
MQSeries®

Administration Interface
Programming Guide and Reference

SC34-5390-01

IBM

MQSeries®

Administration Interface
Programming Guide and Reference

SC34-5390-01

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 121.

Second edition (March 2000)

This edition applies to the following products:
v MQSeries for AIX® V5.1
v MQSeries for AS/400® V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2® Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT® V5.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

Contents

Figures v

Tables vii

About this book ix
Who this book is for ix
What you need to know to understand this book . . ix
How to use this book ix

Appearance of text in this book ix

Summary of changes xi
Changes for this edition (SC34-5390-01) xi

Chapter 1. Introduction to the MQSeries
Administration Interface (MQAI) 1
MQAI concepts and terminology 1
Use of the MQAI 2
How do I use the MQAI? 2

Overview 3
Building your MQAI application. 4

Chapter 2. Using data bags 5
Types of data bag. 5
Creating and deleting data bags 5

Deleting data bags 6
Types of data item 6
Adding data items to bags. 6

Adding an inquiry command to a bag 7
Changing information within a bag. 8
Counting data items 8
Deleting data items 9

Deleting data items from a bag using the
mqDeleteItem call 9
Clearing a bag using the mqClearBag call . . . 10
Truncating a bag using the mqTruncateBag call 10

Inquiring within data bags 10
System items 11

Chapter 3. Configuring MQSeries using
mqExecute 13
Sending administration commands to the command
server 13

Example code 14
Hints and tips for configuring MQSeries. 15

Chapter 4. Exchanging data between
applications 17
Converting bags and buffers. 17
Putting and receiving data bags 17

Sending PCF messages to a specified queue . . 18
Receiving PCF messages from a specified queue 18

Chapter 5. MQAI reference 19

mqAddInquiry 20
Syntax 20
Parameters 20
Usage notes 20
C language invocation 21
Visual Basic invocation 21
Supported INQUIRE command codes 21

mqAddInteger 22
Syntax 22
Parameters 22
Usage notes 23
C language invocation 23
Visual Basic invocation 23

mqAddString 24
Syntax 24
Parameters 24
Usage notes 25
C language invocation 25
Visual Basic invocation 25

mqBagToBuffer 27
Syntax 27
Parameters 27
Usage notes 28
C language invocation 28
Visual Basic invocation 28

mqBufferToBag 30
Syntax 30
Parameters 30
Usage notes 31
C language invocation 31
Visual Basic invocation 31

mqClearBag 32
Syntax 32
Parameters 32
Usage notes 32
C language invocation 32
Visual Basic invocation 32

mqCountItems 33
Syntax 33
Parameters 33
Usage notes 34
C language invocation 34
Visual Basic invocation 34

mqCreateBag 35
Syntax 35
Parameters 35
Usage notes 38
C language invocation 38
Visual Basic invocation 38

mqDeleteBag 39
Syntax 39
Parameters 39
Usage notes 39
C language invocation 39
Visual Basic invocation 40

mqDeleteItem 41

© Copyright IBM Corp. 1999, 2000 iii

||
||

Syntax 41
Parameters 41
Usage notes 42
C language invocation 43
Visual Basic invocation 43

mqExecute. 44
Syntax 44
Parameters 44
Usage notes 46
C language invocation 47
Visual Basic invocation 47

mqGetBag 48
Syntax 48
Parameters 48
Usage notes 49
C language invocation 50
Visual Basic invocation 50

mqInquireBag 51
Syntax 51
Parameters 51
C language invocation 53
Visual Basic invocation 53

mqInquireInteger 54
Syntax 54
Parameters 54
C language invocation 56
Visual Basic invocation 56

mqInquireItemInfo 57
Syntax 57
Parameters 57
C language invocation 59
Visual Basic invocation 59

mqInquireString 60
Syntax 60
Parameters 60
C language invocation 62
Visual Basic invocation 62

mqPad 63
Syntax 63
Parameters 63
Usage notes 63
C language invocation 64

mqPutBag 65
Syntax 65
Parameters 65
C language invocation 66
Visual Basic invocation 66

mqSetInteger 67
Syntax 67
Parameters 67
C language invocation 69
Visual Basic invocation 69

mqSetString 70
Syntax 70
Parameters 70
Usage notes 72
C language invocation 72
Visual Basic invocation 72

mqTrim. 73

Syntax 73
Parameters 73
Usage notes 73
C language invocation 74

mqTruncateBag 75
Syntax 75
Parameters 75
Usage notes 75
C language invocation 76
Visual Basic invocation 76

Chapter 6. Examples of using the MQAI 77
Creating a local queue (amqsaicq.c) 77
Inquiring about queues and printing information
(amqsailq.c) 83
Displaying events using an event monitor
(amqsaiem.c) 89

Chapter 7. Advanced topics 97
Indexing 97
Data conversion 98
Use of the message descriptor 99

Appendix A. Return codes 101
Completion codes 101
Reason codes 101

Appendix B. Constants in C 113
List of constants 113
Elementary datatypes in C 115

Appendix C. Header files 117

Appendix D. Selectors 119
User selectors 119
System selectors 119

Appendix E. Notices 121
Trademarks 122

Glossary of terms and abbreviations 125

Bibliography 137
MQSeries cross-platform publications 137
MQSeries platform-specific publications 139
Softcopy books 140

BookManager format 140
HTML format 140
Portable Document Format (PDF) 140
PostScript format 140
Windows Help format 140

MQSeries information available on the Internet . . 140

Index 141

Sending your comments to IBM . . . 145

iv MQSeries Administration Interface Programming Guide and Reference

Figures

1. Hierarchy of MQAI concepts 1
2. How the MQAI administers MQSeries 2
3. Adding data items 6
4. Modifying a single data item 8
5. Modifying all data items 8
6. Deleting a single data item 9
7. Deleting all data items 9
8. Truncating a bag 10
9. Nesting 13

10. Using mqExecute to create a local queue 14

11. Using mqExecute to inquire about queue
attributes 15

12. Converting bags to PCF messages 17
13. Converting PCF messages to bag form . . . 17
14. AMQSAICQ.C: Creating a local queue . . . 77
15. AMQSAILQ.C: Inquiring on queues and

printing information 83
16. AMQSAIEM.C: Displaying events 89
17. Indexing 97

© Copyright IBM Corp. 1999, 2000 v

vi MQSeries Administration Interface Programming Guide and Reference

Tables

1. CCSID processing 98
2. PCF command type 99
3. Format and MsgType parameters of the

MQMD 99

4. Message descriptor values 100
5. Header files 117

© Copyright IBM Corp. 1999, 2000 vii

viii MQSeries Administration Interface Programming Guide and Reference

About this book

This book describes the administration interface for IBM® MQSeries. This part of
the product is referred to as the MQSeries Administration Interface (MQAI).

The MQAI is a programming interface that simplifies the use of PCF messages to
configure MQSeries. It is supplied as part of the following products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

Who this book is for
The information in this book is intended for system and application programmers
who want to administer MQSeries.

What you need to know to understand this book
To understand this book, you must have some knowledge of MQSeries and know
how to write programs in the C programming language or in Visual Basic for
Windows NT. An understanding of how to use Programmable Command Formats
(PCFs) is also useful. For more information about PCFs, see the MQSeries
Programmable System Management book.

How to use this book
The first four chapters introduce the Message Queuing Adminstration Interface
and tell you how to use it.

“Chapter 5. MQAI reference” on page 19 contains the reference information.

“Chapter 6. Examples of using the MQAI” on page 77 provides some example
programs.

“Chapter 7. Advanced topics” on page 97 describes indexing, data conversion, and
the message descriptor.

The appendixes list return codes, MQAI constants, header files, and user and
system selectors.

There are a glossary and bibliography after the appendixes.

Appearance of text in this book
This book uses the following type style:

CompCode
Example of the name of a parameter of a call, or the attribute of an object

© Copyright IBM Corp. 1999, 2000 ix

|

How to use this book

x MQSeries Administration Interface Programming Guide and Reference

Summary of changes

This section describes changes to this edition of the MQSeries Administration
Interface Programming Guide and Reference. Changes since the previous edition of the
book are marked by vertical lines to the left of the changes.

Changes for this edition (SC34-5390-01)
There are no technical changes in this edition. The only change is that MQSeries
for AS/400 joins the other Version 5.1 products in supporting the MQAI.

© Copyright IBM Corp. 1999, 2000 xi

|

|

|
|
|

|
|

|
|

Changes

xii MQSeries Administration Interface Programming Guide and Reference

Chapter 1. Introduction to the MQSeries Administration
Interface (MQAI)

This chapter describes:
v The main MQSeries Administration Interface (MQAI) concepts and terminology
v When the MQAI can be used
v How to use the MQAI

MQAI concepts and terminology
The MQAI is a programming interface to MQSeries, using the C language and also
Visual Basic for Windows NT. It performs administration tasks on an MQSeries
queue manager using data bags. Data bags allow you to handle properties (or
parameters) of objects in a way that is easier than using the other administration
interface, Programmable Command Formats (PCFs). The MQAI offers easier
manipulation of PCFs than using the MQGET and MQPUT calls. For more
information about data bags, see “Chapter 2. Using data bags” on page 5. For more
information about PCFs, see the MQSeries Programmable System Management book.

The data bag contains zero or more data items. These are ordered within the bag as
they are placed into the bag. This is called the insertion order. Each data item
contains a selector that identifies the data item and a value of that data item that
can be either an integer, a string, or a handle of another bag.

There are two types of selector; user selectors and system selectors. These are
described in “Appendix D. Selectors” on page 119. The selectors are usually unique,
but it is possible to have multiple values for the same selector. In this case, an
index identifies the particular occurrence of selector that is required. Indexes are
described in “Indexing” on page 97.

A hierarchy of the above concepts is shown in Figure 1.

of type of type

Data
valueSelector

SystemUser String Bag handleInteger

Data
bag

Data
item

contains

contains
zero or more

Figure 1. Hierarchy of MQAI concepts

© Copyright IBM Corp. 1999, 2000 1

Use of the MQAI
You can use the MQAI to:.
v Implement self-administering applications and administration tools. For

example, the Active Directory Services provided on Windows NT Version 5 uses
the MQAI. For more information about the Active Directory Service Interface,
see the MQSeries for Windows NT Using the Component Object Model Interface
book.

v Simplify the use of PCF messages. The MQAI is an easy way to administer
MQSeries; you do not have to write your own PCF messages and thus avoid the
problems associated with complex data structures.

v Handle error conditions more easily. It is difficult to get return codes back from
the MQSeries commands (MQSC), but the MQAI makes it easier for the program
to handle error conditions.

How do I use the MQAI?

SYSTEM.ADMIN.COMMAND.QUEUE

MQAI

Command server

Queue Manager

configures

PCF
message

response
messages

reply Q

generates

uses

Program Application

returns

Figure 2. How the MQAI administers MQSeries

Use of the MQAI

2 MQSeries Administration Interface Programming Guide and Reference

The MQAI provides easier programming access to PCF messages. To pass
parameters in programs that are written using MQI calls, the PCF message must
contain the command and details of the string or integer data. To do this, several
statements are needed in your program for every structure, and memory space
must be allocated.

On the other hand, programs written using the MQAI pass parameters into the
data bag and only one statement is required for each structure. The data bag
removes the need for the programmer to handle arrays and allocate storage, and
provides some isolation from the details of PCF.

The MQAI administers MQSeries by sending PCF messages to the command
server and waiting for a response as shown in Figure 2 on page 2.

Overview
The following instructions give a brief overview of 1) what you do with the MQAI,
and 2) how you use the MQAI. Further details are contained in the rest of this
book.

To use the MQAI to administer MQSeries:
1. Decide on the task you want to carry out (for example, Change Queue).
2. Use the MQSeries Programmable System Management book as a reference to the

commands and responses sent between an MQSeries systems management
application program and an MQSeries queue manager. For example, look up
the Change Queue command in the MQSeries Programmable System Management
book.

3. Choose the values of the selectors for the required parameters and any optional
parameters that you want to set.

4. Create a data bag using the mqCreateBag call and enter values for each of these
selectors using the mqAddInteger, mqAddString, and mqAddInquiry calls. This
is described in “Chapter 2. Using data bags” on page 5.

5. Ensure the command server is running.
6. Using the mqExecute call, send the message to the command server and wait

for a response. This is described in “Chapter 3. Configuring MQSeries using
mqExecute” on page 13.

To use the MQAI to exchange data between applications:
v The sender must:

1. Create a data bag intended to send the data using mqCreateBag. See
“Creating and deleting data bags” on page 5.

2. Add the data to be sent in the bag using mqAddInteger or mqAddString. See
“Adding data items to bags” on page 6.

3. Use the mqPutBag call to convert the data in the bag into a PCF message
and put the message onto the required queue. See “Putting and receiving
data bags” on page 17.

v The receiver must:
1. Create a data bag intended to receive the data using mqCreateBag. See

“Creating and deleting data bags” on page 5.
2. Use the mqGetBag call to get the PCF message from the queue and recreate a

bag from the PCF message. See “Putting and receiving data bags” on
page 17.

Use of the MQAI

Chapter 1. Introduction to the MQSeries Administration Interface (MQAI) 3

Using the MQAI is discussed in more detail in the chapters that follow.

Building your MQAI application
To build your application using the MQAI, you link to the same libraries as you do
for MQSeries. For information on how to build your MQSeries applications, see the
MQSeries Application Programming Guide.

Building your application

4 MQSeries Administration Interface Programming Guide and Reference

Chapter 2. Using data bags

A data bag is a means of handling properties (or parameters) of objects using the
MQAI. This chapter discusses the configuration of data bags. It describes:
v The different types of bag and their uses
v How to create and delete data bags
v Types of data item
v How to add data items to data bags
v How to change information within a data bag
v How to count data items within a data bag
v How to delete data items
v How to inquire within data bags
v System items

Types of data bag
You can choose the type of data bag that you want to create depending on the task
that you wish to perform:

user bag
A simple bag used for user data.

administration bag
A bag created for data used to administer MQSeries objects by sending
administration messages to a command server. The administration bag
automatically implies certain options as described in “Creating and
deleting data bags”.

command bag
A bag also created for commands for administering MQSeries objects.
However, unlike the administration bag, the command bag does not
automatically imply certain options although these options are available.
Again, these options are discussed in “Creating and deleting data bags”.

In addition, the system bag is created by the MQAI when a reply message is
returned from the command server and placed into a user’s output bag. A system
bag cannot be modified by the user.

Creating and deleting data bags
To use the MQAI, you first create a data bag using the mqCreateBag call. As input
to this call, you supply one or more options to control the creation of the bag.

The Options parameter of the MQCreateBag call lets you choose whether to create
a user bag, a command bag, or an administration bag.

To create a user bag or a command bag, you can choose one or more further
options to:
v Use the list form when there are two or more adjacent occurrences of the same

selector in a bag.
v Reorder the data items as they are added to a PCF message to ensure that the

parameters are in their correct order.
v Check the values of user selectors for items that you add to the bag.

© Copyright IBM Corp. 1999, 2000 5

Administration bags automatically imply these options.

A data bag is identified by its handle. The bag handle is returned from
mqCreateBag and must be supplied on all other calls that use the data bag.

For a full description of the mqCreateBag call, see “mqCreateBag” on page 35.

Deleting data bags
Any data bag that is created by the user must also be deleted using the
mqDeleteBag call. For example, if a bag is created in the user code, it must also be
deleted in the user code.

System bags are created and deleted automatically by the MQAI. For more
information about this, see “Sending administration commands to the command
server” on page 13. User code cannot delete a system bag.

For a full description of the mqDeleteBag call, see “mqDeleteBag” on page 39.

Types of data item
Here are the types of data item available within the MQAI:
v Integer
v Character-string
v Bag handle

When you have created a data bag, you can populate it with integer or
character-string items. You can inquire about all three types of item.

Note: You cannot insert bag handles.

These data items can be user or system items. User items contain user data such as
attributes of objects that are being administered. System items should be used for
more control over the messages generated: for example, the generation of message
headers. For more information about system items, see “System items” on page 11.

Adding data items to bags
The MQAI lets you add integer items and character-string items to bags and this is
shown in Figure 3. The items are identified by a selector. Usually one selector
identifies one item only, but this is not always the case. If a data item with the
specified selector is already present in the bag, an additional instance of that
selector is added to the end of the bag.

data
item

5

data
item

0

data
item

1

data
item

4.

data bag

add

Figure 3. Adding data items

Data bags

6 MQSeries Administration Interface Programming Guide and Reference

Add data items to a bag is using the mqAdd* calls. To add integer items, use the
mqAddInteger call as described in “mqAddInteger” on page 22. To add
character-string items, use the mqAddString call as described in “mqAddString” on
page 24.

Adding an inquiry command to a bag
The mqAddInquiry call is used to add an inquiry command to a bag. The call is
specifically for administration purposes, so it can be used with administration bags
only. It lets you specify the selectors of attributes on which you want to inquire
from MQSeries.

For a full description of the mqAddInquiry call, see “mqAddInquiry” on page 20.

Filtering and querying data items
When using the MQAI to inquire about the attributes of MQSeries objects, you can
control the data that is returned to your program in two ways.
1. You can filter the data that is returned using the mqAddInteger and

mqAddString calls. This approach lets you specify a Selector and ItemValue
pair, for example:
mqAddInteger(inputbag, MQIA_Q_TYPE, MQQT_LOCAL)

This example specifies that the queue type (Selector) must be local (ItemValue)
and this specification must match the attributes of the object (in this case, a
queue) about which you are inquiring.

Other attributes that can be filtered correspond to the PCF Inquire* commands
that can be found in the MQSeries Programmable System Management book. For
example, to inquire about the attributes of a channel, see the MQSeries
Programmable System Management book. The “Required parameters” and
“Optional parameters” of the Inquire Channel command identify the selectors
that you can use for filtering.

2. You can query particular attributes of an object using the mqAddInquiry call.
This specifies the selector in which you are interested. If you do not specify the
selector, all attributes of the object are returned.

Here is an example of filtering and querying the attributes of a queue:
/* Request information about all queues */
mqAddString(adminbag, MQCA_Q_NAME, “*”)

/* Filter attributes so that local queues only are returned */
mqAddInteger(adminbag, MQIA_Q_TYPE, MQQT_LOCAL)

/* Query the names and current depths of the local queues */
mqAddInquiry(adminbag, MQCA_Q_NAME)
mqAddInquiry(adminbag, MQIA_CURRENT_Q_DEPTH)

/* Send inquiry to the command server and wait for reply */
mqExecute(MQCMD_INQUIRE_Q, ...)

For more examples of filtering and querying data items, see “Chapter 6. Examples
of using the MQAI” on page 77.

Adding data items

Chapter 2. Using data bags 7

Changing information within a bag
The MQAI lets you change information within a bag using the mqSet* calls. You
can:
1. Modify data items within a bag. The index allows an individual instance of a

parameter to be replaced by identifying the occurrence of the item to be
modified (see Figure 4).

2. Delete all existing occurrences of the specified selector and add a new
occurrence to the end of the bag. (See Figure 5.) A special index value allows
all instances of a parameter to be replaced.

Note: The index preserves the insertion order within the bag but can affect the
indices of other data items.

The mqSetInteger call lets you modify integer items within a bag and the
mqSetString call lets you modify character-string items. Alternatively, you can use
these calls to delete all existing occurrences of the specified selector and add a new
occurrence at the end of the bag. The data item can be a user item or a system
item.

For a full description of these calls, see “mqSetInteger” on page 67 and
“mqSetString” on page 70.

Counting data items
The mqCountItems call counts the number of user items, system items, or both,
that are stored in a data bag, and returns this number. For example,
mqCountItems(Bag, 7, ...), returns the number of items in the bag with a selector
of 7. It can count items by individual selector, by user selectors, by system
selectors, or by all selectors.

data
item

0

data
item

1

data
item

4.

data bag

INDEX

Figure 4. Modifying a single data item

data
item

5

data
item

0

data
item

1

data
item

4.

data bag

addINDEX

Figure 5. Modifying all data items

Changing information within a bag

8 MQSeries Administration Interface Programming Guide and Reference

Note: This call counts the number of data items, not the number of unique
selectors in the bag. A selector can occur multiple times, so there may be
fewer unique selectors in the bag than data items.

For a full description of the mqCountItems call, see “mqCountItems” on page 33.

Deleting data items
You can delete items from bags in a number of ways. You can:
v Remove one or more user items from a bag,
v Delete all user items from a bag, that is, clear a bag,
v Delete user items from the end of a bag, that is, truncate a bag.

Deleting data items from a bag using the mqDeleteItem call
The mqDeleteItem call removes one or more user items from a bag. The index is
used to delete either:
1. A single occurrence of the specified selector. (See Figure 6.)

or
2. All occurrences of the specified selector. (See Figure 7.)

Note: The index preserves the insertion order within the bag but can affect the
indices of other data items. For example, the mqDeleteItem call does not
preserve the index values of the data items that follow the deleted item
because the indices are reorganized to fill the gap that remains from the
deleted item.

For a full description of the mqDeleteItem call, see “mqDeleteItem” on page 41.

data
item

0

data
item

1

data
item

4.

data bag

INDEX

Figure 6. Deleting a single data item

.

data bag

INDEX

data
item

0

selector A

data
item

1

selector B

data
item

3

selector B

data
item

4

selector C

Figure 7. Deleting all data items

Counting data items

Chapter 2. Using data bags 9

Clearing a bag using the mqClearBag call
The mqClearBag call removes all user items from a user bag and resets system
items to their initial values. System bags contained within the bag are also deleted.

For a full description of the mqClearBag call, see “mqClearBag” on page 32.

Truncating a bag using the mqTruncateBag call
The mqTruncateBag call reduces the number of user items in a user bag by
deleting the items from the end of the bag, starting with the most recently added
item. For example, it can be used when using the same header information to
generate more than one message.

For a full description of the mqTruncateBag call, see “mqTruncateBag” on page 75.

Inquiring within data bags
You can inquire about:
v The value of an integer item using the mqInquireInteger call. See

“mqInquireInteger” on page 54.
v The value of a character-string item using the mqInquireString call. See

“mqInquireString” on page 60.
v The value of a bag handle using the mqInquireBag call. See “mqInquireBag” on

page 51.

You can also inquire about the type (integer, character string, or bag handle) of a
specific item using the mqInquireItemInfo call. See “mqInquireItemInfo” on
page 57.

data
item

0

data
item

1

data
item

4.

data bag

TRUNCATION

Figure 8. Truncating a bag

Deleting data items

10 MQSeries Administration Interface Programming Guide and Reference

System items
System items can be used for:
v The generation of PCF headers. System items can control the PCF command

identifier, control options, message sequence number, and command type.
v Data conversion. System items handle the character-set identifier for the

character-string items in the bag.

Like all data items, system items consist of a selector and a value. For information
about these selectors and what they are for, see “Appendix D. Selectors” on
page 119.

System items are unique. One or more system items can be identified by a system
selector. There is only one occurrence of each system selector.

Most system items can be modified (see “Changing information within a bag” on
page 8), but the bag-creation options cannot be changed by the user. You cannot
delete system items. (See “Deleting data items” on page 9.)

Inquiring within bags

Chapter 2. Using data bags 11

Changes

12 MQSeries Administration Interface Programming Guide and Reference

Chapter 3. Configuring MQSeries using mqExecute

After you have created and populated your data bag, you can send an
administration command message to the command server of a queue manager and
wait for any response messages. The easiest way to do this is by using the
mqExecute call. This handles the exchange with the command server and returns
responses in a bag.

Sending administration commands to the command server
The mqExecute call sends an administration command message as a nonpersistent
message and waits for any responses. Responses are returned in a response bag.
These might contain information about attributes relating to several MQSeries
objects or a series of PCF error response messages, for example. Therefore, the
response bag could contain a return code only or it could contain nested bags.

Response messages are placed into system bags that are created by the system. For
example, for inquiries about the names of objects, a system bag is created to hold
those object names and the bag is inserted into the user bag. Handles to these bags
are then inserted into the response bag and the nested bag can be accessed by the
selector MQHA_BAG_HANDLE. The system bag stays in storage, if it is not
deleted, until the response bag is deleted.

The concept of nesting is shown in Figure 9.

As input to the mqExecute call, you must supply:
v An MQI connection handle.
v The command to be executed. This should be one of the MQCMD_* values.

