<|lI!

MQSeries™ for 0S/390®

System Administration Guide

Version 5 Release 2

SC34-5652-00

Note!
Before using this information and the product it supports, be sure to read the general information under W

m&—nn—p%&m’ “ .

First edition (November 2000)

This edition applies to MQSeries for OS/390 Version 5 Release 2, and to all subsequent releases and modifications
until otherwise indicated in new editions.

This book is based on parts of the MQSeries for OS/390 System Management Guide, SC34-5374-01.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . Vii
Tables ix
About this book . . Xi
Who this book is for .ooxi
What you need to know to understand th1s book .ooxi
Conventions used in this book . . xii
What's new for this release . . xii
Queue-sharing groups. . xii
Channel initiator . xii
Commands . . xiii
System parameters. . xiii
System object samples . Xiv
Logs . xiv
Security . . . xiv
Statistics and accountlng . Xiv
Operations and control panels . . XV
Dead-letter queue . . XV
Application programming . XV
Part 1. Operating MQSeries for
0S8/39%0.1
Chapter 1. Operatmg MQSeries for
0S/390 .3
Issuing commands .3

Issuing commands from an OS / 390 Console or 1ts

equivalent3
Issuing commands from the ut1hty program
CSQUTIL . . .4
Introducing the operations and control panels . .5
Invoking the operations and control panels . .5
Rules for the operations and control panels . .6
Objects and actions . .7
Object dispositions . . . 10
Choosing a queue manager . . 10
Using the function keys .1
Using the command line . L 12
Using the operations and control panels .13
Defining objects . .14
Defining a local queue. . .15
When your local queue deﬁnrtlon is Complete . .18
Defining other types of objects . .18
Working with object definitions. .19
Altering an object definition . .19
Displaying an object definition . . 19
Deleting an object . .19
Working with namelists .20
Chapter 2. Starting and stopplng
MQSeries . . 21
Before you start MQSerles .21

© Copyright IBM Corp. 1993, 2000

Starting MQSeries . .22
Start options . .22
Starting after an abnormal termmatron .23
User messages on start-up .23

Stopping MQSeries . .24
Stop messages .25

Chapter 3. Writing programs to

administer MQSeries. . 27

Understanding how it all works .27
Before you begin e .27

Preparing queues for admlnlstratlon programs . 28
Defining the system-command input queue . 28
Defining a reply-to queue . . 28
Opening the system-command input queue . 29
Opening a reply-to queue . 29

Using the command server . . 30
Identifying the queue manager that processes
your commands . . . 30
Starting the command server . . 30
Sending commands to the cornrnand server . 30
Putting messages on the system-command input
queue . . .32

Retrieving replies to your Commands .33
Waiting for a reply . . 33
The reply message descriptor .34

Interpreting the replies . . 35

Using the DISPLAY commands . . . 36

Examples of commands and their replies . 37
Messages from a DEFINE command . .37
Messages from a DELETE command . . 37
Messages from DISPLAY commands . Lo 37
Messages from commands with CMDSCOPE . . 40
Messages from commands that generate
commands with CMDSCOPE .42

If you do not receive a reply. . . 43

Passing commands using MGCR or MGCRE . 43

Part 2. MQSeries and CICS. 45

Chapter 4. Operating the CICS adapter 47

Invoking the adapter’s control functions. . 47
From the CICS adapter control panels . 47
From the CICS command line . 47
From CICS application programs . . 48

Accessing the CICS adapter control panels . . 50

Starting a connection . . 51
Starting a connection from the CICS adapter
control panels . . 51
Starting a connection from the CICS cornmand
line . . 52
Starting a Connectlon frorn a CICS apphcatlon
program . . 53

Stopping a connection . . 54

iii

Stopping a connection from the CICS adapter

control panels . . 54
Stopping a connection from the CICS command
line . . 55
Stopping a connectlon from a CICS apphcatlon
program . 55
Modifying a connectlon . 56
Modifying a connection from the CICS adapter
control panels .o . 56
Modifying a connection from the CICS command
line . . 57
Modifying a Connectlon from a CICS apphcatlon
program . 58
Displaying details of connectlons and CICS tasks . 59
Displaying details of a connection from the CICS
adapter control panels. . 59
Starting an instance of the task m1t1ator CKTI . 60
Starting CKTI from the CICS adapter control
panels . . . 60
Starting CKTI from the CICS Command hne . 61
Starting CKTI from a CICS application program 61
Starting CKTI automatically . . .61
Stopping an instance of CKTI . .. 62
Stopping an instance of CKTI from the CICS
adapter control panels. . . 62
Stopping an instance of CKTI from the command
line . . 63
Stopping an mstance of CKTI from an
application program . 63
Displaying the current 1nstances of CKTI . 64
Displaying the current instances of CKTI from
the CICS adapter control panels . 64
Displaying CICS task information . . 65
Displaying CICS tasks from the CICS adapter
control panels . . 65
Displaying connection status and m—fhght tasks 66
Purging tasks that are using the CICS adapter. . 67
Shutting down a connection between MQSeries and
the CICS adapter . 68
Orderly shutdown . . 68
Forced shutdown . 69
Chapter 5. Operating the CICS brldge 71
Starting the CICS bridge71
Shutting down the CICS bridge. .72
Controlling CICS-bridge throughput . .72
Part 3. MQSeries and IMS . 73
Chapter 6. Operating the IMS adapter 75
Controlling IMS connections. .75
Connecting from the IMS control reglon . 76
Initializing the adapter and connecting to
MQSeries . .76
Thread attachment77
Displaying in-doubt units of recovery .78
Recovering in-doubt units of recovery .78
Resolving residual recovery entries .79
Controlling IMS dependent region connections . 80
Connecting from dependent regions . . 80

iV System Administration Guide

Region error options . . 80
Monitoring the activity on connectlons . . 80
Disconnecting from dependent regions 81

Disconnecting from IMS . . .82
Controlling the IMS trigger monitor . . 83
Starting CSQQTRMN . . 83
Stopping CSQQTRMN. . 83
Chapter 7. Controlling the IMS bridge 85
Starting and stopping the IMS bridge. . 8
Controlling IMS connections. . . 85
Controlling bridge queues . 86
Resynchronizing the IMS bridge . 87
Considerations for Commit mode 1 transactlons 87
Deleting messages from IMS. . 88
Deleting Tpipes . . 88
Part 4. Managing MQSeries
resources . . 89
Chapter 8. Managing the logs . . 91

Archiving logs with the ARCHIVE LOG command 91

Restarting the log archive process after a failure 93
Optimizing archive log reading from tape devices 93
Printing log records .93
Recovering logs . .93
Discarding archive log data sets . . 94

Automatic archive log data set deletion . .94

Manually deleting archive log data sets . .95
Chapter 9. Managing the BSDS . 97
Finding out what the BSDS contains . .97

Time stamps in the BSDS. .97

Active log data set status . . 98
Changing the BSDS. .99

Changes for active logs .99

Changes for archive logs . 100
Recovering the BSDS . . 102
Chapter 10. Managing page sets . . 105
How to add a page set to a queue manager . . 105
What to do when one of your page sets becomes
full . . . 106
How to balance loads on page sets . . 107

Moving a non-shared queue . 107
How to expand a page set . . 109
How to reduce a page set . . 110
How to back up and recover page sets . 111

Creating a point of recovery 111

Recovering page sets . .o . 113
How to back up and restore queues using
CSQUTIL. . 115
Chapter 11. Managing queue-sharing
groups and shared queues . 117
Managing queue-sharing groups . . 117

Adding a queue-sharing group to the DBZ tables 117
Adding a queue manager to a queue-sharing

group . . 117

Removing a queue manager from a

queue-sharing group . . 117
Removing a queue- sharmg group from the DB2
tables . . 118
Managing shared queues . 118
Recovering shared queues . . 118
Moving shared queues . . 118
Migrating non-shared queues to shared queues 121
Managing group objects . . 122
Managing the Coupling Facility . 122
Adding a Coupling Facility structure . 122
Removing a Coupling Facility structure . 122
Part 5. Recovery and restart. . 123
Chapter 12. Restarting MQSeries . . 125
Restarting after a normal shutdown . . 125
Restarting after an abnormal termination . . 125
Restarting if you have lost your page sets . . 125
Restarting if you have lost your log data sets. . 126
Alternative site recovery. . 127
Reinitializing MQSeries . . 130
Reinitializing a queue manager that 1s not ina
queue-sharing group . . 130
Reinitializing queue managers in a
queue-sharing group . . 131
Chapter 13. Using the 0S/390
Automatic Restart Manager (ARM) . 133
What is the ARM?. . 133
ARM couple data sets . 134
ARM policies . 134
Defining an ARM pohcy . 134
Activating an ARM policy . . . 135
Using ARM in an MQSeries network . 136
Restarting on a different OS/390 image w1th LU
6.2 . . 136
Restarting on a d1fferent OS / 390 1mage Wlth
TCP/IP . 137
Chapter 14. Recovering units of work
manually e . 139
Displaying connections and threads . . 139
Active threads . . 140
In-doubt threads . . . 140
Recovering CICS units of recovery manually . 141
What happens when the CICS adapter restarts 141
How to resolve CICS units of recovery manually 143
Recovering IMS units of recovery manually . . 145
What happens when the IMS adapter restarts 145
How to resolve IMS units of recovery manually 145
Recovering RRS units of recovery manually . . 147
Recovering units of recovery on another queue
manager in the queue-sharing group . 148
Chapter 15. Example recovery
scenarios . . 149
Shared queue problems . . 150
Queue is both private and shared . 150

Active log problems . . 151
Dual logging is lost . 151
Active log stopped . . 151
One or both copies of the active log data set are
damaged . . . 152
Write I/0 errors on an actrve log data set . 153
I/0 errors occur while reading the active log 153
Active log is becoming full or is full. . 155

Archive log problems. . 157
Allocation problems . . 157
Off-load task terminated abnormally . . 157
Insufficient DASD space to complete off-load
processing . 158
Read 1/0 errors on the archlve data set whrle
MQSeries is restartmg . 159

BSDS problems. . 160
Error occurs while openmg the BSDS . 160
Log content does not agree with the BSDS
information lel
Both copies of the BSDS are damaged . . lel
Unequal time stamps. . . 162
Out of synchronization . . 162
1/0 error. . 163

Page set problems . . lo4
Page set I/O errors . le4
Page set full . . 165

Coupling Facility and DB2 problems . 166
Storage medium full . . . 166
A DB2 system fails . 166
A DB2 data-sharing group falls . 167
DB2 and the Coupling Facility fail . 168

Problems with long-running units of work . 169
Old unit of work found during restart . . 169

IMS-related problems. . . 170
IMS is unable to connect to MQSerles . . 170
IMS application problem . 170
IMS is not operational . 171

Hardware problems . 172

Part 6. Using the MQSeries

Utilities . 173

Chapter 16. Using the MQSeries

utilities . . . 175

How to read syntax dlagrams . . 176

Chapter 17. MQSeries ut|I|ty program

(CSQUTIL). . 179

Invoking the MQSerles ut111ty program. . 180
PARM parameters . . 180

Monitoring the progress of the MQSerles utrhty

program . o . 182

Formatting page sets (FORMAT) . 183

Expanding a page set (COPYPAGE) . . 185

Copying a page set and resetting the log

(RESETPAGE) . . . 187

Issuing commands to MQSerles (COMMAND) . 190

Producing a list of MQSeries define commands

(SDEFS) . . 195

Contents V

Copying queues into a data set while the queue
manager is running (COPY)

Copying queues into a data set while the queue
manager is not running (SCOPY).

Emptying a queue of all messages (EMPTY)
Restoring messages from a data set to a queue
(LOAD)

Chapter 18. The change log inventory
utility (CSQJUO003)
Invoking the CSQJUO003 utility.

Data definition (DD) statements .

Multiple statement operation .
Adding information about a data set to the BSDS
(NEWLOG) . . .
Deleting information about a data set from the
BSDS (DELETE) .
Supplying a password for archlve log data sets
(ARCHIVE) . .
Controlling the next restart (CRESTART)
Setting checkpoint records (CHECKPT).

. 198

. 201
. 204

. 206

. 209
. 209
. 209
. 210

. 211
. 214

. 215
. 216

. 217

Updating the highest written log RBA (HIGHRBA) 218

Chapter 19. The print Iog map ut|I|ty
(CsQJuoog) .

Invoking the CSQ]U004 utlhty
Data definition statements .

Chapter 20. The log print ut|I|ty

(CSQ1LOGP). ..
Invoking the CSQlLOGP utlhty .
Input control parameters

Output

Chapter 21. The queue-sharlng group
utility (CSQ5PQSG) .

Invoking the queue-sharing group utlhty .
Data definition statements . .

Keywords and parameters .

Example .

Chapter 22. The dead-letter queue

handler utility (CSQUDLQH) .
Invoking the DLQ handler .

Vi System Administration Guide

. 219
. 219
. 219

. 221
221
222
. 223

. 225
. 225
. 225
. 225
. 226

. 227
. 227

Data definition statements . . 228
Sample JCL . . . 228
The DLQ handler rules table . . 228
Control data. . 229
Rules (patterns and actlons) . 230
Rules table conventions . . 233
Processing the rules table . . 235
Ensuring that all DLQ messages are processed 236
An example DLQ handler rules table . 237
Part 7. Appendixes . . 239
Appendix A. User messages on
start-up . . 241
Appendix B. Notices . 245
Programming interface information . . 247
Trademarks . . 248
Glossary of terms and abbreviations 249
Bibliography. e . 259
MQSeries cross-platform publications . 259
MQSeries platform-specific publications . 259
Softcopy books . o . 260
HTML format . . 260
Portable Document Format (PDF) . 260
BookManager® format . 261
PostScript format . . 261
Windows Help format . .. 261
MQSeries information available on the Internet . . 261
Related publications . . 261
0S/390 . 261
CICS Transaction Server for OS/ 390 . 261
CICS for MVS/ESA Version 4 . . 261
DB2 . 261
MS . 261
DFSMS/MVS . 261
Index . . 263
Sending your comments to IBM . 271

Figures

1.

N

0O 0N W

11.
12.
13.
14.
15.
16.

17.
18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.
29.
30.
31.
32.
33.
34.

35.

Issuing a DISPLAY command from the OS/390
console .
The MQSeries operatlons and control 1n1t1a1
panel.

Listing queues

Defining a local queue - f1rst panel

Defining a local queue - second panel.
Defining a local queue - trigger conditions
Defining a local queue - event control.
Defining a local queue - backout reporting
Starting the MQSeries subsystem from an
0S/390 console .

Sample start-up procedure

Stopping MQSeries . .

Padding adapter commands . .

The CICS adapter control initial panel
Starting a connection

Starting a connection from the command hne
Starting a connection from the command line
specifying parameters . .o
Specifying lowercase queue names.

Linking to the adapter connect program,
CSQCQCON, from a CICS program
Stopping a connection from the CKQC 1n1t1al
panel. .

Stopping a connectlon from the Command
line—a quiesced shutdown

Stopping a connection from the command
line—a forced shutdown .

Stopping a connection from a CICS apphcatlon
program—a quiesced shutdown.

Stopping a connection from a CICS apphcatlon
program—a forced shutdown

Modifying a connection

Format of command to modify connectlon
parameters from the command line

Resetting connection statistics from the
command line. .

Changing the adapter’s trace number and
disabling the API-crossing exit from the
command line.

Format of the MODIFY command 1ssued from
a CICS adapter application program .
Resetting connection statistics from a CICS
program .
Linking to the adapter reset program
CSQCRST, from a CICS program

The display connection panel

Starting an instance of CKTI .

Starting an instance of CKTI—for the default
initiation queue .

Starting an instance of CKTI—for a spec1f1ed
initiation queue . . .
Linking to the adapter task 1n1t1ator program
CSQCSSQ from CICS .

© Copyright IBM Corp. 1993, 2000

.4

.13
.14
.15
. 16

17

.17

18

.22
.23
.24
. 48
. 50
. 51

52

. 52
. 52

. 53

. 54

. 55

. 55

. 55

. 55
. 56

. 57

. 57

. 57
. 58
. 58
. 58
. 59
. 60
. 61
. 61

. 61

36.

37.
38.

39.

40.

41.

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

65.
66.

Linking to the adapter task-initiator program
CSQCSSQ from CICS . .

Stopping an instance of the task 1n1t1ator CKTI
Stopping an instance of CKTI from the
command line—for the default initiation queue
Stopping an instance of CKTI from the
command line—for a specified initiation queue
Stopping an instance of CKTI from a
program—for the default initiation queue from
CICS. .
Stopping an mstance of CKTI from a
program—for a specified initiation queue from
CICS.

The CKQC Dlsplay CKTI panel

The CKQC Display Task panel . .
Message showing the status of a connection
Displaying the status of a connection .
Linking to the adapter program CSQCDSPL
from a CICS program . .

Extract from a load balancing]ob for a page
set . - .
Extract from a load balancmg]ob for a
Coupling Facility structure .

Sample job for moving a non-shared queue to
a shared queue .

Sample job for moving a shared queue to a
non-shared queue .

Sample job for moving a non- shared queue
without messages to a shared queue.

Moving messages from a non-shared queue
to an existing shared queue. .

Sample input statements for CSQ]UOO3
Sample ARM policy .
Example restart messages

How to invoke the CSQUTIL ut111ty program
Sample JCL for the FORMAT function of
CSQUTIL . .

Sample JCL showing the use of the
COPYPAGE function . .

Sample JCL showing the use of the
RESETPAGE function .

Sample JCL for issuing MQSerles commands
using CSQUTIL.

Sample JCL for using the MAKEDEF optron
of the COMMAND function

Sample JCL for using the MAKECLNT optlon
of the COMMAND function .
Sample JCL for the SDEFS function of
CSQUTIL . .
Sample JCL for the SDEFS functlon of
CSQUTIL for objects in the DB2 shared
repository. .

Sample JCL for the CSQUTIL COPY functlons
Sample JCL for the CSQUTIL SCOPY
functions . e

. 61
62

63

63

. 63

. 63
. 64
. 65

66

. 66

. 66

. 108

. 119

. 120

. 120

. 121

. 121

128

. 134
. 142

180

. 184

. 186

. 188

. 192

. 192

. 193

. 196

. 197
199

. 202

vii

67.
68.
69.
70.
71.
72.
73.

74.
75.

viii

Sample JCL for the CSQUTIL EMPTY
function .

Sample JCL for the CSQUTIL LOAD functlon
Sample JCL to invoke the CSQJU003 utility
Sample JCL to invoke the CSQJU004 utility
Sample JCL to invoke the CSQILOGP utility
using a BSDS

Sample JCL to invoke the CSQILOGP ut111ty
using active log data sets

Sample JCL to invoke the CSQlLOGP ut1hty
using archive logs . .

Sample JCL to invoke the CSQSPQSG utlhty
Using the queue-sharing group utility to add

a queue manager into a queue-sharing group .

System Administration Guide

. 204
207
209
219

. 221

. 222

. 222

225

226

76.

77.

78.

79.

80.

Specifying the queue manager and dead-letter
queue names for the dead-letter queue

handler in the JCL. 227
Specifying the queue manager and dead letter
queue names for the dead-letter queue

handler in the rules table227
Sample JCL to invoke the CSQUDLQH utility 228
An example rule from a DLQ handler rules

table 230
MQSeries startup messages for subsystem
cQr .o s s s 24

Tables

1. Valid operations and control panel actions for 4. A summary of MQSeries utilities 175

MQSeries objects9 5. How to read syntax diagrams 176
2. Shutting down a CICS adapter connection 68 | 6. SDEFS QSGDISP parameters and their actions 195
3. Example recovery scenarios. 149

© Copyright IBM Corp. 1993, 2000 ix

X System Administration Guide

About this book

This book describes how to operate MQSeries® for OS/390® using commands,
panels, and utilities, and how to write applications to administer MQSeries. The
latter part of the book deals with termination, recovery, and restart. Read these
sections when you need to perform such tasks.

This book is based on parts of the MQSeries for OS/390 Version 2.1 System
Management Guide.

The System Management Guide has been replaced by the following three books:

idd. This book describes the
concepts of MQSeries for OS/390; it does not describe the concepts of MQSeries
messaging and queueing. If you are not familiar with these concepts. you should
read MQSeries: An Introduction to Messaging and Queuing. It also describes how to
plan your MQSeries for OS/390 systems.

MQSeries for OS/390 System Setup Guidd. This book describes the tasks that you
have to perform to customize MQSeries after you have installed it. It also
describes how to monitor system use and performance, and how to set up
security.

MQSeries for QS/390 System Administration Guidd. (This book.)

Changes to the information in this book since the last edition of the System
Management Guide are marked with vertical bars in the left-hand margin.

Who this book is for

This book is intended for system programmers and system administrators.

What you need to know to understand this book

This book assumes you are familiar with the basic concepts of:

CICS®

DB2® (if you intend to use queue-sharing groups)

IMS™

0S/390 job control language (JCL)

0S/390 Time Sharing Option (TSO)

The OS/390 Coupling Facility (if you intend to use queue-sharing groups)

If you want to write programs to administer MQSeries, this book assumes that you
can write programs in one of the supported languages:

COBOL
C
C++

Assembler
PL/I

You do not need to have written message-queuing programs previously.

© Copyright IBM Corp. 1993, 2000 xi

About this book

Conventions used in this book
* Throughout this book, the term object refers to any MQSeries queue manager,
queue, namelist, channel, storage class, or process.

¢ The examples in this book are taken from a queue manager with a command
prefix string (CPF) of +CSQ1. The commands are shown in UPPERCASE.

* CICS means both CICS Transaction Server for OS/390 and CICS for MVS/ESA™,
IMS means IMS/ESA®.

* Throughout this book, the default value thlqual is used to indicate the target
library high-level qualifier for MQSeries data sets in your installation.

What’s new for this release

This section describes the new function that has been added for this release of
MQSeries for OS/390.

Queue-sharing groups

* You can group your queue managers into a queue-sharing group. These queue
managers can access the same set of shared queues. This is described in the
M OSeries fnr QS/390 anrp;r]fq and Plawniwg Guidd.

* A new system parameter (QSGDATA) sets the queue-sharing group parameters
for ﬁour Eueue manager. This is described in the MQSeries for OS/390 Systend

* You can now define an object once on one queue manager and then use the
object definition on other queue managers in the queue-sharing group. This is
described in the MQSeries for 0S/390 Concepts and Planning Guidd

* You can now send commands to all queue managers in a queue-sharing group
by issuing the command on one member of the group. This is described in the
IMQSeries for QS/390 anrppfq and Plnnniwg Guidd.

* You can now use intra-group queuing to send messages between queue
managers in a queue-sharing group, without setting up channels. This is
described in the MQSeries for O0S/390 Coucepts and Planning Guidd

Channel initiator

* You can now use shared channels. This is described in the MQSeries for 05/39(
* You can now stop a receiver channel automatically and start a new one in its

place when a request to start a duplicate receiver channel is received by using
the ADOPTMCA and ADOPTCHK parameters of the CSQ6CHIP channel

initiator parameter macro. This is described in the WQSeries lutercomumunication

manual; CSQ6CHIP is described in the MQSeries fnr QSs/390 chfpm prup Guidd
(This function was available as a PTF for previous releases.)

* You can now specify a range of port numbers to be used when binding
outbound channels by using the OPORTMIN and OPORTMAX parameters of
the CSQ6CHIP channel initiator parameter macro. This is described in the
MQSeries fnr nq/%qn quf-pm prup (“111’/14. (ThlS function was available as a PTF
for previous releases.)

* You can now specify a single IP address upon which the TCP/IP listener accepts
inbound connection requests. This is described in the MQSeries MQSC Command

* You can now specify that a TCP listener should register with Workload Manager
for Dynamic Domain Name Services by using the DNSWLM and DNSGROUP

Xii System Administration Guide

About this book

parameters of the CSQ6CHIP channel initiator parameter macro. This is
described in the MQSeries for QS/390 System Setup Guidd

You can now specify an LU name that is defined as part of a generic resource
for an LU 6.2 listener by using the LUGROUP parameter of the CSQ6CHIP
channel initiator parameter macro. This is described in the B4QSeries for QS/39d

[System Setup Guidd.

Commands

System

The following commands have been added:

CLEAR QLOCAL Clear messages from a local queue.

DISPLAY GROUP Display information about the queue-sharing group to
which the queue manager is connected.

DISPLAY QSTATUS Display queue status information.

MOVE QLOCAL Move messages from one queue to another.

RESET QSTATS Display information about how many messages have been

put to and retrieved from a queue.

These commands are described in the MQSeries MQSC Command Rpfpwwrd

The QSGDISP attribute has been added to many commands to specify the object
disposition (described in the MQSeries for OS/390 Concepts and Planning (:111'127//’)_

The CHLDISP attribute has been added to the channel commands to specify the
channel disposition (described in the MQSeries MQSC Command Referencd).

The CMDSCORPE attribute has been added to most commands to specify the
command scope (described in the MMOQSeries fnr 0S/390 Concepts and Plrmwiné

).

The responses to many commands have changed.

parameters

The following new system parameters have been added (they are all described
elsewhere in this chapter):

CSQ6SYSP QSGDATA, RESAUDIT
CSQ6LOGP DEALLCT, MAXRTU
CSQ6ARVP UNIT2

The default settings for the following system parameters have changed:

CSQ6SYSP The default for LOGLOAD is now 500 000.

CSQ6LOGP The default for INBUFF is now 60 KB and the default for
OUTBUFF is now 4 000 KB.

These are described in the MQSeries for OS/390 System Setup Guidd,

The MAXALLC parameter of CSQ6LOGP is no longer used.

About this book Xxiii

About this book

xiv

System

Logs

object samples

A new system object sample (CSQ4INSS) that defines the objects required for
queue-sharing groups has been added (described in the MQSeries for 0S/39(

-)
The default buffer pool, storage class and page set definitions have been
changed. These are explained in the CSQ4INP1 and CSQ4INYG sample data sets
(described in the DAQSeries for QS/390 Coucepts and Planning Guidd).

The sample object data set for the basic IVP has been renamed to CSQ4IVPQ,
and a new sample object data set called CSQ4IVPG has been added for the
queue-sharing group IVP.

The default region sizes have been increased to OM for the queue manager and
channel initiator address spaces.

The default settings for log placement and size have been changed. These
changes are described in the CSQ4BSDS sample data set.

You can now specify that you want both copies of the archive log to be written
to different device types by using the UNIT and UNIT2 parameters of the

CSQ6ARVP system parameter macro. This is described in the
[0S/390 System pru;n Guidd

You can now restart the log archive process after a failure by using the
ARCHIVE LOG CANCEL OFFLOAD command. This command is described in
the MQSeries MQSC Command Referencd,
You can now optimize archive log reading from tape devices using the
MAXRTU and DEALLCT parameters of the CSQ6LOGP system parameter
macro. You can display and reset these parameters using the DISPLAY LOG and
SET LOG commands. CSQ6LOGP is described in the MQSeries for OS/390 Systend
- the commands are described in the MQSeries MQSC Command

Security

You can now use one set of security profiles to control security for all the queue
managers in a queue-sharing group. This is described in the MQSeries for 05/390

You can now control whether RACE® audit records are written for RESLEVEL
security checks using the RESAUDIT parameter of the CSQ6SYSP system

Earameter module. This is described in the MQSeries for QS/390 System Setugl

Statistics and accounting

You can now use the SMF data collection broadcast to gather MQSeries statistics
and accounting records. This is described in the

You can now gather performance statistics for the Coupling Facility manager
and DB2 manager. This is described in the MQSeries for QS/390 System Setuy

You can now gather accounting data at queue and thread level. This is described
in the

System Administration Guide

About this book

Operations and control panels

The operations and control panels have been changed extensively to include the
new function. For example, you are now asked to enter the disposition of objects
that you are working with, and this mformatlon is included when you use the
panels to display an object. This is described int i

” and in the help supplied with the operations and
control panels.

The DEFINE action has been changed to DEFINE LIKE.
You can now get and collate information for the whole queue-sharing group.

You can now display queue status information.

Dead-letter queue

There is a new utility program (CSQUDLQH) which processes messages on the
dead-letter queue. This is described in r’rhnpfpr 22 The dead-letter queue handled

”

Application programming

MQSeries messages can now be up to 100 MB in length. (This function was
available as a PTF for previous releases.)

The Application Messaging Interface (AMI) provides a simple interface to the
Message Queue Interface (MQI). Application programmers can use this interface
to write applications without needing to understand all the functions available
in the MQI. The functions that are required in a particular installation are
defmed by a system administrator. This function is described in the

manual.
The MQRC_STORAGE_MEDIUM_FULL return code has been added. This is

described in the MQSeries Application Programming Referencd,

New code pages have been added, including one for UNICODE. These are

described in the MQSeries Application Programming Referenca.

You can now specify options when you connect to a queue manager usmg the
MQCONNYX call. This is described in the

About this book XV

About this book

XVi System Administration Guide

Part 1. Operating MQSeries for OS/390

Chapter 1. Operating MQSeries for 0S/390
Issuing commands

Issuing commands from an OS/ 390 console or 1ts

equivalent . .

Command prefix strmgs .
Using the OS/390 console to issue commands
Command responses. .

Issuing commands from the ut1hty program

CSQUTIL . .

Introducing the operations and control panels .

Invoking the operations and control panels .

Rules for the operations and control panels .
Blank fields.

Objects and actions . . .
Queues, processes, namelrsts, and storage
classes
Channels
Cluster objects . .

Queue manager and securrty
System
Actions . .o
Object dispositions . .
Choosing a queue manager .
Queue manager defaults .
Using the function keys
Getting things done. . .
Displaying MQSeries user messages .
Ignoring what you have done
Getting help .
Using the command line .
Using the operations and control panels
Defining objects .
Defining a local queue.

When your local queue defrnrtron is complete
Defining other types of objects .
Working with object definitions.

Altering an object definition .

Displaying an object definition .

Deleting an object .

Working with namelists

Chapter 2. Starting and stopping MQSeries .
Before you start MQSeries .
Starting MQSeries .
Start options .
Starting after an abnormal termmatron
User messages on start-up
Stopping MQSeries .
Stop messages

Chapter 3. Writing programs to administer
MQSeries. .
Understanding how it all works
Before you begin e
Preparing queues for adm1n1strat1on programs
Defining the system-command input queue

© Copyright IBM Corp. 1993, 2000

W W

O W

N O O\ U1 U1

e 00 © NI N

. 10
11
.11
.11
.11
11
.12
.12
.13
.14
.15
. 18
.18
.19
. 19
.19
.19
. 20

.21
.21
.22
.22
.23
.23
.24
. 25

.27
.27
.27
. 28
. 28

Defining a reply-to queue
Opening the system-command 1nput queue
Opening a reply-to queue
Using the command server . .
Identifying the queue manager that processes
your commands .
Starting the command server .
Sending commands to the command server
Building a message that includes MQSeries
commands. . .
Command attributes
Putting messages on the system-command 1nput
queue
Using MQPUTI and the system—command
input queue . e e
Retrieving replies to your commands
Waiting for a reply .
Discarded messages
The reply message descriptor
Interpreting the replies .
Using the DISPLAY commands . .
Examples of commands and their replies
Messages from a DEFINE command .
Messages from a DELETE command .
Messages from DISPLAY commands . .
Finding out the name of the dead-letter queue
Messages from the DISPLAY THREAD
command .
Messages from the DISPLAY QUEUE
command .
Messages from the DISPLAY NAMELIST
command . .
Messages from commands wrth CMDSCOPE .
Messages from the ALTER PROCESS
command .
Messages from the DISPLAY PROCESS
command . .
Messages from the DISPLAY CHSTATUS
command . .
Messages from the STOP CHANNEL
command . . .
Messages from commands that generate
commands with CMDSCOPE
If you do not receive a reply. .
Passing commands using MGCR or MGCRE

. 28
. 29
. 29
. 30

. 30
. 30
. 30

. 30
. 31

.32

.32
. 33
. 33
. 34
. 34
. 35
. 36
. 37
. 37
. 37
. 37

37

. 38

. 38

. 39
. 40

. 40

. 40

.41

.41

.42

. 43
.43

2 System Administration Guide

Chapter 1. Operating MQSeries for 0S/390

This chapter describes the basic procedures you can use to operate MQSeries for
05/390. It discusses the following topics:

e Floou <]

Issuing commands

You can control most of the operational environment of MQSeries using the
MQSeries commands. For details of the syntax of the MQSeries commands, see the
MQSeries MQSC Command Referencd manual. If you are a suitably authorized user,
you can issue MQSeries commands from:

* The initialization input data sets (described in the BMQSeries for QS/390 Systend
W).
¢ An OS/390 console, or equivalent, such as SDSF
¢ The OS/390 master get command routine, MGCR and MGCRE (SVC 34)
+ The MQSeries utility, CSQUTIL (described in I‘Chapter 17 MQSeries utilityl
” ')

* A user application, which can be:
A CICS program

A TSO program

An OS/390 batch program
An IMS program

See [‘Chapter 3 Writing programs to administer MQSeries” on page 27 for

information about this.

Much of the functionality of these commands is provided in a user-friendly way by
the operations and control panels, accessible from TSO and ISPF, and described in

Mot n l T 3
Issuing commands from an OS/390 console or its equivalent

You can issue all MQSeries commands from an OS/390 console or its equivalent.
This means you can also issue MQSeries commands from anywhere where you can
issue OS/390 commands, such as SDSF or by a program using the MGCR macro.

The maximum amount of data that can be displayed as a result of a command
typed in at the console is 32 KB.
Notes:

1. You cannot issue MQSeries commands using the IMS /SSR command format
from an IMS terminal. This function is not supported by the IMS adapter.

2. The input field provided by SDSF might not be long enough for some
commands, particularly those for channels.

© Copyright IBM Corp. 1993, 2000 3

Issuing commands

Command prefix strings
Each MQSeries command must be prefixed with a command prefix string (CPF), as

shown in

Because more than one MQSeries subsystem can run under OS/390, the CPF is
used to indicate which MQSeries subsystem processes the command. For example,
to start a subsystem called CSQ1, whose CPF is ‘+CSQl’, you issue the command
+CSQ1 START QMGR from the operator console. This CPF must be defined in the
subsystem name table (for the subsystem CSQ1). This is described in the

idd. In the examples, the string ‘+CSQL” is used as the

command prefix.

Using the OS/390 console to issue commands

You can type simple commands from the OS/390 console, for example, the
DISPLAY command in w However, for complex commands or for sets of
commands that you issue frequently, the other methods of issuing commands are
better.

+CSQ1 DISPLAY QUEUE(TRANSMIT.QUEUE.PROD) TYPE(QLOCAL)

Figure 1. Issuing a DISPLAY command from the OS/390 console

Command responses

Direct responses to commands are sent to the console that issued the command.
MQSeries supports the Extended Console Support (EMCS) function available in
0S5/390, and therefore consoles with 4-byte IDs can be used. Additionally, all
commands except START QMGR and STOP QMGR support the use of Command
and Response Tokens (CARTs) when the command is issued by a program using
the MGCRE macro.

Issuing commands from the utility program CSQUTIL

You can issue commands from a sequential data set using the COMMAND
function of the utility program CSQUTIL. This utility transfers the commands to
the system-command input queue and waits for the response, which is printed
together with the original commands in SYSPRINT. For details of this, see the

‘Chapter 17 MQSeries utility program (CSQUTIL)” on page 179,

4 System Administration Guide

Operations and control panels

Introducing the operations and control panels

You can use the MQSeries operations and control panels to perform administration
tasks on MQSeries objects. You use these panels to run commands for defining,
displaying, altering, or deleting MQSeries objects. Use the panels for day-to-day
administration and for making small changes to objects. If you are setting up or
changing many objects, you should use the COMMAND function of the CSQUTIL
utility program.

The operations and control panels support the system control commands for the
channel initiator (for example, to start a channel or a TCP/IP listener), for
clustering, and for security. They also enable you to display information about
threads and page set usage.

Notes:

1. A small number of system control commands are not available through the
panels. These commands must be issued explicitly using one of the other

methods, see Ilssuing commands” on page 3

2. You cannot issue the MQSeries commands directly from the command line in
the panels.

3. To use the operations and control panels, you must have the correct security
authorization; this is described in the MMOSeries fnr 0S/390 System Setup Guidd

Invoking the operations and control panels

If the ISPF/PDF primary options menu has been updated for MQSeries, you can
access the MQSeries operations and control panels from that menu. For details
about updating the menu, see the MOSeries fnr (QS/390 System Setup Guidd

You can access the MQSeries operations and control panels from the TSO
command processor panel (usually option 6 on the ISPF/PDF primary options
menu). The name of the exec that you run to do this is CSQOREXX. It has two
parameters; thlqual is the high-level qualifier for the MQSeries libraries to be
used, and Tangletter is the letter identifying the national language libraries to be
used (for example, E for U.S. English). The parameters can be omitted if the
MQSeries libraries are permanently installed in your ISPF setup. Alternatively, you
can issue CSQOREXX from the TSO command line.

These panels are designed to be used by operators and administrators with a
minimum of formal training. Read these instructions with the panels running and

try out the different tasks suggested.

Note: While using the panels, temporary dynamic queues with names of the form
SYSTEM.CSQOREXX.* will be created.

Chapter 1. Operating MQSeries for 0S/390 5

Operations and control panels

Rules for the operations and control panels

The MQSeries MQSC Command Referencd manual defines the general rules for
MQSeries character strings and names. However, there are some rules that apply
only to the operations and control panels:

6

Do not enclose strings, for example descriptions, in single or double quotes.
If you need to use a quote mark in a description or other text field, for example:
This is Maria's queue

use just one quote. The panel processor doubles them for you to pass them to
MQSeries. However, if it has to truncate your data to do this, it will do so.

You can use uppercase or lowercase characters in most fields, and they are
translated to uppercase characters when you press Enter. The exceptions are:

— Storage class names and Coupling Facility structure names, which must start
with uppercase A through Z and be followed by uppercase A through Z or
numeric characters.

— Certain fields that are not translated. These include:
- Application ID
- Description
- Environment data
- Object names (but if you use a lowercase object name, you might not be
able to enter it at an OS/390 console)
- Remote system name
- Trigger data
- User data

In names, leading blanks and leading underscores are ignored. Therefore, you
cannot have object names beginning with blanks or underscores.

Underscores are used to show the extent of blank fields. When you press Enter,
trailing underscores are replaced by blanks.

Many description and text fields are presented in multiple parts, each part being
handled by MQSeries independently. This means that trailing blanks are retained
and the text is not contiguous.

Blank fields

When you specify the define action for an MQSeries object, each field on the define
panel contains a value. See the general help (extended help) for the display panels
for information on where MQSeries gets the values. If you type over a field with
blanks, and blanks are not allowed, MQSeries puts the installation default value in
the field or prompts you to enter the required value.

When you specify the Alter action for an MQSeries object, each field on the alter
panel contains the current value for that field. If you type over a field with blanks,
and blanks are not allowed, the ALTER command fails and an error message is
displayed, prompting you to enter the required value.

System Administration Guide

Operations and control panels

Objects and actions

The operations and control panels offer you many different types of object and a
number of actions that you can perform on them. The actions are listed on the
initial panel and enable you to manipulate the objects and display information
about them. These objects include all the MQSeries objects, together with some
extra ones. The objects fall into five categories.

* Queues, processes, namelists, and storage classes

¢ Channels

* Cluster objects

* Queue manager and security

* System

Queues, processes, namelists, and storage classes

These are the basic MQSeries objects. There can be many of each type. They can be
defined and deleted, and have attributes that can be displayed and altered, using
the DEFINE LIKE, MANAGE, DISPLAY, and ALTER actions.

This category consists of the following objects:

QLOCAL Local queue

QREMOTE Remote queue

QALIAS Alias queue for indirect reference to a queue

QMODEL Model queue for defining queues dynamically

QUEUE Any type of queue

PROCESS Information about an application to be started when a trigger event
occurs

NAMELIST List of names, such as queues or clusters

STGCLASS Storage class

QSTATUS Status of a local queue

Channels

Channels are used for distributed queuing (not for the CICS mover). There can be
many of each type, and they can be defined, deleted, displayed, and altered. They
also have other functions available using the START, STOP and PERFORM actions.
PERFORM provides reset, ping, and resolve channel functions.

This category consists of the following objects:

CHANNEL Any type of channel
SENDER Sender channel

SERVER Server channel
RECEIVER Receiver channel
REQUESTER Requester channel
CLUSRCVR Cluster-receiver channel
CLUSSDR Cluster-sender channel
SVRCONN Server-connection channel
CLNTCONN Client-connection channel

Chapter 1. Operating MQSeries for OS/390 7

Operations and control panels

8

Cluster objects
Cluster objects are created automatically for queues and channels that belong to a

cluster. The base queue and channel definitions can be on another queue manager.
There can be many of each type, and names can be duplicated. They can only be
displayed, using the DISPLAY action.

This category consists of the following objects:

CLUSQ Cluster queue, created for a queue that belongs to a cluster
CLUSCHL Cluster channel, created for a channel that belongs to a cluster
CLUSQOMGR Cluster queue manager, the same as a cluster channel but identified

by its queue manager name

Cluster channels and cluster queue managers do have the PERFORM, START and
STOP actions, but only indirectly through the DISPLAY action.

Queue manager and security
These have a single instance. They have attributes that can be displayed and

altered (using the DISPLAY and ALTER actions), and have other functions
available using the PERFORM action.

This category consists of the following objects:

MANAGER Queue manager — the PERFORM action provides suspend and resume
cluster functions

SECURITY Security functions — the PERFORM action provides refresh and reverify
functions

System

A collection of other functions. This category consists of the following objects:

SYSTEM System functions

CONTROL Synonym for SYSTEM

The functions available are:

DISPLAY Display queue-sharing group, distributed queuing, thread, or page set
usage information.

PERFORM Refresh or reset clustering

START Start the channel initiator or listeners

STOP Stop the channel initiator or listeners

System Administration Guide

Table 1. Valid operations and control panel actions for MQSeries objects

Actions

The actions that you can perform for each type of object are shown in the

following table:

Operations and control panels

Object Alter Define like | Manage (1) Display Perform Start Stop
CHANNEL 4 4 4 4 I I I
CLNTCONN v v v v
CLUSCHL 1/ ¥ (2) ”(2) ¥ (2)
CLUSQ 4
CLUSOMGR 4 1 (2) ¥ (2) 1 (2)
CLUSRCVR 4 4 I 4 4 4 4
CLUSSDR 1/ 4 1/ 1/ 1/ 4 4
CONTROL 4 v v v
MANAGER 1/ 1/ 1/

NAMELIST 4 1/ 4 v

PROCESS v 4 4 -

QALIAS 4 4 v v

QLOCAL v V - -

QMODEL 4 4 v v

QREMOTE v 4 1/ 1/

QSTATUS 4

QUEUE v 4 1/ -

RECEIVER 4 v 4 I I I I
REQUESTER v 4 4 1/ 1/ - ¥
SECURITY 4 I I

SENDER v v v 1/ 4 1/ I d
SERVER ' ' 4 I I I I
SVRCONN 4 4 4 4 4 I
STGCLASS 1/ 4 4 -

SYSTEM 4 4 4 4
Note:

1. Provides Delete and other functions

2. Via Display

Chapter 1. Operating MQSeries for OS/390

9

Operations and control panels

10

Object dispositions

You can specify the disposition of the object with which you need to work. The
disposition signifies where the object definition is kept, and how the object
behaves.

The disposition is significant only if you are working with any of the following
object types:

* Queues

¢ Channels

* Processes

* Namelists

 Storage classes

If you are working with other object types, it is disregarded.

Permitted values are:

Q QMGR. The object definitions are on the page set of the queue manager
and are accessible only by the queue manager.

C COPY. The object definitions are on the page set of the queue manager and
are accessible only by the queue manager. They are local copies of objects
defined as having a disposition of GROUP.

P PRIVATE. The object definitions are on the page set of the queue manager
and are accessible only by the queue manager. The objects have been
defined as having a disposition of QMGR or COPY.

G GROUP. The object definitions are in the shared repository, and are
accessible by all queue managers in the queue-sharing group.

S SHARED. This disposition applies only to local queues. The queue
definitions are in the shared repository, and are accessible by all queue
managers in the queue-sharing group.

A ALL. If the action queue manager is either the target queue manager, or *,
objects of all dispositions are included; otherwise, objects of QMGR and
COPY dispositions only are included. This is the default.

Choosing a queue manager

While you are viewing the initial panel, you are not connected to any queue
manager. However, as soon as you press Enter, you are connected to the queue
manager or a queue manager in the queue-sharing group named in the “Connect
name” field. You can leave this field blank; this means you are using the default
queue manager for batch applications. This is defined in CSQBDEFV (see the

1 idd for information about this).

Use the “Target queue manager” field to specify the queue manager where the
actions you request are to be performed. If you leave this field blank, it defaults to
the queue manager specified in the “Connect name” field. You can specify a target
queue manager that is not the one you connect to. In this case, you would
normally specify the name of a remote queue manager object that provides a
queue manager alias definition (the name is used as the ObjectQMgrName when
opening the command input queue). To do this, you must have suitable queues
and channels set up to access the remote queue manager.

The “Action queue manager” allows you to specify a queue manager that is in the
same queue-sharing group as the queue manager specified in the “Target queue

System Administration Guide

Operations and control panels

manager” field to be the queue manager where the actions you request are to be
performed. If you specify ~ in this field, the actions you request are performed on
all queue managers in the queue-sharing group. If you leave this field blank, it
defaults to the value specified in the “Target queue manager” field. The “Action
queue manager” field corresponds to using the CMDSCOPE command modifier

described in the IM.QSem_MQS.C_CLwnmd_R@fzzmA

Queue manager defaults

If you leave any queue manager field blank, or choose to connect to a
queue-sharing group, a secondary window appears when you press Enter. This
window confirms the names of the queue managers you will be using. Press Enter
to continue. When you return to the initial panel after having made some requests,
you find fields filled in with the actual names.

Using the function keys

To use the panels, you must use the function keys or enter the equivalent
commands in the command area. The function keys have special settings for
MQSeries. (This means that you cannot use the ISPF default values for the function
keys; if you have previously used the KEYLIST OFF ISPF command anywhere, you
must type KEYLIST ON in the command area of any operations and control panel
and then press Enter to enable the MQSeries settings.)

These function key settings can be displayed on the panels, as shown in w

. If the settings are not shown, type PEFSHOW in the command area of
any operations and control panel and then press Enter. To remove the display of
the settings, use the command PFSHOW OFE.

The function key settings in the operations and control panels conform to CUA®
standards. Although you can change the key setting through normal ISPF
procedures (such as the KEYLIST utility) you are not recommended to do so.

Note: Using the PESHOW and KEYLIST commands affects any other logical ISPF
screens that you have, and their settings remain when you leave the
operations and control panels.

Getting things done

Press Enter to carry out the action requested on a panel. The information from the
panel is sent to the queue manager for processing.

Each time you press Enter in the panels, MQSeries generates one or more operator
messages. If the operation was successful, you get confirmation message CSQ90221,
otherwise you get some error messages.

Displaying MQSeries user messages
Press function key F10 in any panel to see the MQSeries user messages.

Ignoring what you have done
On the initial panel, both F3 and F12 exit the operations and control panels and
return you to ISPE. No information is sent to the queue manager.

On any other panel, press function keys F3 or F12 to leave the current panel
ignoring any data you have typed since last pressing Enter. Again, no information is
sent to the queue manager.

* F3 takes you straight back to the initial panel.

* F12 takes you back to the previous panel.

Chapter 1. Operating MQSeries for 0S/390 11

Operations and control panels

12

Getting help
Each panel has help panels associated with it. The help panels use the ISPF
protocols:

* Press function key F1 on any panel to see general help (extended help) about the
task.

* Press function key F1 with the cursor on any field to see specific help about that
field.

* Press function key F5 from any field help panel to get the general help.

* Press function key F3 to return to the base panel, that is, the panel from which
you pressed function key F1.

* Press function key F6 from any help panel to get help about the function keys.

If the help information carries on into a second or subsequent pages, a More
indicator is displayed in top right of the panel. Use these function keys to navigate
through the help pages:

* F11 to get to the next help page (if there is one).

* F10 to get back to the previous help page (if there is one).

Using the command line

You never need to use the command line to issue the commands used by the
operations and control panels because they are available from function keys, as
described above. It is provided to allow you to enter normal ISPF commands (like
PESHOW).

The command line is initially displayed at the bottom of the panels, regardless of
what ISPF settings you have. If you prefer it to be at the top, use the SETTINGS
ISPF command from any of the operations and control panels to change it. The
settings will be remembered for subsequent sessions with the operations and
control panels.

System Administration Guide

Operations and control panels

Using the operations and control panels

Figure A shows the panel that is displayed when you start a panel session.

4 IBM MQSeries for 0S/390 - Main Menu)

Complete fields. Then press Enter.

Action _ 1.Display 4.Manage 6.Start
2.Define Tike 5.Perform 7.Stop
3.ATter

Object type +

Name

Disposition _ Q=Qmgr,C=Copy,P=Private

G=Group,S=Shared,A=AT1
Connect name - local queue manager or group

Target queue manager o

- connected or remote queue manager for command input
Action queue manager - command scope in group
Response wait time __ 5 - 999 seconds

(C) Copyright IBM Corporation 1993,2000. A1l rights reserved.

Command ===>
Fl=Help F2=Split F3=Exit F4=Prompt F9=Swap F10=Messages
F12=Cancel

Figure 2. The MQSeries operations and control initial panel

From this panel you can:

¢ Choose the local queue manager you want and whether you want the
commands issued on that queue manager, on a remote queue manager, or on
another queue manager in the same queue-sharing group as the local queue
manager. Overtype the queue manager name if you need to change it.

* Select the action you want to perform by typing in the appropriate number in
the Action field.

* Specify the object type that you want to work with. Press function key F1 for
help about the object types if you are not sure what they are.

* Specify the disposition of the object type that you want to work with.

« Display a list of objects of the type specified. Type in an asterisk () in the Name
field and press Enter to display a list of objects (of the type specified) that have
already been defined on the action queue manager. You can then select one or

more objects to work with in sequence. Figure 3 on page 14 shows a list of

queues produced in this way. All the actions are available from the list.

¢ Perform other actions.

Chapter 1. Operating MQSeries for OS/390 13

Operations and control panels

~
4 List Queues ROW 1 OF 12

Type action codes. Then press Enter.
1=Display 2=Define Tike 3=Alter 4=Manage

Name Type Disposition
_ CICSO1.INITQ QLOCAL QMGR QM83
_ PROTO.APPL QLOCAL QMGR QM83
_ PROTO.TRIG QLOCAL QMGR QM83
_ LOCAL.QUEUE QLOCAL QMGR QM83
_ SYSTEM.CHANNEL.SEQNO QLOCAL QMGR QM83
_ SYSTEM.COMMAND. INPUT QLOCAL QMGR QM83
_ SYSTEM.COMMAND.REPLY.MODEL QMODEL QMGR QM83
_ SYSTEM.DEFAULT.ALIAS.QUEUE QALIAS QMGR QM83
_ SYSTEM.DEFAULT.LOCAL.QUEUE QLOCAL QMGR QM83
_ SYSTEM.DEFAULT.MODEL.QUEUE QMODEL QMGR QM83
_ SYSTEM.DEFAULT.REMOTE.QUEUE QREMOTE ~ QMGR QM83

TRANSMIT.QUEUE.PROD QLOCAL QMGR QM83

*xxkxxk% End of 1ist *x*kxxxx

Command ===>
Fl=Help F2=Split F3=Exit F5=Refresh F6=Clusinfo F7=Bkwd
F8=Fwd F9=Swap F10=Messages Fl1=Status Fl12=Cancel

Figure 3. Listing queues

| Defining objects

14

To define a new object, use an existing definition as the basis for it. You can do this
in one of three ways:

* By selecting an object that is a member of a list displayed as a result of options
selected on the initial panel. You then enter action type 2 (Define like) in the
action field to the left of the selected object. Your new object has the attributes of
the selected object, except the disposition. You can then change any attributes in
your new object as you require.

* On the initial panel, select the “Define like” action type, enter the type of object
that you are defining in the “Object type” field, and enter the name of a specific
existing object in the “Name” field. Your new object has the same attributes as
the object you named in the “Name” field, except the disposition. You can then
change any attributes in your new object definition as you require.

* By selecting the “Define like” action type, specifying an object type and then
leaving the “Name” field blank. You can then define your new object and it has
the default attributes defined for your installation. You can then change any
attributes in your new object definition as you require.

Note: You do not enter the name of the object you are defining on the initial
panel, but on the “Define” panel you are presented with.

System Administration Guide

Operations and control panels

Defining a local queue

To define a local queue object from the operations and control panels, use an
existing queue definition as the basis for your new definition. There are several
panels to complete. When you have completed all the panels and you are satisfied
that the attributes are correct, press Enter to send your definition to the queue
manager, which then creates the actual queue.

Use the Define like action either on the initial panel or against an object entry in a
list displayed as a result of options selected on the initial panel.

For example, starting from the initial panel, complete these fields:

Action 2 (Define like)
Object type QLOCAL
Name QUEUE.YOU.LIKE. This is the name of the queue which provides the

attributes for your new queue.

Press Enter to display the Define a Local Queue panel as shown in w The
queue name field is blank so that you can supply the name for the new queue. The
description is that of the queue upon which you are basing this new definition.
Overtype this field with your own description for the new queue.

The values in the other fields are those of the queue upon which you are basing
this new queue, except the disposition. You can overtype these fields as you
require. For example, type Y in the Put enabled field (if it is not already Y) if
suitably authorized applications can put messages on this queue.

4 N\

Define a Local Queue

Complete fields, then press F8 for further fields, or Enter to define queue.

More: +
Queue name
Disposition Q G=Group,S=Shared,Q=Qmgr on QM83
Description Queue upon which the new one is based
Put enabled Y Y=Yes,N=No
Get enabled Y Y=Yes,N=No
Usage o o .. N N=Normal,X=XmitQ
Storage class SYSTEM

CF structure name

Command ===>
Fl=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Figure 4. Defining a local queue - first panel

Chapter 1. Operating MQSeries for OS/390 15

Operations and control panels

16

You get field help by moving the cursor into a field and pressing function key F1.
Field help provides information about the values that can be used for each
attribute.

When you have completed the first panel, press function key F8 to display the
second panel, see @
Hints:

1. Do not press Enter at this stage, otherwise the queue will be created before you
have a chance to complete the remaining fields. (If you do press Enter
prematurely, do not worry; you can always alter your definition later on.)

2. Do not press function key F3 or F12 either, or the data you typed will be lost.

Press function key F8 repeatedly to see and complete the remaining panels,
including the trigger definition, event control, and backout reporting panels.

4 N

Define a Local Queue

Press F7 or F8 to see other fields, or Enter to define queue.

More: - +
Default persistence N Y=Yes,N=No
Default priority 5 0-9
Message delivery sequence . . P P=Priority,F=FIFO
Permit shared access Y Y=Yes,N=No
Default share option S E=Exclusive,S=Shared
Index type N N=None,M=MsgId,C=Correlld,T=MsgToken
Maximum queue depth 10000 0 - 999999999
Maximum message length . . . 1000000 0 - 104857600

Cluster name
Cluster namelist name
Default bind 0 0=Open,N=Notfixed

Command ===>
Fl=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Figure 5. Defining a local queue - second panel

System Administration Guide

Operations and control panels

/ N

Define a Local Queue

Press F7 or F8 to see other fields, or Enter to define queue.

More: - +

Trigger Definition

Trigger type F F=First,E=Every,D=Depth,N=None
Trigger set N Y=Yes,N=No
Trigger message priority . 0 0 - 9
Trigger depth 1 1 - 999999999
Trigger data
Process name

Initiation queue

Command ===>
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

%
Figure 6. Defining a local queue - trigger conditions
4 Define a Local Queue h
Press F7 or F8 to see other fields, or Enter to define queue.
More: - +
Event Control
Queue full E E=Enabled,D=Disabled
Upper queue depth D E=Enabled,D=Disabled
Threshold 80 0 - 100 %
Lower queue depth D E=Enabled,D=Disabled
Threshold 40 0 - 100 %
Service interval N H=High,0=0K,N=None
Interval 999999999 0 - 999999999 milliseconds
Command ===>
Fl=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel)

Figure 7. Defining a local queue - event control

Chapter 1. Operating MQSeries for OS/390 17

Operations and control panels

4 N

Define a Local Queue
Press F7 to see previous fields, or Enter to define queue.
More: -
Backout Reporting

Backout threshold 0 0=No backout reporting

Harden backout counter . . N Y=Yes,N=No
Backout requeue name . . .

Retention interval 999999999 0 - 999999999 hours

Command ===>
F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
F10=Messages F12=Cancel

Figure 8. Defining a local queue - backout reporting

When your local queue definition is complete

When your definition is complete, press Enter to send the information to the queue
manager for processing. The queue manager creates the queue according to the
definition you have supplied. If you do not want the queue to be created, press
function key F3 to exit and cancel the definition.

| Defining other types of objects

18

To define other types of object, use an existing definition as the base for your new
definition as explained in £Defini r

Use the Define like action either on the initial panel or against an object entry in a
list displayed as a result of options selected on the initial panel.

For example, starting from the initial panel, complete these fields:

Action 2 (Define like)
Object type QALIAS, NAMELIST, PROCESS, CHANNEL, and so on.
Name Leave blank or enter the name of an existing object of the same type.

Press Enter to display the corresponding DEFINE panels. Complete the fields as
required and then press Enter again to send the information to the queue manager.

Like defining a local queue, defining another type of object generally requires
several panels to be completed. Defining a namelist requires some additional work,

as described in 'Working with namelists” on page 2(.

System Administration Guide

Operations and control panels

Working with object definitions

When an object has been defined, you can specify an action in the Action field, to
alter, display, or manage it.

In each case, you can either:

* Select the object you want to work with from a list displayed as a result of
options selected on the initial panel. For example, having entered 1 in the
“Action” field to display objects, “Queue” in the “Object type” field, and " in the
“Name” field, you are presented with a list of all queues defined in the system.
You can then select from this list the queue with which you need to work.

* Start from the initial panel, where you specify the object you are working with
by completing the Object type and Name fields.

