when deploying all types of configuration data. A forced deployment is always
a complete deployment.

A summary of deployment actions
Table 3 summarizes the available deployment actions, showing:
v The type of deployment supported for each type of configuration data
v The Control Center view from which the deployment can be requested
v The brokers to which the deployment can be targeted

Table 3. Deployment summary

Data deployed Complete Delta Forced From Control
Center view

Target

Assignments Yes Yes No Assignments Single broker, single execution
group and all brokers

Topics Yes Yes No Topics All brokers

Topology Yes Yes No Topology All brokers

© Copyright IBM Corp. 2000, 2001 131

||

|||||
|
|

||||||
|

||||||

||||||

Table 3. Deployment summary (continued)

Data deployed Complete Delta Forced From Control
Center view

Target

All types Yes Yes Yes All brokers

Note: The Topics, Topology, and All types deployments must apply to all brokers to maintain consistent configuration
data throughout the broker domain.

The stages of the deployment process
Deployment of configuration data takes place in two stages.

Stage one of deployment
During stage one of deployment, which is synchronous, the Configuration Manager
sends a configuration data stream to the SYSTEM.BROKER.ADMIN.QUEUE of
each target broker. When the configuration data has been sent to all relevant
brokers, control is returned to you.

If the first stage is successful, message BIP1520I is displayed identifying the
brokers to which the data was deployed.

However, if an error is detected during the first stage of deployment, the
deployment is abandoned: no configuration data is sent to any broker, and an
appropriate error message is displayed in a Control Center dialog box.

Stage two of deployment
During stage two of the deployment process, which is asynchronous, the target
brokers process the received configuration data and return a response on the
Configuration Manager’s SYSTEM.BROKER.ADMIN.REPLY queue. The
Configuration Manager then updates its record of the deployed configuration.

Deployment of data to a target broker might be only partially successful. This is
because the unit of deployment on a broker is the execution group: the deployment
of one execution group to a broker might succeed, but the deployment of another to
the same broker might fail. A unit of deployment is transactional, however, so either
all changes are made to a given execution group or no change is made.

For deployment purposes, topics and topology data are considered to belong to a
separate unit of deployment, so either all changes are made to both topics and
topology, or no change is made.

Which data is deployed?
When a deployment of any type of configuration data takes place, the data of that
type that has been checked into the shared configuration by all Control Center
users in the broker domain is that which is deployed to the configuration repository.
Data that has not been checked in is not deployed. Note also that descriptive text
that you can supply when defining Control Center resources is not deployed.

Types of deployment

132 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|||||
|
|

||||||

|
|
|

If some data has not been checked in
If some data has not been checked-in, leaving the shared configuration in an
inconsistent state, the deployment is likely to fail. If the Configuration Manager
detects an inconsistency, you receive a message indicating that some Control
Center resources are not checked in.

To help avoid this situation occurring, you can request a list of all resources in your
workspace that have not been checked in (using the File —> Check In List action)
before you deploy. You can also check in all checked-out configuration data in your
workspace using the File —> Save to Shared action. Of course, if multiple users
are creating shared configuration data, that activity must cease while a deployment
takes place, and all users must check in any checked-out resources before the
deployment is requested.

Which data is deployed?

Chapter 14. Concepts of deployment 133

|

134 MQSeries Integrator Version 2.0.2 Using the Control Center

Chapter 15. Concepts of debugging

This section covers the concepts behind the debugger problem determination tool.

Display panes
The debugger, accessed as a alternative screen under the Message Flows tab, has
four panes: Stack, Flow, Message and Information.

The Stack pane
The Stack pane displays the execution stack of the message when it is at a
breakpoint. This stack consists of the main flow plus any nested flows that
contain the breakpoint. Clicking on a stack level causes that nested flow or
main flow to be displayed in the Flow pane.

The Flow pane
The Flow pane displays the flow selected in the stack window (by default,
the most nested flow). The Flow pane also allows you, with pop-up menus,
to descend into a nested flow or to return to the parent flow, if any. You can
set breakpoints in the Flow pane, which is also used to display where the
message is currently stopped. A maximum of 50 breakpoints can be set in
any given message flow. When a breakpoint is encountered, it will be
displayed in a breakpoint icon in the Flow pane.

The Message pane
The Message pane shows the current message at the place where the flow
is stopped due to a breakpoint (or an action like step-over). You can change
the content of the message in this window before allowing the message to
continue.

The Information pane
The Information pane displays relevant information, such as when a
message (that had been previously stopped at a breakpoint) has been
delivered.

Basic operation
While it is activated (from the time you start the debug session to the time you stop
it), the debugger is continuously in a state of waiting for a message to be placed on
any of the flow’s input queues. The debugger does not place these messages itself,
because it is assumed that you already have a message-generating application that
the message flow was designed for.

When a message appears on an input queue, it will progress through the flow in a
normal manner until a breakpoint is encountered. Breakpoints can be set and
cleared at any time. At that time, the contents of the message as well as the
destination list and exception list will be displayed by the control center and you will
have an opportunity to change the message before continuing. If an exception is
thrown during message processing, and if the backwards flow passes through a
node that has a breakpoint set, the exception will be shown to the user, who then
has an opportunity to change the exception (for example, the label or the message
number) before continuing.

Only one message is allowed to proceed through the flow at a time, even if there
are multiple input nodes, and even if the users have requested additional thread
instances in their configuration.

© Copyright IBM Corp. 2000, 2001 135

|

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

Multiple simultaneous debug sessions
The following restrictions apply if you want to debug more than one flow at a time:

v You may only debug one flow at a time from a single Control Center.

v As many as 10 different users may be debugging simultaneously in the same
execution group. (If you attempt to debug a message flow in an execution group
already being debugged by 10 other users, you will receive a message informing
you that too many users are currently using that execution group.)

v The same flow cannot be debugged at the same time by multiple users, because
the deployed flows would compete for input queues. (For that reason, a flow
being debugged is locked by the Configuration Manager).

v There is no limit to the number of different execution groups that may be in use
for debugging.

v If you want to run debug sessions in multiple control centers on the same
Windows NT workstation at the same time, you must adjust the port numbers on
the options panes of those Control Centers so that they are not the same.

If you are running on a UNIX system we recommend that your system administrator
sets two system services in the etc/services file on any machine running a broker.
The services are mqsidbgmin and mqsidbgmax. These services are set to the
minimum and maximum range of port numbers to be used by the Control Center
when sending breakpoint information to the broker at runtime for debugging
purposes. Each execution group uses one port number, so there should be a big
enough range to accommodate the number of execution groups on that machine. If
the range of ports is found to be insufficient at run time (or nonexistent because the
services were not set in etc/services), the broker which is running, chooses ports
by looking for unused ports starting at port number 25000. Any free port equal to or
greater than 25000 becomes a candidate port, and a sufficient number will be
chosen to accommodate the number of execution groups on that machine.

Error handling
When debugging a given message flow ’mf1’ (which must have already been
assigned to an execution group), the debugger will generate a new flow called
’mf1_debug_’. ’mf1_debug_’ will be assigned to the same execution group and
deployed when the debug session starts. When the debug session ends, the
original mf1 will be redeployed to the selected execution group. This also happens if
the Control Center is exited normally (that is, it will issue an automatic ″Stop
Debugging″ action if necessary.) If you stop the broker while ’mf1_debug_’ is
deployed, the Control Center will issue a pop-up warning indicating that a ″Stop
Debugging″ action should be issued when the broker is restarted.

You may occasionally see an ’mf1_debug_’ flow deployed to an execution group
even when a debug session is not active. This could be the result of the Control
Center crashing, or some other extraordinary event. Such an ’orphaned’ debug flow
will behave the same as a normal, uninstrumented, flow (in other words, the debug
nodes that instrument the flow will be inactive).

If you change a message in the message pane during a debug session, but
accidentally enter an invalid value (for example, text where a number is expected),
a pop-up message will indicate the error and you will be given another chance to
enter a valid value before continuing.

multiple simultaneous debug sessions

136 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|

|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

Chapter 16. Concepts of XML messages

Self-defining or generic XML messages are those whose content are documents
that adhere to the XML specification. The following sections describe how these
messages are represented in a tree of syntax elements.

The following topics are discussed:
v “XML Declaration”
v “Document Type Declaration” on page 138
v “The XML message body” on page 142

The name elements used in this description (for example, XmlDecl) are provided by
MQSeries Integrator for symbolic use within the ESQL. The ESQL defines the
processing of message content that is to be performed by the nodes, such as filter
node, within a message flow. They are not a part of the XML specification itself. You
can find examples of ESQL syntax in MQSeries Integrator ESQL Reference.

The information provided here does not provide a full definition or description of
XML terminology, concepts, and message constructs: it is a summary that highlights
aspects that are important when you use XML messages with MQSeries Integrator.
For further information about XML, see the IBM web site at:
http://www.ibm.com/developer/xml

XML Declaration
The beginning of an XML message must contain what is called an XML declaration.

An XML declaration might take the following form in the XML bit-stream:
<?xml version="1.0" standalone="yes" encoding="UTF-8" ?>

The XML declaration must be at the beginning of every XML message.

© Copyright IBM Corp. 2000, 2001 137

XmlDecl
This is a name element that corresponds to the XML declaration itself. The XmlDecl
element must be a child of the root element, and is the element that is written to a
bit-stream first. This element can have three children of the following types:

1. Version

The version element is a value element and stores the data corresponding to
the version string in the actual declaration. It is always a child of the XmlDecl
element. For example, for the declaration shown above the version element
would contain the string value ″1.0″.

2. Standalone

The standalone element is a value element and stores the data corresponding
to the value of the standalone string in the declaration. It is always a child of the
XmlDecl element. The values for the standalone element must be the string
″yes″ or ″no″.

″no″ is the default: this means that processing of the message depends on an
external (DTD) reference.

3. Encoding

The encoding element is also a value element and is always a child of the
XmlDecl element. The value of the encoding element is a string which
corresponds to the value of the encoding string in the declaration. In the
example shown above the encoding element would have a value of ″UTF-8″.

Note: MQSeries encodings cannot be specified in this element.

Document Type Declaration
The document type declaration (DTD) of an XML message is represented by a
syntax element of type DocTypeDecl and its children and descendants. These
comprise the DOCTYPE construct.

Only internal DTD subsets are represented in the syntax element tree. External
DTD subsets (identified by the SystemID or PublicId elements described below) can
be referenced in the message but those referenced are not resolved in the
MQSeries Integrator run-time environment.

DocTypeDecl
The DocTypeDecl is a named element and must be a child of the root element. It is
written to the bit-stream before the element that represents the body of the
document during serialization. The following can be specified within this element:

1. IntSubset

IntSubset is a named element that groups all of those elements that represent
the DTD constructs contained in the internal subset of the message. Although
the IntSubset element is a named element its name is not relevant.

2. SystemId

SystemId is a value element and is used to represent a general system
identifier construct found in an XML message. It can be a part of a DocTypeDecl
or a NotationDecl element. The value of the SystemId is a URI, and is typically
a URL or the name of a file on the current system. A system identifier of the
form SYSTEM “Note.dtd” has a string value of ″Note.dtd″

3. PublicId

Generic XML messages

138 MQSeries Integrator Version 2.0.2 Using the Control Center

PublicId represents a general public identifier construct found in an XML
message. It can be a part of a DocTypeDecl or a NotationDecl element. The
value of the PublicId is typically a URL.

NotationDecl
The NotationDecl element represents a notation declaration in an XML message. It
is a name element whose name corresponds to the name given with the notation
declaration. It must have a SystemId as a child, and it can optionally have a child
element of type PublicId.

Entities
Entities in the DTD are represented by one of five named element types described
below.

1. ParameterEntityDecl

The ParameterEntityDecl represents a parameter entity definition in the internal
subset of the DTD. It is a named element and has a single child element that is
of type EntityDeclValue. For parameter entities the name of the entity does not
include the percent sign %. In XML a parameter entity declaration takes the
form:

<!ENTITY % inline "#PCDATA | emphasis | link">

2. ExternalParameterEntityDecl

The ExternalParameterEntityDecl represents a parameter entity definition where
the entity definition is contained externally to the current message. It is a named
element and has a child of type SystemId. It can also have a child of type
PublicId. The name of the entity does not include the percent sign %. In XML an
external parameter entity declaration takes the form:

<!ENTITY % bookDef SYSTEM "BOOKDEF.DTD">

This is represented by an ExternalParameterEntityDecl element of name
bookDef with a single child of type SystemId with a string value of
“BOOKDEF.DTD”.

3. EntityDecl

The EntityDecl element represents a general entity and is declared in the
internal subset of the DTD. It is a named element and has a single child
element which is of type EntityDeclValue.

An entity declaration of the form:
<!ENTITY bookTitle "User Guide">

has an EntityDecl element of name ″bookTitle″, and a child element of type
EntityDeclValue with a string value of “User Guide”.

4. ExternalEntityDecl

The ExternalEntityDecl element represents a general entity where the entity
definition is contained externally to the current message. It is a named element
and has a child of type SystemId. It can also have a child of type PublicId.

An external entity declaration of the form:
<!ENTITY bookAppendix SYSTEM "appendix.txt">

has an EntityDecl element of name ″bookAppendix″ and a child element of type
SystemId with a string value of ″appendix.txt″.