Note: If this value is not recognized by the MQAI, the value is still accepted.
However, if the mqAddInquiry call was used to insert values into the bag,
this parameter must be an INQUIRE command recognized by the MQAI.
That is, the parameter should be of the form MQCMD_INQUIRE_*.

v Optionally, a handle of the bag containing options that control the processing of
the call. This is also where you can specify the maximum time in milliseconds
that the MQAI should wait for each reply message.

response
message

user/response bagsystem bag

system bag

NESTED

bag
handle

Figure 9. Nesting

© Copyright IBM Corp. 1999, 2000 13

v A handle of the administration bag that contains details of the administration
command to be issued.

v A handle of the response bag that receives the reply messages.

The following are optional:
v An object handle of the queue where the administration command is to be

placed.
If no object handle is specified, the administration command is placed on the
SYSTEM.ADMIN.COMMAND.QUEUE belonging to the currently connected
queue manager. This is the default.

v An object handle of the queue where reply messages are to be placed.
You can choose to place the reply messages on a dynamic queue that is created
automatically by the MQAI. The queue created exists for the duration of the call
only, and is deleted by the MQAI on exit from the mqExecute call.

Example code
Here are some example uses of the mqExecute call.

The example shown in figure 10 creates a local queue (with a maximum message
length of 100 bytes) on a queue manager:

The example shown in figure 11 inquires about all attributes of a particular queue.
The mqAddInquiry call identifies all MQSeries object attributes of a queue to be
returned by the Inquire parameter on mqExecute.

/* Create a bag for the data you want in your PCF message */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagRequest)

/* Create a bag to be filled with the response from the command server */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagResponse)

/* Create a queue */
/* Supply queue name */
mqAddString(hbagRequest, MQCA_Q_NAME, "QBERT")

/* Supply queue type */
mqAddString(hbagRequest, MQIA_Q_TYPE, MQQT_LOCAL)

/* Maximum message length is an optional parameter */
mqAddString(hbagRequest, MQIA_MAX_MSG_LENGTH, 100)

/* Ask the command server to create the queue */
mqExecute(MQCMD_CREATE_Q, hbagRequest, hbagResponse)

/* Tidy up memory allocated */
mqDeleteBag(hbagRequest)
mqDeleteBag(hbagResponse)

Figure 10. Using mqExecute to create a local queue

Sending administration commands

14 MQSeries Administration Interface Programming Guide and Reference

Using mqExecute is the simplest way of administering MQSeries, but lower-level
calls, mqBagToBuffer and mqBufferToBag, can be used. For more information
about the use of these calls, see “Chapter 4. Exchanging data between applications”
on page 17.

For sample programs, see “Chapter 6. Examples of using the MQAI” on page 77.

Hints and tips for configuring MQSeries
The MQAI uses PCF messages to send administration commands to the command
server rather than dealing directly with the command server itself. Here are some
tips for configuring MQSeries using the MQAI:
v Character strings in MQSeries are blank padded to a fixed length. Using C,

null-terminated strings can normally be supplied as input parameters to
MQSeries’ programming interfaces.

v To clear the value of a string attribute, set it to a single blank rather than an
empty string.

v It is recommended that you know in advance the attributes that you want to
change and that you inquire on just those attributes. This is because the number
of attributes that can be returned by the Inquire Queue (Response) command
(see the MQSeries Programmable System Management book.) is higher than the
number of attributes that can be changed using the Change Queue command.
(See the MQSeries Programmable System Management book.) Therefore, you are not
recommended to attempt to modify all the attributes that you inquire.

v If an MQAI call fails, some detail of the failure is returned to the response bag.
Further detail can then be found in a nested bag that can be accessed by the
selector MQHA_BAG_HANDLE. For example, if an mqExecute call fails with a
reason code of MQRCCF_COMMAND_FAILED, this information is returned in
the response bag. However, a possible reason for this reason code is that a
selector specified was not valid for the type of command message and this detail
of information is found in a nested bag that can be accessed via a bag handle.

/* Create a bag for the data you want in your PCF message */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagRequest)

/* Create a bag to be filled with the response from the command server */
mqCreateBag(MQCBO_ADMIN_BAG, &hbagResponse)

/* Inquire about a queue by supplying its name */
/* (other parameters are optional) */
mqAddString(hbagRequest, MQCA_Q_NAME, "QBERT")

/* Request the command server to inquire about the queue */
mqExecute(MQCMD_INQUIRE_Q, hbagRequest, hbagResponse)

/* If it worked, the attributes of the queue are returned */
/* in a system bag within the response bag */
mqInquireBag(hbagResponse, MQHA_BAG_HANDLE, 0, &hbagAttributes)

/* Inquire the name of the queue and its current depth */
mqInquireString(hbagAttributes, MQCA_Q_NAME, &stringAttribute)
mqInquireString(hbagAttributes, MQIA_CURRENT_Q_DEPTH, &integerAttribute)

/* Tidy up memory allocated */
mqDeleteBag(hbagRequest)
mqDeleteBag(hbagResponse)

Figure 11. Using mqExecute to inquire about queue attributes

Sending administration commands

Chapter 3. Configuring MQSeries using mqExecute 15

The following diagram shows this:

MQIASY_COMP_CODE MQCC_FAILDED
MQIASY_REASON MQRCCF_COMMAND_FAILED

MQHA_BAG_HANDLE

MQHA_BAG_HANDLE

Response bag

MQIASY_COMP_CODE MQCC_FAILED
MQIASY_REASON MQRCCF_COMMAND_FAILED

MQIACF_PARAMETER_ID <invalid selector>

MQIASY_MSG_SEQ_NUMBER 1

System bag corresponding to first response message
returned from the command server

MQIASY_COMP_CODE MQCC_FAILED
MQIASY_REASON MQRCCF_COMMAND_FAILED

MQIASY_CONTROL MQCFC_LAST
MQIASY_MSG_SEQ_NIMBER 2

System bag corresponding to final (summary) message
returned from the command server

nested
bag

nested
bag

Programming hints and tips

16 MQSeries Administration Interface Programming Guide and Reference

Chapter 4. Exchanging data between applications

The MQAI can also be used to exchange data between applications. The
application data is sent in PCF format and packed and unpacked by the MQAI. If
your message data consists of integers and character strings, you can use the
MQAI to take advantage of MQSeries’ built-in data conversion for PCF data. This
avoids the need to write data-conversion exits. To exchange data, the sender must
first create the message and send it to the receiving application. Then, the receiver
must read the message and extract the data. This can be done in two ways:
1. Converting bags and buffers, that is, using the mqBagToBuffer and

mqBufferToBag calls.
2. Putting and getting bags, that is, using the mqPutBag and mqGetBag calls to

send and receive PCF messages.

Both of these options are described in this chapter.

Note: You cannot convert a bag containing nested bags into a message.

Converting bags and buffers
To send data between applications, firstly the message data is placed in a bag.
Then, the data in the bag is converted into a PCF message using the
mqBagToBuffer call. The PCF message is sent to the required queue using the
MQPUT call. This is shown in Figure 12. For a full description of the
mqBagToBuffer call, see “mqBagToBuffer” on page 27.

To receive data, the message is received into a buffer using the MQGET call. The
data in the buffer is then converted into a bag using the mqBufferToBag call,
providing the buffer contains a valid PCF message. This is shown in Figure 13. For
a full description of the mqBufferToBag call, see “mqBufferToBag” on page 30.

Putting and receiving data bags
Data can also be sent between applications by putting and getting data bags using
the mqPutBag and mqGetBag calls. This lets the MQAI handle the buffer rather
than the application. The mqPutBag call converts the contents of the specified bag
into a PCF message and sends the message to the specified queue and the

PCF
message

queue

PCF
message

buffer

message
data

bag

MQPUTmqBagToBuffer

Figure 12. Converting bags to PCF messages

PCF
message

queue

PCF
message

buffer

message
data

bag

mqBufferToBagMQGET

Figure 13. Converting PCF messages to bag form

© Copyright IBM Corp. 1999, 2000 17

mqGetBag call removes the message from the specified queue and converts it back
into a data bag. Therefore, the mqPutBag call is the equivalent of the
mqBagToBuffer call followed by MQPUT, and the mqGetBag is the equivalent of
the MQGET call followed by mqBufferToBag.

Note: If you choose to use the mqGetBag call, the PCF details within the message
must be correct; if they are not, an appropriate error results and the PCF
message is not returned.

Sending PCF messages to a specified queue
To send a message to a specified queue, the mqPutBag call converts the contents of
the specified bag into a PCF message and sends the message to the specified
queue. The contents of the bag are left unchanged after the call.

As input to this call, you must supply:
v An MQI connection handle.
v An object handle for the queue on which the message is to be placed.
v A message descriptor. For more information about the message descriptor, see

the MQSeries Application Programming Reference book.
v Put Message Options using the MQPMO structure. For more information about

the MQPMO structure, see the MQSeries Application Programming Reference.
v The handle of the bag to be converted to a message.

Note: If the bag contains an administration message and the mqAddInquiry call
was used to insert values into the bag, the value of the
MQIASY_COMMAND data item must be an INQUIRE command
recognized by the MQAI.

For a full description of the mqPutBag call, see “mqPutBag” on page 65.

Receiving PCF messages from a specified queue
To receive a message from a specified queue, the mqGetBag call gets a PCF
message from a specified queue and converts the message data into a data bag.

As input to this call, you must supply:
v An MQI connection handle.
v An object handle of the queue from which the message is to be read.
v A message descriptor. Within the MQMD structure, the Format parameter must

be MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF.

Note: If the message is received within a unit of work (that is, with the
MQGMO_SYNCPOINT option) and the message has an unsupported
format, the unit of work can be backed out. The message is then
reinstated on the queue and can be retrieved using the MQGET call
instead of the mqGetBag call. For more information about the message
descriptor, see the MQSeries Application Programming Reference.

v Get Message Options using the MQGMO structure. For more information about
the MQGMO structure, see the MQSeries Application Programming Reference.

v The handle of the bag to contain the converted message.

For a full description of the mqGetBag call, see “mqGetBag” on page 48.

Putting and getting data bags

18 MQSeries Administration Interface Programming Guide and Reference

Chapter 5. MQAI reference

This chapter contains reference information for the MQAI. There are three types of
call:
v Data-bag manipulation calls for configuring data bags:

– “mqAddInquiry” on page 20
– “mqAddInteger” on page 22
– “mqAddString” on page 24
– “mqClearBag” on page 32
– “mqCountItems” on page 33
– “mqCreateBag” on page 35
– “mqDeleteBag” on page 39
– “mqDeleteItem” on page 41
– “mqInquireBag” on page 51
– “mqInquireInteger” on page 54
– “mqInquireItemInfo” on page 57
– “mqInquireString” on page 60
– “mqSetInteger” on page 67
– “mqSetString” on page 70
– “mqTruncateBag” on page 75

v Command calls for sending and receiving administration commands and PCF
messages:
– “mqBagToBuffer” on page 27
– “mqBufferToBag” on page 30
– “mqExecute” on page 44
– “mqGetBag” on page 48
– “mqPutBag” on page 65

v Utility calls for handling blank-padded and null-terminated strings:
– “mqPad” on page 63
– “mqTrim” on page 73

These calls are described in alphabetical order in the following sections.

© Copyright IBM Corp. 1999, 2000 19

mqAddInquiry

Note: The mqAddInquiry call can be used with administration bags only; it is
specifically for administration purposes.

The mqAddInquiry call adds a selector to an administration bag. The selector
refers to an MQSeries object attribute that is to be returned by a PCF INQUIRE
command. The value of the Selector parameter specified on this call is added to
the end of the bag, as the value of a data item that has the selector value
MQIACF_INQUIRY.

Syntax

Parameters
Bag (MQHBAG) – input

Bag handle.

The bag must be an administration bag; that is, it must have been created with
the MQCBO_ADMIN_BAG option on the mqCreateBag call. If the bag was not
created this way, MQRC_BAG_WRONG_TYPE results.

Selector (MQLONG) – input
Selector of the MQSeries object attribute that is to be returned by the
appropriate INQUIRE administration command.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicate error conditions that can be returned from
the mqAddInquiry call:

MQRC_BAG_WRONG_TYPE
Wrong type of bag for intended use.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes
1. When the administration message is generated, the MQAI constructs an integer

list with the MQIACF_*_ATTRS or MQIACH_*_ATTRS selector that is
appropriate to the Command value specified on the mqExecute, mqPutBag, or
mqBagToBuffer call. It then adds the values of the attribute selectors specified
by the mqAddInquiry call.

mqAddInquiry (Bag, Selector, CompCode, Reason)

MQAI reference

20 MQSeries Administration Interface Programming Guide and Reference

2. If the Command value specified on the mqExecute, mqPutBag, or mqBagToBuffer
call is not recognized by the MQAI, MQRC_INQUIRY_COMMAND_ERROR
results. Instead of using the mqAddInquiry call, this can be overcome by using
the mqAddInteger call with the appropriate MQIACF_*_ATTRS or
MQIACH_*_ATTRS selector and the ItemValue parameter of the selector being
inquired.

C language invocation
mqAddInquiry (Bag, Selector, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqAddInquiry Bag, Selector, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

Supported INQUIRE command codes
v MQCMD_INQUIRE_Q_MGR
v MQCMD_INQUIRE_PROCESS
v MQCMD_INQUIRE_Q
v MQCMD_INQUIRE_CHANNEL
v MQCMD_INQUIRE_CHANNEL_STATUS
v MQCMD_INQUIRE_NAMELIST
v MQCMD_INQUIRE_NAMELIST_NAMES
v MQCMD_INQUIRE_CLUSTER_Q_MGR

For an example that demonstrates the use of supported INQUIRE command codes,
see “Inquiring about queues and printing information (amqsailq.c)” on page 83.

MQAI reference

Chapter 5. MQAI reference 21

mqAddInteger

The mqAddInteger call adds an integer item identified by a user selector to the
end of a specified bag.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to be modified.

This must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify identifies a system bag.

Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector) and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; if not, again MQRC_SELECTOR_OUT_OF_RANGE
results.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value of zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

ItemValue (MQLONG) – input
The integer value to be placed in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicate error conditions that can be returned from
the mqAddInteger call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

mqAddInteger (Bag, Selector, ItemValue, CompCode, Reason)

MQAI reference

22 MQSeries Administration Interface Programming Guide and Reference

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.

C language invocation
mqAddInteger (Bag, Selector, ItemValue, &CompCode, &Reason)

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG Item Value;/* Integer value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqAddInteger Bag, Selector, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemValue As Long 'Integer value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 23

mqAddString

The mqAddString call adds a character data item identified by a user selector to
the end of a specified bag.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to be modified.

This value must be the handle of a bag created by the user, not the handle of a
system bag. MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the value you
specify relates to a system bag.

Selector (MQLONG) – input
Selector identifying the item to be added to the bag.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQCA_FIRST
through MQCA_LAST. MQRC_SELECTOR_OUT_OF_RANGE results if it is
not in the correct range.

If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If the call is creating a second or later occurrence of a selector that is already in
the bag, the datatype of this occurrence must be the same as the datatype of
the first occurrence; MQRC_INCONSISTENT_ITEM_TYPE results if it is not.

BufferLength (MQLONG) – input
The length in bytes of the string contained in the Buffer parameter. The value
must be zero or greater, or the special value MQBL_NULL_TERMINATED:
v If MQBL_NULL_TERMINATED is specified, the string is delimited by the

first null encountered in the string. The null is not added to the bag as part
of the string.

v If MQBL_NULL_TERMINATED is not specified, BufferLength characters are
inserted into the bag, even if null characters are present. Nulls do not
delimit the string.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the character string.

The length is given by the BufferLength parameter. If zero is specified for
BufferLength, the null pointer can be specified for the address of the Buffer
parameter. In all other cases, a valid (nonnull) address must be specified for
the Buffer parameter.

CompCode (MQLONG) – output
Completion code.

mqAddString (Bag, Selector, BufferLength, Buffer, CompCode, Reason)

MQAI reference

24 MQSeries Administration Interface Programming Guide and Reference

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqAddString call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_CODED_CHAR_SET_ID_ERROR
Bag CCSID is MQCCSI_EMBEDDED.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of this occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes
1. If a data item with the specified selector is already present in the bag, an

additional instance of that selector is added to the end of the bag. The new
instance is not necessarily adjacent to the existing instance.

2. This call cannot be used to add a system selector to a bag.
3. The Coded Character Set ID associated with this string is copied from the

current CCSID of the bag.

C language invocation
mqAddString (hBag, Selector, BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG hBag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer /* Buffer containing item value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqAddString Bag, Selector, BufferLength, Buffer, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim BufferLength As Long 'Buffer length'

MQAI reference

Chapter 5. MQAI reference 25

Dim Buffer As Long 'Buffer containing item value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

26 MQSeries Administration Interface Programming Guide and Reference

mqBagToBuffer

The mqBagToBuffer call converts the bag into a PCF message in the supplied
buffer.

Syntax

Parameters
OptionsBag (MQHBAG) – input

Handle of the bag containing options that control the processing of the call.
This is a reserved parameter; the value must be MQHB_NONE.

DataBag (MQHBAG) – input
The handle of the bag to convert.

If the bag contains an administration message and mqAddInquiry was used to
insert values into the bag, the value of the MQIASY_COMMAND data item
must be an INQUIRE command that is recognized by the MQAI;
MQRC_INQUIRY_COMMAND_ERROR results if it is not.

If the bag contains nested bags, MQRC_NESTED_BAG_NOT_SUPPORTED
results.

BufferLength (MQLONG) – input
Length in bytes of the buffer supplied.

If the buffer is too small to accommodate the message generated,
MQRC_BUFFER_LENGTH_ERROR results.

Buffer (MQBYTE × BufferLength) – output
The buffer to hold the message.

DataLength (MQLONG) – output
The length in bytes of the buffer required to hold the entire bag. If the buffer is
not long enough, the contents of the buffer are undefined but the DataLength is
returned.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqBagToBuffer call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid or buffer too small. (Required length returned
in DataLength.)

MQRC_DATA_LENGTH_ERROR
DataLength parameter not valid (invalid parameter address).

mqBagToBuffer (OptionsBag, DataBag, BufferLength, Buffer, DataLength,
CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 27

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INQUIRY_COMMAND_ERROR
mqAddInquiry used with a command code that is not recognized as an
INQUIRE command.

MQRC_NESTED_BAG_NOT_SUPPORTED
Input data bag contains one or more nested bags.

MQRC_OPTIONS_ERROR
Options bag contains unsupported data items or a supported option
has an invalid value.

MQRC_PARAMETER_MISSING
An administration message requires a parameter that is not present in
the bag.

Note: This reason code occurs for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED
options only.

MQRC_SELECTOR_WRONG_TYPE
mqAddString or mqSetString was used to add the MQIACF_INQUIRY
selector to the bag.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

Usage notes
1. The PCF message is generated with an encoding of MQENC_NATIVE for the

numeric data.
2. The buffer that holds the message can be null if the BufferLength is zero. This

is useful if you use the mqBagToBuffer call to calculate the size of buffer
necessary to convert your bag.

C language invocation
mqBagToBuffer (OptionsBag, DataBag, BufferLength, Buffer, &DataLength,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG OptionsBag; /* Options bag handle */
MQHBAG DataBag; /* Data bag handle */
MQLONG BufferLength; /* Buffer length */
MQBYTE Buffer[n]; /* Buffer to contain PCF */
MQLONG DataLength; /* Length of PCF returned in buffer */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqBagToBuffer OptionsBag, DataBag, BufferLength, Buffer, DataLength,
CompCode, Reason

Declare the parameters as follows:
Dim OptionsBag As Long 'Options bag handle'
Dim DataBag As Long 'Data bag handle'
Dim BufferLength As Long 'Buffer length'

MQAI reference

28 MQSeries Administration Interface Programming Guide and Reference

Dim Buffer As Long 'Buffer to contain PCF'
Dim DataLength As Long 'Length of PCF returned in buffer'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 29

mqBufferToBag

The mqBufferToBag call converts the supplied buffer into bag form.

Syntax

Parameters
OptionsBag (MQHBAG) – input

Handle of the bag containing options that control the processing of the call.
This is a reserved parameter; the value must be MQHB_NONE.

BufferLength (MQLONG) – input
Length in bytes of the buffer.

Buffer (MQBYTE × BufferLength) – input
Pointer to the buffer containing the message to be converted.

Databag (MQHBAG) – input/output
Handle of the bag to receive the message. The MQAI performs an mqClearBag
call on the bag before placing the message in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqBufferToBag call:

MQRC_BAG_CONVERSION_ERROR
Data could not be converted into a bag. This indicates a problem with
the format of the data to be converted into a bag (for example, the
message is not a valid PCF).

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of second occurrence of selector differs from datatype of first
occurrence.

MQRC_OPTIONS_ERROR
Options bag contains unsupported data items, or a supported option
has a value that is not valid.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

mqBufferToBag (OptionsBag, BufferLength, Buffer, DataBag, CompCode, Reason)

MQAI reference

30 MQSeries Administration Interface Programming Guide and Reference

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes
The buffer must contain a valid PCF message. The encoding of numeric data in the
buffer must be MQENC_NATIVE.

The Coded Character Set ID of the bag is unchanged by this call.

C language invocation
mqBufferToBag (OptionsBag, BufferLength, Buffer, DataBag,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG OptionsBag; /* Options bag handle */
MQLONG BufferLength; /* Buffer length */
MQBYTE Buffer[n]; /* Buffer containing PCF */
MQHBAG DataBag; /* Data bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqBufferToBag OptionsBag, BufferLength, Buffer, DataBag,
CompCode, Reason

Declare the parameters as follows:
Dim OptionsBag As Long 'Options bag handle'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As Long 'Buffer containing PCF'
Dim DataBag As Long 'Data bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 31

mqClearBag

The mqClearBag call deletes all user items from the bag, and resets system items to
their initial values.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to be cleared. This must be the handle of a bag created by
the user, not the handle of a system bag.
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqClearBag call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes
1. If the bag contains system bags, they are also deleted.
2. The call cannot be used to clear system bags.

C language invocation
mqClearBag (Bag, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqClearBag Bag, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

mqClearBag (Bag, CompCode, Reason)

MQAI reference

32 MQSeries Administration Interface Programming Guide and Reference

mqCountItems

The mqCountItems call returns the number of occurrences of user items, system
items, or both, that are stored in a bag with the same specific selector.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag whose items are to be counted. This can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector of the data items to count.

If the selector is less than zero (a system selector), the selector must be one that
is supported by the MQAI. MQRC_SELECTOR_NOT_SUPPORTED results if it
is not.

If the specified selector is not present in the bag, the call succeeds and zero is
returned for ItemCount.

The following special values can be specified for Selector:

MQSEL_ALL_SELECTORS
All user and system items are to be counted.

MQSEL_ALL_USER_SELECTORS
All user items are to be counted; system items are excluded from the
count.

MQSEL_ALL_SYSTEM_SELECTORS
All system items are to be counted; user items are excluded from the
count.

ItemCount (MQLONG) – output
Number of items of the specified type in the bag (can be zero).

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqCountItems call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_ITEM_COUNT_ERROR
ItemCount parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

mqCountItems (Bag, Selector, ItemCount, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 33

Usage notes
This call counts the number of data items, not the number of unique selectors in
the bag. A selector can occur multiple times, so there may be fewer unique
selectors in the bag than data items.

C language invocation
mqCountItems (Bag, Selector, &ItemCount, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemCount; /* Number of items */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqCountItems Bag, Selector, ItemCount, CompCode, Reason

Declare the parameters as follows:
Dim Bag; As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemCount As Long 'Number of items'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

34 MQSeries Administration Interface Programming Guide and Reference

mqCreateBag

The mqCreateBag call creates a new bag.

Syntax

Parameters
Options (MQLONG) – input

Options for creation of the bag.

The following are valid:

MQCBO_ADMIN_BAG
Specifies that the bag is for administering MQSeries objects.
MQCBO_ADMIN_BAG automatically implies the
MQCBO_LIST_FORM_ALLOWED,
MQCBO_REORDER_AS_REQUIRED, and
MQCBO_CHECK_SELECTORS options.

Administration bags are created with the MQIASY_TYPE system item
set to MQCFT_COMMAND.