Altering an object definition

To alter an object definition, specify action 3 and press Enter to see the ALTER
panels. These panels are very similar to the DEFINE panels. You can alter the
values you want. When your changes are complete, press Enter to send the
information to the queue manager.

Displaying an object definition
If you want to see the details of an object without being able to change them,
specify action 1 and press Enter to see the DISPLAY panels. Again, these panels are
similar to the DEFINE panels except that you cannot change any of the fields.
Change the object name to display details of another object.

Deleting an object

To delete an object, specify action 4 (Manage) and the Delete action is one of the
actions presented on the resulting menu. Select the Delete action.

You are asked to confirm your request. If you press function key F3 or F12, the
request is cancelled. If you press Enter, the request is confirmed and passed to the

queue manager. The object you specified is then deleted.

Note: You cannot delete most types of channel object unless the channel initiator is
started.

Chapter 1. Operating MQSeries for OS/390 19

Operations and control panels

Working with namelists

20

When working with namelists, proceed as you would for other objects.

For the actions DEFINE LIKE or ALTER, you must press function key F11 to add
names to the list or to change the names in the list. This involves working with the
ISPF editor and all the normal ISPF edit commands are available. Each name in the
namelist must be entered on a separate line.

When you use the ISPF editor in this way, the function key settings are the normal
ISPF settings, and not those used by the other operations and control panels.

If you need to specify lowercase names in the list, specify CAPS(OFF) on the editor
panel command line. When you do this, all the namelists that you edit in the
future are in lowercase until you specify CAPS(ON).

When you have finished editing the namelist, press function key F3 to end the
ISPF edit session. Then press Enter to send the changes to the queue manager.

Attention: If you do not press Enter at this stage but press function key F3
instead, you lose any updates that you have typed in.

System Administration Guide

Chapter 2. Starting and stopping MQSeries

This chapter describes how to start and stop MQSeries. It discusses the following
topics:

Starting and stopping MQSeries is relatively straightforward. When MQSeries
stops under normal conditions, its last action is to take a termination checkpoint.
This checkpoint, and the logs, give MQSeries the information it needs to restart.

This section discusses the START and STOP commands, and contains a brief
overview of start up after an abnormal termination has occurred.

Before you start MQSeries

After you have installed MQSeries, it is defined as a formal OS/390 subsystem.
This message appears during any initial program load (IPL) of OS/390:

CSQ3110T +CSQ1 CSQ3UROO - SUBSYSTEM ssnm READY FOR START COMMAND

where ssnm is the MQSeries subsystem name.

From now on, you can start MQSeries from any OS/390 console that has been
authorized to issue system control commands; that is, an OS/390 SYS command group.
The START command must be issued from the authorized console, and cannot be
submitted through JES or TSO.

If you are using queue-sharing groups you must start RRS first, and then DB2,
before you start MQSeries.

© Copyright IBM Corp. 1993, 2000 21

Starting and stopping MQSeries

Starting MQSeries

22

You start MQSeries by issuing a START QMGR command. However, you cannot
successfully use the START command unless you have appropriate authority. See
the MOQSeries for QS/390 chh)m QPHIP Guidd for information about MQSeries
security. shows examples of the START command. (Remember that you
must prefix an MQSeries command with a command prefix string (CPF).)

+CSQ1 START QMGR

+CSQ1 START QMGR PARM(NEWLOG)

Figure 9. Starting the MQSeries subsystem from an OS/390 console. The second example
specifies a system parameter module name.

See the MQSeries MQSC Command Referencd manual for information about the
syntax of this command.

You cannot run the MQSeries subsystem as a batch job or start it using an OS/390
START command. These methods are likely to start an address space for MQSeries
that then abends. You also cannot start MQSeries from the CSQUTIL utility
program or a similar user application.

You can, however, start MQSeries from an APF-authorized program by passing a
START QMGR command to the OS/390 MGCR or MGCRE (SVC 34) service.

Start options

When you start a queue manager, a special routine called the system parameter
module is invoked. You can specify the name of a system parameter module if you
use the PARM keyword. A system parameter module provides information
specified when the queue manager was customized. In [Figure 80 an page 241, the
user message CSQYO001I indicates the name of the system parameter module that
was used, in this case, CSQ1ZPRM. For more information about this, see the
MQSeries for QS/390 System Setup Guidd

You can also use the ENVPARM option to substitute one or more parameters in
the JCL procedure for the queue manager.

For example, you can update your MQSeries startup procedure, so that the
DDname CSQINP?2 is a variable. This means that you can change the CSQINP2
DDname without changing the startup procedure. This is very useful for
implementing changes, providing backouts for operators, and so on.

Sugsose your start-up procedure for queue manager CSQ1 looked like m

System Administration Guide

Starting and stopping MQSeries

//CSQIMSTR PROC INP2=NORM

//MQMESA EXEC PGM=CSQYASCP

//STEPLIB DD DISP=SHR,DSN=thTqual.SCSQANLE

// DD DISP=SHR,DSN=thTqual.SCSQAUTH

// DD DISP=SHR,DSN=db2qual.SDSNLOAD
//BSDS1 DD DISP=SHR,DSN=myqual.BSDSO1

//BSDS2 DD DISP=SHR,DSN=myqual.BSDS02
//CSQPOOAO DD DISP=SHR,DSN=myqual.PSIDOO
//CSQPOOO1 DD DISP=SHR,DSN=myqual.PSIDO1
//CSQPO0O2 DD DISP=SHR,DSN=myqual.PSID0O2
//CSQPOO03 DD DISP=SHR,DSN=myqual.PSIDO3
//CSQINPL DD DISP=SHR,DSN=myqual.CSQINP(CSQLINP1)
//CSQINP2 DD DISP=SHR,DSN=myqual.CSQINP(CSQI&INP2.)
//CSQOUTI DD SYSOUT=+

//CSQOUT2 DD SYSOUT=*

Figure 10. Sample start-up procedure

If you then start the your queue manager with the command:

+CSQ1 START QMGR

the CSQINP2 actually used is a member called CSQINORM.

However, suppose you are putting a new suite of programs into production so that
the next time you start queue manager CSQ1, the CSQINP2 definitions are to be
taken from member CSQINEW. To do this, you would start MQSeries with this
command:

+CSQL START QMGR ENVPARM('INP2=NEW')

and CSQINEW would be used instead of CSQINORM. Note that OS/390 limits
the KEYWORD=value specifications for symbolic parameters (as in INP2=NEW) to 48
characters.

Starting after an abnormal termination

MQSeries automatically detects whether restart follows a normal shutdown or an
abnormal termination.

Starting MQSeries after it abends is different from starting it after the +CSQ1 STOP
QMGR command has been issued. After +CSQ1 STOP QMGR, the system finishes
its work in an orderly way and takes a termination checkpoint before stopping.
When you restart MQSeries, it uses information from the system checkpoint and
recovery log to determine the system status at shutdown.

However, if MQSeries abends, it terminates without being able to finish its work or
take a termination checkpoint. When you restart MQSeries after an abend, it
refreshes its knowledge of its status at termination using information in the log,
and notifies you of the status of various tasks. Normally, the restart process
resolves all inconsistent states. But, in some cases, you must take specific steps to
resolve inconsistencies.

User messages on start-up

When you start MQSeries successfully, it produces a set of start up messages
similar to the ones in L i —un”

Chapter 2. Starting and stopping MQSeries 23

Starting and stopping MQSeries

Stopping MQSeries

24

Before stopping MQSeries, all MQSeries-related write-to-operator-with-reply
(WTOR) messages must receive replies, for example, getting log requests. Each of
the commands in w terminates a running MQSeries subsystem.

+CSQ1 STOP QMGR
+CSQ1 STOP QMGR MODE(QUIESCE)
+CSQ1 STOP QMGR MODE (FORCE)

+CSQ1 STOP QMGR MODE (RESTART)

Figure 11. Stopping MQSeries

The command +CSQ1 STOP QMGR defaults to +CSQ1 STOP QMGR
MODE(QUIESCE).

In QUIESCE mode, MQSeries does not allow any new connection threads to be
created, but allows existing threads to continue; it terminates only when all threads
have ended. Applications can request to be notified in the event of the queue
manager quiescing. Therefore, use the QUIESCE mode where possible so that
applications that have requested notification have the opportunity to disconnect.

See the MQSeries Application Programming Guidd for details.

If MQSeries does not terminate in a reasonable time in response to a +CSQ1 STOP
OMGR MODE(QUIESCE) command, use the +CSQ1 DISPLAY THREAD(¥)
TYPE(ACTIVE) command to determine whether any connection threads exist, and
take the necessary steps to terminate the associated applications. If there are no
threads then issue a +CSQ1 STOP QMGR MODE(FORCE) command.

The +CSQ1 STOP QMGR MODE(QUIESCE) and +CSQ1 STOP QMGR
MODE(FORCE) commands deregister MQSeries from the MVS™ Automatic Restart
Manager (ARM), preventing ARM from restarting the queue manager
automatically. The +CSQ1 STOP QMGR MODE(RESTART) command works in the
same way as the +CSQ1 STOP QMGR MODE(FORCE) command, except that it
does not deregister MQSeries from ARM. This means that the queue manager is
eligible for immediate automatic restart.

If the MQSeries subsystem is not registered with ARM, the STOP QMGR
MODE(RESTART) command is rejected and the following message sent to the
0S/390 console:

CSQY205I ARM element arm-element is not registered

If this message is not issued, the queue manager is restarted automatically. For

more information about ARM, see I'Chapter 13_Using the QS/390 Automatid

”

Do not cancel the MQSeries address space unless +CSQ1 STOP QMGR
MODE(FORCE) does not cause MQSeries to terminate.

If MQSeries is stopped by either canceling the address space or by using the
command +CSQ1 STOP QMGR MODE(FORCE), consistency is maintained with

System Administration Guide

Starting and stopping MQSeries

connected CICS or IMS systems. Resynchronization of resources is started when
MQSeries restarts and is completed when the connection to the CICS or IMS
system is established.

Note: When you stop your MQSeries subsystem, you might find message IEF3521
is issued. OS/390 issues this message if it detects that failing to mark the
address space as unusable would lead to an integrity exposure. You can
ignore this message.

Stop messages

After issuing a +CSQ1 STOP QMGR command, you get the messages CSQY009I
and CSQYO002I, for example:

CSQY009I +CSQ1 ' STOP QMGR' COMMAND ACCEPTED FROM
USER(userid), STOP MODE (FORCE)
CSQY002I +CSQL SUBSYSTEM STOPPING

Where userid is the user ID that issued the +CSQ1 STOP QMGR command, and the
MODE parameter depends on that specified in command.

When the STOP command has completed successfully, these messages are
displayed on the OS/390 console:

CSQ90221 +CSQL CSQYASCP ' STOP QMGR' NORMAL COMPLETION
CSQ3104I +CSQL CSQ3ECOX - TERMINATION COMPLETE

If you are using ARM, the following message is also displayed if you did not
specify MODE(RESTART):

CSQY2041 +CSQLl ARM DEREGISTER for element arm-element type
arm-element-type successful

You cannot restart MQSeries until the following message has been generated:

CSQ3100I +CSQL CSQ3ECOX - SUBSYSTEM ssnm READY FOR START COMMAND

Chapter 2. Starting and stopping MQSeries 25

26 System Administration Guide

Chapter 3. Writing programs to administer MQSeries

Start of General-use programming interface information

This chapter contains hints and guidance to enable you to issue MQSeries
commands from an MQSeries application program.

It contains these sections:

° G 2

” 7

’ : ”

. I”Rp’rripving rpp]in to vour commands” on page 33

s . . ”

s . ”

G : : ”

o FIf vou do nat receive a reply” on page 43
o : : ”

Note: In this chapter, the MQI calls are described using C-language notation. For
typical invocations of the calls in the COBOL, PL/I, and assembler

languages, see the MQSeries Application Programming Referencd manual.

Understanding how it all works

In outline, the procedure for issuing commands from an application program is

quite simple:

1. You build an MQSeries command into a type of MQSeries message called a
request message.

2. You put (MQPUT) this message onto a special queue called the
system-command input queue. The MQSeries command processor runs the
command.

3. You retrieve (MQGET) the results of the command as reply messages on the
reply-to queue. These messages contain the user messages that you need to
determine whether your command was successful and, if it was, what the
results were.

Then it is up to your application program to process the results.

Before you begin
Before you can write an application program to issue MQSeries commands, you
must be familiar with:

1. Issuing MQSeries commands and the command syntax. See the M
manual for more information.

2. Writing application programs that use the MQI.
This includes:
* Connecting to a queue manager using the MQCONN or MQCONNX call.
* Opening a queue using MQOPEN.
* Opening a dynamic queue using MQOPEN and specifying the name of a
model queue.

* DPutting messages on a queue using MQPUT and MQPUT1.

© Copyright IBM Corp. 1993, 2000

27

Writing administration programs

* Getting messages from a queue using MQGET.

You need to know about the messages including:
¢ The message descriptor structure.
* What the persistence attribute of a message means.

¢ The types of MQSeries messages, in particular, request messages and the reply
messages they generate.

You can find all this information in the MQSeries Application Programming G uidd

and the MQSeries Application Programming Referencd manual.

3. User messages.

These messages are generated by MQSeries to show the success or failure of,
and the responses to, MQSeries commands. Each message is identified by an ID

that contains the characters CSQ, for example, CSQN205I. For more
information, see the BaOSeries fnr QS/390 Mpqcngpq and Coded manual.

If you want your MQSeries commands to be run on a remote queue manager, see

the MQSeries Intercommunicatiod manual.

MQSeries can also be set up to perform security checks. For example, to ensure
that a user is authorized to issue a particular command for a particular resource.
For more information, see the MOQOSeries fnr 0S/390 System Qm‘up Guidd

Preparing queues for administration programs

28

Before you can issue any MQPUT or MQGET calls, you must first define, and
then open, the queues you are going to use.

Defining the system-command input queue

The system-command input queue is a local queue called
SYSTEM.COMMAND.INPUT. The supplied CSQINP?2 initialization data set,
thlqual. SCSQPROC(CSQ4INSG), contains a default definition for the
system-command input queue. See the MQOSeries fnr 0S/390 System Qm‘u'n Guidd for
more information.

Defining a reply-to queue

You must define a reply-to queue to receive reply messages from the MQSeries
command processor. It can be any queue whose attributes allow reply messages to
be put on it. However, for normal operation, specify these attributes:

* MAXSMSGL(13000)

* USAGE(NORMAL)

* NOTRIGGER (unless your application uses triggering)

You should not normally use persistent messages for commands, but if you choose
to do so, the reply-to queue must not be a temporary dynamic queue.

The supplied CSQINP?2 initialization data set, thlqual. SCSQPROC(CSQ4INSG),
contains a definition for a model queue called
SYSTEM.COMMAND.REPLY.MODEL. You can use this model to create a dynamic
reply-to queue.

Note: Replies generated by the command processor can be up to 13 000 bytes in
length.

System Administration Guide

Writing administration programs

Opening the system-command input queue

Before you can open the system-command input queue, your application program
must be connected to your MQSeries subsystem. Use the MQI call MQCONN or
MQCONNX to do this.

Then use the MQI call MQOPEN to open the system-command input queue. To
use this call:

1. Set the Options parameter to MQOO_OUTPUT
2. Set the MQOD object descriptor fields as follows:

ObjectType
MQOT_Q (the object is a queue)

ObjectName
SYSTEM.COMMAND.INPUT

ObjectQMgrName
Leave blank if you want to send your request messages to your local
queue manager. This means that your commands are processed locally.

If you want your MQSeries commands to be processed on a remote
queue manager, put its name here. You must also have set up the
correct queues and links, as described in the

[[utercommunicationl manual.

Opening a reply-to queue
To be able to retrieve the replies from an MQSeries command, you must open a
reply-to queue. On way of doing this is to specify the model queue,
SYSTEM.COMMAND.REPLY.MODEL, in an MQOPEN call to create a permanent
dynamic queue as your reply-to queue. To use this call:
1. Set the Options parameter to MQOO_INPUT_SHARED

2. Set the MQOD object descriptor fields as follows:

ObjectType
MQOT_Q (the object is a queue)

ObjectName
The name of your reply-to queue. If the queue name you specify is the
name of a model queue object, the queue manager creates a dynamic
queue.

ObjectQMgrName
To receive replies on your local queue manager, leave this field blank.

DynamicQName
Specify the name of the dynamic queue to be created.

Chapter 3. Writing programs to administer MQSeries 29

Writing administration programs

Using the command server

30

The command server is an MQSeries component that works with the command
processor component. The command server reads request messages from the
system-command input queue, verifies them, and passes the valid ones as
commands to the command processor. The command processor processes the
commands and puts any replies as reply messages on to the reply-to queue that
you specify. The first reply message contains the user message CSQN205I. See

. i ies” for more information.

Identifying the queue manager that processes your
commands

The queue manager that processes the commands you issue from an
administration program is the queue manager that owns the system-command
input queue that the message is put onto.

Starting the command server

Normally, the command server is started automatically when the queue manager is
started. It becomes available as soon as the message CS5Q9022I 'START QMGR’
NORMAL COMPLETION is returned from the START QMGR command. The
command server is stopped when all the connected tasks have been disconnected
during the system termination phase.

You can control the command server yourself using the START CMDSERV and
STOP CMDSERV commands. To prevent the command server starting
automatically when MQSeries is restarted, you can add a STOP CMDSERV
command to your CSQINP1 or CSQINP?2 initialization data sets.

The STOP CMDSERV command stops the command server as soon as it has
finished processing the current message or immediately, if no messages are being
processed.

If the command server has been stopped by a STOP CMDSERV command in the
program, no other commands from the program can be processed. To restart the
command server, you must issue a START CMDSERV command from the OS/390
console.

If you stop and restart the command server while MQSeries is running, all the
messages that are on the system-command input queue when the command server
stops are processed when the command server is restarted. However, if you stop
and restart MQSeries after the command server is stopped, only the persistent
messages on the system-command input queue are processed when the command
server is restarted. All nonpersistent messages on the system-command input
queue are lost.

Sending commands to the command server

For each command, you build a message containing the command and then you
put it onto the system-command input queue.

Building a message that includes MQSeries commands

You can incorporate MQSeries commands in an application program by building
request messages that include the required commands. For each such command
you:

1. Create a buffer containing a character string representing the command.

System Administration Guide

Writing administration programs

2. Issue an MQPUT call specifying the buffer name in the buffer parameter of
the call.

The simplest way to do this in C is to define a buffer using ‘char’. For example:
char message_buffer[] = "ALTER QLOCAL(SALES) PUT(ENABLED)";

When you build a command, use a null-terminated character string. Do not specify
a command prefix string (CPF) at the start of a command defined in this way. This
means that you do not have to alter your command scripts if you want to run
them on another queue manager. However, you must take into account that a CPF
is included in any response messages that are put onto the reply-to queue.

The command server translates all characters to uppercase unless they are inside
single quotes.

Commands can be any length up to a maximum 32 762 characters.

Command attributes
When using commands in administration programs, you should consider the
following:

1. Not all attributes have associated values.

2. Each attribute or attribute and value pair is separated by one or more blanks.

3. Do not make any assumptions about the order in which attributes are returned.

4. The attribute values returned are fixed length and surrounded by parentheses.
Integer values are ten characters long, right justified, and padded with blanks.

Character values are left justified and padded with blanks. Their lengths are as
follows:

a. Character string lengths are the same as those given in the m
icati [manual.

b. Attributes that return a keyword (for example, DEFSOPT returns EXCL or
SHARED) are 10 characters long, left justified, and padded with blanks.

c. Some attribute keywords can take negated values, for example,
NOTRIGGER, NOSHARE, and NOHARDENBO. The attribute keywords
that can have negated values take their length from the negated value. For
example, the negated equivalent of SHARE is NOSHARE; it has a length of
7. These attributes are left justified and padded with blanks.

5. The number of attributes returned depends on what attributes are requested by
the command.

6. The NAMES attribute of a namelist returns multiple values. This attribute
returns a list of names, each of fixed length, separated by commas. Use the
NAMCOUNT attribute to discover the number of names in the list. If there are
no names in the list, the NAMES attribute is returned as NAMES().

7. Attributes that normally require quotes around the string because they contain
embedded blanks, lowercase characters or special characters, are returned
without the quotes.

8. When you want to use the reply to a DISPLAY command as input to another
command, put single quotes (' ') around each attribute. For example, if you
define this queue:

+CSQ1 DEFINE QLOCAL(SALES) DESCR('Sales enquiries queue')

You can display it using the command:
+CSQ1 DISPLAY QUEUE(SALES) DESCR

Chapter 3. Writing programs to administer MQSeries 31

Writing administration programs

32

The DESCR attribute is displayed as:
DESCR(Sales enquiries queue)

To use this description in another command you must add the quotes as
follows:

DESCR('Sales enquiries queue')

If the attribute itself contains any quotes, you must double them.

Putting messages on the system-command input queue

Use the MQPUT call to put request messages containing commands on the
system-command input queue. In this call you specify the name of the reply-to
queue that you have already opened.

To use the MQPUT call:

1.

Set these MQPUT parameters:
Hconn The connection handle returned by the MQCONN or MQCONNX call.

Hobj The object handle returned by the MQOPEN call for the
system-command input queue.

BufferLength
The length of the formatted command.

Buffer The name of the buffer containing the command.
Set these MQMD fields:

MsgType
MOMT_REQUEST

ReplyToQ
Name of your reply-to queue.

ReplyToQMgr
Leave blank if you want replies sent to your local queue manager. If
you want your MQSeries commands to be sent to a remote queue
manager, put its name here. You must also have set up the correct

queues and links, as described in the MQSeries Intercommunication

manual.

Set any other MQMD fields, as required. If you are not using the same code
page as the queue manager, set CodedCharSetId as appropriate, and set Format
to MQEMT_STRING, so that the command server can convert the message. You
should normally use nonpersistent messages for commands.

Set any PutMsgOpts options, as required.

If you specify MQPMO_SYNCPOINT (the default), you must follow the
MOQPUT call with a syncpoint call.

Using MQPUT1 and the system-command input queue

If you want to put just one message on the system-command input queue, you can
use the MQPUTT1 call. This call combines the functions of an MQOPEN, followed
by an MQPUT of one message, followed by an MQCLOSE, all in one call. If you

use this call modlfy the parameters accordingly. See the MQSeries Application

for details.

System Administration Guide

Writing administration programs

Retrieving replies to your commands

When the command processor processes your commands, any reply messages are
put onto the reply-to queue specified in the MQPUT call. The command server
sends the reply messages with the same persistence as the command message it
received.

Waiting for a reply
Use the MQGET call to retrieve a reply from your request message One request
message can produce several reply messages. For details, see

LEPJJ.S_DD_PE.%E_:)IH” .

You can specify a time interval that an MQGET call waits for a reply messaﬁ to
be generated. If you do not get a reply, use the checklist beginning on page

To use the MQGET call:

1.

Set these parameters:
Hconn The connection handle returned by the MQCONN or MQCONNYX call.

Hobj The object handle returned by the MQOPEN call for the reply-to
queue.

Buffer The name of the area to receive the reply.

BufferLength
The length of the buffer to receive the reply. This must be a minimum
of 80 bytes.

To ensure that you only get the responses from the command that you issued,
you must specify the appropriate MsgId and Correlld fields. These depend on
the report options, MQMD_REPORT, you specified in the MQPUT call:

MQRO_NONE
Binary zero, '00...00" (24 nulls).

MQRO_NEW_MSG_ID
Binary zero, '00...00" (24 nulls).

This is the default if none of these options has been specified.

MQRO_PASS_MSG_ID
The MsgId from the MQPUT.

MQRO_NONE
The MsgId from the MQPUT call.

MQRO_COPY_MSG_ID_TO_CORREL_ID
The MsgId from the MQPUT call.

This is the default if none of these options has been specified.

MQRO_PASS_CORREL_ID
The Correlld from the MQPUT call.

For more details on report options, see the B4QSeries Application Programuming

manual.

Chapter 3. Writing programs to administer MQSeries 33

Writing administration programs
3. Set the following GetMsgOpts fields:

Options
MQGMO_WAIT

If you are not using the same code page as the queue manager, set
MQGMO_CONVERT, and set CodedCharSetId as appropriate in the
MQMD.

WaitInterval
For replies from the local queue manager, try 5 seconds. Coded in
milliseconds, this becomes 5 000. For replies from a remote queue
manager, and channel control and status commands, try 30 seconds.
Coded in milliseconds, this becomes 30 000.

Discarded messages

If the command server finds that a request message is not valid, it discards this
message and writes the message CSQN205I to the named reply-to queue. If there is
no reply-to queue, the CSQN205I message is put onto the dead-letter queue. The
return code in this message shows why the original request message was not valid:

00D5020F It is not of type MQMT_REQUEST.

00D50210 It has zero length.

00D50212 It is longer than 32 762 bytes.

00D50211 It contains all blanks.

00D5483E It needed converting, but Format was not MQFMT_STRING.
Other See the MQSeries for QS/390 Messages and Coded manual.

The reply message descriptor
For any reply message, the following MOQMD message descriptor fields are set:

MsgType MQMT_REPLY

Feedback MQFB_NONE

Encoding MQENC_NATIVE

Priority As for the MQMD in the message you issued.
Persistence As for the MQMD in the message you issued.
Correlld Depends on the MQPUT report options.
ReplyToQ None.

The command server sets the Options field of the MQPMO structure to
MQPMO_NO_SYNCPOINT. This means that you can retrieve the replies as they
are created, rather than as a group at the next syncpoint.

End of General-use programming interface information

34 System Administration Guide

Writing administration programs

Interpreting the replies

Start of Product-sensitive programming interface information

Each request message correctly processed by MQSeries produces at least two reply
messages. Each reply message contains a single MQSeries user message.

The length of a reply depends on the command that was issued. The longest reply
you can get is from a DISPLAY NAMELIST, and that can be up to 13 000 bytes
long.

The first user message, CSQN205I, always contains:

* A count of the replies (in decimal), which you can use as a counter in a loop to
get the rest of the replies. The count includes this first message.

* The return code from the command preprocessor.

¢ A reason code, which is the return code from the command processor.

This message does not contain a CPF.

For example:

CSQN2051 COUNT= 4, RETURN=0000000C, REASON=00000008

The COUNT field is 8 bytes long and is right-justified. It always starts at position
18, that is, immediately after 'COUNT=". The RETURN field is 8 bytes long in
character hexadecimal and is immediately after 'RETURN=" at position 35. The
REASON field is 8 bytes long in character hexadecimal and is immediately after
"REASON=" at position 52.

If the RETURN= value is 00000000 and the REASON= value is 00000004, the set of
reply messages is incomplete. After retrieving the replies indicated by the
CSQN205I message, issue a further MQGET call to wait for a further set of replies.
The first message in the next set of replies will again be CSQN205I, indicating how
many replies there are, and whether there are still more to come.

See the MQSeries for QS/390 Messages aud Coded manual for more details about the

individual messages.

If you are using a non-English language feature, the text and layout of the replies
are different from those shown here. However, the size and position of the count
and return codes in message CSQN205I are the same.

Chapter 3. Writing programs to administer MQSeries 35

Writing administration programs

Using the DISPLAY commands

36

To obtain information about MQSeries, use the MQSeries DISPLAY commands. Use
these commands rather than MQINQ if you want:

¢ Information about objects on a remote queue manager. (MQINQ only returns
information from the local queue manager.)

* Reply messages ready-formatted for printing. (MQINQ returns information that
is not formatted.)

* Other information that MQINQ does not provide.

The format of the replies from these commands:
DISPLAY CMDSERV
DISPLAY DOQM
DISPLAY GROUP
DISPLAY LOG
DISPLAY MAXSMSGS
DISPLAY SECURITY
DISPLAY THREAD
DISPLAY TRACE
DISPLAY USAGE

is the same, regardless of whether you issue the command from an application
program or from an OS/390 console. However, if you issue DISPLAY commands
listed below for MQSeries objects or object status, the format is different when they
are issued from an application program.

DISPLAY CHANNEL/CHSTATUS

DISPLAY CLUSQMGR

DISPLAY NAMELIST

DISPLAY PROCESS

DISPLAY QMGR

DISPLAY QUEUE/QSTATUS

DISPLAY STGCLASS

The user messages in the replies are still in the form of character strings, however,
the attribute values in a message have the fixed positions relative to the attribute
name.

The format of the reply is:
msg_no +CSQLl attr_name(value) attr _name attr_name(value)

where:
msg_no An 8 character message number
+CSQ1 The command prefix string
attr_name The attribute or keyword name
value The attribute value

System Administration Guide

Writing administration programs

Examples of commands and their replies

Here are some examples of commands that could be built into MQSeries messages,
and the user messages that are the replies. Unless otherwise stated, each line of the
reply is a separate message.

Messages from a DEFINE command
The following command:
DEFINE QLOCAL(Q1)

Produces these messages:

CSQN2051 COUNT= 2, RETURN=00000000, REASON=00000000
CSQ90221 +CSQ1 CSQMMSGP ' DEFINE QLOCAL' NORMAL COMPLETION

These reply messages are produced on normal completion.

Messages from a DELETE command
The following command:
DELETE QLOCAL(Q2)

Produces these messages:

CSQN2051 COUNT= 4, RETURN=0000000C, REASON=00000008
CSQM1251 +CSQL CSQMUQLC QLOCAL (Q2) QSGDISP(QMGR) WAS NOT FOUND
CSQME90E +CSQL CSQMUQLC FAILURE REASON CODE X'00D44002'
CSQ9023E +CSQ1 CSQMUQLC ' DELETE QLOCAL' ABNORMAL COMPLETION

These messages indicate that a local queue called Q2 does not exist.

Messages from DISPLAY commands

The following examples show the replies from some DISPLAY commands.

Finding out the name of the dead-letter queue
If you want to find out the name of the dead-letter queue for a queue manager,

issue this command from an application program:
DISPLAY QMGR DEADQ

The following three user messages are returned, from which you can extract the
required name:

CSQN2051 COUNT= 3, RETURN=00000000, REASON=00000000
CSQM4091 +CSQL QMNAME(CSQ1) DEADQ(SYSTEM.DEAD.QUEUE)
€SQ90221 +CSQ1 CSQMDRTS ' DISPLAY QMGR' NORMAL COMPLETION

Chapter 3. Writing programs to administer MQSeries 37

Writing administration programs

38

Messages from the DISPLAY THREAD command

The following command:
DISPLAY THREAD(*) TYPE(*)

Produces these messages:

CSQN2051 COUNT= 20, RETURN=00000000, REASON=00000000.

CSQV401T +CSQ1 DISPLAY THREAD REPORT FOLLOWS -

CSQv402I +CSQL ACTIVE THREADS - 668

NAME STA REQ THREAD-XREF USERID ASID URID

ABCDEFG T 3 ABCDEFG 002D 000000000000
MQSCIC1 T 4 MQSCIC1 0034 000000000000
MQSCIC1 T 0 00011128C3D2C1D40000023C MQSCIC1 0034 000000000000
MQSCIC1 T 3 MQSCIC1 0034 000000000000
MQSCIC1 T 1 0034 000000000000
MQSCIC1 T 1 0034 000000000000
MQSCIC1 T 1 0034 000000000000
MQSCIC1 T 1 0034 000000000000
MQSCIC1 T 1 0034 000000000000
MQSCIC1 T 1 0034 000000000000
MQSCIC1 T 1 0034 000000000000
MQSCIC1 T 0 00012020C3D2E3C90000039C MQSCIC1 0034 000000000000
DISPLAY ACTIVE REPORT COMPLETE

CSQV4121 +CSQ1 CSQVDT NO INDOUBT THREADS FOUND FOR NAME=MQSCIC1

CSQv412I +CSQL CSQVDT NO INDOUBT THREADS FOUND FOR NAME=ABCDEFG

CSQ90221 +CSQ1 CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

The actual number and content of the messages depend on what is running in
your queue manager.

Messages from the DISPLAY QUEUE command
The following examples show how the results from a command depend on the
attributes specified in that command.

Example 1: You define a local queue using the command:
DEFINE QLOCAL(Q1) DESCR('A sample queue') GET(ENABLED) SHARE

If you issue the following command from an application program:
DISPLAY QUEUE(Ql) SHARE GET DESCR

These three user messages are returned:

CSQN205I COUNT= 3, RETURN=00000000, REASON=00000000
CSQM401T +CSQL QUEUE(Q1) TYPE(
QLOCAL) QSGDISP(QMGR)

DESCR(A sample queue
) SHARE ~ GET(ENABLED)
€SQ90221 +CSQLl CSQMDMSG ' DISPLAY QUEUE' NORMAL COMPLETION

Note: The second message, CSQM401I, is shown here occupying four lines.

System Administration Guide

Writing administration programs

Example 2: Two queues have names beginning with the letter “A”:
Al is a local queue with its PUT attribute set to DISABLED.
A2 is a remote queue with its PUT attribute set to ENABLED.

If you issue the following command from an application program:
DISPLAY QUEUE(Ax) PUT

These four user messages are returned:

CSQN205I COUNT= 4, RETURN=00000000, REASON=00000000
CSQM401T +CSQl QUEUE(AL) TYPE(
QLOCAL) QSGDISP(QMGR)
PUT(DISABLED)
CSQM4061 +CSQL QUEUE (A2) TYPE(

QREMOTE) PUT(ENABLED)
CSQ90221 +CSQ1 CSQMDMSG ' DISPLAY QUEUE' NORMAL COMPLETION

Note: The second and third messages, CSQM401I and CSQM406I, are shown here

occupying three and two lines respectively.

Messages from the DISPLAY NAMELIST command

A namelist is defined by the command:
DEFINE NAMELIST(N1) NAMES(Ql,SAMPLE_QUEUE)

If you issue the following command from an application program:
DISPLAY NAMELIST(N1) NAMES NAMCOUNT

The following three user messages are returned:

CSQN2051 COUNT= 3, RETURN=00000000, REASON=00000000
CSQM4071 +CSQL NAMELIST(N1) QS
GDISP(QMGR) NAMCOUNT (2) NAMES(Q1

,SAMPLE_QUEUE
€SQ90221 +CSQ1 CSQMDMSG ' DISPLAY NAMELIST' NORMAL COMPLETION

Note: The third message, CSQM4071, is shown here occupying three lines.

Chapter 3. Writing programs to administer MQSeries

39

Writing administration programs

Messages from commands with CMDSCOPE

The following examples show the replies from commands that have been entered
with the CMDSCOPE attribute.

Messages from the ALTER PROCESS command

The following command:
ALT PRO(V4) CMDSCOPE(*)

Produces the following messages:

CSQN205I COUNT= 2, RETURN=00000000, REASON=00000004
CSQN1371 !MQ25 'ALT PRO' command accepted for CMDSCOPE(*), sent to 2
CSQN2051 COUNT= 5, RETURN=00000000, REASON=00000004

CSQN1211 !MQ25 'ALT PRO' command responses from MQ26

CSQM1251 !'MQ26 CSQMMSGP PROCESS(V4) QSGDISP(QMGR) WAS NOT FOUND
CSQMO9OE !MQ26 CSQMMSGP FAILURE REASON CODE X'00D44002'

CSQ9023E !MQ26 CSQMMSGP ' ALT PRO' ABNORMAL COMPLETION

CSQN2051 COUNT= 3, RETURN=00000000, REASON=00000004

CSQN1211 !MQ25 'ALT PRO' command responses from MQ25

€SQ90221 !MQ25 CSQMMSGP ' ALT PRO' NORMAL COMPLETION

CSQN2051 COUNT= 2, RETURN=0000000C, REASON=00000008

CSQN123E !'MQ25 'ALT PRO' command for CMDSCOPE(x*) abnormal completion

The command was entered on queue manager MQ25 and sent to two queue
managers (MQ25 and MQ26). The command was successful on MQ25 but the
process definition did not exist on MQ26, so the command failed on that queue
manager.

Messages from the DISPLAY PROCESS command

The following command:
DIS PRO(V*) CMDSCOPE(*)

Produces the following messages:

CSQN2051 COUNT= 2, RETURN=00000000, REASON=00000004
CSQN1371 !'MQ25 'DIS PRO' command accepted for CMDSCOPE(x), sent to 2
CSQN2051 COUNT= 5, RETURN=00000000, REASON=00000004

CSQN1211 !MQ25 'DIS PRO' command responses from MQ26
CSQM4081 !'MQ26 PROCESS(V2) QSGDISP(COPY)

CSQM4081 !'MQ26 PROCESS(V3) QSGDISP(QMGR)

CSQ90221 !'MQ26 CSQMDRTS ' DIS PROCESS' NORMAL COMPLETION
CSQN2051 COUNT= 7, RETURN=00000000, REASON=00000004
CSQN1211 !MQ25 'DIS PRO' command responses from MQ25
CSQM4081 !'MQ25 PROCESS(V2) QSGDISP(COPY)

CSQM4081 !'MQ25 PROCESS(V2) QSGDISP(GROUP)

CSQM4081 !'MQ25 PROCESS(V3) QSGDISP(QMGR)

CSQM4081 'MQ25 PROCESS(V4) QSGDISP(QMGR)

CSQ90221 !'MQ25 CSQMDRTS ' DIS PROCESS' NORMAL COMPLETION
CSQN2051 COUNT= 2, RETURN=00000000, REASON=00000000
CSQN1221 !'MQ25 'DIS PRO' command for CMDSCOPE(*) normal completion

The command was entered on queue manager MQ25 and sent to two queue
managers (MQ25 and MQ26). Information is displayed about all the processes on
each queue manager with names starting with the letter V.

40 System Administration Guide

Writing administration programs

Messages from the DISPLAY CHSTATUS command

The following command:
DIS CHS(VT) CMDSCOPE(*)

Produces the following messages:

CSQN205I COUNT= 2, RETURN=00000000, REASON=00000004
CSQN1371 !MQ25 'DIS CHS' command accepted for CMDSCOPE(*), sent to 2
CSQN2051 COUNT= 3, RETURN=00000000, REASON=00000004

CSQN1211 !MQ25 'DIS CHS' command responses from MQ25
CSQM1341 !'MQ25 CSQMDCST DIS CHS(VT) COMMAND ACCEPTED
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DIS CHS' command responses from MQ26
CSQM1341 !MQ26 CSQMDCST DIS CHS(VT) COMMAND ACCEPTED
CSQN2051 COUNT= 4, RETURN=00000000, REASON=00000004
CSQN1211 !MQ25 'DIS CHS' command responses from MQ25

CSQ90221 !MQ25 CSQXDRTS ' DIS CHS' NORMAL COMPLETION
CSQN2051 COUNT= 4, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DIS CHS' command responses from MQ26

CSQ90221 !MQ26 CSQXDRTS ' DIS CHS' NORMAL COMPLETION
CSQN2051 COUNT= 2, RETURN=00000000, REASON=00000000
CSQN1221 !MQ25 'DIS CHS' command for CMDSCOPE(*) normal completion

CSQM4221 !MQ25 CHSTATUS(VT) CHLDISP(PRIVATE) CONNAME() CURRENT STATUS(STOPPED)

CSQMA221 1MQ26 CHSTATUS(VT) CHLDISP(PRIVATE) CONNAME() CURRENT STATUS(STOPPED)

The command was entered on queue manager MQ25 and sent to two queue
managers (MQ25 and MQ26). Information is displayed about channel status on

each queue manager.

Messages from the STOP CHANNEL command

The following command:
STOP CHL(VT) CMDSCOPE (*)

Produces these messages:

CSQN2051 COUNT= 2, RETURN=00000000, REASON=00000004
CSQN1371 !MQ25 'STOP CHL' command accepted for CMDSCOPE(*), sent to 2
CSQN2051 COUNT= 3, RETURN=00000000, REASON=00000004

CSQN1211 !MQ25 'STOP CHL' command responses from MQ25
CSQM1341 'MQ25 CSQMTCHL STOP CHL(VT) COMMAND ACCEPTED
SQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN1211 !MQ25 'STOP CHL' command responses from MQ26
CSQM1341 !'MQ26 CSQMTCHL STOP CHL(VT) COMMAND ACCEPTED
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'STOP CHL' command responses from MQ26
€SQ90221 !MQ26 CSQXCRPS ' STOP CHL' NORMAL COMPLETION
CSQN2051 COUNT= 3, RETURN=00000000, REASON=00000004
CSQN1211 !MQ25 'STOP CHL' command responses from MQ25
€SQ90221 !MQ25 CSQXCRPS ' STOP CHL' NORMAL COMPLETION
CSQN2051 COUNT= 2, RETURN=00000000, REASON=00000000
CSQN1221 !'MQ25 'STOP CHL' command for CMDSCOPE(*) normal completion

The command was entered on queue manager MQ25 and sent to two queue
managers (MQ25 and MQ26). Channel VT was stopped on each queue manager.

Chapter 3. Writing programs to administer MQSeries

41

Writing administration programs

Messages from commands that generate commands with

42

CMDSCOPE

The following command:
DEF PRO(V2) QSGDISP(GROUP)

Produces these messages:

CSQN2051
CSQM1221
CSQN138I
CSQN2051
CSQN1211
€SQ90221
CSQN2051
CSQN1211I
€SQ90221
CSQN2051
CSQN1221

COUNT= 3, RETURN=00000000, REASON=00000004
IMQ25 CSQMMSGP ' DEF PRO' COMPLETED FOR QSGDISP(GROUP)
IMQ25 'DEFINE PRO' command generated for CMDSCOPE(*), sent to 2
COUNT= 3, RETURN=00000000, REASON=00000004
IMQ25 'DEFINE PRO' command responses from MQ25
IMQ25 CSQMMSGP ' DEFINE PROCESS' NORMAL COMPLETION
COUNT= 3, RETURN=00000000, REASON=00000004
IMQ25 'DEFINE PRO' command responses from MQ26
IMQ26 CSQMMSGP ' DEFINE PROCESS' NORMAL COMPLETION
COUNT= 2, RETURN=00000000, REASON=00000000
IMQ25 'DEFINE PRO' command for CMDSCOPE(*) normal completion

The command was entered on queue manager MQ25. When the object was created
on the shared repository, another command was generated and sent to all the
active queue managers in the queue-sharing group (MQ25 and MQ26).

End of Product-sensitive programming interface information

System Administration Guide

Writing administration programs

If you do not receive a reply

If you do not receive a reply to your request message, work through this checklist:

Is the command server running?

Is the WaitInterval long enough?

Are the system-command input and reply-to queues correctly defined?
Were the MQOPEN calls to these queues successful?

Are both the system-command input and reply-to queues enabled for MQPUT
and MQGET calls?

Have you considered increasing the MAXDEPTH and MAXMSGL attributes of
your queues?

Are you are using the Correlld and MsgId fields correctly?
Is the MQSeries subsystem still running?

Was the command built correctly?

Are all your remote links defined and operating correctly?
Were the MQPUT calls correctly defined?

Has the reply-to queue been defined as a temporary dynamic queue instead of a
permanent dynamic queue? (If the request message is persistent, you must use a
permanent dynamic queue for the reply.)

When the command server generates replies but cannot write them to the reply-to
queue that you specity, it tries to write them to the system dead-letter queue.

Passing commands using MGCR or MGCRE

If you have the correct authorization, you can pass MQSeries commands from your
program to multiple MQSeries subsystems by the MGCR or MGCRE (SVC 34)
0S/390 service. The value of the CPF identifies the particular MQSeries subsystem
to which the command is directed. For information about CPFs, see the

for OS/390 System CJPfu’n Guidd

If you use MGCRE, you can use a Command and Response Token (CART) to get
the direct responses to the command.

Chapter 3. Writing programs to administer MQSeries 43

44 System Administration Guide

Part 2. MQSeries and CICS

Chapter 4. Operating the CICS adapter

Invoking the adapter’s control functions.

From the CICS adapter control panels

From the CICS command line .

From CICS application programs . .
Command syntax in application programs .
Passing parameters from a CICS transaction
EXEC CICS LINK interface messages .

Accessing the CICS adapter control panels .

Starting a connection .

Starting a connection from the CICS adapter

control panels .

Starting a connection from the CICS Command

line . .
Specifying lowercase queue names

Starting a connection from a CICS apphcatlon

program -

Stopping a connection .

Stopping a connection from the CICS adapter

control panels .

Stopping a connection from the CICS command

line .

Stopping a connectlon from a CICS apphcatlon

program .

Modifying a connection
Modifying a connection from the CICS adapter
control panels .

Modifying a connection from the CICS command

line .

Modifying a connectlon from a CICS apphcatron

program .

Displaying details of connectlons and CICS tasks
Displaying details of a connection from the CICS
adapter control panels. .

Starting an instance of the task 1n1t1ator CKTI
Starting CKTI from the CICS adapter control
panels . .

Starting CKTI from the CICS command hne

Starting CKTI from a CICS application program

Starting CKTI automatically . .

Stopping an instance of CKTI . .
Stopping an instance of CKTI from the CICS
adapter control panels.

Stopping an instance of CKTI from the command

line .

Stopping an 1nstance of CKTI from an

application program .

Displaying the current 1nstances of CKTI
Displaying the current instances of CKTI from
the CICS adapter control panels

Displaying CICS task information .

Displaying CICS tasks from the CICS adapter

control panels .

Displaying connection status and in- fhght tasks
From the CICS command line .

From a CICS application program .

© Copyright IBM Corp. 1993, 2000

. 47
. 47
. 47
. 47
. 48
. 48

48

. 49
. 50
. 51
. 51

. 52
. 52

. 53
. 54

. 54
. 55
. 56
. 56

. 57

. 58
. 59

. 59
. 60

. 60
. 61

61

. 61
. 62

. 62

. 63

. 63
. 64

. 64
. 65

. 65

66

. 66
. 66

Purging tasks that are using the CICS adapter.
Shutting down a connection between MQSeries and
the CICS adapter

Orderly shutdown .

Forced shutdown

Chapter 5. Operating the CICS brldge
Starting the CICS bridge .

Shutting down the CICS bridge.
Controlling CICS-bridge throughput .

. 68
. 68
. 69

.71
.71
.72
.72

45

46 System Administration Guide

Chapter 4. Operating the CICS adapter

This chapter describes how you can use the CICS adapter control functions to
initiate and manage connections between MQSeries and CICS. It describes these
tasks:

G : 7 : 2

° ’ . ”

g . . ”

4 . : ”

. I”Mndifx/ing aconnection” on page 54

= . . . 7

” . .) ”

4 . . ”

. I”ﬁiqp]nving the current instances of CKTI” an page 64

. I"T)iqp]nving CICS task information” on page 64

G . : 77

. ” . . . 173

bageed

Before you can use the CICS adapter for messaging, you must start the MQSeries
subsystem.

Invoking the adapter’s control functions

You can invoke the control functions of the CICS adapter in three different ways:
1. From the CICS adapter control panels.

2. From the CICS command line.

3. From an application program.

From the CICS adapter control panels

You can use the CICS adapter control panels to monitor and control connections
between MQSeries and CICS.

From the initial panel, you first select an item from the menu bar at the top of the
panel, and then select an action from one of the pull-down menus. In the
displayed panel or secondary window, you can then type new values in the fields,
as required.

From the CICS command line

You can take a “fast-path” approach and bypass the CICS adapter control panels,
by specifying command line parameters on the CKQC transaction. The syntax of
these command parameters, and examples of them, are given for each of the tasks
described later in this chapter.

Note: You can also issue these commands from the console using OS/390
commands. Commands take this form:

MODIFY CICS-job-name CKQC command-1ine-command

© Copyright IBM Corp. 1993, 2000 47

Operating the CICS adapter

48

From CICS application programs

You can use the EXEC CICS LINK command to invoke most adapter control
functions from CICS application programs. The syntax of the EXEC CICS LINK
commands you need, and examples, are given for each of the tasks described later
in this chapter.

Command syntax in application programs
Some commands issued in this way must be padded with trailing spaces to make

the length of the command 10 characters. When an argument follows the
command, an extra space character must be added as a separator. See

The commands affected by this restriction and the number of trailing spaces
required for each command are:

Command Number of trailing spaces (not including the separator)
START

MODIFY 4

STARTCKTI 1

STOPCKT 1

With all other commands the padding is optional.

EXEC CICS LINK PROGRAM('CSQCRST ')
INPUTMSG (' CKQC MODIFY Y

Figure 12. Padding adapter commands. The MODIFY command must be padded with 4
trailing spaces plus another space as a separator. Starting at the ‘M’ in MODIFY, the
argument ‘Y’ is the twelfth character.

Note: This restriction applies only to commands issued from an application
program; it does not apply to commands issued from the command line.

Passing parameters from a CICS transaction
Use the following rules to determine how to pass the parameters:

* The CICS transaction must be running on an attached terminal. If it is not, all
MQSeries commands are ignored.

* If a CICS application program on an attached terminal is connected to MQSeries,
you must use the INPUTMSG option with EXEC CICS LINK to pass parameters,
except at PLTPI time.

* If you connect to MQSeries at PLTPI time, you must use the COMMAREA
option to pass parameters. If you use the INPUTMSG option, the command is
ignored.

However, the adapter STOP commands:

CKQC STOP
CKQC STOP FORCE

cannot be run at PLTPI time, regardless of whether you use the INPUTMSG
option or the COMMAREA option.

System Administration Guide

Operating the CICS adapter

EXEC CICS LINK interface messages
If you invoke the adapter operation functions START and STOP from an

application program using EXEC CICS LINK, the resultant messages are written to

both the system console and a transient data queue (TDQ) named CKQQ. When

the application program returns from the LINK, it can read back the messages by
repeating EXEC CICS READQ TD QUEUE(CKQQ) until the queue is empty. The
following restrictions apply:

e The TDQ queue name is CKQQ and cannot be changed. A sample TDQ
definition is provided (in CSQ4DCT2), which defines CKQQ as an intra-partition
TDQ.

* The queue is not cleared before it is written to.

¢ The messages are not time-stamped.

* If you have more than one application writing to the TDQ, the messages are not
serialized. It is the responsibility of the invoking programs to serialize
themselves.

e The same set of messages also appear on the system console.

* The server subtask messages are not written to CKQQ.

Chapter 4. Operating the CICS adapter 49

Operating the CICS adapter

Accessing the CICS adapter control panels

50

To access the adapter control panels, use the CICS transaction CKQC:
1. Type CKQC and press Enter.
The CICS adapter control initial panel, shown in w, is displayed.

2. In the menu bar at the top of the screen, use the TAB key to move between the
three options Connection, CKTI, and Task.

3. Press Enter to select your choice.

4. Select the required option from one of the pull-down menus by typing the
number of your choice and then pressing Enter to confirm or function key F12
to cancel.

5. Press function key F1 to get help on any panel or window.

Connection CKTI Task)
CKQCcMo IBM MQSeries for 0S/390 - CICS adapter control initial panel
Select menu bar item using Tab key. Then press Enter.
######H #i###AR AR
##
#i# ### ## ## ## ##
#H## ## [T 333334 #i##E #E R ##### HEHEEE
#E #E ## #H##EE # # #EEE #E# #
#E #E #E ## ## ## #####HE HH ## RS HERRERE
o #HE #E HEE #H# ## ## # ## ###
#E##EREE #E HERERERRAE HEEEE #H ## #EEEE R
for 0S/390
(C) Copyright IBM Corporation 1993, 2000. A1l rights reserved.
Fl=Help F3=Exit
o J

Figure 13. The CICS adapter control initial panel

Note: You can access the adapter control panels without starting the MQSeries
subsystem. You can also start a connection but it will not be active until
MQSeries is started.

System Administration Guide

Operating the CICS adapter

Starting a connection

You can start a connection from:

e The CICS adapter control panels

* The CICS command line

* A CICS application program

¢ A PLTPI program

* The CICS MQCONN SIT parameter

Starting a connection from the CICS adapter control panels
To start a connection from the CICS adapter control initial panel:
1. Select Connection from the menu bar.
2. Select the Start action from the pull-down menu. See @

3. Modify the connection values displayed in the Start a Connection secondary

parameter window. Alternatively, use the defaults derived from the INITPARM
settings, if defined.

4. Press Enter to confirm.

Messages indicating the success or failure of the attempt to start the connection are
displayed on the CICS adapter messages panel, CKQCM1.

Connection CKTI Task)
Fo e - R ettt
I Select an action. | for 05/390 - CICS adapter control initial panel
i 1 1. Start... sing Tab key. Then press Enter.
2. Stop...
i 3. Modify... | e +
| 4. Display | Start a Connection
#
B it + Type parameters. Then press Enter.
| Fl=Help F12=Cancel |
Fomm e + 1. Queue Manager Name (SN) . . . QMGR ##
#H # 2. Initiation Queue Name (IQ)
| CICS.INITIATION.QUEUEL
#HE # HEH 3. Trace Number (TN) 123
#
e +
| Fl=Help F12=Cancel lo
e - +
(C) Copyright IBM Corporation 1993, 2000. All rights reserved.
Fl=Help F3=Exit

Figure 14. Starting a connection

Chapter 4. Operating the CICS adapter 51

Operating the CICS adapter

52

Starting a connection from the CICS command line

The example shown in [Eigure 19 starts a connection, using the default connection
values set at system initialization.

CKQC START

Figure 15. Starting a connection from the command line

The command shown in [Eigure 14 starts a connection, using the explicitly defined
connection parameter values. The parameters are positional—every field must be
entered to its maximum length if you want to override the default.

CKQC START Y|N <subsystem ID> <trace number> <initiation queue name>

Figure 16. Starting a connection from the command line specifying parameters

Where:
YIN Specify either:
Y' Use the default values, that is, substitute default values for any
blank arguments.
'N' Do not use the default values.

<subsystem ID>
Name of the queue manager to connect to.

<trace number>
The trace number. It must be in the range 0 through 199.

<initiation queue name>
The name of the default initiation queue.

Specifying lowercase queue names
By default, CICS translates lowercase input, for both keywords and parameters, to

uppercase. Therefore, by default, these commands are equivalent:

CKQC START Y CSQ1l 199 CICSO1.INITQ
ckgc start y csql 199 cics0l.initq

Figure 17. Specifying lowercase queue names

If you want to use lowercase queue names, you must:

1. Specify UCTRAN(TRANID) on the TYPETERM definition of terminals that start
adapter control functions.

2. Specify UCTRAN(NO) on the transaction profile used by all “CKxx”
transactions.

Thereafter, the adapter translates all lowercase arguments, except queue names, to
uppercase.

For details of TYPETERM and PROFILE definitions, see the CICS Resource
Definition Guide.

System Administration Guide

Operating the CICS adapter

Starting a connection from a CICS application program

You can start a connection by linking the adapter connect program, CSQCQCON,
from a CICS application program. Your program, which can be written in C,
COBOL, PL/I, or assembler language, must pass a parameter list that specifies the
connection values to be used. The parameter list is:

CKQC

4-character transaction ID—must be 'CKQC'.
DISPMODE

1-byte field—must contain a blank.
CONNREQ

10-character field—must contain 'START !
DELIM1

1-byte delimiter field—must contain a blank.

INITP 1-character field that specifies whether this connection is to use the default
parameters set by INITPARM. The possible values are:

Y' Use the default values, that is, substitute default values for any
blank arguments.
'N' Do not use the default values. If you code 'N', you must supply all

the new connection values, to override the INITPARM settings, in
the CONNSSN, CONNTN, and CONNIQ fields.
Equivalent to 'Y'.

T

DELIM2
1-byte delimiter field—must contain a blank.

CONNSSN
4-character field used to specify the OS/390 subsystem name of the target
queue manager.

This must be the name of a queue manager, not a queue-sharing group.

DELIM3
1-byte delimiter field—must contain a blank.

CONNTN
3-character trace number. If supplied, it must be in the range 0 through
199.

DELIM4
1-byte delimiter field—must contain a blank.

CONNIQ
48-character field that specifies the name of the default initiation queue.

w shows the LINK command that your CICS program must issue.

EXEC CICS LINK PROGRAM('CSQCQCON')
INPUTMSG (CONNPL) INPUTMSGLEN(length of CONNPL)

Figure 18. Linking to the adapter connect program, CSQCQCON, from a CICS program. In
this example, the name of the parameter list is CONNPL.

Output messages from CSQCQCON are displayed on the system console.

Chapter 4. Operating the CICS adapter 53

Operating the CICS adapter

Stopping a connection

You can stop a connection from:

e The CICS adapter control panels
e The CICS command line

* A CICS application program

Stopping a connection from the CICS adapter control panels
From the initial panel:
1. Select Connection from the menu bar.
2. Select the Stop action from the pull-down menu.

3. Use the Stop Connection secondary parameter window to select the type of
shutdown that you require. Methods of shutting down the CICS adapter are
summarized in .

Connection CKTI Task
Fo e - e
I Select an action. | for 0S/390 - CICS adapter control initial panel
| 2 1. start... |sing Tab key. Then press Enter
| 2. Stop...
3. Modify... | oo +
| 4. Display | | Stop Connection |
#
B L L L + | Select stop type. |
| F1=Help F12=Cancel | | Then press Enter | ##
Fommm e it ’ |## ## ##H #E##E FEEREE
#E ## 1 1. Quiesce # ####E #E O # #
2. Force ### ## ## #E##AEE HEERAEE
#HE #E HEH ## ## #
#ARFRE o mmmmmmmm e +H# ## ## #E#AE #AEAAE
| Fl=Help F12=Cancel |
B et + for 0S/390

(C) Copyright IBM Corporation 1993, 2000. All rights reserved.

Fl=Help F3=Exit

Figure 19. Stopping a connection from the CKQC initial panel

The messages associated with stopping a connection are displayed on the system
console.

54 System Administration Guide

Operating the CICS adapter

Stopping a connection from the CICS command line

The command shown in [Eigure 2 initiates a quiesced shutdown. The connection
shuts down only after the last task has completed its work.

CKQC STOP

Figure 20. Stopping a connection from the command line—a quiesced shutdown

The command shown in w initiates a forced shutdown. The connection shuts
down immediately, regardless of the state of any in-flight tasks.

CKQC STOP FORCE

Figure 21. Stopping a connection from the command line—a forced shutdown

Stopping a connection from a CICS application program

To stop a connection from a CICS program, the program must link to the adapter
shutdown program, CSQCDSC. Figures &d and b4 show examples of LINK
commands initiating quiesced and forced shutdowns. When you do an EXEC CICS
LINK to CSQCDSC, the program requires a terminal associated task.