5. UnparsedEntityDecl

Generic XML messages

Chapter 16. Concepts of XML messages 139

An unparsed entity is an external entity whose external reference is not parsed
by an XML processor.

The UnparsedEntityDecl is named element. It has a child of type SystemId and
optionally a child of type PublicId. The presence of NDATA after the SystemId in
the entity declaration indicates that this entity is not parsed by the XML
processor. After NDATA is the name of a corresponding notation declaration. In
XML an unparsed entity declaration takes the form:

<!ENTITY pic SYSTEM "scheme.gif" NDATA gif>

v NotationReference

The NotationReference name element represents a reference to a notation
declaration from within an UnparsedEntityDecl element. It is always a child of
an UnparsedEntityDecl element.

EntityDeclValue
This value element represents the value of an EntityDecl, or a ParameterEntityDecl
defined internally in the DOCTYPE construct. It is always a child of an element of
one of those types, and is a value element. For the following entity:

<!ENTITY bookTitle "User Guide">

the EntityDeclValue element has the string value ″User Guide″.

ElementDef
The ElementDef name-value element represents the <!ELEMENT construct in a
DTD. The name of the element that is defined corresponds to the name member of
the syntax element. The value member corresponds to the element definition.

AttributeList
The AttributeList name element represents the <!ATTLIST construct in a DTD. The
name of the AttributeList element corresponds to the name of the element for which
the list of attributes is being defined.

AttributeDef
The AttributeDef name element describes the definition of an attribute within a
<!ATTLIST construct. It is always a child of the AttributeList element. The name of
the syntax element is the name of the attribute being defined. It can have three
children:

1. AttributeDefValue

For attributes of type CDATA (see AttributeDefType below) the AttributeDefValue
gives the default value of the attribute.

2. AttributeDefDefaultType

The AttributeDefDefaultType syntax element is a value element which
represents the attribute default as defined under the attribute definition. The
value can be one of the following strings:
v #REQUIRED
v #IMPLIED
v #FIXED

3. AttributeDefType

The AttributeDefType syntax element is a name-value element whose name
corresponds to the attribute type found in the attribute definition. Possible values
for the name are:
v CDATA
v ID

Generic XML messages

140 MQSeries Integrator Version 2.0.2 Using the Control Center

v IDREF
v IDREFS
v ENTITY
v ENTITIES
v NMTOKEN
v NMTOKENS
v NOTATION

If there is an enumeration present for the attribute definition the entire enumeration
string is held as a string in the value member of the name-value syntax element.
The value string starts with an open bracket “{” and ends with a close bracket “}”.
Each entry in the enumeration string will be separated by a ‘|’ character. For an
enumerated type that is not a NOTATION, the name member of the syntax element
is empty.

DocTypePI and ProcessingInstruction
The DocTypePI element represents a processing instruction found within the DTD.
The ProcessingInstruction element represents a processing instruction found in the
XML message body.

Both of these elements are name-value elements. In both cases, the name of the
element is used to store the processing instruction target name, and the value
contains the character data of the processing instruction. The value of the element
can be empty. The name cannot be the string ″XML″ or any uppercase or
lowercase variation of ″XML″.

DocTypeWhiteSpace and WhiteSpace
The DocTypeWhiteSpace element represents whitespace found inside the DTD that
is not represented by any other element. The WhiteSpace element represents any
white space characters found in the message body that is not represented by any
other element. Both are value elements.

For example, white space within the body of the message is reported as element
content using the pcdata element type, but white space characters found between
the XML declaration and the beginning of the message body are represented by the
WhiteSpace element.

<?xml version="1.0"?> <BODY>....</BODY>

The characters between ″1.0″?>″ and <BODY> are represented by the WhiteSpace
element. White space characters found within a DocType between two definitions
are represented by the DocTypeWhiteSpace element.

<!DOCTYPE Note SYSTEM "Note.DTD">
<!ENTITY % bookDef SYSTEM "BOOKDEF.DTD"> <!ENTITY bookTitle "User Guide">]>

The characters between DTD″> and <!ENTITY are represented by the
DocTypeWhiteSpace element.

DocTypeComment and Comment
Comments in the XML message are represented by the Comment and
DocTypeComment elements. The former is used within the message body, the latter
within the DTD. Both element types are value elements where the value string
contains the comment text.

Generic XML messages

Chapter 16. Concepts of XML messages 141

|
|

The XML message body
Every XML message must have a body element. The body element is a top level
XML element which encapsulates the whole of the body. XML elements are
represented in the syntax element tree with a type of “tag”.

v tag

The tag syntax element is the default name element supported by the XML
parser and is the most common element. This element can have many children
of many different types. XML attributes that are attached to an XML element are
represented by a series of ″attr″ elements that are children of the tag element.
Similarly, sections of PCDATA which are content of the XML element are
represented by syntax elements of type ″pcdata″. ″tag″ elements can also have
other tag elements as children.

– attr

The attr element is the principal name-value element supported by the XML
parser. It is used to represent attributes that are associated with elements in
the XML message. The name and value of the syntax element correspond to
the name and value of the attribute being represented. ″attr″ elements have
no children and must always be children of a ″tag″ element.

– pcdata

Element content is represented by the pcdata value element. There can be
more than one pcdata element child of a single tag element. In these cases
they would be separated by any syntax elements that represent XML
constructs allowed within element content, including ″tags″,
″ProcessingInstruction″, ″Cdata″, ″EntityDecl″.

The following XML illustrates an extract of message body:
<PERSON age="32" height="172cm">

<FIRSTNAME>Cormac</FIRSTNAME>
<SECONDNAME>Keogh</SECONDNAME>

</PERSON>

This is represented in the syntax element tree as:

v One “tag” element with a name of ″PERSON″. This tag has seven children.

1. Two attr (name-value) with names ″age″ and ″height″ and string values ″32″
and ″172cm″ respectively.

2. One pcdata (value) element with string value containing the white space
character data found between ″172cm″> and <FIRST.

3. One tag (name) with a name ″FIRSTNAME″. This tag has one child:
– One pcdata (value) containing the string value ″Cormac″.

4. One pcdata (value) element with string value containing the white space
character data found between TNAME> and <SECOND.

5. One tag (name) with a name ″SECONDNAME″. This tag has 1 child:
– One pcdata (value) containing the string value ″Keogh″.

6. One pcdata (value) element with string value containing the white space
character data found between DNAME> and </PERSO.

ProcessingInstruction
This is described in “DocTypePI and ProcessingInstruction” on page 141.

WhiteSpace
This is described in “DocTypeWhiteSpace and WhiteSpace” on page 141.

Generic XML messages

142 MQSeries Integrator Version 2.0.2 Using the Control Center

Comment
This is described in “DocTypeComment and Comment” on page 141.

AsisElementContent
Normally an XML processor must replace any occurrences of the characters
ampersand (&), less than (<), greater than (>), double quote (”), and apostrophe (’)
with an escape sequence that is used to represent them (&, <, >, ",
and '). The escape sequences are defined as entities.

The AsisElementContent is a value element that is similar to the pcdata element but
provides a means to suppress this behavior for the content of an element.
Occurrences of any of the characters in the value of an AsisElementContent
element are substituted by their appropriate entity reference.

To illustrate how AsisElementContent might be used, please see the following
example:
SetOutputRoot.XML.Message.(XML.AsisElementContent) = '&';

this gives: <Message>&</Message>.
SetOutputRoot.XML.(XML.AsisElementContent).Message = '&';

gives: &. This shows that AsisElementContent causes only the literal data to be
written.

Note: Any path name elements after AsisElementContent are discarded.

CDataSection
CData sections in the XML message are represented by the CDataSection value
element. The content of the CDataSection element is the value of the CDataSection
element without the <![CDATA[that marks the beginning, and without the]]> that
marks the end of the Cdata section.

For example, the following Cdata section:
<![CDATA[<greeting>Hello, world!</greeting>]]>

is represented by a CDataSection element with a string value of:
"<greeting>Hello, world!</greeting>"

Unlike pcdata, occurrences of <, >, &, “, and ’ are not translated to their escape
sequences when the Cdata section is written out to a serialized message.

EntityReferenceStart and EntityReferenceEnd
When an entity is encountered in the XML message it is reported in the syntax
element tree in expanded form. In order to determine if a section of the tree has
been derived from an expanded entity, a couple of marker elements are placed in
the tree to denote the beginning and end of an entity’s expansion.

v The EntityReferenceStart element is a value element that marks the beginning of
an entity expansion.

v The EntityReferenceEnd element is a value element which marks the end of an
entity expansion.

Generic XML messages

Chapter 16. Concepts of XML messages 143

|
|

|

|

|

|
|

|

|

The value of both elements corresponds to the name of the entity being expanded.
Any syntax elements found between these two place holders, and their children
have been derived from the expansion of the entity in question.

Generic XML messages

144 MQSeries Integrator Version 2.0.2 Using the Control Center

|

Chapter 17. Concepts of NEONRules and NEONFormatter
Support for MQSeries Integrator

The support for NEONRules and NEONFormatter in MQSeries Integrator V2.0.2
has been substantially enhanced over previous versions of MQSeries Integrator and
is now based on version 5.2 of the NEONRules and NEONFormatter product. All
the improvements in NEONRules and NEONFormatter functionality which V5.2 of
that product offers over and above previous versions can be leveraged by
MQSeries Integrator V2.0.2. In addition to this, MQSeries Integrator V2.0.2 contains
technology aimed specifically at integrating NEONRules and NEONFormatter fully
into the MQSeries Integrator message flow paradigm. The combination of
NEONRules and NEONFormatter V5.2 with the MQSeries Integrator specific
technology is referred to as the NEONFormatter and NEONFormatter Support for
MQSeries Integrator.

The NEONMSG parser
At the heart of the new Rules and Formats technology is the NEONMSG message
parser. NEONMSG is the new message domain for messages defined in the Rules
and Formats database, and is intended to replace the old NEON domain. The old
domain is still present in MQSeries Integrator V2.0.2, however it is intended for
backward compatibility purposes only and it cannot be used to access any of the
new Rules and Formats Support functionality. Like other message parsers (such as
XML or MRM), the NEONMSG parser translates wire format messages in its
domain into MQSeries Integrator message trees, and vice versa. However it has
some particular capacities and restrictions.

Parsing a NEON Format message into an MQSeries Integrator
message tree

The NEONMSG parser can only parse messages defined as input formats in the
Rules and Formats database. It uses the MQSeries Integrator Message Type
property to identify the input format in the database. If an input format with the
name specified in the Message Type property does not exist, an exception will be
thrown. The structure of the MQSeries Integrator message tree generated by the
NEONMSG parser is two-dimensional. The top level format name is omitted from
the tree, as this information is contained in the message properties. Each
component input format below the top level is added as a vertical layer to the tree.
Fields of a flat input format are added as children of the owning format. For
example, a format defined as following the NEONFormatter User Interface:
[-]...> CompoundIn1

|
[-]...> FlatIn1
| |
| |...> Field1
|
[-]...> FlatIn2

|
|...> Field2

Will result in the generation of a message tree as follows:
(0x1000000)NEONMSG = (

(0x1000002)FlatIn1 = (
(0x3000001)Field1 = 'some data'

)

© Copyright IBM Corp. 2000, 2001 145

|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

(0x1000002)FlatIn2 = (
(0x3000001)Field2 = 'some more data'

)
)

It is instructive to compare this with the message tree that would be generated by
the old, deprecated, NEON domain parser for the same input format:
(0x1000000)NEON = (

(0x3000000)Field1 = 'some data'
(0x3000000)Field2 = 'some more data'
)

As can be seen the new NEONMSG parser creates vertical levels in the message
tree to represent the component formats of a compound format2 message, whereas
the old NEON parser flattens all the fields in the message to a single vertical level.
The data content of the fields depends of course on what values were actually
present in the incoming message.

Reserializing a message tree into a NEONFormatter message format
The old NEON domain parser was unable to reserialize an MQSeries Integrator
message tree into a NEONFormatter message format. The NEONMSG parser does
have this capability; however it can only reserialize messages defined as output
formats in the Rules and Formats database, or messages defined as input formats
in the Rules and Formats database which have not been modified by the message
flow. It is not possible to reserialize an input format message where the body of the
message has been modified in any way. The wire format of the reserialized
message will be as defined in the NEONFormatter User Interface.

Using the NEONMSG parser with ESQL
The fact that the NEONMSG parser generates a different message tree from the
old NEON parser obviously has consequences for the way message fields in a
NEONMSG domain message are referenced from ESQL

Referencing fields in a NEONMSG domain message
Using the example message format above, if this were parsed by the NEONMSG
parser the field Field1 would be referred to from a Compute node as:
InputRoot.NEONMSG.FlatFmt1.Field1

or
InputBody.FlatFmt1.Field1

Compare this with the way the same field would be referred to if the message had
been parsed by the deprecated NEON parser:
InputRoot.NEON.Field1

or
InputBody.Field1

The extra vertical layers which the NEONMSG parser generates can make
processing a NEONMSG message in a message node such as Compute a much

2. ″Compound format″ is a NEON-specific term. NEON formats are divided into ″flat″ and ″compound″ formats. A flat format contains
only data fields. A compound format contains both flat formats and other compound formats.

Parsing a NEON Format message into an MQSeries Integrator message tree

146 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

|

|

|

|
|

|

|

|

|
|

simpler task. However if you are migrating from the old NEON parser then changes
may be required to your ESQL to reflect the existence of these new vertical layers.