MQCBO_COMMAND_BAG
Specifies that the bag is a command bag. This is an alternative to the
administration bag (MQCBO_ADMIN_BAG) and
MQRC_OPTIONS_ERROR results if both are specified.

A command bag is processed in the same way as a user bag except
that the value of the MQIASY_TYPE system item is set to
MQCFT_COMMAND when the bag is created.

The command bag is also created for administering objects but they are
not used to send administration messages to a command server as an
administration bag is. The bag options assume the following default
values:
v MQCBO_LIST_FORM_INHIBITIED
v MQCBO_DO_NOT_REORDER
v MQCBO_DO_NOT_CHECK_SELECTORS

Therefore, the MQAI will not change the order of data items or create
lists within a message as with administration bags.

MQCBO_USER_BAG
Specifies that the bag is a user bag. This is the default bag-type option.
User bags can also be used for the administration of MQSeries objects,
but the MQCBO_LIST_FORM_ALLOWED and
MQCBO_REORDER_AS_REQUIRED options should be specified to
ensure correct generation of the administration messages.

User bags are created with the MQIASY_TYPE system item set to
MQCFT_USER.

mqCreateBag (Options, Bag, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 35

For user bags, one or more of the following options can be specified:

MQCBO_LIST_FORM_ALLOWED
Specifies that the MQAI is allowed to use the more compact
list form in the message sent whenever there are two or more
adjacent occurrences of the same selector in the bag. However,
this option does not allow the items to be reordered. Therefore,
if the occurrences of the selector are not adjacent in the bag,
and MQCBO_REORDER_AS_REQUIRED is not specified, the
MQAI cannot use the list form for that particular selector.

If the data items are character strings, these strings must have
the same Character Set ID as well as the same selector, in order
to be compacted into list form. If the list form is used, the
shorter strings are padded with blanks to the length of the
longest string.

This option should be specified if the message to be sent is an
administration message but MQCBO_ADMIN_BAG is not
specified.

Note: MQCBO_LIST_FORM_ALLOWED does not imply that
the MQAI will definitely use the list form. The MQAI
considers various factors in deciding whether to use the
list form.

MQCBO_LIST_FORM_INHIBITED
Specifies that the MQAI is not allowed to use the list form in
the message sent, even if there are adjacent occurrences of the
same selector in the bag. This is the default list-form option.

MQCBO_REORDER_AS_REQUIRED
Specifies that the MQAI is allowed to change the order of the
data items in the message sent. This option does not affect the
order of the items in the sending bag.

This means that you can insert items into a data bag in any
order; that is, the items do not need to be inserted in the way
that they must appear in the PCF message, because the MQAI
can reorder these items as required.

If the message is a user message, the order of the items in the
receiving bag will be the same as the order of the items in the
message; this may be different from the order of the items in
the sending bag.

If the message is an administration message, the order of the
items in the receiving bag will be determined by the message
received.

This option should be specified if the message to be sent is an
administration message but MQCBO_ADMIN is not specified.

MQCBO_DO_NOT_REORDER
Specifies that the MQAI is not allowed to change the order of
data items in the message sent. Both the message sent and the
receiving bag contain the items in the same order as they occur
in the sending bag. This is the default ordering option.

MQAI reference

36 MQSeries Administration Interface Programming Guide and Reference

MQCBO_CHECK_SELECTORS
Specifies that user selectors (selectors that are zero or greater)
should be checked to ensure that the selector is consistent with
the datatype implied by the mqAddInteger, mqAddString,
mqSetInteger, or mqSetString call:
v For the integer calls, the selector must be in the range

MQIA_FIRST through MQIA_LAST.
v For the string calls, the selector must be in the range

MQCA_FIRST through MQCA_LAST.
v For the handle calls, the selector must be in the range

MQHA_FIRST through MQHA_LAST.

The call fails if the selector is outside the valid range. Note that
system selectors (selectors less than zero) are always checked,
and if a system selector is specified, it must be one that is
supported by the MQAI.

MQCBO_DO_NOT_CHECK_SELECTORS
Specifies that user selectors (selectors that are zero or greater)
should not be checked. This option allows any selector that is
zero or positive to be used with any call. This is the default
selectors option. Note that system selectors (selectors less than
zero) are always checked.

MQCBO_NONE
Specifies that all options should have their default values. This
is provided to aid program documentation, and should not be
specified with any of the options that has a nonzero value.

The following list summarizes the default option values:
v MQCBO_USER_BAG

– MQCBO_LIST_FORM_INHIBITIED
– MQCBO_DO_NOT_REORDER
– MQCBO_DO_NOT_CHECK_SELECTORS

Bag (MQHBAG) – output
The handle of the bag created by the call.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqCreateBag call:

MQRC_HBAG_ERROR
Bag handle not valid (invalid parameter address or the parameter
location is read-only).

MQRC_OPTIONS_ERROR
Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQAI reference

Chapter 5. MQAI reference 37

Usage notes
Any options used for creating your bag are contained in a system item within the
bag when it is created.

C language invocation
mqCreateBag (Options, &Bag, &CompCode, &Reason);

Declare the parameters as follows:
MQLONG Options; /* Bag options */
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqCreateBag Options, Bag, CompCode, Reason

Declare the parameters as follows:
Dim Options As Long 'Bag options'
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

38 MQSeries Administration Interface Programming Guide and Reference

mqDeleteBag

The mqDeleteBag call deletes the specified bag.

Syntax

Parameters
Bag (MQHBAG) – input/output

The handle of the bag to be deleted. This must be the handle of a bag created
by the user, not the handle of a system bag.
MQRC_SYSTEM_BAG_NOT_DELETABLE results if you specify the handle of a
system bag. The handle is reset to MQHB_UNUSABLE_HBAG.

If the bag contains system-generated bags, they are also deleted.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqDeleteBag call:

MQRC_HBAG_ERROR
Bag handle not valid, or invalid parameter address, or parameter
location is read only.

MQRC_SYSTEM_BAG_NOT_DELETABLE
System bag cannot be deleted.

Usage notes
1. Delete any bags created with mqCreateBag.
2. Nested bags are deleted automatically when the containing bag is deleted.

C language invocation
mqDeleteBag (&Bag, CompCode, Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

mqDeleteBag (Bag, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 39

Visual Basic invocation
(Supported on Windows NT only.)
mqDeleteBag Bag, CompCode, Reason

Declare the parameters as follows:
Dim Bag; As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

40 MQSeries Administration Interface Programming Guide and Reference

mqDeleteItem

The mqDeleteItem call removes one or more user items from a bag.

Syntax

Parameters
Hbag (MQHBAG) – input

Handle of the bag to be modified.

This must be the handle of a bag created by the user, and not the handle of a
system bag; MQRC_SYSTEM_BAG_NOT_ALTERABLE results if it is a system
bag.

Selector (MQLONG) – input
Selector identifying the user item to be deleted.

If the selector is less than zero (that is, a system selector),
MQRC_SELECTOR_OUT_OF_RANGE results.

The following special values are valid:

MQSEL_ANY_SELECTOR
The item to be deleted is a user item identified by the ItemIndex
parameter, the index relative to the set of items that contains both user
and system items.

MQSEL_ANY_USER_SELECTOR
The item to be deleted is a user item identified by the ItemIndex
parameter, the index relative to the set of user items.

If an explicit selector value is specified, but the selector is not present
in the bag, the call succeeds if MQIND_ALL is specified for ItemIndex,
and fails with reason code MQRC_SELECTOR_NOT_PRESENT if
MQIND_ALL is not specified.

ItemIndex (MQLONG) – input
Index of the data item to be deleted.

The value must be zero or greater, or one of the following special values:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results. If MQIND_NONE is
specified with one of the MQSEL_XXX_SELECTOR values,
MQRC_INDEX_ERROR results.

MQIND_ALL
This specifies that all occurrences of the selector in the bag are to be
deleted. If MQIND_ALL is specified with one of the
MQSEL_XXX_SELECTOR values, MQRC_INDEX_ERROR results. If
MQIND_ALL is specified when the selector is not present within the
bag, the call succeeds.

mqDeleteItem (Bag, Selector, ItemIndex, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 41

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
the ItemIndex parameter is the index relative to the set of items that
contains both user items and system items, and must be zero or
greater. If ItemIndex identifies a system selector
MQRC_SYSTEM_ITEM_NOT_DELETABLE results. If
MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
user items, and must be zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative
to the set of items that have that selector value, and can be
MQIND_NONE, MQIND_ALL, zero, or greater.

If an explicit index is specified (that is, not MQIND_NONE or
MQIND_ALL) and the item is not present in the bag,
MQRC_INDEX_NOT_PRESENT results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqDeleteItem call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
MQIND_NONE or MQIND_ALL specified with one of the
MQSEL_ANY_XXX_SELECTOR values.

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag is read only and cannot be altered.

MQRC_SYSTEM_ITEM_NOT_DELETABLE
System item is read only and cannot be deleted.

Usage notes
1. Either a single occurrence of the specified selector can be removed, or all

occurrences of the specified selector.
2. The call cannot remove system items from the bag, or remove items from a

system bag. However, the call can remove the handle of a system bag from a
user bag. This way, a system bag can be deleted.

MQAI reference

42 MQSeries Administration Interface Programming Guide and Reference

C language invocation
mqDeleteItem (Bag, Selector, ItemIndex, &CompCode, &Reason)

Declare the parameters as follows:
MQHBAG Hbag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Index of the data item */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqDeleteItem Bag, Selector, ItemIndex, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Index of the data item'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 43

mqExecute

The mqExecute call sends an administration command message and waits for the
reply (if expected).

Syntax

Parameters
Hconn (MQHCONN) – input

MQI Connection handle.

This is returned by a preceding MQCONN call issued by the application.

Command (MQLONG) – input
The command to be executed.

This should be one of the MQCMD_* values. If it is a value that is not
recognized by the MQAI servicing the mqExecute call, the value is still
accepted. However, if mqAddInquiry was used to insert values in the bag, the
Command parameter must be an INQUIRE command recognized by the MQAI;
MQRC_INQUIRY_COMMAND_ERROR results if it is not.

OptionsBag (MQHBAG) – input
Handle of a bag containing options that affect the operation of the call.

This must be the handle returned by a preceding mqCreateBag call or the
following special value:

MQHB_NONE
No options bag; all options assume their default values.

Only the options listed below can be present in the options bag
(MQRC_OPTIONS_ERROR results if other data items are present).

The appropriate default value is used for each option that is not
present in the bag. The following option can be specified:

MQIACF_WAIT_INTERVAL
This data item specifies the maximum time in milliseconds that the
MQAI should wait for each reply message. The time interval must be
zero or greater, or the special value MQWI_UNLIMITED; the default is
thirty seconds. The mqExecute call completes either when all of the
reply messages are received or when the specified wait interval expires
without the expected reply message having been received.

Note: The time interval is an approximate quantity.

If the MQIACF_WAIT_INTERVAL data item has the wrong datatype,
or there is more than one occurrence of that selector in the options bag,
or the value of the data item is not valid,
MQRC_WAIT_INTERVAL_ERROR results.

AdminBag (MQHBAG) – input
Handle of the bag containing details of the administration command to be
issued.

mqExecute (Hconn, Command, OptionsBag, AdminBag,
ResponseBag, AdminQ, ResponseQ, CompCode, Reason)

MQAI reference

44 MQSeries Administration Interface Programming Guide and Reference

All user items placed in the bag are inserted into the administration message
that is sent. It is the application’s responsibility to ensure that only valid
parameters for the command are placed in the bag.

If the value of the MQIASY_TYPE data item in the command bag is not
MQCFT_COMMAND, MQRC_COMMAND_TYPE_ERROR results. If the bag
contains nested bags, MQRC_NESTED_BAG_NOT_SUPPORTED results.

ResponseBag (MQHBAG) – input
Handle of the bag where reply messages are placed.

The MQAI performs an mqClearBag call on the bag before placing reply
messages in the bag. To retrieve the reply messages, the selector,
MQIACF_CONVERT_RESPONSE, can be specified.

Each reply message is placed into a separate system bag, whose handle is then
placed in the response bag. Use the mqInquireBag call with selector
MQHA_BAG_HANDLE to determine the handles of the system bags within
the reply bag, and those bags can then be inquired to determine their contents.

If some but not all of the expected reply messages are received,
MQCC_WARNING with MQRC_NO_MSG_AVAILABLE results. If none of the
expected reply messages is received, MQCC_FAILED with
MQRC_NO_MSG_AVAILABLE results.

AdminQ (MQHOBJ) – input
Object handle of the queue on which the administration message is to be
placed.

This handle was returned by a preceding MQOPEN call issued by the
application. The queue must be open for output.

The following special value can be specified:

MQHO_NONE
This indicates that the administration message should be placed on the
SYSTEM.ADMIN.COMMAND.QUEUE belonging to the currently
connected queue manager. If MQHO_NONE is specified, the
application need not use MQOPEN to open the queue.

ResponseQ
Object handle of the queue on which reply messages are placed.

This handle was returned by a preceding MQOPEN call issued by the
application. The queue must be open for input and for inquiry.

The following special value can be specified:

MQHO_NONE
This indicates that the reply messages should be placed on a dynamic
queue created automatically by the MQAI. The queue is created by
opening SYSTEM.DEFAULT.MODEL.QUEUE, that must therefore have
suitable characteristics. The queue created exists for the duration of the
call only, and is deleted by the MQAI on exit from the mqExecute call.

CompCode
Completion code.

MQAI reference

Chapter 5. MQAI reference 45

Reason
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqExecute call:

MQRC_*
Anything from the MQINQ, MQPUT, MQGET, or MQOPEN calls.

MQRC_CMD_SERVER_NOT_AVAILABLE
The command server that processes administration commands is not
available.

MQRC_COMMAND_TYPE_ERROR
The value of the MQIASY_TYPE data item in the request bag is not
MQCFT_COMMAND.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INQUIRY_COMMAND_ERROR
mqAddInteger call used with a command code that is not a recognized
INQUIRE command.

MQRC_NESTED_BAG_NOT_SUPPORTED
Input data bag contains one or more nested bags.

MQRC_NO_MSG_AVAILABLE
Some reply messages received, but not all. Reply bag contains
system-generated bags for messages that were received.

MQRC_NO_MSG_AVAILABLE
No reply messages received during the specified wait interval.

MQRC_OPTIONS_ERROR
Options bag contains unsupported data items, or a supported option
has a value which is not valid.

MQRC_PARAMETER_MISSING
Administration message requires a parameter which is not present in
the bag. This reason code occurs for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED
options only.

MQRC_SELECTOR_NOT_UNIQUE
Two or more instances of a selector exist within the bag for a
mandatory parameter that permits one instance only.

MQRC_SELECTOR_WRONG_TYPE
mqAddString or mqSetString was used to add the MQIACF_INQUIRY
selector to the bag.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRCCF_COMMAND_FAILED
Command failed; details of failure are contained in system-generated
bags within the reply bag.

Usage notes
1. If no AdminQ is specified, the MQAI checks to see if the command server is

active before sending the administration command message. However, if the

MQAI reference

46 MQSeries Administration Interface Programming Guide and Reference

command server is not active, the MQAI does not start it. If you are sending a
large number of administration command messages, you are recommended to
open the SYSTEM.ADMIN.COMMAND.QUEUE yourself and pass the handle
of the administration queue on each administration request.

2. Specifying the MQHO_NONE value in the ResponseQ parameter simplifies the
use of the mqExecute call, but if mqExecute is issued repeatedly by the
application (for example, from within a loop), the response queue will be
created and deleted repeatedly. In this situation, it is better for the application
itself to open the response queue prior to any mqExecute call, and close it after
all mqExecute calls have been issued.

3. If the administration command results in a message being sent with a message
type of MQMT_REQUEST, the call waits for the period of time given by the
MQIACF_WAIT_INTERVAL data item in the options bag.

4. If an error occurs during the processing of the call, the response bag may
contain some data from the reply message, but the data will usually be
incomplete.

C language invocation
mqExecute (Hconn, Command, OptionsBag, AdminBag, ResponseBag,
AdminQ, ResponseQ, CompCode, Reason);

Declare the parameters as follows:
MQHCONN Hconn; /* MQI connection handle */
MQLONG Command; /* Command to be executed */
MQHBAG OptionsBag; /* Handle of a bag containing options */
MQHBAG AdminBag; /* Handle of administration bag containing

/* details of administration command */
MQHBAG ResponseBag; /* Handle of bag for response messages */
MQHOBJ AdminQ /* Handle of administration queue for

administration messages */
MQHOBJ ResponseQ; /* Handle of response queue for response

messages */
MQLONG pCompCode; /* Completion code */
MQLONG pReason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqExecute (Hconn, Command, OptionsBag, AdminBag, ResponseBag,
AdminQ, ResponseQ, CompCode, Reason);

Declare the parameters as follows:
Dim HConn As Long 'MQI connection handle'
Dim Command As Long 'Command to be executed'
Dim OptionsBag As Long 'Handle of a bag containing options'
Dim AdminBag As Long 'Handle of command bag containing details of

administration command'
Dim ResponseBag As Long 'Handle of bag for reply messages'
Dim AdminQ As Long 'Handle of command queue for

administration messages'
Dim ResponseQ As Long 'Handle of response queue for reply messages'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 47

mqGetBag

The mqGetBag call removes a message from the specified queue and converts the
message data into a data bag.

Syntax

Parameters
Hconn (MQHCONN) – input

MQI connection handle.

Hobj (MQHOBJ) – input
Object handle of the queue from which the message is to be retrieved. This
handle was returned by a preceding MQOPEN call issued by the application.
The queue must be open for input.

MsgDesc (MQMD) – input/output
Message descriptor (for more information, see the MQSeries Application
Programming Reference).

If the Format field in the message has a value other than MQFMT_ADMIN,
MQFMT_EVENT, or MQFMT_PCF, MQRC_FORMAT_NOT_SUPPORTED
results.

If, on entry to the call, the Encoding field in the application’s MQMD has a
value other than MQENC_NATIVE and MQGMO_CONVERT is specified,
MQRC_ENCODING_NOT_SUPPORTED results. Also, if MQGMO_CONVERT
is not specified, the value of the Encoding parameter must be the retrieving
application’s MQENC_NATIVE; if not, again
MQRC_ENCODING_NOT_SUPPORTED results.

GetMsgOpts (MQGMO) – input/output
Get-message options (for more information, see the MQSeries Application
Programming Guide).

MQGMO_ACCEPT_TRUNCATED_MSG cannot be specified;
MQRC_OPTIONS_ERROR results if it is. MQGMO_LOCK and
MQGMO_UNLOCK are not supported in a 16-bit or 32-bit Window
environment. MQGMO_SET_SIGNAL is supported in a 32-bit Window
environment only.

Bag (MQHBAG) – input/output
Handle of a bag into which the retrieved message is placed. The MQAI
performs an mqClearBag call on the bag before placing the message in the bag.

MQHB_NONE
Gets the retrieved message. This provides a means of deleting
messages from the queue.

If an option of MQGMO_BROWSE_* is specified, this value sets the
browse cursor to the selected message; it is not deleted in this case.

CompCode (MQLONG) – output
Completion code.

mqGetBag (Hconn, Hobj, MsgDesc, GetMsgOpts, Bag, CompCode, Reason)

MQAI reference

48 MQSeries Administration Interface Programming Guide and Reference

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating warning and error conditions can be
returned from the mqGetBag call:

MQRC_*
Anything from the MQGET call or bag manipulation.

MQRC_BAG_CONVERSION_ERROR
Data could not be converted into a bag.

This indicates a problem with the format of the data to be converted
into a bag (for example, the message is not a valid PCF).

If the message was retrieved destructively from the queue (that is, not
browsing the queue), this reason code indicates that it has been
discarded.

MQRC_ENCODING_NOT_SUPPORTED
Encoding not supported; the value in the Encoding field of the MQMD
must be MQENC_NATIVE.

MQRC_FORMAT_NOT_SUPPORTED
Format not supported; the Format name in the message is not
MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF. If the message
was retrieved destructively from the queue (that is, not browsing the
queue), this reason code indicates that it has been discarded.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INCONSISTENT_ITEM_TYPE
Datatype of second occurrence of selector differs from datatype of first
occurrence.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes
1. Only messages that have a supported format can be returned by this call. If the

message has a format that is not supported, the message is discarded, and the
call completes with an appropriate reason code.

2. If the message is retrieved within a unit of work (that is, with the
MQGMO_SYNCPOINT option), and the message has an unsupported format,
the unit of work can be backed out, reinstating the message on the queue. This
allows the message to be retrieved by using the MQGET call in place of the
mqGetBag call.

MQAI reference

Chapter 5. MQAI reference 49

C language invocation
mqGetBag (hConn, hObj, &MsgDesc, &GetMsgOpts, hBag, CompCode, Reason);

Declare the parameters as follows:
MQHCONN hConn; /* MQI connection handle */
MQHOBJ hObj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQGMO GetMsgOpts; /* Get-message options */
MQHBAG hBag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqGetBag (HConn, HObj, MsgDesc, GetMsgOpts, Bag, CompCode, Reason);

Declare the parameters as follows:
Dim HConn As Long 'MQI connection handle'
Dim HObj As Long 'Object handle'
Dim MsgDesc As Long 'Message descriptor'
Dim GetMsgOpts As Long 'Get-message options'
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

50 MQSeries Administration Interface Programming Guide and Reference

mqInquireBag

The mqInquireBag call inquires the value of a bag handle that is present in the
bag. The data item can be a user item or a system item.

Syntax

Parameters
Bag (MQHBAG) – input

Bag handle to be inquired. The bag can be a user bag or a system bag.

Selector (MQLONG) – input
Selector identifying the item to be inquired.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired is a user or system item identified by the
ItemIndex parameter.

MQSEL_ANY_USER_SELECTOR
The item to be inquired is a user item identified by the ItemIndex
parameter.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired is a system item identified by the ItemIndex
parameter.

ItemIndex (MQLONG) – input
Index of the data item to be inquired.

The value must be zero or greater, or the special value MQIND_NONE. If the
value is less than zero and not MQIND_NONE, MQRC_INDEX_ERROR
results. If the item is not already present in the bag,
MQRC_INDEX_NOT_PRESENT results.

The following special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

mqInquireBag (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 51

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
the ItemIndex parameter is the index relative to the set of items that
contains both user items and system items, and must be zero or
greater.

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater.

If an explicit selector value is specified, the ItemIndex parameter is the
index relative to the set of items that have that selector value and can
be MQIND_NONE, zero, or greater.

ItemValue (MQHBAG) – output
Value of the item in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqInquireBag call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_VALUE_ERROR
The ItemValue parameter is not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present within the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQAI reference

52 MQSeries Administration Interface Programming Guide and Reference

C language invocation
mqInquireBag (Bag, Selector, ItemIndex, &ItemValue, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Index of the data item to be inquired */
MQHBAG ItemValue; /* Value of item in the bag */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqInquireBag (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Index of the data item to be inquired'
Dim ItemValue As Long 'Value of item in the bag'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 53

mqInquireInteger

The mqInquireInteger call requests the value of an integer data item that is present
in the bag. The data item can be a user item or a system item.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector identifying the item to which the inquiry relates.

If the selector is less than zero (a system selector), the selector must be one that
is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED results if it
is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
is not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not
already present in the bag, MQRC_INDEX_NOT_PRESENT results. The
following special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for Selector, ItemIndex is the index
relative to the set of items that contains both user items and system items, and
must be zero or greater.

If MQSEL_ANY_USER_SELECTOR is specified for Selector, ItemIndex is the
index relative to the set of user items, and must be zero or greater.

mqInquireInteger (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

MQAI reference

54 MQSeries Administration Interface Programming Guide and Reference

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector, ItemIndex is
the index relative to the set of system items, and must be zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative to the
set of items that have that selector value, and can be MQIND_NONE, zero, or
greater.

ItemValue (MQLONG) – output
The value of the item in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqInquireInteger call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_VALUE_ERROR
ItemValue parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQAI reference

Chapter 5. MQAI reference 55

C language invocation
mqInquireInteger (Bag, Selector, ItemIndex, &ItemValue,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG ItemValue; /* Item value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqInquireInteger Bag, Selector, ItemIndex, ItemValue,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Item value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

56 MQSeries Administration Interface Programming Guide and Reference

mqInquireItemInfo

The mqInquireItemInfo call returns information about a specified item in a bag.
The data item can be a user item or a system item.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to be inquired.