EXEC CICS LINK PROGRAM('CSQCDSC ')
INPUTMSG('CKQC STOP')

Figure 22. Stopping a connection from a CICS application program—a quiesced shutdown.
The QUIESCE parameter is optional.

EXEC CICS LINK PROGRAM('CSQCDSC ')
INPUTMSG('CKQC STOP FORCE')

Figure 23. Stopping a connection from a CICS application program—a forced shutdown

Output messages from CSQCDSC are displayed on the system console.

Chapter 4. Operating the CICS adapter 55

Operating the CICS adapter

Modifying a connection

You can modify a connection to reset the connection statistics, enable or disable the
API-crossing exit, or change the adapter’s trace number. You can do this from:

e The CICS adapter control panels

* The CICS command line

* A CICS application program

Modifying a connection from the CICS adapter control panels

From the initial panel:

1. Select Connection from the menu bar.

2. Select the Modify action from the pull-down menu.

3. Use the Modification Options secondary parameter window to specify the
option you require.
To change the trace number:
 Enter 4 in the options selection field

* Enter a number, in the range 0 through 199, in the trace number field. Do not
change the 4 in the options selection field before you press Enter. If you do,
the trace number will not be changed.

4. Press Enter to confirm your choice.
5. Repeat steps 1 through 4, as required.

Connection CKTI Task)
dFrooooooooonoonoooo0= SIS S
Select an action. for 0S/390 - CICS adapter control initial panel
| 3 1. start... |sing Tab key. Then press Enter.
| 2. Stop...
| 3. Modify... | #mmmem e +
4. Display Modification Options
#
o + Select modify option. Then
| Fl=Help F12=Cancel | press Enter. #H
oo + #i##E HEREEE
4 1. Reset statistics ## # #
#E #E #E # 2. Enable API Exit ## HEEEEEE HEREARA
##E #E HEE 3. Disable API Exit ## #
4. Change Trace Number 123 ## #EEEE HEEERE
o e +
| Fl=Help F12=Cancel | for 0S/390
A oooooooooooooooooTo s oEonsoos +
(C) Copyright IBM Corporation 1993, 2000. A1l rights reserved.
Fl=Help F3=Exit
J

Figure 24. Modifying a connection

56 System Administration Guide

Operating the CICS adapter

Modifying a connection from the CICS command line
You can use the CKQC MODIFY command to modify a connection.

CKQC MODIFY Y|N E|D <trace-number>

Figure 25. Format of command to modify connection parameters from the command line

The command syntax is shown in [Eigure 23, where:

YIN Specify one of:
Y Reset connection statistics.
N Do not reset connection statistics.

This parameter is required.

EID Specify one of:
E Enable the API-crossing exit.
D Disable the API-crossing exit.

This parameter is optional, the default is to disable the API-crossing exit.

<trace number>
Specify a valid trace number in the range 0 through 199. This parameter is
optional. If it is not specified, the trace number is not changed.

The command shown in resets the connection statistics only. The
command shown in disables the API-crossing exit and changes the trace

number to 121.

CKQC MODIFY Y

Figure 26. Resetting connection statistics from the command line

CKQC MODIFY N D 121

Figure 27. Changing the adapter’s trace number and disabling the API-crossing exit from the
command line

Chapter 4. Operating the CICS adapter 57

Operating the CICS adapter

58

Modifying a connection from a CICS application program

To modify a connection from a CICS program, the program must link to the
adapter reset program, CSQCRST.

w shows the format of the LINK command. It has the same effect as the
command-line requests described in L ity i

tommand line” on page 57,

EXEC CICS LINK PROGRAM('CSQCRST ')
INPUTMSG('CKQC MODIFY Y E <trace-number>")

Figure 28. Format of the MODIFY command issued from a CICS adapter application program

The command shown in Eigure 2d resets the connection statistics only.

EXEC CICS LINK PROGRAM('CSQCRST ')
INPUTMSG('CKQC MODIFY Y')

Figure 29. Resetting connection statistics from a CICS program

The command shown in [Eigure 30 disables the API-crossing exit and changes the
trace number to 121.

EXEC CICS LINK PROGRAM('CSQCRST ')
INPUTMSG (' CKQC MODIFY N D 121')

Figure 30. Linking to the adapter reset program, CSQCRST, from a CICS program

Note: The MODIFY command must be padded to 10 characters, see

System Administration Guide

Operating the CICS adapter

Displaying details of connections and CICS tasks

You can use the CICS adapter control panels to display details of the current

connection. The equivalent functionality is not available from the CICS command

line or from a CICS application program. However, you can obtain some status

information using the CKQC DISPLAY command, see D

Displaying details of a connection from the CICS adapter

control panels

From the initial panel:
Select Connection from the menu bar.
2. Select the Display action from the pull-down menu.

w shows the details provided:

1.

”

4 N
CKQCM2 Display Connection panel
Read connection information. Then press F12 to cancel.
CICS Applid = VICIC14 Connection Status = Connected Qmgrname = VCA
Trace No. = 124 Tracing = 0n API Exit = Off
Initiation Queue Name = VICIC14.INITIATION.QUEUE
———————————————————————————— STATISTICS ~mmmmmmmmmmmmmm e
Number of in-flight tasks = 1 Total No. of API calls = 43912
Number of running CKTI = 1
APIs and flows analysis Syncpoint Recovery
Run 0K 43874 MQINQ 6806 Tasks 26 Indoubt 0
Futile 0 MQSET 0 Backout 0 UnResol 0
MQOPEN 6833 ------ Flows ------ Commit 10 Commit 0
MQCLOSE 6823 Calls 43952 S-Phase 10 Backout 0
MQGET 10032 SyncComp 43922 2-Phase 0
GETWAIT 3399 SuspReqd 0 mmm e
MQPUT 13399 MsgWait 7 InitTCBs 8 StrtTCBs 8 BusyTCBs 0
MQPUT1 5 Switched 43940
Fl=Help F12=Cancel Enter=Refresh
o J

Figure 31. The display connection panel

The display is organized into three areas:

Top: parameters used for the connection, and current status.

Middle: connection statistics. These are totals for the current connection, since

statistics were last reset.

Bottom: statistics produced by the adapter.

For an explanation of specific fields on this screen, view the online help panels by
pressing function key F1.

Chapter 4. Operating the CICS adapter

59

Operating the CICS adapter

Starting an instance of the task initiator CKTI

CKTTI is the MQSeries-supplied task initiator! used in a CICS environment to start
a transaction when the trigger conditions on any of its associated MQSeries queues
are met.

You can start a CKTI instance from:

* The CICS adapter control panels

* The CICS command line

* A CICS application program

* From emulated terminals automatically

Starting CKTI from the CICS adapter control panels
From the initial panel:
1. Select CKTI from the menu bar.
2. Select the Start action from the pull-down menu.

3. In the Start Task Initiator secondary window, use the Initiation Queue Name
field to specify the name of the initiation queue to be serviced by this CKTI
instance. If you leave this field blank, the default initiation queue is used, if

defined.

Connection CKTI Task)
__________________ s
CKQCMo IBM MQSe | Select an action. | adapter control initial panel
Select menu bar it i 1 1. Start... Ipress Enter.

2. Stop...

3. Display

I I

T +
| F1 | Start Task Initiator |
#HE # A---
#H## ## Type Initiation Queue Name. Then press Enter.
A
#F #F ## # | Initiation Queue Name (IQ)
#HE A HEF | CICSO1.INITIATION.QUEUE2 |
#Hr | |

OSSR D +

| Fl=Help F12=Cancel |0

PSS S +
(C) Copyright IBM Corporation 1993, 2000. A1l rights reserved.
Fl=Help F3=Exit

J

Figure 32. Starting an instance of CKTI

1. Trigger monitor in MQSeries terminology.

60 System Administration Guide

Operating the CICS adapter

Starting CKTI from the CICS command line

The command shown in [Figure 33 starts an instance of CKTI to serve the default
initiation queue, if defined.

CKQC STARTCKTI

Figure 33. Starting an instance of CKTl—for the default initiation queue

The command shown in [Eigure 34 starts an instance of CKTI to serve a specified
initiation queue.

CKQC STARTCKTI CICSO1.INITIATION.QUEUE2

Figure 34. Starting an instance of CKTI—for a specified initiation queue

Starting CKTI from a CICS application program
To start an instance of CKTI from a CICS program, the program must link to the
adapter task initiation program, CSQCSSQ. Figures | through Bd show suitable
LINK commands. When you do an EXEC CICS LINK to CSQCSSQ, the program
requires a terminal associated task.

EXEC CICS LINK PROGRAM('CSQCSSQ ')
INPUTMSG('CKQC STARTCKTI ')

Figure 35. Linking to the adapter task-initiator program CSQCSSQ from CICS. This starts a
CKTI that uses the default initiation queue.

EXEC CICS LINK PROGRAM('CSQCSSQ ')
INPUTMSG('CKQC STARTCKTI CICSOL.INITIATION.QUEUE2')

Figure 36. Linking to the adapter task-initiator program CSQCSSQ from CICS. This starts a
CKTI that uses a named initiation queue.

Output messages from CSQCSSQ are displayed on the system console.

Note: The STARTCKTI command must be padded to 10 characters; see

Emwmm_mﬂgm_m_pagﬂgﬂ .
Starting CKTI automatically

To automate the starting of CKTIs under a specific user 1D, you can use an
automation product, for example, NetView. You can use this to sign on a CICS
console and issue the STARTCKTI command.

You can also use preset security sequential terminals, which have been defined to
emulate a CRLP terminal, with the sequential terminal input containing the CKQC
STARTCKTI command.

However, when the CICS adapter alert monitor reconnects CICS to MQSeries after,

for example, an MQSeries restart, only the CKTI specified at the initial MQSeries
connection is restarted. You must automate starting any extra CKTIs yourself.

Chapter 4. Operating the CICS adapter 61

Operating the CICS adapter

Stopping an instance of CKTI

62

You can stop an instance of CKTI by using;:
e The CICS adapter control panels

e The CICS command line

* A CICS application program

Stopping an instance of CKTI from the CICS adapter control

panels

From the initial panel:
Select CKTI from the menu bar.
Select the Stop action from the pull-down menu.

1.
2.
3.

Use the Stop Task Initiator secondary window to specify the name of the
initiation queue serviced by this instance of CKTL If you leave the name blank,
the default initiation queue, if defined, is used.

Connection CKTI Task)
.................. oo e e e et e ——————————————— o
CKQCMO IBM MQSe | Select an action. adapter control initial panel
Select menu bar it | 2 1. Start... |press Enter.
’ 2. Stop... ’
3. Display
S O .
| F1 | Stop Task Initiator |
i | |
#i#4 HHE | Type Initiation Queue Name. Then press Enter. | ##
H#F HE O #E |
#E A # | Initiation Queue Name (IQ)
#HE #E HE# CICSO1.INITIATION.QUEUE2 |
#
e e Qe
| Fl=Help F12=Cancel |0
roccmanooacEEanooECEEaaEECEEaEEaEEEanEEEEnEaaEnn00s +
(C) Copyright IBM Corporation 1993, 2000. A1l rights reserved.
Fl=Help F3=Exit
J

Figure 37. Stopping an instance of the task initiator CKTI

System Administration Guide

Operating the CICS adapter

Stopping an instance of CKTI from the command line

The command shown in [Figure 3d stops an instance of CKTI that is serving the
default initiation queue, if there is one.

CKQC STOPCKTI

Figure 38. Stopping an instance of CKTI from the command line—for the default initiation
queue

The command shown in [Eigure 3 stops the instance of CKTI that is serving a
specified initiation queue.

CKQC STOPCKTI CICSO1.INITIATION.QUEUEZ

Figure 39. Stopping an instance of CKTI from the command line—for a specified initiation
queue

Stopping an instance of CKTI from an application program

You can stop an instance of CKTI by linking to the adapter task-initiator program,
CSQCSSQ. Figures Ld through L1 show alternative LINK commands to stop an
instance of CKTI from a CICS program. The first command stops the CKTI that is
serving the default initiation queue; the second stops the CKTI serving a specified
initiation queue.

EXEC CICS LINK PROGRAM('CSQCSSQ ')
INPUTMSG('CKQC STOPCKTI ')

Figure 40. Stopping an instance of CKTI from a program—for the default initiation queue from
cics

EXEC CICS LINK PROGRAM('CSQCSSQ ')
INPUTMSG('CKQC STOPCKTI ~ CICSOL.INITIATION.QUEUE2')

Figure 41. Stopping an instance of CKTI from a program—for a specified initiation queue
from CICS

Note: The STOPCKTI command must be padded to 10 characters; see
| - Ticahi - Tl

Chapter 4. Operating the CICS adapter 63

Operating the CICS adapter

Displaying the current instances of CKTI

64

You can use the CICS adapter control panels to display details of the current
instances of CKTIL. The equivalent functionality is not available from the CICS
command line or from a CICS application program.

Displaying the current instances of CKTI from the CICS
adapter control panels

From the initial panel:
1. Select CKTI from the menu bar
2. Select the Display action from the pull-down menu

w shows the details provided for each instance of CKTL:
* CICS task number

» Task status

e Thread status

* Number of API calls it has issued

* Most recent API call it has issued

* Name of the initiation queue it is serving

Press function key F1 to display help information about each of the fields in this
panel.

/CKQCMZI Display CKTI panel

Read CKTI status information. Then press F12 to cancel.
CKTI 1 to 1of 1
Task No. Task Status Thread Status No-of-APIs Last API

0000123 Normal Msg Wait 2 MQGET
Initiation Queue Name: CICSO1.INITIATION.QUEUE1

Fl=Help F7=Backward F8=Forward F12=Cancel Enter=Refresh

Figure 42. The CKQC Display CKTI panel

System Administration Guide

Operating the CICS adapter

Displaying CICS

You can use the CICS adapter control panels to display information about CICS

task information

tasks using MQI calls. The equivalent functionality is not available from the CICS

command line or from a CICS application program. Howeve
status information using the CKQC DISPLAY command, see

calls. From the initial panel:

1.
2.

Select Task from the menu bar.
Select an action from the pull-down menu.

Select option 1, List all tasks to obtain information about all tasks that are
currently active. To limit the scope of the display, select option 2, List from
task, to specify the starting number of the first task to be displayed.

I'f %OU can obtain some

Displaying CICS tasks from the CICS adapter control panels

You can display information about the CICS tasks that are currently using MQI

/CKQCM3 Display Task panel)
Read task status information. Then press F12 to cancel.
Tasks 1 to 3 of 3
Txn User Task Task Thread Total Res In Last Thread
Id Id No. Status Status APIs Sec API-X MQ-Call 1D
PUTQ CICSUSER 00065 Normal InQueue 102 No No MQPUT1 00012420
GETQ CICSUSER 00067 Normal BtnCalls 22 No No MQOPEN 00012620
CKTI CICSUSER 00123 Normal Msg Wait 2 No No MQGET 00012C20
Fl=Help F7=Backward F8=Forward F12=Cancel Enter=Refresh)
Figure 43. The CKQC Display Task panel
w shows the details provided for each CICS task:
* Transaction ID (name)
* User ID
e CICS task number
* Task status
* Thread status
* Total number of API calls issued by this task
* Whether resource security checking is active for this task
* Whether this task is currently in the API-crossing exit
* Most recent API call issued by this task
* Thread ID used by MQSeries
Chapter 4. Operating the CICS adapter 65

Operating the CICS adapter

66

Displaying connection status and in-flight tasks

You can use the CKQC DISPLAY command to display limited information about
the current connection and CICS tasks from either the CICS command line or from
a CICS application program . The information from this command is returned in a
message CSQC453], see w This message contains:

* The name of the MQSeries subsystem.

* The status of the connection.

¢ The number of in-flight tasks that are still using the connection.

CSQC4531 VICYO6 CSQCDSPL Status of connection to JAC2 is Connected. 2
tasks are in-flight

Figure 44. Message showing the status of a connection

To obtam more detaﬂed 1nformat10n use the CICS adapter control panels. See

:%‘9, respectively.
From the CICS command line
You can use the CKQC DISPLAY command, shown in w, from the CICS

command line.

CKQC DISPLAY

Figure 45. Displaying the status of a connection

w shows a typical response to this command. The response messages are
sent to your CICS terminal.

,From a CICS application program
shows the LINK command for displaying the status of a connection from

a CICS application program.

EXEC CICS LINK PROGRAM('CSQCDSPL') INPUTMSG('CKQC DISPLAY')

Figure 46. Linking to the adapter program CSQCDSPL from a CICS program

@ shows a typical output from this command. The response messages are
sent to the CKQQ queue (the transient data queue).

The COMMAREA option can be used instead of INPUTMSG but only when the
program is run at PLT time.

System Administration Guide

Operating the CICS adapter

Purging tasks that are using the CICS adapter

You can use the CICS CEMT transaction to purge user tasks that are using the
CICS adapter. Tasks that are waiting on the adapter respond only to CEMT SET
TASK FORCEPURGE commands—CEMT SET TASK PURGE commands are
ignored. The way the adapter handles a FORCEPURGE command depends on the
kind of wait state that the task is in:

* If a task is waiting for a message to arrive, for example, the application has
issued an MQGET WAIT call, the task is abended with code AEXY immediately.
* If the task is waiting for an MQI request to be completed by MQSeries, message
CSQC4131 is displayed on the system console.
The adapter waits for the request to complete, and then checks whether it is
suitable to abend the task:

— If the task is in a critical state, the CICS adapter lets the task continue and
ignores the attempt to purge it. This is done to preserve data and system
integrity. Message CSQC415I is displayed.

A task is in a critical state is when, for example, it is in the process of
completing phase 2 of a two-phase commit sequence.

— If the task is not in a critical state, the adapter abends it with code AEXY.
Message CSQC414I is displayed.

For information about CEMT commands, see the CICS-Supplied Transactions
manual.

Chapter 4. Operating the CICS adapter 67

Operating the CICS adapter

Shutting down a connection between MQSeries and the CICS adapter

You can shut down a connection between MQSeries and the CICS adapter by using
the CKQC transaction or an application program. There are two types of

68

shutdown:
e Forced
* Quiesced

Other forms of connection shutdown result from a termination of CICS or
MQSeries. [able d summarizes how the adapter handles different forms of

connection shutdown.

Table 2. Shutting down a CICS adapter connection

Method of shutdown

How this is handled by the adapter

CKQC STOP (A quiesced
shutdown)

Mark the status of the adapter as Quiescing. Allow both
active and waiting tasks to complete. Allow syncpoint. Do
not allow calls from a new task. The last task initiates
disconnection from MQSeries.

CKQC STOP FORCE

Mark the status of the adapter as StoppingForce. Disconnect
from MQSeries. Resume waiting tasks. Fail any in-flight or
following MQI calls.

CICS warm shutdown

Issue message CSQC411I. Initiate a quiesced shutdown of
the connection; see CKQC STOP, above.

CICS immediate shutdown

Issue message CSQC410I. Any in-flight tasks using MQSeries
are backed out.

CICS abend

Issue message CSQC412L.

MQSeries quiesced

Initiate a quiesced shutdown of the connection; see CKQC
STOP, above.

MQSeries abend or forced
shutdown

Initiate a forced shutdown of connection; see CKQC STOP
FORCE, above.

Notes:

completes.

1. If the connection is not active (for example, quiesced) when CICS or MQSeries shuts
down, no action is taken and no messages are issued.

2. “Waiting tasks” includes instances of CKTI, which you must stop before shutdown

Orderly shutdown

An orderly shutdown of the connection lets each CICS transaction terminate before
thread subtasks are detached. When you use this method, there should be no
in-doubt units of work when you reconnect CICS. An orderly termination occurs in
each of the following situations:

* The CICS terminal operator issues a CKQC STOP command. CICS and MQSeries
remain active. The command can be issued from the command line, from a
terminal using the CKQC panels, or from a program, see page B4,

* The CICS terminal operator issues the CICS command:

CEMT PERFORM SHUTDOWN

For information about the CEMT PERFORM SHUTDOWN command, see the
CICS-Supplied Transactions manual.

System Administration Guide

Operating the CICS adapter

* MQSeries is quiesced by the command:

+CSQ1 STOP QMGR MODE (QUIESCE)

This stops the MQSeries subsystem, allows the currently identified tasks to
continue normal execution, and does not allow new tasks to identify themselves
to MQSeries. CICS remains active.

Forced shutdown

A forced shutdown of the connection can abend CICS transactions connected to
MQSeries. Therefore, there might be in-doubt units of work when the system is
reconnected. A forced shutdown occurs in each of these situations:

* The CICS terminal operator issues the CKQC STOP FORCE command. The
command can be issued from the command line, from a terminal using the
CKQC panels, or from a program, see page ba.

* The CICS terminal operator issues the CICS immediate termination command:
For information about this command, see the CICS-Supplied Transactions manual.

CEMT PERFORM SHUTDOWN IMMEDIATE

MQSeries remains active.

* The MQSeries forced termination command is issued:

+CSQ1 STOP QMGR MODE(FORCE) or +CSQl STOP QMGR MODE(RESTART)

CICS remains active.
* An MQSeries abend occurs. CICS remains active.
* CICS abend occurs. MQSeries remains active.

Chapter 4. Operating the CICS adapter 69

Operating the CICS adapter

70 System Administration Guide

Chapter 5. Operating the CICS bridge

This chapter describes how to operate the MQSeries CICS bridge. It discusses the
following topics:

. t’Starimg the CICS bridge’j

4 : . ”

o [~ 1 _hri 7

Starting the CICS bridge

To start the bridge, you need to run the CKBR transaction providing a maximum
of three parameters:

* Q=qqq, where gqq is the name of the queue holding requests. If you don’t specify
one, the default is SYSTEM.CICS.BRIDGE.QUEUE.

Remember that names of objects within MQSeries are case-sensitive.

* WAIT=nnn, where nnn is the number of seconds that you want the bridge task
to wait for second and subsequent requests before timing out when processing a
unit of work that runs many user programs.

The default wait time is unlimited.

You are recommended to specify a wait time. If you don’t, the CICS bridge
might inhibit CICS or MQSeries shut down.

* AUTH=xxx, where xxx is the security option. The default is LOCAL.

Start the CKBR task running by using one of the following methods:

¢ Input a single line from a terminal (3270 or other). Note that the terminal is not
freed until the monitor ends. The format is:

CKBR Q = <queue name>, AUTH = <auth option>, WAIT = nnn

For example:

CKBR Q = MyQueue, AUTH = IDENTIFY, WAIT = 30

¢ Issue an EXEC CICS START for the CKBR program with the parameters as data.

¢ Issue an EXEC CICS LINK to the program CSQCBRO0 with the parameters as
data in the commarea.

* Use TRIGGER TRIGTYPE(FIRST) from the bridge request queue to a process
specifying APPLICID(CKBR), with any parameters for the AUTH and WAIT
options in USERDATA.

The level of security you want to use will influence how you start the monitor
task. See the MQSeries for OS/390 Siystem Setup Guidd for information on the

security options available to you.

© Copyright IBM Corp. 1993, 2000 71

Operating the CICS bridge

Shutting down the CICS bridge

There are various ways in which you can shut down the CICS bridge:

* By altering the attributes of the request queue by setting GET(DISABLED)
* By shutting CICS down

* By shutting MQSeries down

Whichever method you choose, it will attempt to allow all the requests in progress
to complete first.

However in the event that this is not possible, the problems encountered are
reported on the CICS CSMT log.

Note: The CICS bridge does not stop CICS or MQSeries if either of them are in the
process of shutting down, unless bridge tasks started with
WAIT_UNLIMITED have MQGET calls outstanding for second or
subsequent messages in a unit of work.

Restarting the monitor
The monitor requires exclusive use of the request queue during its
initialization, so the monitor cannot be restarted until all bridge tasks for the
queue have terminated.

Controlling CICS-bridge throughput

72

You can control the throughput of the bridge by putting the bridge transaction,
CKBP, in a class of its own and setting the CLASSMAXTASK to suit your
requirements.

If a high volume of requests is expected, you could consider starting a second or
subsequent monitor task. To do this, you must create another request queue for the
sole use of this monitor (and the bridge tasks it starts).

System Administration Guide

Part 3. MQSeries and IMS

Chapter 6. Operating the IMS adapter.

Controlling IMS connections.

Connecting from the IMS control regron
Initializing the adapter and connecting to
MQSeries .

Thread attachment . .

Displaying in-doubt units of recovery
Recovering in-doubt units of recovery
Resolving residual recovery entries .

Controlling IMS dependent region connections
Connecting from dependent regions .
Region error options . .
Monitoring the activity on connectlons
Disconnecting from dependent regions

Disconnecting from IMS . .

Controlling the IMS trigger monitor .

Starting CSQQTRMN .
Stopping CSQQTRMN.

Chapter 7. Controlling the IMS bridge .
Starting and stopping the IMS bridge.
Controlling IMS connections. .
Controlling bridge queues
Resynchronizing the IMS bridge
Considerations for Commit mode 1 transactlons
Deleting messages from IMS.
Deleting Tpipes .

© Copyright IBM Corp. 1993, 2000

. 75
.75
. 76

. 76
.77
. 78
.78
.79
. 80
. 80
. 80
. 80
. 81
. 82
. 83
. 83
. 83

. 85
. 85
. 85
. 86
. 87

87

. 88
. 88

73

74 System Administration Guide

Chapter 6. Operating the IMS adapter

This chapter describes how to operate the IMS adapter, which connects MQSeries
to IMS systems.

Note: The IMS adapter does not incorporate any operations and control panels.

This chapter contains the following sections:

” .

Controlling IMS connections
IMS provides these operator commands to control and monitor the connection to

MQSeries:

/CHANGE SUBSYS
Deletes an in-doubt unit of recovery from IMS.

/DISPLAY OASN SUBSYS
Displays outstanding recovery elements.

/DISPLAY SUBSYS
Displays connection status and thread activity.

/START SUBSYS
Connects the IMS control region to an MQSeries subsystem.

/STOP SUBSYS
Disconnects IMS from an MQSeries subsystem.

/TRACE
Controls the IMS trace.

For more information about these commands, see the IMS/ESA Operator’s Reference
manual for the level of IMS that you are using.

IMS command responses are sent to the terminal from which the command was
issued. Authorization to issue IMS commands is based on IMS security.

© Copyright IBM Corp. 1993, 2000 75

Operating the IMS adapter

Connecting from the IMS control region

76

IMS makes one connection from its control region to each MQSeries subsystem.
IMS can make the connection in these ways:

* Automatically during either:
— A cold-start initialization.
— A warm start of IMS, if the MQSeries connection was active when IMS was
shut down.
* In response to the IMS command:

/START SUBSYS sysid
where sysid is the MQSeries subsystem name.

This command causes the following message to be displayed at the logical terminal
(LTERM):

DFS058 START COMMAND COMPLETED

The command is issued regardless of whether MQSeries is active or not, and does
not imply that the connection has been established.

The order in which you start IMS and MQSeries is not significant. If you start IMS
first, then, when MQSeries starts, MQSeries posts the control region modify task,
and IMS again tries to reconnect.

IMS cannot reconnect to MQSeries automatically if MQSeries is stopped with a
STOP QMGR command, the /STOP SUBSYS IMS command, or an abnormal end.

Therefore, you must make the connection by using the /START SUBSYS IMS
command.

Initializing the adapter and connecting to MQSeries

The adapter is a set of modules loaded into the IMS control and dependent
regions, using the IMS external subsystem attach facility.

This procedure initializes the adapter and connects to MQSeries:

1. Read the subsystem member (SSM) from IMS.PROCLIB. The SSM chosen is an
IMS EXEC parameter. There is one entry in the member for each MQSeries
subsystem to which IMS can connect. Each entry contains control information
about an MQSeries adapter.

2. Load the IMS adapter.

Note: IMS loads one copy of the adapter modules for each MQSeries instance
that is defined in the SSM member.

3. Attach the external subsystem task for MQSeries.

4. Run the adapter with the CTL EXEC parameter (IMSID) as the connection
name.

The process is the same whether the connection is part of initialization or a result
of the /START SUBSYS IMS command.

System Administration Guide

Operating the IMS adapter
If MQSeries is active when IMS tries to make the connection, the following
messages are sent:
* To the OS/390 console:
DFS36131 ESS TCB INITIALIZATION COMPLETE
* To the IMS master terminal:
CSQQOOOI IMS/TM imsid connected to queue manager ssnm

When IMS tries to make the connection and MQSeries is not active, the following
messages are sent to the IMS master terminal each time an application makes an
MQI call:

CSQQOO1I IMS/TM imsid not connected to queue manager ssnm.

Notify message accepted
DFS36071 MQM1 SUBSYSTEM ID EXIT FAILURE, FC = 0286, RC = 08,
JOBNAME = IMSEMPR1

If you get DFS36071 messages when you start the connection to IMS or on system
startup, this indicates that MQSeries is not available. To prevent a large numbers of
messages being generated, you must do one of the following:

1. Start the relevant MQSeries subsystem.
2. Issue a /STOP SUBSYS IMS command so that IMS does not expect to connect to
the MQSeries subsystem.

If you do neither, a DFS26071 message and the associated CSQQO001I message are
issued each time a job is scheduled in the region and each time a connection
request to MQSeries is made by an application.

Thread attachment

In an MPP or IFP region, IMS makes a thread connection when the first application
program is scheduled into that region, even if that application program does not
make an MQSeries call. In a BMP region, the thread connection is made when the
application makes its first MQSeries call (MQCONN or MQCONNX). This thread
is retained for the duration of the region or until the connection is stopped.

For both the message driven and non-message driven regions, the recovery thread
cross-reference identifier, Thread-xref, associated with the thread is:

PSTid + PSBname

where:
PSTid Partition specification table region identifier
PSBname

Program specification block name

You can use connection IDs as unique identifiers in MQSeries commands; if you

do, MQSeries automatically inserts these IDs into any operator message that it
generates.

Chapter 6. Operating the IMS adapter 77

Operating the IMS adapter

Displaying in-doubt units of recovery

78

The operational steps used to list and recover in-doubt units of recovery are
discussed here for relatively simple cases only.

If MQSeries ends abnormally while connected to IMS, it is possible for IMS to
commit or back out work without MQSeries being aware of it. When MQSeries
restarts, that work is termed in doubt. A decision must be made about the status of
the work.

To display a list of in-doubt units of recovery, issue the command:

+CSQL DISPLAY THREAD(*) TYPE(INDOUBT)

MQSeries responds with the following messages:

CSQV401T +CSQ1 DISPLAY THREAD REPORT FOLLOWS -

CSQV4061 +CSQ1 INDOUBT THREADS - 154

NAME THREAD-XREF URID NID

IMSJ 0002MQSPRG1 IMSJ.5600000000

IMSJ 0001IMQSINQ IMSJ.5700000000

DISPLAY THREAD REPORT COMPLETE

€SQ90221 +CSQ1 CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

where:

NAME
The connection name, which is the IMS system ID (the IMSID parameter
from the region JCL).

THREAD-XREF

The associated thread cross-reference, see ‘Thread attachment” on page 77.

NID The associated net-node.number taken from the IMS recovery token, where
net-node is the IMS system ID (with trailing blanks suppressed), number is
the OASN and commit number (leading zeros suppressed).

For a formal explanation of the displayed list, see the description of message

CSQV406I in the MQSeries for QS/390 Messages and Coded manual.

Recovering in-doubt units of recovery

To recover in-doubt units of recovery, issue this command:

+CSQ1 RESOLVE INDOUBT(connection-name) ACTION(COMMIT|BACKOUT)
NID(net-node.number)

where:

connection-name
The IMS system ID.

ACTION
Indicates whether to commit (COMMIT) or back out (BACKOUT) this unit
of recovery.

System Administration Guide

Operating the IMS adapter

net-node.number
The associated net-node.number.

One of the following messages is generated after the RESOLVE INDOUBT command:

CSQV4141 +CSQL THREAD network-id COMMIT SCHEDULED

CSQV4151 +CSQ1 THREAD network-id BACKOUT SCHEDULED

Resolving residual recovery entries

At given times, IMS builds a list of residual recovery entries (RREs). RREs are

units of recovery about which MQSeries could be in doubt. They arise in several

situations:

 If MQSeries is not operational, IMS has RREs that cannot be resolved until
MQSeries is operational. These RREs are not a problem.

* If MQSeries is operational and connected to IMS, and if IMS backs out the work
that MQSeries has committed, the IMS adapter issues message CSQQO10E. If the
data in the two systems must be consistent, there is a problem. Resolving it is
discussed in [£ i i "

* If MQSeries is operational and connected to IMS, there might still be RREs even
though no messages have informed you of this problem. After the MQSeries
connection to IMS has been established, you can issue the following IMS
command to find out if there is a problem:

/DISPLAY OASN SUBSYS sysid

To purge the RRE, issue one of the following IMS commands:

/CHANGE SUBSYS sysid RESET
/CHANGE SUBSYS sysid RESET OASN nnnn

where nnnn is the originating application sequence number listed in response to
your +CSQl DISPLAY command. This is the schedule number of the program
instance, giving its place in the sequence of invocations of that program since the
last IMS cold start. IMS cannot have two in-doubt units of recovery with the same
schedule number.

These commands reset the status of IMS; they do not result in any communication
with MQSeries.

Chapter 6. Operating the IMS adapter 79

Operating the IMS adapter

Controlling IMS dependent region connections

Controlling IMS dependent region connections involves these activities:
e Connecting from dependent regions

* Region error options

* Monitoring the activity on connections

* Disconnecting from dependent regions

Connecting from dependent regions

The IMS adapter used in the control region is also loaded into dependent regions.
A connection is made from each dependent region to MQSeries. This connection is
used to coordinate the commitment of MQSeries and IMS work. To initialize and
make the connection, IMS does the following:

1. It reads the subsystem member (SSM) from IMS.PROCLIB.
A subsystem member can be specified on the dependent region EXEC
parameter. If it is not specified, the control region SSM is used. If the region is
never likely to connect to MQSeries, to avoid loading the adapter, specify a
member with no entries.

2. It loads the MQSeries adapter.

For a batch message program, the load is not done until the application issues
its first messaging command. At that time, IMS tries to make the connection.

For a message-processing program region or IMS fast-path region, the attempt
is made when the region is initialized.

Region error options

If MQSeries is not active, or if resources are not available when the first messaging
command is sent from application programs, the action taken depends on the error
option specified on the SSM entry. The options are:

R The appropriate return code is sent to the application.

Q The application ends abnormally with abend code U3051. The input
message is re-queued.

A The application ends abnormally with abend code U3047. The input
message is discarded.

Monitoring the activity on connections

A thread is established from a dependent region when an application makes its
first successful MQSeries request. Information on connections and the applications

currently using them can be displayed by issuing the following command from
MQSeries:

+CSQ1 DISPLAY THREAD (connection-name)

80 System Administration Guide

Operating the IMS adapter

The command produces the following messages:

CSQV401I +CSQ1 DISPLAY THREAD REPORT FOLLOWS -

CSQV4621 +CSQ1 ACTIVE THREADS -

NAME ST A REQ THREAD-XREF USERID ASID URID
name s * ct thread-xref auth-id asid urid
name s * ct thread-xref auth-id asid urid
DISPLAY ACTIVE REPORT COMPLETE

€SQ90221 +CSQ1 CSQVDT ' DIS THREAD' NORMAL COMPLETION

For the control region, thread-xref is the special value CONTROL. For dependent
regions, it is the PSTid concatenated with the PSBname. guth-id is either the user
field from the job card, or the ID from the OS/390 started procedures table.

For an explanation of the displayed list, see the description of message CSQV402I
in the MQSeries fnr 0S/390 Mpcqngpc and Coded manual.

IMS provides a display command to monitor the connection to MQSeries. It shows
which program is active on each dependent region connection, the LTERM user
name, and the control region connection status. The command is:

/DISPLAY SUBSYS name

The status of the connection between IMS and MQSeries is shown as one of:

CONNECTED

NOT CONNECTED

CONNECT IN PROGRESS

STOPPED

STOP IN PROGRESS

INVALID SUBSYSTEM NAME=name

SUBSYSTEM name NOT DEFINED BUT RECOVERY OUTSTANDING

The thread status from each dependent region one of the following:

CONN
CONN, ACTIVE (includes LTERM of user)

Disconnecting from dependent regions

To change values in the SSM member of IMS.PROCLIB, you disconnect a
dependent region. To do this, you must:

1. Issue the /STOP REGION IMS command

2. Update the SSM member

3. Issue the /START REGION IMS command

Chapter 6. Operating the IMS adapter ~ 81

Operating the IMS adapter

Disconnecting from IMS

The connection is ended when either IMS or MQSeries terminates. Alternatively,
the IMS master terminal operator can explicitly break the connection by issuing the
following IMS command:

/STOP SUBSYS sysid

The command sends the following message to the terminal that issued it, usually
the master terminal operator (MTO):

DFSO581 STOP COMMAND IN PROGRESS

The /START SUBSYS sysid IMS command is required to re-establish the connection.

Note: The /STOP SUBSYS IMS command will not be completed if an IMS trigger
monitor is running.

82 System Administration Guide

Operating the IMS adapter

Controlling the IMS trigger monitor
The IMS trigger monitor (the CSQQTRMN transaction) is described in the

MQSeries for OS/390 Concepts and Plﬂnning Guidd

Starting CSQQTRMN

1.

Start a batch oriented BMP running the program CSQQTRMN for each
initiation queue you want to monitor.

Modify your batch JCL (described in the MQSeries for QS/390 Systems Setuy

) to add a DDname of CSQQUTT1 that points to a data set containing the
following information:

where:
QMGRNAME=q_manager_name Comment: queue manager name
INITQUEUENAME=init_q_name Comment: initiation queue name
LTERM=1term Comment: LTERM to remove error messages
CONSOLEMESSAGES=YES Comment: Send error messages to console
g_manager_name The name of the queue manager (if this is blank, the default
nominated in CSQQDEFV is assumed)
init_q_name The name of the initiation queue to be monitored
Tterm The IMS LTERM name for the destination of error messages
(if this is blank, the default value is MASTER).
CONSOLEMESSAGES=YES Requests that messages sent to the nominated IMS LTERM

are also sent to the OS/390 console. If this parameter is
omitted or misspelled then the default is NOT to send
messages to the console.

3. Add a DD name of CSQQUT?2 if you want a printed report of the processing of

CSQQUT1 input.

Notes:

1.

The data set CSQQUTT1 is defined with LRECL=80. Other DCB information is
taken from the data set. The DCB for data set CSQQUT?2 is RECFM=VBA and
LRECL=125.

You can put only one keyword on each record. The keyword value is delimited
by the first blank following the keyword; this means that you can include
comments. An asterisk in column 1 means that the whole input record is a
comment.

If you misspell either of the QMGRNAME or LTERM keywords, CSQQTRMN will use
the default for that keyword.
Ensure that the subsystem is started in IMS (by the /START SUBSYS

command) before submitting the trigger monitor BMP job. If it is not started,
your trigger monitor job will terminate, with abend code U3042.

Stopping CSQQTRMN

Once started, CSQQTRMN runs until either the connection between MQSeries and
IMS is broken due to one of the following events:

* MQSeries ending

* IMS ending

or an OS/390 STOP jobname command is entered.

Chapter 6. Operating the IMS adapter ~ 83

84 System Administration Guide

Chapter 7. Controlling the IMS bridge

This chapter describes how to control the IMS bridge. It discusses the following
topics:

There are no MQSeries commands to control the MQSeries-IMS bridge.

Starting and stopping the IMS bridge

Start the MQSeries bridge by starting OTMA. Either use the IMS command /START
OTMA, or start it automatically by specifying OTMA=YES in the IMS system
parameters. If OTMA is already started, the bridge starts automatically when
MQSeries startup has completed. An MQSeries event message is produced when
OTMA is started.

Use the IMS command /STOP 0TMA to stop OTMA communication. When this
command is issued, an MQSeries event message is produced.

Controlling IMS connections

IMS provides these operator commands to control and monitor the connection to
MQSeries:

/DEQUEUE TMEMBER tmember TPIPE tpipe
Removes messages from a Tpipe, specify PURGE to remove all messages
or PURGEL to remove the first message only.

/DISPLAY OTMA
Displays summary information about the OTMA server and clients, and
client status.

/DISPLAY TMEMBER name
Displays information about an OTMA client.

/DISPLAY TRACE TMEMBER name
Displays information about what is being traced.

/SECURE OTMA
Sets security options.

/START OTMA
Enables communications through OTMA.

/START TMEMBER tmember TPIPE tpipe
Starts the named Tpipe.

/STOP OTMA
Stops communications through OTMA.

© Copyright IBM Corp. 1993, 2000 85

Controlling the IMS bridge

/STOP TMEMBER tmember TPIPE tpipe
Stops the named Tpipe.

/TRACE
Controls the IMS trace.

For more information about these commands, see the IMS/ESA Operator’s Reference
manual for the level of IMS that you are using.

IMS command responses are sent to the terminal from which the command was
issued. Authorization to issue IMS commands is based on IMS security.

Controlling bridge queues

86

Issue the following IMS command to stop communicating with the MQSeries
system with XCF member name tmember through the bridge:

/STOP TMEMBER tmember TPIPE ALL

Issue the following IMS command to resume communication:

/START TMEMBER tmember TPIPE ALL

To stop communication with the MQSeries system on a single Tpipe, issue the
following IMS command:

/STOP TMEMBER tmember TPIPE tpipe

One or two Tpipes are created for each active bridge queue, so issuing this
command stops communication with the MQSeries queue. Use the following IMS
command to resume communication:

/START TMEMBER tmember TPIPE tpipe

Alternatively, you can alter the attributes of the MQSeries queue to make it get
inhibited.

System Administration Guide

Controlling the IMS bridge

Resynchronizing the IMS bridge

The IMS bridge is automatically restarted whenever MQSeries, IMS, or OTMA are
restarted.

The first task undertaken by the IMS bridge is to resynchronize with IMS. This
involves MQSeries and IMS checking sequence numbers on every synchronized
Tpipe. A synchronized Tpipe is used when persistent messages are sent to IMS
from an MQSeries-IMS bridge queue using commit mode 0 (commit-then-send).

If the bridge is unable to resynchronize with IMS at this time, the IMS sense code
is returned in message CSQ2023E and the connection to OTMA is stopped. If the
bridge is unable to resynchronize with an individual IMS Tpipe at this time, the
IMS sense code is returned in message CSQ2025E and the Tpipe is stopped. If a
Tpipe has been cold started, the recoverable sequence numbers are automatically
reset to 1.

If the bridge discovers mismatched sequence numbers when resynchronizing with
a Tpipe, message CSQ2020E is issued. Use the MQSeries command RESET TPIPE to
initiate resynchronization with the IMS Tpipe. You need to provide the XCF group
and member name, and the name of the Tpipe; this information is provided by the
message.

You can also specify:

* A new recoverable sequence number to be set in the Tpipe for messages sent by
MQSeries, and to be set as the partners receive sequence number. If you do not
specify this, the partners receive sequence number is set to the current MQSeries
send sequence number

* A new recoverable sequence number to be set in the Tpipe for messages
received by MQSeries, and to be set as the partners send sequence number. If
you do not specify this, the partners send sequence number is set to the current
MQSeries receive sequence number

If there is an unresolved unit of recovery associated with the Tpipe, this is also
notified in the message. Use the RESET TPIPE MQSeries command to specify
whether to commit it or back it out. If you commit the unit of recovery, the batch
of messages has already been sent to IMS, and is deleted from the bridge queue. If
you back the unit of recovery out, the messages are returned to the bridge queue,
to be subsequently sent to IMS.

Commit mode 1 (Send-then-commit) Tpipes are not synchronized.

Considerations for Commit mode 1 transactions

In IMS, commit mode 1 (CM1) transactions send their output replies before
syncpoint.

It is possible that a CM1 transaction is unable to send its reply, for example
because:

e The Tpipe on which the reply is to be sent is stopped

* OTMA is stopped

* The OTMA client (that is, MQSeries) has gone away

* The reply-to queue and dead-letter queue are unavailable

Chapter 7. Controlling the IMS bridge 87

Controlling the IMS bridge

For all of the above reasons, the IMS application sending the message will
pseudo-abend with code U0119. The IMS transaction and program are not stopped
in this case.

These reasons often prevent messages being sent into IMS, as well as replies being
delivered from IMS. A U0119 abend can occur if:

e The Tpipe, or OTMA, or MQSeries are stopped while the message is in IMS

¢ IMS replies on a different Tpipe to the incoming message, and that Tpipe is
stopped

* IMS replies to a different OTMA client, and that client is unavailable.

Whenever a U0119 abend occurs, both the incoming message to IMS and the reply
messages to MQSeries are lost. If the output of a CMO transaction cannot be
delivered for any of the above reasons, it is queued on the Tpipe within IMS.

Deleting messages from IMS

A message that is destined for MQSeries via the IMS bridge can be deleted if the
Tmember/Tpipe is stopped. To delete one message for the MQSeries system with
XCF member name tmember, issue the following IMS command:

/DEQUEUE TMEMBER tmember TPIPE tpipe PURGE1

To delete all the message on the Tpipe, issue the following IMS command:

/DEQUEUE TMEMBER tmember TPIPE tpipe PURGE

| Deleting Tpipes

88

There are no commands to delete IMS Tpipes created by MQSeries. They are
deleted by IMS at the following times:

* Synchronized Tpipes are deleted when IMS is cold started.
* Non-synchronized Tpipes are deleted when IMS is restarted.

System Administration Guide

Part 4. Managing MQSeries resources

Chapter 8. Managing the logs . . .9
Archiving logs with the ARCHIVE LOG command 91

Restarting the log archive process after a failure 93
Optimizing archive log reading from tape devices 93

Printing log records93
Recovering logs93
Discarding archive log data sets X
Automatic archive log data set deletion 94
Manually deleting archive log data sets 95
Locate and discard archive log data sets. . . 95
Chapter 9. Managingthe BSDS97
Finding out what the BSDS contains97
Time stamps in the BSDS.97
Active log data set status.98
Changing the BSDS.9
Changes for active logs . . . e 99
Adding record entries to the BSDS e .99
Deleting information about the active log
data set from the BSDS 100
Recording information about the log data set
inthe BSDS100
Enlarging the active log100
Changes for archivelogs100
Adding an archivelog100
Deleting an archive log 101
Changing the password of an archlve log . 101
Recovering the BSDS.102
Chapter 10. Managing pagesets 105
How to add a page set to a queue manager . . . 105
What to do when one of your page sets becomes
full. 106
How to balance loads on page sets B (14
Moving a non-shared queve 107
How to expand a pageset109
How to reduce a pageset110
How to back up and recover pagesets 111
Creating a point of recovery 111
Method 1: Full backup111
Method 2: Fuzzy backup 112
Backing up page sets. . . . A &
Backing up your object deflmtlons 113
Recovering pagesets.113
Simple recovery113
Advanced recovery . . . 114

What happens when MQSerles is restarted 114
How to back up and restore queues using

CsQuUTIL.115
Chapter 11. Managing queue- sharlng groups

and shared queueso 117
Managing queue-sharing groups . . . 117

Adding a queue-sharing group to the DB2 tables 117

© Copyright IBM Corp. 1993, 2000

Adding a queue manager to a queue-sharing
group . . .
Removing a queue manager from a
queue-sharing group .

Removing a queue- sharmg group from the DBZ

tables .

Managing shared queues

Recovering shared queues .

Moving shared queues .

Moving a queue from one Couphng Facrhty
structure to another

Moving a non-shared queue to a shared
queue .

Moving a shared queue to a non—shared
queue .

Migrating non- shared queues to shared queues
The first (or only) queue manager in the
queue-sharing group .

Any other queue managers in the
queue-sharing group .
Managing group objects . .
Managing the Coupling Facility .
Adding a Coupling Facility structure
Removing a Coupling Facility structure

. 117

. 117

. 118
. 118
. 118
. 118
. 118
. 120

. 120

121

. 121

. 121
. 122
. 122
. 122
. 122

89

90 System Administration Guide

Chapter 8. Managing the logs

This chapter describes the tasks involved in managing the MQSeries logs. It
contains these sections:

” 7

° G : . 7

. G : ”

. ST . . 77

Archiving logs with the ARCHIVE LOG command

An authorized operator can archive the current MQSeries active log data sets
whenever required using the ARCHIVE LOG command.

When you issue the ARCHIVE LOG command, MQSeries truncates the current
active log data sets, then runs an asynchronous off-load, and updates the BSDS
with a record of the off-load.

The ARCHIVE LOG command has a MODE(QUIESCE) option. With this option,
MQSeries users are quiesced after a commit point, and the resulting point of
consistency is captured in the current active log before it is off-loaded.

Consider using the MODE(QUIESCE) option when planning a backup strategy for

off site recovery. It creates a system-wide point of consistency, which minimizes the
number of data inconsistencies when the archive log is used with the most current

backup page set copy during recovery. For example:

ARCHIVE LOG MODE(QUIESCE)

If the ARCHIVE LOG command is issued without specifying a TIME parameter,
the quiesce time period defaults to the value of the QUIESCE parameter of the
CSQ6ARVP macro. If the time required for the ARCHIVE LOG MODE(QUIESCE)
to complete is less than the time specified, the command completes successfully;
otherwise, the command fails when the time period expires. You can specify the
time period explicitly by using the TIME option, for example:

ARCHIVE LOG MODE(QUIESCE) TIME(60)

This command specifies a quiesce period of up to 60 seconds before ARCHIVE
LOG processing occurs.

Attention: Using this option when time is critical can cause a significant
disruption in MQSeries availability for all jobs and users that use
MQSeries resources.

By default, the command is processed asynchronously from the time you submit
the command. (To process the command synchronously with other MQSeries
commands use the WAIT(YES) option QUIESCE, but be aware that the OS/390
console is locked from MQSeries command input for the entire QUIESCE period.)

© Copyright IBM Corp. 1993, 2000 91

Archiving logs

During the quiesce period:

* Jobs and users on MQSeries are allowed to go through commit processing, but
are suspended if they try to update any MQSeries resource after the commit.

* Jobs and users that only read data can be affected, since they can be waiting for
locks held by jobs or users that were suspended.

* New tasks can start, but they are not allowed to update data.

The DISPLAY THREAD output uses the message CSQV400I to indicate that a
quiesce is in effect. For example:

CSQV401I +CSQ1 DISPLAY THREAD REPORT FOLLOWS -

CSQV400I +CSQ1 ARCHIVE LOG QUIESCE CURRENTLY ACTIVE

CSQV4021 +CSQ1 ACTIVE THREADS -

NAME ST A REQ THREAD-XREF USERID ASID URID

BATCH T 14 CONO327 0016 000000000000
DISPLAY ACTIVE REPORT COMPLETE

€SQ9022I +CSQ1 CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

When all updates are quiesced, the quiesce history record in the BSDS is updated
with the date and time that the active log data sets were truncated, and with the
last-written RBA in the current active log data sets. MQSeries truncates the current
active log data sets, switches to the next available active log data sets, and issues
message CSQJ311E stating that off-load started.

If updates cannot be quiesced before the quiesce period expires, MQSeries issues
message CSQJ3171, and ARCHIVE LOG processing terminates. The current active
log data sets are not truncated and not switched to the next available log data sets,
and off-load is not started.

Whether the quiesce was successful or not, all suspended users and jobs are then
resumed, and MQSeries issues message CSQJ312I, stating that the quiesce is ended
and update activity is resumed.

If ARCHIVE LOG is issued when the current active log is the last available active
log data set, the command is not processed, and MQSeries issues this message:

CSQJ319I - csect-name CURRENT ACTIVE LOG DATA SET IS THE LAST
AVAILABLE ACTIVE LOG DATA SET. ARCHIVE LOG PROCESSING
WILL BE TERMINATED.

If ARCHIVE LOG is issued when another ARCHIVE LOG command is already in
progress, the new command is not processed, and MQSeries issues this message:

CSQJ318I - ARCHIVE LOG COMMAND ALREADY IN PROGRESS.

For information about the syntax of the ARCHIVE LOG command, see the
MQSeries MQSC Command Referencd manual. For information about the messages
issued during archiving, see the MQSeries for 0S/390 Messages and Coded manual.

92 System Administration Guide

Archiving logs

Restarting the log archive process after a failure

If there is a problem during the log archive process (for example, a problem with
allocation or tape mounts), the archiving of the active log might be suspended. You
can cancel the archive process and restart it by using the ARCHIVE LOG CANCEL
OFFLOAD command. This command cancels any off-load processing currently in
progress, and restarts the archive process. It starts with the oldest log data set that
has not been archived, and proceeds through all active log data sets that need
off-loading. Any log archive operations that have been suspended are restarted.

You should use this command only if you are sure that the current log archive task
is no longer functioning, or if you want to restart a previous attempt that failed.
This is because the command might cause an abnormal termination of the off-load
task, which might result in a dump.

Optimizing archive log reading from tape devices
Logging parameters are set using the CSQ6LOGP macro of the system Earameter

module when the queue manager is customized (described in the

(0S/390 System Setup Guidd). To optimize archive log reading from tape devices, you
can reset some of these parameters using the SET LOG command. These
parameters are:

MAXRTU
To specify the maximum number of dedicated tape units that can be
allocated to read archive log tape volumes.

DEALLCT
To specify the length of time that an allocated archive tape read unit is
allowed to remain unused before it is deallocated.

You can display the settings of these parameters using the DISPLAY LOG
command. These commands are described in the MQSeries MQSC Command

Printing log records

You can extract and print log records using the CSQ1LOGP utility. For instructions,
see f’(hapf@r 20 The]ng prin’r utility (CSO1T.0OGP)” on page 221|

Recovering logs

Normally, you do not need to back up and restore the MQSeries logs, especially if
you are using dual logging. However, in rare circumstances, such as an I/O error
on a log, you might need to recover the logs. Use Access Method Services to delete
and redefine the data set, and then copy the corresponding dual log into it.

Chapter 8. Managing the logs 93

Discarding archive logs

Discarding archive log data sets

94

You must keep enough log records to recover units of recovery or perform media
recovery if a page set is lost. Do not discard archive log data sets that might be
required for recovery; if you discard these archive log data sets you might not be
able to recover using your page set backups.

However, if you have confirmed that your archive log data sets can be discarded,
you can do this in either of the following ways:

¢ Automatic archive deletion
e Manual archive deletion

Automatic archive log data set deletion

You can use a DASD or tape management system to delete archive log data sets
automatically. The retention period for MQSeries archive log data sets is specified
by the retention period field ARCRETN in the CSQ6ARVP installation macro (see
the MQSeries for OS/390 System Setup Guidd for more information). This value is
passed to the management system in the JCL parameter RETPD.

The default for the retention period specifies that archive logs are to be kept for
9999 days (the maximum possible). You can change the retention period but you
must ensure that you can accommodate the number of backup cycles that you
have planned for.

MQSeries uses the value as the value for the JCL parameter RETPD when archive
log data sets are created.

The retention period set by MVS/DFP"’s storage management subsystem (SMS)
can be overridden by this MQSeries parameter. Typically, the retention period is set
to the smaller value specified by either MQSeries or SMS. The storage
administrator and MQSeries administrator must agree on a retention period value
that is appropriate for MQSeries.

Note: Because some tape management systems provide external manual overrides
of retention periods, MQSeries does not have an automated method to
delete information about archive log data sets from the BSDS. Therefore,
information about an archive log data set can still be in the BSDS long after
the data-set retention period has expired and the data set has been scratched
by the tape management system. Conversely, the maximum number of
archive log data sets might have been exceeded and the data from the BSDS
might have been dropped before the data set has reached its expiration date.

If archive log data sets are deleted automatically, remember that the operation does
not update the list of archive logs in the BSDS. You can update the BSDS with the
change log inventory utility, as described in t‘Changing the BSDS” on page 99. The
update is not essential. Recording old archive logs wastes space in the BSDS, but
does no other harm.

System Administration Guide

Discarding archive logs

Manually deleting archive log data sets

You must keep all the log records as far back as the lowest RBA identified in

messages CSQI0241 and CSQI025I. This RBA is obtained using the DISPLAY

USAGE command as issued when creating a point of recovery using
“ . You should read I’LCxeahn.g_a_pm.nLof_tecmzequJ

w before discarding any logs.

Locate and discard archive log data sets

Having established the minimum log RBA required for recovery from your page
set backup cycles, you can find archive log data sets that contain only earlier log
records by performing the following procedure:

1. Use the print log map utility to print the contents of the BSDS. For an example
of the output, see

2. Find the sections of the output titled “ARCHIVE LOG COPY n DATA SETS”. If
you use dual logging, there are two sections. The columns labeled STARTRBA
and ENDRBA show the range of RBAs contained in each volume. Find the
volumes whose ranges include the minimum RBA you found with messages
CSQI024I and CSQI0251. These are the earliest volumes you need to keep. If
you are using dual-logging, there are two such volumes.

If no volumes have an appropriate range, one of these cases applies:

¢ The minimum RBA has not yet been archived, and you can discard all
archive log volumes.

* The list of archive log volumes in the BSDS wrapped around when the
number of volumes exceeded the number allowed by the MAXARCH
parameter of the CSQ6LOGP macro. If the BSDS does not register an archive
log volume, that volume cannot be used for recovery. Therefore, you should
consider adding information about existing volumes to the BSDS. For

instructions, see I‘Changes for archive logs” an page 100.

You should also consider increasing the value of MAXARCH. For
information, see the MQSeries for 0S/390 System Setup Guidd

3. Delete any archive log data set or volume whose ENDRBA value is less than
the STARTRBA value of the earliest volume you want to keep. If you are using
dual logging, delete both such copies.

Because BSDS entries wrap around, the first few entries in the BSDS archive log
section might be more recent than the entries at the bottom. Look at the
combination of date and time and compare their ages. Do not assume that you
can discard all entries above the entry for the archive log containing the
minimum LOGRBA.
Delete the data sets. If the archives are on tape, erase the tapes. If they are on
DASD, run an OS/390 utility to delete each data set. Then, if you want the
BSDS to list only existing archive volumes, use the change log inventory utility
(CSQ]UOOB) to delete entries for the discarded volumes. See w

for an example.