Creating a NEONMSG domain message
It is possible to create a NEONMSG domain message in the Compute node. This
was not possible with the old NEON domain parser. The requirements for creating a
NEONMSG domain message are the same as those for creating any other domain
message: the message body tree must be created and populated, and the message
properties set to reflect the message attributes. As the NEONMSG domain parser
only reserializes output format message trees, or input format messages which
have a valid bitstream associated with them, it is only possible to create NEONMSG
messages which are defined as output formats in the Rules and Formats database;
input format messages may not be created. If the following output format were
defined in the NEONFormatter User Interface:
[-]...> CompoundOut1

|
[-]...> FlatOut1
| |
| |...> Field1
|
[-]...> FlatOut2

|
|...> Field2

Then to create a message in this format which would be successfully reserialized
by the NEONMSG parser, the following ESQL would be required:
SET OutputRoot.NEONMSG.FlatOut1.Field1 = 'some data';
SET OutputRoot.NEONMSG.FlatOut2.Field2 = 'some more data';
SET OutputProperties.MessageType = 'CompoundOut1';

An important point to note is that when a NEONMSG message is created in this
way, the output controls associated with the format of the created message (as
defined in the NEONFormatter User Interface) are not applied to the message data
until it is reserialized. Thus if Field1 had an associated output control to upper case
the contents of the field, querying the contents of Field1 as it passed through the
message flow would reveal the value ’some data’. However, when the message
was reserialized and placed on an output queue, the contents of the field would be
seen to be ’SOME DATA’.

The NEONTransform and NEONMap nodes
The NEONTransform node is intended as a direct replacement for the deprecated
NEONFormatter node. As such it is capable of reproducing all the function of that
node. However the underlying changes to the NEONRules and NEONFormatter
support for MQSeries Integrator V2.0.2 mean that slightly different usage may be
required in some circumstances.

Map Name and Map Version
Part of the extra functionality provided by the NEONRules and NEONFormatter
Support for MQSeries Integrator V2.0.2 package is the implementation of explicit
Map object. These are defined in the NEONFormatter User Interface and provide a
mechanism for explicitly mapping input message fields to output message fields.
See the NEONRules and NEONFormatter Support: User Guide for more details.

Referencing fields in a NEONMSG domain message

Chapter 17. Concepts of NEONRules and NEONFormatter Support for MQSeries Integrator 147

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

Other attributes
A comparison of the NEONFormatter and NEONTransform node will reveal that the
Output Wireformat attribute has been removed from the latter. Furthermore,
although the Output Domain, Output Message Set and Output Message Type
attributes remain, they have a slightly different effect. In order to understand the
reason for these changes it is necessary to understand the difference between the
old NEON domain parser and the new NEONMSG domain parser. The NEON
parser could not reserialize an output format message, therefore the
NEONFormatter node had to generate an already-serialized bitstream, rather than a
message tree as the body of its output message. Effectively this was equivalent to
having a ResetContentDescriptor node embedded in the NEONFormatter node.
Therefore the Output Domain, Output Message Set, Output Message Type and
Output Wireformat attributes were intended to implement the function of the
embedded ResetContentDescriptor node.

The NEONMSG parser is capable of reserializing an output format message,
therefore the NEONTransform node generates a message tree, rather than a
bitstream, as the body of its output message. When this message tree reaches a
point in the message flow where it needs to be reserialized, the NEONMSG parser
does so. The ″embedded ResetContentDescriptor node″ from the NEONFormatter
node is not required in the NEONTransform node and has therefore been removed.
If ResetContentDescriptor node functionality is required, for example, resetting the
domain of the output message to BLOB, or changing the Output Message Type to a
different output format, a real ResetContentDescriptor node should be attached to
the appropriate output terminal of the NEONTransform node.

Output Domain
The Output Domain of a message can be set to one of two values: NEONMSG (the
default) or XML. A message with an Output Domain of NEONMSG is output as a
normal NEONMSG domain message. Any subsequent modification or reparsing of
this message will be done using the NEONMSG domain parser. If a message is
output with an Output Domain of XML, the message tree structure generated by the
NEONMSG parser is used to create an XML message. For example, a message in
the ’CompoundOut1’ format as detailed above, would, if output in the XML domain
from a NEONTransform node, consist of the following XML:
<CompoundOut1>

<FlatOut1>
<Field1>some data</Field1>

</FlatOut1>
<FlatOut2>

<Field2>some more data</Field2>
</FlatOut2>

</CompoundOut1>

As can be seen, the outermost XML element consists of the outermost format
name; the other XML elements reflect the structure of the ’CompoundOut1’ output
format.

Output Message Type and Output Message Set
By default, the Message Type of a message output from the NEONMap and
NEONTransform nodes is set to the value of the Target Format attribute. If the
Output Message Type attribute is explicitly set to a different value than the Target
Format attribute then it sets up a ″delayed transform″ to be applied to the message
upon reserialization. Thus if a NEONTransform node were to transform a message
from input format ’WireIn1’ to output format ’ContentModel1’, setting the Output

Map Name and Map Version

148 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

Message Type attribute to ’WireOut1’, then on reserialization (at an
ResetContentDescriptor or MQOutput node), the message would be transformed a
second time, into the ’WireOut1’ output format.

The names chosen for the example above are intended to demonstrate the major
intent of the ″delayed transform″ behavior. An aspect of the underlying differences
between the NEONRules and NEONFormatter Support for MQSeries Integrator
V2.0.2 and that included with previous versions of MQSeries Integrator is a shift in
the NEONFormatter paradigm so that it integrates better into the overall product
architecture. The message processing model for MQSeries Integrator is three-stage:
a message is parsed, processed, and reserialized. The processing takes place on a
generic message tree which holds the data content of the message in a wire
format-independent form. Until now the NEONFormatter paradigm within MQSeries
Integratorhas been essentially two-stage: a message is reformatted from one wire
format to another.

With the release of MQSeries Integrator V2.0.2 the NEONFormatter functionality
has been upgraded in such a way that it can more easily support a three-stage
parse-process-reserialize paradigm. Thus a message in the NEONMSG domain
may be input to a message flow in a particular input wire format; a NEONTransform
or NEONMap node converts this into a generic format, specifying as part of this
operation the ultimate Output Message Type (output wire format) in which the
message should be discharged from the message flow. When the message is
reserialized in anticipation of this discharge (or due to the intervention of an
ResetContentDescriptor node), the NEONMSG parser will automatically perform the
necessary transform operation to convert the message into the specified output wire
format. Of course, it is still possible to use the NEONMap and NEONTransform
nodes as simple two-stage reformat operations if required.

The Output Message Type and Output Message Set attributes have no meaning
within the XML domain and therefore, although the Output Message Type and
Output Message Set standard properties will be set in the output message as
specified, they will not affect the subsequent processing of the XML message in any
way. Setting the Output Message Set attribute when the Output Domain is
NEONMSG has the effect of changing the application group (as defined in the
NEONRules User Interface) to which the message belongs.

The NEONMap node
The NEONMap node is identical to the NEONTransform node except that it
performs only the mapping stage of a reformat. This means that message data is
mapped from the fields of the input format to the fields of the specified target format
according to either the default mapping (defined for that target format) or the
specified Map Name and Map Version. After performing this mapping step, the
NEONTransform node goes on to apply whatever output operations were specified
for each field in the target format (as defined in the NEONFormatter User Interface).
The NEONMap node does not perform this second step. For example, if a field in
an output format had an upper casing output operation specified, the incoming data
some data would be turned by the NEONTransform node into SOME DATA when it
was mapped to that output format. By contrast, the NEONMap node would not
apply the upper casing output operation and the incoming data would remain as
some data.

Map Name and Map Version

Chapter 17. Concepts of NEONRules and NEONFormatter Support for MQSeries Integrator 149

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

The NEONRulesEvaluation node
The NEONRulesEvaluation node is intended as a direct replacement for the
deprecated NEONRules node. Its attributes are identical to its predecessor,
however the changes in the underlying NEONRules and NEONFormatter
functionality mean that some differences in the behavior of particular Subscription
Actions (as defined in the NEONRules User Interface) will be observed.

Map and Transform actions

These are identical in behavior to the NEONMap and NEONTransform nodes
respectively. However it must be understood that it is now a message tree, rather
than a bitstream, which is being Mapped and Transformed. This has implications for
the situation where multiple Maps or Transforms are executed within a single
subscription. To illustrate the differences between the NEONRules and
NEONRulesEvaluation nodes’ behavior in this circumstance, consider the following
three formats:

v Input1: flat input format with a single, semicolon delimited field, Field1.

v Output1: flat output format with a single field, also named Field1. The output
control for this field upper cases the field data and suffixes a semicolon to the
end. The mapping for this format is such that Field1 in the output format maps
its data from Field1 in the input format.

v Output2: flat output format with a single field, Field2. The output control for this
field suffixes a semicolon to the end. The mapping for this format is such that
Field2 in the output format maps its data from Field1 in the input format.

Given an input message of format Input1 with the bitstream body some data;, the
effect of applying two Reformat actions in the NEONRules node can be compared
against the effect of applying two Transform actions in the NEONRulesEvaluation
node:

Table 4. Comparison of the functions of the NEONRulesEvaluation node and NEONRules
node

NEONRulesEvaluation node NEONRules node

Transform

Target Format = Output1

Reformat

INPUT_FORMAT = Input1
TARGET_FORMAT = Output1

PutQueue
When serialized, the output wire
format message body will consist of

SOME DATA;

PutQueue
When serialized, the output wire
format message body will consist of

SOME DATA;

Transform

Target Format = Output2

Reformat

INPUT_FORMAT = Input1
TARGET_FORMAT = Output2

PutQueue
When serialized, the output wire
format message body will consist of

SOME DATA;;

Note: two semicolons.

PutQueue
When serialized, the output wire
format message body will consist of

SOME DATA;

Note: one semicolon..

NEONRulesEvaluation node

150 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

||
|

||

|

|

|

|
|

|
|
|

|

|
|
|

|

|

|

|

|
|

|
|
|

|

|

|
|
|

|

|
|
|

There are numerous points for discussion here:

The Transform action has no equivalent of the Reformat’s INPUT_FORMAT option.
This is because the Transform action in the NEONRulesEvaluation node takes a
message tree as input and produces a message tree as output, while the Reformat
action in the NEONRules node takes a bitstream as input and produces a bitstream
as output. The Reformat action has to perform three steps: parse the incoming
bitstream, map the resulting input fields to the output format fields (applying any
output operations), then reserialize the output format fields into a new bitstream.
Because the Transform action works directly with message trees, it has no need to
perform the first and third of these steps, and therefore does not need to be told the
format of the input message. It will be instructive to consider in detail what takes
place as each of the above actions are executed:

Table 5. behavior of the NEONRules node reformat action

Action Behavior

INPUT_FORMAT = Input1
TARGET_FORMAT = Output1

v The incoming message bitstream, some
data; is parsed as input format Input1,
generating the field Field1 with data some
data.

v Field1 from the input format is mapped to
Field2 in the output format Output1.

v Output1 is reserialized, with output
operations applied to produce the
bitstream

SOME DATA;

PutQueue The message is propagated to the putqueue
terminal. It is already serialized so no further
reserialization will take place when it reaches
the MQOutput node.

Reformat

INPUT_FORMAT = Input1
TARGET_FORMAT = Output2

v Following the previous reformat, the
message bitstream now consists of

SOME DATA;

This is a valid bitstream for input format
Input1, so it is successfully parsed,
generating the field Field1 with data SOME
DATA

v Field1 from the input format is mapped to
Field3 in the output format Output2.

v Output2 is reserialized, with output
operations applied to produce the
bitstream

SOME DATA;

PutQueue The message is propagated to the putqueue
terminal. It is already serialized so no further
reserialization will take place when it reaches
the MQOutput node.

NEONRulesEvaluation node

Chapter 17. Concepts of NEONRules and NEONFormatter Support for MQSeries Integrator 151

|

|
|
|
|
|
|
|
|
|
|
|

||

||

|
|
|
|
|
|

|
|

|
|
|

|

|

||
|
|
|

|

|
|

|
|

|

|
|
|
|

|
|

|
|
|

|

|

||
|
|
|
|

Table 6. behavior of the NEONRulesEvaluation node transform action

Action Behavior

Transform

Target Format = Output1

The incoming message tree (generated by
the NEONMSG parser) consists of:

(0x1000000)NEONMSG = (
(0x3000001)Field1 = 'some data')

This is transformed to:

(0x1000000)NEONMSG = (
(0x3000001)Field1 = 'SOME DATA;')

PutQueue Output1 is propagated to the putqueue
terminal with the above message tree. When
it reaches the MQOutput node the
NEONMSG parser reserializes it into

SOME DATA;

Transform

Target Format = Output2

The incoming message tree (as generated
by the previous Transform action) consists
of:

(0x1000000)NEONMSG = (
(0x3000001)Field1 = 'SOME DATA;')

This is transformed to:

(0x1000000)NEONMSG = (
(0x3000001)Field2 = 'SOME DATA;;')

The output control associated with Field2
causes a semicolon to be added to the data
from the input field Field1. Field1 contained
the data

SOME DATA;

therefore adding an extra semicolon results
in SOME DATA;;.

PutQueue Output2 is propagated to the putqueue
terminal with the above message tree. When
it reaches the MQOutput node the
NEONMSG parser reserializes it into SOME
DATA;;.