The bag can be a user bag or a system bag.

Selector (MQLONG) – input
Selector identifying the item to be inquired.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired is a user or system item identified by the
ItemIndex parameter.

MQSEL_ANY_USER_SELECTOR
The item to be inquired is a user item identified by the ItemIndex
parameter.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired is a system item identified by the ItemIndex
parameter.

ItemIndex (MQLONG) – input
Index of the data item to be inquired.

The item must be present within the bag; MQRC_INDEX_NOT_PRESENT
results if it is not. The value must be zero or greater, or the following special
value:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
the ItemIndex parameter is the index relative to the set of items that
contains both user items and system items, and must be zero or
greater.

mqInquireItemInfo (Bag, Selector, ItemIndex,
ItemType, OutSelector, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 57

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for the Selector
parameter, the ItemIndex parameter is the index relative to the set of
system items, and must be zero or greater. If an explicit selector value
is specified, the ItemIndex parameter is the index relative to the set of
items that have that selector value and can be MQIND_NONE, zero, or
greater.

ItemType (MQLONG) – output
The datatype of the specified data item.

The following can be returned:

MQIT_BAG
Bag handle item.

MQIT_INTEGER
Integer item.

MQIT_STRING
Character-string item.

OutSelector (MQLONG) – output
Selector of the specified data item.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqInquireItemInfo call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
MQIND_NONE specified with one of the
MQSEL_ANY_XXX_SELECTOR values.

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_ITEM_TYPE_ERROR
ItemType parameter not valid (invalid parameter address).

MQRC_OUT_SELECTOR_ERROR
OutSelector parameter not valid (invalid parameter address).

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQAI reference

58 MQSeries Administration Interface Programming Guide and Reference

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

C language invocation
mqInquireItemInfo (Bag, Selector, ItemIndex, &OutSelector, &ItemType,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector identifying item */
MQLONG ItemIndex; /* Index of data item */
MQLONG OutSelector; /* Selector of specified data item */
MQLONG ItemType; /* Data type of data item */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqInquireItemInfo Bag, Selector, ItemIndex, OutSelector, ItemType,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector identifying item'
Dim ItemIndex As Long 'Index of data item'
Dim OutSelector As Long 'Selector of specified data item'
Dim ItemType As Long 'Data type of data item'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 59

mqInquireString

The mqInquireString call requests the value of a character data item that is present
in the bag. The data item can be a user item or a system item.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to which the inquiry relates. The bag can be a user bag or a
system bag.

Selector (MQLONG) – input
Selector of the item to which the inquiry relates.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

The specified selector must be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

The datatype of the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

The following special values can be specified for Selector:

MQSEL_ANY_SELECTOR
The item to be inquired about is a user or system item identified by
ItemIndex.

MQSEL_ANY_USER_SELECTOR
The item to be inquired about is a user item identified by ItemIndex.

MQSEL_ANY_SYSTEM_SELECTOR
The item to be inquired about is a system item identified by ItemIndex.

ItemIndex (MQLONG) – input
Index of the data item to which the inquiry relates. The value must be zero or
greater, or the special value MQIND_NONE. If the value is less than zero and
not MQIND_NONE, MQRC_INDEX_ERROR results. If the item is not already
present in the bag, MQRC_INDEX_NOT_PRESENT results. The following
special value can be specified:

MQIND_NONE
This specifies that there must be one occurrence only of the selector in
the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

If MQSEL_ANY_SELECTOR is specified for the Selector parameter,
ItemIndex is the index relative to the set of items that contains both
user items and system items, and must be zero or greater.

mqInquireString (Bag, Selector,
ItemIndex, Bufferlength, Buffer, StringLength, CodedCharSetId, CompCode, Reason)

MQAI reference

60 MQSeries Administration Interface Programming Guide and Reference

If MQSEL_ANY_USER_SELECTOR is specified for the Selector
parameter, ItemIndex is the index relative to the set of user items, and
must be zero or greater.

If MQSEL_ANY_SYSTEM_SELECTOR is specified for Selector,
ItemIndex is the index relative to the set of system items, and must be
zero or greater.

If an explicit selector value is specified, ItemIndex is the index relative
to the set of items that have that selector value, and can be
MQIND_NONE, zero, or greater.

BufferLength (MQLONG) – input
Length in bytes of the buffer to receive the string. Zero is a valid value.

Buffer (MQCHAR × BufferLength) – output
Buffer to receive the character string. The length is given by the BufferLength
parameter. If zero is specified for BufferLength, the null pointer can be
specified for the address of the Buffer parameter; in all other cases, a valid
(nonnull) address must be specified for the Buffer parameter.

The string is padded with blanks to the length of the buffer; the string is not
null-terminated. If the string is longer than the buffer, the string is truncated to
fit; in this case StringLength indicates the size of the buffer needed to
accommodate the string without truncation.

StringLength (MQLONG) – output
The length in bytes of the string contained in the bag. If the Buffer parameter
is too small, the length of the string returned is less than StringLength.

CodedCharSetId (MQLONG) – output
The coded character set identifier for the character data in the string. This
parameter can be set to a null pointer if not required.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqInquireString call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE, or
MQIND_NONE specified with one of the
MQSEL_ANY_xxx_SELECTOR values).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQAI reference

Chapter 5. MQAI reference 61

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_STRING_LENGTH_ERROR
StringLength parameter not valid (invalid parameter address).

MQRC_STRING_TRUNCATED
Data too long for output buffer and has been truncated.

C language invocation
mqInquireString (Bag, Selector, ItemIndex,
BufferLength, Buffer, &StringLength, &CodedCharSetId,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer to contain string */
MQLONG StringLength; /* Length of string returned */
MQLONG CodedCharSetId /* Coded Character Set ID */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqInquireString Bag, Selector, ItemIndex,
BufferLength, Buffer, StringLength, CodedCharSetId,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer to contain string'
Dim StringLength As Long 'Length of string returned'
Dim CodedCharSetId As Long 'Coded Character Set ID'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

62 MQSeries Administration Interface Programming Guide and Reference

mqPad

The mqPad call pads a null-terminated string with blanks.

Syntax

Parameters
String (PMQCHAR) – input

Null-terminated string. The null pointer is valid for the address of the String
parameter, and denotes a string of zero length.

BufferLength (MQLONG) – input
Length in bytes of the buffer to receive the string padded with blanks. Must be
zero or greater.

Buffer (MQCHAR × BufferLength) – output
Buffer to receive the blank-padded string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

If the number of characters preceding the first null in the String parameter is
greater than the BufferLength parameter, the excess characters are omitted and
MQRC_DATA_TRUNCATED results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqPad call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_STRING_ERROR
String parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_STRING_TRUNCATED
Data too long for output buffer and has been truncated.

Usage notes
1. If the buffer pointers are the same, the padding is done in place. If not, at most

BufferLength characters are copied into the second buffer; any space remaining,
including the null-termination character, is overwritten with spaces.

2. If the String and Buffer parameters partially overlap, the result is undefined.

mqPad (String, BufferLength, Buffer, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 63

C language invocation
mqPad (String, BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:
MQCHAR String; /* String to be padded */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer /* Buffer to contain padded string */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Note: This call is not supported in Visual Basic.

MQAI reference

64 MQSeries Administration Interface Programming Guide and Reference

mqPutBag

The mqPutBag call converts the contents of the specified bag into a PCF message
and sends the message to the specified queue. The contents of the bag are
unchanged after the call.

Syntax

Parameters
Hconn (MQHCONN) – input

MQI connection handle.

Hobj (MQHOBJ) – input
Object handle of the queue on which the message is to be placed. This handle
was returned by a preceding MQOPEN call issued by the application. The
queue must be open for output.

MsgDesc (MQMD) – input/output
Message descriptor. (For more information, see the MQSeries Application
Programming Reference.)

If the Format field has a value other than MQFMT_ADMIN, MQFMT_EVENT,
or MQFMT_PCF, MQRC_FORMAT_NOT_SUPPORTED results.

If the Encoding field has a value other than MQENC_NATIVE,
MQRC_ENCODING_NOT_SUPPORTED results.

PutMsgOpts (MQPMO) – input/output
Put-message options. (For more information, see the MQSeries Application
Programming Reference.)

Bag (MQHBAG) – input
Handle of the data bag to be converted to a message.

If the bag contains an administration message, and mqAddInquiry was used to
insert values into the bag, the value of the MQIASY_COMMAND data item
must be an INQUIRE command recognized by the MQAI;
MQRC_INQUIRY_COMMAND_ERROR results if it is not.

If the bag contains nested bags, MQRC_NESTED_BAG_NOT_SUPPORTED
results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode. The following reason codes indicating error
and warning conditions can be returned from the mqPutBag call:

MQRC_*
Anything from the MQPUT call or bag manipulation.

MQRC_ENCODING_NOT_SUPPORTED
Encoding not supported (value in Encoding field in MQMD must be
MQENC_NATIVE).

mqPutBag (Hconn, Hobj, MsgDesc, PutMsgOpts, Bag, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 65

MQRC_FORMAT_NOT_SUPPORTED
Format not supported (name in Format field in MQMD must be
MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF).

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INQUIRY_COMMAND_ERROR
mqAddInquiry call used with a command code that is not a recognized
INQUIRE command.

MQRC_NESTED_BAG_NOT_SUPPORTED
Input data bag contains one or more nested bags.

MQRC_PARAMETER_MISSING
Administration message requires a parameter that is not present in the
bag. This reason code occurs for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED
options only.

MQRC_SELECTOR_WRONG_TYPE
mqAddString or mqSetString was used to add the MQIACF_INQUIRY
selector to the bag.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

C language invocation
mqPutBag (HConn, HObj, &MsgDesc, &PutMsgOpts, Bag,
&CompCode, &Reason);

Declare the parameters as follows:
MQHCONN HConn; /* MQI connection handle */
MQHOBJ HObj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQPMO PutMsgOpts; /* Put-message options */
MQHBAG Bag; /* Bag handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqPutBag (HConn, HObj, MsgDesc, PutMsgOpts, Bag,
CompCode, Reason);

Declare the parameters as follows:
Dim HConn As Long 'MQI connection handle'
Dim HObj As Long 'Object handle'
Dim MsgDesc As MQMD 'Message descriptor'
Dim PutMsgOpts As MQPMO 'Put-message options'
Dim Bag As Long 'Bag handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

66 MQSeries Administration Interface Programming Guide and Reference

mqSetInteger

The mqSetInteger call either modifies an integer item that is already present in the
bag, or deletes all existing occurrences of the specified selector and adds a new
occurrence at the end of the bag. The data item is usually a user item, but specific
system-data items can also be modified.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, and not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if the handle you specify
refers to a system bag.

Selector (MQLONG) – input
Selector of the item to be modified. If the selector is less than zero (that is, a
system selector), the selector must be one that is supported by the MQAI;
MQRC_SELECTOR_NOT_SUPPORTED results if it is not.

If the selector is a supported system selector, but is one that is read-only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQIA_FIRST
through MQIA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is not.
If MQCBO_CHECK_SELECTORS was not specified, the selector can be any
value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must agree with the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This value identifies the occurrence of the item with the specified selector that
is to be modified. The value must be zero or greater, or one of the special
values described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.
For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

mqSetInteger (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 67

MQIND_NONE
This specifies that there must be one occurrence only of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

Note: For system selectors, the order is not changed.

ItemValue (MQLONG) – input
The integer value to be placed in the bag.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error and warning conditions can be
returned from the mqSetInteger call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not in valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQAI reference

68 MQSeries Administration Interface Programming Guide and Reference

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read only and cannot be altered.

C language invocation
mqSetInteger (Bag, Selector, ItemIndex, ItemValue, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG ItemValue; /* Integer value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqSetInteger Bag, Selector, ItemIndex, ItemValue, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim ItemValue As Long 'Integer value'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

Chapter 5. MQAI reference 69

mqSetString

The mqSetString call either modifies a character data item that is already present in
the bag, or deletes all existing occurrences of the specified selector and adds a new
occurrence at the end of the bag. The data item is usually a user item, but certain
system-data items can also be modified.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to be set. This must be the handle of a bag created by the
user, not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

Selector (MQLONG) – input
Selector of the item to be modified.

If the selector is less than zero (that is, a system selector), the selector must be
one that is supported by the MQAI; MQRC_SELECTOR_NOT_SUPPORTED
results if it is not.

If the selector is a supported system selector, but is one that is read only,
MQRC_SYSTEM_ITEM_NOT_ALTERABLE results.

If the selector is an alterable system selector, but is always a single-instance
selector and the application attempts to create a second instance in the bag,
MQRC_MULTIPLE_INSTANCE_ERROR results.

If the selector is zero or greater (that is, a user selector), and the bag was
created with the MQCBO_CHECK_SELECTORS option or as an administration
bag (MQCBO_ADMIN_BAG), the selector must be in the range MQCA_FIRST
through MQCA_LAST; MQRC_SELECTOR_OUT_OF_RANGE results if it is
not. If MQCBO_CHECK_SELECTORS was not specified, the selector can be
any value zero or greater.

If MQIND_ALL is not specified for the ItemIndex parameter, the specified
selector must already be present in the bag;
MQRC_SELECTOR_NOT_PRESENT results if it is not.

If MQIND_ALL is not specified for the ItemIndex parameter, the datatype of
the item must be the same as the datatype implied by the call;
MQRC_SELECTOR_WRONG_TYPE results if it is not.

ItemIndex (MQLONG) – input
This identifies which occurrence of the item with the specified selector is to be
modified. The value must be zero or greater, or one of the special values
described below; if it is none of these, MQRC_INDEX_ERROR results.

Zero or greater
The item with the specified index must already be present in the bag;
MQRC_INDEX_NOT_PRESENT results if it is not. The index is
counted relative to the items in the bag that have the specified selector.

mqSetString (Bag, Selector, ItemIndex, Bufferlength, Buffer, CompCode, Reason)

MQAI reference

70 MQSeries Administration Interface Programming Guide and Reference

For example, if there are five items in the bag with the specified
selector, the valid values for ItemIndex are 0 through 4.

MQIND_NONE
This specifies that there must be only one occurrence of the specified
selector in the bag. If there is more than one occurrence,
MQRC_SELECTOR_NOT_UNIQUE results.

MQIND_ALL
This specifies that all existing occurrences of the specified selector (if
any) are to be deleted from the bag, and a new occurrence of the
selector created at the end of the bag.

BufferLength (MQLONG) – input
The length in bytes of the string contained in the Buffer parameter. The value
must be zero or greater, or the special value MQBL_NULL_TERMINATED.

If MQBL_NULL_TERMINATED is specified, the string is delimited by the first
null encountered in the string.

If MQBL_NULL_TERMINATED is not specified, BufferLength characters are
inserted into the bag, even if null characters are present; the nulls do not
delimit the string.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the character string. The length is given by the BufferLength
parameter. If zero is specified for BufferLength, the null pointer can be
specified for the address of the Buffer parameter; in all other cases, a valid
(nonnull) address must be specified for the Buffer parameter.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqSetString call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_INDEX_ERROR
Index not valid (index negative and not MQIND_NONE or
MQIND_ALL).

MQRC_INDEX_NOT_PRESENT
No item with the specified index is present within the bag for the
selector given.

MQRC_MULTIPLE_INSTANCE_ERROR
Multiple instances of system selector not valid.

MQRC_SELECTOR_NOT_PRESENT
No item with the specified selector is present within the bag.

MQAI reference

Chapter 5. MQAI reference 71

MQRC_SELECTOR_NOT_SUPPORTED
Specified system selector not supported by the MQAI.

MQRC_SELECTOR_NOT_UNIQUE
MQIND_NONE specified when more than one occurrence of the
specified selector is present in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
Selector not within valid range for call.

MQRC_SELECTOR_WRONG_TYPE
Data item has wrong datatype for call.

MQRC_STORAGE_NOT_AVAILABLE
Insufficient storage available.

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
System item is read-only and cannot be altered.

Usage notes
The Coded Character Set ID (CCSID) associated with this string is copied from the
current CCSID of the bag.

C language invocation
mqSetString (Bag, Selector, ItemIndex, BufferLength, Buffer,
&CompCode, &Reason);

Declare the parameters as follows:
MQHBAG Bag; /* Bag handle */
MQLONG Selector; /* Selector */
MQLONG ItemIndex; /* Item index */
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer containing string */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqSetString Bag, Selector, ItemIndex, BufferLength, Buffer,
CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim Selector As Long 'Selector'
Dim ItemIndex As Long 'Item index'
Dim BufferLength As Long 'Buffer length'
Dim Buffer As String 'Buffer containing string'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

72 MQSeries Administration Interface Programming Guide and Reference

mqTrim

The mqTrim call trims the blanks from a blank-padded string, then terminates it
with a null.

Syntax

Parameters
BufferLength (MQLONG) – input

Length in bytes of the buffer containing the string padded with blanks. Must
be zero or greater.

Buffer (MQCHAR × BufferLength) – input
Buffer containing the blank-padded string. The length is given by the
BufferLength parameter. If zero is specified for BufferLength, the null pointer
can be specified for the address of the Buffer parameter; in all other cases, a
valid (nonnull) address must be specified for the Buffer parameter.

String (MQCHAR × (BufferLength+1)) – output
Buffer to receive the null-terminated string. The length of this buffer must be at
least one byte greater than the value of the BufferLength parameter.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqTrim call:

MQRC_BUFFER_ERROR
Buffer parameter not valid (invalid parameter address or buffer not
completely accessible).

MQRC_BUFFER_LENGTH_ERROR
Buffer length not valid.

MQRC_STRING_ERROR
String parameter not valid (invalid parameter address or buffer not
completely accessible).

Usage notes
1. If the two buffer pointers are the same, the trimming is done in place. If they

are not the same, the blank-padded string is copied into the null-terminated
string buffer. After copying, the buffer is scanned backwards from the end until
a nonspace character is found. The byte following the nonspace character is
then overwritten with a null character.

2. If String and Buffer partially overlap, the result is undefined.

mqTrim (BufferLength, Buffer, String, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 73

C language invocation
mqTrim (BufferLength, Buffer, String, &CompCode, &Reason);

Declare the parameters as follows:
MQLONG BufferLength; /* Buffer length */
PMQCHAR Buffer; /* Buffer containing blank-padded string */
MQCHAR String[n+1]; /* String with blanks discarded */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Note: This call is not supported in Visual Basic.

MQAI reference

74 MQSeries Administration Interface Programming Guide and Reference

mqTruncateBag

The mqTruncateBag call reduces the number of user items in a user bag to the
specified value, by deleting user items from the end of the bag.

Syntax

Parameters
Bag (MQHBAG) – input

Handle of the bag to be truncated. This must be the handle of a bag created by
the user, not the handle of a system bag;
MQRC_SYSTEM_BAG_NOT_ALTERABLE results if you specify the handle of
a system bag.

ItemCount (MQLONG) – input
The number of user items to remain in the bag after truncation. Zero is a valid
value.

Note: The ItemCount parameter is the number of data items, not the number of
unique selectors. (If there are one or more selectors that occur multiple
times in the bag, there will be fewer selectors than data items before
truncation.) Data items are deleted from the end of the bag, in the
opposite order to which they were added to the bag.

If the number specified exceeds the number of user items currently in the bag,
MQRC_ITEM_COUNT_ERROR results.

CompCode (MQLONG) – output
Completion code.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The following reason codes indicating error conditions can be returned from
the mqTruncateBag call:

MQRC_HBAG_ERROR
Bag handle not valid.

MQRC_ITEM_COUNT_ERROR
ItemCount parameter not valid (value exceeds the number of user data
items in the bag).

MQRC_SYSTEM_BAG_NOT_ALTERABLE
System bag cannot be altered or deleted.

Usage notes
1. System items in a bag are not affected by mqTruncateBag; the call cannot be

used to truncate system bags.
2. mqTruncateBag with an ItemCount of zero is not the same as the mqClearBag

call. The former deletes all of the user items but leaves the system items intact,
and the latter deletes all of the user items and resets the system items to their
initial values.

mqTruncateBag (Bag, ItemCount, CompCode, Reason)

MQAI reference

Chapter 5. MQAI reference 75

C language invocation
mqTruncateBag (Bag, ItemCount, &CompCode, &Reason);

Declare the parameters as follows:
MQHBAG hBag; /* Bag handle */
MQLONG ItemCount; /* Number of items to remain in bag */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Visual Basic invocation
(Supported on Windows NT only.)
mqTruncateBag Bag, ItemCount, CompCode, Reason

Declare the parameters as follows:
Dim Bag As Long 'Bag handle'
Dim ItemCount As Long 'Number of items to remain in bag'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQAI reference

76 MQSeries Administration Interface Programming Guide and Reference

Chapter 6. Examples of using the MQAI

This chapter includes some example programs that demonstrate use of the MQAI.
The samples perform the following tasks:
1. Create a local queue.
2. Print a list of all local queues and their current depths.
3. Display events on the screen using a simple event monitor.