Chapter 8. Managing the logs 95

Discarding archive logs

96 System Administration Guide

Chapter 9. Managing the BSDS

This chapter describes the tasks involved in managing the bootstrap data set. It
contains these sections:

. FEnd s what the B8 containe

4 . 77

° G : 7

Finding out what the BSDS contains
The print log map utility (CSQJU004) is a batch utility that lists the information

stored in the BSDS. For instructions on running it, see t‘Chapter 19 The print log

”

Time stamps in the BSDS

The output of the print log map utility shows the time stamps, which are used to
record the date and time of various system events, that are stored in the BSDS.

The following time stamps are included in the header section of the report:

SYSTEM TIMESTAMP
Reflects the date and time the BSDS was last updated. The BSDS time
stamp can be updated when:

* MQSeries starts.

* The write threshold is reached during log write activities. Depending on
the number of output buffers you have specified and the system activity
rate, the BSDS can be updated several times a second, or could not be
updated for several seconds, minutes, or even hours. For details of the
write threshold, see the WRTHRSH parameter of the CSQ6LOGP macro
in the MQSeries for QS/390 Sustem pru’n Guidd.

* MQSeries drops into a single BSDS mode from its normal dual BSDS
mode due to an error. This can occur when a request to get, insert, point
to, update, or delete a BSDS record is unsuccessful. When this error
occurs, MQSeries updates the time stamp in the remaining BSDS to force
a time stamp mismatch with the disabled BSDS.

UTILITY TIMESTAMP
The date and time the contents of the BSDS were altered by the change log
inventory utility (CSQJUO003).

The following time stamps are included in the active and archive log data sets
portion of the report:

Active log date
The date the active log entry was created in the BSDS, that is, when the
CSQJU003 NEWLOG was done.

Active log time
The time the active log entry was created in the BSDS, that is, when the
CSQJU003 NEWLOG was done.

Archive log date
The date the archive log entry was created in the BSDS, that is, when the
CSQJU003 NEWLOG was done or the archive itself was done.

© Copyright IBM Corp. 1993, 2000 97

Finding what the BSDS contains

98

Archive log time
The time the archive log entry was created in the BSDS, that is, when the
CSQJU003 NEWLOG was done or the archive itself was done.

Active log data set status

The BSDS records the status of an active log data set as one of the following:

NEW The data set has been defined but never used by MQSeries, or the log was
truncated to a point before the data set was first used. In either case, the
data set starting and ending RBA values are reset to zero.

REUSABLE
Either the data set has been defined but never used by MQSeries, or the
data set has been off-loaded. In the print log map output, the start RBA
value for the last REUSABLE data set is equal to the start RBA value of the
last archive log data set.

NOT REUSABLE
The data set contains records that have not been off-loaded.

STOPPED
The off-load processor encountered an error while reading a record, and
that record could not be obtained from the other copy of the active log.

TRUNCATED
Either:

* An I/O error occurred, and MQSeries has stopped writing to this data
set. The active log data set is off-loaded, beginning with the starting
RBA and continuing up to the last valid record segment in the truncated
active log data set. The RBA of the last valid record segment is lower
than the ending RBA of the active log data set. Logging is switched to
the next available active log data set, and continues uninterrupted.

or

* An ARCHIVE LOG function has been called, which has truncated the
active log.

The status appears in the output from the print log map utility.

System Administration Guide

Changing the BSDS

Changing the BSDS

You do not have to take special steps to keep the BSDS updated with records of
logging events because MQSeries does that automatically. However, you might
want to change the BSDS if you do any of the following:

* Add more active log data sets.

* Copy active log data sets to newly allocated data sets, for example, when
providing larger active log allocations.

* Move log data sets to other devices.
* Recover a damaged BSDS.
* Discard outdated archive log data sets.

You can change the BSDS by running the change log inventory utility (CSQJU003).
This utility can be run whether MQSeries is active or inactive. However, you are
recommended not to run it when MQSeries is active, or you might get inconsistent
results. The action of the utility is controlled by statements in the SYSIN data set.
This section shows several examples. For complete instructions, see

The canee 1 oy niliny (CSOILIO0) >0,

You can copy an active log data set only when MQSeries is inactive because
MQSeries allocates the active log data sets as exclusive (DISP=OLD) at MQSeries
startup.

Changes for active logs

You can add to, delete from, and record entries in the BSDS for active logs using
the change log utility. Examples only are shown here; replace the data set names
shown with the ones you want to use. For more details of the utility, see

mbam&lb&mgﬂﬂgmmmww ” .
Adding record entries to the BSDS

If an active log has been flagged as “stopped”, it is not reused for logging;
however, it continues to be used for reading. Use the access method services to
define new active log data sets, then use the change log inventory utility to register
the new data sets in the BSDS. For example, use:

NEWLOG DSNAME=MQM111.LOGCOPY1.DS10,COPY1
NEWLOG DSNAME=MQM111.LOGCOPY2.DS10,COPY2

If you are copying the contents of an old active log data set to the new one, you
can also give the RBA range and the starting and ending time stamps on the
NEWLOG function.

Chapter 9. Managing the BSDS 99

Changing the BSDS

100

Deleting information about the active log data set from the BSDS

To delete information about an active log data set from the BSDS, you could use:

DELETE DSNAME=MQM111.LOGCOPY1.DS99
DELETE DSNAME=MQM111.LOGCOPY2.DS99

Recording information about the log data set in the BSDS

To record information about an existing active log data set in the BSDS, use:

NEWLOG DSNAME=MQM111.LOGCOPY1.DS10,COPY2,STARTIME=19930212205198,
ENDTIME=19930412205200,STARTRBA=6400, ENDRBA=94FF

Inserting a record containing this type of information in the BSDS might be
necessary because:

* The entry for the data set has been deleted, but is needed again.

* You are copying the contents of one active log data set to another data set.
* You are recovering the BSDS from a backup copy.

Enlarging the active log

This procedure must only be used when MQSeries is inactive:

1. Stop MQSeries. This step is required because MQSeries allocates all active log
data sets for its exclusive use when it is active.

2. Use Access Method Services ALTER with the NEWNAME option to rename

your active log data sets.

3. Use Access Method Services DEFINE to define larger active log data sets.

By reusing the old data set names, you do not have to run the change log
inventory utility to establish new names in the BSDSs. The old data set names
and the correct RBA ranges are already in the BSDSs.

4. Use Access Method Services REPRO to copy the old (renamed) data sets into

their respective new data sets.

5. Start MQSeries.

Although it is not necessary for all log data sets to be the same size, it is
operationally more consistent and efficient. If the log data sets are not the same
size, it is more difficult to track your system’s logs, and so space can be wasted.

Changes for archive logs

You can add to, delete from, and change the password of entries in the BSDS for
archive logs. Examples only are shown here; you must replace the data set names

shown with the ones you want to use. For more details of the utility, see

4 ”

Adding an archive log

When the recovery of an object depends on reading an existing archive log data
set, the BSDS must contain information about that data set, so that MQSeries can
find it. To register information about an existing archive log data set in the BSDS,
use:

NEWLOG DSNAME=CSQARC1.ARCHLOG1.E00021.T2205197.A0000015,COPY1VOL=CSQV04,
UNIT=TAPE,STARTRBA=3A190000, ENDRBA=3A1FOFFF,CATALOG=NO

System Administration Guide

Changing the BSDS

Deleting an archive log
To delete an entire archive log data set on one or more volumes, use:

DELETE DSNAME=CSQARC1.ARCHLOG1.E00021.T2205197.A0000015,COPY1VOL=CSQV04

Changing the password of an archive log
If you change the password of an existing archive log data set, you must also

change the information in the BSDS.

1. List the BSDS, using the print log map utility.

2. Delete the entry for the archive log data set with the changed password, using
the DELETE function of the CSQJUO003 utility (see page 204).

3. Name the same data set as a new archive l%data set. Use the NEWLOG
function of the CSQJUO003 utility (see page R09), and give the new password,
the starting and ending RBAs, and the volume serial numbers (which can be
found in the print log map utility output, see page b1d).

To change the password for new archive log data sets, use:

ARCHIVE PASSWORD=password

To stop placing passwords on new archive log data sets, use:

ARCHIVE NOPASSWD

Note: You should only use the ARCHIVE utility function if you do not have an
external security manager.

Chapter 9. Managing the BSDS 101

Recovering the BSDS

Recovering the BSDS

102

If MQSeries is operating in dual BSDS mode and one BSDS becomes damaged,
forcing MQSeries into single BSDS mode, MQSeries continues to operate without a
problem (until the next restart). To return the environment to dual BSDS mode:

1. Use Access Method Services to rename or delete the damaged BSDS and to
define a new BSDS with the same name as the damaged BSDS. Control

statements can be found in job CSQ4BSDS in thlqual. SCSQPROC (described in
the MQSeries fnr QS/390 chzh)m prup F1l1’dﬁ').

2. Issue the MQSeries command +CSQ1 RECOVER BSDS to make a copy of the
valid BSDS in the newly allocated data set and to reinstate dual BSDS mode.

If MQSeries is operating in single BSDS mode and the BSDS is damaged, or if
MQSeries is operating in dual BSDS mode and both BSDSs are damaged, MQSeries
stops and does not restart until the BSDS data sets are repaired. In this case:

1. Locate the BSDS associated with the most recent archive log data set. The data
set name of the most recent archive log appears on the job log in the last
occurrence of message CSQJ003I, which indicates that off-loading has been
completed successfully. In preparation for the rest of this procedure, it is a good
practice to keep a log of all successful archives noted by that message:

e If archive logs are on DASD, the BSDS is allocated on any available DASD.
The BSDS name is like the corresponding archive log data set name; change
only the first letter of the last qualifier, from A to B, as in the example below:
Archive log name

CSQ.ARCHLOG1.A0000001
BSDS copy name
CSQ.ARCHLOG1.50000001

* If archive logs are on tape, the BSDS is the first data set of the first archive
log volume. The BSDS is not repeated on later volumes.

2. If the most recent archive log data set has no copy of the BSDS (presumably
because an error occurred when off-loading it), then locate an earlier copy of
the BSDS from an earlier off-load.

3. Rename damaged BSDSs using the Access Method Services ALTER command
with the NEWNAME option. If you decide to delete a damaged BSDS, use the
Access Method Services DELETE command. For each damaged BSDS, use
Access Method Services to define a new BSDS as a replacement data set. Job
CSQ4BSDS in thlqual. SCSQPROC contains Access Method Services control
statements to define a new BSDS.

4. Use Access Method Services to delete or rename the damaged data set, to
define a replacement data set, and to copy the remaining BSDS to the
replacement with the Access Method Services REPRO command.

5. Use the Access Method Services REPRO command to copy the BSDS from the

archive log to one of the replacement BSDSs you defined in ste B. Do not copy
any data to the second replacement BSDS—you do that in step m

a. Print the contents of the replacement BSDS.

Use the print log map utility (CSQJUO004) to print the contents of the
replacement BSDS. This enables you to review the contents of the
replacement BSDS before continuing your recovery work.

b. Update the archive log data set inventory in the replacement BSDS.

Examine the output from the print log map utility and check that the

replacement BSDS does not contain a record of the archive log from which
the BSDS was copied. If the replacement BSDS is an old copy, its inventory
might not contain all archive log data sets that were created more recently.

System Administration Guide

Recovering the BSDS

Therefore, the BSDS inventory of the archive log data sets must be updated
to reflect the current subsystem inventory.

Use the change log inventory utility (CSQJU003) NEWLOG statement to
update the replacement BSDS, adding a record of the archive log from
which the BSDS was copied. If the archive log data set is
password-protected, be certain to use the PASSWORD option of the
NEWLOG function. Also, make certain the CATALOG option of the
NEWLOG function is properly set to CATALOG=YES if the archive log data
set is cataloged. Use the NEWLOG statement to add any additional archive
log data sets that were created later than the BSDS copy.

. Update passwords in the replacement BSDS.

The BSDS contains passwords for the archive log data sets and for the
active log data sets. To ensure that the passwords in the replacement BSDS
reflect the current passwords used by your installation, use the change log
inventory ARCHIVE utility function with the PASSWORD option.

. Update the active log data set inventory in the replacement BSDS.

In unusual circumstances, your installation could have added, deleted, or
renamed active log data sets since the BSDS was copied. In this case, the
replacement BSDS does not reflect the actual number or names of the active
log data sets your installation has currently in use.

If you need to delete an active log data set from the replacement BSDS log
inventory, use the change log inventory utility DELETE function.

If you need to add an active log data set to the replacement BSDS log
inventory, use the change log inventory utility NEWLOG function. Ensure
that the RBA range is specified correctly on the NEWLOG function. If the
active log data set is password-protected, be sure to use the PASSWORD
option.

If you need to rename an active log data set in the replacement BSDS log
inventory, use the change log inventory utility DELETE function, followed
by the NEWLOG function. Be sure that the RBA range is specified correctly
on the NEWLOG function. If the active log data set is password-protected,
be certain to use the PASSWORD option.

. Update the active log RBA ranges in the replacement BSDS.

Later, when MQSeries restarts, it compares the RBAs of the active log data
sets listed in the BSDS with the RBAs found in the actual active log data
sets. If the RBAs do not agree, MQSeries does not restart. The problem is
magnified when a particularly old copy of the BSDS is used. To solve this
problem, you can use the change log inventory utility (CSQJU003) to adjust
the RBAs found in the BSDS using the RBAs in the actual active log data
sets. This can be done by:

* Using the print log records utility (CSQI1LOGP) to print a summary
report of the active log data set. This shows the starting and ending
RBAs.

¢ Comparing the actual RBA ranges with the RBA ranges you have just
printed, when the RBAs of all active log data sets are known.

If the RBA ranges are equal for all active log data sets, you can proceed
to the next recovery step without any additional work.

If the RBA ranges are not equal, then the values in the BSDS must be
adjusted to reflect the actual values. For each active log data set that
needs to have the RBA range adjusted, use the change log inventory
utility DELETE function to delete the active log data set from the
inventory in the replacement BSDS. Then use the NEWLOG function to

Chapter 9. Managing the BSDS 103

Recovering the BSDS

f.

redefine the active log data set to the BSDS. If the active log data sets are
password-protected, be certain to use the PASSWORD option of the
NEWLOG function.

If only two active log data sets are specified for each copy of the active log,
MQSeries can have difficulty during restart. The problem can arise when
one of the active log data sets is full and has not been off-loaded, while the
second active log data set is close to filling. In this case, add a new active
log data set for each copy of the active log and define each new active log
data set in the replacement BSDS log inventory.

Use the Access Method Services DEFINE command to define a new active
log data set for each copy of the active log. The control statements to
accomplish this task can be found in job CSQ4BSDS in thlqual. SCSQPROC.
Once the active log data sets are physically defined and allocated, use the
change log inventory utility NEWLOG function to define the new active log
data sets in the replacement BSDS. The RBA ranges need not be specified on
the NEWLOG statement; however, if the active log data sets are
password-protected, be certain to use the PASSWORD option of the
NEWLOG function.

6. Copy the updated BSDS to the second new BSDS data set. The BSDSs are now
identical.

Consider using the print log map utility (CSQJU004) to print the contents of the
second replacement BSDS at this point.

See [‘Active lag problems” on page 151 for information about what to do if you

have lost your current active log data set.

Restart MQSeries, using the newly constructed BSDS. MQSeries determines the
current RBA and what active logs need to be archived.

104 System Administration Guide

Chapter 10. Managing page sets

This chapter describes how to create, copy, and generally manage the page sets
associated with a queue manager. It contains these sections:

See the MQSeries fnr QS/390 Concepts and leqwing Guidd for a description of page
sets, storage classes, buffers, and buffer pools, and some of the performance
considerations that apply.

How to add a page set to a queue manager

This description assumes that you have an MQSeries subsystem that is already
running. You might need to add a page set if, for example, your MQSeries
subsystem has to cope with new applications using new queues.

To add a new page set, use the following procedure:
1. Stop the queue manager by issuing a STOP QMGR command.

2. Define and format the new page set. You can use the sample JCL in
thlqual. SCSQPROC(CSQ4PAGE) as a basis. For more information, see

Take care not to format any page sets that are in use, unless this is what you
intend. If so, use the FORCE option of the FORMAT utility function.

3. Add the new page set to the startup procedure for your MQSeries subsystem.

4. Add a definition for the new page set to your CSQINP1 initialization data set.
Use the DEFINE PSID command to associate the page set with a buffer pool.

5. Add the appropriate storage class definitions for your page set to your

CSQINP?2 initialization data set concatenation. This step is optional but
recommended, see the MQSeries for QS/390 System Setup Guidd

6. Restart the queue manager.

© Copyright IBM Corp. 1993, 2000 105

Page set full

What to do when one of your page sets becomes full

106

You can find out about the utilization of page sets by using the MQSeries
command DISPLAY USAGE. For example, the command:

DISPLAY USAGE PSID(03)

displays the current state of the page set 03. This tells you how many free pages
this page set has.

If you have defined secondary extents for your page sets, they will be dynamically
expanded each time they fill up. Eventually, all secondary extents will be used, or
no further disk space will be available. If this happens, an application will receive
return code MQRC_STORAGE_MEDIUM_FULL.

If an application receives a return code of MQRC_STORAGE_MEDIUM_FULL
from an MQI call, this is a clear indication that there is not enough space left on
the page set. If the problem persists or is likely to reoccur, you must do something
to solve it.

You can approach this problem in two ways:

1. Balance the load between page sets by moving queues from one page set to
another.

2. Expand the page set.

System Administration Guide

Balancing loads

How to balance loads on page sets

Load balancing on page sets means moving the messages associated with one or
more queues from one page set to another, less utilized page set. You should use
this technique if it is not practical to expand the page set.

To identify which queues are using a page set, use the appropriate MQSeries
commands. For example, to find out which queues are mapped to page set 02,
first, find out which storage classes map to page set 02, by using this command:

DISPLAY STGCLASS(x) PSID(02)

Then use this command:

DISPLAY QUEUE(*) TYPE(QLOCAL) STGCLASS

to find out which queues use which storage class.

Moving a non-shared queue

To move queues and their messages from one page set to another, use the MOVE

QLOCAL command (described in the BMQSeries MQSC Command Referencd). When

you have identified the queue or queues that you want to move to a new page set,
follow this procedure for each of these queues:

1.

Ensure that the queue to be moved is not in use by any applications (that is,
the queue attributes IPPROCS and OPPROCS are zero) and that it has no
uncommitted messages (the UNCOM value from the DISPLAY QSTATUS
command is NO).

Note: The only way to ensure that this state continues is to change your
security settings temporarily. If you cannot do this, later stages in this
procedure might fail if applications start to use the queue despite the
precautionary steps such as setting PUT(DISABLED). However,
messages can never be lost by this procedure.

Prevent applications from putting messages on the queue being moved by

altering the queue definition to disable MQPUTs. Change the queue definition

to PUT(DISABLED).

Define a temporary queue with the same attributes as the queue that is being

moved:

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO MOVE) PUT(ENABLED) GET(ENABLED)

Note: If this temporary queue already exists from a previous run, delete it
before doing the define.

Move the messages to the temporary queue by issuing the following
command:

MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)
Delete the queue you are moving, using the command:
DELETE QLOCAL(QUEUE_TO_MOVE)

Chapter 10. Managing page sets 107

Balancing loads

6. Define a new storage class which maps to the required page set, for example:
DEFINE STGCLASS(NEW) PSID(nn)

Add the new storage class definition to CSQINP2 ready for the next MQSeries
subsystem restart.

7. Redefine the queue that is being moved, changing the storage class attribute.
When the queue is redefined, it is based on the temporary queue created in
step B
DEFINE QL(QUEUE_TO MOVE) LIKE(TEMP_QUEUE) STGCLASS(NEW)

8. Move the messages back to the new queue using the command:

MOVE QLOCAL(TEMP) TOQLOCAL(QUEUE_TO_MOVE)

9. The queue created in step Bis no longer required. Use the following command
to delete it:

DELETE QL(TEMP_QUEUE)

10. If the queue being moved was defined in the CSQINP2 concatenation, change
the STGCLASS attribute of the appropriate DEFINE QLOCAL command in
the CSQINP2 concatenation. Add the REPLACE keyword so that the existing
queue definition is replaced.

w shows an extract from a load balancing job.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQl')

//STEPLIB DD DSN=thTqual.SCSQANLE,DISP=SHR

// DD DSN=thTqual.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

COMMAND DDNAME (MOVEQ)

/*

//MOVEQ DD *

ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)

DELETE QL(TEMP_QUEUE) PURGE

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO MOVE) PUT(ENABLED) GET(ENABLED)
MOVE QLOCAL(QUEUE_TO MOVE) TOQLOCAL(TEMP_QUEUE)

DELETE QL(QUEUE_TO_MOVE)

DEFINE STGCLASS(NEW) PSID(2)

DEFINE QL(QUEUE_TO MOVE) LIKE(TEMP_QUEUE) STGCLASS(NEW)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL(QUEUE_TO_MOVE)

DELETE QL(TEMP_QUEUE)

/*

Figure 47. Extract from a load balancing job for a page set

108 System Administration Guide

Expanding a page set

How to expand a page set

You expand a page set by creating a new, larger page set and copying the
messages from the old page set to the new one. You then have to ensure that the
new page set is used when you restart the queue manager.

— Note
This technique involves stopping and restarting the queue manager. This will
result in any nonpersistent messages that are not on shared queues being
deleted at restart time. If you have nonpersistent messages that you do not

want to be deleted, consider load balancing (see 'Howr to balance loads onl
l l 7] (lj).

In this description, the page set that you want to expand is referred to as the source
page set; the new, larger page set is referred to as the destination page set.

Follow these steps:

1. Stop the queue manager.

2. Define the destination page set, ensuring that it is larger than the source page
set, with a larger secondary extent value.

3. Use the FORMAT function of CSQUTIL to format the destination page set. See

UEormatting page sets (FQRMAT)” on page 183 for more details.
4. Use the COPYPAGE function of CSQUTIL to copy all the messages from the
source page set to the destination page set. See L

KCQPYPAGE)” on page 183 for more details.

5. Restart the queue manager using the destination page set by doing one of the
following:

* Change the MQSeries startup procedure to reference the destination page set.

See the MQSeries for QS/390 System Setup Guidd for more details.

* Use Access Method Services to delete the source page set and then rename
the destination page set, giving it the same name as that of the source page
set.

Attention: Before you delete any MQSeries page set, be sure that you have made
the required backup copies.

Chapter 10. Managing page sets 109

Reducing a page set

How to reduce a page set

110

If you have a large page set that is mostly empty (as shown by the DISPLAY
USAGE command), you might want to reduce its size. The procedure to do this
involves using the COPY, EMPTY, RESETPAGE, FORMAT, LOAD, and
COMMAND functions of CSQUTIL (see £ i ili

”

. This procedure will not work for page set zero; it is not

practical to reduce the size of this page set.

1.

10.

11.
12.

13.

14.

15.
16.

Prevent all users, other than the MQSeries administrator, from using the
queue manager. This could be done by changing the access security settings
for example.

Wait until all queue manager use has ended; you might have to stop and
restart the queue manager to achieve this. (Remember that if you do this, you
will lose all your nonpersistent messages.)

Run the COPY function of CSQUTIL with the PSID option to copy all message
data from the large page set and save them in a sequential data set.

Run the EMPTY function of CSQUTIL with the PSID option to remove all
messages from the page set. Use the DISPLAY USAGE PSID(n) command to
verify that the page set is totally empty.

Use the DISPLAY STGCLASS(*) PSID(n) command to identify all storage classes
that relate to the page set that is to be reduced in size.

Use the DISPLAY QUEUE(*) TYPE(QLOCAL) QSGDISP(PRIVATE) STGCLASS
command to identify all queues that use any of the storage classes identified
in step 5]

Alter each queue that you have identified to use a different storage class that
maps to a different page set. This does not have to be a permanent change to
the queue, but is essential for the queue manager to be able to restart. If you
do not do this, you could get 00C91B01 abends when the queue manager
attempts to start.

Use the ALTER QLOCAL(g-name) STGCLASS(stgcl-name) command to alter the
storage class attribute of each queue.

Use the STOP QMGR command with the QUIESCE or FORCE attribute to stop the
queue manager.

Run the RESETPAGE function of CSQUTIL against all page sets other than the
page set that is to be reduced in size. (You can choose to reset the page set in
place, or you can copy and reset the page set.)

Define a new smaller page set data set to replace the large page set. Run the
FORMAT function of CSQUTIL against it.

Define new log data sets (BSDS and active logs) with new data set names.

Restart the queue manager using the page sets created in steps H and id and
the new BSDS and log data sets created in step IL.

Use the ALTER QLOCAL(g-name) STGCLASS(stgcl-name) command to reset the
storage class attribute to the previous value for each queue altered in step 7}

Run the LOAD function of CSQUTIL to load back all the messages saved
during step B

Allow all users access to the queue manager.
You can now delete the old large page set and the old BSDS and log data sets.

System Administration Guide

Page set backup

How to back up and recover page sets

This section describes:
o P’Crpafing a_point of recovery’]

° i : ”

Creating a point of recovery

MQSeries can recover objects and persistent messages to their current state only if
there is:

1. A copy of all page sets from an earlier point.

2. All the MQSeries logs since that point.

These represent a point of recovery.

Both objects and messages are held on page sets. Multiple objects and messages
from different queues can exist on the same page set. Therefore, for recovery
purposes, objects and messages cannot be backed up in isolation so that a page set
must be backed up as a whole to ensure the proper recovery of the data.

The MQSeries recovery log contains a record of all persistent messages and
changes made to objects. If MQSeries fails (for example, due to an I/O error on a
page set), you can recover the page set by restoring the backup copy and restarting
MQSeries. MQSeries applies the log changes to the page set from the point of the
backup copy.

There are two ways of creating a point of recovery. The first involves stopping the
queue manager thereby forcing all updates on to the page sets. The second
involves taking ‘fuzzy’ backup copies of the page sets without stopping the queue
manager.

The first will allow you to restart from the point of recovery, using only the backed
up page set data sets and the logs from that point on.

If you use the second method, and your associated logs subsequently become
damaged or lost you will not be able to use the fuzzy page set backup copies to
recover. This is because the fuzzy page set backup copies contain an inconsistent
view of the state of MQSeries and are dependent on the logs being available. If the
logs are not available, you will have to return to the last set of backup page set
copies taken while the subsystem was inactive (Method 1 below) and accept the
loss of data from that time.

Method 1: Full backup
This method involves shutting MQSeries down. This forces all updates on to the
page sets so that the page sets are in a consistent state.

1. Stop all MQSeries applications using the queue manager (allowing them to
complete first). This could be done by changing the access security or queue
settings, for example.

2. When all activity has completed, display and resolve any in-doubt units of
recovery in the subsystem. (Use the MQSeries DISPLAY THREAD and
RESOLVE INDOUBT commands as described in the MQSeries MQSC Command

manual.)

This will bring the page sets to a consistent state; if you do not do this, or can't,
your page sets might not be consistent, and you are effectively doing a “fuzzy”
backup.

Chapter 10. Managing page sets 111

Page set backup

3. Issue the MQSeries command ARCHIVE LOG to ensure that the latest log data
is written out to the log data sets.

4. Issue the MQSeries command STOP QMGR MODE(QUIESCE). Record the
lowest RBA value in the CSQI024I or CSQI025I messages (see the
manual for information about these messages). You
should keep the log data sets starting from the one indicated by the RBA value
up to the current one.

5. Take backup copies of the page sets (see ‘Backing up page sets).
Method 2: Fuzzy backup

This method does not involve shutting MQSeries down. Therefore, updates might
be in virtual storage buffers during the backup process. This means that the page
sets are not in a consistent state, and can only be used for recovery in conjunction
with the logs.

1. Issue the MQSeries command DISPLAY USAGE and record the RBA value in

the CSQI0241 or CSQI2051 message (see the BMQSeries for QS/390 Messages aud

manual for information about these messages).

2. Take backup copies of the page sets (see I‘Backing up page sets’l).

3. Issue the MQSeries command ARCHIVE LOG to ensure that the latest log data
is written out to the log data sets. In order to restart from the point of recovery,
you must keep copies of all the log data sets from that containing the recorded
RBA value to that created by the ARCHIVE LOG command.

Backing up page sets
You can take a backup of your page sets in two ways:
. 1 Jsing Access Method Services’]

° I:/II]]] [”]]3'

To recover a page set, MQSeries needs to know how far back in the log to go.
MQSeries maintains a log RBA number in page 0 of each page set, called the
recovery log sequence number (LSN). This number is the starting RBA in the log
from which MQSeries can recover the page set. When you back up a page set, this
number is also copied.

If the copy is later used to recover the page set, MQSeries must have access to all
of the log records from this RBA value to the current RBA. That means you must
keep enough of the log records to enable MQSeries to recover from the oldest
backup copy of a page set you intend to keep.

Using Access Method Services: You can use Access Method Services REPRO
function (or any equivalent) to make copies of your page sets. You can do this
whether or not MQSeries is running. If you want to do it while MQSeries is
running, you must DEFINE the page sets with SHAREOPTIONS(2,3).

If you copy the page set while MQSeries is running you must use a copy utility
that copies page 0 of the page set first — if you do not do this you could corrupt
the data in your page set. Access Method Services REPRO meets this requirement.

If the process of dynamically expanding a page set is interrupted, for example by
power to the system being lost, you can still use Access Method Services REPRO to
take a backup of a page set.

112 System Administration Guide

Page set backup

If you perform an Access Method Services IDCAMS LISTCAT ENT('page set data
set name') ALLOC, you will see that the HI-ALLOC-RBA will be higher than the
HI-USED-RBA. Access Method Services REPRO will just copy the page set up to the
high used RBA, and not give an error.

The next time this page set fills up it will be extended again, if possible, and the
pages between the high used RBA and the highest allocated RBA will be used,
along with another new extent.

For more information on the REPRO statement, see the DFSMS/MVS Access Method
Services for VSAM or the DFSMS/MVS Access Method Services for the Integrated
Catalog Facility manual.

Using volume dump and restore: Volume dump services dumps all the data sets
on the volume. Likewise, restore volume services can (depending on the type of
service) restore all the data sets.

Backing up your object definitions
You should also back up copies of your object definitions. To do this, use the
MAKEDEF feature of the CSQUTIL COMMAND function (described in

tommands to MQSeries (COMMAND)” on page 190).

You should do this whenever you take a backup copy of your queue manager, and
keep the most current version.

Recovering page sets

If MQSeries has suffered a failure that has caused it to terminate, MQSeries can
normally be restarted with all recovery being performed during restart. However,
such recovery is not possible if any of your page sets or log data sets are not
available. The extent to which you can now recover depends on the availability of
backup copies of page sets and log data sets.

To restart from a point of recovery you must have:
* A backup copy of the page set that is to be recovered.

 If you used “fuzzy” backup, the log data set that included the recorded RBA
value, the log data set that was made by the ARCHIVE LOG command, and all
the log data sets between these.

* If you used full backup, but you do not have the log data set following that
made by the ARCHIVE LOG command, you will need to use the RESETPAGE
function of the CSQUTIL utility. The RBA identified using either method in

ECreating a point of recovery” on page 111 is the restart point for the backed-up

page sets.

To recover a page set to its current state, you must also have all the log data sets
and records since the ARCHIVE LOG command.

There are two methods for recovering a page set. To use either method, the queue
manager must not be running.

Simple recovery
This is the simpler method, and is appropriate for most recovery situations.

1. Delete and redefine the page set you want to restore from backup.

2. Use Access Method Services REPRO to copy the backup copy of the page set
into the new page set. You should define your new page set with a secondary
extent value so that it can be expanded dynamically.

Chapter 10. Managing page sets 113

Page set recovery

Alternatively, you can rename your backup copy to the original name, or
change the CSQP00xx DD statement in your queue manager procedure to point
to your backup page set. However, if you then lose or corrupt the page set, you
will no longer have a backup copy to restore from.

3. Restart the queue manager.

4. When the queue manager has restarted successfully, you can restart your
applications

5. Reinstate your normal backup procedures for the restored page.

Advanced recovery
This method provides performance advantages if you have a large page set to

recover, or if there has been a lot of activity on the page set since the last backup
copy was taken. However, it requires more manual intervention than the simple
method, which might increase the risk of error and the time taken to perform the
recovery.

1. Delete and redefine the page set you want to restore from backup.

2. Use Access Method Services REPRO to copy the backup copy of the page set
into the new page set. You should define your new page set with a secondary
extent value so that it can be expanded dynamically.

Alternatively, you can rename your backup copy to the original name, or
change the CSQP00xx DD statement in your queue manager procedure to point
to your backup page set. However, if you then lose or corrupt the page set, you
will no longer have a backup copy to restore from.

3. Change the CSQINP1 definitions for your queue manager to make the buffer
pool associated with the page set being recovered as large as possible. By
making the buffer pool this large, you might be able to keep all of the changed
pages resident in the buffer pool and reduce the amount of I/O to the page set.

4. Restart the queue manager.

5. When the queue manager has restarted successfully, stop it (using quiesce) and
then restart it using the normal buffer pool definition for that page set. After
this second restart completes successfully, you can restart your applications

6. Reinstate your normal backup procedures for the restored page.

What happens when MQSeries is restarted

When MQSeries is restarted, it applies all changes made to the page set that are
registered in the log, beginning at the restart point for the page set. MQSeries can
recover multiple page sets in this way. The page set will be dynamically expanded,
if required, during media recovery.

During restart MQSeries determines the log RBA to start from by taking the lowest
value from the following:

e Recovery LSN from the checkpoint log record for each page set.
* Recovery LSN from page 0 in each page set.

* The RBA of the oldest incomplete unit of recovery in the system at the time the
backup was taken.

All object definitions are stored on page set zero. Messages can be stored on any
available page set.

Note: MQSeries cannot restart if page set zero is not available.

114 System Administration Guide

Backing up and restoring using CSQUTIL

How to back up and restore queues using CSQUTIL

You can use the CSQUTIL utility functions for backing up and restoring queues. To
back up a queue, use the COPY or SCOPY function to copy the messages from a
queue onto a data set. To restore the queue, use the complementary function
LOAD. For more information, see L i ili

[CSQUITILY 7

Chapter 10. Managing page sets 115

116 System Administration Guide

Chapter 11. Managing queue-sharing groups and shared
queues

This chapter discusses the following topics:

Managing queue-sharing groups

This section describes the following tasks:

Adding a queue-sharing group to the DB2 tables

To add a queue-sharing group to the DB2 tables, use the ADD QSG function of the
queue-sharing group utility (CSQ5PQSG). This program is described in

I’Fhapfpr 21 The qnpnp-qharing group utility (CSQSPOSG)” on page 2284, A sample
is provided in thlqual. SCSQPROC(CSQ45AQS).

Adding a queue manager to a queue-sharing group

To add a queue manager to a queue-sharing group, use the ADD QMGR function
of the queue-sharing group utility (CSQ5PQSG). This program is described in
I’(’hapfpr 21.The qnpnp-qharing group utility (CSOQ5POSG)” on page 228, A sample
is provided in thlqual. SCSQPROC(CSQ45AQM).

The queue-sharing group must exist before you can add queue managers to it.

Note: A queue manager can only be a member of one queue-sharing group.

Removing a queue manager from a queue-sharing group

To remove a queue manager from a queue-sharing group, use the REMOVE
OQMGR function of the queue-sharing eroup utility (CSQ5PQSG). This program is
described in L -shari ili -

. A sample is provided in thlqual. SCSQPROC(CSQ45RQM).

You an only remove a queue manager from a queue-sharing group if:

* The queue manager has never started as a member of the queue-sharing group,
or it terminated normally the last time it was stopped.

* The queue manager is not active.

© Copyright IBM Corp. 1993, 2000 117

Managing queue-sharing groups and shared queues

Removing a queue-sharing group from the DB2 tables

To remove a queue-sharing group from the DB2 tables, use the REMOVE QSG
function of the queue-sharing group ut111ty (CSQSPQSG) This program 1s
described in

. A sample is provided in thlqual SCSQPROC(CSQ45RQS).

You can only remove a queue-sharing group from the common DB2 data-sharing
group tables after you have removed all of the queue managers from the
queue-sharing group (as described above).

When the queue-sharing group record is deleted from the queue-sharing group
administration table, all objects and administrative information relating to that
queue-sharing group are deleted from other MQSeries DB2 tables. This includes
shared queue and group object information.

Managing shared queues

118

This section describes the following tasks:

Recovering shared queues

The definition of a shared queue is kept in a DB2 database and so can be
recovered if necessary using standard DB2 database procedures.

Messages on a shared queue are stored in the Coupling Facility. They have no
built-in recovery procedures; this means that they could be lost in the unlikely
event of Coupling Facility or similar problems. This risk can be alleviated by
periodically making back-up copies of the messages. Use the COPY function of the
CSQUTIL utility program to do this.

Moving shared queues

This section describes how to perform load balancing by moving a shared queue
from one Coupling Facility structure to another. It also describes how to move a
non-shared queue to a shared queue (and how to move a shared queue to a
non-shared queue).

When you move a queue, you need to define a temporary queue as part of the
procedure. This is because every queue must have a unique name so you can’t
have two queues of the same name, even if the queues have different queue
dispositions. MQSeries tolerates having two queues with the same name (as in step
m), but you cannot use the queues.

Moving a queue from one Coupling Facility structure to another
To move queues and their messages from one Coupling Facility structure to
another, use the MOVE QLOCAL command (described in the

ta.m.man.d_R.%&ten.cel) When you have identified the queue or queues that you want
to move to a new Coupling Facility structure, use the following procedure to move
each queue:

1. Ensure that the queue to be moved is not in use by any applications, that is,
the queue attributes IPPROCS and OPPROCS are zero on all queue managers
in the queue-sharing group.

System Administration Guide

Managing queue-sharing groups and shared queues

2. Prevent applications from putting messages on the queue being moved by
altering the queue definition to disable MQPUTs. Change the queue definition
to PUT(DISABLED).

3. Define a temporary queue with the same attributes as the queue that is being
moved:

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO MOVE) PUT(ENABLED) GET(ENABLED) QSGDISP(QMGR)

Note: If this temporary queue already exists from a previous run, delete it
before doing the define.

4. Move the messages to the temporary queue by issuing the following command:
MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)

5. Delete the queue you are moving, using the command:

DELETE QLOCAL(QUEUE_TO_MOVE)

6. Redefine the queue that is being moved, changing the CFSTRUCT attribute.
When the queue is redefined, it is based on the temporary queue created in
step B
DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)

7. Move the messages back to the new queue using the command:

MOVE QLOCAL(TEMP) TOQLOCAL(QUEUE_TO_MOVE)

8. The queue created in step Bis no longer required. Use the following command
to delete it:

DELETE QL(TEMP_QUEUE)

9. If the queue being moved was defined in the CSQINP2 concatenation, change
the CFSTRUCT attribute of the appropriate DEFINE QLOCAL command in the

CSQINP2 concatenation. Add the REPLACE keyword so that the existing queue
definition is replaced.

Eigure 48 shows an extract from a load balancing job.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQl')

//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR

// DD DSN=thTqual.SCSQAUTH,DISP=SHR

//SYSPRINT DD SYSQUT=+

//SYSIN DD =*

COMMAND DDNAME (MOVEQ)

/*

//MOVEQ DD =

ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)

DELETE QL(TEMP_QUEUE) PURGE

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO MOVE) PUT(ENABLED) GET(ENABLED) QSGDISP(QMGR)
MOVE QLOCAL(QUEUE_TO MOVE) TOQLOCAL(TEMP_QUEUE)

DELETE QL(QUEUE_TO_MOVE)

DEFINE QL(QUEUE_TO MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL (QUEUE_TO_MOVE)

DELETE QL(TEMP_QUEUE)

/*

Figure 48. Extract from a load balancing job for a Coupling Facility structure

Chapter 11. Managing queue-sharing groups and shared queues 119

Managing queue-sharing groups and shared queues

Moving a non-shared queue to a shared queue
To move a non-shared queue to a shared queue, combine the instructions for
moving a shared queue with the instructions for moving a non-shared queue

(described in PMoving a non-shared queue” on page 107) as appropriate. Figure 49

gives a sample job to do this.

Note: Remember that messages on shared queues are subject to certain restrictions
on the maximum message size, message persistence, and queue index type,
so you might not be able to move some non-shared queues to a shared
queue.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQl')

//STEPLIB DD DSN=thTqual.SCSQANLE,DISP=SHR

// DD DSN=thTqual.SCSQAUTH,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

COMMAND DDNAME (MOVEQ)

/*

//MOVEQ DD *

ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)

DELETE QL(TEMP_QUEUE) PURGE

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO MOVE) PUT(ENABLED) GET(ENABLED)
MOVE QLOCAL(QUEUE_TO MOVE) TOQLOCAL(TEMP_QUEUE)

DELETE QL(QUEUE_TO_MOVE)

DEFINE QL(QUEUE_TO MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL (QUEUE_TO_MOVE)

DELETE QL(TEMP_QUEUE)

/*

Figure 49. Sample job for moving a non-shared queue to a shared queue

Moving a shared queue to a non-shared queue
To move a shared queue to a non-shared queue, combine the instructions for
moving a shared queue with the instructions for moving a non-shared queue

(described in ‘Moving a non-shared queue” on page 107) as appropriate. w

gives a sample job to do this.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQl')

//STEPLIB DD DSN=thTqual.SCSQANLE,DISP=SHR

// DD DSN=thTqual.SCSQAUTH,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

COMMAND DDNAME (MOVEQ)

/*

//MOVEQ DD *

ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)

DELETE QL(TEMP_QUEUE) PURGE

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO MOVE) PUT(ENABLED) GET(ENABLED) QSGDISP(QMGR)
MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)

DELETE QL(QUEUE_TO_MOVE)

DEFINE QL(QUEUE_TO MOVE) LIKE(TEMP_QUEUE) STGCLASS(NEW) QSGDISP(QMGR)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL(QUEUE_TO_MOVE)

DELETE QL(TEMP_QUEUE)

/*

Figure 50. Sample job for moving a shared queue to a non-shared queue

120 System Administration Guide

Managing queue-sharing groups and shared queues

Migrating non-shared queues to shared queues

When you migrate non-shared queues to shared queues, perform the whole
procedure on Version 5.2 of MQSeries for OS/390. The queue manager you use
must be a member of a queue-sharing group.

The first (or only) queue manager in the queue-sharing group
shows an example job for moving a non-shared queue to a
shared queue. Do this for each queue that needs migrating.

Notes:

1. Messages on shared queues are subject to certain restrictions on the maximum
message size, message persistence, and queue index type, so you might not be
able to move some non-shared queues to a shared queue.

2. You must use the correct index type for shared queues. If you migrate a
transmission queue to be a shared queue, the index type must be MSGID.

If the queue is empty, or you do not need to keep the messages that are on it,
migrating the queue is simpler. w shows an example job to use in these
circumstances.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQl')

//STEPLIB DD DSN=thTqual.SCSQANLE,DISP=SHR

// DD DSN=thlqual.SCSQAUTH,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

COMMAND DDNAME (MOVEQ)

/*

//MOVEQ DD *

DELETE QL(TEMP_QUEUE) PURGE

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO MOVE) PUT(ENABLED) GET(ENABLED)
DELETE QL(QUEUE_TO_MOVE)

DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)
DELETE QL(TEMP_QUEUE)

/*

Figure 51. Sample job for moving a non-shared queue without messages to a shared queue

Any other queue managers in the queue-sharing group
1. For each queue that does not have the same name as an existing shared queue,

move the queue as described in Eigure 49 on page 120 or Eigure 51l

2. For queues that have the same name as an existing shared queue, move the
messages to the shared queue using the commands shown in

MOVE QLOCAL (QUEUE_TO_MOVE) QSGDISP(QMGR) TOQLOCAL(QUEUE_TO_MOVE)
DELETE QLOCAL (QUEUE_TO_MOVE) QSGDISP(QMGR)

Figure 52. Moving messages from a non-shared queue to an existing shared queue

Chapter 11. Managing queue-sharing groups and shared queues 121

Managing queue-sharing groups and shared queues

Managing group objects

MQSeries automatically copies the definition of a group object to page set zero of
each queue manager that uses it. You can alter the copy of the definition
temporarily if you want, and MQSeries allows you to refresh the page set copies
from the repository copy if required. MQSeries always tries to refresh the page set
copies from the repository copy on start up (for channel objects, this is done when
the channel initiator restarts). This ensures that the page set copies reflect the
version on the repository, including any changes that were made when the queue
manager was inactive.

There are circumstances under which the refresh is not performed, for example:

* If a copy of the queue is open, a refresh that changes the usage of the queue will
fail.

* If a copy of a queue has messages on it, a refresh that deletes that queue will
fail.

In these circumstances, the refresh is not performed on that copy, but is performed
on the copies on all other queue managers. Because of this, you should check for
and correct any problems with copy objects after adding, changing, or deleting a
group object, and at queue manager or channel initiator restart.

Managing the Coupling Facility

122

This section describes the following tasks:

Adding a Coupling Facility structure

There are no MQSeries actions required when you add a Coupling Facilit
structure. The information about setting up the Coupling Facility in the IﬁM
for 0S/390 System Setup Guidd describes the rules for naming Coupling Facility
structures, and how to define structures in the CFRM policy data set.

Removing a Coupling Facility structure

To remove a Coupling Facility structure, follow this procedure:

* Use the following command to get a list of all the queues using the Coupling
Facility structure that you want to delete:
DISPLAY QUEUE(*) QSGDISP(SHARED) CFSTRUCT(structure-name)

* Delete all the queues that use the structure.

* Stop and restart each queue manager in the queue-sharing group in turn to
cause MQSeries and DB2 to disconnect from the structure and delete

information about it. (You don’t need to stop all the queue managers at once;
just one at a time.)

* Remove the structure definition from your CFRM policy data set and run the
IXCMIAPU utility. (This is the reverse of customization task 10 (set up the
Coupling fac1hty) described in the DA Series fnr QS/390 qucfpm pr'u‘p (:111'114)

System Administration Guide

Part 5. Recovery and restart

Chapter 12. Restarting MQSeries .
Restarting after a normal shutdown .
Restarting after an abnormal termination .
Restarting if you have lost your page sets .
Restarting if you have lost your log data sets.
Alternative site recovery.
Reinitializing MQSeries .
Reinitializing a queue manager that 1s not ina
queue-sharing group .
Reinitializing queue managers in a
queue-sharing group .

Chapter 13. Using the 0S/390 Automatic Restart

Manager (ARM)

What
ARM
ARM

is the ARM?.
couple data sets
policies

Defining an ARM pollcy
Activating an ARM policy .

Registering with ARM

Using ARM in an MQSeries network

Restarting on a different OS/390 image w1th LU
. 136

6.2 .

Restarting on a d1fferent OS / 390 1mage w1th
TCP/IP

Chapter 14. Recovering units of work manually

When using clustermg .
When connecting to a queue- sharmg group

Displaying connections and threads .
Active threads .
In-doubt threads . .
Recovering CICS units of recovery manually
What happens when the CICS adapter restarts

How to resolve CICS units of recovery manually
. 145

Recovering IMS units of recovery manually .
What happens when the IMS adapter restarts

How to resolve IMS units of recovery manually

Recovery procedure .

Recovering RRS units of recovery manually .
Recovering units of recovery on another queue
manager in the queue-sharing group

Chapter 15. Example recovery scenarios .
Shared queue problems .

Queue is both private and shared
Active log problems .

Dual logging is lost

Active log stopped

One or both copies of the active log data set are

damaged . . .
Write I/O errors on an actlve log data set
I/0 errors occur while reading the active log

Replacing the data set

Active log is becoming full or is full

© Copyright IBM Corp. 1993, 2000

. 125
. 125
. 125
. 125
. 126
. 127
. 130

. 130

. 131

. 138
. 133
. 134
. 134
. 134
. 135
. 135

. 136

. 137
. 137

138

139

. 139
. 140
. 140
. 141

141
143

145
145

. 145
. 147

. 148

. 149
. 150
. 150
. 151
. 151
. 151

. 152
. 153

153

. 154
. 155

Archive log problems.
Allocation problems .
Off-load task terminated abnormally

Insufficient DASD space to complete off-load

processing

Read 1/0O errors on the archlve data set wh11e

MQSeries is restartmg
BSDS problems.
Error occurs while openmg the BSDS

Log content does not agree with the BSDS

information .

Both copies of the BSDS are damaged .

Unequal time stamps.
Out of synchronization .
I/0 error.
Page set problems .
Page set I/O errors
Page set full .
Coupling Facility and DB2 problems
Storage medium full .
A DB2 system fails
A DB2 data-sharing group farls
DB2 and the Coupling Facility fail
Problems with long-running units of work

Old unit of work found during restart .

IMS-related problems.

IMS is unable to connect to MQSerles .

IMS application problem
IMS is not operational
Hardware problems .

. 157
. 157
. 157

. 158

. 159
. 160
. 160

. 161
. 161
. 162
. 162
. 163
. 164
. 164
. 165
. 166
. 166
. 166
. 167
. 168
. 169
. 169
. 170
. 170
. 170
. 171
. 172

123

124 System Administration Guide

Chapter 12. Restarting MQSeries

This chapter discusses how to restart your MQSeries subsystem in the following
circumstances:

| Restarting after a normal shutdown

| If MQSeries was stopped with the +CSQ1 STOP QMGR command, the system
[finishes its work in an orderly way and takes a termination checkpoint before
[stopping. When you restart MQSeries, it uses information from the system

[checkpoint and recovery log to determine the system status at shutdown.

| To restart MQSeries, issue the +CSQ1 START QMGR command as described in

| Restarting after an abnormal termination

I MQSeries automatically detects whether restart follows a normal shutdown or an
| abnormal termination.

[Starting MQSeries after it has terminated abnormally is different from starting it
| after the +CSQ1 STOP QMGR command has been issued. If MQSeries terminates
I abnormally, it terminates without being able to finish its work or take a

I termination checkpoint.

| To restart MQSeries, issue the +CSQ1 START QMGR command as described in

I 4 i i ies” . When you restart

| MQSeries after an abnormal termination, it refreshes its knowledge of its status at
[termination using information in the log, and notifies you of the status of various
| tasks.

| Normally, the restart process resolves all inconsistent states. But, in some cases,
| vou must take specific steps to resolve inconsistencies. This is described in

| 7 7

| Restarting if you have lost your page sets

I If you have lost your page sets, you will need to restore them from your backup
| copies before you can restart MQSeries. This is described in L

| 7

I MQSeries might take a long time to restart under these circumstances because of
I the length of time needed for media recovery.

© Copyright IBM Corp. 1993, 2000 125

Restart after log data set loss

Restarting if you have lost your log data sets

If, after stopping MQSeries (using the STOP QMGR command), both copies of the
log are lost or found to be damaged, it is possible to restart MQSeries providing

ou have a consistent set of page sets (produced using Method 1: Eull backup” od
).

Follow this procedure:

1. Define new page sets to correspond to each existing page set in your MQSeries
Subsystem. See the MOSeries fnr QS/390 qufpm Qph/p Guidd for information
about page set definition.

Ensure that each new page set is larger than the corresponding source page set.
2. Use the FORMAT function of CSQUTIL to format the destination page set. See

t‘Eormatting page sets (FORMAT)” on page 183 for more details.
3. Use the RESETPAGE function of CSQUTIL to copy the existing page sets or

reset them in place and reset the log RBA in each page. See L
” for more information

about this function.
4. Redefine your MQSeries log data sets and BSDS using CSQJU003 (see

).
5. Restart MQSeries, using the new page sets. To do this, you do one of the
following:

¢ Change the MQSeries startup procedure to reference the new page sets. See
the MOQSeries fnr 0S/390 System pru,n Guidd for more information.

* Use Access Method Services to delete the old page sets and then rename the
new page sets, giving them the same names as the old page sets.

Attention: Before you delete any MQSeries page set, be sure that you have made
the required backup copies.

If the queue manager is a member of a queue-sharing group, GROUP and
SHARED object definitions and messages will not be affected by this in general.
However, if any shared-queue messages are involved in a unit of work that was
covered by the lost or damaged logs, the effect on such uncommitted messages is
unpredictable.

126 System Administration Guide

Alternative site recovery

Alternative site recovery

In the case of a total loss of an MQSeries computing center, you can recover on
another MQSeries system or queue-sharing group of systems at a recovery site. To
be able to do this, you must regularly back up the page sets and the logs. As with
all data recovery operations, the objectives of disaster recovery are to lose as little
data, workload processing (updates), and time as possible.

At the recovery site:

* The recovery MQSeries queue managers must have the same names as the lost
queue managers.

¢ The system parameter module (for example, CSQZPARM) used on each recovery
queue manager should contain the same parameters as the corresponding lost
queue manager.

If you are using a queue-sharing group, you should first set up the Coupling
Facility to match that at the lost computing center, and reestablish your DB2
systems and data-sharing groups with the same names as the lost systems. This is
described in ECoupling Facility and DR2 problems” an page 164 and the DB2 for
0S5/390 Administration Guide. There is no recovery of shared messages; they will all
be lost unless you have made back-up copies independently using the COPY
function of the CSQUTIL utility program. Shared objects will be recovered to the
Eoint in time achieved by DB2 recovery (as described int’A DR? system fails” on

)-

When you have done this, reestablish all your queue managers as described in the
following procedure. This can be used to perform disaster recovery at the recovery
site for a single queue manager. It assumes that all that is available are:

* Copies of the archive logs and BSDSs created by normal running at the primary
site (the active logs will have been lost along with the queue manager at the
primary site).

* Copies of the page sets from the queue manager at the primary site that are the
same age or older than the most recent archive log copies available.

If required, dual active and archive logs should be considered, and the BSDS
updates applied to both copies:

1. Define new page set data sets and load them with the data in the copies of the
page sets from the primary site.
2. Define new active log data sets.

3. Define a new BSDS data set and use Access Method Services REPRO to copy
the most recent archived BSDS into it.

4. Use the print log map utility CSQJU004 to print information from this most
recent BSDS. At the time this BSDS was archived, the most recent archived log
you have would have just been truncated as an active log, and will not appear
as an archived log. Record the STARTRBA and ENDRBA of this log.

5. Use Access Method Services REPRO to copy the most recent archived log into
one of the active logs.

6. Use the change log inventory utility CSQJUO003 to remove all active log
information from the BSDS.

7. Use CSQJUO03 to add active logs to the BSDS, including the RBA range of the
logs used in Step H as found in Step d

Chapter 12. Restarting MQSeries 127

Alternative site recovery

128

8. Use CSQJUO03 to add a restart control record to the BSDS. Specify CRESTART
CREATE,ENDRBA=highrba, where highrba is the high RBA of the most recent
archive log available (found in Step mﬂ), plus 1.

The BSDS now describes one active log with an RBA range, all other active logs
as being empty, all the archived logs you have available, and no checkpoints
beyond the end of your logs.

9. Restart MQSeries with the usual START QMGR command. During
initialization, an operator reply message such as the following will be issued:

CSQJ245D +CSQL RESTART CONTROL INDICATES TRUNCATION AT RBA highrba.
REPLY Y TO CONTINUE, N TO CANCEL

Reply Y to start MQSeries. MQSeries will start, and will recover data up to
ENDRBA specified in the CRESTART statement.

See I'Part A Ising the MQSeries [tilities” on page 173 for information about using
CSQJU003 and CSQJUO04.

m shows sample input statements for CSQJUO003 for steps 6, 7, and 8:

* Step 6
DELETE DSNAME=MQM2.LOGCOPY1.DSO1
DELETE DSNAME=MQM2.LOGCOPY1.DS02
DELETE DSNAME=MQM2.LOGCOPY1.DS03
DELETE DSNAME=MQM2.LOGCOPY1.DS04
DELETE DSNAME=MQM2.L0OGCOPY2.DS01
DELETE DSNAME=MQM2.L0OGCOPY2.DS02
DELETE DSNAME=MQM2.LOGCOPY2.DS03
DELETE DSNAME=MQM2.L0GCOPY2.DS04

* Step 7

NEWLOG DSNAME=MQM2.LOGCOPY1.DS01,COPY1

STARTRBA=05C000,ENDRBA=000000062FFF
NEWLOG DSNAME=MQM2.LOGCOPY1.DS02,COPY1
NEWLOG DSNAME=MQMZ2.LOGCOPY1.DS03,COPY1
NEWLOG DSNAME=MQM2.LOGCOPY1.DS04,COPY1
NEWLOG DSNAME=MQM2.LOGCOPY2.DS01,COPY2

STARTRBA=05C000, ENDRBA=000000062FFF
NEWLOG DSNAME=MQM2.LOGCOPY2.DS02,COPY2
NEWLOG DSNAME=MQM2.LOGCOPY2.DS03,COPY2
NEWLOG DSNAME=MQM2.LOGCOPY2.DS04,COPY2

* Step 8
CRESTART CREATE,ENDRBA=063000

Figure 53. Sample input statements for CSQJU003

The things you need to consider for restarting the channel initiator at the recovery
site are similar to those faced when using ARM to restart the channel initiator on a
different OS/390 image. See E1lsi i i ”

for more information. Your recovery strategy should also cover recovery of the
MQSeries product libraries and the application programming environments that
use MQSeries (CICS, for example).

Other functions of the change log inventory utility (CSQJU003) can also be used in
disaster recovery scenarios. The HIGHRBA function allows the update of the
highest RBA written and highest RBA off-loaded values within the bootstrap data
set. The CHECKPT function allows the addition of new checkpoint queue records

System Administration Guide

Alternative site recovery

or the deletion of existing checkpoint queue records in the BSDS. These functions
might affect the integrity of the MQSeries system and should only be used in
disaster recovery scenarios under the guidance of IBM service personnel.

Chapter 12. Restarting MQSeries 129

Reinitializing MQSeries

Reinitializing MQSeries

130

If MQSeries has terminated abnormally you might not be able to restart it. This
could be because your page sets or logs have been lost, truncated, or corrupted. If
this has happened, you might have to reinitialize MQSeries (perform a cold start).
Before you attempt this, check that none of the other restart scenarios described in
this chapter will work for you.

— Attention
You should only perform a cold start if you are unable to restart MQSeries
any other way. Performing a cold start will enable you to recover your
MQSeries system and your object definitions; you will not be able to recover
your message data. Check that none of the other restart scenarios described in
this chapter will work for you before you do this.