It can be seen that single NEONRulesEvaluation Transform actions function
identically to single NEONRules Reformat actions, however multiple Transform
actions within a single subscription may function differently to multiple Reformat
actions within a single subscription. This means that the behavior of subscriptions
imported from previous versions of MQSeries Integrator may change when they are
executed by the NEONRulesEvaluation node in MQSeries Integrator V2.0.2. This is
an unavoidable consequence of the fundamental redesign work which has gone into
the NEONRules and NEONFormatter Support for MQSeries Integrator V2.0.2. One
way to avoid or reverse such changes in behavior is to place each Transform action
in a separate subscription and attach the resulting multiple subscriptions to a single
rule. This will avoid any problems caused by performing multiple Transforms in a
single subscription, while the overall effect of that rule on the message, remains
unchanged. Further information about the NEONRulesEvaluation node can be
found in “The NEONRulesEvaluation node” on page 150.

NEONRulesEvaluation node

152 MQSeries Integrator Version 2.0.2 Using the Control Center

||

||

|

|

|
|

|
|

|

|
|

||
|
|
|

|

|

|

|
|
|

|
|

|

|
|

|
|
|
|

|

|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Propagate, Put Queue and Route actions
These three actions all result in a message being propagated to the appropriate
output terminal of the NEONRulesEvaluation node. Therefore they all support the
Message Domain, Message Set and Message Type options. The effect of setting
these options is identical to the effect of setting the equivalent attribute on the
NEONMap and NEONTransform nodes. In addition these actions support the
Output CCSID and Output Encoding attributes. The effect of the Output CCSID and
Output Encoding attributes is to set the CCSID and Encoding of the body of the
outgoing message to the specified values.

Propagate

This has no attributes in addition to those described above. It causes a message to
be output from the NEONRulesEvaluation node via the propagate terminal.

Put Queue

The Put Queue action causes a message to be output from the
NEONRulesEvaluation node via the putqueue terminal. Before it is output, its
Destination List is updated to reflect the values of the Target Queue and Target
Queue Manager attributes. If the message output from the putqueue terminal
subsequently reaches an MQOutput node which is configured with a Destination
Mode of ’Destination List’, it will be placed on the MQSeries queue specified in the
Target Queue attribute, belonging to the MQSeries queue manager specified in the
Target Queue Manager attribute.

The Put Queue action has the following additional attributes:

v MQS Format. Sets the Format field of the MQSeries header immediately
preceding the output message body to the specified value.

v MQS Propagate. If this is set to NO_PROPAGATE, any RFH or RFH2 header on
the input message is not copied to the output message. This is the default. If it is
set to PROPAGATE, then any RFH or RFH2 header is copied to the output
message.

v MQS Persist. This may be set to PERSIST or NO_PERSIST. It sets the
Persistence of the output message (as defined in its standard properties folder)
to TRUE or FALSE respectively. If no value is specified for this attribute the
output message retains the persistence of the input message.

v MQS Expiry. If this is set to NO_PROPAGATE, the expiry time of the output
message is set to Unlimited (in other words, it will never expire). This it the
default. If it is set to PROPAGATE, the expiry time of an input message is copied
across to the output message.

Route

The Route action causes a message to be output from the route terminal of the
NEONRulesEvaluation node. Before it is output, its Destination List is updated to
reflect the value of the Label Name attribute. If the message output from the route
terminal subsequently reaches a RouteToLabel node, it may be routed to the Label
node with the name specified in the Label Name attribute, depending on whether
any other Label values have been appended to the Destination List of the message
and the configuration of the RouteToLabel node. See “Using a RouteToLabel node”
on page 66.

NEONRulesEvaluation node

Chapter 17. Concepts of NEONRules and NEONFormatter Support for MQSeries Integrator 153

|

|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

Access to Rules and Formats
In order to function the NEON nodes and parsers must be able to locate and
access a database containing the definitions of theNEON Rules and Formats which
they are to use. Creating and initializing this database is a once-only administrative
operation and is covered in the MQSeries Integrator Administration Guide. The
migration of existing Rules and Formats from previous versions of MQSeries
Integrator is also covered in the same book. New Rules and Formats can be
created using the NEONFormatter and NEONRules User Interfaces supplied with
MQSeries Integrator V2.0.2.

To locate the Rules and Formats database:

The Rules and Formats database is deployed to a broker, so it is necessary for the
environment variable, NN_CONFIG_FILE_PATH, to be defined by the user ID which is
running the broker.

The NN_CONFIG_FILE_PATH variable must contain the full path to the directory
containing the configuration file which holds database connection details for the
Rules and Formats database. This configuration file must be called neonreg.dat.
There is a sample of the neonreg.dat file:

v Under the MQSeries Integrator root installation directory in sample/NEON on the
UNIX platform

v Under the MQSeries Integrator root installation directory in examples\NEON on the
Windows NT platform

The value to use in the NN_CONFIG_FILE_PATH variable, so it points to neonreg.dat
is:

v MQSI_ROOT/sample/NEON on the UNIX platform

v MQSI_ROOT\examples\NEON on the Windows NT platform

Access to Rules and Formats

154 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|

|

Chapter 18. C and COBOL default mappings

This appendix describes the defaults that the C and COBOL importers use when
mapping C datatypes or COBOL datatypes to MRM datatypes. The data designer
defining a message set in the Control Center might want to follow these defaults,
but this decision will depend on the business usage of the data.

The MRM:

v Does not support pointer datatypes.

v Does not support the COBOL construct REDEFINES.

v Does not support the COBOL datatypes DBCS, external floating point, or binary
items that have a PIC declaration greater than 9 digits.

v Does not fully support the C datatype long double.

Mapping C datatypes to MRM datatypes
Table 7 on page 156 defines the datatype mappings for C structures.

Notes:

1. Long Double is outside the scope of the importer.

© Copyright IBM Corp. 2000, 2001 155

|

Ta
bl

e
7.

C
da

ta
ty

pe
s

an
d

th
ei

r
de

fa
ul

t
se

tti
ng

s
in

th
e

M
R

M

C
d

at
at

yp
e

M
R

M
lo

g
ic

al
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

g
th

S
ig

n
S

tr
in

g
ju

st
if

ic
at

io
n

R
ep

ea
t

Lo
ng

In
te

ge
r

In
te

ge
r

4
S

ig
ne

d

C
ha

r
S

tr
in

g
F

ix
ed

Le
ng

th
1

C
ha

r[
10

]
S

tr
in

g
F

ix
ed

Le
ng

th
10

Le
ft

ju
st

ify

C
ha

r[
10

][3
]

S
tr

in
g

F
ix

ed
Le

ng
th

3
Le

ft
ju

st
ify

10

C
ha

r[
10

][3
][6

]
S

tr
in

g
F

ix
ed

Le
ng

th
6

Le
ft

ju
st

ify
30

In
t

In
te

ge
r

In
te

ge
r

4
S

ig
ne

d

In
t[2

]
In

te
ge

r
In

te
ge

r
4

S
ig

ne
d

2

In
t[2

][3
]

In
te

ge
r

In
te

ge
r

4
S

ig
ne

d
6

U
ns

ig
ne

d
In

t
In

te
ge

r
In

te
ge

r
4

U
ns

ig
ne

d

U
ns

ig
ne

d
S

ho
rt

In
te

ge
r

In
te

ge
r

2
U

ns
ig

ne
d

F
lo

at
F

lo
at

F
lo

at
4

D
ou

bl
e

F
lo

at
F

lo
at

8

S
ho

rt
In

te
ge

r
In

te
ge

r
2

S
ig

ne
d

U
ns

ig
ne

d
ch

ar
In

te
ge

r
In

te
ge

r
1

U
ns

ig
ne

d
ch

ar
[2

]
B

in
ar

y
B

in
ar

y
2

(#
de
fi
ne
)B
OO
L
in
t

B
oo

le
an

B
oo

le
an

(#
de
fi
ne
)B
oo
le
an

B
oo

le
an

B
oo

le
an

C and COBOL default mappings

156 MQSeries Integrator Version 2.0.2 Using the Control Center

Mapping COBOL datatypes to MRM datatypes
Columns 1 to 5 in Table 8 on page 158 describe some examples of COBOL data
definitions. Columns 6 to 12 describe the equivalent data mappings used to store
these definitions in the MRM.

Notes:

1. Column 5 (of 12) Internal representation assumes an ASCII Big Endian code
page.

2. Column 12 (of 12) Jst. indicates the justification of the datatype.

3. The following datatypes are outside the scope of the importer:
v Binary (10 to 18 digits)
v External floating point
v DBCS

C and COBOL default mappings

Chapter 18. C and COBOL default mappings 157

Ta
bl

e
8.

C
O

B
O

L
da

ta
ty

pe
s

an
d

th
ei

r
de

fa
ul

t
se

tti
ng

s
in

th
e

M
R

M

C
O

B
O

L
d

at
at

yp
e

P
er

m
it

te
d

sy
m

b
o

ls
P

IC
T

U
R

E
an

d
U

S
A

G
E

an
d

o
p

ti
o

n
al

S
IG

N
cl

au
se

V
al

u
e

In
te

rn
al

re
p

re
se

n
ta

ti
o

n
M

R
M

L
o

g
ic

al
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

g
th

in
b

yt
es

S
ig

n
V

ir
tu

al
d

ec
.

p
o

in
t

P
ad

.
ch

ar
.

Js
t.

E
xt

er
na

l
de

ci
m

al
(Z

on
ed

D
ec

im
al

)

9
P
S
V

If
>

9
di

gi
ts

:
flo

at
If

a
fr

ac
tio

n:
flo

at
E

ls
e:

in
te

ge
r

ex
te

nd
ed

de
ci

m
al

=
nu

m
of

di
gi

ts
.

If
si

gn
is

se
pa

ra
te

,
ad

d
1

PI
C
S9
99
9
DI
SP
LA
Y

+
12

34
31

32
33

34
In

te
ge

r
ex

te
nd

ed
de

ci
m

al
4

Y
in

cl
ud

in
g

tr
ai

lin
g

0

-1
23

4
31

32
33

74

12
34

31
32

33
34

PI
C
99
99

DI
SP
LA
Y

12
34

31
32

33
34

in
te

ge
r

ex
te

nd
ed

de
ci

m
al

4
N

0

PI
C
99
V9
9
DI
SP
LA
Y

12
34

31
32

33
34

flo
at

ex
te

nd
ed

de
ci

m
al

4
N

2

PI
C
S9
99
9
DI
SP
LA
Y

SI
GN

LE
AD
IN
G

+
12

34
31

32
33

34
in

te
ge

r
ex

te
nd

ed
de

ci
m

al
4

Y
in

cl
ud

in
g

le
ad

in
g

0

-1
23

4
71

32
33

34

PI
C
S9
99
9
DI
SP
LA
Y

SI
GN

LE
AD
IN
G

SE
PA
RA
TE

+
12

34
2B

31
32

33
34

in
te

ge
r

ex
te

nd
ed

de
ci

m
al

5
Y

se
pa

ra
te

le
ad

in
g

0

-1
23

4
2D

31
32

33
34

PI
C
S9
99
9
DI
SP
LA
Y

SI
GN

TR
AI
LI
NG

SE
PA
RA
TE

+
12

34
31

32
33

34
2B

in
te

ge
r

ex
te

nd
ed

de
ci

m
al

5
Y

se
pa

ra
te

tr
ai

lin
g

0

-1
23

4
31

32
33

34
2D

B
in

ar
y

9
P
S
V

in
te

ge
r

in
te

ge
r

if
<

5
de

ci
m

al
di

gi
ts

,
2

by
te

s
If

5
th

ru
9

di
gi

ts
,

4
by

te
s

PI
C
S9
99
9
BI
NA
RY

or
CO
MP

or
CO
MP
-4

or
CO
MP
-5

+
12

34
04

D
2

in
te

ge
r

in
te

ge
r

2
Y

-1
23

4
F

B
2E

PI
C
99
99

BI
NA
RY

or
CO
MP

or
CO
MP
-4

or
CO
MP
-5

12
34

04
D

2
in

te
ge

r
in

te
ge

r
2

N

C and COBOL default mappings

158 MQSeries Integrator Version 2.0.2 Using the Control Center

Ta
bl

e
8.

C
O

B
O

L
da

ta
ty

pe
s

an
d

th
ei

r
de

fa
ul

t
se

tti
ng

s
in

th
e

M
R

M
(c

on
tin

ue
d)

C
O

B
O

L
d

at
at

yp
e

P
er

m
it

te
d

sy
m

b
o

ls
P

IC
T

U
R

E
an

d
U

S
A

G
E

an
d

o
p

ti
o

n
al

S
IG

N
cl

au
se

V
al

u
e

In
te

rn
al

re
p

re
se

n
ta

ti
o

n
M

R
M

L
o

g
ic

al
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

g
th

in
b

yt
es

S
ig

n
V

ir
tu

al
d

ec
.

p
o

in
t

P
ad

.
ch

ar
.

Js
t.