Creating a local queue (amqsaicq.c)

/**/
/* */
/* Program name: AMQSAICQ.C */
/* */
/* Description: Sample C program to create a local queue using the MQSeries */
/* Administration Interface (MQAI). */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 84H2000, 5765-B73 */
/* 84H2001, 5639-B42 */
/* 84H2002, 5765-B74 */
/* 84H2003, 5765-B75 */
/* 84H2004, 5639-B43 */
/* */
/* (C) Copyright IBM Corp. 1999 */
/* */
/**/
/* */
/* Function: */
/* AMQSAICQ is a sample C program that creates a local queue and is an */
/* example of the use of the mqExecute call. */
/* */
/* - The name of the queue to be created is a parameter to the program. */
/* */
/* - A PCF command is built by placing items into an MQAI bag. */
/* These are:- */
/* - The name of the queue */
/* - The type of queue required, which, in this case, is local. */
/* */
/* - The mqExecute call is executed with the command MQCMD_CREATE_Q. */
/* The call generates the correct PCF structure. */
/* The call receives the reply from the command server and formats into */
/* the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server then the code returned by the */
/* command server is retrieved from the system bag that is */
/* embedded in the response bag to the mqExecute call. */
/* */
/* Note: The command server must be running. */
/* */
/* */

Figure 14. AMQSAICQ.C: Creating a local queue (Part 1 of 6)

© Copyright IBM Corp. 1999, 2000 77

/**/
/* */
/* AMQSAICQ has 2 parameters - the name of the local queue to be created */
/* - the queue manager name (optional) */
/* */
/**/
/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

void CheckCallResult(MQCHAR *, MQLONG , MQLONG);
void CreateLocalQueue(MQHCONN, MQCHAR *);

int main(int argc, char *argv[])
{

MQHCONN hConn; /* handle to MQSeries connection */
MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQLONG reason; /* reason code */

/***/
/* First check the required parameters */
/***/
printf("Sample Program to Create a Local Queue\n");
if (argc < 2)
{
printf("Required parameter missing - local queue name\n");
exit(99);

}

/***/
/* Connect to the queue manager */
/***/
if (argc > 2)

strncpy(QMName, argv[2], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONN(QMName, &hConn, &compCode, &connReason);

/**/
/* Report reason and stop if connection failed */
/**/

if (compCode == MQCC_FAILED)
{

CheckCallResult("MQCONN", compCode, connReason);
exit((int)connReason);

}

Figure 14. AMQSAICQ.C: Creating a local queue (Part 2 of 6)

Creating a local queue

78 MQSeries Administration Interface Programming Guide and Reference

/**/
/* Call the routine to create a local queue, passing the handle to the */
/* queue manager and also passing the name of the queue to be created. */
/**/

CreateLocalQueue(hConn, argv[1]);

/***/
/* Disconnect from the queue manager if not already connected */
/***/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hConn, &compCode, &reason);
CheckCallResult("MQDISC", compCode, reason);

}
return 0;

}
/**/
/* */
/* Function: CreateLocalQueue */
/* Description: Create a local queue by sending a PCF command to the command */
/* server. */
/* */
/**/
/* */
/* Input Parameters: Handle to the queue manager */
/* Name of the queue to be created */
/* */
/* Output Parameters: None */
/* */
/* Logic: The mqExecute call is executed with the command MQCMD_CREATE_Q. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent*/
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply is read from the temporary queue and formatted into the */
/* response bag. */
/* */
/* The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server then the code returned by the */
/* command server is retrieved from the system bag that is */
/* embedded in the response bag to the mqExecute call. */
/* */
/**/
void CreateLocalQueue(MQHCONN hConn, MQCHAR *qName)
{

MQLONG reason; /* reason code */
MQLONG compCode; /* completion code */
MQHBAG commandBag = MQHB_UNUSABLE_HBAG; /* command bag for mqExecute */
MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
MQHBAG resultBag; /* result bag from mqExecute */
MQLONG mqExecuteCC; /* mqExecute completion code */
MQLONG mqExecuteRC; /* mqExecute reason code */

printf("\nCreating Local Queue %s\n\n", qName);

Figure 14. AMQSAICQ.C: Creating a local queue (Part 3 of 6)

Creating a local queue

Chapter 6. Examples of using the MQAI 79

/***/
/* Create a command Bag for the mqExecute call. Exit the function if the */
/* create fails. */
/***/
mqCreateBag(MQCBO_ADMIN_BAG, &commandBag, &compCode, &reason);
CheckCallResult("Create the command bag", compCode, reason);
if (compCode !=MQCC_OK)

return;

/***/
/* Create a response Bag for the mqExecute call, exit the function if the */
/* create fails. */
/***/
mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);
CheckCallResult("Create the response bag", compCode, reason);
if (compCode !=MQCC_OK)

return;

/***/
/* Put the name of the queue to be created into the command bag. This will */
/* be used by the mqExecute call. */
/***/
mqAddString(commandBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, qName, &compCode,

&reason);
CheckCallResult("Add q name to command bag", compCode, reason);

/***/
/* Put queue type of local into the command bag. This will be used by the */
/* mqExecute call. */
/***/
mqAddInteger(commandBag, MQIA_Q_TYPE, MQQT_LOCAL, &compCode, &reason);
CheckCallResult("Add q type to command bag", compCode, reason);

/***/
/* Send the command to create the required local queue. */
/* The mqExecute call will create the PCF structure required, send it to */
/* the command server and receive the reply from the command server into */
/* the response bag. */
/***/
mqExecute(hConn, /* MQSeries connection handle */

MQCMD_CREATE_Q, /* Command to be executed */
MQHB_NONE, /* No options bag */
commandBag, /* Handle to bag containing commands */
responseBag, /* Handle to bag to receive the response*/
MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
MQHO_NONE, /* Create a dynamic q for the response */
&compCode, /* Completion code from the mqExecute */
&reason); /* Reason code from mqExecute call */

if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
{

printf("Please start the command server: <strmqcsv QMgrName>\n")
MQDISC(&hConn, &compCode, &reason);
CheckCallResult("MQDISC", compCode, reason);
exit(98);

}

Figure 14. AMQSAICQ.C: Creating a local queue (Part 4 of 6)

Creating a local queue

80 MQSeries Administration Interface Programming Guide and Reference

/***/
/* Check the result from mqExecute call and find the error if it failed. */
/***/
if (compCode == MQCC_OK)

printf("Local queue %s successfully created\n", qName);
else
{

printf("Creation of local queue %s failed: Completion Code = %d
qName, compCode, reason);

if (reason == MQRCCF_COMMAND_FAILED)
{

/***/
/* Get the system bag handle out of the mqExecute response bag. */
/* This bag contains the reason from the command server why the */
/* command failed. */
/***/
mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &resultBag, &compCode,

&reason);
CheckCallResult("Get the result bag handle", compCode, reason);

/***/
/* Get the completion code and reason code, returned by the command */
/* server, from the embedded error bag. */
/***/
mqInquireInteger(resultBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,

&compCode, &reason);
CheckCallResult("Get the completion code from the result bag",

compCode, reason);
mqInquireInteger(resultBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,

&compCode, &reason);
CheckCallResult("Get the reason code from the result bag", compCode,

reason);
printf("Error returned by the command server: Completion code = %d :

Reason = %d\n", mqExecuteCC, mqExecuteRC);
}

}
/***/
/* Delete the command bag if successfully created. */
/***/
if (commandBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&commandBag, &compCode, &reason);
CheckCallResult("Delete the command bag", compCode, reason);

}

/***/
/* Delete the response bag if successfully created. */
/***/
if (responseBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&responseBag, &compCode, &reason);
CheckCallResult("Delete the response bag", compCode, reason);

}
} /* end of CreateLocalQueue */

Figure 14. AMQSAICQ.C: Creating a local queue (Part 5 of 6)

Creating a local queue

Chapter 6. Examples of using the MQAI 81

/**/
/* */
/* Function: CheckCallResult */
/* */
/**/
/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */
/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/**/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{

if (cc != MQCC_OK)
printf("%s failed: Completion Code = %d :

Reason = %d\n", callText, cc, rc);

}

Figure 14. AMQSAICQ.C: Creating a local queue (Part 6 of 6)

Creating a local queue

82 MQSeries Administration Interface Programming Guide and Reference

Inquiring about queues and printing information (amqsailq.c)

/**/
/* */
/* Program name: AMQSAILQ.C */
/* */
/* Description: Sample C program to inquire the current depth of the local */
/* queues using the MQSeries Administration Interface (MQAI). */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 84H2000, 5765-B73 */
/* 84H2001, 5639-B42 */
/* 84H2002, 5765-B74 */
/* 84H2003, 5765-B75 */
/* 84H2004, 5639-B43 */
/* */
/* (C) Copyright IBM Corp. 1999 */
/* */
/**/
/* */
/* Function: */
/* AMQSAILQ is a sample C program that demonstrates how to inquire */
/* attributes of the local queue manager using the MQAI interface. In */
/* particular, it inquires the current depths of all the local queues. */
/* */
/* - A PCF command is built by placing items into an MQAI administration */
/* bag. */
/* These are:- */
/* - The generic queue name "*" */
/* - The type of queue required. In this sample we want to */
/* inquire local queues. */
/* - The attribute to be inquired. In this sample we want the */
/* current depths. */
/* */
/* - The mqExecute call is executed with the command MQCMD_INQUIRE_Q. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent */
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply from the MQCMD_INQUIRE_Q command is read from the */
/* temporary queue and formatted into the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server, then the code returned by */
/* command server is retrieved from the system bag that has been */
/* embedded in the response bag to the mqExecute call. */
/* */
/* - If the call is successful, the depth of each local queue is placed */
/* in system bags embedded in the response bag of the mqExecute call. */
/* The name and depth of each queue is obtained from each of the bags */
/* and the result displayed on the screen. */
/* */
/* Note: The command server must be running. */
/* */
/**/
/* */
/* AMQSAILQ has 1 parameter - the queue manager name (optional) */
/* */
/**/

Figure 15. AMQSAILQ.C: Inquiring on queues and printing information (Part 1 of 6)

Inquiring about queues and printing information

Chapter 6. Examples of using the MQAI 83

/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

/**/
/* Function prototypes */
/**/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);

/**/
/* Function: main */
/**/
int main(int argc, char *argv[])
{

/***/
/* MQAI variables */
/***/
MQHCONN hConn; /* handle to MQSeries connection */
MQCHAR qmName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQHBAG adminBag = MQHB_UNUSABLE_HBAG; /* admin bag for mqExecute */
MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
MQHBAG qAttrsBag; /* bag containing q attributes */
MQHBAG errorBag; /* bag containing cmd server error */
MQLONG mqExecuteCC; /* mqExecute completion code */
MQLONG mqExecuteRC; /* mqExecute reason code */
MQLONG qNameLength; /* Actual length of q name */
MQLONG qDepth; /* depth of queue */
MQLONG i; /* loop counter */
MQLONG numberOfBags; /* number of bags in response bag */
MQCHAR qName[MQ_Q_NAME_LENGTH+1]; /* name of queue extracted from bag*/

printf("Display current depths of local queues\n\n");

/***/
/* Connect to the queue manager */
/***/
if (argc > 1)

strncpy(qmName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONN(qmName, &hConn, &compCode, &connReason);

/***/
/* Report the reason and stop if the connection failed. */
/***/
if (compCode == MQCC_FAILED)
{

CheckCallResult("Queue Manager connection", compCode, connReason
exit((int)connReason);

}

Figure 15. AMQSAILQ.C: Inquiring on queues and printing information (Part 2 of 6)

Inquiring about queues and printing information

84 MQSeries Administration Interface Programming Guide and Reference

/***/
/* Create an admin bag for the mqExecute call */
/***/
mqCreateBag(MQCBO_ADMIN_BAG, &adminBag, &compCode, &reason);
CheckCallResult("Create admin bag", compCode, reason);
/***/
/* Create a response bag for the mqExecute call */
/***/
mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);
CheckCallResult("Create response bag", compCode, reason);

/***/
/* Put the generic queue name into the admin bag */
/***/
mqAddString(adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, "*",

&compCode, &reason);
CheckCallResult("Add q name", compCode, reason);

/***/
/* Put the local queue type into the admin bag */
/***/
mqAddInteger(adminBag, MQIA_Q_TYPE, MQQT_LOCAL, &compCode, &reason);
CheckCallResult("Add q type", compCode, reason);

/***/
/* Add an inquiry for current queue depths */
/***/
mqAddInquiry(adminBag, MQIA_CURRENT_Q_DEPTH, &compCode, &reason);
CheckCallResult("Add inquiry", compCode, reason);

/***/
/* Send the command to find all the local queue names and queue depths. */
/* The mqExecute call creates the PCF structure required, sends it to */
/* the command server, and receives the reply from the command server into */
/* the response bag. The attributes are contained in system bags that are */
/* embedded in the response bag, one set of attributes per bag. */
/***/
mqExecute(hConn, /* MQSeries connection handle */

MQCMD_INQUIRE_Q, /* Command to be executed */
MQHB_NONE, /* No options bag */
adminBag, /* Handle to bag containing commands */
responseBag, /* Handle to bag to receive the response*/
MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
MQHO_NONE, /* Create a dynamic q for the response */
&compCode, /* Completion code from the mqExecute */
&reason); /* Reason code from mqExecute call */

/***/
/* Check the command server is started. If not exit. */
/***/
if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
{

printf("Please start the command server: <strmqcsv QMgrName>\n");
MQDISC(&hConn, &compCode, &reason);
CheckCallResult("Disconnect from Queue Manager", compCode, reason);
exit(98);

}

Figure 15. AMQSAILQ.C: Inquiring on queues and printing information (Part 3 of 6)

Inquiring about queues and printing information

Chapter 6. Examples of using the MQAI 85

/***/
/* Check the result from mqExecute call. If successful find the current */
/* depths of all the local queues. If failed find the error. */
/***/
if (compCode == MQCC_OK) /* Successful mqExecute */
{
/***/
/* Count the number of system bags embedded in the response bag from the */
/* mqExecute call. The attributes for each queue are in a separate bag. */
/***/
mqCountItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags, &compCode,

&reason);
CheckCallResult("Count number of bag handles", compCode, reason);

for (i=0; i<numberOfBags; i++)
{
/***/
/* Get the next system bag handle out of the mqExecute response bag. */
/* This bag contains the queue attributes */
/***/
mqInquireBag(responseBag, MQHA_BAG_HANDLE, i, &qAttrsBag, &compCode,

&reason);
CheckCallResult("Get the result bag handle", compCode, reason);

/***/
/* Get the queue name out of the queue attributes bag */
/***/
mqInquireString(qAttrsBag, MQCA_Q_NAME, 0, MQ_Q_NAME_LENGTH, qName,

&qNameLength, NULL, &compCode, &reason);
CheckCallResult("Get queue name", compCode, reason);

/***/
/* Get the depth out of the queue attributes bag */
/***/
mqInquireInteger(qAttrsBag, MQIA_CURRENT_Q_DEPTH, MQIND_NONE, &qDepth,

&compCode, &reason);
CheckCallResult("Get depth", compCode, reason);

/***/
/* Use mqTrim to prepare the queue name for printing. */
/* Print the result. */
/***/
mqTrim(MQ_Q_NAME_LENGTH, qName, qName, &compCode, &reason)
printf("%4d %-48s\n", qDepth, qName);

}
}

else /* Failed mqExecute */
{
printf("Call to get queue attributes failed: Completion Code = %d :

Reason = %d\n", compCode, reason);

Figure 15. AMQSAILQ.C: Inquiring on queues and printing information (Part 4 of 6)

Inquiring about queues and printing information

86 MQSeries Administration Interface Programming Guide and Reference

/***/
/* If the command fails get the system bag handle out of the mqExecute */
/* response bag. This bag contains the reason from the command server */
/* why the command failed. */
/***/
if (reason == MQRCCF_COMMAND_FAILED)
{
mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &errorBag, &compCode,

&reason);
CheckCallResult("Get the result bag handle", compCode, reason);

/**/
/* Get the completion code and reason code, returned by the command */
/* server, from the embedded error bag. */
/**/
mqInquireInteger(errorBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,

&compCode, &reason);
CheckCallResult("Get the completion code from the result bag",

compCode, reason);
mqInquireInteger(errorBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,

&compCode, &reason);
CheckCallResult("Get the reason code from the result bag",

compCode, reason);
printf("Error returned by the command server: Completion Code = %d :

Reason = %d\n", mqExecuteCC, mqExecuteRC);
}

}

/**/
/* Delete the admin bag if successfully created. */
/**/
if (adminBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&adminBag, &compCode, &reason);
CheckCallResult("Delete the admin bag", compCode, reason);

}

/**/
/* Delete the response bag if successfully created. */
/**/
if (responseBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&responseBag, &compCode, &reason);
CheckCallResult("Delete the response bag", compCode, reason);

}

/**/
/* Disconnect from the queue manager if not already connected */
/**/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hConn, &compCode, &reason);
CheckCallResult("Disconnect from queue manager", compCode, reason);

}
return 0;

}

Figure 15. AMQSAILQ.C: Inquiring on queues and printing information (Part 5 of 6)

Inquiring about queues and printing information

Chapter 6. Examples of using the MQAI 87

***/
* */
* Function: CheckCallResult */
* */
***/
* */
* Input Parameters: Description of call */
* Completion code */
* Reason code */
* */
* Output Parameters: None */
* */
* Logic: Display the description of the call, the completion code and the */
* reason code if the completion code is not successful */
* */
***/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{
if (cc != MQCC_OK)

printf("%s failed: Completion Code = %d : Reason = %d\n",
callText, cc, rc);

}

Figure 15. AMQSAILQ.C: Inquiring on queues and printing information (Part 6 of 6)

Inquiring about queues and printing information

88 MQSeries Administration Interface Programming Guide and Reference

Displaying events using an event monitor (amqsaiem.c)

/**/
/* */
/* Program name: AMQSAIEM.C */
/* */
/* Description: Sample C program to demonstrate a basic event monitor */
/* using the MQSeries Administration Interface (MQAI). */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 84H2000, 5765-B73 */
/* 84H2001, 5639-B42 */
/* 84H2002, 5765-B74 */
/* 84H2003, 5765-B75 */
/* 84H2004, 5639-B43 */
/* */
/* (C) Copyright IBM Corp. 1999 */
/* */
/**/
/* */
/* Function: */
/* AMQSAIEM is a sample C program that demonstrates how to write a simple */
/* event monitor using the mqGetBag call and other MQAI calls. */
/* */
/* The name of the event queue to be monitored is passed as a parameter */
/* to the program. This would usually be one of the system event queues:- */
/* SYSTEM.ADMIN.QMGR.EVENT queue manager events */
/* SYSTEM.ADMIN.PERFM.EVENT Performance events */
/* SYSTEM.ADMIN.CHANNEL.EVENT Channel events */
/* To monitor the queue manager event queue or the Performance event queue */
/* the attributes of the queue manager will need to be changed to enable */
/* the events, refer to the MQSeries Programmable System Management */
/* book for more information. */
/* The queue manager attributes can be changed either by */
/* MQSC commands or using the MQAI interface. */
/* Channel events are enabled by default. */
/* */
/* Program logic */
/* Connect to the queue manager. */
/* Open the requested event queue with the wait unlimited option. */
/* Wait for a message and when it arrives get the message from the queue */
/* and format it into an MQAI bag with the mqGetBag call. */
/* There are many types of event messages and it is beyond the scope of */
/* this sample to program for all event messages. Instead print out the */
/* contents of the formatted bag. */
/* Loop around to wait for another message until either there is an error */
/* or the program is stopped by a user interrupt. */
/* */
/**/
/* */
/* AMQSAIEM has 2 parameters - the name of the event queue to be monitored */
/* - the queue manager name (optional) */
/* */
/**/

Figure 16. AMQSAIEM.C: Displaying events (Part 1 of 8)

Displaying events

Chapter 6. Examples of using the MQAI 89

/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

/**/
/* Function prototypes */
/**/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);
void GetQEvents(MQHCONN, MQCHAR *);
int PrintBag(MQHBAG);
int PrintBagContents(MQHBAG, int);

int main(int argc, char *argv[])
{

MQHCONN hConn; /* handle to connection */
MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QM name */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */

/***/
/* First check the required parameters */
/***/
printf("Sample Event Monitor (|C to stop)\n");
if (argc < 2)

{
printf("Required parameter missing - event queue to be monitored\n")
exit(99);

}

/***/
/* Connect to the queue manager */
/***/
if (argc > 2)
strncpy(QMName, argv[2], (size_t)MQ_Q_MGR_NAME_LENGTH);

MQCONN(QMName, &hConn, &compCode, &connReason);

/***/
/* Report the reason and stop if the connection failed */
/***/
if (compCode == MQCC_FAILED)
{

CheckCallResult("MQCONN", compCode, connReason);
exit((int)connReason);

}

/***/
/* Call the routine to open the event queue and format any event message */
/* read from the queue. */
/***/
GetQEvents(hConn, argv[1]);

Figure 16. AMQSAIEM.C: Displaying events (Part 2 of 8)

Displaying events

90 MQSeries Administration Interface Programming Guide and Reference

/***/
/* Disconnect from the queue manager if not already connected */
/***/
if (connReason != MQRC_ALREADY_CONNECTED)
{

MQDISC(&hConn, &compCode, &reason);
CheckCallResult("MQDISC", compCode, reason);

}

return 0;

}

/**/
/* */
/* Function: CheckCallResult */
/* */
/**/
/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */
/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/**/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{

if (cc != MQCC_OK)
printf("%s failed: Completion Code = %d : Reason = %d\n",

callText, cc, rc);

}

/**/
/* */
/* Function: GetQEvents */
/* */
/**/
/* */
/* Input Parameters: Handle to the queue manager */
/* Name of the event queue to be monitored */
/* */
/* Output Parameters: None */
/* */
/* Logic: Open the event queue. */
/* Get a message off the event queue and format the message into */
/* a bag. */
/* A real event monitor would need to be programmed to deal with */
/* each type of event that it receives from the queue. This is */
/* outside the scope of this sample so instead the contents of */
/* the bag are printed. */
/* The program waits forever for a message on the queue so the */
/* program must be terminated by a user interrupt (|C). */
/* */
/**/

Figure 16. AMQSAIEM.C: Displaying events (Part 3 of 8)

Displaying events

Chapter 6. Examples of using the MQAI 91

void GetQEvents(MQHCONN hConn, MQCHAR *qName)
{

MQLONG openReason; /* MQOPEN reason code */
MQLONG reason; /* reason code */
MQLONG compCode; /* completion code */
MQHOBJ eventQueue; /* handle to event queue */
MQHBAG eventBag = MQHB_UNUSABLE_HBAG; /* event bag to receive event msg */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
MQLONG bQueueOK = 1; /* keep reading msgs while true */
/***/
/* Create an Event Bag in which to receive the event. Message exit the */
/* function if the create fails. */
/***/
mqCreateBag(MQCBO_USER_BAG, &eventBag, &compCode, &reason);
CheckCallResult("Create event bag", compCode, reason);
if (compCode !=MQCC_OK)

return;

/***/
/* Open the event queue chosen by the user */
/***/
strncpy(od.ObjectName, qName, (size_t)MQ_Q_NAME_LENGTH);
MQOPEN(hConn, &od, MQOO_INPUT_AS_Q_DEF+MQOO_FAIL_IF_QUIESCING, &eventQueue,

&compCode, &openReason);
CheckCallResult("Open event queue", compCode, openReason);

/***/
/* Set the GMO options to control the action of the get message from the */
/* queue. */
/***/
gmo.WaitInterval = MQWI_UNLIMITED; /* Wait forever for a message */
gmo.Options = MQGMO_WAIT + MQGMO_FAIL_IF_QUIESCING;
gmo.Version = MQGMO_VERSION_2; /* Avoid need to reset Message ID */
gmo.MatchOptions = MQMO_NONE; /* and Correlation ID after every */

/* mqGetBag */

/***/
/* If open failed we cannot access the queue and must stop the monitor. */
/***/
if (compCode != MQCC_OK)
bQueueOK = 0;

/***/
/* Main loop to get an event message when it arrives */
/***/
while (bQueueOK)
{
printf("\nWaiting for an event\n");

/***/
/* Get the message from the event queue and convert it into the event */
/* bag. */
/***/
mqGetBag(hConn, eventQueue, &md, &gmo, eventBag, &compCode, &reason);
CheckCallResult("Get bag", compCode, reason);

Figure 16. AMQSAIEM.C: Displaying events (Part 4 of 8)

Displaying events

92 MQSeries Administration Interface Programming Guide and Reference

if (compCode != MQCC_OK)
bQueueOK = 0;

else
{
/***/
/* Event message read - Print the contents of the event bag */
/***/
if (PrintBag(eventBag))

printf("\nError found while printing bag contents\n");

} /* end of msg found */
} /* end of main loop */
/***/
/* Close the event queue if successfully opened */
/***/
if (openReason == MQRC_NONE)
{

MQCLOSE(hConn, &eventQueue, MQCO_NONE, &compCode, &reason);
CheckCallResult("Close event queue", compCode, reason);

}

/***/
/* Delete the event bag if successfully created. */
/***/
if (eventBag != MQHB_UNUSABLE_HBAG)
{

mqDeleteBag(&eventBag, &compCode, &reason);
CheckCallResult("Delete the event bag", compCode, reason);

}

} /* end of GetQEvents */

/**/
/* */
/* Function: PrintBag */
/* */
/**/
/* */
/* Input Parameters: Bag Handle */
/* */
/* Output Parameters: None */
/* */
/* Returns: Number of errors found */
/* */
/* Logic: Calls PrintBagContents to display the contents of the bag. */
/* */
/**/
int PrintBag(MQHBAG dataBag)
{

int errors;

printf("\n");
errors = PrintBagContents(dataBag, 0);
printf("\n");

return errors;
}

Figure 16. AMQSAIEM.C: Displaying events (Part 5 of 8)

Displaying events

Chapter 6. Examples of using the MQAI 93

/**/
/* */
/* Function: PrintBagContents */
/* */
/**/
/* */
/* Input Parameters: Bag Handle */
/* Indentation level of bag */
/* */
/* Output Parameters: None */
/* */
/* Returns: Number of errors found */
/* */
/* Logic: Count the number of items in the bag */
/* Obtain selector and item type for each item in the bag. */
/* Obtain the value of the item depending on item type and display the */
/* index of the item, the selector and the value. */
/* If the item is an embedded bag handle then call this function again */
/* to print the contents of the embedded bag increasing the */
/* indentation level. */
/* */
/**/
int PrintBagContents(MQHBAG dataBag, int indent)
{

#define LENGTH 500 /* Max length of string to be read*/
#define INDENT 4 /* Number of spaces to indent */

/* embedded bag display */

MQLONG itemCount; /* Number of items in the bag */
MQLONG itemType; /* Type of the item */
int i; /* Index of item in the bag */
char stringVal[LENGTH+1]; /* Value if item is a string */
MQLONG stringLength; /* Length of string value */
MQLONG ccsid; /* CCSID of string value */
MQLONG iValue; /* Value if item is an integer */
MQLONG selector; /* Selector of item */
MQHBAG bagHandle; /* Value if item is a bag handle */
MQLONG reason; /* reason code */
MQLONG compCode; /* completion code */
MQLONG trimLength; /* Length of string to be trimmed */
int errors = 0; /* Count of errors found */
char blanks[]= " "; /* Blank string used to */