When you have restarted, all your MQSeries objects will be defined and
available for use, but there will be no message data.

Reinitializing a queue manager that is not in a queue-sharing
group
To cold start MQSeries, follow this procedure:

1. Prepare the object definition statements that will be used when you restart
MQSeries. To do this, either:

. If page set zero is avallable, use the CSQUTIL SDEFS function (see

must get deflrutlons for all ob]ect types (channels namehsts processes
queues, and storage classes).

* If page set zero is not available, use the definitions from the last time you
backed up your object definitions.

2. Redefine your queue manager data sets (do not do this until you have
Completed step). See the M QSeries fnr QS/390 System Setup Guidd for

information about redefining your log data sets, BSDS, and page sets.

3. Restart MQSeries using the newly defined and initialized log data sets, BSDS,
and ﬁage sets. Use the object definition input statements that you created in
step Ul as input in the CSQINP2 initialization input data set.

You do not need to include objects with object dispositions of GROUP or
SHARED because their definitions are stored in the DB2 shared repository.
However, it does not matter if you do.

System Administration Guide

Reinitializing MQSeries

Reinitializing queue managers in a queue-sharing group

In a queue-sharing group, the situation is more complex. It might be necessary to
reinitialize one or more queue managers because of page set or log problems, but
there might also be problems with DB2 or the Coupling Facility to deal with.
Because of this, there are a number of alternatives:

Cold start
Reinitializing the entire queue-sharing group involves forcing all the
Coupling Facilities structures, clearing all object definitions for the
queue-sharing group from DB2, deleting or redefining the logs and BSDS,
and formatting page sets for all the queue managers in the queue-sharing
group.

Shared definitions retained
Delete or redefine the logs and BSDS, format page sets for all queue
managers in the queue-sharing group, and force all the Coupling Facilities
structures. On restart, all messages will have been deleted. The queue
managers will recreate COPY objects that correspond to GROUP objects
that still exist in the DB2 database. Any shared queues will exist (although
the messages on them will not) and can be used.

Single queue manager reinitialized
Delete or redefine the logs and BSDS, and format page sets for the single
queue manager (this deletes all its private objects and messages). On
restart, the queue manager will recreate COPY objects that correspond to
GROUP objects that still exist in the DB2 database. Any shared queues will
exist as will the messages on them and can be used.

Point in time recovery of a queue-sharing group
This is the alternative site disaster recovery scenario. There is no recovery
of shared messages; they will all be lost unless you have made back-up
copies independently using the COPY function of the CSQUTIL utility
program. Shared objects will be recovered to the point in time achieved by
DB2 recovery (described int’A DB2 system fails” an page 166). Each queue
manager can be recovered to a point in time achievable from the back-up
copies available at the alternative site.

It is not necessary to try to restore each queue manager to the same point
in time because there are no interdependencies between the local objects on
different queue managers (which are what is actually being recovered), and
the queue manager resynchronization with DB2 on restart will create or
delete COPY objects as necessary on a queue manager by queue manager
basis.

Chapter 12. Restarting MQSeries 131

Reinitializing MQSeries

132 System Administration Guide

Chapter 13. Using the 0S/390 Automatic Restart Manager
(ARM)

This chapter discusses the following topics:
o 'What is the ARM?/

v ”

What is the ARM?

The OS/390 Automatic Restart Manager (ARM) is an OS/390 recovery function
that can improve the availability of your MQSeries subsystems. When a job or task
fails, or the system on which it is running fails, ARM can restart the job or task
without operator intervention.

If a queue manager or a channel initiator has failed, ARM restarts it on the same
0S/390 image. If OS/390, and hence a whole group of related subsystems and
applications have failed, ARM can restart all the failed systems automatically, in a
predefined order, on another OS/390 image within the sysplex. This is called a
cross-system restart.

The channel initiator should be restarted by ARM only in exceptional
circumstances. If the queue manager is restarted by ARM, the channel initiator
should be restarted from the CSQINP2 initialization data set (see

in MQSeries network” on page 136).

You can use ARM to restart an MQSeries subsystem that uses LU 6.2
communication protocols on a different OS/390 image within the sysplex in the
event of OS/390 failure. (You cannot do this if you use TCP/IP communication
protocols.) The network implications of MQSeries ARM restart on a different
0S/390 image are discussed in [llsing ARM in an MQSeries network” onl

To enable automatic restart:

* You must set up an ARM couple data set.

* You must define the automatic restart actions that you want OS/390 to perform

in an ARM policy.

* You must start the ARM policy.

Also, MQSeries must register with ARM at startup (this happens automatically).

Note: If you want to restart queue managers in different OS/390 images
automatically, every queue manager must be defined as a subsystem in each

0S/390 image on which that queue manager might be restarted, with a
sysplex wide unique 4-character subsystem name.

© Copyright IBM Corp. 1993, 2000 133

ARM couple data sets

ARM couple data sets

You must ensure that you define the couple data sets required for ARM, and that
they are online and active before you start any MQSeries subsystem for which you
want ARM support. MQSeries automatic ARM registration fails if the couple data
sets are not available at MQSeries startup. In this situation, MQSeries assumes that
the absence of the couple data set means that you do not want ARM support, and
initialization continues.

See the OS/390 MVS Setting up a Sysplex manual for information about ARM
couple data sets. x

ARM policies

ARM functions are controlled by a user-defined ARM policy. Each OS/390 image
running a queue manager instance that is to be restarted by ARM must be
connected to an ARM couple data set with an active ARM policy.

IBM® provides a default ARM policy. You can define new policies, or override the
policy defaults by using the administrative data utility (IXCMIAPU) provided with
0S/390. The OS/390 MV'S Setting up a Sysplex manual describes this utility, and
includes full details of how to define an ARM policy.

w shows an example of an ARM policy. This sample policy will restart any
MQSeries queue manager within a sysplex, in the event that either the queue
manager failed, or a whole system failed.

//IXCMIAPU EXEC PGM=IXCMIAPU,REGION=2M
//SYSPRINT DD SYSQUT=x
//SYSIN DD =

DATA TYPE (ARM)
DEFINE POLICY NAME(ARMPOLL) REPLACE(YES)
RESTART_GROUP (DEFAULT)

ELEMENT ()

RESTART_ATTEMPTS(0) /* Jobs not to be restarted by ARM x/

RESTART_GROUP (GROUP1)

ELEMENT (SYSMQMGRMQ*) /* These jobs to be restarted by ARM =/
/*

Figure 54. Sample ARM policy

Defining an ARM policy

We recommend that you set up your ARM policy as follows:

* Define RESTART_GROUPs for each queue manager instance which also contain
any CICS or IMS subsystems that connect to that queue manager instance. If you
use a subsystem naming convention, you might be able to use the ?” and "
wild-card characters in your element names to achieve the above with minimum
definition effort.

* Specify TERMTYPE(ELEMTERM) for your channel initiators to indicate that they
will be restarted only if the channel initiator has failed and the OS/390 image
has not failed.

* Specify TERMTYPE(ALLTERM) for your queue managers to indicate that they
will be restarted if either the queue manager has failed or the OS/390 image has
failed.

* Specify RESTART_METHOD(BOTH, PERSIST) for both queue managers and
channel initiators. This tells ARM to restart using the JCL it saved (after

134 System Administration Guide

ARM policies

resolution of system symbols) during the last startup. It tells ARM to do this
irrespective of whether the individual element failed, or the OS/390 image
failed.

* Accept the default values for all the other ARM policy options.

Activating an ARM policy

To start your automatic restart management policy, issue the following OS/390
command:

SETXCF START,POLICY,TYPE=ARM,POLNAME=mypol

When the policy is started, all systems connected to the ARM couple data set use
the same active policy.

Use the SETXCF STOP command to disable automatic restarts.

Registering with ARM

MQSeries registers automatically as an ARM element during its startup phase
(subject to ARM availability). It deregisters during its shutdown phase, unless
requested not to.

At startup, the queue manager determines whether ARM is available. If it is,
MQSeries registers using the name SYSMQMGRssid, where ssid is the 4-character
queue-manager name, and SYSMQMGR is the element type.

The STOP QMGR MODE(QUIESCE) and STOP QMGR MODE(FORCE) MQSeries
commands deregister MQSeries from ARM (if it was registered with ARM at
startup). This prevents ARM restarting this queue manager. The STOP QMGR
MODE(RESTART) command does not deregister the queue manager from ARM. It
is thus eligible for immediate automatic restart.

Each MQSeries channel initiator address space determines whether ARM is
available, and if so will register with the element name SYSMQCHSssid, where ssid
is the queue manager name, and SYSMQCH is the element type.

The channel initiator is always deregistered from ARM when it stops normally, and

remains registered only if it ends abnormally. The channel initiator is always
deregistered if the queue manager fails.

Chapter 13. Using the OS/390 Automatic Restart Manager (ARM) 135

Using ARM in an MQSeries network

Using ARM in an MQSeries network

136

You should set up your MQSeries system so that the channel initiators and
associated listeners are started automatically when MQSeries is restarted. To ensure
fully automatic MQSeries restart on the same OS/390 image for both LU 6.2 and
TCP/IP communication protocols:

 Start your channel initiator automatically by adding the appropriate START
CHINIT command to the CSQINP2 data set.

e Start your listeners automatically by adding the appropriate START LISTENER
command to the CSQINPX data set.

See the MQSeries fmf QS/390 chfpm pru;n Guidd for information about the CSQINP2
and CSQINPX data sets.

Restarting on a different 0S/390 image with LU 6.2

If you use only LU 6.2 communication protocols you should also do the following
to enable network reconnect after automatic restart of MQSeries on a different
0S/390 image within the sysplex:

* Define each MQSeries queue manager within the sysplex with a unique
subsystem name.

* Define each channel initiator within the sysplex with a unique LUNAME. This is
specified in both the channel initiator parameter module and in the START
LISTENER command.

Note: The LUNAME names an entry in the APPC side table, which in turn
maps this to the actual LUNAME.

* Set up a shared APPC side table, which is referenced by each OS/390 image
within the sysplex. This should contain an entry for each channel initiator’s
LUNAME. See the MVS Planning: APPC/MVS Management manual for
information about this.

* Set up an APPCPMxx member of SYSI.PARMLIB for each channel initiator
within the sysplex to contain an LUADD to activate the APPC side table entry
for that channel initiator. These members should be shared by each OS/390
image. The appropriate SYS1.PARMLIB member is activated by a SET APPC=xx
0S/390 command which is issued automatically during ARM restart of
MQSeries (and its channel initiator) on a different OS/390 image, as described
below.

* Use the LU62ARM keyword of the CSQ6CHIP macro to specify the xx suffix of
this SYST.PARMLIB member for each channel initiator in the channel initiator
parameter module. This will cause the channel initiator to issue the required SET
APPC=xx OS/390 command to activate its LUNAME.

You should define your ARM policy to restart the channel initiator only if it fails
while its OS/390 image stays up. You should not restart the channel initiator
automatically if its OS/390 image also fails, but use the CSQINP2 and CSQINPX
data sets to start the channel initiator and listeners.

System Administration Guide

Using ARM in an MQSeries network

Restarting on a different OS/390 image with TCP/IP

If you are using TCP/IP as your communication protocol, you can reallocate a
TCP/IP address after moving MQSeries to a different OS/390 image only if you
are using clusters or if you are connecting to a queue-sharing group using a WLM
dynamic Domain Name System (DNS) logical group name. If you are using virtual
IP addresses, it is possible to configure these to recover on other OS/390 images,
allowing channels connecting to that queue manager to reconnect without any
changes.

When using clustering

0S/390 ARM responds to a system failure by restarting MQSeries on a different
0S/390 image in the same sysplex; this system has a different TCP/IP address to
the original OS/390 image. The following explains how you can use MQSeries
clusters to re-assign a queue manager’s TCP/IP address after it has been moved by
ARM restart to a different OS/390 image.

When a client queue manager detects the MQSeries for OS/390 failure (as a
channel failure), it responds to this by reallocating suitable messages on its cluster
transmission queue to a different server queue manager that hosts a different
instance of the target cluster queue. However, it cannot reallocate messages that are
bound to the original server by affinity constraints, or messages that are in doubt
because the server queue manager failed during end-of-batch processing. In order
to process these messages, you need to do the following:

1. Allocate a different cluster-receiver channel name and a different TCP/IP port
to each OS/390 queue manager. Each queue manager needs a different port so
that two systems can share a single TCP/IP stack on an OS/390 image. One of
these is the queue manager originally running on that OS/390 image, and the
other is the queue manager that ARM will restart on that OS/390 image
following a system failure. You should configure each port on each OS/390
image, so that ARM can restart any queue manager on any OS/390 image.

2. Create a different channel initiator command input file (CSQINPX) for each
queue manager and OS/390 image combination, to be referenced during
channel initiator startup.

Each CSQINPX file must include a START LISTENER PORT(port) command
specific to that queue manager, and an ALTER CHANNEL command for a
cluster-receiver channel specific to that queue manager and OS/390 image
combination. The ALTER CHANNEL command needs to set the connection
name to the TCP/IP name of the OS/390 image on which it is restarted. It
must include the port number specific to the restarted queue manager as part
of the connection name.

The start-up JCL of each queue manager can have a fixed data set name for this
CSQINPX file, and each OS/390 image must have a different version of each of
these CSQINPX files on a non-shared DASD volume.

In the event of ARM restart, MQSeries for OS/390 advertises the changed channel
definition to the cluster repository, which in turn publishes it to all the client queue
managers that have expressed an interest in the server queue manager.

The client queue manager sees the server queue manager failure as a channel
failure, and tries to restart the failed channel. When the client queue manager
learns the new server connection-name, the channel restart reconnects the client
queue manager to the restarted server queue manager. The client queue manager
can then resynchronize its messages, resolve any in-doubt messages on the client
queue manager’s transmission queue, and normal processing can continue.

Chapter 13. Using the OS/390 Automatic Restart Manager (ARM) 137

Using ARM in an MQSeries network

138

When connecting to a queue-sharing group

When connecting to a queue-sharing group through a TCP/IP dynamic Domain
Name System (DNS) logical group name, the connection name in your channel
definition specifies the logical group name of your queue-sharing group, not the

hostname or IP address of a physical machine. When this channel starts, it
connects to the dynamic DNS and is then connected to one of the queue managers
in the queue-sharing group. This process is explained in the w@

jod manual.

In the unlikely event of an image failure, one of the following will occur:

The queue managers on the failing image will de-register from the dynamic
DNS running on your sysplex. The channel responds to the connection failure by
entering RETRYING state and then connects to the dynamic DNS running on the
sysplex. The dynamic DNS allocates the inbound request to one of the remaining
members of the queue-sharing group that is still running on the remaining
images.

If no other queue manager in the queue-sharing group is active and ARM
restarts the queue manager and channel initiator on a different image, the group
listener registers with dynamic DNS from this new image. This means that the
logical group name (from the connection name field of the channel) connects to
the dynamic DNS and is then connected to the same queue manager, now
running on a different image. No change was required to the channel definition.

For this type of transparent recovery to occur, the following points must be noted:

On 0S5/390, the dynamic DNS runs on one of the OS/390 images in the sysplex.
If this image were to fail, the dynamic DNS needs to be configured so that there
is a secondary name server active in the sysplex, acting as an alternative to the
primary name server. Information about primary and secondary dynamic DNS
servers can be found in the OS/390 SecureWay CS IP Configuration manual.

The TCP/IP group listener might have been started on a particular IP address
that might not be available on this OS/390 image. If this is the case, the listener
might need to be started on a different IP address on the new image. If you are
using virtual IP addresses, you can configure these to recover on other OS/390
images so that no change to the START LISTENER command is required.

System Administration Guide

Chapter 14. Recovering units of work manually

This chapter discusses the following topics:

Displaying connections and threads

You can use the DISPLAY THREAD command (described in the BM4QSeries MQSd
Cammand Referencd manual) to get information about connections to MQSeries and
their associated threads. You can display active threads to see what is currently
happening, or to see what needs to be terminated in order to allow MQSeries to
shut down and you can display in-doubt threads to help with recovery.

The following information is returned for active threads:
* The connection name

* The connection status

* The number of MQSeries requests

* The thread cross-reference identifier

* The user ID of the connection

e The address space ID

¢ The unit of recovery ID

You can find more information about these fields in the description of message
CSQV4021 in the MQSeries for OS/390 Messages and Coded manual.

The following information is returned for in-doubt threads:
* The connection name

* The thread cross-reference identifier

* The recovery network ID

* The unit of recovery ID

You can find more information about these fields in the description of message
CSQV406I in the MQSeries for QS/390 Messages and Codes manual.

To reduce the amount of information produced, you can choose to display a
summary of active threads for each active connection (this does not include threads
used internally by MQSeries). The following information is produced for each job:

¢ The connection name
¢ The connection type
* The user ID

* The address space ID

e The number of threads associated with the connection

© Copyright IBM Corp. 1993, 2000 139

Recovering units of work manually

140

You can find more information about these fields in the description of message
CSQV4321 in the MQSeries for 0S/390 Messages and Coded manual.

Active threads

Each current connection to MQSeries is represented by one active thread, but
certain connections (such as those by the CICS adapter or the mover) might have
additional threads associated with them. Note that the CTHREAD system
parameter (described in the MQSeries for QS/390 System Setup Guidd) controls the
number of connections, not the number of threads.

In addition to the connection name, the display includes the associated user ID (if
known), the number of MQSeries requests made by a thread, and the thread
cross-reference identifier. The number of MQSeries requests is generally 0 for
associated threads. The thread cross-reference identifier is shown in character form
if possible, but otherwise in hexadecimal; its format depends on the type of
connection:

CICS Contains the CICS thread number, transaction name, and task number.
IMS Contains the IMS PST region identifier and PSB name.

Batch, TSO, and RRS
Contains nulls or blanks.

Mover Blank for connections. Associated threads contain 'T' (X'E3') or "XX**'
(X'E7E75C5C") at character position 5.

In-doubt threads

An in-doubt thread is one that is in the second pass of the two-phase commit
operation. Resources are held in MQSeries on its behalf. External intervention is
needed to resolve the status or in-doubt threads. This might only involve starting
the recovery coordinator (CICS, IMS, or RRS) or might involve more, as described
in the following sections. They might have been in doubt at the last restart, or they
might have become in doubt since the last restart.

The display includes the thread cross-reference identifier, which might be needed if
manual recovery is necessary.

System Administration Guide

Recovering units of work manually

Recovering CICS units of recovery manually

This section describes what happens when the CICS adapter restarts, and then
explains how to deal with any unresolved units of recovery that arise.

What happens when the CICS adapter restarts
For background information, see the MQSeries for QS/390 Cancepts and Planning
Buiad.

Whenever a connection is broken, the adapter has to go through a restart phase
during the reconnect process. The restart phase resynchronizes resources.
Resynchronization between CICS and MQSeries enables in-doubt units of work to be
identified and resolved.

Resynchronization can be caused by:
e An explicit request from the distributed queuing component
* An implicit request when a connection is made to MQSeries

If the resynchronization is caused by connecting to MQSeries, the sequence of
events is:

1. The connection process gets a list of unit of work (UOW) IDs that MQSeries
thinks are in doubt.

The UOW IDs are displayed on the console in CSQC313I messages.

The UOW IDs are passed to CICS.

CICS initiates a resynchronization task (CRSY) for each in-doubt UOW ID.
The result of the task for each in-doubt UOW is displayed on the console.

ok 0N

You need to check the messages that are displayed during the connect process:

CSQC3131
Shows that a UOW is in doubt.

CSQcC4001
Identifies the UOW and is followed by one of these messages:

* CSQC402I and CSQC403I show that the UOW was resolved successfully
(committed or backed out).

* (CSQC404E, CSQC405E, CSQC406E, and CSQC407E show that the UOW
was not resolved.

CSQC4091
Shows that all UOWs were resolved successfully.

CSQC408I
Shows that not all UOWs were resolved successfully.

CSQC314I
Warns that UOW IDs highlighted with a * will not be resolved
automatically. These UOWs must be resolved explicitly by the distributed
queuing component when it is restarted.

Eigure 55 on page 149 shows an example set of restart messages displayed on the
0S/390 console.

Chapter 14. Recovering units of work manually 141

Recovering units of work manually

142

CSQ90221 +CSQ1 CSQYASCP ' START QMGR' NORMAL COMPLETION

+CSQC323I VICIC1 CSQCQCON CONNECT received from TERMID=PB62 TRANID=CKCN
+CSQC303I VICIC1 CSQCCON CSQCSERV loaded. Entry point is 850E8918.
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6FOE2178D25 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6F055B2AC25 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5AG6EFFD60D425 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6FO7AB56D22 is in doubt
+CSQC307I VICIC1 CSQCCON Successful connection to subsystem VC2
+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008BAD18) connect
successful.

+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008BAA10) connect
successful.

+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008BA708) connect
successful.

+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008CAE88) connect
successful.

+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008CAB80) connect
successful.

+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008CA878) connect
successful.

+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008CA570) connect
successful.

+CSQC4721 VICIC1 CSQCSERV Server subtask (TCB address=008CA268) connect
successful.

+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for

+CSQC400I VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6FOE2178D25

+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for

+CSQC400I VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6F055B2AC25

+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for

+CSQC400I VICIC1 CSQCTRUE UOWID=VICICI1.A6E5A6F07AB56D22

+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for

+CSQC400I VICIC1 CSQCTRUE UOWID=VICICI1.A6E5SA6EFFD60D425

+CSQC409I VICIC1 CSQCTRUE Resynchronization completed successfully

Figure 55. Example restart messages

The total number of CSQC313I messages should equal the total number of
CSQC402I plus CSQC403I messages. If the totals are not equal, there are UOWs
that the connection process cannot resolve. Those UOWs that cannot be resolved
are caused by problems with CICS (for example, a cold start) or with MQSeries, or
by distributing queuing. When these problems have been fixed, you can initiate
another resynchronization by disconnecting and then reconnecting.

Alternatively, you can resolve each outstanding UOW yourself using the MQSeries
RESOLVE INDOUBT command and the UOW ID shown in message CSQC4001.
You must then initiate a disconnect and a connect to clean up the unit of recovery
descriptors in CICS. You need to know the correct outcome of the UOW to resolve
UOWSs manually.

All messages that are associated with unresolved UOWs are locked by MQSeries
and no Batch, TSO, or CICS task can access them.

If CICS fails and an emergency restart is necessary, do not vary the GENERIC
APPLID of the CICS system. If you do and then reconnect to MQSeries, data
integrity with MQSeries cannot be guaranteed. This is because MQSeries treats the
new instance of CICS as a different CICS (because the APPLID is different).
In-doubt resolution is then based on the wrong CICS log. Similarly, if MQSeries
fails, do not change the subsystem ID of the MQSeries system.

System Administration Guide

Recovering units of work manually

How to resolve CICS units of recovery manually

If the adapter abends, CICS and MQSeries build in-doubt lists either dynamically
or during restart, depending on which subsystem caused the abend.

Note: If you use the DFHEINDB sample program to show units of work, you
might find that it does not always show MQSeries ones correctly.

When CICS connects to MQSeries, there might be one or more units of recovery,
that have not been resolved.

One of the following messages is sent to the console:
+ CSQC404E
+ CSQC405E
+ CSQC406E
+ CSQC407E
+ CSQC408I

For details of what these messages mean, see the MQSeries for 0S/390 Messages and
manual.

CICS retains details of units of recovery that were not resolved during connection
startup. An entry is purged when it no longer appears on the list presented by
MQSeries.

Any units of recovery that CICS cannot resolve must be resolved manually using
MQSeries commands. This manual procedure is rarely used within an installation,
because it is required only where operational errors or software problems have
prevented automatic resolution. Any inconsistencies found during in-doubt resolution
must be investigated.

To recover the units of recovery:

1. Obtain a list of the units of recovery from MQSeries by issuing the following
command:

+CSQ1 DISPLAY THREAD(*) TYPE(INDOUBT)

You receive the following messages:

CSQV401T +CSQ1 DISPLAY THREAD REPORT FOLLOWS -

CSQV406I +CSQ1 INDOUBT THREADS

NAME THREAD-XREF URID NID

VICIC3 xref VICIC3.A75E483235A90900
DISPLAY THREAD REPORT COMPLETE

CSQ90221 +CSQL CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

For CICS connections, the NID consists of the CICS applid and a unique
number provided by CICS at the time the syncpoint log entries are written.
This unique number is stored in records written to both the CICS system log
and the MQSeries log at syncpoint processing time. This value is referred to in
CICS as the recovery token.

Chapter 14. Recovering units of work manually 143

Recovering units of work manually

144

2. Scan the CICS log for entries related to a particular unit of recovery.

Look for a PREPARE record, for the task-related installation where the recovery
token field (JCSRMTKN) equals the value obtained from the network ID. The
network ID is supplied by MQSeries in the DISPLAY THREAD command
output.

The PREPARE record in the CICS log for the units of recovery provides the
CICS task number. All other entries on the log for this CICS task can be located
using this number.

You can use the CICS journal print utility DFHJUP when scanning the log. For
details of using this program, see the CICS Operations and Utilities Guide.

3. Scan the MQSeries log for entries related to a particular unit of recovery.

To do this, scan the MQSeries log to locate the record with the NID required.
Then use the URID from this record to obtain the rest of the log records for this
unit of recovery.

When scanning the MQSeries log, note that the MQSeries startup message
CSQJ001I provides the start RBA for this session.

The print log records program (CSQ1LOGP) can be used for that purpose.
4. If you need to, do in-doubt resolution in MQSeries.

MQSeries can be directed to take the recovery action for a unit of recovery
using an MQSeries RESOLVE INDOUBT command.

For information about RESOLVE INDOUBT, see the MQSeries MQSC Command

manual.

To recover all threads associated with connection-name, use the NID(*) option.

The command produces one of the following messages showing whether the
thread is committed or backed out:

CSQV4141 +CSQ1 THREAD network-id COMMIT SCHEDULED
CSQV415I +CSQL THREAD network-id ABORT SCHEDULED

When performing in-doubt resolution, CICS and the adapter are not aware of the
commands to MQSeries to commit or back out units of recovery, because only
MQSeries resources are affected. However, CICS keeps details about the in-doubt
threads that could not be resolved by MQSeries. This information is purged either
when the list presented is empty, or when the list does not include a unit of
recovery of which CICS has details.

System Administration Guide

Recovering units of work manually

Recovering IMS units of recovery manually

This section describes what happens when the IMS adapter restarts, and then
explains how to deal with any unresolved units of recovery that arise.

What happens when the IMS adapter restarts
For background information, see the MQSeries for QS/390 Cancepts and Planning
Buiad.

Whenever the connection to MQSeries is restarted, either following an MQSeries
restart, or an IMS /START SUBSYS command, IMS initiates the following
resynchronization process:

1. IMS presents the list of unit of work (UOW) IDs that it believes are in doubt to
the MQSeries IMS adapter one at a time with a resolution parameter of
Commit or Backout.

2. The IMS adapter passes the resolution request to MQSeries and reports the
result back to IMS.

3. Having processed all the IMS resolution requests, the IMS adapter gets from
MQSeries a list of all UOWSs that MQSeries still holds in doubt that were
initiated by the IMS system. These are reported to the IMS master terminal in
message CSQQOO08I.

Note: While a UOW is in doubt, any associated MQSeries message is locked by
MQSeries and is not available to any application.

How to resolve IMS units of recovery manually

When IMS connects to MQSeries, MQSeries might have one or more in-doubt units
of recovery that have not been resolved.

If MQSeries has in-doubt units of recovery that IMS did not resolve, the following
message is issued at the IMS master terminal:

CSQQOO8I nn units of recovery are still in doubt in queue manager gmgr-name

When this message is issued, IMS was either cold-started or it was started with an
incomplete log tape. This message can also be issued if MQSeries or IMS
terminates abnormally because of a software error or other subsystem failure.

After receiving the CSQQO08I message:

e The connection remains active.

 IMS applications can still access MQSeries resources.
* Some MQSeries resources remain locked out.

If the in-doubt thread is not resolved, IMS message queues can start to build up. If
the IMS queues fill to capacity, IMS terminates. Therefore, users must be aware of

this potential difficulty and must monitor IMS until the in-doubt units of recovery
are fully resolved.

Recovery procedure
Use the following procedure to recover the IMS units of work:

1. Force the IMS log closed, using /SWI OLDS, and then archive the IMS log. Use
the utility, DFSERA10, to print the records from the previous IMS log tape.

Chapter 14. Recovering units of work manually 145

Recovering units of work manually

146

Type X'3730' log records indicate a phase-2 commit request and type X'38' log
records indicate an abort request. Record the requested action for the last
transaction in each dependent region.

2. Run the DL/I batch job to back out each PSB involved that has not reached a
commit point. The process might take some time because transactions are still
being processed. It might also lock up a number of records, which could impact
the rest of the processing and the rest of the message queues.

3. Produce a list of the in-doubt units of recovery from MQSeries by issuing the
following command:

+CSQL DISPLAY THREAD(*) TYPE(INDOUBT)

You receive the following messages:

CSQV4011 +CSQLl DISPLAY THREAD REPORT FOLLOWS -

CSQV4061 +CSQL INDOUBT THREADS -

NAME THREAD-XREF URID NID

name xref network-id

name xref network-id

DISPLAY THREAD REPORT COMPLETE

CSQ90221 +CSQ1 CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION

For IMS, the NID consists of the IMS connection name and a unique number
provided by IMS. The value is referred to in IMS as the recovery token. For more
information, see the IMS Customization Guide.

4. Compare the NIDs (IMSID plus OASN in hexadecimal) displayed in the
DISPLAY THREAD messages with the OASNSs (4 bytes decimal) shown in the
DFSERA10 output. Decide whether to commit or back out.

5. Perform in-doubt resolution in MQSeries with the RESOLVE INDOUBT
command, as follows:

RESOLVE INDOUBT (connection-name)
ACTION(COMMIT | BACKOUT)
NID(network-id)

For information about RESOLVE INDOUBT, see the MQSeries MQSC Command
manual.

To recover all threads associated with connection-name, use the NID(*) option. The
command results in one of the following messages to indicate whether the thread
is committed or backed out:

CSQV4141 THREAD network-id COMMIT SCHEDULED
CSQV4151 THREAD network-id BACKOUT SCHEDULED

When performing in-doubt resolution, IMS and the adapter are not aware of the
commands to MQSeries to commit or back out in-doubt units of recovery because
only MQSeries resources are affected.

System Administration Guide

Recovering units of work manually

Recovering RRS units of recovery manually

When RRS connects to MQSeries, MQSeries may have one or more in-doubt units
of recovery that have not been resolved. If MQSeries has in-doubt units of recovery
that RRS did not resolve, one of the following messages is issued at the OS/390
console:

+ CSQ3011I

+ (CSQ3013I

+ (CSQ3014I

« CSQ3016l

Both MQSeries and RRS provide tools to display information about in-doubt units
of recovery, and techniques for manually resolving them.

In MQSeries, use the DISPLAY THREAD command to display information about
in-doubt MQSeries threads. The output from the command includes RRS unit of
recovery IDs for those MQSeries threads that have RRS as a coordinator. This can
be used to determine the outcome of the unit of recovery.

Use the MQSeries RESOLVE INDOUBT command to resolve the MQSeries in-doubt

thread manually. This command can be used to either commit or back out the unit
of recovery after you have determined what the correct decision is.

Chapter 14. Recovering units of work manually 147

Recovering units of work manually

| Recovering units of recovery on another queue manager in the
| queue-sharing group

148

If a queue manager that is a member of a queue-sharing group fails and cannot be
restarted, other queue managers in the group can perform peer recovery, and take
over from it. However, the queue manager might have in-doubt units of recovery
that cannot be resolved by peer recovery because the final disposition of that unit
of recovery is known only to the failed queue manager. These units of recovery
will be resolved when the queue manager is eventually restarted, but until then,
they remain in doubt.

This means that certain resources (for example, messages) might be locked, making
them unavailable to other queue managers in the group. In this situation, you can
use the DISPLAY THREAD command to display these units of work on the
inactive queue manager. If you want to resolve these units of recovery manually to
make the messages available to other queue managers in the group, you can use
the RESOLVE INDOUBT command.

When you issue the DISPLAY THREAD command to display units of recovery that
are in doubt, you can use the QMNAME keyword to specify the name of the
inactive queue manager. For example, if you issue the following command:

+CSQ1 DISPLAY THREAD(*) TYPE(INDOUBT) QMNAME(QMO1)

You receive the following messages:

CSQV4361 +CSQL INDOUBT THREADS FOR QMOI -
NAME THREAD-XREF URID NID

USERL 000000000000000000000000 CSQ:0001.0
USER2 000000000000000000000000 CSQ:0002.0
DISPLAY THREAD REPORT COMPLETE

If the queue manager specified is not inactive, MQSeries does not return
information about in-doubt threads, but issues the following message:

CSQV435I CANNOT USE QMNAME KEYWORD, QMO1 IS ACTIVE

Use the MQSeries RESOLVE INDOUBT command to resolve the in-doubt threads
manually. Use the QMNAME keyword to specify the name of the inactive queue
manager in the command.

This command can be used to commit or back out the unit of recovery after you
have determined what the correct decision is. The command resolves the shared
portion of the unit of recovery only, any local messages are unaffected and remain
locked until the queue manager restarts, or reconnects to CICS, IMS, or RRS batch.

System Administration Guide

Chapter 15. Example recovery scenarios

Table 3. Example recovery scenarios

This chapter describes procedures for recovering MQSeries after various error
conditions. These error conditions are grouped in the following categories:

Problem category

Problem

Where to look next

Shared queue problems

Queue both private and shared.

4 ”

bage 150

Active log probemms

Dual logging is lost.

“Active log prnblpmq” on

Active log has stopped.

One or both copies of the active log data set are
damaged.

Write errors on active log data set.

Active log is becoming full or is full.

Read errors on active log data set.

ace 151
O

Archive log problems

Insufficient DASD space to complete off-loading active
log data sets.

Off-load task has terminated abnormally.

Archive data set allocation problem.

Read I/0O errors on the archive data set during restart.

BSDS problems

Error opening BSDS.

Log content does not correspond with BSDS information.

Both copies of the BSDS are damaged.

Unequal time stamps.

Dual BSDS data sets are out of synchronization.

I/0 error on BSDS.

Page set problems

Page set full.

A page set has an 1/O error.

Coupling Facility and
DB2 problems

Storage medium full.

DB2 system fails.

DB2 data-sharing group fails.

DB2 and the Coupling Facility fail.

I’anp]ing Facility and DRI

Unit of work problems

A long-running unit of work is encountered.

IMS problems

An IMS application terminates abnormally.

The IMS adapter cannot connect to MQSeries.

IMS not operational.

© Copyright IBM Corp. 1993, 2000

149

Shared queue problems

Shared queue problems

150

This section covers the following shared queue problems:

e oo T
Queue is both private and shared

Symptoms

System

System

MQSeries issues the following message:
CSQIO63E +CSQ1 QUEUE queue-name IS BOTH PRIVATE AND SHARED

During restart, MQSeries discovered that a page set based queue and a
shared queue of the same name coexist.

action
Once restart processing has completed, any MQOPEN request to that
queue name fails, indicating the coexistence problem.

programmer action
None.

Operator action

System Administration Guide

Delete one version of the queue in order to allow processing of that queue
name. If there are messages on the queue that must be kept, you can use
the MOVE QLOCAL command to move them to the other queue.

Active log problems

Active log problems

This section covers the following active log problems:

Dual logging is lost

Symptoms
MQSeries issues the following message:

€SQJO04I +CSQ1l ACTIVE LOG COPY n INACTIVE, LOG IN SINGLE MODE,
ENDRBA=...

Having completed one active log data set, MQSeries found that the
subsequent (COPY n) data sets were not off-loaded or were marked

stopped.

System action
MQSeries continues in single mode until off-loading has been completed,
then returns to dual mode.

System programmer action
None.

Operator action
Check that the off-load is proceeding and is not waiting for a tape mount.
It might be necessary to run the print log map utility to determine the state
of all data sets. It might also be necessary to define additional data sets.

Active log stopped

Symptoms
MQSeries issues the following message:

CSQJO30E +CSQ1 RBA RANGE startrba TO endrba NOT AVAILABLE IN ACTIVE
LOG DATA SETS

System action
The active log data sets that contain the RBA range reported in message
CSQJO30E are unavailable to MQSeries. The status of these logs is
STOPPED in the BSDS. MQSeries will terminate with a dump.

System programmer action
This problem must be resolved before restarting MQSeries. The log RBA
range must be available for MQSeries to be recoverable. An active log that
is marked as STOPPED in the BSDS will never be reused or archived and
this will create a hole in the log.

Look for messages that indicate why the log data set has stopped, and
follow the instructions for those messages.

The BSDS active log inventory needs to be modified to reset the STOPPED
status. To do this, follow this procedure after MQSeries has terminated:

1. Use the print log utility (CSQJUO004) to obtain a copy of the BSDS log
inventory. This shows the status of the log data sets.

Chapter 15. Example recovery scenarios 151

Active log problems

152

5.

Use the DELETE function of the change log inventory utility
(CSQJU003) to delete the active log data sets that are marked as
STOPPED.

Use the NEWLOG function of CSQJUO003 to add the active logs back
into the BSDS inventory. The starting and ending RBA for each active
log data set must be specified on the NEWLOG statement. (The correct
values to use can be found from the print log utility report obtained in
Step Lon page 151)

Rerun CSQJUO004. The active log data sets that were marked as
STOPPED will now be shown as NEW and NOT REUSABLE. These
active logs will be archived in due course.

Restart MQSeries.

Note: If your MQSeries subsystem is running in dual BSDS mode, you

must update both BSDS inventories.

One or both copies of the active log data set are damaged

Symptoms

MQSeries issues the following messages:
CSQJ102E +CSQ1 LOG RBA CONTENT OF LOG DATA SET DSNAME=...,

STARTRBA=..., ENDRBA=...,
DOES NOT AGREE WITH BSDS INFORMATION

CSQJ232E +CSQ1 OUTPUT DATA SET CONTROL INITIALIZATION PROCESS FAILED

System action
MQSeries startup processing is terminated.

System programmer action
If one copy of the data set is damaged, carry out these steps:

System Administration Guide

1.

4.

Rename the damaged active log data set and define a replacement data
set.

Copy the undamaged data set to the replacement data set.

Use the change log inventory utility to:

¢ Remove information relating to the damaged data set from the BSDS.
¢ Add information relating to the replacement data set to the BSDS.
Restart MQSeries.

If both copies of the active log data sets are damaged, the current page sets
are available, and MQSeries shut down cleanly, carry out these steps:

1.

Rename the damaged active log data sets and define replacement data
sets.

Use the change log records utility to:

* Remove information relating to the damaged data set from the BSDS.
* Add information relating to the replacement data set to the BSDS.
Rename the current page sets and define replacement page sets.

Use CSQUTIL (FORMAT and RESETPAGE) to format the replacement
page sets and copy the renamed page sets to them. The RESETPAGE
function also resets the log information in the replacement page sets.

If MQSeries did not shut down cleanly, you must either restore your
system from a previous known point of consistency, or perform a cold start

(described in ‘Reinitializing MQSeries” on page 130)).

Active log problems

Operator action
None.

Write 1/O errors on an active log data set

Symptoms
MQSeries issues the following message:
CSQJ105E +CSQl csect-name LOG WRITE ERROR DSNAME=...,
LOGRBA=..., ERROR STATUS=ccccffss
System action
MQSeries carries out these steps:

1. Marks the log data set that has the error as TRUNCATED in the BSDS.
2. Goes on to the next available data set.

3. If dual active logging is used, truncates the other copy at the same
point.

The data in the truncated data set is off-loaded later, as usual.

The data set is not stopped and is reused on the next cycle.

System programmer action
None.

Operator action
If errors on this data set still exist, take MQSeries down after the next
off-load. Then use Access Method Services (AMS) and the change lo
inventory utility to add a replacement. (For instructions, see ﬁ@@
BSDS” on page 99)

I/0 errors occur while reading the active log

Symptoms
MQSeries issues the following message:
CSQJ106E +CSQ1 LOG READ ERROR DSNAME=..., LOGRBA=...,
ERROR STATUS=ccccffss

System action
This depends on when the error occurred:

* If the error occurs during the off-load process, the process tries to read
the RBA range from a second copy.

— If no second copy exists, the active log data set is stopped.

— If the second copy also has an error, only the original data set that
triggered the off-load is stopped. The archive log data set is then
terminated, leaving a gap in the archived log RBA range.

— This message is issued:

CSQJ124E +CSQ1 OFFLOAD OF ACTIVE LOG SUSPENDED FROM
RBA xxxxxx TO RBA xxxxxx DUE TO I/O ERROR

— If the second copy is satisfactory, the first copy is not stopped.

* If the error occurs during recovery, MQSeries provides data from specific
log RBAs requested from another copy or archive. If this is unsuccessful,
recovery does not succeed, and MQSeries terminates abnormally.

¢ If the error occurs during restart, MQSeries terminates. All the copies of
the active log data sets must be available to MQSeries.

Chapter 15. Example recovery scenarios 153

Active log problems

154

System programmer action
Look for system messages, such as IEC prefixed messages, and try to
resolve the problem using the recommended actions for these messages.

If the active log data set has been stopped, it is not used for logging. The
data set is not deallocated; it is still used for reading. Even if the data set is
not stopped, an active log data set that gives persistent errors should
nevertheless be replaced.

Operator action
None. You are not told explicitly whether the data set has been stopped.

Replacing the data set

How you replace the data set depends on whether you are using single or dual
active logging.

If you are using dual active logging:
1. Ensure that the data has been saved.

The data is saved on the other active log and this can be copied to a
replacement active log.
2. Stop MQSeries and delete the data set in error using Access Method Services.

3. Redefine a new log data set using Access Method Services DEFINE so that you
can write to it. Use DFDSS or Access Method Services REPRO to copy the good
log into the redefined data set so that you have two consistent, correct logs
again.

4. Use the change log inventory utility, CSQJU003, to update the information in
the BSDS about the corrupt data set as follows:

a. Use the DELETE function to remove information about the corrupt data set.
b. Use the NEWLOG function to name the new data set as the new active log
data set and give it the RBA range that was successfully copied.

The DELETE and NEWLOG functions can be run in the same job step. Put
the DELETE statement before NEWLOG statement in the SYSIN input data
set.

5. Restart MQSeries.

If you are using single active logging:

1. Ensure that the data has been saved.

2. Stop MQSeries.

3. Determine whether the data set with the error has been off-loaded:

a. Use the CSQJUO003 utility to list information about the archive log data sets
from the BSDS.

b. Search the list for a data set whose RBA range includes the RBA of the
corrupt data set.

4. If the corrupt data set has been off-loaded, copy its backup in the archive log to
a new data set. Then, skip to step 2]

5. If an active log data set is stopped, an RBA is not off-loaded. Use DFDSS or
Access Method Services REPRO to copy the data from the corrupt data set to a
new data set.

If further I/0O errors prevent you from copying the entire data set, a gap occurs
in the log.

Note: MQSeries restart will not be successful if a gap in the log is detected.

System Administration Guide

Active log problems

6. Use the change log inventory utility, CSQJU003, to update the information in
the BSDS about the corrupt data set as follows:

a. Use the DELETE function to remove information about the corrupt data set.

b. Use the NEWLOG function to name the new data set as the new active log
data set and to give it the RBA range that was successfully copied.

The DELETE and NEWLOG functions can be run in the same job step. Put
the DELETE statement before NEWLOG statement in the SYSIN input data
set.

7. Restart MQSeries.

Active log is becoming full or is full

The active log can fill up for several reasons, for example, delays in off-loading
and excessive logging.

Symptoms
An out-of-space condition on the active log has serious consequences.
When the active log becomes full, the MQSeries subsystem halts processing
until an off-load has been completed. If the off-load processing stops when
the active log is full, the MQSeries subsystem can abend. Corrective action
is required before MQSeries can be restarted.

Because of the serious implications of this event, the MQSeries subsystem
issues the following warning message when the last available active log
data set is 75% full:

CSQJ110E +CSQ1 LAST COPYn ACTIVE LOG DATA SET IS nnn PERCENT FULL

and reissues the message after each additional 5% of the data set space is
filled. Each time the message is issued, the off-load process is started.

If the active log fills to capacity, MQSeries issues the following message:
CSQJ111A +CSQ1 OUT OF SPACE IN ACTIVE LOG DATA SETS

and an off-load is started. The MQSeries subsystem then halts processing
until an off-load has been completed.

System action
MQSeries waits for an available active log data set before resuming normal
MQSeries processing. Normal shutdown, with either QUIESCE or FORCE,
is not possible because the shutdown sequence requires log space to record
system events related to shutdown (for example, checkpoint records). If the
off-load processing stops when the active log is full, MQSeries forces itself

to stop using an X'6C6' abend; restart in this case requires special attention.
For more details, see the h1OSeries fmf QS/390 Problens Determination Guidd

System programmer action
Additional active log data sets can be provided as required before
restarting MQSeries. This permits MQSeries to continue its normal
operation while the error causing the off-load problems is corrected. To
add new active log data sets, use the change log inventory utility
(CSQJU003) when MQSeries is not active. For more details about adding
new active log data sets, see L i ” .

You should also consider increasing the number of logs by:

1. Making sure MQSeries is stopped, then using the Access Method
Services DEFINE command to define a new active log data set.

Chapter 15. Example recovery scenarios 155

Active log problems

2. Defining the new active log data set in the BSDS using the change log
inventory utility (CSQJU003).

Restarting MQSeries: off-load starts automatically during startup, and work
in progress when MQSeries was forced to stop is recovered.

Operator action
Check whether the off-load process is waiting for a tape drive. If it is,
mount the tape. If you cannot mount the tape, force MQSeries to stop by
using OS/390 CANCEL.

156 System Administration Guide

Archive log problems

Archive log problems

This section covers the following archive log problems:

Allocation problems

Symptoms
MQSeries issues the following message:

CSQJ103E +CSQLl LOG ALLOCATION ERROR DSNAME=dsname,
ERROR STATUS=eeeeiiii, SMS REASON CODE=sss

0S5/390 dynamic allocation provides the ERROR STATUS. If the allocation
was for off-load processing, the following message is also displayed:

CSQJ115E +CSQ1l OFFLOAD FAILED, COULD NOT ALLOCATE AN ARCHIVE
DATA SET

System action
The following actions take place:

¢ If the input is needed for recovery, recovery is not successful, and
MQSeries will abend.

¢ If the active log had become full and an off-load was scheduled but not
completed, off-load tries again the next time it is triggered. The active
log does not reuse a data set that has not yet been archived.

System programmer action
None.

Operator action
Check the allocation error code for the cause of the problem, and correct it.
Ensure that drives are available, and either restart or wait for the off-load
to be retried. Be careful if a DFP/DFSMS ACS user-exit filter has been
written for an archive log data set, because this can cause a device
allocation error when the MQSeries subsystem tries to read the archive log
data set.

Off-load task terminated abnormally

Symptoms
No specific MQSeries message is issued for write /O errors.

Only an OS/390 error recovery program message appears. If you get
MQSeries message CSQJ128E, the off-load task has terminated abnormally

and you should consult the MQSeries for QS/390 Messages and Coded

manual.

System action
The following actions take place:

¢ Off-load abandons the output data set; no entry is made in the BSDS.

* Off-load dynamically allocates a new archive and restarts off-loading
from the point at which it was previously triggered.

Chapter 15. Example recovery scenarios 157

Archive log problems

158

e If an error occurs on the new data set:

— In dual archive mode, this message is generated and the off-load
processing changes to single mode:
CSQJ114I +CSQ1 ERROR ON ARCHIVE DATA SET, OFFLOAD
CONTINUING WITH ONLY ONE ARCHIVE DATA SET BEING
GENERATED
- In single archive mode, the output data set is abandoned. Another
attempt to off-load this RBA range is made the next time off-load is
triggered.
— The active log does not wrap around; if there are no more active logs,
data is not lost.

System programmer action
None.

Operator action
Ensure that off-load is allocated on a reliable drive and control unit.

Insufficient DASD space to complete off-load processing

Symptoms
While off-loading the active log data sets to DASD, the process terminates
unexpectedly. MQSeries issues the following message:

CSQJ128E +CSQl LOG OFF-LOAD TASK FAILED FOR ACTIVE LOG nnnnn

The error is preceded by OS/390 messages IEC030I, IEC031I, or IEC032I.

System action
MQSeries de-allocates the data set on which the error occurred. If
MQSeries is running in dual archive mode, MQSeries changes to single
archive mode and continues the off-load. If the off-load cannot be
completed in single archive mode, the active log data sets cannot be
off-loaded, and the state of the active log data sets remains NOT
REUSABLE. Another attempt to off-load the RBA range of the abandoned
active log data sets is made the next time the off-load process is triggered.

System programmer action
Quiesce the MQSeries subsystem (using +CSQ1 STOP QMGR
MODE(QUIESCE)) to restrict logging activity until the OS/390 abend is
resolved.

The most likely causes of these symptoms are:

* The size of the archive log data set is too small to contain the data from
the active log data sets during off-load processing. All the secondary
space allocations have been used. This condition is normally
accompanied by OS/390 message IEC030I.

To solve the problem, either increase the primary or secondary
allocations (or both) for the archive log data set (in the CSQ6ARVP
system parameters), or reduce the size of the active log data set. If the
data to be off-loaded is particularly large, you can mount another online
storage volume or make one available to MQSeries.

* All available space on the DASD volumes to which the archive data set
is being written has been exhausted. This condition is normally
accompanied by OS/390 message IEC032I.

To solve the problem, make more space available on the DASD volumes,
or make another online storage volume available for MQSeries.

System Administration Guide

Archive log problems

¢ The primary space allocation for the archive log data set (as specified in
the CSQ6ARVP system parameters) is too large to allocate to any
available online DASD device. This condition is normally accompanied
by OS/390 message IEC0321.

To solve the problem, make more space available on the DASD volumes,
or make another online storage volume available for MQSeries. If this is
not possible, you must adjust the value of PRIQTY in the CSQ6ARVP

system parameters to reduce the primary allocation. (For details, see the
IMOSeries fnv QS/390 chfﬂm Qp{-up F1/1’d;l)

Note: If the primary allocation is reduced, the size of the secondary
space allocation might have to be increased to avoid future
abends.

Operator action
None.

Read I/0 errors on the archive data set while MQSeries is
restarting

Symptoms
No specific MQSeries message is issued; only the OS/390 error recovery
program message appears.

System action
This depends on whether a second copy exists:
 If a second copy exists, it is allocated and used.
* If a second copy does not exist, restart is not successful.

System programmer action
None.

Operator action
Try to restart, using a different drive.

Chapter 15. Example recovery scenarios 159

BSDS problems

BSDS problems

For background information about the bootstrap data set (BSDS), see the m
for 0S/390 Concepts and Planning Guida.

This section describes the following BSDS problems:

A

Normally, there are two copies of the BSDS, but if one is damaged, MQSeries
immediately changes to single BSDS mode. However, the damaged copy of the
BSDS must be recovered before restart. If you are in single mode and damage the
only copy of the BSDS, or if you are in dual mode and damage both copies, see

'Recavering the BSNS” on page 10,

This section covers some of the BSDS problems that can occur at startup. Problems
not covered here include:

* +CSQ1 RECOVER BSDS command errors (messages CSQJ301E - CSQJ3071)

* Change log inventory utility errors (message CSQJ123E)

* Errors in the BSDS backup being dumped by off-load (message CSQJ125E)

For information about those problems, see the MQSeries for QS/390 Messages and
manual.

Error occurs while opening the BSDS

Symptoms
MQSeries issues the following message:
CSQJ100E +CSQ1 ERROR OPENING BSDSn DSNAME=..., ERROR STATUS=eeii

where eeii is the VSAM return code. For information about VSAM codes,
see the DFSMS/MVS Macro Instructions for Data Sets manual. For an
exEIanation of this message, see the MQSeries for 0S/390 Messages and

manual.

System action
During system initialization, the startup is terminated.

During a +CSQ1 RECOVER BSDS command, the system continues in single
BSDS mode.

System programmer action
None.

Operator action
Carry out these steps:

1. Run the print log map utility on both copies of the BSDS, and compare
the lists to determine which copy is accurate or current.

2. Rename the data set that had the problem, and define a replacement for
it.

3. Copy the accurate data set to the replacement data set, using Access
Method Services.

160 System Administration Guide

BSDS problems
4. Restart MQSeries.

Log content does not agree with the BSDS information

Symptoms
MQSeries issues the following message:
CSQJ102E +CSQ1 LOG RBA CONTENT OF LOG DATA SET DSNAME=...,

STARTRBA=..., ENDRBA=...,
DOES NOT AGREE WITH BSDS INFORMATION

This message indicates that the change log inventory utility was used
incorrectly or that a down-level data set is being used.

System action
MQSeries startup processing is terminated.

System programmer action
None.

Operator action
Run the print log map utility and the change log inventory utility to print
and correct the contents of the BSDS.

Both copies of the BSDS are damaged

Symptoms
MQSeries issues the following messages:
CSQJ107E +CSQ1 READ ERROR ON BSDS
DSNAME=... ERROR STATUS=0874
CSQJ117E +CSQ1 REG8 INITIALIZATION ERROR READING BSDS

DSNAME=... ERROR STATUS=0874
CSQJ119E +CSQ1 BOOTSTRAP ACCESS INITIALIZATION PROCESSING FAILED

System action
MQSeries startup processing is terminated.

System programmer action
Carry out these steps:
1. Rename the data set, and define a replacement for it.

2. Locate the BSDS associated with the most recent archive log data set,
and copy it to the replacement data set.

3. Use the print log map utility to print the contents of the replacement
BSDS.

4. Use the print log records utility to print a summary report of the active
log data sets missing from the replacement BSDS, and to establish the
RBA range.

5. Use the change log inventory utility to update the missing active log
data set inventory in the replacement BSDS.

6. If dual BSDS data sets had been in use, copy the updated BSDS to the
second copy of the BSDS.

7. Restart MQSeries.

Operator action
None.

Chapter 15. Example recovery scenarios 161

BSDS problems
Unequal time stamps

162

Symptoms

System

System

MQSeries issues the following message:

CSQJ120E +CSQ1 DUAL BSDS DATA SETS HAVE UNEQUAL TIME STAMPS,
SYSTEM BSDS1=...,BSDS2=...,
UTILITY BSDSI=...,BSDS2=...

The possible causes are:

* One copy of the BSDS has been restored. All information on the restored
BSDS is down-level. The down-level BSDS has the lower time stamp.

* One of the volumes containing the BSDS has been restored. All
information on the restored volume is down-level. If the volume
contains any active log data sets or MQSeries data, they are also
down-level. The down-level volume has the lower time stamp.

* Dual logging has degraded to single logging, and you are trying to start
without recovering the damaged log.

* The MQSeries subsystem terminated abnormally after updating one
copy of the BSDS but before updating the second copy.

action
MQSeries startup is terminated.

programmer action
None.

Operator action

Carry out these steps:

1. Run the print log map utility on both copies of the BSDS, compare the
lists to determine which copy is accurate or current.

2. Rename the down-level data set and define a replacement for it.

3. Copy the good data set to the replacement data set, using Access
Method Services.

4. If applicable, determine whether the volume containing the down-level
BSDS has been restored. If it has been restored, all data on that volume,
such as the active log data, is also down-level.

If the restored volume contains active log data and you were using
dual active logs on separate volumes, you need to copy the current
version of the active log to the down-level log data set.

logs” on page 93 tells you how to do this.

Out of synchronization

Symptoms

System Administration Guide

MQSeries issues the following message:
CSQJ122E +CSQ1 DUAL BSDS DATA SETS ARE OUT OF SYNCHRONIZATION

The system time stamps of the two data sets are identical. Differences can
exist if operator errors occurred while the change log inventory utility was
being used. (For example, the change log inventory utility was only run on
one copy.) The change log inventory utility sets a private time stamp in the
BSDS control record when it starts, and a close flag when it ends.
MQSeries checks the change log inventory utility time stamps and, if they
are different, or they are the same but one close flag is not set, MQSeries
compares the copies of the BSDSs. If the copies are different, CSQJ122E is
issued.

BSDS problems

System action
MQSeries startup is terminated.

System programmer action
None.

Operator action
Carry out these steps:
1. Run the print log map utility on both copies of the BSDS, and compare
the lists to determine which copy is accurate or current.

2. Rename the data set that had the problem, and define a replacement for
it.

3. Copy the accurate data set to the replacement data set, using access
method services.

4. Restart MQSeries.

I/O error

Symptoms
MQSeries changes to single BSDS mode and issues the user message:
CSQJ126E +CSQ1 BSDS ERROR FORCED SINGLE BSDS MODE

This is followed by one of these messages:

CSQJ107E +CSQ1 READ ERROR ON BSDS
DSNAME=... ERROR STATUS=...

CSQJ108E +CSQ1 WRITE ERROR ON BSDS
DSNAME=... ERROR STATUS=...

System action
The BSDS mode changes from dual to single.

System programmer action
None.

Operator action

Carry out these steps:

1. Use Access Method Services to rename or delete the damaged BSDS
and to define a new BSDS with the same name as the BSDS that had
the error. Control statements can be found in job CSQ4BSDS in
thlqual. SCSQPROC.

2. Issue the MQSeries command +CSQ1 RECOVER BSDS to make a copy
of the good BSDS in the newly allocated data set and reinstate dual

BSDS mode. See also Recovering the BSDS” on page 101,

Chapter 15. Example recovery scenarios 163

Page set problems

Page set problems

164

This section covers the problems that you might encounter with page sets:

* [Page set 1/Q errars”] describes what happens if a page set is damaged.
» FPage set full” on page 163 describes what happens if there is not enough space

on the page set for any more MQI operations.

Page set I/O errors

Problem
A page set has an 1/O error.

Symptoms
This message is issued:

CSQPOO4E +CSQ1 csect-name 1/0 ERROR STATUS ret-code
PSID psid RBA rba

System action
MQSeries terminates abnormally.

System programmer action
None.

Operator action
Repair the I/O error cause.

If none of the page sets are damaged, restart MQSeries. MQSeries
automatically restores the page set to a consistent state from the logs.