In
te

rn
al

D
ec

im
al

(P
ac

ke
d

D
ec

im
al

)

9
P
S
V

If
>

9
di

gi
ts

,
flo

at
If

a
fr

ac
tio

n,
flo

at
E

ls
e

in
te

ge
r

R
ou

nd
ed

do
w

n
re

su
lt

of
(N

um
of

di
gi

ts
+

2)
/2

PI
C
S9
99
9

PA
CK
ED
-D
EC
IM
AL

or
CO
MP
-3

+
12

34
01

23
4C

in
te

ge
r

pa
ck

ed
de

ci
m

al
3

Y

-1
23

4
01

23
4D

PI
C
99
99

PA
CK
ED
-D
EC
IM
AL

or
CO
MP
-3

12
34

01
23

4F
in

te
ge

r
pa

ck
ed

de
ci

m
al

3
N

In
te

rn
al

flo
at

in
g

po
in

t

no
P

IC
cl

au
se

CO
MP
-1

+
12

34
44

9A
40

00
flo

at
flo

at
4

Y

-1
23

4
C

4
9A

40
00

no
P

IC
cl

au
se

CO
MP
-2

+
12

34
40

93
48

00
00

00
00

00
flo

at
flo

at
8

Y

-1
23

4
C

0
93

48
00

00
00

00
00

A
lp

ha
be

tic
A

PI
C
A(
3)

DI
SP
LA
Y

A
B

C
41

42
43

st
rin

g
fix

ed
le

ng
th

3
ch

ar
s

sp
ac

e
L

A
lp

ha
nu

m
er

ic
X

PI
C
XX
XX

DI
SP
LA
Y

D
E

F
44

45
46

20
st

rin
g

fix
ed

le
ng

th
4

ch
ar

s
sp

ac
e

de
fa

ul
t

L

PI
C
X(
4)

JU
ST
IF
IE
D

RI
GH
T

D
E

F
20

44
45

46
st

rin
g

fix
ed

le
ng

th
4

ch
ar

s
sp

ac
e

R

JU
ST

RI
GH
T

A
lp

ha
nu

m
er

ic
ed

ite
d

X
B
0
9
/

PI
C

BX
/9

DI
SP
LA
Y

A
/3

20
41

2F
33

st
rin

g
fix

ed
le

ng
th

4
ch

ar
s

sp
ac

e
L

N
um

er
ic

ed
ite

d
B
P
V
Z
9
0/

co
mm
a
sy
mb
ol

pe
ri
od

sy
mb
ol

+
-
CR

DB
*
$

le
ng

th
in

ch
ar

s=
su

m
of

ch
ar

s
in

P
IC

st
rin

g
ex

cl
ud

in
g

V

sp
ac

e
de

fa
ul

t
R

PI
C
99
99

01
23

30
31

32
33

st
rin

g
fix

ed
le

ng
th

4
sp

ac
e

R

PI
C
ZZ
Z9

12
3

20
31

32
33

C and COBOL default mappings

Chapter 18. C and COBOL default mappings 159

Ta
bl

e
8.

C
O

B
O

L
da

ta
ty

pe
s

an
d

th
ei

r
de

fa
ul

t
se

tti
ng

s
in

th
e

M
R

M
(c

on
tin

ue
d)

C
O

B
O

L
d

at
at

yp
e

P
er

m
it

te
d

sy
m

b
o

ls
P

IC
T

U
R

E
an

d
U

S
A

G
E

an
d

o
p

ti
o

n
al

S
IG

N
cl

au
se

V
al

u
e

In
te

rn
al

re
p

re
se

n
ta

ti
o

n
M

R
M

L
o

g
ic

al
ty

p
e

P
h

ys
ic

al
ty

p
e

L
en

g
th

in
b

yt
es

S
ig

n
V

ir
tu

al
d

ec
.

p
o

in
t

P
ad

.
ch

ar
.

Js
t.

PI
C
$$
Z9

$1
23

24
31

32
33

$1
2

20
24

31
32

PI
C
99
9V
9

12
34

31
32

33
34

PI
C
ZZ
ZV
9

12
34

31
32

33
34

PI
C
$Z
ZZ
,Z
Z9
V.
99

$1
23

,4
56

.7
8

24
31

32
33

2C
34

35
36

2E
37

38

st
rin

g
fix

ed
le

ng
th

11
sp

ac
e

R

C and COBOL default mappings

160 MQSeries Integrator Version 2.0.2 Using the Control Center

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2001 161

162 MQSeries Integrator Version 2.0.2 Using the Control Center

Appendix. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2000, 2001 163

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both:

AIX AS/400 DB2
DB2 Universal Database IBM IBMLink
MQSeries OS/390 SupportPac

Lotus is a trademark of Lotus Development Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

Other company, product, or service names, may be the trademarks or service
marks of others.

Notices

164 MQSeries Integrator Version 2.0.2 Using the Control Center

Glossary of terms and abbreviations

This glossary defines MQSeries Integrator terms
and abbreviations used in this book. If you do not
find the term you are looking for, see the index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by
the American National Standards Institute. Copies
may be ordered from the American National
Standards Institute, 11 West 42 Street, New York,
New York 10036. Definitions are identified by the
symbol (A) after the definition.

A
Access Control List (ACL). The list of principals that
have explicit permissions (to publish, to subscribe to,
and to request persistent delivery of a publication
message) against a topic in the topic tree. The ACLs
define the implementation of topic-based security.

ACL. Access Control List.

AMI. Application Messaging Interface.

Application Messaging Interface (AMI). The
programming interface provided by MQSeries that
defines a high level interface to message queuing
services. See also MQI and JMS.

B
blob. Binary Large OBject. A block of bytes of data (for
example, the body of a message) that has no
discernible meaning, but is treated as one solid entity
that cannot be interpreted. Also written as BLOB.

broker. See message broker.

broker domain. A collection of brokers that share a
common configuration, together with the single
Configuration Manager that controls them.

C
callback function. See implementation function.

category. An optional grouping of messages that are
related in some way. For example, messages that relate
to a particular application.

check in. The Control Center action that stores a new
or updated resource in the configuration or message
respository.

check out. The Control Center action that extracts and
locks a resource from the configuration or message
respository for local modification by a user. Resources
from the two repositories can only be worked on when
they are checked out by an authorized user, but can be
viewed (read only) without being checked out.

collective. A hyperconnected (totally connected) set of
brokers forming part of a multi-broker network for
publish/subscribe applications.

configuration. In the broker domain, the brokers,
execution groups, message flows and message sets
assigned to them, topics and access control
specifications.

Configuration Manager. A component of MQSeries
Integrator that acts as the interface between the
configuration repository and an executing set of brokers.
It provides brokers with their initial configuration, and
updates them with any subsequent changes. It
maintains the broker domain configuration.

configuration repository. Persistent storage for
broker configuration and topology definition.

connector. See message processing node connector.

content-based filter. An expression that is applied to
the content of a message to determine how the
message is to be processed.

context tag. A tag that is applied to an element within
a message to enable that element to be treated
differently in different contexts. For example, an element
could be mandatory in one context and optional in
another.

Control Center. The graphical interface that provides
facilities for defining, configuring, deploying, and
monitoring resources of the MQSeries Integrator
network.

D
datagram. The simplest form of message that
MQSeries supports. Also known as send-and-forget.
This type of message does not require a reply.
Compare with request/reply.

debugger. A facility on the Message Flows view in the
Control Center that enables message flows to be
debugged.

deploy. Make operational the configuration and
topology of the broker domain.

destination list. A list of internal and external
destinations to which a message is sent. These can be

© Copyright IBM Corp. 2000, 2001 165

|
|
|

nodes within a message flow (for example, when using
the RouteToLabel and Label nodes) or MQSeries
queues (when the list is examined by an MQOutput
node to determine the final target for the message).

distribution list. A list of MQSeries queues to which a
message can be put using a single statement.

Document Type Definition (DTD). The rules that
specify the structure for a particular class of SGML or
XML documents. The DTD defines the structure with
elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and notation
can be used within the particular class of documents. A
DTD is analogous to a database schema in that the
DTD completely describes the structure for a particular
markup language.

DTD. Document Type Definition

E
e-business. A term describing the commercial use of
the Internet and World Wide Web to conduct business
(short for electronic-business).

element. A unit of data within a message that has
business meaning, for example, street name

element qualifier. See context tag.

ESQL. Extended SQL. A specialized set of SQL
statements based on regular SQL, but extended with
statements that provide specialized functions unique to
MQSeries Integrator.

exception list. A list of exceptions that have been
generated during the processing of a message, with
supporting information.

execution group. A named grouping of message
flows that have been assigned to a broker. The broker
is guaranteed to enforce some degree of isolation
between message flows in distinct execution groups by
ensuring that they execute in separate address spaces,
or as unique processes.

Extensible Markup Language (XML). A W3C
standard for the representation of data.

external reference. A reference within a message set
to a component that has been defined outside the
current message set. For example, an integer that
defines the length of a string element might be defined
in one message set but used in several message sets.

F
field reference. A sequence of period-separated
values that identify a specific field (which might be a

structure) within a message tree. An example of a field
reference might be something like
Body.Invoice.InvoiceNo.

filter. An expression that is applied to the content of a
message to determine how the message is to be
processed.

format. A format defines the internal structure of a
message, in terms of the fields and order of those
fields. A format can be self-defining, in which case the
message is interpreted dynamically when read.

G
graphical user interface (GUI). An interface to a
software product that is graphical rather than textual. It
refers to window-based operational characteristics.

I
implementation function. Function written by a
third-party developer for a plug-in node or parser. Also
known as a callback function.

input node. A message flow node that represents a
source of messages for the message flow.

installation mode. The installation mode can be Full,
Custom, or Broker only. The mode defines the
components of the product installed by the installation
process on Windows NT systems.

J
Java™ Database Connectivity (JDBC). An application
programming interface that has the same characteristics
as ODBC but is specifically designed for use by Java
database applications.

Java Development Kit (JDK). A software package
that can be used to write, compile, debug, and run Java
applets and applications.

Java Message Service (JMS). An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment (JRE). A subset of the
Java Development Kit (JDK) that contains the core
executables and files that constitute the standard Java
platform. The JRE includes the Java Virtual Machine,
core classes and supporting files.

JDBC™. Java Database Connectivity.

JDK™. Java Development Kit.

JMS. Java Message Service. See also AMI and MQI.

JRE. Java Runtime Environment.

Glossary

166 MQSeries Integrator Version 2.0.2 Using the Control Center

|
|
|
|
|

|
|

|
|
|

L
local error log. A generic term that refers to the logs
to which MQSeries Integrator writes records on the local
system. On Windows NT, this is the Event log. On UNIX
systems, this is the syslog. See also system log. Note
that MQSeries records many events in the log that are
not errors, but information about events that occur
during operation, for example, successful deployment of
a configuration.

M
message broker. A set of execution processes
hosting one or more message flows.

messages. Entities exchanged between a broker and
its clients.

message dictionary. A repository for (predefined)
message type specifications.

message domain. The value that determines how the
message is interpreted (parsed). The following domains
are recognized:
v MRM, which identifies messages defined using the

Control Center
v NEONMSG3, which identifies messages created

using the NEONFORMATTER user interfaces.
v XML, which identifies messages that are self-defining
v BLOB, which identifies messages that are undefined

You can also create your own message domains: if you
do so, you must supply your own message parser.

message flow. A directed graph that represents the
set of activities performed on a message or event as it
passes through a broker. A message flow consists of a
set of message processing nodes and message
processing node connectors.

message flow component. See message flow.

message parser. A program that interprets a message
bitstream.

message processing node. A node in the message
flow, representing a well defined processing stage. A
message processing node can be one of several
primitive types or can represent a subflow.

message processing node connector. An entity that
connects the output terminal of one message
processing node to the input terminal of another. A
message processing node connector represents the
flow of control and data between two message flow
nodes.

message queue interface (MQI). The programming
interface provided by MQSeries queue managers. The
programming interface allows application programs to
access message queuing services. See also AMI and
JMS.

message repository. A database holding message
template definitions.

message repository manager (MRM). A component
of the Configuration Manager that handles message
definition and control. A message defined to the MRM
has a message domain set to MRM.

message set. A grouping of related messages.

message template. A named and managed entity that
represents the format of a particular message. Message
templates represent a business asset of an
organization.

message type. The logical structure of the data within
a message. For example, the number and location of
character strings.

metadata. Data that describes the characteristic of
stored data.

MQe. MQSeries Everyplace.

MQI. Message queue interface.

MQIsdp. MQSeries Integrator SCADA device protocol.
A lightweight publish/subscribe protocol flowing over
TCP/IP.

MQRFH. An architected message header that is used
to provide metadata for the processing of a message.
This header is supported by MQSeries
Publish/Subscribe.

MQRFH2. An extended version of MQRFH, providing
enhanced function in message processing.

MQSeries Everyplace. A generally available
MQSeries product that provides proven MQSeries
reliability and security in a mobile environment.

MRM. Message Repository Manager.

multilevel wildcard. A wildcard that can be specified
in subscriptions to match any number of levels in a
topic.

N
node. See message processing node.

O
ODBC. Open Database Connectivity.

3. The message domain NEON is also recognized for
compatibility with previous releases.

Glossary

Glossary of terms and abbreviations 167

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|

|

Open Database Connectivity. A standard application
programming interface (API) for accessing data in both
relational and non-relational database management
systems. Using this API, database applications can
access data stored in database management systems
on a variety of computers even if each database
management system uses a different data storage
format and programming interface. ODBC is based on
the call level interface (CLI) specification of the X/Open
SQL Access Group.

output node. A message processing node that
represents a point at which messages flow out of the
message flow.