/* indent display */

/***/
/* Count the number of items in the bag */
/***/
mqCountItems(dataBag, MQSEL_ALL_SELECTORS, &itemCount, &compCode, &reason);

if (compCode != MQCC_OK)
errors++;

else
{

printf("%.*sHandle:%d ", indent, blanks, dataBag);
printf("%.*sSize:%d\n", indent, blanks, itemCount);
printf("%.*sIndex: Selector: Value:\n", indent, blanks);

}

Figure 16. AMQSAIEM.C: Displaying events (Part 6 of 8)

Displaying events

94 MQSeries Administration Interface Programming Guide and Reference

/***/
/* If no errors found then display each item in the bag */
/***/
if (!errors)
{

for (i = 0; i < itemCount; i++)
{

/**/
/* First inquire the type of the item for each item in the bag */
/**/
mqInquireItemInfo(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Item can have any selector*/
i, /* Index position in the bag */
&selector, /* Actual value of selector */

/* returned by call */
&itemType, /* Actual type of item */

/* returned by call */
&compCode, /* Completion code */
&reason); /* Reason Code */

if (compCode != MQCC_OK)
errors++;

switch(itemType)
{
case MQIT_INTEGER:

/***/
/* Item is an integer. Find its value and display its index, */
/* selector and value. */
/***/
mqInquireInteger(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
&iValue, /* Returned integer value */
&compCode /* Completion code */
&reason); /* Reason Code */

if (compCode != MQCC_OK)
errors++;

else
printf("%.*s %-2d %-4d (%d)\n",

indent, blanks, i, selector, iValue);
break;

case MQIT_STRING:
/***/
/* Item is a string. Obtain the string in a buffer, prepare */
/* the string for displaying and display the index, selector, */
/* string and character set ID. */
/***/
mqInquireString(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
LENGTH, /* Maximum length of buffer */
stringVal, /* Buffer to receive string */
&stringLen /* Actual length of string */
&ccsid, /* Coded character set ID */
&reason); /* Reason Code */

Figure 16. AMQSAIEM.C: Displaying events (Part 7 of 8)

Displaying events

Chapter 6. Examples of using the MQAI 95

if (compCode == MQCC_FAILED)
errors++;

else
{

/**/
/* Remove trailing blanks from the string and terminate with*/
/* a null. First check that the string should not have been */
/* longer than the maximum buffer size allowed. */
/**/
if (stringLength > LENGTH)

trimLength = LENGTH;
else

trimLength = stringLength;
mqTrim(trimLength, stringVal, stringVal, &compCode, &reason);
printf("%.*s %-2d %-4d'%s' %d\n",

indent, blanks, i, selector, stringVal, ccsid);
}
break;

case MQIT_BAG:
/***/
/* Item is an embedded bag handle, so call the function again */
/* to display the contents. */
/***/
mqInquireBag(dataBag, /* Bag handle */

MQSEL_ANY_SELECTOR, /* Allow any selector */
i, /* Index position in the bag */
&bagHandle, /* Returned embedded bag hdle*/
&compCode, /* Completion code */
&reason); /* Reason Code */

if (compCode != MQCC_OK)
errors++;

else
{

printf("%.*s %-2d %-4d (%d)\n", indent, blanks,
i, selector, bagHandle);

printf("%.*sSystem Bag:\n", indent+INDENT, blanks);
PrintBagContents(bagHandle, indent+INDENT);

}
break;

default:
printf("%.*sUnknown item type", indent, blanks);

}
}

}
return errors;

}

Figure 16. AMQSAIEM.C: Displaying events (Part 8 of 8)

Changes

96 MQSeries Administration Interface Programming Guide and Reference

Chapter 7. Advanced topics

This chapter discusses the following:
v Indexing
v Data conversion
v Use of the message descriptor

Indexing
Each selector and value within a data item in a bag have three associated index
numbers:
v The index relative to other items that have the same selector.
v The index relative to the category of selector (user or system) to which the item

belongs.
v The index relative to all the data items in the bag (user and system).

This allows indexing by user selectors, system selectors, or both as shown in
Figure 17.

In Figure 17, user item 3 (selector A) can be referred to by the following index
pairs:

Selector ItemIndex

selector A 1

MQSEL_ANY_USER_SELECTOR 2

MQSEL_ANY_SELECTOR 3

The index is zero-based like an array in C; if there are ‘n’ occurrences, the index
ranges from zero through ‘n-1’, with no gaps.

Indexes are used when replacing or removing existing data items from a bag.
When used in this way, the insertion order is preserved, but indexes of other data

MQSEL_ANY_USER_SELECTOR MQSEL_ANY_SYSTEM_SELECTOR

MQSEL_ANY_SELECTOR

user
item

2

user
item

3

user
item

4

system
item

1

system
item

5

system
item

6

data bag

ItemIndex parameter

user
item

0

selector A selector B selector C selector A selector A selector D selector E

Figure 17. Indexing

© Copyright IBM Corp. 1999, 2000 97

items can be affected. For examples of this, see “Changing information within a
bag” on page 8 and “Deleting data items” on page 9.

The three types of indexing allow easy retrieval of data items. For example, if there
are three instances of a particular selector in a bag, the mqCountItems call can
count the number of instances of that selector, and the mqInquire* calls can specify
both the selector and the index to inquire those values only. This is useful for
attributes that can have a list of values such as some of the exits on channels.

Data conversion
Like PCF messages, the strings contained in an MQAI data bag can be in a variety
of coded character sets. Usually, all of the strings in a PCF message are in the same
coded character set; that is, the same set as the queue manager.

Each string item in a data bag contains two values; the string itself and the CCSID.
The string that is added to the bag is obtained from the Buffer parameter of the
mqAddString or mqSetString call. The CCSID is obtained from the system item
containing a selector of MQIASY_CODED_CHAR_SET_ID. This is known as the
bag CCSID and can be changed using the mqSetInteger call.

When you inquire the value of a string contained in a data bag, the CCSID is an
output parameter from the call.

Table 1 shows the rules applied when converting data bags into messages and vice
versa:

Table 1. CCSID processing

MQAI call CCSID Input to call Output to call

mqBagToBuffer Bag CCSID (1) Ignored Unchanged

String CCSIDs in bag Used Unchanged

String CCSIDs in
buffer

Not applicable Copied from string
CCSIDs in bag

mqBufferToBag Bag CCSID (1) Ignored Unchanged

String CCSIDs in
buffer

Used Unchanged

String CCSIDs in bag Not applicable Copied from string
CCSIDs in buffer

mqPutBag MQMD CCSID Used Unchanged (2)

Bag CCSID (1) Ignored Unchanged

String CCSIDs in bag Used Unchanged

String CCSIDs in
message sent

Not applicable Copied from string
CCSIDs in bag

mqGetBag MQMD CCSID Used for data
conversion of
message

Set to CCSID of data
returned (3)

Bag CCSID (1) Ignored Unchanged

String CCSIDs in
message

Used Unchanged

String CCSIDs in bag Not applicable Copied from string
CCSIDs in message

Indexing

98 MQSeries Administration Interface Programming Guide and Reference

Table 1. CCSID processing (continued)

MQAI call CCSID Input to call Output to call

mqExecute Request-bag CCSID Used for MQMD of
request message (4)

Unchanged

Reply-bag CCSID Used for data
conversion of reply
message (4)

Set to CCSID of data
returned (3)

String CCSIDs in
request bag

Used for request
message

Unchanged

String CCSIDs in
reply bag

Not applicable Copied from string
CCSIDs in reply
message

Notes:
1. Bag CCSID is the system item with selector MQIASY_CODED_CHAR_SET_ID.
2. MQCCSI_Q_MGR is changed to the actual queue manager CCSID.
3. If data conversion is requested, the CCSID of data returned is the same as the output

value. If data conversion is not requested, the CCSID of data returned is the same as
the message value. Note that no message is returned if data conversion is requested but
fails.

4. If the CCSID is MQCCSI_DEFAULT, the queue manager’s CCSID is used.

Use of the message descriptor
The PCF command type is obtained from the system item with selector
MQIASY_TYPE. When you create your data bag, the initial value of this item is set
depending on the type of bag you create:

Table 2. PCF command type

Type of bag Initial value of MQIASY_TYPE item

MQCBO_ADMIN_BAG MQCFT_COMMAND

MQCBO_COMMAND_BAG MQCFT_COMMAND

MQCBO_* MQCFT_USER

When the MQAI generates a message descriptor, the values used in the Format and
MsgType parameters depend on the value of the system item with selector
MQIASY_TYPE as shown in Table 2.

Table 3. Format and MsgType parameters of the MQMD

PCF command type Format MsgType

MQCFT_COMMAND MQFMT_ADMIN MQMT_REQUEST

MQCFT_RESPONSE MQFMT_ADMIN MQMT_REPLY

MQCFT_EVENT MQFMT_EVENT MQMT_DATAGRAM

MQCFT_* MQFMT_PCF MQMT_DATAGRAM

Table 3 shows that if you create an administration bag or a command bag, the
Format of the message descriptor is MQFMT_ADMIN and the MsgType is
MQMT_REQUEST. This is suitable for a PCF request message sent to the command
server when a response is expected back.

Data conversion

Chapter 7. Advanced topics 99

Other parameters in the message descriptor take the values shown in Table 4 .

Table 4. Message descriptor values

Parameter Value

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_1

Report MQRO_NONE

MsgType see Table 3 on page 99

Expiry 30 seconds (note 1)

Feedback MQFB_NONE

Encoding MQENC_NATIVE

CodedCharSetId depends on the bag CCSID (note 2)

Format see Table 3 on page 99

Priority MQPRI_PRIORITY_AS_Q_DEF

Persistence MQPER_NOT_PERSISTENT

MsgId MQMI_NONE

CorelId MQCI_NONE

BackoutCount 0

ReplyToQ see note 3

ReplyToQMgr blank

Notes:

1. This value can be overriden on the the mqExecute call by using the OptionsBag
parameter. For information about this, see “mqExecute” on page 44.

2. See “Data conversion” on page 98.

3. Name of the user-specified reply queue or MQAI-generated temporary dynamic queue
for messages of type MQMT_REQUEST. Blank otherwise.

Message descriptor

100 MQSeries Administration Interface Programming Guide and Reference

Appendix A. Return codes

For each call, a completion code and a reason code are returned by the queue
manager or by an exit routine, to indicate the success or failure of the call.

Applications must not depend upon errors being checked for in a specific order,
except where specifically noted. If more than one completion code or reason code
could arise from a call, the particular error reported depends on the
implementation.

Completion codes
The completion code parameter (CompCode) allows the caller to see quickly whether
the call completed successfully, completed partially, or failed.

The following is a list of completion codes, with more detail than is given in the
call descriptions:

MQCC_OK
Successful completion.

The call completed fully; all output parameters have been set. The Reason
parameter always has the value MQRC_NONE in this case.

MQCC_WARNING
Warning (partial completion).

The call completed partially. Some output parameters may have been set in
addition to the CompCode and Reason output parameters. The Reason
parameter gives additional information about the partial completion.

MQCC_FAILED
Call failed.

The processing of the call did not complete, and the state of the queue
manager is normally unchanged; exceptions are specifically noted. The
CompCode and Reason output parameters have been set; other parameters
are unchanged, except where noted.

The reason may be a fault in the application program, or it may be a result
of some situation external to the program, for example the application’s
authority may have been revoked. The Reason parameter gives additional
information about the error.

Reason codes
The reason code parameter (Reason) is a qualification to the completion code
parameter (CompCode).

If there is no special reason to report, MQRC_NONE is returned. A successful call
returns MQCC_OK and MQRC_NONE.

If the completion code is either MQCC_WARNING or MQCC_FAILED, the queue
manager always reports a qualifying reason; details are given under each call
description.

© Copyright IBM Corp. 1999, 2000 101

The following is a list of reason codes, in alphabetic order, with more detail than is
given in the call descriptions.

MQRC_BAG_CONVERSION_ERROR
(2303, X'8FF') Data could not be converted into a bag.

The mqBufferToBag or mqGetBag call was issued, but the data in the
buffer or message could not be converted into a bag. This occurs when the
data to be converted is not valid PCF.

Corrective action: Check the logic of the application that created the buffer
or message to ensure that the buffer or message contains valid PCF.

If the message contains PCF that is not valid, the message cannot be
retrieved using the mqGetBag call:
v If one of the MQGMO_BROWSE_* options was specified, the message

remains on the queue and can be retrieved using the MQGET call.
v In other cases, the message has already been removed from the queue

and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

MQRC_BAG_WRONG_TYPE
(2326, X'916') Bag has wrong type for intended use.

The Bag parameter specifies the handle of a bag that has the wrong type
for the call. The bag must be an administration bag, that is, it must be
created with the MQCBO_ADMIN_BAG option specified on the
mqCreateBag call.

Corrective action: Specify the MQCBO_ADMIN_BAG option when the bag
is created.

MQRC_BUFFER_ERROR
(2004, X'7D4') Buffer parameter not valid.

The Buffer parameter is not valid for one of the following reasons:
v The parameter pointer is not valid. (It is not always possible to detect

parameter pointers that are not valid; if not detected, unpredictable
results occur.)

v The parameter pointer points to storage that cannot be accessed for the
entire length specified by BufferLength.

v For calls where Buffer is an output parameter: the parameter pointer
points to read-only storage.

Corrective action: Correct the parameter.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'7D5') Buffer length parameter not valid.

The BufferLength parameter is not valid, or the parameter pointer is not
valid. (It is not always possible to detect parameter pointers that are not
valid; if not detected, unpredictable results occur.)

Corrective action: Specify a value that is zero or greater. For the
mqAddString and mqSetString calls, the special value
MQBL_NULL_TERMINATED is also valid.

MQRC_CMD_SERVER_NOT_AVAILABLE
(2322, X'912') Command server not available.

Return codes

102 MQSeries Administration Interface Programming Guide and Reference

The command server that processes administration commands is not
available.

Corrective action: Start the command server.

MQRC_CODED_CHAR_SET_ID_ERROR
(2330, X'91A') Coded character set identifier parameter not valid.

The CodedCharSetId parameter is not valid. Either the parameter pointer is
not valid, or it points to read-only storage. (It is not always possible to
detect parameter pointers that are not valid; if not detected, unpredictable
results occur.)

Corrective action: Correct the parameter.

MQRC_COMMAND_TYPE_ERROR
(2300, X'8FC') Command type not valid.

The mqExecute call was issued, but the value of the MQIASY_TYPE data
item in the administration bag is not MQCFT_COMMAND.

Corrective action: Ensure that the MQIASY_TYPE data item in the
administration bag has the value MQCFT_COMMAND.

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

The DataLength parameter is not valid. Either the parameter pointer is not
valid, or it points to read-only storage. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

This reason can also be returned to an MQ client program that is putting
and getting messages, if the application message data is longer than the
negotiated maximum message size for the channel.

Corrective action: Correct the parameter.

If the error occurs for an MQ client program, also check that the maximum
message size for the channel is big enough to accommodate the message
being sent; if it is not big enough, increase the maximum message size for
the channel.

MQRC_ENCODING_NOT_SUPPORTED
(2308, X'904') Encoding not supported.

The Encoding field in the message descriptor MQMD contains a value that
is not supported:
v For the mqPutBag call, the field in error resides in the MsgDesc

parameter of the call.
v For the mqGetBag call, the field in error resides in:

– The MsgDesc parameter of the call if the MQGMO_CONVERT option
was specified.

– The message descriptor of the message about to be retrieved if
MQGMO_CONVERT was not specified.

Corrective action: The value must be MQENC_NATIVE.

If the value of the Encoding field in the message is not valid, the message
cannot be retrieved using the mqGetBag call:
v If one of the MQGMO_BROWSE_* options was specified, the message

remains on the queue and can be retrieved using the MQGET call.

Return codes

Appendix A. Return codes 103

v In other cases, the message has already been removed from the queue
and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

MQRC_FORMAT_NOT_SUPPORTED
(2317, X'90D') Format not supported.

The Format field in the message descriptor MQMD contains a value that is
not supported:
v For the mqPutBag call, the field in error resides in the MsgDesc

parameter of the call.
v For the mqGetBag call, the field in error resides in the message

descriptor of the message about to be retrieved.

Corrective action: The value must be one of the following:
MQFMT_ADMIN
MQFMT_EVENT
MQFMT_PCF

If the value of the Format field in the message is none of these values, the
message cannot be retrieved using the mqGetBag call:
v If one of the MQGMO_BROWSE_* options was specified, the message

remains on the queue and can be retrieved using the MQGET call.
v In other cases, the message has already been removed from the queue

and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

MQRC_HBAG_ERROR
(2320, X'910') Bag handle not valid.

A call was issued that has a parameter that is a bag handle, but the handle
is not valid. For output parameters, this reason also occurs if the parameter
pointer is not valid, or points to read-only storage. (It is not always
possible to detect parameter pointers that are not valid; if not detected,
unpredictable results occur.)

Corrective action: Correct the parameter.

MQRC_INCONSISTENT_ITEM_TYPE
(2313, X'909') Data type of item differs from previous occurrence of selector.

The mqAddInteger or mqAddString call was issued to add another
occurrence of the specified selector to the bag, but the data type of this
occurrence differed from the data type of the first occurrence.

This reason can also occur on the mqBufferToBag and mqGetBag calls,
where it indicates that the PCF in the buffer or message contains a selector
that occurs more than once but with inconsistent data types.

Corrective action: For the mqAddInteger and mqAddString calls, use the
call appropriate to the data type of the first occurrence of that selector in
the bag.

For the mqBufferToBag and mqGetBag calls, check the logic of the
application that created the buffer or sent the message to ensure that
multiple-occurrence selectors occur with only one data type. A message
that contains a mixture of data types for a selector cannot be retrieved
using the mqGetBag call:

Return codes

104 MQSeries Administration Interface Programming Guide and Reference

v If one of the MQGMO_BROWSE_* options was specified, the message
remains on the queue and can be retrieved using the MQGET call.

v In other cases, the message has already been removed from the queue
and discarded. If the message was retrieved within a unit of work, the
unit of work can be backed out and the message retrieved using the
MQGET call.

MQRC_INDEX_ERROR
(2314, X'90A') Index not valid.

An index parameter to a call or method has a value that is not valid. The
value must be zero or greater. For bag calls, certain MQIND_* values can
also be specified:
v For the mqDeleteItem, mqSetInteger and mqSetString calls,

MQIND_ALL and MQIND_NONE are valid.
v For the mqInquireBag, mqInquireInteger, mqInquireString, and

mqInquireItemInfo calls, MQIND_NONE is valid.

Corrective action: Specify a valid value.

MQRC_INDEX_NOT_PRESENT
(2306, X'902') Index not present.

The specified index is not present:
v For a bag, this means that the bag contains one or more data items that

have the selector value specified by the Selector parameter, but none of
them has the index value specified by the ItemIndex parameter. The data
item identified by the Selector and ItemIndex parameters must exist in
the bag.

v For a namelist, this means that the index parameter value is too large,
and outside the range of valid values.

Corrective action: Specify the index of a data item that does exist in the
bag or namelist. Use the mqCountItems call to determine the number of
data items with the specified selector that exist in the bag, or the
nameCount method to determine the number of names in the namelist.

MQRC_INQUIRY_COMMAND_ERROR
(2324, X'914') Command code is not a recognized inquiry command.

The mqAddInquiry call was used previously to add attribute selectors to
the bag, but the command code to be used for the mqBagToBuffer,
mqExecute, or mqPutBag call is not recognized. As a result, the correct
PCF message cannot be generated.

Corrective action: Remove the mqAddInquiry calls and use instead the
mqAddInteger call with the appropriate MQIACF_*_ATTRS or
MQIACH_*_ATTRS selectors.

MQRC_ITEM_COUNT_ERROR
(2316, X'90C') ItemCount parameter not valid.

The mqTruncateBag call was issued, but the ItemCount parameter specifies
a value that is not valid. The value is either less than zero, or greater than
the number of user-defined data items in the bag.

This reason also occurs on the mqCountItems call if the parameter pointer
is not valid, or points to read-only storage. (It is not always possible to
detect parameter pointers that are not valid; if not detected, unpredictable
results occur.)

Return codes

Appendix A. Return codes 105

Corrective action: Specify a valid value. Use the mqCountItems call to
determine the number of user-defined data items in the bag.

MQRC_ITEM_TYPE_ERROR
(2327, X'917') ItemType parameter not valid.

The mqInquireItemInfo call was issued, but the ItemType parameter is not
valid. Either the parameter pointer is not valid, or it points to read-only
storage. (It is not always possible to detect parameter pointers that are not
valid; if not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

MQRC_ITEM_VALUE_ERROR
(2319, X'90F') ItemValue parameter not valid.

The mqInquireBag or mqInquireInteger call was issued, but the ItemValue
parameter is not valid. Either the parameter pointer is not valid, or it
points to read-only storage. (It is not always possible to detect parameter
pointers that are not valid; if not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

MQRC_MULTIPLE_INSTANCE_ERROR
(2301, X'8FD') Multiple instances of system data item not valid.

The Selector parameter specifies a system selector (one of the MQIASY_*
values), but the value of the ItemIndex parameter is not MQIND_NONE.
Only one instance of each system selector can exist in the bag.

Corrective action: Specify MQIND_NONE for the ItemIndex parameter.

MQRC_NEGATIVE_LENGTH
(6117, X'17E5') Length is negative.

To be added...

Corrective action: To be added...

MQRC_NESTED_BAG_NOT_SUPPORTED
(2325, X'915') Input bag contains one or more nested bags.

A bag which is input to the call contains nested bags. Nested bags are
supported only for bags which are output from the call.

Corrective action: Use a different bag as input to the call.

MQRC_NO_MSG_AVAILABLE
(2033, X'7F1') No message available.

An MQGET call was issued, but there is no message on the queue
satisfying the selection criteria specified in MQMD (the MsgId and CorrelId
fields), and in MQGMO (the Options and MatchOptions fields). Either the
MQGMO_WAIT option was not specified, or the time interval specified by
the WaitInterval field in MQGMO has expired. This reason is also
returned for an MQGET call for browse, when the end of the queue has
been reached.

This reason code can also be returned by the mqGetBag and mqExecute
calls. mqGetBag is similar to MQGET. For the mqExecute call, the
completion code can be either MQCC_WARNING or MQCC_FAILED:
v If the completion code is MQCC_WARNING, some response messages

were received during the specified wait interval, but not all. The
response bag contains system-generated nested bags for the messages
that were received.

Return codes

106 MQSeries Administration Interface Programming Guide and Reference

v If the completion code is MQCC_FAILED, no response messages were
received during the specified wait interval.

Corrective action: If this is an expected condition, no corrective action is
required.

If this is an unexpected condition, check whether the message was put on
the queue successfully, and whether the options controlling the selection
criteria are specified correctly. All of the following can affect the eligibility
of a message for return on the MQGET call:

MQGMO_LOGICAL_ORDER
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_COMPLETE_MSG
MQMO_MATCH_MSG_ID
MQMO_MATCH_CORREL_ID
MQMO_MATCH_GROUP_ID
MQMO_MATCH_MSG_SEQ_NUMBER
MQMO_MATCH_OFFSET
MsgId field
CorrelId field

Consider waiting longer for the message.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

The Options parameter contains options that are not valid, or a
combination of options that is not valid.

Corrective action: Specify valid options. Check the description of the
Options parameter to determine which options and combinations of
options are valid. If multiple options are being set by adding the
individual options together, ensure that the same option is not added
twice.

MQRC_OUT_SELECTOR_ERROR
(2310, X'906') OutSelector parameter not valid.

The OutSelector parameter is not valid. Either the parameter pointer is not
valid, or it points to read-only storage. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Corrective action: Correct the parameter.

MQRC_PARAMETER_MISSING
(2321, X'911') Parameter missing.

An administration message requires a parameter that is not present in the
administration bag. This reason code occurs only for bags created with the
MQCBO_ADMIN_BAG or MQCBO_REORDER_AS_REQUIRED options.

Corrective action: Review the description of the administration command
being issued, and ensure that all required parameters are present in the
bag.

MQRC_RFH_COMMAND_ERROR
(2336, X'920') Command not valid.

The message contains an MQRFH structure, but the command name
contained in the NameValueString field is not valid.