If one or more page sets are damaged:
1. Rename the damaged page sets and define replacement page sets.
2. Copy the most recent backup page sets to the replacement page sets.

3. Restart MQSeries. MQSeries automatically applies any updates that are
necessary from the logs.

You cannot restart MQSeries if page set zero is not available. However, if
one of the other page sets is not available, you can comment out the page
set DD statement in the MQSeries start-up JCL procedure. This lets you
defer recovery of the defective page set, enabling other users to continue
accessing MQSeries.

When you add the page set back to the JCL procedure, system restart
will read the log from the point where the page set was removed from
the JCL to the end of the log. This could take a long time if a lot of data
has been logged.

A reason code of MQRC_PAGESET_ERROR is returned to any application
that tries to access a queue defined on a page set that is not available.
When you have restored the defective page set, restore its associated DD
statement and restart MQSeries.

The operator actions described here are only possible if all log data sets are

available. If your log data sets are lost or damaged, see I‘Restarting if you have losf

”

System Administration Guide

Page set problems

Page set full

Problem
There is not enough space on a page set for one of the following:

* MQPUT or MQPUT1 calls to be completed

* Object manipulation commands to be completed (for example, DEFINE
QLOCAL)

* MQOPEN calls for dynamic queues to be completed

Symptoms
The request fails with reason code MQRC_STORAGE_MEDIUM_FULL.
The queue manager is unable to complete the request because there is not
enough space remaining on the page set.

The cause of this problem could be due to messages accumulating on a
transmission queue because they cannot be sent to another system.

System action
Further requests that use this page set are blocked until enough messages
are removed or objects deleted to make room for the new incoming
requests.

Operator action
Use the MQSeries command DISPLAY USAGE PSID(*) to identify which
page set is full.

System programmer action

You can either enlarge the page set involved or reduce the loading on that
page set by moving queues to another page set. See LChap.ter_lD_Mana.gm.g
bage sets” on page 103 for more information about these tasks. If the cause
of the problem is messages accumulating on the transmission queue,
consider starting distributed queuing to transmit the messages.

Chapter 15. Example recovery scenarios 165

Coupling Facility and DB2 problems

| Coupling Facility and DB2 problems

166

This section covers the problems that you might encounter with the Coupling

Facility

and DB2:

Storage medium full

Problem

A Coupling Facility structure is full.

Symptoms

System

If a queue structure becomes full, return code
MQRC_STORAGE_MEDIUM_FULL is returned to the application.

If the administration structure becomes full, the exact symptoms depend
on which processes experience the error, they might range from no
responses to CMDSCOPE(GROUP) commands to queue manager failure as
a result of problems during commit processing.

programmer action

You might use MQSeries to inhibit MQPUT operations to some of the
queues in the structure to prevent applications from writing more
messages, start more applications to get messages from the queues, or
quiesce some of the applications that are putting messages to the queue.

Alternatively XES facilities can be used to alter the structure size in place.
The OS/390 command SETXCF START,ALTER,CFNAME=cfname ,SIZE=newsize
alters the size of the structure to newsize, where newsize is a value that is
less than the value of MAXSIZE specified on the CFRM policy for the
structure, but greater than the current Coupling Facility size.

You can monitor the utilization of a Coupling Facility structure with the
MQSeries DISPLAY GROUP command.

A DB2 system fails

If a DB2 subsystem that MQSeries is connected to fails, MQSeries attempts to
reconnect to the subsystem and continue working. If you specified a DB2 group
attach name in the QSGDATA parameter of the CSQ6SYSP system parameter
module, MQSeries reconnects to another active DB2 that is a member of the same
data-sharing group as the failed DB2, if one is available on the same OS/390

image.

There are some queue manager operations that will not work while MQSeries is
not connected to DB2. These are:

* Delete of a shared queue or group object definition.

e Alter

or MQSET of a shared queue or group object definition. The restriction of

MOQSET on shared queues means that operations such as triggering or
generation of performance events do not work correctly.

* Define of new shared queues or group objects.

* Display of shared queues or group objects.

e Starting, stopping, or other actions for shared channels.

System Administration Guide

Coupling Facility and DB2 problems

However, other MQSeries API operations continue to function as normal for shared
queues, and all MQSeries operations can be performed against the queue manager
private versions (COPY objects) built from GROUP objects. Similarly, any shared
channels that are running will continue normally until they end or have an error,
when they will go into retry state.

When MQSeries reconnects to DB2, resynchronization is performed between the
queue manager and DB2. This involves notifying the queue manager of new
objects that have been defined in DB2 while it was disconnected (other queue
managers might have been able to continue working as normal on other OS/390
images through other DB2 subsystems), and updating object attributes of shared
queues that have changed in DB2. Any shared channels in retry state will be
recovered.

If a DB2 fails, it might have owned locks on DB2 resources at the time of failure. In
some cases, this might make certain MQSeries objects unavailable to other queue
managers that are not otherwise affected. To resolve this, restart the failed DB2 so
that it can perform recovery processing and release the locks.

A DB2 data-sharing group fails

If an entire DB2 data-sharing group fails, recovery might be to the time of failure,
or to a previous point in time.

In the case of recovery to the point of failure, MQSeries reconnects when DB2 has
been recovered, the resynchronization process takes places and normal queue
manager function is resumed.

However, if DB2 is recovered to a previous point in time, there might be
inconsistencies between the actual queues in the Coupling Facility structures and
the DB2 view of those queues. For example, at the point in time DB2 is recovered
to, a queue existed that has since been deleted and its location in the Coupling
Facility structure reused by the definition of a new queue that now contains
messages.

If you find yourself in this sort of situation, you must stop all the queue managers
in the queue-sharing group, clear out the Coupling Facility structures, and restart
the queue managers. You must then use MQSC commands to define any missing
objects. To do this, use the following procedure:

1. Prevent MQSeries from reconnecting to DB2 by starting DB2 in utility mode, or
by altering security profiles.

2. If you have any important messages on shared queues, you might be able to
off-load them using the COPY function of the CSQUTIL utility program, but
this might not work.

w

Terminate all queue managers.

Use the OS/390 command SETXCF FORCE,STRUCTURE, STRNAME= to clear all
structures.

&

Restore DB2 to a historical point in time.

Reestablish queue manager access to DB2.

Restart the queue managers.

Recover the MQSeries definitions from back-up copies.

© o N O

Reload any off-loaded messages to the shared queues.

Chapter 15. Example recovery scenarios 167

Coupling Facility and DB2 problems

168

When the queue managers restart, they attempt to resynchronize local COPY
objects with the DB2 GROUP objects. This might cause MQSeries to attempt to do
the following:

* Create COPY objects for old GROUP objects that existed at the point in time
DB2 has recovered to

* Delete COPY objects for GROUP objects that were created since the point in time
DB2 has recovered to and so do not exist in the database

The DELETE of COPY objects is attempted with the NOPURGE option, so it will
fail for queue managers that still have messages on these COPY queues.

DB2 and the Coupling Facility fail

If the Coupling Facility fails, the queue managers and DB2 will also fail.

Recover DB2 using DB2 recovery procedures. When DB2 has been restarted, you
can restart the queue managers.

All messages on shared queues that were in Coupling Facility structures affected
by the Coupling Facility failure will have been lost. The queue object definitions
will have been restored by DB2 and can continue to be used.

System Administration Guide

Unit of work problems

Problems with long-running units of work

This section explains what to do if you encounter a long-running unit of work
during restart. In this context, this means a unit of work that has been active for a
long period of time (possibly days or even weeks) so that the origin RBA of the
unit of work is outside the scope of the current active logs. This means that restart
could take a long time, because all of the log records relating to the unit of work
have to be read, which might involve reading archive logs.

Old unit of work found during restart

Problem
A unit of work with an origin RBA that predates the oldest active log has
been detected during restart.

Symptoms
MQSeries issues the following message:
CSQRO20T +CSQ1 OLD UOW FOUND

System action
Information about the unit of work is displayed, and message CSQR021D
is issued, requesting a response from the operator.

System programmer action
None.

Operator action
Decide whether to commit the unit of work or not. If you choose not to
commit the unit of work, it will be handled by normal restart recovery
processing. Because the unit of work is old, this is likely to involve using
the archive log, and so will take longer to complete.

Chapter 15. Example recovery scenarios 169

IMS problems

IMS-related problems

This section includes plans for problems that you might encounter in the IMS
environment:

IMS is unable to connect to MQSeries

Problem
The IMS adapter cannot connect to MQSeries.

Symptoms
IMS remains operative. The IMS adapter issues these messages for control
region connect:
CSQQO011I
CSQQO02E
CSQQO03E
CSQQO04E
CSQQO05E
CSQQO07E

For details, see the DOSeries fnr QS/390 Messages and Coded manual.

If an IMS application program tries to access MQSeries while the IMS
adapter cannot connect, it can either receive a completion code and reason
code or terminate abnormally. This depends on the value of the REO
option in the SSM member of IMS PROCLIB.

System action
All connection errors are also reported in the IMS message DFS3611.

System programmer action
None.
Operator action
Analyze and correct the problem, then restart the connection with the IMS
command:
/START SUBSYS subsysname

IMS requests the adapter to resolve in-doubt units of recovery.

IMS application problem

Problem
An IMS application terminates abnormally.

Symptoms
The following message is sent to the user’s terminal:

DFS5551 TRANSACTION tran-id ABEND abcode
MSG IN PROCESS: message data:

where tran-id represents any IMS transaction that is terminating
abnormally and abcode is the abend code.

System action
IMS requests the adapter to resolve the unit of recovery. IMS remains
connected to MQSeries.

170 System Administration Guide

IMS problems

System programmer action
None.

Operator action
As indicated in message DFS554A on the IMS master terminal.

IMS is not operational

Problem
IMS is not operational.

Symptoms
More than one symptom is possible:
* IMS waits or loops

Because MQSeries cannot detect a wait or loop in IMS, you must find
the origin of the wait or loop. This can be IMS, IMS applications, or the
IMS adapter.

* IMS terminates abnormally.

— See the manuals IMS/ESA Messages and Codes and IMS/ESA Failure
Analysis Structure Tables for more information.

— If threads are connected to MQSeries when IMS terminates, MQSeries
issues message CSQ3201E. This message indicates that MQSeries
end-of-task (EOT) routines have been run to clean up and disconnect
any connected threads.

System action
MQSeries detects the IMS error and:
* Backs out in-flight work.
* Saves in-doubt units of recovery to be resolved when IMS is
reconnected.

System programmer action
None.

Operator action
Resolve and correct the problem that caused IMS to terminate abnormally,
then carry out an emergency restart of IMS. The emergency restart:

* Backs out in-flight transactions that changed IMS resources.

¢ Remembers the transactions with access to MQSeries that might be in
doubt.

It might be necessary to restart the connection to MQSeries with the IMS

command:

/START SUBSYS subsysname

During startup, IMS requests the adapter to resolve in-doubt units of
recovery.

Chapter 15. Example recovery scenarios 171

Hardware problems

Hardware problems

172

If a hardware error causes data to be unreadable on your subsystem, MQSeries can
still be recovered by using the media recovery technique:

1. To recover the data, you need a backup copy of the data. Use DFDSS or Access
Method Services REPRO regularly to make a copy of your data.

2. Reinstate the most recent backup copy.

3. Restart MQSeries.

The more recent your backup copy, the more quickly your subsystem can be made
available again.

When MQSeries restarts, it uses the archive logs to reinstate changes made since
the backup copy was taken. You must keep sufficient archive logs to enable
MQSeries to reinstate the subsystem fully. Do not delete archive logs until there is
a backup copy that includes all the changes in the log.

System Administration Guide

Part 6. Using the MQSeries Utilities

Chapter 16. Using the MQSeries utilities
How to read syntax diagrams . ..

Chapter 17. MQSeries utility program
(CSQUTIL) . .
Invoking the MQSeries ut111ty program

PARM parameters .
Monitoring the progress of the MQSenes ut1hty
program . e
Formatting page sets (FORMAT)
Expanding a page set (COPYPAGE) .
Copying a page set and resetting the log
(RESETPAGE) .
Issuing commands to MQSerles (COMMAND)
Producing a list of MQSeries define commands
(SDEFS) .
Copying queues 1r1to a data set wh11e the queue
manager is running (COPY)
Copying queues into a data set while the queue
manager is not running (SCOPY).
Emptying a queue of all messages (EMPTY)
Restoring messages from a data set to a queue
(LOAD)

Chapter 18. The change log mventory utlllty
(CSQJU003) . .
Invoking the CSQJU003 ut1hty

Data definition (DD) statements .

Multiple statement operation . .
Adding information about a data set to the BSDS
(NEWLOG) . . .
Deleting information about a data set from the
BSDS (DELETE) .
Supplying a password for archlve log data sets
(ARCHIVE) . .
Controlling the next restart (CRESTART)
Setting checkpoint records (CHECKPT). .
Updating the highest written log RBA (HIGHRBA)

Chapter 19. The print log map ut|||ty
(CSQJuo004) . .
Invoking the CSQJU004 utlhty

Data definition statements .

Chapter 20. The log print utility (CSQ1 LOGP)
Invoking the CSQILOGP utility . .
Input control parameters

Output

Chapter 21. The queue-sharing group utlllty
(CSQ5PQSG) . .
Invoking the queue- sharmg group utlhty

Data definition statements . .
Keywords and parameters .
Example .

© Copyright IBM Corp. 1993, 2000

. 175
. 176

. 179
. 180
. 180

. 182
. 183
. 185

. 187
. 190

. 195

. 198

. 201
. 204

. 206
. 209
. 209
. 209
. 210
. 211
. 214
. 215

. 216
. 217

218

. 219
. 219
. 219

221

. 221
. 222
. 223

. 225
. 225
. 225
. 225
. 226

Chapter 22. The dead-letter queue handler
utility (CSQUDLQH). o
Invoking the DLQ handler .
Data definition statements .
Sample JCL . .
The DLQ handler rules table .
Control data.
Rules (patterns and actlons) .
The pattern-matching keywords .
The action keywords .
Rules table conventions .
Processing the rules table .
Ensuring that all DLQ messages are processed
An example DLQ handler rules table

. 227
. 227
. 228
. 228
. 228
. 229
. 230
. 230
. 231
. 233
. 235

236

. 237

173

174 System Administration Guide

Chapter 16. Using the MQSeries utilities

This chapter introduces the MQSeries utility programs that are provided to help
you perform various administrative tasks. The utility programs are described in

the following chapters.

Table 4. A summary of MQSeries utilities

summarizes what you can do with these utilities.

Name Purpose See page

CSQUTIL (MQSeries |Managing page sets

utility program) Format VSAM data sets as MQSeries page sets. FORMAT =3
Copy MQSeries page sets. COPYPAGE TE]
Copy MQSeries page sets and reset the log information. | RESETPAGE rs7

CSQUTIL (MQSeries |Issuing commands

utility program) Issue MQSeries commands from a sequential data set. COMMAND fred
Produce a set of DEFINE commands for objects. COMMAND fred
Produce a client channel definition file. COMMAND fod
Produce a set of DEFINE commands for objects (offline). | SDEFS led

CSQUTIL (MQSeries |Managing queues

utility program) Copy contents of a queue to a data set. COPY frod
Copy contents of a queue to a data set (offline). SCOPY kad
Delete contents of a queue. EMPTY bod
Restore contents of a queue. LOAD

CSQUCVX (Data
conversion exit
utility)

Generate data conversion exit routines.

For information about the CSQUCVX utility, see the MQSeries Application Programming Guide.

(Dead-letter queue
handler utility)

CSQJUO003 (Change |Add active or archive log data sets. NEWLOG b1l

log inventory utility) Delete active or archive log data sets. DELETE b4
Supply passwords for archive logs. ARCHIVE k13
Control the next restart of MQSeries. CRESTART b1d
Set checkpoint records. CHECKPT k12
Update the highest written log RBA. HIGHRBA b1d

CSQJU004 (Print log | List information about the log. bid

map utility)

CSQI1LOGP (Log Print the log. k21

print utility)

CSQ5PQSG Add and remove queue-sharing group and queue manager entries in the k2

(MQSeries table MQSeries tables held in the shared DB2 data-sharing group.

update utility)

CSQUDLQH Process messages on the dead-letter queue. p272

© Copyright IBM Corp. 1993, 2000

175

Utilities

These utilities are located in the thlqual. SCSQAUTH or thlqual. SCSQLOAD
MQSeries load libraries. Include the appropriate MQSeries language load library
thlqual. SCSQANLXx (where x is the language letter) in the STEPLIB concatenation
before thlqual. SCSQAUTH or thlqual. SCSQLOAD. The utility control statements
are available only in U.S. English. In some cases, the DB2 library

db2qual. SDSNLOAD is also needed.

How to read syntax diagrams

This book contains syntax diagrams (sometimes referred to as “railroad”
diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and
left arrow pair. Lines beginning with a single right arrow are continuation lines.
You read a syntax diagram from left to right and from top to bottom, following the
direction of the arrows.

Other conventions used in syntax diagrams are:

Table 5. How to read syntax diagrams

Convention Meaning

You must specify values A, B, and C. Required values are shown on
»»—A—B—(—»«| the main line of a syntax diagram.

You may specify value A. Optional values are shown below the main

»—L——I—>< line of a syntax diagram.
A

Values A, B, and C are alternatives, one of which you must specify.

Values A, B, and C are alternatives, one of which you may specify.

v
v
v
A

176 System Administration Guide

Syntax diagrams

Table 5. How to read syntax diagrams (continued)

Convention Meaning

You may specify one or more of the values A, B, and C. Any required
separator for multiple or repeated values (in this example, the

> E]
F comma (,)) is shown on the arrow.
A\

v
A

=

| B—

You may specify value A multiple times. The separator in this
example is optional.

A\
A

Lp

Values A, B, and C are alternatives, one of which you may specify. If
you specify none of the values shown, the default A (the value
> »« | shown above the main line) is used.

=

lon)

The syntax fragment Name is shown separately from the main syntax

»—I Name |—>< diagram.

Name:

A] |

Punctuation and Specify exactly as shown.
uppercase values

Lowercase values Supply your own text in place of the name variable.
(for example, name)

Chapter 16. Using the MQSeries utilities 177

Syntax diagrams

178 System Administration Guide

Chapter 17. MQSeries utility program (CSQUTIL)

The CSQUTIL utility program is provided with MQSeries to help you to perform
backup, restoration, and reorganization tasks, and to issue MQSeries commands.
Through this utility program, you can invoke functions in these groups:

Page set management
These functions enable you to manage MQSeries page sets. You can format
data sets as page sets, you can increase the size of page sets and, if
required, reset the log information contained in a page set. The page set
must not belong to a queue manager that is currently running.

Command management
These functions enable you to:

* Issue commands to MQSeries

* Produce a list of define commands describing the objects in your
MQSeries subsystem

Queue management
These functions enable you to back up and restore queues and page sets or
to copy queues and page sets to another MQSeries system. You can use
these functions to reset your MQSeries subsystem or for migrating from
one MQSeries subsystem to another.

Specifically, you can:

* Copy messages from a queue to a data set

* Delete messages from a queue

* Restore previously copied messages to their respective queues

The scope of these functions can be either:

* A queue, in which case the function operates on all messages in the
specified queue.

* A page set, in which case the function operates on all the messages, in all
the queues, on the specified page set.

You should use these functions only for your own queues; do not use them
for system queues (those with names beginning SYSTEM).

All of the page set management functions and some of the other functions operate
while the queue manager is not running; for these therefore, you do not need any
special authorization other than the appropriate access to the page set data sets.
For the functions that operate while the queue manager is running, CSQUTIL runs
as an ordinary OS/390 batch MQSeries program, issuing commands through the
command server and using the MQSeries API to access queues.

You need the necessary authority to use the command server queues
(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.*), to use the MQSC DISPLAY commands, and to use the
MQSeries API to access any queues that you wish to manage. See the usage notes
for each function for more information.

© Copyright IBM Corp. 1993, 2000 179

CSQUTIL

Invoking the MQSeries utility program

180

The CSQUTIL utility program runs as an OS/390 batch program, below the 16 MB
storage line. Specify the resources that the utility is to work with in the PARM
parameter of the EXEC statement of the JCL.

// EXEC PGM=CSQUTIL,PARM=

Figure 56. How to invoke the CSQUTIL utility program

where PARM= expands to :

QSGname,DSGname,DB2ssid

»>—PARM=" <
EQMGRname
QMGRname ,QSGname ,DSGname ,DB2ssid—

PARM parameters

OMGRname
Specifies the 1- to 4- character name of the queue manager or queue-sharing
group to which CSQUTIL is to connect.

If you specify the name of a queue-sharing group, CSQUTIL connects to any
queue manager in that group

QSGname
Specifies the 1- to 4- character name of the queue-sharing group from which
CSQUTIL is to extract definitions.

DSGname
Specifies the 8—character name of the DB2 data-sharing group from which
CSQUTIL is to extract definitions.

DB2ssid
Specifies the 4—character name, or group attach name, of the DB2 database
subsystem to which CSQUTIL is to attach for stand-alone functions.

Which PARM parameters do you need?

m‘ shows that you can specify one of four options on the PARM statement.
The option you specify depends on the function you need to implement, as
follows:

* Use PARM= (or omit it all together) if you are using only offline functions, and not
QSGDISP(GROUP) or QSGDISP(SHARED).

* Use PARM="'QMGRname' only if you intend to use functions that require the queue
manager to be running, such as COPY and COMMAND.

» Use PARM="QSGname, DSGname,DB2ssid' if you intend to use the SDEFS function
with either QSGDISP(GROUP) or QSGDISP(SHARED) specified. This is because
CSQUTIL requires access to DB2 to perform the SDEFS function in this situation.

* Use PARM="'QMGRname , QSGname ,DSGname ,DB2ssid" if you intend to combine the
previous two functions in one CSQUTIL job.

System Administration Guide

CSQUTIL

If you specify a queue manager name as blanks, CSQUTIL uses the name of the
default queue manager specified for OS/390 batch programs in CSQBDEFV. The
utility then uses this queue manager for the whole job step. When the utility
connects to the queue manager, the authorization of the “signed-on user name” is
checked to see which functions the invocation is allowed to use.

You specify the functions required by statements in the SYSIN data set according
to these rules:

* The data set must have a record length of 80.
* Only columns 1 through 72 are significant. Columns 73 through 80 are ignored.

* Records with an asterisk (*) in column 1 are interpreted as comments and are
ignored.

* Blank records are ignored.

* Each statement must start on a new line.

* A trailing — means continue from column 1 of the next record.

* A trailing + means continue from the first non-blank column of the next record.

* The keywords of statements are not case-sensitive. However, some arguments,
such as queue name, are case-sensitive.

The utility statements refer to the default or explicitly named DDnames for input
and output. Your job can use the COPY and LOAD functions repeatedly and
process different page sets or queues during a single run of the utility.

All output messages are sent to the SYSPRINT data set, which must have a record
format VBA and a record length 125.

While running, CSQUTIL uses temporary dynamic queues with names of the form
SYSTEM.CSQUTIL.*

Return codes
When CSQUTIL returns to the operating system, the return code can be:

0 All functions completed successfully.

4 Some functions completed successfully, some did not or forced a syncpoint.
8 All the attempted functions failed.

12 No functions attempted; there was a syntax error in the statements or the

expected data sets were missing.
In most cases, if a function fails or is forced to take a syncpoint, no further
functions are attempted. In this case, the message CSQU147I replaces the normal

completion message CSQU148I.

See the usage notes for each function for more information about success or failure.

Chapter 17. MQSeries utility program (CSQUTIL) 181

CSQUTIL

Monitoring the progress of the MQSeries utility program

To record the progress of CSQUTIL, every SYSIN statement is echoed to
SYSPRINT.

The utility first checks the syntax of the statements in the SYSIN. The requested
functions are started only if all the statements are syntactically correct.

Messages giving a commentary on the progress of each function are sent to

SYSPRINT. When the processing of the utility is complete, statistics are printed
with an indication of how the functions completed.

182 System Administration Guide

CSQUTIL (FORMAT function)

Formatting page sets (FORMAT)

Use the FORMAT function to format page sets on all data sets specified by
DDnames CSQP0000 through CSQP0099. In this way, you can format up to 100
page sets by invoking the utility program once. Use the FORCE parameter to reuse
existing page sets.

— Page set management (FORMAT)

»>—FORMAT >

|—FORCE—| I—PAGES(nnn)—|

Keywords and parameters
FORCE

Specifies that existing page sets are to be re-used without having to delete and
redefine them first. You must define any page sets you want to re-use with the
REUSE attribute in the AMS DEFINE CLUSTER statement. For more
information about DEFINE CLUSTER, see the DEFSMS/MVS Access Method
Services for VSAM or the DFSMS/MVS Access Method Services for the Integrated
Catalog Facility manual.

PAGES(nnn)

Example

Specifies the minimum number of pages to format in each page set. This
enables a data set that spans more than one volume to be formatted.

Formatting of the data set is always done in whole space allocations, as
specified as primary or secondary quantities when the data set is defined. The
number of space allocations formatted is the minimum necessary to provide
the requested number of pages; if there is insufficient data set space available,
as many extents as can be obtained are formatted. If an existing page set is
being reused (with the FORCE keyword), the whole page set is formatted if
that is larger.

The number of pages must be in the range 1 through 1 048 576 (because the
maximum page set size is 4 GB (gigabytes)). The default is 1.

The number of pages formatted is reported by message CSQU092I for each
page set.

illustrates how the FORMAT command is invoked from

CSQUTIL. In this example, two page sets, referenced by CSQP0000 and CSQP0003
respectively, are formatted by CSQUTIL.

Chapter 17. MQSeries utility program (CSQUTIL) 183

CSQUTIL (FORMAT function)

184

//
//
//
//
//
//
//
FO
/*

FORMAT EXEC PGM=CSQUTIL

STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
DD DISP=SHR,DSN=thlqual.SCSQAUTH

CSQPOOOO DD DISP=0LD,DSN=pageset.dsname0

CSQPO0O3 DD DISP=0LD,DSN=pageset.dsname3
SYSPRINT DD SYSOUT=*

SYSIN DD =*

RMAT

Figure 57. Sample JCL for the FORMAT function of CSQUTIL

Usage notes
1.

You cannot format page sets that belong to a queue manager that is still
running.

When you use FORMAT, it is not necessary to specify a queue manager name.

If you use data set names in which the queue manager name is a high-level
qualifier, you can more easily identify which page sets are used by which
MQSeries subsystem, if more than one MQSeries subsystem is defined.

If there is an error when formatting a page set, it does not prevent other page
sets from being formatted, although the FORMAT function is considered to
have failed.

If FORMAT fails, no further CSQUTIL functions are attempted.

System Administration Guide

CSQUTIL (COPYPAGE function)

Expanding a page set (COPYPAGE)

Note: The COPYPAGE function is only used for expanding page sets. It is not used
for making backup copies of page sets. If you want to do this, use AMS
REPRO as described in ‘How to back up and recover page sets” orl

. When you have used the COPYPAGE function, the page sets
cannot be used by a queue manager with a different name, so you must not
rename your queue manager.

Use the COPYPAGE function to copy one or more page sets. All queues and
messages on the page set are copied. If you copy page set zero, all the MQSeries
object definitions are also copied. Each page set is copied to a destination data set
that must be formatted as a page set. Copying to a smaller page set is not
supported.

If you use this function, you must modify the page set definition in the startup
procedure to reflect the change of the name of the data set on which the new page
set resides.

To use the COPYPAGE function, define DDnames in the range CSQS0000 through
CSQS0099 for the source data sets, and define DDnames for the target data sets
from CSQTO0000 through CSQT0099 respectively.

For more information, see IChapter 10 Managing page sets” an page 10,

Page set management (COPYPAGE)

»>—COPYPAGE ><

Keywords and parameters

There are no keywords or parameters.

Example

In Eigure 58 on page 186, two existing page sets are copied onto two new page sets.
The procedure for this is:

1. Set up the required DDnames, where:

CSQP0005, CSQP0006
Identify the destination data sets. These DDnames are used by the
FORMAT function.

CSQS0005, CSQS0006
Identify the source data sets containing the two page sets you want to
copy-

CSQT0005, CSQT0005

Identify the destination data sets (page sets), but this time for the
COPYPAGE function.

2. Format the destination data sets, referenced by DDnames CSQP0005 and
CSQP0006, as page sets using the FORMAT function.

Chapter 17. MQSeries utility program (CSQUTIL) 185

CSQUTIL (COPYPAGE function)

186

3

. Copy the two existing page sets onto the new page sets using the COPYPAGE

function.

//COPYPAGE EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thTlqual.SCSQAUTH
//CSQP0005 DD DISP=0LD,DSN=pageset.newnameb
//CSQPOOO6 DD DISP=0LD,DSN=pageset.newname6
//CSQS0005 DD DISP=0LD,DSN=pageset.oldnameb
//CSQS0006 DD DISP=0LD,DSN=pageset.oldname6
//CSQT0005 DD DISP=0LD,DSN=pageset.newnameb
//CSQT0006 DD DISP=0LD,DSN=pageset.newname6
//SYSPRINT DD SYSOUT=*
//SYSIN DD+
* Format new data sets (CSQP0005 and CSQPOO06) as page sets
FORMAT
* Copy old page sets CSQS0005 and CSQS0006 to new
* page sets CSQTO005 and CSQT0O006

COPYPAGE
/*

Figure 58. Sample JCL showing the use of the COPYPAGE function

Usage notes

1.
2.

You cannot use COPYPAGE on page sets of a queue manager that is running.

Using COPYPAGE involves stopping the queue manager. This will result in the
loss of nonpersistent messages.

Before you use COPYPAGE, the new data sets must be pre-formatted as page
sets. To do this, use the FORMAT function, as shown in .

Ensure that the new (destination) data sets are larger than the old (source) data
sets.

You cannot change the page set identifier (PSID) associated with a page set. For
example, you cannot ‘make’ page set 03 become page set 05.

Failure of this function does not prevent other page set management functions
from being completed.

If you attempt to use the COPYPAGE function after MQSeries has terminated
abnormally, it is possible that the page sets have not been closed properly. If a
page set has not been closed properly, you cannot successfully run the
COPYPAGE function against it.

To avoid this problem, run the AMS VERIFY command before using the
COPYPAGE function. The AMS VERIFY command might produce error
messages. However, it does close the page sets properly, so that the
COPYPAGE function can complete successfully.

For more information about the AMS VERIFY command, see the DFSMS/MVS
Access Method Services for VSAM or the DESMS/MVS Access Method Services for
the Integrated Catalog Facility manual.

System Administration Guide

CSQUTIL (RESETPAGE function)

Copying a page set and resetting the log (RESETPAGE)

The RESETPAGE function is similar to the COPYPAGE function except that it also
resets the log information in the new page sets. RESETPAGE lets you restart
MQSeries from a known, valid set of page sets, even if the corresponding log data
sets have been corrupted.

The source page sets for RESETPAGE must be in a consistent state. They must be

either:

* DPage sets that have been through a successful MQSeries shutdown using the
MQSeries STOP QMGR command.

* Copies of page sets that have been through a successful stop.

The RESETPAGE function must not be run against copies of page sets made
using fuzzy backup, or against page sets that are from an MQSeries system that
has terminated abnormally.

RESETPAGE either:

* Copies page sets on all data sets referenced by DDnames CSQS0000 through
CSQS0099 to new data sets referenced by DDnames CSQT0000 through
CSQTO0099 respectively. If you use this function, you must modify the page set
definition in the startup procedure to reflect the change of the name of the data
set on which the new page set resides.

* Resets the log information in the page set referenced by DDnames CSQP0000
through CSQP0099.

For more information, see IChapter 10 Managing page sets” on page 104.

Using the RESETPAGE function

You can use the RESETPAGE function to update a set of consistent page sets so
that they can be used with a set of new (clean) BSDS and log data sets to start
MQSeries. You would only have to do this if both copies of the log have been lost
or damaged for some reason; you can restart from backup copies of page sets (and
accept the resulting loss of data from the time the copies were made), or from your
existing page sets.

In this situation, you should use the RESETPAGE function on all the page sets of
the affected queue manager. You must also create new BSDS and log data sets.

Note: The RESETPAGE function should not be used on a subset of the page sets
known to MQSeries.

If you run the RESETPAGE function against any page sets, but do not provide
clean BSDS and log data sets for the MQSeries subsystem, MQSeries will attempt
to recover the logs from RBA zero, and will treat the page sets as empty. For
example, the following messages would be produced if you attempted to use the
RESETPAGE function to generate page sets 0, 1, 2, and 3 without providing a clean
set of BSDS and log data sets:

CSQIo21T +CSQ1 CSQIECUR PAGE SET 0 IS EMPTY. MEDIA RECOVERY STARTED

CSQIO21T +CSQL CSQIECUR PAGE SET 1 IS EMPTY. MEDIA RECOVERY STARTED

CSQIN21T +CSQ1 CSQIECUR PAGE SET 2 IS EMPTY. MEDIA RECOVERY STARTED
CSQIO21I +CSQ1l CSQIECUR PAGE SET 3 IS EMPTY. MEDIA RECOVERY STARTED

Chapter 17. MQSeries utility program (CSQUTIL) 187

CSQUTIL (RESETPAGE function)

188

— Page set management (RESETPAGE)

»>—RESETPAGE

Y
A

|—FORCE—|

Keywords and parameters
FORCE

Specifies that the page sets specified by DDnames CSQP0000 through
CSQPO00nn are to be reset in place.

If FORCE is not specified, the page sets specified by DDnames CSQS0000
through CSQS00nn are copied to new page sets specified by DDnames
CSQT0000 through CSQTO00nn. This is the default.

Example
An existing page set, referenced by DDname CSQS0007, is copied to a new data set
referenced by DDname CSQT0007. The new data set, which is also referenced by
DDname CSQP0007, is already formatted as a page set before the RESETPAGE
function is called.

//RESTPAGE EXEC PGM=CSQUTIL

//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE

// DD DISP=SHR,DSN=thlqual.SCSQAUTH

//CSQPOOO7 DD DISP=0LD,DSN=pageset.newname7

//CSQS0007 DD DISP=0LD,DSN=pageset.oldname’

//CSQT0007 DD DISP=0LD,DSN=pageset.newname?

//SYSPRINT DD SYSOUT=*

//SYSIN DD =

* Format new data set, CSQPO007, as page set
FORMAT

* Copy page set CSQSOQ007 to CSQTO0O7 and reset it
RESETPAGE

/*

Figure 59. Sample JCL showing the use of the RESETPAGE function

Usage notes

1.

You should not attempt to use the RESETPAGE function against page sets after
MQSeries has terminated abnormally. It is probable that page sets from an
MQSeries system that terminated abnormally contain inconsistent data; using
RESETPAGE on page sets in this state leads to data integrity problems.

You cannot use RESETPAGE on page sets belonging to a queue manager that is
running.

Using RESETPAGE involves stopping the queue manager. This will result in the
loss of nonpersistent messages.

sets. To do this, use the FORMAT function, as shown in

Ensure that the new (destination) data sets are larger than the old (source) data
sets.

Before you use RESETPAGE, the new data sets must be Ere—formatted as page

System Administration Guide

CSQUTIL (RESETPAGE function)

. You cannot change the page set identifier (PSID) associated with a page set. For
example, you cannot ‘make” page set 03 become page set 05.

. Failure of this function does not prevent other page set management functions
from being completed.

Chapter 17. MQSeries utility program (CSQUTIL) 189

CSQUTIL (COMMAND function)

Issuing commands to MQSeries (COMMAND)
Use the COMMAND function to:

1.
2.

3.

Pass MQSeries commands from an input data set to the queue manager.

Produce a list of MQSeries DEFINE commands that describe the objects in an
MQSeries subsystem. The statements can be used to keep a record of the object
definitions or to regenerate all or part of a queue manager’s objects as part of a
migration from one MQSeries system to another.

Make a client channel definition file.

The queue manager specified in the PARM parameter of the EXEC statement must
be running.

— Command management (COMMAND)

»>—COMMAND

v

I—DDNAME(ddname])—| |—MAKEDEF(ddnameZ)—|

\

v

|—TGTQMGR (qmgrname)—| |—RES PTIME (nnn)—|

FATLURE (IGNORE)—

|—MAKECLNT(ddname.?) |_ _| | i:FAILURE(CONTINUE)—
CCSID(ccsid) FAILURE(STOP)——

Keywords and parameters
DDNAME(ddnamel)

Specifies that the MQSeries commands are to be read from a named input data
set. If this keyword is omitted, the default DDname, CSQUCMD, is used.

ddnamel specifies the DDname that identifies the input data set from which
MQSeries commands are to be read.

MAKEDEF(ddname?)

Specifies that DEFINE commands are to be generated from any DISPLAY
object commands in the input data set.

There is no default if this keyword is omitted.

ddname?2 specifies the DDname that identifies the output data set in which the
DEFINE statements are to be stored. The data set should be RECFM=FB,
LRECL=80. This data set can then be used as input for a later invocation of the
COMMAND function or it can be incorporated into the initialization data sets
CSQINP1 and CSQINP2.

TGTQMGR (gmgrname)

Specifies the name of the queue manager where you want the commands to be
performed. You can specify a target queue manager that is not the one you
connect to. In this case, you would normally specify the name of a remote

190 System Administration Guide

CSQUTIL (COMMAND function)

queue manager object that provides a queue manager alias definition (the
name is used as the ObjectQMgrName when opening the command input queue).
To do this, you must have suitable queues and channels set up to access the
remote queue manager.

The default is that commands are performed on the queue manager to which
you are connected, as specified in the PARM field of the EXEC statement.

RESPTIME(nnn)
Specifies the time in seconds to wait for a response to each of the commands,
in the range 5 through 999.

The default is 30 seconds.

MAKECLNT(ddname3)
Specifies that a client channel definition file, in binary format suitable for
downloading to a client machine, is to be generated from any DISPLAY
CHANNEL commands in the input data set that return information about
client-connection channels.

If this keyword is omitted, no file is generated.

ddname3 specifies the DDname that identifies the output data set in which the
generated file is to be stored; the data set should be RECFM=U, LRECL=2048,
BLKSIZE=2048. The file can then be downloaded as binary data to the client
machine by a suitable file transfer program.

CCSID(ccsid)
Specifies the coded character set identifier that is to be used for the data in a
client channel definition file. The value must be in the range 1 through 65535;
the default is 437. You can only specify CCSID if you also specify MAKECLNT.

Note: MQSeries assumes that the data is to be in ASCII, and that the encoding
for numeric data is to be MQENC_INTEGER_REVERSED.

FAILURE
Specifies what action to take if an MQSeries command that is issued fails to
execute successfully. Values are:

IGNORE
Ignore the failure; continue reading and issuing commands, and treat
the COMMAND function as being successful. This is the default.

CONTINUE
Read and issue any remaining commands in the input data set, but
treat the COMMAND function as being unsuccessful.

STOP Do not read or issue any more commands, and treat the COMMAND
function as being unsuccessful.

Examples

This section gives examples of using the COMMAND function to do the following;:

. |1’|ssm'ng commands j

G : : 7

. ” . . e ey 1 17

Issuing commands
In , the data sets referenced by DDnames CSQUCMD and

OTHER contain sets of MQSeries commands. The first COMMAND statement

Chapter 17. MQSeries utility program (CSQUTIL) 191

CSQUTIL (COMMAND function)

takes MQSeries commands from the default input data set
MY.MQSERIES.COMMANDS(COMMANDI1) and passes them to the command
processor. The second COMMAND statement takes MQSeries commands from the
input data set MY.MQSERIES.COMMANDS(OTHERT1), which is referenced by
DDname OTHER.

//COMMAND EXEC PGM=CSQUTIL,PARM='CSQl'

//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE

// DD DISP=SHR,DSN=thlqual.SCSQAUTH

//CSQUCMD DD DSN=MY.MQSERIES.COMMANDS (COMMAND1) ,DISP=SHR
//0THER DD DSN=MY.MQSERIES.COMMANDS (OTHER1),DISP=SHR
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

* NEXT STATEMENT CAUSES COMMANDS TO BE READ FROM CSQUCMD DDNAME
COMMAND

* THE NEXT SET OF COMMANDS WILL COME FROM 'OTHER' DDNAME
COMMAND DDNAME (OTHER)

* THE NEXT STATEMENT CAUSES COMMANDS TO BE READ FROM CSQUCMD

* DDNAME AND ISSUED ON QUEUE MANAGER CSQ2 WITH A RESPONSE TIME
* OF 10 SECONDS

COMMAND TGTQMGR(CSQ2) RESPTIME(10)

/*

Figure 60. Sample JCL for issuing MQSeries commands using CSQUTIL

Making a list of DEFINE commands

In @ELE', the data set referenced by DDname CMDINP contains a set of
MQSeries DISPLAY commands. These DISPLAY commands specify generic names
for each object type (except the queue manager itself). If you run these commands,
a list is produced containing all the MQSeries objects (except the queue manager).
In these DISPLAY commands, the ALL keyword is specified to ensure that all the
attributes of all the objects are included in the list.

The MAKEDEF keyword causes this list to be converted into a corresponding set
of DEFINE commands. These commands are put into a data set referenced by the
ddname2 parameter of the MAKEDEF keyword, that is, OUTPUTL. If you run this
set of commands, MQSeries regenerates all the object definitions (except the queue
manager) in the MQSeries subsystem.

//QDEFS EXEC PGM=CSQUTIL,PARM='CSQ1’
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUT1 DD DISP=0LD,DSN=MY.MQSERIES.COMMANDS (DEFS)
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

COMMAND DDNAME (CMDINP) MAKEDEF (OUTPUT1)

/*

//CMDINP DD *

DISPLAY STGCLASS(*) ALL

DISPLAY QUEUE(*) ALL

DISPLAY NAMELIST(*) ALL

DISPLAY PROCESS(*) ALL

DISPLAY CHANNEL(*) ALL

/*

Figure 61. Sample JCL for using the MAKEDEF option of the COMMAND function

192 System Administration Guide

CSQUTIL (COMMAND function)

Making a client channel definition file

In

, the data set referenced by DDname CMDCHL contains an MQSeries

DISPLAY CHANNEL command. The DISPLAY command specifies a generic name
and the ALL keyword is specified to ensure that all the attributes are included.

The MAKECLNT keyword causes this to be converted into a corresponding set of
client channel definitions. These are put into a data set referenced by the ddname3
parameter of the MAKECLNT keyword, that is, OUTCLNT, which is ready to be
downloaded to the client machine.

//CLIENT EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,DSN=thTqual.SCSQANLE
// DD DISP=SHR,DSN=thTqual.SCSQAUTH
//OUTCLNT DD DISP=0LD,DSN=MY.MQSERIES.CLIENTS
//SYSPRINT DD SYSOUT=+

//SYSIN DD *

COMMAND DDNAME (CMDCHL) MAKECLNT (OUTCLNT)

/*

//CMDCHL DD *

DISPLAY CHANNEL(*) ALL TYPE(CLNTCONN)

/*

Figure 62. Sample JCL for using the MAKECLNT option of the COMMAND function

Usage notes

1.

The format of commands issued from the COMMAND function is similar to
the MQSeries operator command format. See the MQSeries MQSC Command

manual for information about the rules for building MQSeries
commands.

The rules for specifying commands in the input data set are the same as for the
initialization data sets:

* The data set must have a record length of 80.

* Only columns 1 through 72 are significant. Columns 73 through 80 are
ignored.

* Records with an asterisk (") in column 1 are interpreted as comments and are
ignored.

* Blank records are ignored.
* Each command must start on a new record.
* A trailing — means continue from column 1 of the next record.

* A trailing + means continue from the first non-blank column of the next
record.

* The maximum number of characters permitted in a command is 32 762.

With the additional rule:

* A semicolon (;) can be used to terminate a command, the remaining data in
the record is ignored.

If you specify the MAKEDEF keyword:

¢ In the input data set, the DISPLAY commands for objects must contain the
ALL parameter so that the complete definition of each object is produced.
See I

* To obtain a complete definition, you must DISPLAY the following:
Queues
Namelists

Chapter 17. MQSeries utility program (CSQUTIL) 193

CSQUTIL (COMMAND function)

194

Process definitions
Channels
Storage classes

Note: DEFINE commands are not generated for any local queues that can be
identified as dynamic, or for channels that were defined automatically.

* Do not specify the same MAKEDEF data set for more than one COMMAND
function, unless its DD statement specifies a sequential data set with
DISP=MOD.

. Whether or not the MAKEDEF or MAKECLNT keywords are used, the results

of these DISPLAY commands are also sent to SYSPRINT.

. If you specify the MAKECLNT keyword:

* In the input data set, the display commands for channels must contain the
ALL parameter so that the complete definition of each channel is produced.

e If the DISPLAY commands return information for a given channel more than
once, only the last set of information is used.

* Do not specify the same client definition file data set for more than one
COMMAND function, unless its DD statement specifies a sequential data set
with DISP=MOD.

. If you specify the FAILURE keyword, a command is considered to execute

successfully or not according to the codes returned in message CSQN205I. If
the return code is 00000000 and the reason code is 00000000 or 00000004, it is a
success; for all other values it is a failure.

. The COMMAND function is considered to be successful only if both:

* All the commands in the input data set are read and issued and get a
response from MQSeries, regardless of whether the response indicates
successful execution of the command or not.

* Every command issued executes successfully, if FAILURE(CONTINUE) or
FAILURE(STOP) is specified.

If COMMAND fails, no further CSQUTIL functions are attempted.

. You need the necessary authority to use the command server queues

(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.*) and to use the MQSC commands that you wish to issue.

System Administration Guide

CSQUTIL (SDEFS function)

Producing a list of MQSeries define commands (SDEFS)

Use the SDEFS function to produce a list of DEFINE statements describing the
objects in your MQSeries subsystem or queue-sharing group.

— Command management (SDEFS)
|—QSGDISP(QMGR)—
»»—SDEFS—OBJECT (——CHANNEL) >
—NAMELIST— QSGDISP(COPY)—
—PROCESS— QSGDISP(PRIVATE)—
—QALTAS— QSGDISP(GROUP)—
—QLOCAL— QSGDISP(SHARED)—
—QMODEL—
—QREMOTE—
—QUEUE——
—STGCLASS—
»—MAKEDEF (ddname?2) >

Keywords and parameters

OBJECT

Specifies the type of object to be listed.

QSGDISP

Specifies from where the object definition information is obtained. Depending
on how the object has been defined, this information is either:

* On the page set zero referred to by the CSQP0000 DD statement, or
* In a DB2 shared repository.

Permitted values are shown in [Table 4.

Table 6. SDEFS QSGDISP parameters and their actions

QSGDISP
parameter

What the SDEFS utility does.....

QMGR

Creates DEFINE statements for the specified object type from definitions
held on the page set zero referred to by the CSQP0000 DD statement. (1)

Only objects defined with QSGDISP(QMGR) are included.

COPY

Creates DEFINE statements for the specified object type from definitions
held on the page set zero referred to by the CSQP0000 DD statement. (1)

Only objects defined with QSGDISP(COPY) are included.

PRIVATE

Creates DEFINE statements for the specified object type from definitions
held on the page set zero referred to by the CSQP0000 DD statement. (1)

Both QSGDISP(QMGR) and QSGDISP(COPY) objects are included.

Chapter 17. MQSeries utility program (CSQUTIL) 195

CSQUTIL (SDEFS function)
Table 6. SDEFS QSGDISP parameters and their actions (continued)

196

QSGDISP
parameter

What the SDEFS utility does.....

GROUP

Creates DEFINE statements for the specified object type from definitions
held on DB2 resource definition tables for the specified queue-sharing

group.
Only objects defined with QSGDISP(GROUP) are included.

No CSQP0000 DD statement is required; the DB2 subsystem specified at
object definition is accessed. The DB2 library db2qual. SDSNLOAD is
required.

SHARED

Creates DEFINE statements for all local queues defined with
QSGDISP(SHARED) by accessing the DB2 resource definition table for
the specified queue-sharing group.

This parameter is permitted only with OBJECT(QLOCAL) or
OBJECT(QUEUE).

No CSQP0000 DD statement is required; the DB2 subsystem specified at
object definition is accessed. The DB2 library db2qual. SDSNLOAD is
required.

Notes:

running.

1. Because only page set zero is accessed, you must ensure that the queue manager is not

MAKEDEF(ddname2)
Specifies that define commands generated for the object are to be placed in the
output data set identified by the DDname. The data set should be RECFM=FB,
LRECL=80. This data set can then be used as input for a later invocation of the
COMMAND function or it can be incorporated into the initialization data sets
CSQINP1 and CSQINP2.

Note: DEFINE commands are not generated for any local queues that can be
identified as dynamic, or for channels that were defined automatically.

Examples

//STEPLIB DD
// DD
//CSQPOOOO DD
//0UTPUT1 DD
//SYSPRINT DD
//SYSIN DD

/*

//SDEFS EXEC PGM=CSQUTIL

DISP=SHR,DSN=thTqual.SCSQANLE
DISP=SHR,DSN=thTqual.SCSQAUTH
DISP=0LD,DSN=pageset.dsnamed
DISP=0LD,DSN=MY.MQSERIES.COMMANDS (DEFS)
SYSOUT=+

*

SDEFS OBJECT(QUEUE) MAKEDEF (OUTPUT1)

Figure 63. Sample JCL for the SDEFS function of CSQUTIL

System Administration Guide

CSQUTIL (SDEFS function)

//SDEFS
//

//
//0UTPUT1
//SYSIN

/*

EXEC PGM=CSQUTIL

//STEPLIB DD

DD
DD
DD

//SYSPRINT DD

DD

DISP=SHR,DSN=thTqual.SCSQANLE
DISP=SHR,DSN=thTqual.SCSQAUTH
DISP=SHR,DSN=db2qual.SDSNLOAD
DISP=0LD,DSN=MY.MQSERIES.COMMANDS (DEFS)
SYSOUT=+

*

SDEFS OBJECT(QLOCAL) QSGDISP(SHARED) MAKEDEF (OUTPUTL)

Figure 64. Sample JCL for the SDEFS function of CSQUTIL for objects in the DB2 shared

repository

Usage notes

1. For local queues, you should not use SDEFS for a queue manager that is
running because results will be unpredictable. You can avoid doing this
accidentally by using DISP=OLD in the CSQP0000 DD statement. For shared or
group queue definitions, this does not matter because the information is
derived from DB2.

2. When you use SDEFS for local queues it is not necessary to specify a queue

manager name. However, for shared and group queue definitions, it is required
to access DB2.

3. To use the SDEFS function more than once in a job, specify different DDnames
and data sets for each invocation of the function, or specify a sequential data
set and DISP=MOD in the DD statements.

Chapter 17. MQSeries utility program (CSQUTIL)

197

CSQUTIL (COPY function)

Copying queues into a data set while the queue manager is running
(COPY)

Use the COPY function to copy queued messages to a sequential data set, when
the queue manager is running, without destroying any messages in the original
queues.

The scope of the COPY function is determined by the keyword that you specify in
the first parameter. You can either copy all the messages from a named queue, or
all the messages from all the queues on a named page set.

Use the complementary function, LOAD, to restore the messages to their respective
queues.

Notes:

1. If you want to copy the object definitions from the named page set, use
COPYPAGE.

2. If you want to copy messages to a data set when the queue manager is not
running, use SCOPY.

3. See I'Syncpaints” on page 20d for information about how to avoid problems

with duplicate messages if this function fails.

— Queue management (COPY)

»»—COPY QUEUE (g-name) >
|—DEFTYPE(ALL)

PSID(psid-number)

|—DEFTYPE (PREDEFINED)—

|—DDNAME (ddname)—|

Keywords and parameters

QUEUE(g-name)
QUEUE specifies that messages in the named queue are to be copied. The
keyword QUEUE can be abbreviated to Q.

g-name specifies the name of the queue to be copied. This name is
case-sensitive.

PSID(psid-number)
PSID specifies that all the messages in all the queues in the specified page set
are to be copied.

psid-number is the page set identifier, which specifies the page set to be used.
This identifier is a two-digit integer (wWhole number) representing a single page
set.

DEFTYPE
Specifies whether to copy dynamic queues:

ALL Copy all queues; this is the default.

198 System Administration Guide

CSQUTIL (COPY function)

PREDEFINED
Do not include dynamic queues; this is the same set of queues that are
selected by the COMMAND and SDEFS functions with the MAKEDEF
parameter.

DDNAME

Example

Specifies that the messages are to be copied to a named data set. If this
keyword is omitted, the default DDname, CSQUOUT, is used. The keyword
DDname can be abbreviated to DD.

ddname specifies the DDname of the destination data set, which is used to store
the messages. The record format of this data set must be variable block
spanned (VBS).

/1l
//
/1
/1
//
/1l
/1
/1l
/1
//
/!

*

co

*
co
/*

COPY EXEC PGM=CSQUTIL,PARM='CSQl'
STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
DD DISP=SHR,DSN=thlqual.SCSQAUTH

OUTPUTA DD DSN=SAMPLE.UTILITY.COPYA,DISP=(NEW,CATLG),
SPACE=(CYL, (5,1) ,RLSE) ,UNIT=SYSDA,
DCB=(RECFM=VBS,BLKSIZE=23200)

CSQUOUT DD DSN=SAMPLE.UTILITY.COPY3,DISP=(NEW,CATLG),
SPACE=(CYL, (5,1) ,RLSE) ,UNIT=SYSDA,
DCB=(RECFM=VBS,BLKSIZE=23200)

SYSPRINT DD SYSOUT=+

SYSIN DD =

COPY WHOLE PAGE SET TO 'CSQUOUT'

PY PSID(03)

COPY ONE QUEUE TO 'OUTPUT'

PY QUEUE(ABC123A) DDNAME(OUTPUTA)

Figure 65. Sample JCL for the CSQUTIL COPY functions. The sample shows two instances
of the COPY function—one COPY to the default DDNAME, CSQUOUT; the other to
DDNAME OUTPUTA, which overrides CSQUOUT.

Usage notes
1.

The queues or page set involved must not be in use when the function is
invoked.

If you want to operate on a range of page sets, you must repeat the COPY
function for each page set.

The function operates only on local queues.

A COPY PSID function is considered successful only if it successfully copies all
the queues on the page set.

If you try to copy an empty queue (whether explicitly by COPY QUEUE or
because there are one or more empty queues on a page set that you are
copying), data indicating this is written to the sequential data set, and the copy
is considered to be a success. However, if you attempt to copy a non-existent
queue, or a page set containing no queues, the COPY function fails, and no
data is written to the data set.

If COPY fails, no further CSQUTIL functions will be attempted.

To use the COPY function more than once in the job, specify different
DDnames and data sets for each invocation of the function, or specify a
sequential data set and DISP=MOD in the DD statements.

Chapter 17. MQSeries utility program (CSQUTIL) 199

CSQUTIL (COPY function)

200

8. You need the necessary authority to use the command server queues
(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.*), to use the DISPLAY QUEUE and DISPLAY STGCLASS
MQSC commands, and to use the MQSeries API to browse messages on the
queues that you wish to copy.

Syncpoints

The queue management functions used when the queue manager is running run
within a syncpoint so that, if a function fails, its effects can be backed out. The
MQSeries entity, MAXSMSGS, specifies the maximum number of messages that a
task can get or put within a single unit of recovery.

MAXSMSGS should be greater than:
¢ The number of messages in the queue - if you are working with a single queue.

* The number of messages in the longest queue in the page set — if you are
working with an entire page set.

Otherwise, the utility forcibly takes syncpoints as required and issues the warning
message CSQUOS87L. If the function subsequently fails, the changes already
committed will not be backed out. Do not simply re-run the job to correct the
problem or you might get duplicate messages on your queues. Instead, use the
current depth of the queue to work out, from the utility output, which messages
have not been backed out. Then determine the most appropriate course of action.
For example, if the function is LOAD you can empty the queue and start again or
you can choose to accept duplicate messages on the queues.

Use the DISPLAY QLOCAL command to find out the value of the CURDEPTH
attribute, which is the current depth of the queue. To find out the value of
MAXSMSGS, use the DISPLAY MAXSMSGS command. See the MQSeries MQSC

Command Referencd manual for more information.

System Administration Guide

CSQUTIL (SCOPY function)

Copying queues into a data set while the queue manager is not
running (SCOPY)

Use the SCOPY function to copy queued messages to a sequential data set when
the queue manager is not running, without destroying any messages in the original
queues.

The scope of the SCOPY function is determined by the keyword that you specify
in the first parameter. You can either copy all the messages from a named queue,
or all the messages from all the queues on a named page set.

Use the complementary function, LOAD, to restore the messages to their respective
queues.

To use the SCOPY function, DDname CSQP0000 must specify the data set with
page set zero for the subsystem required.

Notes:
1. The SCOPY function does not operate on shared queues.

— Queue Management (SCOPY)

\/

»»—SCOPY QUEUE (g-name)
|—DEFTYPE(ALL)

PSID(psid-number)

|—DEFTYPE(PREDEFINED)—

|—DDNAME (ddname)—|

Keywords and parameters

QUEUE(g-name)
QUEUE specifies that messages in the named queue are to be copied. The
keyword QUEUE can be abbreviated to Q.

g-name specifies the name of the queue to be copied. This name is
case-sensitive.

DDname CSQP00nn must specify the data set with page set nn for the
subsystem required, where nn is the number of the page set where the queue
resides.

PSID(psid-number)
PSID specifies that all the messages in all the queues in the specified page set
are to be copied.

psid-number is the page set identifier, which specifies the page set to be used.

This identifier is a two-digit integer (whole number) representing a single page
set.

Chapter 17. MQSeries utility program (CSQUTIL) 201

CSQUTIL (SCOPY function)

DDname CSQPO00psid-number must specify the data set with the required page
set for the subsystem required.

DEFTYPE
Specifies whether to copy dynamic queues:

ALL Copy all queues; this is the default.

PREDEFINED
Do not include dynamic queues; this is the same set of queues that are
selected by the COMMAND and SDEFS functions with the MAKEDEF
parameter.

This parameter is only valid if you specify PSID.

DDNAME
Specifies that the messages are to be copied to a named data set. If this
keyword is omitted, the default DDname, CSQUOUT, is used. The keyword
DDname can be abbreviated to DD.

ddname specifies the DDname of the destination data set, which is used to store
the messages. The record format of this data set must be variable block
spanned (VBS).