P
plug-in. An extension to the broker, written by a
third-party developer, to provide a new message
processing node or message parser in addition to those
supplied with the product. See also implementation
function and utility function.

point-to-point. Style of messaging application in which
the sending application knows the destination of the
message. Compare with publish/subscribe.

POSIX. Portable Operating System Interface For
Computer Environments. An IEEE standard for
computer operating systems (for example, AIX and Sun
Solaris).

predefined message. A message with a structure that
is defined before the message is created or referenced.
Compare with self-defining message.

primitive. A message processing node that is supplied
with the product.

principal. An individual user ID (for example, a log-in
ID) or a group. A group can contain individual user IDs
and other groups, to the level of nesting supported by
the underlying facility.

property. One of a set of characteristics that define
the values and behaviors of objects in the Control
Center. For example, message processing nodes and
deployed message flows have properties.

publication node. An end point of a specific path
through a message flow to which a client application
subscribes. A publication node has an attribute,
subscription point. If this is not specified, the publication
node represents the default subscription point for the
message flow.

publish/subscribe. Style of messaging application in
which the providers of information (publishers) are
decoupled from the consumers of that information
(subscribers) using a broker. Compare with
point-to-point. See also topic.

publisher. An application that makes information about
a specified topic available to a broker in a
publish/subscribe system.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages: they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface (the MQI) so that
programs can access messages on the queues that the
queue manager owns.

R
retained publication. A published message that is
kept at the broker for propagation to clients that
subscribe at some point in the future.

request/reply. Type of messaging application in which
a request message is used to request a reply from
another application. Compare with datagram.

rule. A rule is a definition of a process, or set of
processes, applied to a message on receipt by the
broker. Rules are defined on a message format basis,
so any message of a particular format will be subjected
to the same set of rules.

S
SCADA. Supervisory, Control, And Data Acquisition.

self-defining message. A message that defines its
structure within its content. For example, a message
coded in XML is self-defining. Compare with pre-defined
message.

send and forget. See datagram.

setup type. The definition of the type of installation
requested on Windows NT systems. This can be one of
Full, Broker only, or Custom.

shared. All configuration data that is shared by users
of the Control Center. This data is not operational until it
has been deployed.

signature. The definition of the external characteristics
of a message processing node.

single-level wildcard. A wildcard that can be specified
in subscriptions to match a single level in a topic.

Glossary

168 MQSeries Integrator Version 2.0.2 Using the Control Center

|

stream. A method of topic partitioning used by
MQSeries Publish/Subscribe applications.

subscriber. An application that requests information
about a specified topic from a publish/subscribe broker.

subscription. Information held within a publication
node, that records the details of a subscriber
application, including the identity of the queue on which
that subscriber wants to receive relevant publications.

subscription filter. A predicate that specifies a subset
of messages to be delivered to a particular subscriber.

subscription point. An attribute of a publication node
that differentiates it from other publication nodes on the
same message flow and therefore represents a specific
path through the message flow. An unnamed publication
node (that is, one without a specific subscription point)
is known as the default publication node.

Supervisory, Control, And Data Acquisition. A broad
term, used to describe any form of remote telemetry
system used for gathering data from remote sensor
devices (for example, flow rate meters on an oil
pipeline) and for the near real time control of remote
equipment (for example, pipeline valves).

system log. A generic term used in the MQSeries
Integrator messages (BIPxxx) that refers to the local
error logs to which records are written on the local
system. On Windows NT, this is the Event log. On UNIX
systems, this is the syslog. See also local error log.

T
terminal. The point at which one node in a message
flow is connected to another node. Terminals enable
you to control the route that a message takes,
depending whether the operation performed by a node
on that message is successful.

topic. A character string that describes the nature of
the data that is being published in a publish/subscribe
system.

topic based subscription. A subscription specified by
a subscribing application that includes a topic for
filtering of publications.

topic security. The use of ACLs applied to one or
more topics to control subscriber access to published
messages.

topology. In the broker domain, the brokers,
collectives, and connections between them.

transform. A defined way in which a message of one
format is converted into one or more messages of
another format.

U
Uniform Resource Identifier. The generic set of all
names and addresses that refer to World Wide Web
resources.

Uniform Resource Locator. A specific form of URI
that identifies the address of an item on the World Wide
Web. It includes the protocol followed by the fully
qualified domain name (sometimes called the host
name) and the request. The Web server typically maps
the request portion of the URL to a path and file name.
Also known as Universal Resource Locator.

URI. Uniform Resource Identifier

URL. Uniform Resource Locator

User Name Server. The MQSeries Integrator
component that interfaces with operating system
facilities to determine valid users and groups.

utility function. Function provided by MQSeries
Integrator for the benefit of third-party developers writing
plug-in nodes or parsers.

W
warehouse. A persistent, historical datastore for
events (or messages). The Warehouse node within a
message flow supports the recording of information in a
database for subsequent retrieval and processing by
other applications.

wildcard. A character that can be specified in
subscriptions to match a range of topics. See also
multilevel wildcard and single-level wildcard.

wire format. This describes the physical
representation of a message within the bit-stream.

W3C. World Wide Web Consortium. An international
industry consortium set up to develop common
protocols to promote evolution and interoperability of the
World Wide Web.

X
XML. Extensible Markup Language.

Glossary

Glossary of terms and abbreviations 169

|
|

|
|
|
|
|
|

Glossary

170 MQSeries Integrator Version 2.0.2 Using the Control Center

Bibliography

This section describes the documentation
available for all current MQSeries Integrator
products.

MQSeries Integrator Version 2.0.2
cross-platform publications
The MQSeries Integrator cross-platform
publications are:

v MQSeries Integrator Introduction and Planning,
GC34-5599

v MQSeries Integrator Using the Control Center,
GC34-5602

v MQSeries Integrator Messages, GC34-5601

v MQSeries Integrator Programming Guide,
SC34-5603

v MQSeries Integrator Administration Guide,
SC34-5792

v MQSeries Integrator ESQL Reference,
SC34-5923

These books are all available in hardcopy.

You can order publications from the IBMLink™

Web site at:
http://www.ibm.com/ibmlink

In the United States, you can also order
publications by dialing 1-800-879-2755.

In Canada, you can order publications by dialing
1-800-IBM-4YOU (1-800-426-4968).

For further information about ordering publications
contact your IBM authorized dealer or marketing
representative.

MQSeries Integrator Version 2.0.2
platform-specific publications
Each MQSeries Integrator product provides one
platform-specific installation guide, which is
supplied in hardcopy.

MQSeries Integrator for AIX Version 2.0.2

MQSeries Integrator for AIX Installation
Guide, GC34-5841

MQSeries Integrator for HP-UX Version 2.0.2

MQSeries Integrator for HP-UX
Installation Guide, GC34-5907

MQSeries Integrator for Sun Solaris Version
2.0.2

MQSeries Integrator for Sun Solaris
Installation Guide, GC34-5842

MQSeries Integrator for Windows NT Version
2.0.2

MQSeries Integrator for Windows NT
Installation Guide, GC34-5600

MQSeries Everyplace
publications
If you intend to connect MQSeries Everyplace
applications to message flows that include the
MQSeries Everyplace message flow nodes, you
will find the following publications useful:

v MQSeries Everyplace for Multiplatforms Version
1.1 Introduction, GC34-5843

v MQSeries Everyplace for Multiplatforms Version
1.1 Programming Guide, SC34-5845

v MQSeries Everyplace for Multiplatforms Version
1.1 Programming Reference, SC34-5846

v MQSeries Everyplace for Multiplatforms Version
1.1 Native Client Information, SC34-5880

You can find these books on the MQSeries Web
site (see “MQSeries information available on the
Internet” on page 173). Translated versions of
these books are also available in some languages
from the same Web site.

NEONRules and NEONFormatter
Support for MQSeries Integrator
publications
The following publications are supplied on the
product CD in PDF format, and are installed with
the Documentation component.

v NEONRules and NEONFormatter Support for
MQSeries Integrator User’s Guide

v NEONRules and NEONFormatter Support for
MQSeries Integrator System Management
Guide

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference
for NEONRules

© Copyright IBM Corp. 2000, 2001 171

|
|
|

|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

v NEONRules and NEONFormatter Support for
MQSeries Integrator Programming Reference
for NEONFormatter

v NEONRules and NEONFormatter Support for
MQSeries Integrator Application Development
Guide

These books are provided in US English only.

Softcopy books
All the MQSeries Integrator books are available in
softcopy formats.

Portable Document Format (PDF)
All books in the MQSeries Integrator library are
supplied in US English only in a searchable PDF
library on the product CD.

You can install the library as follows:

v On AIX, invoke install —d and select the
documentation fileset. After installation, run the
command mqsidocs. This launches Acrobat
Reader and opens the PDF package.

v On HP-UX, invoke swinstall —d and select
MQSI-DOCS from the menu. After installation, run
the command mqsidocs. This launches Acrobat
Reader and opens the PDF package.

v On Sun Solaris, invoke pkgadd —d and select
mqsi-docs from the menu. After installation, run
the command mqsidocs. This launches Acrobat
Reader and opens the PDF package.

v On Windows NT, select the Online
Documentation component on a custom
installation, or do a full installation. After
installation, select Start—>Programs—>IBM
MQSeries Integrator 2.0—>Documentation.

In addition, PDF files for books that have been
translated are installed into the location
mqsi_root/bin/book/pdf/<locale> (on UNIX) or
mqsi_root\bin\book\pdf\<locale> (on Windows
NT) where <locale> is one of the following:
v de_DE for German
v en_US for US English
v es_ES for Spanish
v fr_FR for French
v it_IT for Italian
v ja_JP for Japanese
v ko_KR for Korean
v pt_BR for Brazilian Portuguese
v zh_CN for Simplified Chinese
v zh_TW for Traditional Chinese

An index file (in HTML format) that provides a link
to each book is supplied for each language. For
example, the French index file is called
indexfr.htm. The files are stored in the following
directory:

v On UNIX, <mqsi_root>/docs/

v On Windows NT, <mqsi_root>\bin\book

Each index file has an entry for every book: if a
particular book has not been translated into the
appropriate language for that index file, a link to
the English PDF is included. You can use any
Web browser to view the index file. On Windows
NT, you can also access the index file through the
Start menu.

The PDF file names for the English books are
shown in Table 9.

Table 9. File names of MQSeries Integrator book PDFs

Book title File name

MQSeries Integrator for AIX
Installation Guide

bipaac04.pdf

MQSeries Integrator for HP-UX
Installation Guide

bipcac00.pdf

MQSeries Integrator for Sun Solaris
Installation Guide

bip7ac03.pdf

MQSeries Integrator for Windows NT
Installation Guide

bipyac03.pdf

MQSeries Integrator Introduction and
Planning

bipyab02.pdf

MQSeries Integrator Administration
Guide

bipyag04.pdf

MQSeries Integrator Using the
Control Center

bipyar03.pdf

MQSeries Integrator ESQL
Reference

bipyae00.pdf

MQSeries Integrator Programming
Guide

bipyal02.pdf

MQSeries Integrator Messages bipyao02.pdf

The fifth character of the file name indicates the
language of the book (a indicates US English).
You can deduce the file names of translated books
by using the following substitutions for the fifth
character:
v g for German
v s for Spanish
v f for French
v i for Italian
v j for Japanese
v k for Korean

Bibliography

172 MQSeries Integrator Version 2.0.2 Using the Control Center

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|

||

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

||
|

|
|
|
|
|
|
|
|
|
|
|

v b for Brazilian Portuguese
v z for Simplified Chinese
v t for Traditional Chinese

PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you cut and paste examples of commands from
PDF files to a command line for execution, you
must check that the content is correct before you
press Enter. Some characters might be corrupted
by local system and font settings.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of all current MQSeries Integrator
books are also available from the MQSeries
product family Web site at:

http://www.ibm.com/software/mqseries/

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:

v Obtain latest information about the MQSeries
product family.

v Access the MQSeries books in HTML and PDF
formats.

v Obtain information about complementary
offerings by following these links:

– IBM Business Partners

– Partner Offerings (within Related links)

v Download an MQSeries SupportPac.