Return codes

Appendix A. Return codes 107

Corrective action: Modify the application that generated the message to
ensure that it places in the NameValueString field a command name that is
valid.

MQRC_RFH_DUPLICATE_PARM
(2338, X'922') Duplicate parameter.

The message contains an MQRFH structure, but a parameter occurs more
than once in the NameValueString field when only one occurrence is valid
for the specified command.

Corrective action: Modify the application that generated the message to
ensure that it places in the NameValueString field only one occurrence of
the parameter.

MQRC_RFH_ERROR
(2334, X'91E') MQRFH structure not valid.

The message contains an MQRFH structure, but the structure is not valid.

Corrective action: Modify the application that generated the message to
ensure that it places a valid MQRFH structure in the message data.

MQRC_RFH_PARM_ERROR
(2337, X'921') Parameter not valid.

The message contains an MQRFH structure, but a parameter name
contained in the NameValueString field is not valid for the command
specified.

Corrective action: Modify the application that generated the message to
ensure that it places in the NameValueString field only parameters that are
valid for the specified command.

MQRC_RFH_PARM_MISSING
(2339, X'923') Parameter missing.

The message contains an MQRFH structure, but the command specified in
the NameValueString field requires a parameter that is not present.

Corrective action: Modify the application that generated the message to
ensure that it places in the NameValueString field all parameters that are
required for the specified command.

MQRC_RFH_STRING_ERROR
(2335, X'91F') NameValueString field not valid.

The contents of the NameValueString field in the MQRFH structure are not
valid. NameValueString must adhere to the following rules:
v The string must consist of zero or more name/value pairs separated

from each other by one or more blanks; the blanks are not significant.
v If a name or value contains blanks that are significant, the name or value

must be enclosed in double-quote characters.
v If a name or value itself contains one or more double-quote characters,

the name or value must be enclosed in double-quote characters, and
each embedded double-quote character must be doubled.

v A name or value can contain any characters other than the null, which
acts as a delimiter. The null and characters following it, up to the
defined length of NameValueString, are ignored.

The following is a valid NameValueString:
Famous_Words "The program displayed ""Hello World"""

Return codes

108 MQSeries Administration Interface Programming Guide and Reference

Corrective action: Modify the application that generated the message to
ensure that it places in the NameValueString field data that adheres to the
rules listed above. Check that the StrucLength field is set to the correct
value.

MQRC_SELECTOR_NOT_PRESENT
(2309, X'905') Selector not present in bag.

The Selector parameter specifies a selector that does not exist in the bag.

Corrective action: Specify a selector that does exist in the bag.

MQRC_SELECTOR_NOT_SUPPORTED
(2318, X'90E') System selector not supported.

The Selector parameter specifies a value that is a system selector (a value
that is negative), but the system selector is not one that is supported by the
call.

Corrective action: Specify a selector value that is supported.

MQRC_SELECTOR_NOT_UNIQUE
(2305, X'901') Selector occurs more than once in bag.

The ItemIndex parameter has the value MQIND_NONE, but the bag
contains more than one data item with the selector value specified by the
Selector parameter. MQIND_NONE requires that the bag contain only one
occurrence of the specified selector.

This reason code also occurs on the mqExecute call when the
administration bag contains two or more occurrences of a selector for a
required parameter that permits only one occurrence.

Corrective action: Check the logic of the application that created the bag. If
correct, specify for ItemIndex a value that is zero or greater, and add
application logic to process all of the occurrences of the selector in the bag.

Review the description of the administration command being issued, and
ensure that all required parameters are defined correctly in the bag.

MQRC_SELECTOR_OUT_OF_RANGE
(2304, X'900') Selector not within valid range for call.

The Selector parameter has a value that is outside the valid range for the
call. If the bag was created with the MQCBO_CHECK_SELECTORS option:
v For the mqAddInteger call, the value must be within the range

MQIA_FIRST through MQIA_LAST.
v For the mqAddString call, the value must be within the range

MQCA_FIRST through MQCA_LAST.

If the bag was not created with the MQCBO_CHECK_SELECTORS option:
v The value must be zero or greater.

Corrective action: Specify a valid value.

MQRC_SELECTOR_TYPE_ERROR
(2299, X'8FB') Selector has wrong data type.

The Selector parameter has the wrong data type; it must be of type Long.

Corrective action: Declare the Selector parameter as Long.

MQRC_SELECTOR_WRONG_TYPE
(2312, X'908') Selector implies a data type not valid for call.

Return codes

Appendix A. Return codes 109

A data item with the specified selector exists in the bag, but has a data
type that conflicts with the data type implied by the call being used. For
example, the data item might have an integer data type, but the call being
used might be mqSetString, which implies a character data type.

This reason code also occurs on the mqBagToBuffer, mqExecute, and
mqPutBag calls when mqAddString or mqSetString was used to add the
MQIACF_INQUIRY data item to the bag.

Corrective action: For the mqSetInteger and mqSetString calls, specify
MQIND_ALL for the ItemIndex parameter to delete from the bag all
existing occurrences of the specified selector before creating the new
occurrence with the required data type.

For the mqInquireBag, mqInquireInteger, and mqInquireString calls, use
the mqInquireItemInfo call to determine the data type of the item with the
specified selector, and then use the appropriate call to determine the value
of the data item.

For the mqBagToBuffer, mqExecute, and mqPutBag calls, ensure that the
MQIACF_INQUIRY data item is added to the bag using the mqAddInteger
or mqSetInteger calls.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

The call failed because there is insufficient main storage available.

Corrective action: Ensure that active applications are behaving correctly, for
example, that they are not looping unexpectedly. If no problems are found,
make more main storage available.

MQRC_STRING_ERROR
(2307, X'903') String parameter not valid.

The String parameter is not valid. Either the parameter pointer is not
valid, or it points to read-only storage. (It is not always possible to detect
parameter pointers that are not valid; if not detected, unpredictable results
occur.)

Corrective action: Correct the parameter.

MQRC_STRING_LENGTH_ERROR
(2323, X'913') StringLength parameter not valid.

The StringLength parameter is not valid. Either the parameter pointer is
not valid, or it points to read-only storage. (It is not always possible to
detect parameter pointers that are not valid; if not detected, unpredictable
results occur.)

Corrective action: Correct the parameter.

MQRC_STRING_TRUNCATED
(2311, X'907') String truncated (too long for output buffer).

The string returned by the call is too long to fit in the buffer provided. The
string has been truncated to fit in the buffer.

Corrective action: If the entire string is required, provide a larger buffer.
On the mqInquireString call, the StringLength parameter is set by the call
to indicate the size of the buffer required to accommodate the string
without truncation.

Return codes

110 MQSeries Administration Interface Programming Guide and Reference

MQRC_SYSTEM_BAG_NOT_ALTERABLE
(2315, X'90B') System bag is read-only and cannot be altered.

A call was issued to add a data item to a bag, modify the value of an
existing data item in a bag, or retrieve a message into a bag, but the call
failed because the bag is one that had been created by the system as a
result of a previous mqExecute call. System bags cannot be modified by
the application.

Corrective action: Specify the handle of a bag created by the application, or
remove the call.

MQRC_SYSTEM_BAG_NOT_DELETABLE
(2328, X'918') System bag is read-only and cannot be deleted.

An mqDeleteBag call was issued to delete a bag, but the call failed because
the bag is one that had been created by the system as a result of a previous
mqExecute call. System bags cannot be deleted by the application.

Corrective action: Specify the handle of a bag created by the application, or
remove the call.

MQRC_SYSTEM_ITEM_NOT_ALTERABLE
(2302, X'8FE') System data item is read-only and cannot be altered.

A call was issued to modify the value of a system data item in a bag (a
data item with one of the MQIASY_* selectors), but the call failed because
the data item is one that cannot be altered by the application.

Corrective action: Specify the selector of a user-defined data item, or
remove the call.

MQRC_SYSTEM_ITEM_NOT_DELETABLE
(2329, X'919') System data item is read-only and cannot be deleted.

A call was issued to delete a system data item from a bag (a data item
with one of the MQIASY_* selectors), but the call failed because the data
item is one that cannot be deleted by the application.

Corrective action: Specify the selector of a user-defined data item, or
remove the call.

The following MQRCCF_* reason code is also mentioned in this book; for details of
other MQRCCF_* reason codes associated with PCF commands, refer to the
MQSeries Programmable System Management book:

MQRCCF_CFH_COMMAND_ERROR
Command identifier not valid.

The MQCFH Command field value was not valid.

Corrective action: Specify a valid command identifier.

For a summary of these reason codes in numerical order, see “Appendix B.
Constants in C” on page 113.

Return codes

Appendix A. Return codes 111

Changes

112 MQSeries Administration Interface Programming Guide and Reference

Appendix B. Constants in C

This appendix specifies the values of the named constants mentioned in this book.
For MQI constants, refer to the MQSeries Intercommunication book and the MQSeries
Programmable System Management book.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.
/* Create-bag options for mqCreateBag */
#define MQCBO_NONE (0x00000000L)
#define MQCBO_USER_BAG (0x00000000L)
#define MQCBO_ADMIN_BAG (0x00000001L)
#define MQCBO_COMMAND_BAG (0x00000010L)
#define MQCBO_SYSTEM_BAG (0x00000020L)
#define MQCBO_LIST_FORM_ALLOWED (0x00000002L)
#define MQCBO_LIST_FORM_INHIBITED (0x00000000L)
#define MQCBO_REORDER_AS_REQUIRED (0x00000004L)
#define MQCBO_DO_NOT_REORDER (0x00000000L)
#define MQCBO_CHECK_SELECTORS (0x00000008L)
#define MQCBO_DO_NOT_CHECK_SELECTORS (0x00000000L)

/* Special selector values */
#define MQSEL_ANY_SELECTOR (-30001L)
#define MQSEL_ANY_USER_SELECTOR (-30002L)
#define MQSEL_ANY_SYSTEM_SELECTOR (-30003L)
#define MQSEL_ALL_SELECTORS (-30001L)
#define MQSEL_ALL_USER_SELECTORS (-30002L)
#define MQSEL_ALL_SYSTEM_SELECTORS (-30003L)

/* Integer user selectors */
#define MQIACF_ALL 1009L
#define MQIACF_INQUIRY 1074L
#define MQIACF_WAIT_INTERVAL 1075L

/* Handle user selectors */
#define MQHA_BAG_HANDLE 4001L

/* Limits for handle user selectors */
#define MQHA_FIRST 4001L
#define MQHA_LAST_USED 4001L
#define MQHA_LAST 6000L

/* Limits for selectors for object attributes */
#define MQOA_FIRST 1L
#define MQOA_LAST 6000L

/* Integer system selectors */
#define MQIASY_FIRST (-1L)
#define MQIASY_CODED_CHAR_SET_ID (-1L)
#define MQIASY_TYPE (-2L)
#define MQIASY_COMMAND (-3L)
#define MQIASY_MSG_SEQ_NUMBER (-4L)
#define MQIASY_CONTROL (-5L)
#define MQIASY_COMP_CODE (-6L)
#define MQIASY_REASON (-7L)
#define MQIASY_BAG_OPTIONS (-8L)
#define MQIASY_LAST_USED (-8L)
#define MQIASY_LAST (-2000L)

© Copyright IBM Corp. 1999, 2000 113

/* Limits for integer system selectors */
#define MQIASY_FIRST (-1L)
#define MQIASY_LAST_USED (-7L)
#define MQIASY_LAST (-2000L)

/* Special index values */
#define MQIND_NONE (-1L)
#define MQIND_ALL (-2L)

/* Bag handles */
#define MQHB_UNUSABLE_HBAG (-1L)
#define MQHB_NONE (-2L)

/* Queue handles */
#define MQHO_NONE (-2L)

/* Values for "BufferLength" parameter on mqAddString/mqSetString */
#define MQBL_NULL_TERMINATED (-1L)

/* Values for "ItemType" parameter on mqInquireItemInfo */
#define MQIT_INTEGER 1L
#define MQIT_STRING 2L
#define MQIT_BAG 3L

/* Values for PCF "Command" field (MQIASY_COMMAND) */
#define MQCMD_NONE 0L
#define MQCMD_INQUIRE_Q_MGR 2L
#define MQCMD_INQUIRE_PROCESS 7L
#define MQCMD_CREATE_Q 11L
#define MQCMD_INQUIRE_Q 13L
#define MQCMD_INQUIRE_Q_NAMES 18L
#define MQCMD_INQUIRE_PROCESS_NAMES 19L
#define MQCMD_INQUIRE_CHANNEL_NAMES 20L
#define MQCMD_INQUIRE_CHANNEL 25L
#define MQCMD_INQUIRE_NAMELIST 36L

/* Values for PCF "Type" field (MQIASY_TYPE) */
#define MQCFT_USER 8L

/* Coded character set identifiers */
#define MQCCSI_DEFAULT 0L

/* Character-attribute selectors */
#define MQCA_Q_NAME 2016L

/* Integer-attribute selectors */
#define MQIA_Q_TYPE 20L
#define MQIA_SCOPE 45L

/* Queue types */
#define MQQT_LOCAL 1L

/* Queue definition scope */
#define MQSCO_Q_MGR 1L

/* Control options */
#define MQCFC_LAST 1L

/* Formats */
#define MQFMT_EVENT “MQEVENT ”
#define MQFMT_PCF “MQPCF ”
#define MQFMT_ADMIN “MQADMIN ”

/* Reason codes */
#define MQRC_STORAGE_NOT_AVAILABLE 2071L
#define MQRC_COMMAND_TYPE_ERROR 2300L

Constants

114 MQSeries Administration Interface Programming Guide and Reference

#define MQRC_BUFFER_ERROR 2004L
#define MQRC_BUFFER_LENGTH_ERROR 2005L
#define MQRC_DATA_LENGTH_ERROR 2010L
#define MQRC_OPTIONS_ERROR 2046L
#define MQRC_MULTIPLE_INSTANCE_ERROR 2301L
#define MQRC_SYSTEM_ITEM_NOT_ALTERABLE 2302L
#define MQRC_BAG_CONVERSION_ERROR 2303L
#define MQRC_SELECTOR_OUT_OF_RANGE 2304L
#define MQRC_SELECTOR_NOT_UNIQUE 2305L
#define MQRC_INDEX_NOT_PRESENT 2306L
#define MQRC_STRING_ERROR 2307L
#define MQRC_ENCODING_NOT_SUPPORTED 2308L
#define MQRC_SELECTOR_NOT_PRESENT 2309L
#define MQRC_OUT_SELECTOR_ERROR 2310L
#define MQRC_DATA_TRUNCATED 2311L
#define MQRC_STRING_TRUNCATED 2311L
#define MQRC_SELECTOR_WRONG_TYPE 2312L
#define MQRC_INCONSISTENT_ITEM_TYPE 2313L
#define MQRC_INDEX_ERROR 2314L
#define MQRC_SYSTEM_BAG_NOT_ALTERABLE 2315L
#define MQRC_ITEM_COUNT_ERROR 2316L
#define MQRC_FORMAT_NOT_SUPPORTED 2317L
#define MQRC_SELECTOR_NOT_SUPPORTED 2318L
#define MQRC_ITEM_VALUE_ERROR 2319L
#define MQRC_HBAG_ERROR 2320L
#define MQRC_PARAMETER_MISSING 2321L
#define MQRC_CMD_SERVER_NOT_AVAILABLE 2322L
#define MQRC_STRING_LENGTH_ERROR 2323L
#define MQRC_INQUIRY_COMMAND_ERROR 2324L
#define MQRC_NESTED_BAG_NOT_SUPPORTED 2325L
#define MQRC_BAG_WRONG_TYPE 2326L
#define MQRC_ITEM_TYPE_ERROR 2327L
#define MQRC_SYSTEM_BAG_NOT_DELETABLE 2328L
#define MQRC_SYSTEM_ITEM_NOT_DELETABLE 2329L
#define MQRC_CODED_CHAR_SET_ID_ERROR 2330L
#define MQRCCF_COMMAND_FAILED 3008L

/* Function names */
#define mqAddInquiry MQADDIQ
#define mqAddInteger MQADDIN
#define mqAddString MQADDST
#define mqBagToBuffer MQBG2BF
#define mqBufferToBag MQBF2BG
#define mqClearBag MQCLRBG
#define mqCountItems MQCNTIT
#define mqCreateBag MQCRTBG
#define mqDeleteBag MQDELBG
#define mqDeleteItem MQDELIT
#define mqExecute MQEXEC
#define mqGetBag MQGETBG
#define mqInquireBag MQINQBG
#define mqInquireInteger MQINQIN
#define mqInquireItemInfo MQINQII
#define mqInquireString MQINQST
#define mqPad MQPAD
#define mqPutBag MQPUTBG
#define mqSetInteger MQSETIN
#define mqSetString MQSETST
#define mqTrim MQTRIM
#define mqTruncateBag MQTRNBG

Elementary datatypes in C
typedef MQLONG MQHBAG;
typedef MQHBAG MQPOINTER PMQHBAG;

Constants

Appendix B. Constants in C 115

Elementary datatypes

116 MQSeries Administration Interface Programming Guide and Reference

Appendix C. Header files

MQSeries provides C and Visual Basic header files to help you write your MQAI
applications:

Table 5. Header files

C Visual Basic Description

cmqbc.h CMQBB.BAS Contains prototypes, datatypes (MQHBAG),
and named constants for the MQAI.

cmqcfc.h CMQCFB.BAS Contains elementary datatypes and named
constants for events and PCF commands.

cmqc.h CMQB.BAS Contains prototypes, data types, and named
constants for the main MQI.

© Copyright IBM Corp. 1999, 2000 117

Header files

118 MQSeries Administration Interface Programming Guide and Reference

Appendix D. Selectors

Items in bags are identified by a selector that acts as an identifier for the item.
There are two types of selector, user selector and system selector.

User selectors
User selectors have values that are zero or positive. For the administration of
MQSeries objects, valid user selectors are already defined by the following
constants:
v MQCA_* and MQIA_* (object attributes)
v MQCACF_* and MQIACF_* (items relating specifically to PCF)
v MQCACH_* and MQIACH_* (channel attributes)

For user messages, the meaning of a user selector is defined by the application.

The following additional user selectors are introduced by the MQAI:

MQIACF_INQUIRY
Identifies an MQSeries object attribute to be returned by an Inquire
command.

MQHA_BAG_HANDLE
Identifies a bag handle residing within another bag.

MQHA_FIRST
Lower limit for handle selectors.

MQHA_LAST
Upper limit for handle selectors.

MQHA_LAST_USED
Upper limit for last handle selector allocated.

MQCA_USER_LIST
Default user selector. Supported on Visual Basic only. This selector
supports character type and represents the default value used if the
Selector parameter is omitted on the mqAdd*, mqSet*, or mqInquire*
calls.

MQIA_USER_LIST
Default user selector. Supported on Visual Basic only. This selector
supports integer type and represents the default value used if the Selector
parameter is omitted on the mqAdd*, mqSet*, or mqInquire* calls.

System selectors
System selectors have negative values. The following system selectors are included
in the bag when it is created:

MQIASY_BAG_OPTIONS
Bag-creation options. A summation of the options used to create the bag.
This selector cannot be changed by the user.

MQIASY_CODED_CHAR_SET_ID
Character-set identifier for the character data items in the bag. The initial
value is the queue-manager’s character set.

© Copyright IBM Corp. 1999, 2000 119

The value in the bag is used on entry to the mqExecute call and set on exit
from the mqExecute call. This also applies when character strings are
added to or modified in the bag.

MQIASY_COMMAND
PCF command identifier. Valid values are the MQCMD_* constants. For
user messages, the value MQCMD_NONE should be used. The initial
value is MQCMD_NONE.

The value in the bag is used on entry to the mqPutBag and mqBagToBuffer
calls, and set on exit from the mqExecute, mqGetBag and mqBufferToBag
calls.

MQIASY_COMP_CODE
Completion code. Valid values are the MQCC_* constants. The initial value
is MQCC_OK.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_CONTROL
PCF control options. Valid values are the MQCFC_* constants. The initial
value is MQCFC_LAST.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_MSG_SEQ_NUMBER
PCF message sequence number. Valid values are 1 or greater. The initial
value is 1.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_REASON
Reason code. Valid values are the MQRC_* constants. The initial value is
MQRC_NONE.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

MQIASY_TYPE
PCF command type. Valid values are the MQCFT_* constants. For user
messages, the value MQCFT_USER should be used. The initial value is
MQCFT_USER for bags created as user bags and MQCFT_COMMAND for
bags created as administration or command bags.

The value in the bag is used on entry to the mqExecute, mqPutBag, and
mqBagToBuffer calls, and set on exit from the mqExecute, mqGetBag, and
mqBufferToBag calls.

System selectors

120 MQSeries Administration Interface Programming Guide and Reference

Appendix E. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2000 121

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX AS/400 BookManager
CICS IBM IBMLink
IMS MQSeries OS/2
OS/390 RACF VSE/ESA

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Notices

122 MQSeries Administration Interface Programming Guide and Reference

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be the trademarks or service marks
of others.

Notices

Appendix E. Notices 123

Changes

124 MQSeries Administration Interface Programming Guide and Reference

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
OS/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS™, CICS®, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administration bag. In the MQAI, a type of data bag
that is created for administering MQSeries by implying
that it can change the order of data items, create lists,
and check selectors within a message.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local

queue manager. When an application or a queue
manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

application environment. The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log. In Windows NT, a log that records
significant application events.

application queue. A queue used by an application.

archive log. See recovery log.

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorization file. In MQSeries on UNIX®systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

© Copyright IBM Corp. 1999, 2000 125

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

bag. See data bag.

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

v An inventory of all active and archived log data sets
known to MQSeries for OS/390

v A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint. In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

circular logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command bag. In the MQAI, a type of bag that is
created for administering MQSeries objects, but cannot
change the order of data items nor create lists within a
message.

126 MQSeries Administration Interface Programming Guide and Reference

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

completion code. A return code indicating how an
MQI call has ended.

configuration file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information
related to, for example, logs, communications, or
installable services. Synonymous with .ini file. See also
stanza.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL). In MQSeries for AS/400, a
language that can be used to issue commands, either at
the command line or by writing a CL program.

controlled shutdown. See quiesced shutdown.

CPF. Command prefix.

D
DAE. Dump analysis and elimination.

data bag. In the MQAI, a bag that allows you to
handle properties (or parameters) of objects.

data item. In the MQAI, an item contained within a
data bag. This can be an integer item or a
character-string item, and a user item or a system item.

data conversion interface (DCI). The MQSeries
interface to which customer- or vendor-written
programs that convert application data between
different machine encodings and CCSIDs must
conform. A part of the MQSeries Framework.

datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler. An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with a
user-written rules table.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE).
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

Glossary of terms and abbreviations 127

dual logging. A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode. See dual logging.

dump analysis and elimination (DAE). An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
environment. See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log. See application log.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer. A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE). An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for
processing, diagnosing an abend, or specifying a retry
address.

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF® is an example of an ESM.

F
first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Framework. In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

v MQSeries data conversion interface (DCI)

v MQSeries message channel interface (MCI)

v MQSeries name service interface (NSI)

v MQSeries security enabling interface (SEI)

v MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR). An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle. See connection handle and object handle.

128 MQSeries Administration Interface Programming Guide and Reference

I
immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

index. In the MQAI, a means of referencing data
items.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

.ini file. See configuration file.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

insertion order. In the MQAI, the order that data
items are placed into a data bag.

installable services. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name service,
and user identifier service.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor

and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence of
files. New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale. On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

log control file. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file. In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a

Glossary of terms and abbreviations 129

queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW). See unit of work.

M
machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

media image. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message. In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries Administration Interface (MQAI). A
programming interface to MQSeries.

MQSeries client. Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI calls
from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC). Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

name service. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI). The MQSeries interface
to which customer- or vendor-written programs that
resolve queue-name ownership must conform. A part of
the MQSeries Framework.

name transformation. In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows

130 MQSeries Administration Interface Programming Guide and Reference

NT, an internal process that changes a queue manager
name so that it is unique and valid for the system
being used. Externally, the queue manager name
remains unchanged.

nested bag. In the MQAI, a system bag that is
inserted into another data bag

nesting. In the MQAI, a means of grouping
information returned from MQSeries.