Do not specify the same DDname on more than one SCOPY statement, unless
its DD statement specifies a sequential data set with DISP=MOD.

Example

//SCOPY EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE

/] DD DISP=SHR,DSN=thlqual.SCSQAUTH

//OUTPUTA DD DSN=SAMPLE.UTILITY.COPYA,DISP=(NEW,CATLG),
/! SPACE=(CYL, (5,1) ,RLSE) ,UNIT=SYSDA,

// DCB=(RECFM=VBS,BLKSIZE=23200)

//CSQUOUT DD DSN=SAMPLE.UTILITY.COPY3,DISP=(NEW,CATLG),
// SPACE=(CYL, (5,1) ,RLSE) ,UNIT=SYSDA,

// DCB=(RECFM=VBS, BLKSIZE=23200)

//CSQPOOOO DD DISP=0LD,DSN=pageset.dsname0

//CSQPOOO3 DD DISP=0LD,DSN=pageset.dsname3
//CSQP0006 DD DISP=0LD,DSN=pageset.dsname6
//SYSPRINT DD SYSOUT=+

//SYSIN DD *

* COPY WHOLE PAGE SET TO 'CSQUOUT'

SCOPY PSID(03)

* COPY ONE QUEUE TO 'OUTPUT' - QUEUE IS ON PAGE SET 6
SCOPY QUEUE(ABC123A) DDNAME (OUTPUTA)

/*

Figure 66. Sample JCL for the CSQUTIL SCOPY functions. The sample shows two instances
of the SCOPY function—one SCOPY to the default DDNAME, CSQUOUT: the other to
DDNAME OUTPUTA, which overrides CSQUOUT.

Usage notes

1. You should not use SCOPY for a queue manager that is running because results
will be unpredictable. You can avoid doing this accidentally by using
DISP=OLD in the page set DD statement.

2. When you use SCOPY, it is not necessary to specify a queue manager name.
3. If you want to operate on a range of page sets, you must repeat the SCOPY
function for each page set.

202 System Administration Guide

CSQUTIL (SCOPY function)

. The function operates only on local queues and only for persistent messages.

. A SCOPY PSID function is considered successful only if it successfully copies
all the queues on the page set that have messages; empty queues are ignored. If
the page set has no queues with messages, the SCOPY function fails, and no
data is written to the data set.

. If you try to copy an empty queue explicitly by SCOPY QUEUE, data
indicating this is written to the sequential data set, and the copy is considered
to be a success. However, if you attempt to copy a non-existent queue, the
SCOPY function fails, and no data is written to the data set.

. If the SCOPY function fails, no further CSQUTIL functions are attempted.

. To use the SCOPY function more than once in the job, specify different
DDnames and data sets for each invocation of the function, or specify a
sequential data set and DISP=MOD in the DD statements.

Chapter 17. MQSeries utility program (CSQUTIL) 203

CSQUTIL (EMPTY function)

Emptying a queue of all messages (EMPTY)

Use the EMPTY function to delete all messages from a named queue or all the
queues on a page set. The queue manager must be running. The scope of the
function is determined by the keyword that you specify in the first parameter.

Use this function with care. You should only delete messages of which copies have
already been made.

Notes:

1. See L'Syncpoints” on page 20d for information about how to avoid problems

with duplicate messages if this function fails.

— Queue management (EMPTY)

v
A

»»—EMPTY QUEUE (g-name)
|:PS ID(ps id-number)—|

Keywords and parameters
You must specify the scope of the EMPTY function. Choose one of these:
QUEUE(g-name)

QUEUE specifies that messages are to be deleted from a named queue. This
keyword can be abbreviated to Q.

g-name specifies the name of the queue from which messages are to be deleted.
This name is case-sensitive.

PSID(psid-number)
PSID specifies that all the messages are to be deleted from all queues in the
named page set.

psid-number specifies the page-set identifier. This identifier is a two-digit
integer (whole number) representing a single page set.

Example

//EMPTY EXEC PGM=CSQUTIL,PARM=('CSQ1"')
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thTlqual.SCSQAUTH
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

EMPTY QUEUE (SPARE)

EMPTY PSID(66)

/*

Figure 67. Sample JCL for the CSQUTIL EMPTY function

Usage notes

1. The queues or page sets involved must not be in use when the function is
invoked.

2. This function operates only on local queues.

204 System Administration Guide

CSQUTIL (EMPTY function)

. If you want to operate on a range of page sets, you must repeat the EMPTY
function for each page set.

. You cannot empty the system-command input queue
(SYSTEM.COMMAND.INPUT).

. An EMPTY PSID function is considered successful only if it successfully
empties all the queues on the page set.

. If you empty a queue that is already empty (whether explicitly by EMPTY
QUEUE or because there are one or more empty queues on a page set that you
are emptying), the EMPTY function is considered to be a success. However, if
you attempt to empty a non-existent queue, or a page set containing no queues,
the EMPTY function fails.

. If EMPTY fails or is forced to take a syncpoint, no further CSQUTIL functions
will be attempted.

. You need the necessary authority to use the command server queues
(SYSTEM.COMMAND.INPUT, SYSTEM.COMMAND.REPLY.MODEL, and
SYSTEM.CSQUTIL.*), to use the DISPLAY QUEUE and DISPLAY STGCLASS
MQSC commands, and to use the MQSeries API to get messages from the
queues that you wish to empty.

Chapter 17. MQSeries utility program (CSQUTIL) 205

CSQUTIL (LOAD function)

Restoring messages from a data set to a queue (LOAD)

206

The LOAD function of CSQUTIL is complementary to the COPY or SCOPY
function. LOAD restores messages from the destination data set of an earlier COPY
or SCOPY operation. The queue manager must be running.

The data set can contain messages from one queue only if it was created by COPY
or SCOPY QUEUE, or from a number of queues if it was created by COPY PSID or
several successive COPY or SCOPY QUEUE operations. Messages are restored to
queues with the same name as those from which they were copied. You can specify
that the first or only queue is loaded to a queue with a different name. (This
would normally be used with a data set created with a single COPY queue
operation to restore the messages to a queue with a different name.)

Notes:

1. See I'Syncpoints” on page 204 for information about how to avoid problems

with duplicate messages if this function fails.

— Queue management (LOAD)

»>—L0AD e

|—QU EUE (q-name)J |—DDNAME (ddname)—|

Keywords and parameters

QUEUE(g-name)
QUEUE specifies that the messages from the first or only queue on the
destination data set of a prior COPY or SCOPY operation are to be loaded to a
named queue. Messages from any subsequent queues are loaded to queues
with the same names as those they came from. The keyword QUEUE can be
abbreviated to Q.

g-name specifies the name of the queue to which the messages are to be loaded.
This name is case-sensitive. It must not be a model queue.

DDNAME(ddname)
DDNAME specifies that messages are to be loaded from a named data set.
This keyword can be abbreviated to DD.

ddname specifies the DDname that identifies the destination data set of a prior
COPY or SCOPY operation—from which the messages are to be loaded. This

name is not case-sensitive, and can be up to eight characters long.

If you omit DDname(ddname) the default DDname, CSQUINP, is used.

System Administration Guide

CSQUTIL (LOAD function)
Example

//LOAD EXEC PGM=CSQUTIL,PARM=('CSQl")
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUTA DD DSN=MY.UTILITY.OUTPUTA,DISP=SHR
//SYSPRINT DD SYSOUT=+

//SYSIN DD *

LOAD QUEUE(ABC123) DDNAME(OUTPUTA)

/*

Figure 68. Sample JCL for the CSQUTIL LOAD function

Usage notes
1. To use the LOAD function, the queues or page sets involved must not be in use
when the function is invoked.

2. If the data set contains multiple queues, the LOAD function is considered
successful only if it successfully loads all the queues on the data set.

3. If LOAD fails, or is forced to take a syncpoint, no further CSQUTIL functions
will be attempted.

4. You need the necessary authority to use the MQSeries API to put messages on
the queues that you wish to load.

Chapter 17. MQSeries utility program (CSQUTIL) 207

CSQUTIL (LOAD function)

208 System Administration Guide

Chapter 18. The change log inventory utility (CSQJUO003)

The MQSeries change log inventory utility runs as an OS/390 batch job to change
the bootstrap data set (BSDS).

Through this utility, you can invoke these functions:
NEWLOG

Add active or archive log data sets.
DELETE

Delete active or archive log data sets.
ARCHIVE

Supply passwords for archive logs.
CRESTART

Control the next restart of MQSeries.
CHECKPT

Set checkpoint records.
HIGHRBA

Update the highest written log RBA.

This utility should be run only when MQSeries is not running. This is because the
active log data sets named in the BSDS are dynamically added for exclusive use to
MQSeries and remain allocated exclusively to MQSeries until it terminates.

Invoking the CSQJUO003 utility

The utility runs as an OS/390 batch program. w gives an example of the
JCL required.

//JUee3 EXEC PGM=CSQJU003

//STEPLIB DD DISP=SHR,DSN=thTqual.SCSQANLE

// DD DISP=SHR,DSN=thlqual.SCSQAUTH

//SYSPRINT DD SYSOUT=+,DCB=BLKSIZE=629

//SYSUT1 DD DISP=SHR,DSN=bsds.dsname

//SYSIN DD =
NEWLOG DSNAME=CSQREPAL.A0001187,COPY1VOL=CSQVO4,UNIT=SYSDA,
STARTRBA=3A190000, ENDRBA=3A1FOFFF,CATALOG=YES,PASSWORD=PASSWRD

/*

Figure 69. Sample JCL to invoke the CSQJUOO3 utility

Data definition (DD) statements
CSQJUO003 requires DD statements with these DDnames:

SYSUT1
This statement is required; it names the BSDS.

SYSUT2
This statement is required if you use dual BSDSs; it names the second copy
of the BSDS.

Dual BSDSs and CSQJU003

Each time you run the CSQJUO003 utility, the BSDS time stamp field is
updated with the current system time. If you run CSQJU003 separately for
each copy of a dual copy BSDS, the time stamp fields are not synchronized

© Copyright IBM Corp. 1993, 2000 209

Change log inventory utility

so that MQSeries fails at startup, issuing error message CSQJ120E.
Therefore, if CSQJU003 is used to update dual copy BSDSs, both BSDSs
must be updated within a single run of CSQJU003.

SYSPRINT
This statement is required; it names a data set for print output. The logical
record length (LRECL) is 125. The block size (BLKSIZE) must be 629.

SYSIN
This statement is required; it names the input data set for statements that
specify what the utility is to do. The logical record length (LRECL) is 80.

You can use more than one statement of each type. In each statement, separate the
operation name (NEWLOG, DELETE, ARCHIVE, CRESTART) from the first
parameter by one or more blanks. You can use parameters in any order; separate
them by commas with no blanks. Do not split a parameter description across two
SYSIN records.

A statement containing an asterisk in column 1 is considered to be a comment, and
is ignored. However, it appears in the output listing. To include a comment or
sequence number in a SYSIN record, separate it from the last comma by a blank.
When a blank follows a comma, the rest of the record is ignored.

Multiple statement operation

When running CSQJU003, a significant error in any statement causes the control
statements for the statement in error and all following statements to be skipped.
Therefore, BSDS updates cannot occur for any operation specified in the statement
in error, or any following statements. However, all the remaining statements are
checked for syntax errors.

210 System Administration Guide

CSQJUO003 (NEWLOG function)
Adding information about a data set to the BSDS (NEWLOG)

The NEWLOG function declares one of these data sets:
* A VSAM data set that is available for use as an active log data set.
Use the keywords DSNAME, COPY1, COPY2, and PASSWORD.
* An active log data set that is replacing one that encountered an I/O error.

Use the keywords DSNAME, COPY1, COPY2, STARTRBA, ENDRBA, and
PASSWORD.
* An archive log data set volume.

Use the keywords DSNAME, COPY1VOL, COPY2VOL, STARTRBA, ENDRBA,
UNIT, CATALOG, and PASSWORD.

— NEWLOG

»»>—NEWLOG—DSNAME=dsname New active log i >
El New archive log

I—, PASSWORD=password—|

New active log:

—,COPY1 >

l—,COPYZ—|

> T
|—,STARTRBA=startrba,ENDRBA=endrbc |
I—, STARTIME=startime,ENDTIME=endt ime—|

New archive log:

,COPY1VOL=vol-id »STARTRBA=startrba,ENDRBA=endrba >
,COPY2VOL=vol-id

v

v

|_ _| L,UNIT=unit-id
,STARTIME=startime ,ENDTIME=endtime

,CATALOG=NO
[] |
L, caTALOG=vEs

\

Chapter 18. The change log inventory utility (CSQJU003) 211

CSQJU003 (NEWLOG function)

Keywords and parameters

DSNAME=dsname
Names a log data set. dsname can be up to 44 characters long.

PASSWORD=password
Assigns a password to the data set. It is stored in the BSDS and subsequently
used in any access to the active or archive log data sets.

The password is a data set password, and should follow standard VSAM
convention: 1 through 8 alphanumeric characters (A through Z, 0 through 9) or
special characters (& * + —.; " /).

We recommend that you use an ESM such as RACF to provide your data set
security requirements.

COPY1
Makes the data set an active log copy-1 data set.

COPY2
Makes the data set an active log copy-2 data set.

STARTRBA=startrba
Gives the log RBA (relative byte address within the log) of the beginning of the
replacement active log data set or the archive log data set volume specified by
DSNAME. startrba is a hexadecimal number of up to 12 characters. The value
must end with 000. If you use fewer than 12 characters, leading zeros are
added. The RBA can be obtained from messages or by printing the log map.

ENDRBA=endrba
Gives the log RBA (relative byte address within the log) of the end of the
replacement active log data set or the archive log data set volume specified by
DSNAME. endrba is a hexadecimal number of up to 12 characters. The value

must end with FFE. If you use fewer than 12 characters, leading zeros are
added.

STARTIME=startime
Lets you record the start time of the RBA in the BSDS. This is an optional field.
The time stamp format (with valid values in parentheses) is yyyydddhhmmsst,
where:
yyyy Indicates the year (1993 through 2099)
ddd Indicates the day of the year (0 through 365; 366 in leap years)
hh Indicates the hour (0 through 23)
mm Indicates the minutes (0 through 59)
ss Indicates the seconds (0 through 59)
t Indicates tenths of a second

If fewer than 14 digits are specified for the STARTIME and ENDTIME
parameter, then trailing zeros will be added.

STARTRBA is required when STARTIME is specified.

ENDTIME=endt ime
Enables you to record the end time of the RBA in the BSDS. This is an optional
field. For time stamp format, see the STARTIME option. The ENDTIME value
must be greater than or equal to the value of STARTIME.

COPY1VOL=vol-id
The volume serial of the copy-1 archive log data set named after DSNAME.

212 System Administration Guide

CSQJUO003 (NEWLOG function)

COPY2VOL=vol-id
The volume serial of the copy-2 archive log data set named after DSNAME.

UNIT=unit-id
The device type of the archive log data set named after DSNAME.

CATALOG
Tells whether the archive log data set is cataloged:

NO Indicates that the archive log data set is not cataloged. All subsequent
allocations of the data set are made using the unit and volume
information specified on the function. The default is NO.

YES Indicates that the archive log data set is cataloged. A flag is set in the
BSDS indicating this, and all subsequent allocations of the data set are
made using the catalog.

MQSeries requires that all archive log data sets on DASD be cataloged.
Select CATALOG=YES if the archive log data set is on DASD.

Chapter 18. The change log inventory utility (CSQJU003) 213

CSQJU003 (DELETE function)

Deleting information about a data set from the BSDS (DELETE)

Use the DELETE function to delete all information about a specified log data set or
data set volume from the bootstrap data sets. For example, you can use this
function to delete outdated archive log data sets.

— DELETE

»»>—DELETE—DSNAME=dsname <
i:,COPY1VOL=voZ-id:‘
,COPY2VOL=vol-id

Keywords and parameters

DSNAME=dsname
Specifies the name of the log data set. dsname can be up to 44 characters long.

COPY1VOL=vol-id
The volume serial number of the copy-1 archive log data set named after
DSNAME.

COPY2VOL=vol-id

The volume serial number of the copy-2 archive log data set named after
DSNAME.

214 System Administration Guide

CSQJU003 (ARCHIVE function)

Supplying a password for archive log data sets (ARCHIVE)

Use the ARCHIVE function to give a password to all archive data sets created after
this operation. This password is added to the installation’s OS/390 password data
set each time a new archive log data set is created.

Use the NOPASSWD keyword to remove the password protection for all archives
created after the archive operation.

Note: You should normally use an ESM, such as RACF, if you want to implement
security on any MQSeries data sets.

— ARCHIVE

»>—ARCHI VE—[PASSWORD=password ><
NOPASSWD

Keywords and parameters

PASSWORD=password
PASSWORD specifies that a password is to be assigned to the archive log data
sets.

password specifies the password, which is a data set password and it must
follow the standard VSAM convention; that is, 1 through 8 alphanumeric
characters (A through Z, 0 through 9) or special characters (& * + —.; " /).

NOPASSWD
Specifies that archive password protection is not to be active for all archives
created after this operation. No other keyword can be used with NOPASSWD.

Chapter 18. The change log inventory utility (CSQJU003) 215

CSQJU003 (CRESTART function)

Controlling the next restart (CRESTART)

216

Use the CRESTART function to control the next restart of MQSeries, either by
creating a new conditional restart control record or by cancelling the one currently
active. These records limit the scope of the log data that will be used during
restart. Any existing conditional restart control record governs every restart until
one of these events occurs:

* A restart operation completes

* A CRESTART CANCEL is issued

* A new conditional restart control record is created

Attention: This can override MQSeries efforts to maintain data in a consistent
state. You would normally only use this function when implementing
the disaster recovery process described in I‘Alternative site recovery” on

, or under the guidance of IBM service.

— CRESTART

»>—CRESTART CREATE |_ _| >
L ,ENDRBA=endrba
CANCEL

Keywords and parameters

CREATE
Creates a new conditional restart control record. When the new record is
created, the previous control record becomes inactive.

CANCEL
Makes the currently active conditional restart control record inactive. The
record remains in the BSDS as historical information.

No other keyword can be used with CANCEL.

ENDRBA=endrba
Gives the last RBA of the log to be used during restart, and the starting RBA of
the next active log to be written after restart. Any log information in the
bootstrap data set and the active logs, with an RBA greater than endrba, is
discarded. If you omit this option, MQSeries determines the end of the log
range.

endrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added.

The value of ENDRBA must be a multiple of 4096. (The hexadecimal value
must end in 000.)

System Administration Guide

CSQJU003 (CHECKPT function)

Setting checkpoint records (CHECKPT)

Use the CHECKPT function to add or delete a record in the BSDS checkpoint
queue. Use the STARTRBA and ENDRBA keywords to add a record, or the
STARTRBA and CANCEL keywords to delete a record.

Attention: This can override MQSeries efforts to maintain data in a consistent
state. You would normally only use this function when implementing
the disaster recovery process described in [!Alternative site recovery” onl

, or under the guidance of IBM service.

— CHECKPT

»»>—CHECKPT—STARTRBA=startrba ,ENDRBA=0fflrba—,TIME=t ime—|-—><
,CANCEL

Keywords and parameters

STARTRBA=startrba
Indicates the start checkpoint log record.

startrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The RBA can be obtained from messages or by
printing the log map.

ENDRBA=endrba
Indicates the end checkpoint log record corresponding to the start checkpoint
record.

endrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The RBA can be obtained from messages or by
printing the log map.

TIME=time
Gives the time the start checkpoint record was written. The time stamp format
(with valid values in parentheses) is yyyydddhhmmsst, where:
yyyy Indicates the year (1993 through 2099)
ddd Indicates the day of the year (0 through 365; 366 in leap years)
hh Indicates the hour (0 through 23)
mm Indicates the minutes (0 through 59)
ss Indicates the seconds (0 through 59)
t Indicates tenths of a second

If fewer than 14 digits are specified for the TIME parameter, then trailing zeros
are added.

CANCEL
Deletes the checkpoint queue record containing a starting RBA that matches
the RBA specified by STARTRBA.

Chapter 18. The change log inventory utility (CSQJU003) 217

CSQJU003 (HIGHRBA function)

Updating the highest written log RBA (HIGHRBA)

Use the HIGHRBA function to update the highest written log RBA recorded in the
BSDS for either the active or archive log data sets. Use the STARTRBA keyword to
update the active log, and the OFFLRBA keyword to update the archive log.

Attention: This can override MQSeries efforts to maintain data in a consistent
state. You would normally only use this function when implementing
the disaster recovery process described in [!Alternative site recovery” onl

, or under the guidance of IBM service.

— HIGHRBA

, TIME=t ime——><«

»—HIGHRBA—I:STARTRBA=startrba |_ _|
,OFFLRBA=0fflrba

OFFLRBA=offlrba

Keywords and parameters

STARTRBA=startrba
Indicates the log RBA of the highest written log record in the active log data
set.

startrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The RBA can be obtained from messages or by
printing the log map.

TIME=time
Specifies when the log record with the highest RBA was written to the log. The
time stamp format (with valid values in parentheses) is yyyydddhhmmsst,
where:
yyyy Indicates the year (1993 through 2099)
ddd Indicates the day of the year (0 through 365; 366 in leap years)
hh Indicates the hour (0 through 23)
mm Indicates the minutes (0 through 59)
ss Indicates the seconds (0 through 59)
t Indicates tenths of a second

If fewer than 14 digits are specified for the TIME parameter, then trailing zeros
will be added.

OFFLRBA=0fflrba
Specifies the highest off-loaded RBA in the archive log.

offlrba is a hexadecimal number of up to 12 digits. If you use fewer than 12
digits, leading zeros are added. The value must end with hexadecimal 'FFF'.

218 System Administration Guide

Chapter 19. The print log map utility (CSQJU004)

The MQSeries print log map utility runs as an OS/390 batch program to list this
information:

* Log data set name and log RBA association for both copies of all active and
archive log data sets

* Active log data sets available for new log data

* Contents of the queue of checkpoint records in the bootstrap data set (BSDS)
* Contents of the quiesce history record

* System and utility time stamps

* Passwords for the active and archive log data sets, if provided

The CSQJUO004 program can be run regardless of whether MQSeries is running.
However, if MQSeries is running, consistent results from the utility can be ensured
only if both the utility and the MQSeries subsystem are running under control of
the same OS/390 system.

To use this utility, the user ID of the job must have the requisite security
authorization, or, if the BSDS is password protected, the appropriate VSAM
password for the data set.

Invoking the CSQJUO004 utility
w shows an example of the JCL used to invoke the CSQJU004 utility:

//JU004 EXEC PGM=CSQJUOO4

//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thTqual.SCSQAUTH
//SYSPRINT DD SYSOUT=+,DCB=BLKSIZE=629
//SYSUT1 DD DISP=SHR,DSN=bsds.dsname

Figure 70. Sample JCL to invoke the CSQJU004 utility

Data definition statements
The CSQJUO004 utility requires DD statements with the following DDnames:

SYSUT1
This statement is required to specify and allocate the bootstrap data set. If
the BSDS must be shared with a concurrently executing MQSeries online
subsystem, use DISP=SHR on the DD statement.

SYSPRINT
This statement is required to specify a data set or print spool class for print
output. The logical record length (LRECL) is 125. The block size (BLKSIZE)
must be 629.

['Finding out what the BSDS contains” on page 97 describes the output.

© Copyright IBM Corp. 1993, 2000 219

220 System Administration Guide

Chapter 20. The log print utility (CSQ1LOGP)

You can use this utility to print information contained in the logs or the BSDS.

Invoking the CSQ1LOGP utility

You run the MQSeries log print utility as an OS/390 batch program. You can
specify:

* A bootstrap data set (BSDS)

* Active logs (with no BSDS)

* Archive logs (with no BSDS)

Sample JCL to invoke the CSQ1LOGP utility is shown in figures E‘, , and 3.

These DD statements should be provided:

SYSPRINT
All error messages, exception conditions and the detail report are written
to this data set. The logical record length (LRECL) is 131.

SYSIN
Input selection criteria can be specified in this data set (see W

parameters” on page 229 for more information).

SYSSUMRY
If a summary report is requested, the output is written to this data set. The
logical record length (LRECL) is 131.

BSDS Name of the bootstrap data set (BSDS).

ACTIVEn
Name of an active log data set you want to print (n=number).

ARCHIVE
Name of an archive log data set you want to print.

Note: The utility will not run if MQSeries is active and you are trying to process
active logs (using a BSDS or the active logs directly).

//PRTLOG EXEC PGM=CSQ1LOGP
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
!/ DD DISP=SHR,DSN=thlqual.SCSQLOAD
//BSDS DD DSN=bsds.dsname,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSQUT=+
//SYSIN DD =

insert your input control statements here

/*

Figure 71. Sample JCL to invoke the CSQ1LOGP utility using a BSDS

© Copyright IBM Corp. 1993, 2000 221

Log print utility

//PRTLOG EXEC PGM=CSQ1LOGP
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQLOAD
//ACTIVE1 DD DSN=bsds.logcopyl.ds01,DISP=SHR
//ACTIVE2 DD DSN=bsds.logcopyl.ds02,DISP=SHR
//ACTIVE3 DD DSN=bsds.logcopyl.ds03,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSQUT==
//SYSIN DD *

insert your input control statements here

/*

Figure 72. Sample JCL to invoke the CSQ1LOGP utility using active log data sets

//PRTLOG EXEC PGM=CSQ1LOGP
//STEPLIB DD DISP=SHR,DSN=thTqual.SCSQANLE

// DD DISP=SHR,DSN=thlqual.SCSQLOAD

//ARCHIVE DD DSN=bsds.archivel.ds01,DISP=SHR
// DD DSN=bsds.archivel.ds02,DISP=SHR
// DD DSN=bsds.archivel.ds03,DISP=SHR

//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSOUT=*
//SYSIN DD *
insert your input control statements here

/*

Figure 73. Sample JCL to invoke the CSQ1LOGP utility using archive logs

Input control parameters
The keywords that you can use in the SYSIN data set are described below:

RBASTART (hexadecimal-constant)
Specifies the log RBA from which to begin processing. If you are using a BSDS,
this parameter must be specified.

Normally you are only interested in the most recent additions to the log.
Therefore, do not specify a value of zero. If you do, you create an enormous
amount of data, most of which is of no interest to you.

You can also use the forms STARTRBA or ST. Specify this keyword only once.

RBAEND (hexadecimal-constant)
Specifies the last valid log RBA that is to be processed. If this keyword is
omitted, processing continues to the end of the log (FFFFFFFFFFFF).

You can also use the forms ENDRBA or EN. Specify this keyword only once.

PAGESET(decimal-integer)
Specifies a page set identifier. The number should be in the range 00 through
99. Only log records associated with the page set you specify will be processed.

222 System Administration Guide

Log print utility

URID (hexadecimal-constant)

RM

Specifies a hexadecimal unit of recovery identifier. Changes to data occur in
the context of an MQSeries unit of recovery. A unit of recovery is identified on
the log via a BEGIN UR record. The log RBA of that BEGIN UR record is the
URID value you must use. If you know the URID for a given UR that you are
interested in, you can limit the extraction of information from the MQSeries log
to that URID.

The hexadecimal constant can consist of 1 through 12 characters (6 bytes), and
leading zeros are not required.

You can specify a maximum of 10 URID keywords in any given CSQ1LOGP
job. To narrow the search, you can specify URID keywords in a job that
contains other keywords.

(resource_manager)
Specifies a particular resource manager. Only records associated with this
resource manager will be processed. Valid values for this keyword are:
RECOVERY
Recovery log manager
DATA Data manager
BUFFER
Buffer manager
XCF IMS bridge

SUMMARY(YES INO | ONLY)

Specifies whether a summary report is to be produced or not:
YES Produce a summary report in addition to the detail report.
NO Do not produce a summary report.

ONLY Produce only a summary report (no detail report).

Output

The
and

detail report begins by echoing the input selection criteria specified via SYSIN,
then prints each valid log record encountered. Definitions of keywords in the

detail report are as follows:

RM

Resource manager that wrote the log record.

TYPE Type of log record.
URID BEGIN UR for this unit of recovery, see the description above.

LRID Logical record identifier in the form:

AAAAAAAA.BBBBBBCC

where:
AAAAAAAA
Is the page set number.
BBBBBB
Is the relative page number in the page set.
CcC Is the relative record number on the page.

SUBTYPE

Subtype of the log record type.

CHANGE LENGTH

Length of the logged change.

Chapter 20. The log print utility (CSQILOGP) 223

Log print utility

CHANGE OFFSET
Start position of the change.

BACKWARD CHAIN
Pointer to the previous page.

FORWARD CHAIN
Pointer to the next page.

RECORD LENGTH
Length of the inserted record.

224 System Administration Guide

. Chapter 21. The queue-sharing group utility (CSQ5PQSG)

I Use the CSQ5PQSG utility program to add queue-sharing group and queue
| manager definitions to the MQSeries DB2 tables, and to remove them.

I — Queue-sharing group utility

ADD QSG, gsg-name,dsg-name,DB2-ssid————
REMOVE QMGR, gmgr-name, qsg-name,dsg-name,DB2-ssid—

| »—PARM=’—EADD QMGR, gmgr-name, qsg-name , dsg-name , DB2-ss id-
REMOVE QSG, gsg-name, dsg-name,DB2-ssid"

| Invoking the queue-sharing group utility
| w shows an example of the JCL used to invoke the CSQ5PQSG utility.

//5001 EXEC PGM=CSQ5PQSG,REGION=4M,

// PARM="function,function parameters'

//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
// DD DSN=db2qual.SDSNLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

Figure 74. Sample JCL to invoke the CSQ5PQSG utility

| Data definition statements
I The CSQ5PQSG utility requires data definition statements with the following
I DDnames:

I SYSPRINT
I This statement is required; it names the data set for print output. The
[logical record length (LRECL) is 125.

| Keywords and parameters

[PARM
I This field contains the function request function followed by the
[function-specific parameters function parameters. These are described below:

I ADD QMGR

| Add a queue manager record into the CSQ.ADMIN_B_QMGR table.

I This will only complete successfully if a corresponding queue-sharing
I group record already exists in the CSQ.ADMIN_B_QSG table and the
I queue manager entry does not already exist in the

| CSQ.ADMIN_B_QMGR table as the member of a different

I queue-sharing group.

I gmgr-name The queue manager name

I qsg-name The queue-sharing group name

© Copyright IBM Corp. 1993, 2000 225

CSQ5PQSG utility

dsg-name The DB2 data-sharing group name
DB2-ssid The DB2 subsystem ID
ADD QSG
Add a queue-sharing group record into the CSQ.ADMIN_B_QSG table.
qsg-naime The queue-sharing group name
dsg-name The DB2 data-sharing group name
DB2-ssid The DB2 subsystem ID

REMOVE QMGR
Remove a queue manager record from the CSQ.ADMIN_B_QMGR
table. This will only complete successfully if the queue manager has
either never been started, or terminated normally from its last

execution.

qmgr-name The queue manager name

qsg-name The queue-sharing group name

dsg-name The DB2 data-sharing group name

DB2-ssid The DB2 subsystem 1D
REMOVE QSG

Remove a queue-sharing group record from the CSQ.ADMIN_B_QSG
table. This will only complete successfully if no queue managers are
defined to the queue-sharing group.

qsg-name The queue-sharing group name
dsg-name The DB2 data-sharing group name
DB2-ssid The DB2 subsystem ID

Example

The following sample JCL adds an entry for queue manager QMO01 into
queue-sharing group QSG1. It specifies a connection to DB2 subsystem DB2A,
which is a member of DB2 data-sharing group DSN510PG.

//S001 EXEC PGM=CSQ5PQSG,REGION=4M,

/] PARM="ADD QMGR,QM01,QSG1,DSN510PG,DB2A"
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
/1l DD DSN=thlqual.SCSQAUTH,DISP=SHR
/] DD DSN=db2qual.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=+

Figure 75. Using the queue-sharing group utility to add a queue manager into a
queue-sharing group

226 System Administration Guide

Chapter 22. The dead-letter queue handler utility (CSQUDLQH)

A dead-letter queue (DLQ) is a holding queue for messages that cannot be delivered
to their destination queues. Every queue manager in a network should have an
associated DLQ.

Queue managers, message channel agents, and applications can put messages on
the DLQ. All messages on the DLQ should be prefixed with a dead-letter header
structure, MQDLH. Messages put on the DLQ by a queue manager or by a
message channel agent always have a dead-letter header; you are strongly
recommended to ensure that applications putting messages on the DLQ supply a
dead-letter header as well. The Reason field of the MQDLH structure contains a
reason code that identifies why the message is on the DLQ.

There should be a routine that runs regularly to process messages on the DLQ.
MQSeries supplies a default dead-letter queue handler (DLQ handler) called
CSQUDLQH. A user-written rules table supplies instructions to the DLQ handler,
for processing messages on the DLQ. That is, the DLQ handler matches messages
on the DLQ against entries in the rules table. When a DLQ message matches an
entry in the rules table, the DLQ handler performs the action associated with that
entry.

Invoking the DLQ handler

The CSQUDLQH utility program runs as an OS/390 batch program. You need to
specify the name of the dead-letter queue that you want to process and the queue
manager on which it resides. You can do this in one of the following two ways (in
these examples, the dead-letter queue is called CSQ1.DEAD.QUEUE and the queue
manager is called CSQ1):

1. The names can be specified as positional parameters in the PARM parameter of
the EXEC statement within the submitted JCL, for example:

//READQ EXEC PGM=CSQUDLQH,
// PARM='CSQl.DEAD.QUEUE CSQ1'

Figure 76. Specifying the queue manager and dead-letter queue names for the dead-letter
queue handler in the JCL

2. The names can be specified in the rules table, for example:

INPUTQ(CSQ1.DEAD.QUEUE) INPUTQM(CSQ1)

Figure 77. Specifying the queue manager and dead-letter queue names for the dead-letter
queue handler in the rules table

Any parameters that you specify in the PARM parameter override those in the
rules table. If you specify only one parameter in the PARM statement, this is used
as the name of the dead-letter queue. The rules table is taken from the SYSIN data
set.

© Copyright IBM Corp. 1993, 2000 227

CSQUDLGQH utility

Data definition statements
CSQUDLQH requires DD statements with these DDnames:

SYSOUT
This statement is required; it names the data set for print output. You can
specify the logical record length (LRECL) and block size (BLKSIZE) for this
output data set.

SYSIN
This statement is required; it names the input data set containing the rules

table that specifies what the utility is to do. The logical record length
(LRECL) is 80.

Sample JCL

//READQ EXEC PGM=CSQUDLQH,

// PARM="'CSQ1.DEAD.QUEUE CSQ1'
//STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR
// DD DSN=thlqual.SCSQLOAD,DISP=SHR
// DD DSN=thTqual.SCSQANLE,DISP=SHR
//SYSOUT DD SYSOUT=*

//SYSIN DD *

INPUTQM(CSQ2) INPUTQ('CSQ2.DEAD.QUEUE")
ACTION(RETRY)

/*

Figure 78. Sample JCL to invoke the CSQUDLQH utility. In this example, queue manager
CSQ1 and dead-letter queue CSQ1.DEAD.QUEUE are used because the values specified in
the PARM statement override the values specified in the SYSIN data set.

The DLQ handler rules table

228

The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:

* The first entry in the table, which is optional, contains control data.

* All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is matched
against, and an action to be taken when a message on the DLQ matches the
specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

See ['Rules table conventions” on page 233 for information about the syntax of the

rules table.

System Administration Guide

CSQUDLAQH utility

Control data

This section describes the keywords that you can include in a control-data entry in

a DLQ handler rules table.

* All keywords are optional.

* If a control-data entry is included in the rules table, it must be the first entry in
the table.

* The default value for a keyword, if any, is underlined.

* The vertical line (1) separates alternatives. You can specify only one of these.

INPUTQ (QueueNamel' ')
Specifies the name of the DLQ that you want to process:

1.

If you specify a queue name in the PARM parameter of the EXEC
statement, this overrides any INPUTQ value in the rules table.

If you do not specify a queue name in the PARM parameter of the EXEC
statement, the INPUTQ value in the rules table is used.

If you do not specify a queue name in the PARM parameter of the EXEC
statement or the rules table, the dead-letter queue named

gmgr-name. DEAD.QUEUE is used if it has been defined. If this queue does
not exist, the program fails and returns error message CSQU224E, giving
the reason code for the error.

INPUTQM (QueueManagerNamel' ')
Specifies the name of the queue manager that owns the DLQ named on the
INPUTQ keyword.

1.

If you specify a queue manager name in the PARM parameter of the EXEC
statement, this overrides any INPUTQM value in the rules table.

If you do not specify a queue manager name in the PARM parameter of the
EXEC statement, the INPUTQM value in the rules table is used.

If you do not specify a queue manager name in the PARM parameter of the
EXEC statement or the rules table, the default queue manager is used (if
one has been defined using CSQBDEFV). If not, the program fails and
returns error message CSQU220E, giving the reason code for the error.

RETRYINT (Interval | 60)
Specifies the interval, in seconds, at which the DLQ handler should attempt to
reprocess messages on the DLQ that could not be processed at the first
attempt, and for which repeated attempts have been requested.

The default is 60 seconds.

WAIT (YES INO | nnn)
Specifies whether the DLQ handler should wait for further messages to arrive
on the DLQ when it detects that there are no further messages that it can
process.

YES Causes the DLQ handler to wait indefinitely.

NO Causes the DLQ handler to terminate when it detects that the DLQ is

either empty or contains no messages that it can process.

nnn Causes the DLQ handler to wait for nnn seconds for new work to

arrive after it detects that the queue is either empty or contains no
messages that it can process, before terminating.

Specify a value in the range 1 through 999 999.

Chapter 22. The dead-letter queue handler utility (CSQUDLQH) 229

CSQUDLGQH utility

230

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT (NO)
or WAIT (nnn) for DLQs that have a low level of activity. If the DLQ handler is
allowed to terminate, you can use triggering to invoke it when needed.

Rules (patterns and actions)

w shows an example rule from a DLQ handler rules table.

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT INHIBITED) +
ACTION (RETRY) RETRY (3)

Figure 79. An example rule from a DLQ handler rules table. This rule instructs the DLQ
handler to make three attempts to deliver to its destination queue any persistent message
that was put on the DLQ because MQPUT and MQPUT1 were inhibited.

This section describes the keywords that you can include in a rules table. It begins
with a description of the pattern-matching keywords (those against which
messages on the DLQ are matched). It then describes the action keywords (those
that determine how the DLQ handler is to process a matching message).

* All keywords except ACTION are optional.

e The default value for a keyword, if any, is underlined. For most keywords, the
default value is * (asterisk), which matches any value.

* The vertical line (1) separates alternatives. You can specify only one of these.

The pattern-matching keywords

The pattern-matching keywords, are described below. You use these to specify
values against which messages on the DLQ are matched. All pattern-matching
keywords are optional.

APPLIDAT (ApplldentityData | *)
The ApplldentityData value of the message on the DLQ, specified in the
message descriptor, MQMD.

APPLNAME (PutAppIName|*)
The name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutAppIName field of the message descriptor, MQMD, of the
message on the DLQ.

APPLTYPE (PutApplType|*)
The PutApplType value specified in the message descriptor, MQMD, of the
message on the DLQ.

DESTQ (QueueName | *)
The name of the message queue for which the message is destined.

DESTQOM (QueueManagerName | *)
The queue manager name for the message queue for which the message is
destined.

FEEDBACK (Feedback|*)
Describes the nature of the report when the MsgType value is MOQMT_REPORT.

You can use symbolic names. For example, you can use the symbolic name
MQFB_COA to identify those messages on the DLQ that require confirmation
of their arrival on their destination queues. A few symbolic names are not
accepted by the utility and lead to a syntax error. In these cases, you can use
the corresponding numeric value.

System Administration Guide

CSQUDLAQH utility

FORMAT (Format|¥)
The name that the sender of the message uses to describe the format of the
message data.

MSGTYPE (MsgTypel*)
The message type of the message on the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQOMT_REQUEST to identify those messages on the DLQ that require replies.

PERSIST (Persistence | *)
The persistence value of the message. (The persistence of a message determines
whether it survives restarts of the queue manager.)

You can use symbolic names. For example, you can use the symbolic name
MQPER_PERSISTENT to identify those messages on the DLQ that are
persistent.

REASON (ReasonCode | *)
The reason code that describes why the message was put to the DLQ.

You can use symbolic names. For example, you can use the symbolic name
MQRC_Q_FULL to identify those messages placed on the DLQ because their
destination queues were full. A few symbolic names are not accepted by the
utility and lead to a syntax error. In these cases, you can use the corresponding
numeric value.

REPLYQ (QueueName | *)
The reply-to queue name specified in the message descriptor, MQMD, of the
message on the DLQ.

REPLYOM (QueueManagerName | *)
The queue manager name of the reply-to queue specified in the REPLYQ
keyword.

USERID (Userldentifier | *)
The user ID of the user who originated the message on the DLQ, as specified
in the message descriptor, MQMD.

The action keywords
The action keywords are described below. You use these to describe how a
matching message is processed.

ACTION (DISCARD I IGNORE | RETRY | FWD)
The action taken for any message on the DLQ that matches the pattern defined
in this rule.

DISCARD
Causes the message to be deleted from the DLQ.

IGNORE
Causes the message to be left on the DLQ.

RETRY
Causes the DLQ handler to try again to put the message on its
destination queue.

FWD Causes the DLQ handler to forward the message to the queue named
on the FWDQ keyword.

Chapter 22. The dead-letter queue handler utility (CSQUDLQH) 231

CSQUDLGQH utility

You must specify the ACTION keyword. The number of attempts made to
implement an action is governed by the RETRY keyword. The RETRYINT
keyword of the control data controls the interval between attempts.

FWDQ (QueueName | &DESTQ | &REPLYQ)
The name of the message queue to which the message is forwarded when you
select the ACTION keyword.

QueueName
This parameter is the name of a message queue. FWDQ(' ') is not
valid.

&DESTQ
Takes the queue name from the DestQName field in the MQDLH
structure.

&REPLYQ
Takes the name from the ReplyToQ field in the message descriptor,
MQMD. You can specify REPLYQ (?*) in the message pattern to avoid
error messages, when a rule specifying FWDQ (&REPLYQ), matches a
message with a blank ReplyToQ field.

FWDOQM (QueueManagerName | &DESTQM | &REPLYQM |' ')
The queue manager of the queue to which a message is forwarded.

QueueManagerName
This parameter defines the queue manager name for the queue to
which the message is forwarded when you select the ACTION (FWD)
keyword.

&DESTOM
Takes the queue manager name from the DestQMgrName field in the
MQDLH structure.

&REPLYQM
Takes the name from the ReplyToQMgr field in the message descriptor,
MQMD.

The local queue manager.

HEADER (YES INO)
Whether the MQDLH should remain on a message for which ACTION (FWD)
is requested. By default, the MQDLH remains on the message. The HEADER
keyword is not valid for actions other than FWD.

PUTAUT (DEFICTX)
The authority with which messages should be put by the DLQ handler:

L]

DEF Puts messages with the authority of the DLQ handler itself.

CTX Causes the messages to be put with the authority of the user ID in the
message context. You must be authorized to assume the identity of
other users, if you specify PUTAUT (CTX).

RETRY (RetryCount 1)
The number of times that an action should be attempted (at the interval
specified on the RETRYINT keyword of the control data). Specify a value in
the range 1 through 999 999 999.

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If you restart the DLQ handler, the
count of attempts made to apply a rule is reset to zero.

232 System Administration Guide

CSQUDLAQH utility

Rules table conventions

The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:

A rules table must contain at least one rule.
Keywords can occur in any order.

A keyword can be included once only in any rule.
Keywords are not case sensitive.

A keyword and its parameter value can be separated from other keywords by at
least one blank or comma.

Any number of blanks can occur at the beginning or end of a rule, and between
keywords, punctuation, and values.

Each rule must begin on a new line.

For reasons of portability, the significant length of a line should not be greater
than 72 characters.

Use the plus sign (+) as the last nonblank character on a line to indicate that the
rule continues from the first nonblank character in the next line. Use the minus
sign () as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

For example:

APPLNAME (’ABC+
D’)
results in "ABCD".
APPLNAME (*ABC-
D’)
results in "ABC D’.

Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

Blank lines are ignored.

Each entry in the DLQ handler rules table comprises one or more keywords and
their associated parameters. The parameters must follow these syntax rules:

Each parameter value must include at least one significant character. The
delimiting quotation marks in quoted values are not considered significant. For
example, these parameters are valid:

FORMAT('ABC') 3 significant characters

FORMAT (ABC) 3 significant characters

FORMAT('A") 1 significant character

FORMAT (A) 1 significant character

FORMAT (' ') 1 significant character

These parameters are not valid because they contain no significant characters:
— FORMAT('"')

— FORMAT()

— FORMAT()

— FORMAT

Chapter 22. The dead-letter queue handler utility (CSQUDLQH) 233

CSQUDLGQH utility

234

Wildcard characters are supported. You can use the question mark (?) in place of
any single character, except a trailing blank. You can use the asterisk (*) in place
of zero or more adjacent characters. The asterisk (*) and the question mark (?)
are always interpreted as wildcard characters in parameter values.

You cannot include wildcard characters in the parameters of these keywords:
ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard matches.
However, leading and embedded blanks within strings in quotation marks are
significant to wildcard matches.

Numeric parameters cannot include the question mark (?) wildcard character.
You can include the asterisk (*) in place of an entire numeric parameter, but the
asterisk cannot be included as part of a numeric parameter. For example, these
are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible

MSGTYPE(*) Any message type is eligible

MSGTYPE('*') Any message type is eligible

However, MSGTYPE(*2*’) is not valid, because it includes an asterisk (*) as part of
a numeric parameter.

Numeric parameters must be in the range 0 through 999 999 999 unless
otherwise stated. If the parameter value is in this range, it is accepted, even if it
is not currently valid in the field to which the keyword relates. You can use
symbolic names for numeric parameters.

If a string value is shorter than the field in the MQDLH or MQMD to which the
keyword relates, the value is padded with blanks to the length of the field. If the
value, excluding asterisks, is longer than the field, an error is diagnosed. For
example, these are all valid string values for an 8-character field:

"ABCDEFGH' 8 characters
"A*CHExG*] 5 characters excluding asterisks
'A% CHE*G* I xK#M*0% ' 8 characters excluding asterisks

Strings that contain blanks, lowercase characters, or special characters other than
period (.), forward slash (/), underscore (_), and percent sign (%) must be
enclosed in single quotation marks. Lowercase characters not enclosed in
quotation marks are folded to uppercase. If the string includes a quotation, two
single quotation marks must be used to denote both the beginning and the end
of the quotation. When the length of the string is calculated, each occurrence of
double quotation marks is counted as a single character.

System Administration Guide

CSQUDLAQH utility

Processing the rules table

The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the rules table attempts the action from that rule. The DLQ handler
increments the retry count for a rule by 1 whenever it attempts to apply that rule.
If the first attempt fails, the attempt is repeated until the count of attempts made
matches the number specified on the RETRY keyword. If all attempts fail, the DLQ
handler searches for the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful.
When each matching rule has been attempted the number of times specified on its
RETRY keyword, and all attempts have failed, ACTION (IGNORE) is assumed.
ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. If the dead-letter queue handler encounters one or more
messages that are not prefixed by an MQDLH, it issues an information message
to report this. Messages that do not contain an MQDLH are not processed by
the DLQ handler and remain on the dead-letter queue until dealt with by
another method.

2. All pattern keywords can default, so that a rule may consist of an action only.
Note, however, that action-only rules are applied to all messages on the queue
that have MQDLHSs and that have not already been processed in accordance
with other rules in the table.

3. The rules table is validated when the DLQ handler starts, and errors flagged at
that time. You can make changes to the rules table at any time, but those
changes do not come into effect until the DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table may not be recognized because the
validation of the rules table is designed to eliminate the generation of repetitive
errors.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

7. You should not run applications that perform MQGET calls against the queue
at the same time as the DLQ handler. This includes multiple instances of the
DLQ handler. It is more usual for there to be a one-to-one relationship between
the dead-letter queue and the DLQ handler.

Chapter 22. The dead-letter queue handler utility (CSQUDLQH) 235

CSQUDLGH utility
Ensuring that all DLQ messages are processed

236

The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still keeps a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in first-out (FIFO). Therefore, if the queue is not empty, the DLQ is
periodically rescanned to check all messages. For these reasons, you should try to
ensure that the DLQ contains as few messages as possible. If messages that cannot
be discarded or forwarded to other queues (for whatever reason) are allowed to
accumulate on the queue, the workload of the DLQ handler increases and the DLQ
itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, the final rule in the table should be a catchall to process messages that
have not been addressed by earlier rules in the table. For example, the final rule in
the table could be something like this:

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)
This causes messages that fall through to the final rule in the table to be forwarded

to the queue REALLY.DEAD.QUEUE, where they can be processed manually. If you do
not have such a rule, messages are likely to remain on the DLQ indefinitely.

System Administration Guide

CSQUDLAQH utility

An example DLQ handler rules table

Here is an example rules table that contains a single control-data entry and several
rules:

B R R R R R R R R R R R R o e e R R R R R R T R R S T L S L T L L L L L e

* An example rules table for the CSQUDLQH utility *

ER R
* Control data entry

*

If no queue manager name is supplied as an explicit parameter to CSQUDLQH,
use the default queue manager.

If no queue name is supplied as an explicit parameter to CSQUDLQH, use the
DLQ defined for the queue manager.

* Ok kX X

-

nputgm(’ *) inputq(’)

The first check deals with attempted security violations.

If a message was placed on the DLQ because the putter did not have the
appropriate authority for the target queue, forward the message to a queue
for manual inspection.

* %k X X

REASON (MQRC_NOT_AUTHORIZED) ACTION(FWD) +
FWDQ (DEADQ.MANUAL.SECURITY)

% The next set of rules with ACTION (RETRY) try to deliver the message to the
intended destination.

*

* If a message is placed on the DLQ because its destination queue is full,
* attempt to forward the message to its destination queue. Make 5 attempts at
* approximately 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited condition, attempt
* to forward the message to its destination queue. Make 5 attempts at
% approximately 60-second intervals (the default value for RETRYINT).

REASON (MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

The AAAA corporation often send messages with incorrect addresses. When we find
a request from the AAAA corporation, we return it to the DLQ (DEADQ) of the
reply-to queue manager (&REPLYQM). The AAAA DLQ handler attempts to

redirect the message.

* %k X X

MSGTYPE (MQMT REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation requests that we try sending messages to queue manager
* BBB2 if queue manager BBBl is unavailable.

DESTQM(BBB1) +
ACTION(FWD) FWDQ(&DESTQ) FWDQM(BBB2) HEADER(NO)

The CCCC corporation is very security conscious, and believes that none of its
messages will ever end up on one of our DLQs. If we do see a message from a
CCCC queue manager on our DLQ, we send it to a special destination in the CCCC
organization where the problem is investigated.

L

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

* Messages that are not persistent risk being lost when a queue manager terminates.
* If an application is sending nonpersistent messages, it will be able to cope with

Chapter 22. The dead-letter queue handler utility (CSQUDLQH) 237

CSQUDLGQH utility

238

* the message being lost, so we can afford to discard the message.
PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

For performance and efficiency reasons, we Tike to keep the number of messages on
the DLQ small. If we receive a message that has not been processed by an earlier
rule in the table, we assume that it requires manual intervention to resolve the
problem.

E I I

Some problems are best solved at the node where the problem was detected, and
others are best solved where the message originated. We do not have the message
origin, but we can use the REPLYQM to identify a node that has some interest

in this message. Attempt to put the message onto a manual intervention queue

at the appropriate node. If this fails, put the message on the manual
intervention queue at this node.

* Ok kX X X

REPLYQM(*?*") +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

System Administration Guide

Part 7. Appendixes

© Copyright IBM Corp. 1993, 2000 239

240 System Administration Guide

Appendix A. User messages on start-up

When you start MQSeries successfully, it produces a set of start up messages
similar to the ones in

Notes:

1. If you are starting MQSeries for the first time, the messages are slightly
different.

2. If any of the values in message CSQRO004I is not zero, message CSQRO0071 is
issued to provide the restart status table.

3. Messages CSQP018I and CSQP019I are issued every time a checkpoint is taken.
At checkpoint time, all pages that have not been changed for the two
checkpoints are written out to DASD. Message CSQP0191 is issued for each
buffer pool, giving the number of pages written. You can use this information
when balancing page sets in buffer pools.

If Eou want to suppress these messages, see the MQSeries for QS/390 Systend

4. There might be periods during startup when no messages are produced; for
example, if you are using indexed queues, no messages are produced while the
queue indexes are being rebuilt.

€SQY000I +CSQl
CSQY001I +CSQ1
CSQY100I +CSQl
CSQY101I +CSQ1
CSQY102I +CSQl
CSQY103I +CSQ1
CSQY104I +CSQ1
CSQY105T +CSQl
CSQY106I +CSQ1
CSQY107I +CSQl
CSQY110I +CSQ1
CSQY111I +CSQl
CSQY112I +CSQl
CSQY113I +CSQ1
CSQY120T +CSQl
CSQY121I +CSQ1
CSQY1221 +CSQl
CSQY123I +CSQ1
CSQY124I +CSQ1
CSQY201I +CSQl
CSQJ1271 +CSQ1
€SQJ001T +CSQl

€SQJOO1I +CSQ1

€SQJO99I +CSQl
CSQ5001T +CSQl

$HASP373 CSQIMSTR STARTED
IEF4031 CSQIMSTR - STARTED - TIME=13.35.20

DATA SET IS DSNAME=VICY.CSQ1.LOGCOPY1.DSO1,
STARTRBA=000000000000, ENDRBA=00000021BFFF

DATA SET IS DSNAME=VICY.CSQ1.LOGCOPYZ2.DSO1,
STARTRBA=000000000000, ENDRBA=00000021BFFF

IBM MQSeries for 0S/390 - V5.2
SUBSYSTEM STARTING, USING PARAMETER MODULE CSQZPARM
System parameters ...
CTHREAD=300, IDBACK=20, IDFORE=100, LOGLOAD=10000
CMDUSER=CSQOPR, QMCCSID=500, ROUTCDE=(1)
SMFACCT=NO (00000000), SMFSTAT=NO (00000000), STATIME=30
OTMACON=(s ,DFSYDRUO,2147483647,CSQ)
TRACSTR=(1), TRACTBL=500, RESAUDIT=NO
EXITTCB=8, EXITLIM=30, WLMTIME=30
QSGDATA=(SQ05,DSN516MQ,DDMQ, 0)
Logging parameters ...
INBUFF=28, OUTBUFF=400, MAXRTU=2, MAXARCH=500
TWOACTV=YES, TWOARCH=YES, TWOBSDS=YES
OFFLOAD=YES, WRTHRSH=20, DEALLCT=(0,0)
Archive parameters ...
UNIT=TAPE, UNIT2=, ALCUNIT=BLK, PRIQTY=4320, SECQTY=540, BLKSIZE=20480
ARCPFX1=CSQARC1, ARCPFX2=CSQARC2, TSTAMP=NO
ARCRETN=9999, ARCWTOR=YES, ARCWRTC=(1 ,3 ,4)
CATALOG=NO, COMPACT=NO, PROTECT=NO, QUIESCE=5
CSQYSTRT ARM REGISTER for element SYSMQMGRCSQl type SYSMQMGR successful
SYSTEM TIME STAMP FOR BSDS=2000-01-19 13:33:19.82
CSQJWOO7 CURRENT COPY 1 ACTIVE LOG

CSQJWO07 CURRENT COPY 2 ACTIVE LOG

LOG RECORDING TO COMMENCE WITH STARTRBA=000000150000
CSQ5CONN Connected to DB2 M141

Figure 80. MQSeries startup messages for subsystem CSQ1 (Part 1 of 3)

© Copyright IBM Corp. 1993, 2000 241

Startup messages

CSQHO241 +CSQ1 CSQHINSQ SUBSYSTEM security switch set ON,
profile 'SQ05.NO.SUBSYS.SECURITY' not found

CSQHO221 +CSQ1 CSQHINSQ QMGR security switch set ON,

profile 'CSQl.YES.QMGR.CHECKS' found

CSQHO21I +CSQLl CSQHINSQ QSG security switch set OFF,

profile 'SQ05.N0.QSG.CHECKS' found

CSQHO211 +CSQ1 CSQHISIC CONNECTION security switch set OFF,
profile 'CSQ1.NO.CONNECT.CHECKS' found

CSQHO241 +CSQ1 CSQHISIC COMMAND security switch set ON,

profile 'CSQLl.NO.CMD.CHECKS' not found

CSQHO21I +CSQ1 CSQHISIC CONTEXT security switch set OFF,
profile 'CSQL.NO.CONTEXT.CHECKS' found

CSQHO24T +CSQLl CSQHISIC ALTERNATE USER security switch set ON,
profile 'CSQL.NO.ALTERNATE.USER.CHECKS' not found

CSQHO21T +CSQ1 CSQHISIC COMMAND RESOURCES security switch set OFF,
profile 'CSQ1.NO.CMD.RESC.CHECKS' found

CSQHO241 +CSQL1 CSQHISIC PROCESS security switch set ON,

profile 'CSQ1.NO.PROCESS.CHECKS' not found

CSQHO241 +CSQ1 CSQHISIC NAMELIST security switch set ON,
profile 'CSQL1.NO.NLIST.CHECKS' not found

CSQHO241 +CSQ1 CSQHISIC QUEUE security switch set ON,

profile 'CSQ1.NO.QUEUE.CHECKS' not found

CSQV4521 +CSQL CSQVXLDR Cluster workload exits not available
CSQROOLI +CSQLl RESTART INITIATED

CSQROO3I +CSQLl RESTART - PRIOR CHECKPOINT RBA=00000014EA08
CSQROO4I +CSQLl RESTART - UR STATUS COUNTS

IN COMMIT=0, INDOUBT=0, INFLIGHT=0, IN BACKOUT=0

CSQIO49I +CSQl Page set O has media recovery

RBA=00000014EA08, checkpoint RBA=00000014EA0O8

CSQIO49I +CSQl Page set 1 has media recovery

RBA=00000014EA08, checkpoint RBA=00000014EAQ8

CSQIO49I +CSQl Page set 2 has media recovery

RBA=00000014EA08, checkpoint RBA=00000014EA08

CSQIO49I +CSQl Page set 3 has media recovery

RBA=00000014EA08, checkpoint RBA=00000014EA08

CSQIO49I +CSQ1 Page set 4 has media recovery

RBA=00000014EA08, checkpoint RBA=00000014EA08

CSQIO49I +CSQ1 Page set 5 has media recovery

RBA=00000014EA08, checkpoint RBA=00000014EA08

IXLO14I IXLCONN REQUEST FOR STRUCTURE SQO5CSQ_ADMIN

WAS SUCCESSFUL. JOBNAME: CSQIMSTR ASID: 0157

CONNECTOR NAME: CSQESQ05CSQ101 CFNAME: SICFO1

CSQEGO5I +CSQL Structure SQO5CSQ_ADMIN connected as
CSQESQ05CSQ101, version=B35661B9D2CB1FO4 0001008A

CSQRO30I +CSQ1 Forward recovery log range

from RBA=00000014EA08 to RBA=00000014F768

CSQROO5I +CSQ1 RESTART - COUNTS AFTER FORWARD RECOVERY

IN COMMIT=0, INDOUBT=0

CSQRO32I +CSQl Backward recovery log range

from RBA=00000014F768 to RBA=00000014F768

CSQROO6I +CSQLl RESTART - COUNTS AFTER BACKWARD RECOVERY
INFLIGHT=0, IN BACKOUT=0

CSQROO2I +CSQ1 RESTART COMPLETED

CSQPO18I +CSQ1 CSQPBCKW CHECKPOINT STARTED FOR ALL BUFFER POOLS
+CSQ1 DISPLAY THREAD(*) TYPE(INDOUBT)

CSQPO19I +CSQ1 CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER POOL 2, 2 PAGES WRITTEN
CSQPO19I +CSQLl CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER POOL 3, 2 PAGES WRITTEN
CSQPO19I +CSQL CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER POOL 1, 5 PAGES WRITTEN
CSQPO19I +CSQ1 CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER POOL O, 18 PAGES WRITTEN

Figure 80. MQSeries startup messages for subsystem CSQ1 (Part 2 of 3)

242 System Administration Guide

CSQPO211 +CSQ1 Page set O new media recovery
RBA=000000151506, checkpoint RBA=000000151506

CSQPO211 +CSQ1 Page set 1 new media recovery
RBA=000000151506, checkpoint RBA=000000151506

CSQPO211 +CSQ1 Page set 2 new media recovery
RBA=000000151506, checkpoint RBA=000000151506

CSQPO21I +CSQl Page set 3 new media recovery
RBA=000000151506, checkpoint RBA=000000151506

CSQPO211 +CSQ1 Page set 4 new media recovery
RBA=000000151506, checkpoint RBA=000000151506

CSQPO211 +CSQ1 Page set 5 new media recovery
RBA=000000151506, checkpoint RBA=000000151506

CSQV401I +CSQ1 DISPLAY THREAD REPORT FOLLOWS -
CSQV4201 +CSQ1 NO INDOUBT THREADS FOUND

C€SQ90221 +CSQ1 CSQVDT ' DISPLAY THREAD' NORMAL COMPLETION
CSQY0221 +CSQ1 QUEUE MANAGER INITIALIZATION COMPLETE
€SQ90221 +CSQ1 CSQYASCP 'START QMGR' NORMAL COMPLETION

Figure 80. MQSeries startup messages for subsystem CSQ1 (Part 3 of 3)

Appendix A. User messages on start-up 243

244 System Administration Guide

Appendix B. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2000 245

Notices

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

S0O21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

246 System Administration Guide

Notices

Programming interface information
This book is intended to help you to administer and operate MQSeries for OS/390.