Bibliography

Bibliography 173

|
|
|

|
|
|
|
|

|
|

|

|

MQSeries on the Internet

174 MQSeries Integrator Version 2.0.2 Using the Control Center

Index

A
access control lists

publish/subscribe 101

access to Neon tools 14

access to Rules and Formats 154

ACL, adding a principal 103

adding

message components to the workspace 38
message sets to the workspace 38

adding a principal to an ACL 103

resolving permissions 104

adding an existing broker to a collective 78

adding users and groups to MQSeries Integrator groups

using Windows 2000 13
using Windows NT 13

adding users and groups to the MQSeries Integrator
groups 13

additional instances property 87

assigning resources to a broker 85

assignments

additional instances property 87
checking in 90
checking in a broker 90
checking in multiple changes 91
commit count 87
commit interval 87
coordinated transactions 88
deleting

execution group from a broker 89
execution group

creating 86
deleting from a broker 89

global transactions 88
making changes operational 91
message flows

additional instances property 87
removing from an execution group 90

message flows to execution groups 86
message sets

removing from a broker 89
message sets to brokers 88
refreshing the Assignments view 91
removing

message flow from an execution group 90
message set from a broker 89

removing resources from a broker 89
setting properties of a message flow 87
view

displaying 85

authority to perform tasks 6

authorization

for debugging message flows 119
of user to the control center tasks 11

B
bend points

in message flows 46
breakpoint 119
broker

connecting to another broker 80
creating 76
deleting 81
deleting connections 81
renaming 82
topology

defining 75
business scenarios 5

C
C and COBOL default mappings 155
C language bindings, generating 40
categories

adding to the workspace 38
changing the state of a message set 38
changing user roles 13
Check node 55
checking

message flows 49
checking in

a broker 90
assignments 90
message flows 54
message sets 25
multiple changes 91
multiple changes to topology 83
resources 18
topics data 104
topology 82
topology changes 82

checking in multiple changes 104
checking out

collectives 76
message flows 54
resources 16
topology 76

clear log messages 116
clearing data from the Subscriptions view 114
COBOL language bindings, generating 40
collective, a definition 77
collectives

adding an existing broker to a collective 78
creating 77
creating a broker to add to a collective 79
removing a broker from a collective 80

complementary offerings
IBM Business Partners 173
Partner Offerings 173

complete deployment of configuration data 131
compound types

adding to the workspace 38
Compute node 56

© Copyright IBM Corp. 2000, 2001 175

concepts of deployment 131
configuration data 127
configuration repository 128
connecting

brokers 80
connecting nodes 47
connections

creating bend points 46
connections, external database 48
Control Center

adding users and groups to MQSeries Integrator
using Windows 2000 13
using Windows NT 13

adding users and groups to the MQSeries
Integrator 13

exiting 14
main functions of 127
managing permissions for databases 14
managing permissions for MQSeries brokers 14
managing permissions to tasks 11

MQSeries Integrator groups 12
naming resources 11
setting user roles 13
starting 9
workspace 127

Control Center views
Message Sets 23

controlling service traces 117
controlling the appearance of the Message Flow

Definition pane 45
converging multiple properties 53
coordinated transactions 88
creating

brokers 76
execution group 86
message flow categories 48
message flows 46
message sets 24
messages 26
messages, starting from the lowest level

elements 27
messages using the SmartGuide 33
topics 102

creating a broker to add to a collective 79
creating a collective 77
creating a new workspace 15
creating bend points 46
creating topics 102
creating your own message nodes 55

D
Database node 56
DataDelete node 57
DataInsert node 57
DataUpdate node 57
debugger

basic operation 135
change the message 122
close a message flow 122
concepts 135
debug functions 123

debugger (continued)
display panes 135
editing a message 122
error handling 136
flow pane 135
information pane 135
message pane 135
multiple simultaneous debug sessions 136

restrictions 136
system administrator tasks 136

open a message flow 122
open a sub flow 123
open the debugger 121
return to parent flow 123
select communication ports 121
select file to use for tracing 121
select trace level 121
set and clear breakpoints 122
settings 120
stack pane 135
start debugging 122
stop debugging 124
tasks 119
tracking through a message flow 122
view 119

debugging a message flow 121
debugging message flows

authorization 119
defining a message starting from the lowest level

elements 27
defining a message using the SmartGuide 33
defining Messages 23
deleting

brokers 81
connections between brokers 81
execution group from a broker 89
promoted property from a message flow 53

deleting a broker from the broker domain 93
deleting a promoted property from a message flow 53
deleting subscriptions 114
delta deployment of configuration data 131
deployed configuration 128
deploying a complete topology 98
deploying complete assignments 96
deploying complete data of all types 94
deploying complete topics 97
deploying configuration data 93

broker is not running 99
complete assignments 96
complete data 94
complete execution group 96
complete topics 97
complete topology 98
deleting a broker from the broker domain 93
delta assignments 95
delta data 94
delta topics 96
delta topology 97
deployment is in doubt 98
forcing deployment 95
monitoring progress 98

176 MQSeries Integrator Version 2.0.2 Using the Control Center

deploying delta assignments 95
deploying delta data of all types 94
deploying delta topics 96
deploying delta topology 97
deployment actions

summary of 131
deployment concepts 131

complete deployment 131
delta deployment 131
forced deployment 131
stages within the process 132
summary of deployment actions 131
types 131
when all data is not checked in 133
which data is deployed? 132

deployment is in doubt 98
deployment of configuration data

complete 131
delta 131
forced 131
stages of 132

deployment when the broker is not running 99
documentation, generating 42
dynamic routing 66

E
editing

component properties 35
message set properties 35

editing message sets and components 35
element lengths

adding to the workspace 38
element qualifiers

adding to the workspace 38
element valid values

adding to the workspace 38
elements

adding to the workspace 38
reorder 34

ESQL, when it is needed 5
examples

promoting message flow node properties 53
execution group

creating 86
deleting from a broker 89
deploying, complete 96
deploying, delta 95

exiting the Control Center 14
exporting message flows 21
exporting resources 20

setting preferences 20
exporting the workspace 21
external database

connections 48
globally coordinated transactions 48

Extract node 58

F
Filter node 58
filtering information in the Subscriptions view 113

FlowOrder node 59
forced deployment of configuration data 131
forcing deployment of all data 95

G
generating

documentation 42
language bindings 40
XML DTDs 40

getting started with the Control Center 9
glossary, generating 42

I
IBM Business Partners 173
import, normal rules 20
import, what is required for this action to succeed 19
import resources

setting preferences 19
import resources into your workspace 19
importing message definitions 39
information on the Internet

complementary offerings 173
MQSeries family libraries 173
MQSeries products 173
MQSeries SupportPacs 173

Input Terminal 59
Input Terminal node 50

L
Label node 60
language bindings, generating 40
layout graph action

Message Flow Definition pane 45
topology pane 75

Log view 114
clearing 116
refreshing 116
saving the log file 115
working with log messages 115

M
making changes operational 91, 105

topology 83
managing permissions

for databases 14
for MQSeries brokers 14
to Control Center tasks 11

manhattan style action
topology pane 75

Manhattan style action
Message Flow Definition pane 46

message book, generating 42
message definition

add a length reference to elements of type
STRING 29

add a valid value reference to elements 29
add CWF characteristics to child elements 31

Index 177

message definition (continued)
add elements to type 31
add message to category 32
add repeat information to child elements 32
change the order of child elements 30
create a compound type using the SmartGuide 33
create a message using the SmartGuide 34
create child elements 30
create compound types 29, 31, 32
create elements 30
create elements of simple type 28
create message category 32
create message component 32
define element length components for all STRING

elements 27
define element valid value component 27
specify element is optional 33
starting from the bottom up 27
starting from the lowest level elements 27

add a length reference to elements of type
STRING 29

add a valid value reference to elements 29
add CWF characteristics to child elements 31
add elements to type 31
add message to category 32
add repeat information to child element 32
change the order of child elements 30
create child elements 30
create compound types 29, 31, 32
create elements 30
create elements of simple type 28
create message category 32
create message component 32
define element length components for all STRING

elements 27
define element valid value component 27
specify element is optional 33

using the SmartGuide 33
create a compound type 33
create a message 34

message definitions

importing 39

message flow

close 122
debugging 121
open for debugging 122

message flow nodes

Check node
description of 55
using 55

Compute node
description of 56
using 56

configuring 55
Database node

description of 56
using 56

DataDelete node
description of 57
using 57

message flow nodes (continued)
DataInsert node

description of 57
using 57

DataUpdate node
description of 57
using 58

Extract node
description of 58
using 58

Filter node
description of 58

FlowOrder node
description of 59
using 59

Input Terminal 50
Label node

description of 60
using 60

MQeInput node
description of 60
using 60

MQeOutput node
description of 61

MQInnput node
description of 61

MQInput node
using 61

MQOutput node
description of 61
using 61

MQReply node
description of 62
using 62

NEONFormatter node
description of 62

NEONMap node
description of 62
using 62

NEONRules node
description of 63

NEONRulesEvaluation
using 63

NEONRulesEvaluation node
description of 63

NEONTransform node
description of 63
using 63

Output Terminal 50
Output Terminal node

description of 64
using 64

properties, promoting 51
Publication node

description of 64
using 64

renaming 47
ResetContentDescriptor node

description of 65
using 65

178 MQSeries Integrator Version 2.0.2 Using the Control Center

message flow nodes (continued)
RouteToLabel node

description of 66
using 66

SCADAInput node
description of 68
using 69

SCADAOutput node
description of 69

Throw node
description of 69

Trace node
description of 70
using 70

TryCatch node
description of 70
using 70

Warehouse node
description of 71
storing parts of the message 71
storing the entire message 71
using the Warehouse node to store parts of a

message 72
using the Warehouse node to store the entire

message 71

message flows

accessing external databases 48
adding to the workspace 49
assigning to execution groups 86
checking 49
checking in 54
checking out 54
connections

creating bend points 46
creating 46

adding message nodes 47
checking in 48
configuring nodes 48
connecting node terminals 47
connecting nodes 47
naming a message flow 46
renaming nodes in the message flow 47

creating a category 48
debugging 119
embedded 50
exporting 21
globally coordinated transactions for external

databases 48
how to reuse 50
including in other message flows 50
Input Terminal

description of 59
using 59

nodes
converging multiple properties 53
deleting a promoted property from a message

flow 53
how to promote property 51
Input and Output terminals 50
promote property dialog 51
promoting mandatory properties 53

message flows (continued)
nodes (continued)

promoting properties 51
promoting properties through a hierarchy of

message flows 52
renaming promoted properties 53

ODBC connections 48
pane

layout graph 45
Manhattan style 46
node orientation 46
organizing 45
snap to grid 46
zoom 45

promoting mandatory properties
example 53

promoting message flow node properties 51
how to 51
promote property dialog 51

promoting properties
converging multiple properties 53
deleting a promoted property from a message

flow 53
promoting mandatory properties 53
renaming promoted properties 53
through a hierarchy of message flows 52

removing from an execution group 90
reuse of message flows 50
setting properties of 87
starting 109
starting a single message flow 109
starting all for a broker 109
starting all within an execution group 109
stopping 110
stopping a single message flow 110
stopping all for a broker 110
stopping all within an execution group 110
subflow 50, 59, 60, 64
use of copy and paste for message flows 47
view

displaying 45
message flows view 45
message nodes

creating your own 55
message repository 128
message sets

adding to the workspace 38
assigning to brokers 88
changing the state of a message set 38
checking in and out 25
creating 24
editing properties of message sets and

components 35
removing from a broker 89
reordering 34
undo 35
view 23

messages
adding to the workspace 38
creating 26
creating, starting from the lowest level elements 27

Index 179

messages (continued)
creating using the SmartGuide 33
generic XML 137
self-defining 137

migration xiv
monitoring progress of deployment 98
monitoring the broker domain 108
MQeInput node 60

deploying 60
MQeOutput node 61
MQInput node 61
MQOutput node 61
MQReply node 62
MQSeries Everyplace publications 171
MQSeries Integrator groups 12
MQSeries Integrator on the Internet 173
MQSeries Integrator publications 171

national language 172
platform–specific 171

MRM 6

N
naming Control Center resources 11
NEONFormatter node 62
NEONMap node 62, 149
NEONMSG parser 145
NEONRules and NEONFormatter Support for MQSeries

Integrator 145
NEONRules and NEONFormatter Support

publications 171
NEONRules node 63
NEONRulesEvaluation 63
NEONRulesEvaluation node 150

Map and Transform actions 150
Propagate 153
Propagate, Put Queue and Route actions 153
Put Queue 153
Route 153

NEONTransform 63, 147
NEONTransform and NEONMap nodes 147

Map Name and Map Version 147
NEONMap node 149
other attributes 148
Output Domain 148
Output Message Type and Output Message

Set 148
new resources 18
node orientation 46
nodes

how to connect 47

O
ODBC connections 48
online help 5
opening an existing workspace 15
operations

Log View 114
clearing 116
saving the log file 115
working with log messages 115

operations (continued)
message flows

starting 109
starting a single message flow 109
starting all for a broker 109
starting all within an execution group 109
stopping 110
stopping a single message flow 110
stopping all for a broker 110
stopping all within an execution group 110

monitoring the broker domain 108
problem determination 116

controlling service traces 117
Subscriptions view 113

clearing data from 114
deleting 114
deregistering 114
filtering the information 113
refreshing 114

tracing
starting user tracing 111
starting user tracing for a single message

flow 111
starting user tracing for an execution group 111
stopping user tracing 112
stopping user tracing for a single message

flow 112
stopping user tracing for an execution group 112

view 107
operations view 107
Output Terminal 64
Output Terminal node 50

P
parsing a NEON Format message into an MQSeries

Integrator message tree 145
Partner Offerings 173
PDF (Portable Document Format) 172
persistent field settings 102
plug-in, creation 5
Portable Document Format (PDF) 172
primitives