New Technology File System (NTFS). A Windows NT
recoverable file system that provides security for files.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character. The character that is represented by
X'00'.

O
OAM. Object authority manager.

object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM). In MQSeries on
UNIX systems, MQSeries for AS/400, and MQSeries for
Windows NT, the default authorization service for
command and object management. The OAM can be
replaced by, or run in combination with, a
customer-supplied security service.

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P
page set. A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command. See programmable command format.

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
OS/390 page sets and the corresponding log data sets
required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal. In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

Glossary of terms and abbreviations 131

|
|
|
|
|
|

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF). A type of
MQSeries message used by:

v User administration applications, to put PCF
commands onto the system command input queue of
a specified queue manager

v User administration applications, to get the results of
a PCF command from a specified queue manager

v A queue manager, as a notification that an event has
occurred

Contrast with MQSC.

program temporary fix (PTF). A solution or by-pass of
a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM). A program that
handles all normal and abnormal termination of tasks
by passing control to a recovery routine associated with
the terminating function.

Registry. In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor. In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive. In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

132 MQSeries Administration Interface Programming Guide and Reference

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

RTM. Recovery termination manager.

rules table. A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

selector. Used to identify a data item. In the MQAI
there are two types of selector: a user selector and a
system selector.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

Glossary of terms and abbreviations 133

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be
used by a message channel agent when moving
messages from a transmission queue to a link.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging. A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza. A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a
refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

symptom string. Diagnostic information displayed in
a structured format designed for searching the IBM
software support database.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system bag. A type of data bag that is created by the
MQAI.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA). Data recorded
in a SYS1.LOGREC entry, which describes a program or
hardware error.

system initialization table (SIT). A table containing
parameters used by CICS on start up.

system item. A type of data item that is created by the
MQAI.

system selector. In the MQAI, used to identify a
system item. A system selector is included in the data
bag when it is created.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
TACL. Tandem Advanced Command Language.

target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

134 MQSeries Administration Interface Programming Guide and Reference

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid. See transaction identifier.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue. See dead-letter queue.

undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user bag. In the MQAI, a type of data bag that is
created by the user.

user identifier service (UIS). In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

user item. In the MQAI, a type of data item that is
created by the user.

user selector. In the MQAI, used to identify a user
item. For the administration of MQSeries objects, valid
user selectors are already defined.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

V
value. Value of a data item. This can be an integer, a
string, or a handle of another bag.

Glossary of terms and abbreviations 135

136 MQSeries Administration Interface Programming Guide and Reference

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS

V2.2.1.1
v MQSeries for DIGITAL UNIX (Compaq Tru64

UNIX) V2.2.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390® V2R1
v MQSeries for SINIX and DC/OSx V2.2
v MQSeries for Sun Solaris V5.1
v MQSeries for Tandem NonStop Kernel V2.2.0.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated.

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a
brief introduction to the benefits of
MQSeries. It is intended to support the
purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and
Queuing

An Introduction to Messaging and Queuing,
GC33-0805, describes briefly what
MQSeries is, how it works, and how it
can solve some classic interoperability
problems. This book is intended for a
more technical audience than the
MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349,
describes some key MQSeries concepts,
identifies items that need to be considered
before MQSeries is installed, including

storage requirements, backup and
recovery, security, and migration from
earlier releases, and specifies hardware
and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book,
SC33-1872, defines the concepts of
distributed queuing and explains how to
set up a distributed queuing network in a
variety of MQSeries environments. In
particular, it demonstrates how to (1)
configure communications to and from a
representative sample of MQSeries
products, (2) create required MQSeries
objects, and (3) create and configure
MQSeries channels. The use of channel
exits is also described.

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters,
SC34-5349, describes MQSeries clustering.
It explains the concepts and terminology
and shows how you can benefit by taking
advantage of clustering. It details changes
to the MQI, and summarizes the syntax of
new and changed MQSeries commands. It
shows a number of examples of tasks you
can perform to set up and maintain
clusters of queue managers.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Clients
The MQSeries Clients book, GC33-1632,
describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book,
SC33-1873, supports day-to-day
management of local and remote
MQSeries objects. It includes topics such
as security, recovery and restart,
transactional support, problem

© Copyright IBM Corp. 1999, 2000 137

|

|
|
|
|

|

|

determination, and the dead-letter queue
handler. It also includes the syntax of the
MQSeries control commands.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference,
SC33-1369, contains the syntax of the
MQSC commands, which are used by
MQSeries system operators and
administrators to manage MQSeries
objects.

MQSeries Programmable System Management
The MQSeries Programmable System
Management book, SC33-1482, provides
both reference and guidance information
for users of MQSeries events,
Programmable Command Format (PCF)
messages, and installable services.

MQSeries Administration Interface
Programming Guide and Reference

The MQSeries Administration Interface
Programming Guide and Reference,
SC34-5390, provides information for users
of the MQAI. The MQAI is a
programming interface that simplifies the
way in which applications manipulate
Programmable Command Format (PCF)
messages and their associated data
structures.

This book applies to the following
MQSeries products only:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries Messages
The MQSeries Messages book, GC33-1876,
which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries
products only:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

v MQSeries for Windows V2.0
v MQSeries for Windows V2.1

This book is available in softcopy only.

For other MQSeries platforms, the
messages are supplied with the system.
They do not appear in softcopy manual
form.

MQSeries Application Programming Guide
The MQSeries Application Programming
Guide, SC33-0807, provides guidance
information for users of the message
queue interface (MQI). It describes how to
design, write, and build an MQSeries
application. It also includes full
descriptions of the sample programs
supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming
Reference, SC33-1673, provides
comprehensive reference information for
users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of
MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference
Summary

The MQSeries Application Programming
Reference Summary, SX33-6095,
summarizes the information in the
MQSeries Application Programming
Reference manual.

MQSeries Using C++
MQSeries Using C++, SC33-1877, provides
both guidance and reference information
for users of the MQSeries C++
programming-language binding to the
MQI. MQSeries C++ is supported by
these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for AS/400 V5.1
v MQSeries for OS/390 V2.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

MQSeries C++ is also supported by
MQSeries clients supplied with these
products and installed in the following
environments:
v AIX
v HP-UX

138 MQSeries Administration Interface Programming Guide and Reference

|

|

v OS/2
v Sun Solaris
v Windows NT
v Windows 3.1
v Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides
both guidance and reference information
for users of the MQSeries Bindings for
Java™ and the MQSeries Client for Java.
MQSeries classes for Java are supported
by these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for MVS/ESA V1.2
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1

This book is available in softcopy only.

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.1 Quick
Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 V5.1 Quick
Beginnings, GC34-5557
MQSeries for AS/400 V5.1 System
Administration, SC34-5558
MQSeries for AS/400 V5.1 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Digital UNIX (Compaq Tru64
UNIX)

MQSeries for Digital UNIX System
Management Guide, GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX V5.1 Quick
Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.1 Quick
Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1
Licensed Program Specifications,
GC34-5377
MQSeries for OS/390 Version 2 Release 1
Program Directory

MQSeries for OS/390 System
Management Guide, SC34-5374
MQSeries for OS/390 Messages and
Codes, GC34-5375
MQSeries for OS/390 Problem
Determination Guide, GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1.2 User’s
Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.1 Quick
Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA™

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA System
Management Guide, GC34-5364

MQSeries for Windows

MQSeries for Windows V2.0 User’s
Guide, GC33-1822
MQSeries for Windows V2.1 User’s
Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.1 Quick
Beginnings, GC34-5389
MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387

Bibliography 139

|

|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

BookManager format
The MQSeries library is supplied in IBM
BookManager® format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1
v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:
http://www.ibm.com/software/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:
http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX V5.1
v MQSeries for AS/400 V5.1

v MQSeries for HP-UX V5.1
v MQSeries for OS/2 Warp V5.1
v MQSeries for Sun Solaris V5.1
v MQSeries for Windows NT V5.1
v MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:
http://www.ibm.com/software/ts/mqseries/

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/ts/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

140 MQSeries Administration Interface Programming Guide and Reference

|

|

Index

A
adding character-string items 7
adding data items to bags 6
adding inquiry command 7
adding integer items 7
AdminBag parameter, mqExecute call 45
administration bag 5
AdminQ parameter, mqExecute call 45
advanced topics

data conversion 98
indexing 97

amqsaicq.c, sample programs 77
amqsaiem.c, sample programs 89
amqsailq.c, sample programs 83
API header files 117
Application Programming Interface,

header files 117

B
Bag parameter

mqAddInteger call 22
mqAddString call 24
mqClearBag call 32
mqCountItems call 33
mqCreateBag call 37
mqDeleteBag call 39
mqGetBag call 48
mqInquireBag call 51
mqInquireInteger call 54
mqInquireItemInfo call 57
mqInquireString call 60
mqPutBag call 65
mqSetInteger call 67
mqSetString call 70
mqTruncateBag call 75

bags
adding character-string items to 7
adding data items to 6
adding inquiry command to 7
adding integer items to 7
changing character-string items

within 8
changing information within 8
changing integer items within 8
converting 17
converting to PCF messages 17
creating 5
creating and deleting 5
deleting 6
inquiring within 10
putting 17
receiving 17
types of 5
using 5

bibliography 137
BookManager 140
Buffer parameter

mqAddString call 24
mqBagToBuffer call 27
mqBufferToBag call 30

Buffer parameter (continued)
mqInquireString call 61
mqPad call 63
mqSetString call 71
mqTrim call 73

BufferLength parameter
mqAddString call 24
mqBagToBuffer call 27
mqBufferToBag call 30
mqInquireString call 61
mqPad call 63
mqSetString call 71
mqTrim call 73

C
C header files

cmqbc.h 117
cmqc.h 117
cmqcfc.h 117

calls

data-bag manipulation 19
detailed description

mqAddInquiry 20
mqAddInteger 22
mqAddString 24
mqBagToBuffer 27
mqBufferToBag 30
mqClearBag 32
mqCountItems 33
mqCreateBag 35
mqDeleteBag 39
mqDeleteItem 41
mqExecute 44
mqGetBag 48
mqInquireBag 51
mqInquireInteger 54
mqInquireItemInfo 57
mqInquireString 60
mqPad 63
mqPutBag 65
mqSetInteger 67
mqSetString 70
mqTrim 73
mqTruncateBag 75

mqAddInquiry 7
mqAddInteger 7
mqAddString 7
mqBagToBuffer 17
mqBufferToBag 17
mqClearBag 10
mqCreateBag 5
mqDeleteBag 6
mqDeleteItem 9
mqExecute 13
mqGetBag 18
mqPutBag 18
mqSetInteger 8
mqSetString 8
mqTruncateBag 10

changing character-string items within
data bags 8

changing information within data
bags 8

changing integer items within data
bags 8

clearing a bag 10
CodedCharSetId parameter,

mqInquireString call 61
command bag 5
command calls

utility 19
Command parameter, mqExecute call 44
CompCode parameter

mqAddInquiry call 20
mqAddInteger call 22
mqAddString call 25
mqBagToBuffer call 27
mqBufferToBag call 30
mqClearBag call 32
mqCountItems call 33
mqCreateBag call 37
mqDeleteBag call 39
mqDeleteItem call 42
mqExecute call 46
mqGetBag call 49
mqInquireBag call 52
mqInquireInteger call 55
mqInquireItemInfo call 58
mqInquireString call 61
mqPad call 63
mqPutBag call 65
mqSetInteger call 68
mqSetString call 71
mqTrim call 73
mqTruncateBag call 75

completion code 101
concepts and terminology 1
configuring MQSeries 13
constants 113
constants, values of 113
converting bags and buffers 17
converting bags to PCF messages 17
converting PCF messages to bag

form 17
counting data items 8
creating a local queue, sample

programs 77
creating data bags 5

D
data

exchanging 17
receiving 17
sending 17

data-bag manipulation calls
command 19

data bags
adding character-string items to 7
adding data items to 6
adding inquiry command to 7

© Copyright IBM Corp. 1999, 2000 141

data bags (continued)
adding integer items to 7
changing character-string items

within 8
changing information within 8
changing integer items within 8
converting 17
converting to PCF messages 17
creating 5
creating and deleting 5
deleting 6
inquiring within 10
putting 17
receiving 17
types of 5
using 5

data conversion 98
data items

counting 8
deleting 9
filtering 7
querying 7
types of 6

DataBag parameter
mqBagToBuffer call 27
mqBufferToBag call 30

DataLength parameter, mqBagToBuffer
call 27

deleting data bags 6
deleting data items 9

E
elementary datatypes 115
event monitor, sample programs 89
exchanging data 17

F
filtering data items 7

G
GetMsgOpts parameter, mqGetBag

call 48
glossary 125

H
Hbag parameter

mqAddInquiry call 20
mqDeleteItem call 41

Hconn parameter
mqExecute call 44
mqGetBag call 48
mqPutBag call 65

header files
C 117
CMQB.BAS 117
CMQBB.BAS 117
cmqbc.h 117
cmqc.h 117
CMQCFB.BAS 117
cmqcfc.h 117
Visual Basic 117

Hobj parameter
mqGetBag call 48

Hobj parameter (continued)
mqPutBag call 65

HTML (Hypertext Markup
Language) 140

Hypertext Markup Language
(HTML) 140

I
indexing 97
inquiring queues, sample programs 83
inquiring within data bags 10
introduction 1
ItemCount parameter

mqCountItems call 33
mqTruncateBag call 75

ItemIndex parameter
mqDeleteItem call 42
mqInquireBag call 52
mqInquireInteger call 55
mqInquireItemInfo call 58
mqInquireString call 61
mqSetInteger call 68
mqSetString call 71

items
counting 8
deleting 9
filtering 7
querying 7

items, types of 6
ItemType parameter

mqInquireItemInfo call 58
ItemValue parameter

mqAddInteger call 22
mqInquireBag call 52
mqInquireInteger call 55
mqSetInteger call 68

M
mqAddInquiry 7, 20
mqAddInquiry call

CompCode parameter 20
Hbag parameter 20
Reason parameter 20
Selector parameter 20

mqAddInteger 7, 22
mqAddInteger call

Bag parameter 22
CompCode parameter 22
ItemValue parameter 22
Reason parameter 22
Selector parameter 22

mqAddString 7, 24
mqAddString call

Bag parameter 24
Buffer parameter 24
BufferLength parameter 24
CompCode parameter 25
Reason parameter 25
Selector parameter 24

MQAI
concepts and terminology 1
constants 113
elementary datatypes 115
examples 77
introduction 1

MQAI (continued)
overview 3
sample programs

creating a local queue 77
displaying events 89
inquiring queues 83
printing information 83

selectors 119
use 2

mqBagToBuffer 17, 27
mqBagToBuffer call

Buffer parameter 27
BufferLength parameter 27
CompCode parameter 27
DataBag parameter 27
DataLength parameter 27
OptionsBag parameter 27
Reason parameter 27

mqBufferToBag 17, 30
mqBufferToBag call

Buffer parameter 30
BufferLength parameter 30
CompCode parameter 30
DataBag parameter 30
OptionsBag parameter 30
Reason parameter 30

MQCC_* values 101
mqClearBag 10, 32
mqClearBag call

Bag parameter 32
CompCode parameter 32
Reason parameter 32

mqCountItems 33
mqCountItems call

Bag parameter 33
CompCode parameter 33
ItemCount parameter 33
Reason parameter 33
Selector parameter 33

mqCreateBag 5, 35
mqCreateBag call

Bag parameter 37
CompCode parameter 37
Options parameter 35
Reason parameter 37

mqCreateBag options 5
mqDeleteBag 6, 39
mqDeleteBag call

Bag parameter 39
CompCode parameter 39
Reason parameter 39

mqDeleteItem 9, 41
mqDeleteItem call

CompCode parameter 42
Hbag parameter 41
ItemIndex parameter 42
Reason parameter 42
Selector parameter 41

mqExecute 13, 44
mqExecute call

AdminBag parameter 45
AdminQ parameter 45
Command parameter 44
CompCode parameter 46
Hconn parameter 44
OptionsBag parameter 44
Reason parameter 46

142 MQSeries Administration Interface Programming Guide and Reference

mqExecute call (continued)
ResponseBag parameter 45
ResponseQ parameter 45

mqGetBag 18, 48
mqGetBag call

Bag parameter 48
CompCode parameter 49
GetMsgOpts parameter 48
Hconn parameter 48
Hobj parameter 48
MsgDesc parameter 48
Reason parameter 49

mqInquireBag 51
mqInquireBag call

Bag parameter 51
CompCode parameter 52
ItemIndex parameter 52
ItemValue parameter 52
Reason parameter 52
Selector parameter 51

mqInquireInteger 54
mqInquireInteger call

Bag parameter 54
CompCode parameter 55
ItemIndex parameter 55
ItemValue parameter 55
Reason parameter 55
Selector parameter 54

mqInquireItemInfo 57
mqInquireItemInfo call

Bag parameter 57
CompCode parameter 58
ItemIndex parameter 58
ItemType parameter 58
OutSelector parameter 58
Reason parameter 58
Selector parameter 57

mqInquireString 60
mqInquireString call

Bag parameter 60
Buffer parameter 61
BufferLength parameter 61
CodedCharSetId parameter 61
CompCode parameter 61
ItemIndex parameter 61
Reason parameter 61
Selector parameter 60
StringLength parameter 61

mqPad 63
mqPad call

Buffer parameter 63
BufferLength parameter 63
CompCode parameter 63
Reason parameter 63
String parameter 63

mqPutBag 18, 65
mqPutBag call

Bag parameter 65
CompCode parameter 65
Hconn parameter 65
Hobj parameter 65
MsgDesc parameter 65
PutMsgOpts parameter 65
Reason parameter 65

MQRC_* values 102
MQSeries Administration Interface

concepts and terminology 1

MQSeries Administration Interface
(continued)

constants 113
creating a local queue 77
displaying events 89
elementary datatypes 115
examples 77
inquiring queues 83
introduction 1
printing information 83
sample programs 77
selectors 119
use 2

MQSeries publications 137
mqSetInteger 8, 67
mqSetInteger call

Bag parameter 67
CompCode parameter 68
ItemIndex parameter 68
ItemValue parameter 68
Reason parameter 68
Selector parameter 67

mqSetString 8, 70
mqSetString call

Bag parameter 70
Buffer parameter 71
BufferLength parameter 71
CompCode parameter 71
ItemIndex parameter 71
Reason parameter 71
Selector parameter 70

mqTrim 73
mqTrim call

Buffer parameter 73
BufferLength parameter 73
CompCode parameter 73
Reason parameter 73
String parameter 73

mqTruncateBag 10, 75
mqTruncateBag call

Bag parameter 75
CompCode parameter 75
ItemCount parameter 75
Reason parameter 75

MsgDesc parameter
mqGetBag call 48
mqPutBag call 65

O
Options parameter, mqCreateBag call 35
OptionsBag parameter

mqBagToBuffer call 27
mqBufferToBag call 30
mqExecute call 44

OutSelector parameter,
mqInquireItemInfo call 58

overview 3

P
padding strings 63
PCF messages

converting from bag 18
converting to bag 18
receiving 18
sending 18

PDF (Portable Document Format) 140
Portable Document Format (PDF) 140
PostScript format 140
printing information, sample

programs 83
publications, MQSeries 137
PutMsgOpts parameter, mqPutBag

call 65
putting data bags 17

Q
querying data items 7

R
reason codes

alphabetic list 101
Reason parameter

mqAddInquiry call 20
mqAddInteger call 22
mqAddString call 25
mqBagToBuffer call 27
mqBufferToBag call 30
mqClearBag call 32
mqCountItems call 33
mqCreateBag call 37
mqDeleteBag call 39
mqDeleteItem call 42
mqExecute call 46
mqGetBag call 49
mqInquireBag call 52
mqInquireInteger call 55
mqInquireItemInfo call 58
mqInquireString call 61
mqPad call 63
mqPutBag call 65
mqSetInteger call 68
mqSetString call 71
mqTrim call 73
mqTruncateBag call 75

receiving data 17
receiving data bags 17
receiving PCF messages 18
ResponseBag parameter, mqExecute

call 45
ResponseQ parameter, mqExecute

call 45
return codes 101

S
sample programs

creating a local queue 77
displaying events 89
inquiring queues 83
printing information 83

Selector parameter
mqAddInquiry call 20
mqAddInteger call 22
mqAddString call 24
mqCountItems call 33
mqDeleteItem call 41
mqInquireBag call 51
mqInquireInteger call 54
mqInquireItemInfo call 57
mqInquireString call 60

Index 143

Selector parameter (continued)
mqSetInteger call 67
mqSetString call 70

selectors 119

system 119
user 119

sending administration commands 13

sending data 17

sending PCF messages 18

softcopy books 140

String parameter

mqPad call 63
mqTrim call 73

StringLength parameter, mqInquireString
call 61

system bag 5

system selectors 119

T
terminology used in this book 125

trimming blanks from strings 73

truncating a bag 10

types of data bag 5

types of data items 6

U
use of the MQAI 2

user bag 5

user selectors 119

utility calls 19

V
VB header files 117

Visual Basic header files

CMQB.BAS 117
CMQBB.BAS 117
CMQCFB.BAS 117

W
Windows Help 140

144 MQSeries Administration Interface Programming Guide and Reference

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1999, 2000 145

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5390-01

Spine information:

IBM MQSeries®
MQSeries Administration Interface Programming
Guide and Reference

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Appearance of text in this book

	Summary of changes
	Changes for this edition (SC34-5390-01)

	Chapter 1. Introduction to the MQSeries AdministrationInterface (MQAI)
	MQAI concepts and terminology
	Use of the MQAI
	How do I use the MQAI?
	Overview

	Building your MQAI application

	Chapter 2. Using data bags
	Types of data bag
	Creating and deleting data bags
	Deleting data bags

	Types of data item
	Adding data items to bags
	Adding an inquiry command to a bag
	Filtering and querying data items

	Changing information within a bag
	Counting data items
	Deleting data items
	Deleting data items from a bag using the mqDeleteItem call
	Clearing a bag using the mqClearBag call
	Truncating a bag using the mqTruncateBag call

	Inquiring within data bags
	System items

	Chapter 3. Configuring MQSeries using mqExecute
	Sending administration commands to the command server
	Example code

	Hints and tips for configuring MQSeries

	Chapter 4. Exchanging data between applications
	Converting bags and buffers
	Putting and receiving data bags
	Sending PCF messages to a specified queue
	Receiving PCF messages from a specified queue

	Chapter 5. MQAI reference
	mqAddInquiry
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation
	Supported INQUIRE command codes

	mqAddInteger
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqAddString
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqBagToBuffer
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqBufferToBag
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqClearBag
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqCountItems
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqCreateBag
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqDeleteBag
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqDeleteItem
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqExecute
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqGetBag
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqInquireBag
	Syntax
	Parameters
	C language invocation
	Visual Basic invocation

	mqInquireInteger
	Syntax
	Parameters
	C language invocation
	Visual Basic invocation

	mqInquireItemInfo
	Syntax
	Parameters
	C language invocation
	Visual Basic invocation

	mqInquireString
	Syntax
	Parameters
	C language invocation
	Visual Basic invocation

	mqPad
	Syntax
	Parameters
	Usage notes
	C language invocation

	mqPutBag
	Syntax
	Parameters
	C language invocation
	Visual Basic invocation

	mqSetInteger
	Syntax
	Parameters
	C language invocation
	Visual Basic invocation

	mqSetString
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	mqTrim
	Syntax
	Parameters
	Usage notes
	C language invocation

	mqTruncateBag
	Syntax
	Parameters
	Usage notes
	C language invocation
	Visual Basic invocation

	Chapter 6. Examples of using the MQAI
	Creating a local queue (amqsaicq.c)
	Inquiring about queues and printing information (amqsailq.c)
	Displaying events using an event monitor (amqsaiem.c)

	Chapter 7. Advanced topics
	Indexing
	Data conversion
	Use of the message descriptor

	Appendix A. Return codes
	Completion codes
	Reason codes

	Appendix B. Constants in C
	List of constants
	Elementary datatypes in C

	Appendix C. Header files
	Appendix D. Selectors
	User selectors
	System selectors

	Appendix E. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	BookManager format
	HTML format
	Portable Document Format (PDF)
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet

	Index
	Sending your comments to IBM