This book also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and
Associated Guidance Information provided by MQSeries for OS/390.

General-use programming interfaces allow the customer to write programs that
obtain the services of MQSeries for OS/390.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Start of General-use programming interface

General-use Programming Interface and Associated Guidance Information...

End of General-use programming interface

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of MQSeries for OS/390. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.
Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Start of Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-sensitive programming interface

Appendix B. Notices 247

Notices

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

BookManager CICS CUA
DB2 IBM IMS
IMS/ESA MQSeries MVS
MVS/DFP MVS/ESA 0S5/390
RACF

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service
marks of others.

248 System Administration Guide

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A

abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
0S/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MO Series for QS/390 Mpqcﬂgpq and Coded manual.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

affinity. An association between objects that have
some relationship or dependency upon each other.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of

which is an alias for a base queue defined to the local
queue manager. When an application or a queue

© Copyright IBM Corp. 1993, 2000

manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

application environment. The software facilities that
are accessible by an application program. On the
0S/390 platform, CICS and IMS are examples of
application environments.

application queue. A queue used by an application.
archive log. See recovery log.

ARM. Automatic Restart Management

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

Automatic Restart Management (ARM). An OS/390
recovery function that can improve the availability of
specific batch jobs or started tasks, and therefore result
in faster resumption of productive work.

B

backout. An operation that reverses all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

249

Glossary

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

¢ An inventory of all active and archived log data sets
known to MQSeries for OS/390

* A wrap-around inventory of all recent MQSeries for
0S/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C

call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCE. Channel control function.
CCSID. Coded character set identifier.
CDE. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

250 System Administration Guide

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint.

CI. Control interval.
CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

cluster queue. A queue that is hosted by a cluster
queue manager and made available to other queue
managers in the cluster.

cluster queue manager. A queue manager that is a
member of a cluster. A queue manager may be a
member of more than one cluster.

cluster transmission queue. A transmission queue
that transmits all messages from a queue manager to
any other queue manager that is in the same cluster.
The queue is called
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

completion code. A return code indicating how an
MQI call has ended.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
or MQCONNX call, or automatically by the MQOPEN
call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

controlled shutdown. See quiesced shutdown.
CPE. Command prefix.

Cross Systems Coupling Facility (XCF). Provides the
0S/390 coupling services that allow authorized
programs in a multisystem environment to
communicate with programs on the same or different
0S/390 systems.

coupling facility. On OS/390, a special logical
partition that provides high-speed caching, list
processing, and locking functions in a parallel sysplex.

D

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

Glossary

dequeue. To remove a message from a queue.
Contrast with engueue.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.
DQM. Distributed queue management.

dual logging. A method of recording MQSeries for
0S/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with

single logging.
dual mode. See dual logging.

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E

enqueue. To put a message on a queue. Contrast with
dequeue.

environment. See application environment.
ESM. External security manager.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Glossary of terms and abbreviations 251

Glossary

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F

FIFO. First-in-first-out.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

G

GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start 1/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

globally-defined object. On OS/390, an object whose
definition is stored in the shared repository. The object
is available to all queue managers in the queue-sharing
group. See also locally-defined object.

GTE. Generalized Trace Facility.

H

handle. See connection handle and object handle.

hardened message. A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also persistent
message.

immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,

252 System Administration Guide

but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

inbound channel. A channel that listens for and
receives messages from another queue manager. See
also shared inbound channel.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPE. Interactive System Productivity Facility.

L

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

locally-defined object. On OS/390, an object whose
definition is stored on page set zero. The definition can
be accessed only by the queue manager that defined it.
Also known as a privately-defined object.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

logical unit of work (LUW). See unit of work.

M

machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.
MCI. Message channel interface.

message. In message queuing applications, a
communication sent between programs. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

Glossary

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for gueue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MOQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

N

namelist. An MQSeries object that contains a list of
names, for example, queue names.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

null character. The character that is represented by
X'00'.

Glossary of terms and abbreviations 253

Glossary

(0

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a

storage class (OS/390 only).

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

Open Transaction Manager Access (OTMA). A
transaction-based, connectionless client/server protocol.
It functions as an interface for host-based
communications servers accessing IMS TM applications
through the OS/390 Cross Systems Coupling Facility
(XCF). OTMA is implemented in an OS/390 sysplex
environment. Therefore, the domain of OTMA is
restricted to the domain of XCF.

OTMA. Open Transaction Manager Access.

outbound channel. A channel that takes messages
from a transmission queue and sends them to another
queue manager. See also shared outbound channel.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P

page set. A VSAM data set used when MQSeries for
0OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

254

System Administration Guide

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
0S/390 page sets and the corresponding log data sets
required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

privately-defined object. In OS/390, an object whose
definition is stored on page set zero. The definition can
be accessed only by the queue manager that defined it.
Also known as a locally-defined object.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

Q

queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

* An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

* A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queue-sharing group. In MQSeries for OS/390, a
group of queue managers in the same sysplex that can
access a single set of object definitions stored in the
shared repository, and a single set of shared queues
stored in the coupling facility. See also shared queue.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R

RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
0S/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

Glossary

remote queue object. See local definition of a remote
queite.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

repository. A collection of information about the
queue managers that are members of a cluster. This
information includes queue manager names, their
locations, their channels, what queues they host, and so
on.

repository queue manager. A queue manager that
hosts the full repository of information about a cluster.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

Resource Recovery Services (RRS). An OS/390
facility that provides 2-phase syncpoint support across
participating resource managers.

Glossary of terms and abbreviations 255

Glossary

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

RRS. Resource Recovery Services.

S

SAF. System Authorization Facility.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEIL Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

256

System Administration Guide

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service

interval.

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be
used by a message channel agent when moving
messages from a transmission queue to a link.

shared inbound channel. In MQSeries for OS/390, a
channel that was started by a listener using the group
port. The channel definition of a shared channel can be
stored either on page set zero (private) or in the shared
repository (global).

shared outbound channel. In MQSeries for OS/390, a
channel that moves messages from a shared
transmission queue. The channel definition of a shared
channel can be stored either on page set zero (private)
or in the shared repository (global).

shared queue. In MQSeries for OS/390, a type of local
queue. The messages on the queue are stored in the
coupling facility and can be accessed by one or more
queue managers in a quetue-sharing group. The definition
of the queue is stored in the shared repository.

shared repository. In MQSeries for OS/390, a shared
DB2 database that is used to hold object definitions that
have been defined globally.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows® 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging. A method of recording MQSeries for
0S/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a
refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

sysplex. A multiple OS/390-system environment that
allows multiple-console support (MCS) consoles to
receive console messages and send operator commands
across systems.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACE

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system initialization table (SIT). A table containing
parameters used by CICS on start up.

Glossary

T

target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
0S/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF).

tranid. See transaction identifier.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

Glossary of terms and abbreviations 257

Glossary

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made

to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X

XCF. Cross Systems Coupling Facility.

258 System Administration Guide

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications

Most of these publications, which are sometimes

referred to as the MQSeries “family” books, apply

to all MQSeries Level 2 products. The latest

MQSeries Level 2 products are:

* MQSeries for AIX, V5.1

* MQSeries for AS/400, V5.1

* MQSeries for AT&T GIS UNIX V2.2

* MQSeries for Compaq (DIGITAL) OpenVMS,
V2211

* MQSeries for Compaq Tru64 UNIX, V5.1

* MQSeries for HP-UX, V5.1

* MQSeries for OS/2 Warp, V5.1

* MQSeries for OS/390, V5.2

* MQSeries for SINIX and DC/OSx, V2.2

* MQSeries for Sun Solaris, V5.1

* MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

* MQSeries for Tandem NonStop Kernel, V2.2.0.1

* MQSeries for VSE/ESA V2.1

* MQSeries for Windows V2.0

* MQSeries for Windows V2.1

* MQSeries for Windows NT, V5.1

The MQSeries cross-platform publications are:
» MQSeries Brochure, G511-1908

GC33-0805
o MQSeries Intercommunicatiod, SC33-1872
* MQSeries Queue Manager Clusterd, SC34-5349

o WIOQSeries Clientd GC33-1632

o MQSeries System Administration, SC33-1873

o WMOSeries MOSC Command Rpfprpwrpl SC33-1369

* MQSeries Fuent Monitoring, SC34-5760

SC33-1482

o WMOSeries Administration waprfﬂrp Prngrﬂmmingl

Cuid&a.ud_Rgfarzn.cd, SC34-5390

o MOSeries MpqqngPJ, GC33-1876

4

SC33-0807

© Copyright IBM Corp. 1993, 2000

SC33-1673

* MQSeries Programming Interfaces Reference
Summary, SX33-6095

. | ' SC33-1877
o | j ‘ ™, SC34-5456
MOSo T T

SC34-5604

MQSeries platform-specific
publications

Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX, V5.1

M QSeries fnr AIX Quick Rpgiwningd
GC33-1867

MQSeries for AS/400, V5.1

D

GC34-5557

MQSeries for AS/400 Systend
Wdministration, SC34-5558
MMQSeries for AS/400 A,n'nlimfinﬁ

7

SC34-5559

MQSeries for AT&T GIS UNIX V2.2
B1QSeries for ATET GIS LINIX® qblcfprnl

Management Guidd, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS,
V2.2.1.1

MQSeries fnr r)irqifﬂl f)ppﬂV]\/fq Q}/qf'pwl

Management Guidd, GC33-1791

MQSeries for Compaq Tru64 UNIX, V5.1
MOSeries fnr f"nmrzm’) Trubad TINIX (7111'r*]g]

Beginningd, GC34-5684

MQSeries for HP-UX, V5.1
DOSeries fnr HP-1IX Quick Rpgiwwiwgcll
GC33-1869

MQSeries for OS/2 Warp, V5.1
MOSeries for QS/? Warp QuicHl

Beginningd, GC33-1868

259

Bibliography

MQSeries for OS/390, V5.2
MQSeries for 0S/390 Concepts and

Planning Guidd, GC34-5650

% SC34-5651

MMOSeries fmf QS/390 Qucfpwl
lAdmmstzaﬁan_Guzdel SC34 5652
BAQSeries fnr 0S/390 Problend

Determination Guidd, GC34-5892

%, GC34-5891

MQSeries for OS/390 Licensed Program
Specifications, GC34-5893

MQSeries for OS/390 Program Directory
MQSeries link for R/3 Version 1.2

RO Tk 7 ever)

GC33-1934

MQSeries for SINIX and DC/OSx, V2.2
MOSeries for SINIX and DC/OSx System

Management Guidd, GC33-1768

MQSeries for Sun Solarls, V5.1

MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

MOSeries for Sun Solaris Intel Plaffnrm{
Edition Quick Reginningd, GC34- 5851

MQSeries for Tandem NonStop Kernel, V2.2.0.1
MQSeries for Tandewm NonStop Kernel
System Management Guidd, GC33-1893
MQSeries for VSE/ESA V2.1

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA ~ Systen

Management Guidd, GC34-5364

MQSeries for Windows V2.0
MNQSeries fnr Windows Llser’s F11id¢l,
GC33-1822

MQSeries for Windows V2.1

G(C33-1965

MQSeries for Windows NT, V5.1
MMQSeries for Windows NT Quicl

Begiuningd, GC34-5389

260 System Administration Guide

MQSeries for Windows NT® Lsing thd

4

5C34-5387

IMQSeries Tnf1/q§rr1"nf Extension
SC34-5404

Softcopy books

Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

HTML format

Relevant MQSeries documentation is provided in

HTML format with these MQSeries products:

* MQSeries for AIX, V5.1

* MQSeries for AS/400, V5.1

¢ MQSeries for Compaq Tru64 UNIX, V5.1

* MQSeries for HP-UX, V5.1

* MQSeries for OS/2 Warp, V5.1

* MQSeries for OS/390, V5.2

* MQSeries for Sun Solaris, V5.1

* MQSeries for Windows NT, V5.1 (compiled
HTML)

* MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/mgseries/

Portable Document Format (PDF)

PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:

* MQSeries for AIX, V5.1

* MQSeries for AS/400, V5.1

¢ MQSeries for Compaq Tru64 UNIX, V5.1
* MQSeries for HP-UX, V5.1

¢ MQSeries for OS/2 Warp, V5.1

* MQSeries for OS/390, V5.2

* MQSeries for Sun Solaris, V5.1

* MQSeries for Windows NT, V5.1

* MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:

http://www.ibm.com/software/mgqseries/

BookManager® format

The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2

BookManager READ /6000

BookManager READ/DOS

BookManager READ/MVS

BookManager READ/VM

BookManager READ for Windows

PostScript format

The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format

The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet

The MQSeries product family Web site is at:
http://www.ibm.com/software/mgseries/

By following links from this Web site you can:

e Obtain latest information about the MQSeries
product family.

e Access the MQSeries books in HTML and PDF
formats.

¢ Download MQSeries SupportPacs.

Bibliography

Related publications

For information about other products that are
referred to in this book, see the following books:

0S/390

s MVS Setting up a Sysplex GC28-1779

* MVS Planning: APPC/MVS Management,
G(C28-1807

* 0S5/390 SecureWay CS IP Configuration,
SC31-8513

CICS Transaction Server for

0S/390

* Resource Definition Guide, SC33-1684
 Operations and Utilities Guide, SC33-1685
* CICS-Supplied Transactions, SC33-1686

CICS for MVS/ESA Version 4

* Resource Definition Guide, SC33-1166
* Operations and Utilities Guide, SC33-1167
* CICS-Supplied Transactions, SC33-1168

DB2
* DB2 for OS/390 Administration Guide, SC26-8957

IMS

* Customization Guide, SC26-8020

* Operator’s Reference, SC26-8030

* Messages and Codes, SC26-8028

* Failure Analysis Structure Tables (FAST) for Dump
Analysis, LY27-9621

DFSMS/MVS

* Access Method Services for VSAM, SC26-4905

e Access Method Services for the Integrated Catalog
Facility, SC26-4906

* Macro Instructions for Data Sets, SC26-4913

Bibliography 261

Related publications

262 System Administration Guide

Index
A

abend
application option of SSM entry 80
CICS transaction disconnecting 69
starting after 23
U3042 83
abnormal termination, restarting
after 125
access method services (AMS)
commands 102
deleting damaged BSDS 163
new active log definition 99
renaming damaged BSDS 163
REPRO 102, 112
accounting, what’s new for this
release xiv
ACTION keyword, DLQ handler 231
action queue manager 10
active log
data set
copying 99
copying with AMS REPRO
statement 112
date 97
defining in BSDS 99
delays in off-loading 155
deleting from BSDS 100
enlarging 100
log print utility (CSQ1LOGP) 221
out of space 155
printing (CSQ1LOGP) 221
recording existing in BSDS 100
recovery plan, problems 151
status 98
stopped data set effect 152, 155
time 97
active log problem
both copies are damaged 152
delays in off-loading 155
dual logging lost 151
log stopped 151
one copy is damaged 152
out of space 155
read I/0O errors 153
write I/O errors 153
active threads 140
address space
abend 22
canceling for MQSeries 24
administering by writing programs 27
administration programs 27, 28
alternative site recovery 127
AMS (access method services)
commands 102
deleting damaged BSDS 163
new active log definition 99
renaming damaged BSDS 163
REPRO 102, 112
AMS REPRO, backing up and recovering
page sets 112
API-crossing exit, enable or disable 56

© Copyright IBM Corp. 1993, 2000

Application Messaging Interface
(AMI) xv
application program
command format 48
CQKC DISPLAY 66
issuing commands from 27

application programming, what’s new for

this release xv
APPLIDAT keyword, DLQ handler 230
APPLNAME keyword, DLQ
handler 230
APPLTYPE keyword, DLQ handler 230
ARCHIVE, utility function
(CsQJU003) 215
archive log
adding information to BSDS
(NEWLOG) 211
data set
password 215
date 97
deleting 94
deleting information from the
BSDS 101, 214
discarding records 94
log print utility (CSQ1LOGP) 221
password, changing 101
printing (CSQ1LOGP) 221
recording in BSDS 100
recovery plan 157
restarting 93
time 98
ARCHIVE LOG command 91
archive log problem
allocation problems 157
insufficient DASD for off-load 158
read I/0 errors during restart 159
write I/O errors during off-load 157
archiving 91
ARM (Automatic Restart Manager)
activating a policy 135
clusters 137
couple data sets 134
defining a policy 134
introduction 133
LU6.2 136
network considerations 136
policy sample 134
queue-sharing groups 137
registering with 135
TCP/IP 137
Automatic Restart Manager (ARM)
activating a policy 135
clusters 137
couple data sets 134
defining a policy 134
introduction 133
LU 6.2 136
network considerations 136
policy sample 134
queue-sharing groups 137
registering with 135

Automatic Restart Manager (ARM)
(continued)
TCP/IP 137

B

backing up page sets
bibliography 259
blank fields in operations and control
panels 6
BMP (batch message program) 80
BookManager 261
bootstrap data set (BSDS)
adding an active log 99, 211
adding an archive log 100, 211
both copies are damaged 161
change log inventory utility
(CSQJU003) 99, 209
changing for active logs 99
changing for archive logs 100
changing log inventory utility
(CsQJuU003) 101
deleting active log information 100
deleting archive log information 101
determining log inventory
contents 97
does not agree with log 161
error while opening 160
errors 160
I/O error 163
log print utility (CSQ1LOGP) 221
managing 97, 101
out of synchronization 162
print log map utility (CSQJU004) 219
recover log inventory 94
recovery 102
restoring from the archive log 102
single recovery 102
time stamps 97
unequal time stamps 162
BSDS (bootstrap data set)
adding an active log 99, 211
adding an archive log 100, 211
both copies are damaged 161
change log inventory utility
(CSQJU003) 99, 209
changing for active logs 99
changing for archive logs 100
changing log inventory utility
(CSQJU003) 101
deleting active log information 100
deleting archive log information 101
determining log inventory
contents 97
does not agree with log 161
error while opening 160
errors 160
1/O error 163
log print utility (CSQ1LOGP) 221
managing 97, 101
out of synchronization 162

111, 112

263

BSDS (bootstrap data set) (continued)
print log map utility (CSQJU004) 219
recover log inventory 94
recovery 102
restoring from the archive log 102
single recovery 102
time stamps 97
unequal time stamps 162

buffer pool, associating with page

sets 105
building messages 30

C

canceling MQSeries address space 24
CARTs 4
CCSID keyword of COMMAND
function 191
CF (Coupling Facility)
adding a structure 122
load balancing 118
managing 122
moving a queue to another
structure 118
recovering from failure 168
removing a structure 122
CF structure
adding 122
load balancing 118
moving a queue to another 118
removing 122
change log inventory utility
(CsQJU003) 209
adding new active log 99, 155
ARCHIVE 215
change BSDS 97, 99
changes for active logs 99
changes for archive logs 100
CHECKPT 217
CRESTART 216
DELETE 214
functions
ARCHIVE 103
NEWLOG 99, 100
HIGHRBA 218
invoking 209
multiple statement operation 210
NEWLOG 211
time stamp in BSDS 162
CHANGE SUBSYS, command of
IMS 75,79
channel disposition 10
channel initiator
restarting with ARM 136
what’s new for this release xii
checkpoint records, setting 217
CHECKPT, utility function
(CsQJuU003) 217
Chinese language feature 176
CICS
definition of term xii
related publications 261
terminating 68
units of recovery 143
CICS adapter
commands 47
connect program (CSQCQCON) 53
control panels 50

264

System Administration Guide

CICS adapter (continued)
disconnect program 55
displaying CICS tasks 59
displaying connection details 59
displaying status 66
forced shutdown 68, 69
operation of
control panels 50
displaying current tasks 65
displaying instances of CKTI 64
lowercase queue names 52
modifying a connection 56
starting a connection 51
starting CKTI 60
stopping CKTI 62

orderly shutdown 68

passing parameters 48

quiesced shutdown 68

restart, what happens 141

shutting down a connection 68

starting a connection 51

task initiation program

(CSQCSSQ) 61

terminating 68

CICS bridge
starting 71
stopping 72
tuning considerations 72

CKQC
DISPLAY command 66
MODIFY command 57
START command 52
STARTCKTI command 61
STOP command 55
STOPCKTI command 63

CKQQ, transient data queue 49

CKTI transaction
automating starting of 61
displaying 64
starting 60
stopping 62, 63

client channel definition file 191, 193

clusters and ARM 137

CMDSCOPE, user messages from

commands with 40

cold start 130

COMMAND, CSQUTIL function
MAKECLNT keyword 193
MAKEDEF keyword 192

command and response tokens 4

command line, using with operations and

control panels 12

command prefix string (CPF) 4

command scope 10

command server
restart 30
sending commands to 30
starting 30
stopping 30

commands
action queue manager 10
choosing a queue manager 10
command prefix string (CPF) 4
command scope 10
examples of 37
for the CICS adapter 47
in request messages 30

commands (continued)
issuing 3
from CSQUTIL 4, 179
from system-command input
queue 27
from the OS/390 console 4
issuing through CSQUTIL 190
no reply to 43
operator 4
processor 30
remote queue manager 29
STOP QMGR 24
target queue manager 10
user messages
from DEFINE 37
from DEFINE THREAD 38
from DELETE 37
from DISPLAY commands 36
from DISPLAY QLOCAL 38
what’s new for this release xiii
conditional restart 216
connections
controlling IMS 75
displaying 139
displaying details of
CICS 59
IMS 80
monitoring the activity on 80
starting from
CICS adapter control panel 51
CICS application program 53
CICS command line 52
IMS 76
stopping from
CICS adapter control panel 54
CICS application program 55
CICS command line 55
IMS 75
to IMS, monitoring activity 80, 81
console, issuing commands from 3
control panels for the CICS adapter 50
COPY, CSQUTIL function 198
COPY object disposition 10
copying
messages from a queue (COPY) 179
page sets
RESETPAGE function 187
queues to a data set (COPY) 198
queues to a data set (SCOPY) 201
COPYPAGE, CSQUTIL function 185
Correlld field, administration
programs 33
COUNT field, user messages 35
couple data sets, ARM 134
Coupling Facility (CF)
adding a structure 122
load balancing 118
managing 122
moving a queue to another
structure 118
recovering from failure 168
removing a structure 122
CPF (command prefix string) 4
CRESTART, utility function
(CSQJU003) 216
CSQI1LOGP (log print utility)
finding start RBA with 144

CSQILOGP (log print utility) (continued)
invoking 221
output 223
what it does 221
CSQ2020E message 87
CSQ4BSDS sample 102, 163
CSQ5PQSG (queue-sharing group utility)
invoking 225
what it is 225
CSQCDSC CICS adapter disconnect
program 55
CSQCQCON CICS adapter connect
program 53
CSQCRST CICS adapter reset
program 58
CSQCSSQ CICS adapter task initiation
program 61, 63
CSQIO63E message 150
CSQJ004I message 151
CSQJO30E message 151
CSQJ100E message 160
CSQJ102E message 152, 161
CSQJ103E message 157
CSQJ105E message 153
CSQJ106E message 153
CSQJ107E message 163
CSQJ108E message 163
CSQJ110E message 155
CSQJ111A message 155
CSQJ114I message 158
CSQJ115E message 157
CSQJ120E message 162
CSQJ122E message 162
CSQJ124E message 153
CSQJ126E message 163
CSQJ128E message 158
CSQJ232E message 152
CSQJUO003 (change log inventory
utility) 209
adding new active log 99, 155
ARCHIVE 215
change BSDS 97, 99
changes for active logs 99
changes for archive logs 100
CHECKPT 217
CRESTART 216
DELETE 214
functions
ARCHIVE 103
NEWLOG 99, 100
HIGHRBA 218
invoking 209
multiple statement operation 210
NEWLOG 211
time stamp in BSDS 162
CSQJU004 (print log map utility)
BSDS time stamps 97
introduction 219
invoking 219
listing BSDS contents using 97
CSQPO04E message 164
CSQP018I message 241
CSQPO019I message 241
CSQQTRMN
starting 83
stopping 83
CSQQxxx messages 170

CSQUDLQH (dead-letter queue handler
utility)

actions 230

conventions 233

example 237

invoking 227

patterns 230

processing 235

rules table 228

what itis 227
CSQUTIL (MQSeries utility program)

COMMAND 190

COPY 198

COPYPAGE 185

EMPTY 204

FORMAT 183

introduction 179

invoking 180

LOAD 206

monitoring progress 182

PARM parameters 180

RESETPAGE 187

return codes 181

SCOPY 201

SDEFS 195

unit of recovery, maximum number of

messages 200
CSQV401 message 143
CSQV406 message 143
CSQZPARM, specifying an
alternative 22
CTL (IMS control region) 76, 80

D

data sets

copying messages from queues 198

copying messages from queues

(offline) 201

dump and restore 113

page set I/O error 164

restart on losing 130

restoring messages from 206
data-sharing group

recovering from failure 167

resynchronizing with MQSeries 167
DB2

adding a queue-sharing group 117

recovering from system failure 166

related publications 261

removing a queue-sharing group 118

resynchronizing with MQSeries 167
DB2 tables

adding a queue manager 225

adding a queue-sharing group 226

removing a queue manager 226

removing a queue-sharing group 226
dead-letter header, MQDLH 227
dead-letter queue

finding out its name 37

what’s new for this release xv
dead-letter queue handler utility

(CSQUDLQH)

actions 230

conventions 233

example 237

invoking 227

patterns 230

dead-letter queue handler utility
(CSQUDLQH) (continued)
processing 235
rules table 228
what itis 227
DEFINE commands, user messages 37
DELETE, utility function
(CSQJUO003) 214
DELETE commands, user messages 37
deleting
active information log from
BSDS 100
archive logs 94, 95
IMS Tpipes 88
log information from BSDS 214
messages from a queue 204
dependent region, IMS 80
disconnecting from 81
DEQUEUE TMEMBER, command of
IMS 88
DESTQ keyword, DLQ handler 230
DESTQM keyword, DLQ handler 230
DFS3611 message 170
DFS5551 message 170
DFSMS, related publications 261
disaster recovery 127
discarded messages 34
disconnecting
from CICS 54
from IMS 82
display CKQC transaction 66
DISPLAY commands, user messages 38
DISPLAY OASN command of IMS 79
displaying
function key settings 11
units of recovery in CICS 143
units of recovery in IMS 78, 146
disposition, object 10
DLQ handler utility 227
DNS (Domain Name System) 138
Domain Name System (DNS) 138
dual logging , losing 151

E

editing namelists 20
EMCS 4
EMPTY, utility function (CSQUTIL) 204
errors, hardware 172
example ARM policy 134
example recovery scenarios
active log problems
both copies are damaged 152
delays in off-loading 155
dual logging lost 151
log stopped 151
one copy is damaged 152
out of space 155
read I/O errors 153
write I/O errors 153
archive log problems
allocation problems 157
insufficient DASD for
off-load 158
read I/0O errors during
restart 159
write I/O errors during
off-load 157
265

Index

example recovery scenarios (continued)
BSDS problems
both copies are damaged 161
BSDS recovery 102
does not agree with log 161
error while opening 160
I/O error 163
out of synchronization 162
unequal time stamps 162
hardware problems 172
IMS problems
application terminates 170
IMS not operational 171
unable to connect to
MQSeries 170
page set problems
I/O error 164
page set full 165
EXEC CICS LINK
INPUTMSG option 48
linking to the CICS adapter 53
expanding page sets 185
extended console support 4

F

FAILURE keyword of COMMAND
function 191
FEEDBACK keyword, DLQ handler 230
finding archive log data sets to be
deleted 95
FORCE keyword of FORMAT 183
FORCE keyword of RESETPAGE 188
FORMAT, utility function
(CSQUTIL) 183
FORMAT keyword, DLQ handler 231
function keys
changing namelists 20
operations and control panels 11
showing 11
using 11
functions, return codes from
CSQUTIL 181
FWDQ keyword, DLQ handler 232
FWDQM keyword, DLQ handler 232

G

glossary 249
GROUP object disposition 10
group objects, managing 122

H

hardware errors 172
HEADER keyword, DLQ handler 232
help
CICS adapter 50
operations and control panels 12
HIGHRBA, utility function
(CsQJU003) 218
HTML (Hypertext Markup
Language) 260
Hypertext Markup Language
(HTML) 260

1/0 error
marks active log as TRUNCATED 98

266 System Administration Guide

I/0 error (continued)
queues 164
IMS
abend U3042 83
commands
CHANGE SUBSYS 75, 79
DEQEUUE TMEMBER 88
DISPLAY OASN 79
DISPLAY OASN SUBSYS 75
DISPLAY SUBSYS 81
START REGION 81
START SUBSYS 75
START TMEMBER 86
STOP REGION 81
STOP SUBSYS 75, 82
STOP TMEMBER 86
TRACE 75
connection status 81
definition of term xii
deleting Tpipes 88
disconnecting from dependent
region 81
in-doubt units of recovery 145
related problems 170
related publications 261
resynchronizing the bridge 87
IMS adapter
connection status 81
control region 76
controlling dependent region
connections 80
dependent regions of IMS 80
displaying in-doubt units of
recovery 78
IMSID option 76
initializing 76
logical terminal (LTERM) 76
residual recovery entry (RRE) 79
restart, what happens 145
starting CSQQTRMN 83
stopping CSQQTRMN 83
thread 77
threads, displaying 78
IMS bridge
Commit mode, synchronization 87
controlling queues 86
deleting messages 88
resynchronizing 87
IMS problem
application terminates 170
IMS not operational 171
unable to connect to MQSeries 170
IMS.PROCLIB library 76, 80
in-doubt threads 140
in-doubt units of recovery
CICS 141
IMS 146
INPUTQ keyword, DLQ handler 229
INPUTQM keyword, DLQ handler 229
interpreting replies to messages 35
ISPF, showing keys 11
issuing commands 3, 179

J

Japanese language feature 176

K

KEYLIST, ISPF command 11

L

listener, restarting with ARM 136
LOAD, utility function 206
load balancing
CF structures 118
page set 107
sample job for a CF structure 119
sample job for a page set 108
locating archive log data sets to be
deleted 95
log
archiving 91
change log inventory utility
(CSQJU003) 209
determining inventory contents 97
error recovery procedures 151
log print utility (CSQ1LOGP) 221
managing 91
off-load, cancelling 93
optimizing tape reading 93
print log map utility (CSQJU004) 219
recovering from problems
active log 151
archive log 157
recovery 93
restarting archive process 93
what’s new for this release xiv
log data sets
restart on losing 126
log inventory, change 209
log print utility (CSQ1LOGP) 221
extract log records 221
finding start RBA with 144
invoking 221
output 223
print log records
what it does 221
log RBA, updating the highest
written 218
log RBA value, modifying 209
lowercase queue names
CICS adapter 52
operations and control panels 6
LU 6.2 and ARM 136

M

MAKECLNT, keyword of COMMAND
function 191, 193
MAKEDEF, keyword of COMMAND
function 190, 192
managing
BSDS 97, 99
MQSeries log 91
page sets 105
queue-sharing groups 117
shared queues 118
maximum number of uncommitted
messages 200
MAXSMSGS 200
media recovery 172
message processing program (MPP) 80
messages
CICS adapter 49
discarded 34
incorporating MQSeries
commands 30

93, 221

messages (continued)
interpreting replies to MQSeries
commands 35
maximum number of
uncommitted 200
on the system-command input
queue 32
user 11,28
waiting for replies to 33
MGCR and MGCRE 3
migrating queues from non-shared to
shared 121
modifying an MQSeries-CICS
connection 56
monitoring
CICS connection activity 59
IMS connection activity 80
moving queues
non-shared queue 107
shared queue 118
MPP (message processing program)
connection control 80
MQDLH, dead-letter header 227
MQGET in administration programs 28
MQPUT in administration programs 28
MQSeries commands
DISPLAY THREAD 143
remote queue manager 29
RESOLVE INDOUBT 143
MQSeries publications 259
MQSeries utility program
(CSQUTIL) 209
COMMAND 190
COPY 198
COPYPAGE 185
EMPTY 204
FORMAT 183
introduction 179
invoking 180
issuing commands from 4
LOAD 206
monitoring progress 182
PARM parameters 180
RESETPAGE 187
return codes 181
SCOPY 201
SDEFS 195
syntax checking 182

unit of recovery, maximum number of

messages 200

Msgld field, administration programs 33

MSGTYPE keyword, DLQ handler 231

N

namelists 20
disposition 10

network considerations for ARM 136
new function xii
NEWLOG, utility function

(CSQJUO003) 99, 100, 211
NID (network ID) 143, 146
nonpersistent messages 30

(0

objects
altering 19

objects (continued)

backing up definitions 113

defining 14

deleting 19

displaying 19

disposition 10

group, managing 122

operations and control panels 14
off-loading, errors during 98
opening the system-command input

queue 29

operating, basic operations 3
operations and control panels

changing the subsystem ID 13

example of 13

function keys 11

invoking 5

queue manager default 11

rules for using 6

user messages 11

using 5

using the command line 12

what’s new for this release xv

working with object definitions 19
operator commands

CICS adapter 67

IMS adapter 75

issuing 3

operations and control panels 5
orderly shutdown, CICS adapter 68
out of space on active log 155

P

page set problem
I/O error 164
page set full 165
page sets
adding 105
AMS REPRO 112
backing up 111, 112
copying 185, 187
COPYPAGE 185
creating a point of recovery 111
display usage 106
expanding 109, 185
formatting 183
full 106, 165
load balancing 107
managing 105
problems 164
recovery 113
reducing the size 110
RESETPAGE 187
resetting the log 187
restart on losing 125
utility functions 179
PAGES keyword of FORMAT 183
panels
blank fields in 6
operations and control 5, 13
rules for using 6
PARM option, START QMGR
command 22
passwords
archive log data set 101
data sets 212
supply for archive log 215

PDF (Portable Document Format) 260
PERSIST keyword, DLQ handler 231
PFSHOW, ISPF command 11
point of recovery, creating 111
Portable Document Format (PDF) 260
PostScript format 261
print log map utility (CSQJU004)
BSDS time stamps 97
introduction 219
invoking 219
listing BSDS contents using 97
PRIVATE object disposition 10
processes, disposition 10
program, administration 27
publications
MQSeries 259
related 261
PUTAUT keyword, DLQ handler 232

Q

QMGR object disposition 10
QSGDISP, user messages from commands
with 42
queue management utility functions 179
queue managers
adding a page set 105
adding to a queue-sharing group 117
adding to DB2 tables 225
cold start 130
expanding a page set 109
reducing a page set 110
removing from a queue-sharing
group 117
removing from DB2 tables 226
restarting 125
starting 22
stopping 24
queue-sharing group utility (CSQ5PQSG)
invoking 225
what itis 225
queue-sharing groups
adding a queue manager 117
adding to DB2 tables 117, 226
and ARM 137
cold start 131
load balancing 118
managing 117
moving a queue 118
recovering units of recovery 148
reinitializing queue managers 131
removing a queue manager 117
removing from DB2 tables 118, 226
user messages from commands 40
What's new for this release xii
queues
copying 185, 198
copying (offline) 201
defining local 15
disposition 10
emptying 204
LOAD function 206
migrating non-shared to shared 121
moving a non-shared queue 107
moving a shared queue 118
moving non-shared to shared 120
reply-to model 28
restoring messages 206

Index 267

queues (continued)
system-command input 29
system-command reply-to model 28
QUIESCE, stop mode 24
QUIESCE MODE of ARCHIVE LOG 91

R

RBA (relative byte address), range
specified in active log 99
REASON keyword, DLQ handler 231
recovering shared queues 118
recovery
active log problems 151
alternative site 127
basic operations 3

BSDS

errors 160

log inventory 94
CICS

manually recovering units of
recovery 143
COPY 115
creating a point of 111
description 113
example scenarios 149
IMS
manually recovering units of
recovery 145
resolving in-doubt units of
recovery 78
resynchronizing the bridge 87
IMS units of recovery 145
logs 93
long-running UOW 169
MQSeries-related problems
active log problems 151
archive log problems 157, 159
BSDS 105, 160
page set problems 164
page sets 112
point of 111
RRS
manually recovering units of
recovery 147
single BSDS 102
starting 21, 23
tokens 143
reducing the size of a page set 110
region error options (REO) 80
registering with ARM 135
reinitializing MQSeries 130
relative byte address (RBA), range
specified in active log 99
REO (region error options) 80
replies, examples 37
reply message descriptor 34
reply messages 33
reply-to queue
attributes 28
defining 28
opening 29
REPLYQ keyword, DLQ handler 231
REPLYQM keyword, DLQ handler 231
REPRO command of access method
services 102, 112
request message 32
resetting page sets 187

268

System Administration Guide

RESOLVE INDOUBT command, free
locked resources 143
resolving
in-doubt units of recovery 78
units of recovery 143, 147
Resource Recovery Services (RRS), units
of recovery 147
RESPTIME, keyword of COMMAND
function 191
restart
after abnormal termination 125
after losing data sets 130
after losing logs 126
after losing page sets 125
CICS adapter 141
cold start 130
conditional 216
IMS adapter 145
long-running UOW 169
0S/390 Automatic Restart
Manager 133
user messages 142
with ARM 133
restarting MQSeries 125
restoring messages to a queue 179
retention period, archive logs
(ARCRETN) 94
RETRY keyword, DLQ handler 232
RETRYINT keyword, DLQ handler 229
return codes, from utility functions 181
RRE (residual recovery entry) 79
RRS (Resource Recovery Services), units
of recovery 147
rules for using the operations and control
panels 6

S

sample ARM policy 134
SCOPY, CSQUTIL function 201
security, what’s new for this release xiv
shared channels after DB2 failure 167
SHARED object disposition 10
shared queues

load balancing 118

managing 118

moving a queue 118

moving to non-shared 120

recovering 118

recovering units of recovery 148

user messages from commands 40
shutting down the CICS bridge 72
softcopy books 260
SSM (subsystem member)

contains control information 76

error options 80

specified on EXEC parameter 80
START CMDSERV command 30
start options for MQSeries 22
START QMGR command

from OS/390 console 21

options 22
START REGION, command of IMS 81
START SUBSYS, command of IMS 75
START TMEMBER, command of IMS 86
start-up messages (MQSeries) 241
starting

after an abend 23

starting (continued)
CICS bridge 71
CICS-MQSeries connection
from a CICS program 53
from the command line 52
using the CICS adapter control
panels 51
command server 30
IMS-MQSeries connection 76
MQSeries 21, 22, 23
0S/390 Automatic Restart
Manager 133
with ARM 133
statistics, what’s new for this release xiv
STOP CMDSERV command 30
STOP QMGR command
MODE(FORCE) 24
MODE(QUIESCE) 24
MODE(RESTART) 24
STOP REGION, command of IMS 81
STOP SUBSYS, command of IMS 75, 82
STOP TMEMBER, command of IMS 86
stopping the CICS bridge 72
storage classes, disposition 10
storage management subsystem
(SMS) 94
storage medium full 106
recovery scenario 166
structure (Coupling Facility)
adding 122
load balancing 118
moving a queue to another 118
removing 122
subsystem ID, changing 13
SupportPac 261
system administration
MQSeries commands 3, 21
using application programs 27
system-command input queue 4
defining 28
opening 29
putting messages on 32
system-command reply-to model
queue 28
system control commands for starting
MQSeries 21
system object samples, what’s new for
this release xiv
system parameter module
(CSQZPARM) 22
system parameters, what’s new for this
release xiii

-

tape device, optimizing reading for
log 93
target queue manager 10
tasks, displaying CICS 65
TCP/IP and ARM 137
terminating
MQSeries 24
MQSeries-CICS connection 68
from a CICS program 55
from the CICS adapter control
panels 54
from the CICS command line 55
MQSeries-IMS connection 82

terminology used in this book 249
TGTQMGR, keyword of COMMAND
function 190
thlqual, definition of term xii
threads
active 140
attachment in IMS 77
CICS adapter termination 68
displaying 139
displaying, IMS adapter 78
IMS termination 82
in-doubt 140
stopping MQSeries 24
time stamps 97
from BSDS 97
unequal in BSDS 162
Tpipe, deleting 88
TRACE, command of IMS 75
trace, what’s new for this release xiv
transient data queue (TDQ), CKQQ 49
tuning the CICS bridge 72

U

U.S. English language features 176
U3042 abend (IMS) 83
uncommitted messages, maximum
number 200
unit of recovery
CICS, recovering manually 143
displaying in-doubt 143
IMS
in-doubt resolution 78
recovering manually 145
in-doubt
displaying in IMS 78
recovering in IMS 78
maximum number of messages
in 200
recovering on another queue
manager 148
RRS, recovering manually 147
unit of work
CICS adapter 141
long running 169
RESOLVE INDOUBT command 78
UOW 141
user messages 28
at start up 241
COUNT field 35
displaying from panels 11
from MQSeries commands,
replies 37
USERID keyword, DLQ handler 231
utilities
time stamp 97
utility program (CSQUTIL)
COMMAND 190
COPY 198
COPYPAGE 185
EMPTY 204
FORMAT 183
introduction 179
invoking 180
LOAD 206
monitoring progress 182
PARM parameters 180
RESETPAGE 187

utility program (CSQUTIL) (continued)
return codes 181
SCOPY 201
SDEFS 195
unit of recovery, maximum number of
messages 200
utility programs

change log inventory utility
(CSQIU003) 209

dead-letter queue handler utility
(CSQUDLQH) 227

log print utility (CSQ1LOGP) 221

MQSeries utility program
(CSQUTIL) 179

print log map utility (CSQJU004) 219

queue-sharing group utility
(CSQ5PQSG) 225

summary table 175

\'

volume dump and restore 113

VSAM (virtual storage access
method) 211

w

WAIT keyword, DLQ handler 229
waiting for replies to messages 33
What's new for this release xii
Windows Help 261

work, units of 143

writing programs to administer
MQSeries 27

WTOR, MQSeries-related 24

Index

269

270 System Administration Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
* By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

SO21 2JN
United Kingdom

¢ By fax:
— From outside the U.K,, after your international access code use
44-1962-870229
— From within the UK., use 01962-870229
¢ Electronically, use the appropriate network ID:
— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink : HURSLEY(IDRCF)

— Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

* The publication title and order number

* The topic to which your comment applies

* Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1993, 2000 271

272 System Administration Guide

) Printed in the United States of America
&) on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5652-00

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Conventions used in this book
	What's new for this release
	Queue-sharing groups
	Channel initiator
	Commands
	System parameters
	System object samples
	Logs
	Security
	Statistics and accounting
	Operations and control panels
	Dead-letter queue
	Application programming

	Part 1. Operating MQSeries for OS/390
	Chapter 1. Operating MQSeries for OS/390
	Issuing commands
	Issuing commands from an OS/390 console or its equivalent
	Command prefix strings
	Using the OS/390 console to issue commands
	Command responses

	Issuing commands from the utility program CSQUTIL

	Introducing the operations and control panels
	Invoking the operations and control panels
	Rules for the operations and control panels
	Blank fields

	Objects and actions
	Queues, processes, namelists, and storage classes
	Channels
	Cluster objects
	Queue manager and security
	System
	Actions

	Object dispositions
	Choosing a queue manager
	Queue manager defaults

	Using the function keys
	Getting things done
	Displaying MQSeries user messages
	Ignoring what you have done
	Getting help

	Using the command line

	Using the operations and control panels
	Defining objects
	Defining a local queue
	When your local queue definition is complete

	Defining other types of objects
	Working with object definitions
	Altering an object definition
	Displaying an object definition
	Deleting an object

	Working with namelists

	Chapter 2. Starting and stopping MQSeries
	Before you start MQSeries
	Starting MQSeries
	Start options
	Starting after an abnormal termination
	User messages on start-up

	Stopping MQSeries
	Stop messages

	Chapter 3. Writing programs to administer MQSeries
	Understanding how it all works
	Before you begin

	Preparing queues for administration programs
	Defining the system-command input queue
	Defining a reply-to queue
	Opening the system-command input queue
	Opening a reply-to queue

	Using the command server
	Identifying the queue manager that processes yourcommands
	Starting the command server
	Sending commands to the command server
	Building a message that includes MQSeries commands
	Command attributes

	Putting messages on the system-command input queue
	Using MQPUT1 and the system-command input queue

	Retrieving replies to your commands
	Waiting for a reply
	Discarded messages

	The reply message descriptor

	Interpreting the replies
	Using the DISPLAY commands
	Examples of commands and their replies
	Messages from a DEFINE command
	Messages from a DELETE command
	Messages from DISPLAY commands
	Finding out the name of the dead-letter queue
	Messages from the DISPLAY THREAD command
	Messages from the DISPLAY QUEUE command
	Messages from the DISPLAY NAMELIST command

	Messages from commands with CMDSCOPE
	Messages from the ALTER PROCESS command
	Messages from the DISPLAY PROCESS command
	Messages from the DISPLAY CHSTATUS command
	Messages from the STOP CHANNEL command

	Messages from commands that generate commands withCMDSCOPE

	If you do not receive a reply
	Passing commands using MGCR or MGCRE

	Part 2. MQSeries and CICS
	Chapter 4. Operating the CICS adapter
	Invoking the adapter’s control functions
	From the CICS adapter control panels
	From the CICS command line
	From CICS application programs
	Command syntax in application programs
	Passing parameters from a CICS transaction
	EXEC CICS LINK interface messages

	Accessing the CICS adapter control panels
	Starting a connection
	Starting a connection from the CICS adapter control panels
	Starting a connection from the CICS command line
	Specifying lowercase queue names

	Starting a connection from a CICS application program

	Stopping a connection
	Stopping a connection from the CICS adapter control panels
	Stopping a connection from the CICS command line
	Stopping a connection from a CICS application program

	Modifying a connection
	Modifying a connection from the CICS adapter control panels
	Modifying a connection from the CICS command line
	Modifying a connection from a CICS application program

	Displaying details of connections and CICS tasks
	Displaying details of a connection from the CICS adaptercontrol panels

	Starting an instance of the task initiator CKTI
	Starting CKTI from the CICS adapter control panels
	Starting CKTI from the CICS command line
	Starting CKTI from a CICS application program
	Starting CKTI automatically

	Stopping an instance of CKTI
	Stopping an instance of CKTI from the CICS adapter controlpanels
	Stopping an instance of CKTI from the command line
	Stopping an instance of CKTI from an application program

	Displaying the current instances of CKTI
	Displaying the current instances of CKTI from the CICSadapter control panels

	Displaying CICS task information
	Displaying CICS tasks from the CICS adapter control panels
	Displaying connection status and in-flight tasks
	From the CICS command line
	From a CICS application program

	Purging tasks that are using the CICS adapter
	Shutting down a connection between MQSeries and the CICS adapter
	Orderly shutdown
	Forced shutdown

	Chapter 5. Operating the CICS bridge
	Starting the CICS bridge
	Shutting down the CICS bridge
	Controlling CICS-bridge throughput

	Part 3. MQSeries and IMS
	Chapter 6. Operating the IMS adapter
	Controlling IMS connections
	Connecting from the IMS control region
	Initializing the adapter and connecting to MQSeries
	Thread attachment

	Displaying in-doubt units of recovery
	Recovering in-doubt units of recovery
	Resolving residual recovery entries

	Controlling IMS dependent region connections
	Connecting from dependent regions
	Region error options
	Monitoring the activity on connections
	Disconnecting from dependent regions

	Disconnecting from IMS
	Controlling the IMS trigger monitor
	Starting CSQQTRMN
	Stopping CSQQTRMN

	Chapter 7. Controlling the IMS bridge
	Starting and stopping the IMS bridge
	Controlling IMS connections
	Controlling bridge queues
	Resynchronizing the IMS bridge
	Considerations for Commit mode 1 transactions

	Deleting messages from IMS
	Deleting Tpipes

	Part 4. Managing MQSeries resources
	Chapter 8. Managing the logs
	Archiving logs with the ARCHIVE LOG command
	Restarting the log archive process after a failure

	Optimizing archive log reading from tape devices
	Printing log records
	Recovering logs
	Discarding archive log data sets
	Automatic archive log data set deletion
	Manually deleting archive log data sets
	Locate and discard archive log data sets

	Chapter 9. Managing the BSDS
	Finding out what the BSDS contains
	Time stamps in the BSDS
	Active log data set status

	Changing the BSDS
	Changes for active logs
	Adding record entries to the BSDS
	Deleting information about the active log data set from the BSDS
	Recording information about the log data set in the BSDS
	Enlarging the active log

	Changes for archive logs
	Adding an archive log
	Deleting an archive log
	Changing the password of an archive log

	Recovering the BSDS

	Chapter 10. Managing page sets
	How to add a page set to a queue manager
	What to do when one of your page sets becomes full
	How to balance loads on page sets
	Moving a non-shared queue

	How to expand a page set
	How to reduce a page set
	How to back up and recover page sets
	Creating a point of recovery
	Method 1: Full backup
	Method 2: Fuzzy backup
	Backing up page sets
	Backing up your object definitions

	Recovering page sets
	Simple recovery
	Advanced recovery
	What happens when MQSeries is restarted

	How to back up and restore queues using CSQUTIL

	Chapter 11. Managing queue-sharing groups and sharedqueues
	Managing queue-sharing groups
	Adding a queue-sharing group to the DB2 tables
	Adding a queue manager to a queue-sharing group
	Removing a queue manager from a queue-sharing group
	Removing a queue-sharing group from the DB2 tables

	Managing shared queues
	Recovering shared queues
	Moving shared queues
	Moving a queue from one Coupling Facility structure to another
	Moving a non-shared queue to a shared queue
	Moving a shared queue to a non-shared queue

	Migrating non-shared queues to shared queues
	The first (or only) queue manager in the queue-sharing group
	Any other queue managers in the queue-sharing group

	Managing group objects
	Managing the Coupling Facility
	Adding a Coupling Facility structure
	Removing a Coupling Facility structure

	Part 5. Recovery and restart
	Chapter 12. Restarting MQSeries
	Restarting after a normal shutdown
	Restarting after an abnormal termination
	Restarting if you have lost your page sets
	Restarting if you have lost your log data sets
	Alternative site recovery
	Reinitializing MQSeries
	Reinitializing a queue manager that is not in a queue-sharinggroup
	Reinitializing queue managers in a queue-sharing group

	Chapter 13. Using the OS/390 Automatic Restart Manager(ARM)
	What is the ARM?
	ARM couple data sets
	ARM policies
	Defining an ARM policy
	Activating an ARM policy
	Registering with ARM

	Using ARM in an MQSeries network
	Restarting on a different OS/390 image with LU 6.2
	Restarting on a different OS/390 image with TCP/IP
	When using clustering
	When connecting to a queue-sharing group

	Chapter 14. Recovering units of work manually
	Displaying connections and threads
	Active threads
	In-doubt threads

	Recovering CICS units of recovery manually
	What happens when the CICS adapter restarts
	How to resolve CICS units of recovery manually

	Recovering IMS units of recovery manually
	What happens when the IMS adapter restarts
	How to resolve IMS units of recovery manually
	Recovery procedure

	Recovering RRS units of recovery manually
	Recovering units of recovery on another queue manager in thequeue-sharing group

	Chapter 15. Example recovery scenarios
	Shared queue problems
	Queue is both private and shared

	Active log problems
	Dual logging is lost
	Active log stopped
	One or both copies of the active log data set are damaged
	Write I/O errors on an active log data set
	I/O errors occur while reading the active log
	Replacing the data set

	Active log is becoming full or is full

	Archive log problems
	Allocation problems
	Off-load task terminated abnormally
	Insufficient DASD space to complete off-load processing
	Read I/O errors on the archive data set while MQSeries isrestarting

	BSDS problems
	Error occurs while opening the BSDS
	Log content does not agree with the BSDS information
	Both copies of the BSDS are damaged
	Unequal time stamps
	Out of synchronization
	I/O error

	Page set problems
	Page set I/O errors
	Page set full

	Coupling Facility and DB2 problems
	Storage medium full
	A DB2 system fails
	A DB2 data-sharing group fails
	DB2 and the Coupling Facility fail

	Problems with long-running units of work
	Old unit of work found during restart

	IMS-related problems
	IMS is unable to connect to MQSeries
	IMS application problem
	IMS is not operational

	Hardware problems

	Part 6. Using the MQSeries Utilities
	Chapter 16. Using the MQSeries utilities
	How to read syntax diagrams

	Chapter 17. MQSeries utility program (CSQUTIL)
	Invoking the MQSeries utility program
	PARM parameters

	Monitoring the progress of the MQSeries utility program
	Formatting page sets (FORMAT)
	Expanding a page set (COPYPAGE)
	Copying a page set and resetting the log (RESETPAGE)
	Issuing commands to MQSeries (COMMAND)
	Producing a list of MQSeries define commands (SDEFS)
	Copying queues into a data set while the queue manager is running(COPY)
	Copying queues into a data set while the queue manager is notrunning (SCOPY)
	Emptying a queue of all messages (EMPTY)
	Restoring messages from a data set to a queue (LOAD)

	Chapter 18. The change log inventory utility (CSQJU003)
	Invoking the CSQJU003 utility
	Data definition (DD) statements
	Multiple statement operation

	Adding information about a data set to the BSDS (NEWLOG)
	Deleting information about a data set from the BSDS (DELETE)
	Supplying a password for archive log data sets (ARCHIVE)
	Controlling the next restart (CRESTART)
	Setting checkpoint records (CHECKPT)
	Updating the highest written log RBA (HIGHRBA)

	Chapter 19. The print log map utility (CSQJU004)
	Invoking the CSQJU004 utility
	Data definition statements

	Chapter 20. The log print utility (CSQ1LOGP)
	Invoking the CSQ1LOGP utility
	Input control parameters
	Output

	Chapter 21. The queue-sharing group utility (CSQ5PQSG)
	Invoking the queue-sharing group utility
	Data definition statements

	Keywords and parameters
	Example

	Chapter 22. The dead-letter queue handler utility (CSQUDLQH)
	Invoking the DLQ handler
	Data definition statements
	Sample JCL

	The DLQ handler rules table
	Control data
	Rules (patterns and actions)
	The pattern-matching keywords
	The action keywords

	Rules table conventions

	Processing the rules table
	Ensuring that all DLQ messages are processed

	An example DLQ handler rules table

	Part 7. Appendixes
	Appendix A. User messages on start-up
	Appendix B. Notices
	Programming interface information
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	HTML format
	Portable Document Format (PDF)
	BookManager® format
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications
	OS/390
	CICS Transaction Server forOS/390
	CICS for MVS/ESA Version 4
	DB2
	IMS
	DFSMS/MVS

	Index
	Sending your comments to IBM