Check node
description of 55
using 55

Compute node
description of 56
using 56

configuring 55
Database node

description of 56
using 56

DataDelete node
description of 57
using 57

DataInsert node
description of 57
using 57

DataUpdate node
description of 57
using 58

180 MQSeries Integrator Version 2.0.2 Using the Control Center

primitives (continued)
Extract node

description of 58
using 58

Filter node
description of 58

FlowOrder node
description of 59
using 59

Input Terminal
description of 59
using 59

Label node
description of 60
using 60

MQeInput node
description of 60
using 60

MQeOutput node
description of 61

MQInput node
description of 61
using 61

MQOutput node
description of 61
using 61

MQReply node
description of 62
using 62

NEONFormatter node
description of 62

NEONMap node
description of 62
using 62

NEONRules node
description of 63

NEONRulesEvaluation
using 63

NEONRulesEvaluation node
description of 63

NEONTransform node
description of 63
using 63

Output Terminal node
description of 64
using 64

Publication node
description of 64
using 64

ResetContentDescriptor node
description of 65
using 65

RouteToLabel node
description of 66
using 66

SCADAInput node
description of 68
using 69

SCADAOutput node
description of 69

subflow 59, 60, 64

primitives (continued)
Throw node

description of 69
Trace node

description of 70
using 70

TryCatch node
description of 70
using 70

Warehouse node
description of 71
storing parts of the message 71
storing the entire message 71
using the Warehouse node to store parts of a

message 72
using the Warehouse node to store the entire

message 71
principal 102
principal permissions 103
problem determination 116

controlling service traces 117
service trace 117
trace, service 117

Promote Property dialog 51
promoting mandatory properties 53

example 53
promoting message flow node properties 51
promoting properties through a hierarchy of message

flows 52
Propagate 153
Publication node 64
publications

MQSeries Everyplace 171
MQSeries Integrator 171

publish field settings 102
publish/subscribe 101, 102, 103

adding a principal to an ACL 103
resolving permissions 104

checking in topics data 104
checking in multiple changes 104

making changes operational 105
principal 102
principal permissions 103
removing a principal from an ACL 104

publish/subscribe access control lists 101
Put Queue 153

R
referencing fields in a NEONMSG domain

message 146
refresh workspace 17
refreshing the Assignments view 91
refreshing the Subscriptions view 114
release to release migration xiv
removing

message flow from an execution group 90
message set from a broker 89
principal from an ACL 104

removing a broker from a collective 80
removing resources from a broker 89
renaming

brokers 82

Index 181

renaming (continued)
message flow nodes 47

renaming, duplicating, and deleting topics 103
renaming promoted properties 53
reordering elements in compound types 34
reordering message sets 34
reserializing a message tree into a NEONFormatter

message format 146
ResetContentDescriptor node 65
resolving permissions 104
resources

export 20
retail scenario 5
reuse of message flows

how to 50
revert workspace to shared repository 17
Route 153
RouteToLabel node 66
Rules and Formats database, to locate 154
running the broker domain 107

S
save your workspace to the shared repository 18
saving the workspace 16
SCADAInput node 68
SCADAOutput node 69
set and clear breakpoints 122
setting Control Center preferences 13
setting user roles 13
shared configuration 128
SmartGuide

creating a compound type 33
SmartGuide, using to create messages 33
snap to grid action

Message Flow Definition pane 46
topology pane 75

softcopy books 172
stale references 17
starting

Control Center 9
message flows 109

starting a single message flow 109
starting all message flows for a broker 109
starting all message flows within an execution

group 109
starting message flows 109
starting user tracing 111
starting user tracing for a single message flow 111
starting user tracing for an execution group 111
status bar 18
stopping

message flows 110
user tracing 112

stopping a single message flow 110
stopping all message flows for a broker 110
stopping all message flows within an execution

group 110
stopping message flows 110
stopping user tracing for a single message flow 112
stopping user tracing for an execution group 112
storing parts of the message

Warehouse node 71

storing the entire message
Warehouse node 71

subscribe field settings 102
subscriptions

deregistering 114
subscriptions view

deleting 114
Subscriptions view 113

clearing data from 114
filtering information 113
refreshing 114

SupportPac 173
supportPacs 5

T
tasks, how to proceed 5
Throw node 69
topics

creating 102
deploying 96
displaying view 101

Topics 102
Topics view 101
topology

broker
connecting to another broker 80
creating 76
deleting 81
deleting connections 81
renaming 82

checking in 82
checking in changes 82
checking in multiple changes 83
checking out 76
collectives 76

adding an existing broker to a collective 78
creating a broker to add to a collective 79
creating a collective 77
removing a broker from a collective 80

connecting
brokers 80

creating
brokers 76

deleting
brokers 81
connections between brokers 81

making changes operational 83
pane, organizing 75
renaming

brokers 82
view

displaying 75
topology pane

layout graph action 75
manhattan style action 75
snap to grid action 75
zoom action 75

Trace node 70
tracing

starting user tracing 111
starting user tracing for a single message flow 111

182 MQSeries Integrator Version 2.0.2 Using the Control Center

tracing (continued)
starting user tracing for an execution group 111
stopping user tracing 112
stopping user tracing for a single message flow 112
stopping user tracing for an execution group 112

TryCatch node 70
types of deployment 131

U
undo action for message sets 35
updating the workspace 16
use of copy and paste for message flows 47
user roles, setting 13
user tracing

stopping 112
using the NEONMSG parser with ESQL 146
using the Warehouse node to store parts of a

message 72
using the Warehouse node to store the entire

message 71
using the workspace 15

W
Warehouse node 71
Windows 2000 xiv
working with message sets 34
working with new resources 16
workspace 127

adding message flows 49
creating 15
exporting 21
import resources 19
new resources 16
opening an existing 15
refresh 17
revert to shared 17
save 18
saving 16
stale references 17
updating 16
using 15

X
XML DTDs, generating 40
XML messages

Attributes 140
Comment 141
Document Type Declaration 138
DTD 138
Entities 139
message body 142
ProcesssingInstruction 141
White Space 141
XML declaration 137

Z
zoom action

Message Flow Definition pane 45

zoom action (continued)
topology pane 75

Index 183

184 MQSeries Integrator Version 2.0.2 Using the Control Center

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To make comments about the functions of IBM products or systems, talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–842327

– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2001 185

186 MQSeries Integrator Version 2.0.2 Using the Control Center

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5602-03

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Terms used in this book
	Migration

	Summary of changes
	Changes for this edition (SC34-5602-03)

	Part 1. Using the Control Center
	Chapter 1. Tasks
	SupportPacs
	Tasks described in this book

	Chapter 2. Getting started with the Control Center
	Starting the Control Center
	Naming Control Center resources
	Managing permissions to Control Center tasks
	Adding users and groups to the MQSeries Integrator groups
	Using Windows NT
	Using Windows 2000

	Setting user roles
	Setting Control Center preferences

	Managing permissions for MQSeries brokers
	Managing permissions for databases

	Access to Neon tools
	Exiting the Control Center

	Chapter 3. Using the workspace
	Create a new workspace
	Open your existing workspace
	Saving your workspace locally
	Update your workspace
	Revert your workspace to the shared repository
	Save your workspace to the shared repository

	Import resources
	Export resources

	Chapter 4. Defining messages
	The Message Sets view
	Creating message sets
	Checking in and checking out message sets
	Creating messages
	Defining a message starting from the lowest level elements

	Defining messages using the SmartGuide
	Working with message sets
	Reordering elements in compound types
	Undo action for message sets
	Editing message sets and components
	Changing the state of a message set
	Adding message sets and message components to the workspace

	Importing message definitions
	Generating MRM message set definitions as XML DTDs
	Generating language bindings
	Generating documentation

	Chapter 5. Working with message flows
	The Message Flows view
	Controlling the appearance of the Message Flow Definition pane
	Node orientation
	Creating bend points

	Creating a message flow
	Creating a message flow category
	Adding a message flow to your workspace
	Checking a message flow
	Including one message flow in another
	Promoting message flow node properties
	Promoting properties through a hierarchy of message flows
	Converging multiple properties
	Renaming promoted properties
	Deleting a promoted property from a message flow
	Promoting mandatory properties
	Example of how to promote message flow node properties

	Checking in message flows
	Checking out message flows
	Creating your own message nodes
	Configuring Message flow nodes
	Using the check node
	Using the Compute node
	Using the Database node
	Using a DataDelete node
	Using a DataInsert node
	Using a DataUpdate node
	Using an Extract node
	Using a Filter node
	Using a FlowOrder node
	Using the Input Terminal
	Using a Label node
	Using the MQeInput node
	Using the MQeOutput node
	Using an MQInput node
	Using an MQOutput node
	Using an MQReply node
	Using the NEONFormatter node
	Using the NEONMap node
	Using the NEONRules node
	Using the NEONRulesEvaluation node
	Using the NEONTransform node
	Using the Output Terminal
	Using the Publication node
	Using the ResetContentDescriptor node
	Using a RouteToLabel node
	Using the SCADAInput node
	Using the SCADAOutput node
	Using a Throw node
	Using a Trace node
	Using theTryCatch node
	Warehouse node
	Storing the entire message
	Storing parts of the message
	Using the Warehouse node to store the entire message
	Using the Warehouse node to store parts of a message

	Chapter 6. Defining the broker Topology
	The Topology view
	Controlling the appearance of the Topology pane

	Checking out the Topology
	Creating a broker
	Collectives
	Creating a collective
	Adding an existing broker to a collective
	Creating a broker to add to a collective
	Removing a broker from a collective

	Connecting brokers
	Deleting the connection between brokers
	Deleting a broker from the Topology
	Renaming a broker
	Checking in the Topology
	Checking in Topology changes
	Checking in multiple changes

	Making changes operational

	Chapter 7. Assigning resources to a broker
	The Assignments view
	Creating an execution group
	Assigning message flows to execution groups
	Setting the properties of an assigned message flow

	Assigning message sets to brokers
	Removing resources from a broker
	Deleting an execution group from a broker
	Removing a message set from a broker
	Removing a message flow from an execution group

	Checking in the assignments
	Checking in a broker
	Checking in multiple changes

	Refreshing the Assignments view
	Making changes operational

	Chapter 8. Deploying configuration data
	Deleting a broker from the broker domain
	Deploying delta data of all types
	Deploying complete data of all types
	Forcing deployment of all data
	Deploying delta assignments
	Deploying complete assignments
	Deploying delta topics
	Deploying complete topics
	Deploying delta topology
	Deploying a complete topology
	Monitoring progress of deployment
	If deployment is in doubt
	If the broker is not running

	Chapter 9. Setting up publish/subscribe access control lists
	The Topics view
	Creating topics
	Renaming, copying, and deleting topics

	Adding a principal to an ACL
	Resolving permissions

	Checking in topics data
	Checking in multiple changes

	Making changes operational

	Chapter 10. Running the broker domain
	The Operations view
	Monitoring the operational state of the broker domain
	Starting message flows
	Starting all message flows for a broker
	Starting all message flows within an execution group
	Starting a single message flow

	Stopping message flows
	Stopping all message flows for a broker
	Stopping all message flows within an execution group
	Stopping a single message flow

	Starting user tracing
	Starting user tracing for an execution group
	Starting user tracing for a single message flow

	Stopping user tracing
	Stopping user tracing for an execution group
	Stopping user tracing for a single message flow

	Subscriptions view
	Filtering information in the Subscriptions view
	Refreshing the Subscriptions view
	Deleting subscriptions

	Log view
	Problem determination
	Controlling service traces

	Chapter 11. Debugging message flows
	Authorization
	Debugger View
	Set debugger options
	Select ports used to connect to the debug plug-in
	Select debug trace level
	Select file to use for tracing

	Debugging a message flow

	Part 2. Concepts and references
	Chapter 12. Control Center concepts
	The workspace
	Working with configuration data
	Configuration and message repositories
	Shared and deployed configurations

	Chapter 13. Concepts of message flows
	Using the IBM supplied message flows
	Copying the default message flows

	Chapter 14. Concepts of deployment
	Types of deployment
	Complete deployment
	Delta deployment
	Forced deployment
	A summary of deployment actions

	The stages of the deployment process
	Stage one of deployment
	Stage two of deployment

	Which data is deployed?
	If some data has not been checked in

	Chapter 15. Concepts of debugging
	Display panes
	Basic operation
	Multiple simultaneous debug sessions
	Error handling

	Chapter 16. Concepts of XML messages
	XML Declaration
	XmlDecl

	Document Type Declaration
	DocTypeDecl
	NotationDecl
	Entities
	EntityDeclValue

	ElementDef
	AttributeList
	AttributeDef
	DocTypePI and ProcessingInstruction
	DocTypeWhiteSpace and WhiteSpace
	DocTypeComment and Comment

	The XML message body
	ProcessingInstruction
	WhiteSpace
	Comment
	AsisElementContent
	CDataSection
	EntityReferenceStart and EntityReferenceEnd

	Chapter 17. Concepts of NEONRules and NEONFormatterSupport for MQSeries Integrator
	The NEONMSG parser
	Parsing a NEON Format message into an MQSeries Integratormessage tree
	Reserializing a message tree into a NEONFormatter message format

	Using the NEONMSG parser with ESQL
	Referencing fields in a NEONMSG domain message
	Creating a NEONMSG domain message

	The NEONTransform and NEONMap nodes
	Map Name and Map Version
	Other attributes
	Output Domain
	Output Message Type and Output Message Set
	The NEONMap node

	The NEONRulesEvaluation node
	Map and Transform actions
	Propagate, Put Queue and Route actions

	Access to Rules and Formats

	Chapter 18. C and COBOL default mappings
	Mapping C datatypes to MRM datatypes
	Mapping COBOL datatypes to MRM datatypes

	Part 3. Appendixes
	Appendix. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries Integrator Version 2.0.2cross-platform publications
	MQSeries Integrator Version 2.0.2platform-specific publications
	MQSeries Everyplacepublications
	NEONRules and NEONFormatterSupport for MQSeries Integratorpublications
	Softcopy books
	Portable Document Format (PDF)

	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

